/* $Id: HM.cpp 77591 2019-03-07 04:49:52Z vboxsync $ */ /** @file * HM - Intel/AMD VM Hardware Support Manager. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_hm HM - Hardware Assisted Virtualization Manager * * The HM manages guest execution using the VT-x and AMD-V CPU hardware * extensions. * * {summary of what HM does} * * Hardware assisted virtualization manager was originally abbreviated HWACCM, * however that was cumbersome to write and parse for such a central component, * so it was shortened to HM when refactoring the code in the 4.3 development * cycle. * * {add sections with more details} * * @sa @ref grp_hm */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_HM #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VBOX_WITH_REM # include #endif #include #include #include "HMInternal.h" #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** @def HMVMX_REPORT_FEAT * Reports VT-x feature to the release log. * * @param a_uAllowed1 Mask of allowed-1 feature bits. * @param a_uAllowed0 Mask of allowed-0 feature bits. * @param a_StrDesc The description string to report. * @param a_Featflag Mask of the feature to report. */ #define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \ do { \ if ((a_uAllowed1) & (a_Featflag)) \ { \ if ((a_uAllowed0) & (a_Featflag)) \ LogRel(("HM: " a_StrDesc " (must be set)\n")); \ else \ LogRel(("HM: " a_StrDesc "\n")); \ } \ else \ LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \ } while (0) /** @def HMVMX_REPORT_ALLOWED_FEAT * Reports an allowed VT-x feature to the release log. * * @param a_uAllowed1 Mask of allowed-1 feature bits. * @param a_StrDesc The description string to report. * @param a_FeatFlag Mask of the feature to report. */ #define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \ do { \ if ((a_uAllowed1) & (a_FeatFlag)) \ LogRel(("HM: " a_StrDesc "\n")); \ else \ LogRel(("HM: " a_StrDesc " not supported\n")); \ } while (0) /** @def HMVMX_REPORT_MSR_CAP * Reports MSR feature capability. * * @param a_MsrCaps Mask of MSR feature bits. * @param a_StrDesc The description string to report. * @param a_fCap Mask of the feature to report. */ #define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \ do { \ if ((a_MsrCaps) & (a_fCap)) \ LogRel(("HM: " a_StrDesc "\n")); \ } while (0) /** @def HMVMX_LOGREL_FEAT * Dumps a feature flag from a bitmap of features to the release log. * * @param a_fVal The value of all the features. * @param a_fMask The specific bitmask of the feature. */ #define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \ do { \ if ((a_fVal) & (a_fMask)) \ LogRel(("HM: %s\n", #a_fMask)); \ } while (0) /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static int hmR3InitFinalizeR3(PVM pVM); static int hmR3InitFinalizeR0(PVM pVM); static int hmR3InitFinalizeR0Intel(PVM pVM); static int hmR3InitFinalizeR0Amd(PVM pVM); static int hmR3TermCPU(PVM pVM); /** * Initializes the HM. * * This is the very first component to really do init after CFGM so that we can * establish the predominant execution engine for the VM prior to initializing * other modules. It takes care of NEM initialization if needed (HM disabled or * not available in HW). * * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native * hypervisor API via NEM, and then back on raw-mode if that isn't available * either. The fallback to raw-mode will not happen if /HM/HMForced is set * (like for guest using SMP or 64-bit as well as for complicated guest like OS * X, OS/2 and others). * * Note that a lot of the set up work is done in ring-0 and thus postponed till * the ring-3 and ring-0 callback to HMR3InitCompleted. * * @returns VBox status code. * @param pVM The cross context VM structure. * * @remarks Be careful with what we call here, since most of the VMM components * are uninitialized. */ VMMR3_INT_DECL(int) HMR3Init(PVM pVM) { LogFlow(("HMR3Init\n")); /* * Assert alignment and sizes. */ AssertCompileMemberAlignment(VM, hm.s, 32); AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding)); /* * Register the saved state data unit. */ int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM), NULL, NULL, NULL, NULL, hmR3Save, NULL, NULL, hmR3Load, NULL); if (RT_FAILURE(rc)) return rc; /* * Register info handlers. */ rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS); AssertRCReturn(rc, rc); rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending, DBGFINFO_FLAGS_ALL_EMTS); AssertRCReturn(rc, rc); rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.", hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS); AssertRCReturn(rc, rc); /* * Read configuration. */ PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/"); /* * Validate the HM settings. */ rc = CFGMR3ValidateConfig(pCfgHm, "/HM/", "HMForced" "|UseNEMInstead" "|FallbackToNEM" "|EnableNestedPaging" "|EnableUX" "|EnableLargePages" "|EnableVPID" "|IBPBOnVMExit" "|IBPBOnVMEntry" "|SpecCtrlByHost" "|L1DFlushOnSched" "|L1DFlushOnVMEntry" "|TPRPatchingEnabled" "|64bitEnabled" "|Exclusive" "|MaxResumeLoops" "|VmxPleGap" "|VmxPleWindow" "|UseVmxPreemptTimer" "|SvmPauseFilter" "|SvmPauseFilterThreshold" "|SvmVirtVmsaveVmload" "|SvmVGif" "|LovelyMesaDrvWorkaround", "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */); if (RT_FAILURE(rc)) return rc; /** @cfgm{/HM/HMForced, bool, false} * Forces hardware virtualization, no falling back on raw-mode. HM must be * enabled, i.e. /HMEnabled must be true. */ bool fHMForced; #ifdef VBOX_WITH_RAW_MODE rc = CFGMR3QueryBoolDef(pCfgHm, "HMForced", &fHMForced, false); AssertRCReturn(rc, rc); AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"), VERR_INVALID_PARAMETER); # if defined(RT_OS_DARWIN) if (pVM->fHMEnabled) fHMForced = true; # endif AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"), VERR_INVALID_PARAMETER); if (pVM->cCpus > 1) fHMForced = true; #else /* !VBOX_WITH_RAW_MODE */ AssertRelease(pVM->fHMEnabled); fHMForced = true; #endif /* !VBOX_WITH_RAW_MODE */ /** @cfgm{/HM/UseNEMInstead, bool, true} * Don't use HM, use NEM instead. */ bool fUseNEMInstead = false; rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false); AssertRCReturn(rc, rc); if (fUseNEMInstead && pVM->fHMEnabled) { LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n")); pVM->fHMEnabled = false; } /** @cfgm{/HM/FallbackToNEM, bool, true} * Enables fallback on NEM. */ bool fFallbackToNEM = true; rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true); AssertRCReturn(rc, rc); /** @cfgm{/HM/EnableNestedPaging, bool, false} * Enables nested paging (aka extended page tables). */ rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false); AssertRCReturn(rc, rc); /** @cfgm{/HM/EnableUX, bool, true} * Enables the VT-x unrestricted execution feature. */ rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true); AssertRCReturn(rc, rc); /** @cfgm{/HM/EnableLargePages, bool, false} * Enables using large pages (2 MB) for guest memory, thus saving on (nested) * page table walking and maybe better TLB hit rate in some cases. */ rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false); AssertRCReturn(rc, rc); /** @cfgm{/HM/EnableVPID, bool, false} * Enables the VT-x VPID feature. */ rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false); AssertRCReturn(rc, rc); /** @cfgm{/HM/TPRPatchingEnabled, bool, false} * Enables TPR patching for 32-bit windows guests with IO-APIC. */ rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false); AssertRCReturn(rc, rc); /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true} * Enables AMD64 cpu features. * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts * already have the support. */ #ifdef VBOX_ENABLE_64_BITS_GUESTS rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64); AssertLogRelRCReturn(rc, rc); #else pVM->hm.s.fAllow64BitGuests = false; #endif /** @cfgm{/HM/VmxPleGap, uint32_t, 0} * The pause-filter exiting gap in TSC ticks. When the number of ticks between * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the * latest PAUSE instruction to be start of a new PAUSE loop. */ rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0); AssertRCReturn(rc, rc); /** @cfgm{/HM/VmxPleWindow, uint32_t, 0} * The pause-filter exiting window in TSC ticks. When the number of ticks * between the current PAUSE instruction and first PAUSE of a loop exceeds * VmxPleWindow, a VM-exit is triggered. * * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting. */ rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0); AssertRCReturn(rc, rc); /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0} * A counter that is decrement each time a PAUSE instruction is executed by the * guest. When the counter is 0, a \#VMEXIT is triggered. * * Setting SvmPauseFilterCount to 0 disables pause-filter exiting. */ rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0); AssertRCReturn(rc, rc); /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0} * The pause filter threshold in ticks. When the elapsed time (in ticks) between * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the * PauseFilter count is reset to its initial value. However, if PAUSE is * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will * be triggered. * * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be * activated. */ rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0); AssertRCReturn(rc, rc); /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true} * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's * available. */ rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true); AssertRCReturn(rc, rc); /** @cfgm{/HM/SvmVGif, bool, true} * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU * if it's available. */ rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true); AssertRCReturn(rc, rc); /** @cfgm{/HM/Exclusive, bool} * Determines the init method for AMD-V and VT-x. If set to true, HM will do a * global init for each host CPU. If false, we do local init each time we wish * to execute guest code. * * On Windows, default is false due to the higher risk of conflicts with other * hypervisors. * * On Mac OS X, this setting is ignored since the code does not handle local * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx(). */ #if defined(RT_OS_DARWIN) pVM->hm.s.fGlobalInit = true; #else rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit, # if defined(RT_OS_WINDOWS) false # else true # endif ); AssertLogRelRCReturn(rc, rc); #endif /** @cfgm{/HM/MaxResumeLoops, uint32_t} * The number of times to resume guest execution before we forcibly return to * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0 * determines the default value. */ rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */); AssertLogRelRCReturn(rc, rc); /** @cfgm{/HM/UseVmxPreemptTimer, bool} * Whether to make use of the VMX-preemption timer feature of the CPU if it's * available. */ rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true); AssertLogRelRCReturn(rc, rc); /** @cfgm{/HM/IBPBOnVMExit, bool} * Costly paranoia setting. */ rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false); AssertLogRelRCReturn(rc, rc); /** @cfgm{/HM/IBPBOnVMEntry, bool} * Costly paranoia setting. */ rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false); AssertLogRelRCReturn(rc, rc); /** @cfgm{/HM/L1DFlushOnSched, bool, true} * CVS-2018-3646 workaround, ignored on CPUs that aren't affected. */ rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true); AssertLogRelRCReturn(rc, rc); /** @cfgm{/HM/L1DFlushOnVMEntry, bool} * CVS-2018-3646 workaround, ignored on CPUs that aren't affected. */ rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false); AssertLogRelRCReturn(rc, rc); /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */ if (pVM->hm.s.fL1dFlushOnVmEntry) pVM->hm.s.fL1dFlushOnSched = false; /** @cfgm{/HM/SpecCtrlByHost, bool} * Another expensive paranoia setting. */ rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false); AssertLogRelRCReturn(rc, rc); /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool} * Workaround for mesa vmsvga 3d driver making incorrect assumptions about * the hypervisor it is running under. */ bool f; rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &f, false); AssertLogRelRCReturn(rc, rc); for (VMCPUID i = 0; i < pVM->cCpus; i++) pVM->aCpus[i].hm.s.fTrapXcptGpForLovelyMesaDrv = f; /* * Check if VT-x or AMD-v support according to the users wishes. */ /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or * VERR_SVM_IN_USE. */ if (pVM->fHMEnabled) { uint32_t fCaps; rc = SUPR3QueryVTCaps(&fCaps); if (RT_SUCCESS(rc)) { if (fCaps & SUPVTCAPS_AMD_V) { pVM->hm.s.svm.fSupported = true; LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "")); VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT); } else if (fCaps & SUPVTCAPS_VT_X) { const char *pszWhy; rc = SUPR3QueryVTxSupported(&pszWhy); if (RT_SUCCESS(rc)) { pVM->hm.s.vmx.fSupported = true; LogRel(("HM: HMR3Init: VT-x%s%s%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "", fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "", (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : "")); VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT); } else { /* * Before failing, try fallback to NEM if we're allowed to do that. */ pVM->fHMEnabled = false; Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET); if (fFallbackToNEM) { LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy)); int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced); ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */ if ( RT_SUCCESS(rc2) && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET) rc = VINF_SUCCESS; } if (RT_FAILURE(rc)) { if (fHMForced) return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy); /* Fall back to raw-mode. */ LogRel(("HM: HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x - %s\n", pszWhy)); VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE); } } } else AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps), VERR_INTERNAL_ERROR_5); /* * Do we require a little bit or raw-mode for 64-bit guest execution? */ pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32 && pVM->fHMEnabled && pVM->hm.s.fAllow64BitGuests; /* * Disable nested paging and unrestricted guest execution now if they're * configured so that CPUM can make decisions based on our configuration. */ Assert(!pVM->hm.s.fNestedPaging); if (pVM->hm.s.fAllowNestedPaging) { if (fCaps & SUPVTCAPS_NESTED_PAGING) pVM->hm.s.fNestedPaging = true; else pVM->hm.s.fAllowNestedPaging = false; } if (fCaps & SUPVTCAPS_VT_X) { Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); if (pVM->hm.s.vmx.fAllowUnrestricted) { if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST) && pVM->hm.s.fNestedPaging) pVM->hm.s.vmx.fUnrestrictedGuest = true; else pVM->hm.s.vmx.fAllowUnrestricted = false; } } } else { const char *pszMsg; switch (rc) { case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break; case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break; case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break; case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break; case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break; case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break; case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break; default: return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc); } /* * Before failing, try fallback to NEM if we're allowed to do that. */ pVM->fHMEnabled = false; if (fFallbackToNEM) { LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg)); int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced); ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */ if ( RT_SUCCESS(rc2) && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET) rc = VINF_SUCCESS; } if (RT_FAILURE(rc)) { if (fHMForced) return VM_SET_ERROR(pVM, rc, pszMsg); LogRel(("HM: HMR3Init: Falling back to raw-mode: %s\n", pszMsg)); VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE); } } } else { /* * Disabled HM mean raw-mode, unless NEM is supposed to be used. */ if (!fUseNEMInstead) VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE); else { rc = NEMR3Init(pVM, false /*fFallback*/, true); ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */ if (RT_FAILURE(rc)) return rc; } } return VINF_SUCCESS; } /** * Initializes HM components after ring-3 phase has been fully initialized. * * @returns VBox status code. * @param pVM The cross context VM structure. */ static int hmR3InitFinalizeR3(PVM pVM) { LogFlow(("HMR3InitCPU\n")); if (!HMIsEnabled(pVM)) return VINF_SUCCESS; for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->hm.s.fActive = false; pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */ } #ifdef VBOX_WITH_STATISTICS STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched."); STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts."); STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8",STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8."); STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC",STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL."); STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts."); #endif /* * Statistics. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; int rc; #ifdef VBOX_WITH_STATISTICS rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of RTMpPokeCpu.", "/PROF/CPU%d/HM/Poke", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of poke wait.", "/PROF/CPU%d/HM/PokeWait", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of poke wait when RTMpPokeCpu fails.", "/PROF/CPU%d/HM/PokeWaitFailed", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of entry until entering GC.", "/PROF/CPU%d/HM/Entry", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPreExit, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of pre-exit processing after returning from GC.", "/PROF/CPU%d/HM/SwitchFromGC_1", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitHandling, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of exit handling (longjmps not included!)", "/PROF/CPU%d/HM/SwitchFromGC_2", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "I/O.", "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "MOV CRx.", "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Exceptions, NMIs.", "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatImportGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of importing guest state from hardware after VM-exit.", "/PROF/CPU%d/HM/ImportGuestState", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExportGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of exporting guest state to hardware before VM-entry.", "/PROF/CPU%d/HM/ExportGuestState", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestFpuState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of CPUMR0LoadGuestFPU.", "/PROF/CPU%d/HM/LoadGuestFpuState", i); AssertRC(rc); rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of execution of guest-code in hardware.", "/PROF/CPU%d/HM/InGC", i); AssertRC(rc); # if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.", "/PROF/CPU%d/HM/Switcher3264", i); AssertRC(rc); # endif # ifdef HM_PROFILE_EXIT_DISPATCH rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.", "/PROF/CPU%d/HM/ExitDispatch", i); AssertRC(rc); # endif #endif # define HM_REG_COUNTER(a, b, desc) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \ AssertRC(rc); #ifdef VBOX_WITH_STATISTICS HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Exits (total)."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "HLT instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "RDMSR instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "WRMSR instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "MWAIT instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "MONITOR instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR-Write", "Debug register write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR-Read", "Debug register read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR0Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR0", "CR0 read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR2Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR2", "CR2 read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR3Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR3", "CR3 read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR4Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR4", "CR4 read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR8Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR8", "CR8 read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR0Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR0", "CR0 write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR2Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR2", "CR2 write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR3Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR3", "CR3 write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR4Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR4", "CR4 write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR8Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR8", "CR8 write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "CLTS instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "LMSW instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "CLI instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "STI instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "PUSHF instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "POPF instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "IRET instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "INT instruction."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Physical maskable interrupt (host)."); #endif HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context."); #ifdef VBOX_WITH_STATISTICS HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Task switch."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag."); HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchTprMaskedIrq, "/HM/CPU%d/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total)."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchMaxResumeLoops, "/HM/CPU%d/Switch/MaxResumeToR3", "Maximum VMRESUME inner-loop counter reached."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHltToR3, "/HM/CPU%d/Switch/HltToR3", "HLT causing us to go to ring-3."); HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchApicAccessToR3, "/HM/CPU%d/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3."); #endif HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreempt, "/HM/CPU%d/Switch/Preempting", "EMT has been preempted while in HM context."); #ifdef VBOX_WITH_STATISTICS HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreemptExportHostState, "/HM/CPU%d/Switch/ExportHostState", "Preemption caused us to re-export the host state."); HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest."); HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest."); HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception (or #DF) caused due to event injection."); HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingInterpret, "/HM/CPU%d/EventInject/PendingInterpret", "Falling to interpreter for handling exception caused due to event injection."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0)."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU."); HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest)."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address."); HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB."); HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page."); HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB."); HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect."); HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect."); HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses."); HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state."); HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx."); HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint."); HM_REG_COUNTER(&pVCpu->hm.s.StatExportMinimal, "/HM/CPU%d/Export/Minimal", "VM-entry exporting minimal guest-state."); HM_REG_COUNTER(&pVCpu->hm.s.StatExportFull, "/HM/CPU%d/Export/Full", "VM-entry exporting the full guest-state."); HM_REG_COUNTER(&pVCpu->hm.s.StatLoadGuestFpu, "/HM/CPU%d/Export/GuestFpu", "VM-entry loading the guest-FPU state."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelAttr, "/HM/CPU%d/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadV86SelBase, "/HM/CPU%d/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadV86SelLimit, "/HM/CPU%d/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadV86SelAttr, "/HM/CPU%d/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL."); HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK."); #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state."); HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state."); #endif #undef HM_REG_COUNTER bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu(); /* * Guest Exit reason stats. */ pVCpu->hm.s.paStatExitReason = NULL; rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatExitReason); AssertRCReturn(rc, rc); if (fCpuSupportsVmx) { for (int j = 0; j < MAX_EXITREASON_STAT; j++) { const char *pszExitName = HMGetVmxExitName(j); if (pszExitName) { rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/Exit/Reason/%02x", i, j); AssertRCReturn(rc, rc); } } } else { for (int j = 0; j < MAX_EXITREASON_STAT; j++) { const char *pszExitName = HMGetSvmExitName(j); if (pszExitName) { rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/Exit/Reason/%02x", i, j); AssertRCReturn(rc, rc); } } } rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i); AssertRCReturn(rc, rc); pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason); # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM)); # else Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR); # endif #if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX) /* * Nested-guest VM-exit reason stats. */ pVCpu->hm.s.paStatNestedExitReason = NULL; rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatNestedExitReason); AssertRCReturn(rc, rc); if (fCpuSupportsVmx) { for (int j = 0; j < MAX_EXITREASON_STAT; j++) { const char *pszExitName = HMGetVmxExitName(j); if (pszExitName) { rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/NestedExit/Reason/%02x", i, j); AssertRC(rc); } } } else { for (int j = 0; j < MAX_EXITREASON_STAT; j++) { const char *pszExitName = HMGetSvmExitName(j); if (pszExitName) { rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/NestedExit/Reason/%02x", i, j); AssertRC(rc); } } } rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatNestedExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "Nested page fault", "/HM/CPU%d/NestedExit/Reason/#NPF", i); AssertRCReturn(rc, rc); pVCpu->hm.s.paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatNestedExitReason); # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM)); # else Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR); # endif #endif /* * Injected events stats. */ rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs); AssertRCReturn(rc, rc); pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs); # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM)); # else Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR); # endif for (unsigned j = 0; j < 255; j++) { STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "Injected event.", (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j); } #endif /* VBOX_WITH_STATISTICS */ } #ifdef VBOX_WITH_CRASHDUMP_MAGIC /* * Magic marker for searching in crash dumps. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; PVMXVMCSBATCHCACHE pVmcsCache = &pVCpu->hm.s.vmx.VmcsBatchCache; strcpy((char *)pVmcsCache->aMagic, "VMCSCACHE Magic"); pVmcsCache->uMagic = UINT64_C(0xdeadbeefdeadbeef); } #endif return VINF_SUCCESS; } /** * Called when a init phase has completed. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param enmWhat The phase that completed. */ VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) { switch (enmWhat) { case VMINITCOMPLETED_RING3: return hmR3InitFinalizeR3(pVM); case VMINITCOMPLETED_RING0: return hmR3InitFinalizeR0(pVM); default: return VINF_SUCCESS; } } /** * Turns off normal raw mode features. * * @param pVM The cross context VM structure. */ static void hmR3DisableRawMode(PVM pVM) { /** @todo r=bird: HM shouldn't be doing this crap. */ /* Reinit the paging mode to force the new shadow mode. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL); } } /** * Initialize VT-x or AMD-V. * * @returns VBox status code. * @param pVM The cross context VM structure. */ static int hmR3InitFinalizeR0(PVM pVM) { int rc; if (!HMIsEnabled(pVM)) return VINF_SUCCESS; /* * Hack to allow users to work around broken BIOSes that incorrectly set * EFER.SVME, which makes us believe somebody else is already using AMD-V. */ if ( !pVM->hm.s.vmx.fSupported && !pVM->hm.s.svm.fSupported && pVM->hm.s.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */ && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE")) { LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n")); pVM->hm.s.svm.fSupported = true; pVM->hm.s.svm.fIgnoreInUseError = true; pVM->hm.s.rcInit = VINF_SUCCESS; } /* * Report ring-0 init errors. */ if ( !pVM->hm.s.vmx.fSupported && !pVM->hm.s.svm.fSupported) { LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.rcInit)); LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatCtrl)); switch (pVM->hm.s.rcInit) { case VERR_VMX_IN_VMX_ROOT_MODE: return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor"); case VERR_VMX_NO_VMX: return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available"); case VERR_VMX_MSR_VMX_DISABLED: return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS"); case VERR_VMX_MSR_ALL_VMX_DISABLED: return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes"); case VERR_VMX_MSR_LOCKING_FAILED: return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x"); case VERR_VMX_MSR_VMX_ENABLE_FAILED: return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features"); case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED: return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode"); case VERR_SVM_IN_USE: return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor"); case VERR_SVM_NO_SVM: return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available"); case VERR_SVM_DISABLED: return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS"); } return VMSetError(pVM, pVM->hm.s.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.rcInit); } /* * Enable VT-x or AMD-V on all host CPUs. */ rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL); if (RT_FAILURE(rc)) { LogRel(("HM: Failed to enable, error %Rrc\n", rc)); HMR3CheckError(pVM, rc); return rc; } /* * No TPR patching is required when the IO-APIC is not enabled for this VM. * (Main should have taken care of this already) */ if (!PDMHasIoApic(pVM)) { Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */ pVM->hm.s.fTprPatchingAllowed = false; } /* * Check if L1D flush is needed/possible. */ if ( !pVM->cpum.ro.HostFeatures.fFlushCmd || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d || pVM->cpum.ro.HostFeatures.fArchRdclNo) pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false; /* * Sync options. */ /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure. * That will require a little bit of work, of course. */ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++) { PVMCPU pVCpu = &pVM->aCpus[iCpu]; PCPUMCTX pCpuCtx = &pVCpu->cpum.GstCtx; pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY); if (pVM->cpum.ro.HostFeatures.fIbpb) { if (pVM->hm.s.fIbpbOnVmExit) pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT; if (pVM->hm.s.fIbpbOnVmEntry) pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY; } if (pVM->cpum.ro.HostFeatures.fFlushCmd && pVM->hm.s.fL1dFlushOnVmEntry) pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_L1D_ENTRY; if (iCpu == 0) LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool\n", pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry, pVM->hm.s.fL1dFlushOnSched)); } /* * Do the vendor specific initialization * * Note! We disable release log buffering here since we're doing relatively * lot of logging and doesn't want to hit the disk with each LogRel * statement. */ AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5); bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/); if (pVM->hm.s.vmx.fSupported) rc = hmR3InitFinalizeR0Intel(pVM); else rc = hmR3InitFinalizeR0Amd(pVM); LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL")); RTLogRelSetBuffering(fOldBuffered); pVM->hm.s.fInitialized = true; return rc; } /** * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY} */ static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation) { NOREF(pVM); NOREF(pvAllocation); NOREF(GCPhysAllocation); } /** * Returns a description of the VMCS (and associated regions') memory type given the * IA32_VMX_BASIC MSR. * * @returns The descriptive memory type. * @param uMsrVmxBasic IA32_VMX_BASIC MSR value. */ static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic) { uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE); switch (uMemType) { case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)"; case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)"; } return "Unknown"; } /** * Returns a single-line description of all the activity-states supported by the CPU * given the IA32_VMX_MISC MSR. * * @returns All supported activity states. * @param uMsrMisc IA32_VMX_MISC MSR value. */ static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc) { static const char * const s_apszActStates[] = { "", " ( HLT )", " ( SHUTDOWN )", " ( HLT SHUTDOWN )", " ( SIPI_WAIT )", " ( HLT SIPI_WAIT )", " ( SHUTDOWN SIPI_WAIT )", " ( HLT SHUTDOWN SIPI_WAIT )" }; uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES); Assert(idxActStates < RT_ELEMENTS(s_apszActStates)); return s_apszActStates[idxActStates]; } /** * Reports MSR_IA32_FEATURE_CONTROL MSR to the log. * * @param fFeatMsr The feature control MSR value. */ static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr) { uint64_t const val = fFeatMsr; LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val)); HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK); HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON); HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON); HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0); HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1); HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2); HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3); HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4); HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5); HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6); HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN); HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN); HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN); HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE); if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK)) LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n")); } /** * Reports MSR_IA32_VMX_BASIC MSR to the log. * * @param uBasicMsr The VMX basic MSR value. */ static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr) { LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr)); LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID))); LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE))); LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ? "< 4 GB" : "None")); LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr))); LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON))); LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS))); LogRel(("HM: Supports true capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS))); } /** * Reports MSR_IA32_PINBASED_CTLS to the log. * * @param pVmxMsr Pointer to the VMX MSR. */ static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr) { uint64_t const fAllowed1 = pVmxMsr->n.allowed1; uint64_t const fAllowed0 = pVmxMsr->n.allowed0; LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u)); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT); } /** * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log. * * @param pVmxMsr Pointer to the VMX MSR. */ static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr) { uint64_t const fAllowed1 = pVmxMsr->n.allowed1; uint64_t const fAllowed0 = pVmxMsr->n.allowed0; LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u)); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS); } /** * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log. * * @param pVmxMsr Pointer to the VMX MSR. */ static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr) { uint64_t const fAllowed1 = pVmxMsr->n.allowed1; uint64_t const fAllowed0 = pVmxMsr->n.allowed0; LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u)); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_VE", VMX_PROC_CTLS2_EPT_VE); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_FROM_PT", VMX_PROC_CTLS2_CONCEAL_FROM_PT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING); } /** * Reports MSR_IA32_VMX_ENTRY_CTLS to the log. * * @param pVmxMsr Pointer to the VMX MSR. */ static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr) { uint64_t const fAllowed1 = pVmxMsr->n.allowed1; uint64_t const fAllowed0 = pVmxMsr->n.allowed0; LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u)); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR); } /** * Reports MSR_IA32_VMX_EXIT_CTLS to the log. * * @param pVmxMsr Pointer to the VMX MSR. */ static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr) { uint64_t const fAllowed1 = pVmxMsr->n.allowed1; uint64_t const fAllowed0 = pVmxMsr->n.allowed0; LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u)); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR); HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER); } /** * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log. * * @param fCaps The VMX EPT/VPID capability MSR value. */ static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps) { LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps)); HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY); HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4); HMVMX_REPORT_MSR_CAP(fCaps, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC); HMVMX_REPORT_MSR_CAP(fCaps, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB); HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M); HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G); HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT); HMVMX_REPORT_MSR_CAP(fCaps, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY); HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT); HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS); HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID); HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR); HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT); HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS); HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS); } /** * Reports MSR_IA32_VMX_MISC MSR to the log. * * @param pVM Pointer to the VM. * @param fMisc The VMX misc. MSR value. */ static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc) { LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc)); uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC); if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift) LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift)); else { LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift, pVM->hm.s.vmx.cPreemptTimerShift)); } LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA))); LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES), hmR3VmxGetActivityStateAllDesc(fMisc))); LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT))); LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR))); LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET))); LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS), VMX_MISC_MAX_MSRS(fMisc))); LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI))); LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL))); LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT))); LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID))); } /** * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log. * * @param uVmcsEnum The VMX VMCS enum MSR value. */ static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum) { LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum)); LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX))); } /** * Reports MSR_IA32_VMX_VMFUNC MSR to the log. * * @param uVmFunc The VMX VMFUNC MSR value. */ static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc) { LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc)); HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING)); } /** * Reports VMX CR0, CR4 fixed MSRs. * * @param pMsrs Pointer to the VMX MSRs. */ static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs) { LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0)); LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1)); LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0)); LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1)); } /** * Finish VT-x initialization (after ring-0 init). * * @returns VBox status code. * @param pVM The cross context VM structure. */ static int hmR3InitFinalizeR0Intel(PVM pVM) { int rc; Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported)); AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatCtrl != 0, VERR_HM_IPE_4); LogRel(("HM: Using VT-x implementation 2.0\n")); LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops)); LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4)); LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostEfer)); LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl)); hmR3VmxReportFeatCtlMsr(pVM->hm.s.vmx.Msrs.u64FeatCtrl); hmR3VmxReportBasicMsr(pVM->hm.s.vmx.Msrs.u64Basic); hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.PinCtls); hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.ProcCtls); if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS) hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.vmx.Msrs.ProcCtls2); hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.vmx.Msrs.EntryCtls); hmR3VmxReportExitCtlsMsr(&pVM->hm.s.vmx.Msrs.ExitCtls); if (RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS)) { /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */ LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TruePinCtls)); LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueProcCtls)); LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueEntryCtls)); LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueExitCtls)); } hmR3VmxReportMiscMsr(pVM, pVM->hm.s.vmx.Msrs.u64Misc); hmR3VmxReportVmcsEnumMsr(pVM->hm.s.vmx.Msrs.u64VmcsEnum); if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps) hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.vmx.Msrs.u64EptVpidCaps); if (pVM->hm.s.vmx.Msrs.u64VmFunc) hmR3VmxReportVmFuncMsr(pVM->hm.s.vmx.Msrs.u64VmFunc); hmR3VmxReportCrFixedMsrs(&pVM->hm.s.vmx.Msrs); LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess)); for (VMCPUID i = 0; i < pVM->cCpus; i++) { LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap)); LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs)); } /* * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that. */ AssertLogRelReturn( !pVM->hm.s.fNestedPaging || (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT), VERR_HM_IPE_1); AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest || ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST) && pVM->hm.s.fNestedPaging), VERR_HM_IPE_1); /* * Enable VPID if configured and supported. */ if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VPID) pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid; #if 0 /* * Enable APIC register virtualization and virtual-interrupt delivery if supported. */ if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT) && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY)) pVM->hm.s.fVirtApicRegs = true; /* * Enable posted-interrupt processing if supported. */ /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI * here. */ if ( (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT) && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT)) pVM->hm.s.fPostedIntrs = true; #endif /* * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel... */ if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS) && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP)) { CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP); LogRel(("HM: Disabled RDTSCP\n")); } if (!pVM->hm.s.vmx.fUnrestrictedGuest) { /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */ rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS); if (RT_SUCCESS(rc)) { /* The IO bitmap starts right after the virtual interrupt redirection bitmap. Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode" esp. Figure 20-5.*/ ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS)); pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS); /* Bit set to 0 means software interrupts are redirected to the 8086 program interrupt handler rather than switching to protected-mode handler. */ memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap)); /* Allow all port IO, so that port IO instructions do not cause exceptions and would instead cause a VM-exit (based on VT-x's IO bitmap which we currently configure to always cause an exit). */ memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2); *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff; /* * Construct a 1024 element page directory with 4 MB pages for the identity mapped * page table used in real and protected mode without paging with EPT. */ pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3); for (uint32_t i = 0; i < X86_PG_ENTRIES; i++) { pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i; pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_G; } /* We convert it here every time as PCI regions could be reconfigured. */ if (PDMVmmDevHeapIsEnabled(pVM)) { RTGCPHYS GCPhys; rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys); AssertRCReturn(rc, rc); LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys)); rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys); AssertRCReturn(rc, rc); LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys)); } } else { LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc)); pVM->hm.s.vmx.pRealModeTSS = NULL; pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL; return VMSetError(pVM, rc, RT_SRC_POS, "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc); } } LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n" : "HM: Guest support: 32-bit only\n")); /* * Call ring-0 to set up the VM. */ rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */); if (rc != VINF_SUCCESS) { LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc)); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError)); LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError)); } HMR3CheckError(pVM, rc); return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc); } LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer)); LogRel(("HM: Enabled VMX\n")); pVM->hm.s.vmx.fEnabled = true; hmR3DisableRawMode(pVM); /** @todo make this go away! */ /* * Change the CPU features. */ CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP); if (pVM->hm.s.fAllow64BitGuests) { CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE); CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE); CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */ CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF); CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX); } /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE (we reuse the host EFER in the switcher). */ /** @todo this needs to be fixed properly!! */ else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE)) { if (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE) CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX); else LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n")); } /* * Log configuration details. */ if (pVM->hm.s.fNestedPaging) { LogRel(("HM: Enabled nested paging\n")); if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT) LogRel(("HM: EPT flush type = Single context\n")); else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS) LogRel(("HM: EPT flush type = All contexts\n")); else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED) LogRel(("HM: EPT flush type = Not supported\n")); else LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushEpt)); if (pVM->hm.s.vmx.fUnrestrictedGuest) LogRel(("HM: Enabled unrestricted guest execution\n")); #if HC_ARCH_BITS == 64 if (pVM->hm.s.fLargePages) { /* Use large (2 MB) pages for our EPT PDEs where possible. */ PGMSetLargePageUsage(pVM, true); LogRel(("HM: Enabled large page support\n")); } #endif } else Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); if (pVM->hm.s.fVirtApicRegs) LogRel(("HM: Enabled APIC-register virtualization support\n")); if (pVM->hm.s.fPostedIntrs) LogRel(("HM: Enabled posted-interrupt processing support\n")); if (pVM->hm.s.vmx.fVpid) { LogRel(("HM: Enabled VPID\n")); if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR) LogRel(("HM: VPID flush type = Individual addresses\n")); else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT) LogRel(("HM: VPID flush type = Single context\n")); else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS) LogRel(("HM: VPID flush type = All contexts\n")); else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS) LogRel(("HM: VPID flush type = Single context retain globals\n")); else LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushVpid)); } else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED) LogRel(("HM: Ignoring VPID capabilities of CPU\n")); if (pVM->hm.s.vmx.fUsePreemptTimer) LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift)); else LogRel(("HM: Disabled VMX-preemption timer\n")); return VINF_SUCCESS; } /** * Finish AMD-V initialization (after ring-0 init). * * @returns VBox status code. * @param pVM The cross context VM structure. */ static int hmR3InitFinalizeR0Amd(PVM pVM) { Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported)); LogRel(("HM: Using AMD-V implementation 2.0\n")); uint32_t u32Family; uint32_t u32Model; uint32_t u32Stepping; if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping)) LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping)); LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops)); LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr)); LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev)); LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid)); LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features)); /* * Enumerate AMD-V features. */ static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] = { #define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc } HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT), HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK), HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE), HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR), HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN), HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID), HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS), HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER), HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD), HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC), HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD), HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF), #undef HMSVM_REPORT_FEATURE }; uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features; for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++) if (fSvmFeatures & s_aSvmFeatures[i].fFlag) { LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName)); fSvmFeatures &= ~s_aSvmFeatures[i].fFlag; } if (fSvmFeatures) for (unsigned iBit = 0; iBit < 32; iBit++) if (RT_BIT_32(iBit) & fSvmFeatures) LogRel(("HM: Reserved bit %u\n", iBit)); /* * Nested paging is determined in HMR3Init, verify the sanity of that. */ AssertLogRelReturn( !pVM->hm.s.fNestedPaging || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_HM_IPE_1); #if 0 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI * here. */ if (RTR0IsPostIpiSupport()) pVM->hm.s.fPostedIntrs = true; #endif /* * Call ring-0 to set up the VM. */ int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL); if (rc != VINF_SUCCESS) { AssertMsgFailed(("%Rrc\n", rc)); LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc)); return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc); } LogRel(("HM: Enabled SVM\n")); pVM->hm.s.svm.fEnabled = true; if (pVM->hm.s.fNestedPaging) { LogRel(("HM: Enabled nested paging\n")); /* * Enable large pages (2 MB) if applicable. */ #if HC_ARCH_BITS == 64 if (pVM->hm.s.fLargePages) { PGMSetLargePageUsage(pVM, true); LogRel(("HM: Enabled large page support\n")); } #endif } if (pVM->hm.s.fVirtApicRegs) LogRel(("HM: Enabled APIC-register virtualization support\n")); if (pVM->hm.s.fPostedIntrs) LogRel(("HM: Enabled posted-interrupt processing support\n")); hmR3DisableRawMode(pVM); /* * Change the CPU features. */ CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP); CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); if (pVM->hm.s.fAllow64BitGuests) { CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE); CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE); CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX); CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF); } /* Turn on NXE if PAE has been enabled. */ else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE)) CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX); LogRel(("HM: %s TPR patching\n", (pVM->hm.s.fTprPatchingAllowed) ? "Enabled" : "Disabled")); LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n" : "HM: Guest support: 32-bit only\n")); return VINF_SUCCESS; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM) { Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0))); /* Fetch the current paging mode during the relocate callback during state loading. */ if (VMR3GetState(pVM) == VMSTATE_LOADING) { for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu); } } #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) if (HMIsEnabled(pVM)) { switch (PGMGetHostMode(pVM)) { case PGMMODE_32_BIT: pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64); break; case PGMMODE_PAE: case PGMMODE_PAE_NX: pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64); break; default: AssertFailed(); break; } } #endif return; } /** * Terminates the HM. * * Termination means cleaning up and freeing all resources, * the VM itself is, at this point, powered off or suspended. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(int) HMR3Term(PVM pVM) { if (pVM->hm.s.vmx.pRealModeTSS) { PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS); pVM->hm.s.vmx.pRealModeTSS = 0; } hmR3TermCPU(pVM); return 0; } /** * Terminates the per-VCPU HM. * * @returns VBox status code. * @param pVM The cross context VM structure. */ static int hmR3TermCPU(PVM pVM) { for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu); #ifdef VBOX_WITH_STATISTICS if (pVCpu->hm.s.paStatExitReason) { MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason); pVCpu->hm.s.paStatExitReason = NULL; pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR; } if (pVCpu->hm.s.paStatInjectedIrqs) { MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs); pVCpu->hm.s.paStatInjectedIrqs = NULL; pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR; } #endif #ifdef VBOX_WITH_CRASHDUMP_MAGIC memset(pVCpu->hm.s.vmx.VmcsBatchCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VmcsBatchCache.aMagic)); pVCpu->hm.s.vmx.VmcsBatchCache.uMagic = 0; pVCpu->hm.s.vmx.VmcsBatchCache.uPos = 0xffffffff; #endif } return 0; } /** * Resets a virtual CPU. * * Used by HMR3Reset and CPU hot plugging. * * @param pVCpu The cross context virtual CPU structure to reset. */ VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu) { /* Sync. entire state on VM reset R0-reentry. It's safe to reset the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */ pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST; pVCpu->hm.s.fActive = false; pVCpu->hm.s.Event.fPending = false; pVCpu->hm.s.vmx.fWasInRealMode = true; pVCpu->hm.s.vmx.u64MsrApicBase = 0; pVCpu->hm.s.vmx.fSwitchedTo64on32 = false; /* Reset the contents of the read cache. */ PVMXVMCSBATCHCACHE pVmcsCache = &pVCpu->hm.s.vmx.VmcsBatchCache; for (unsigned j = 0; j < pVmcsCache->Read.cValidEntries; j++) pVmcsCache->Read.aFieldVal[j] = 0; #ifdef VBOX_WITH_CRASHDUMP_MAGIC /* Magic marker for searching in crash dumps. */ strcpy((char *)pVmcsCache->aMagic, "VMCSCACHE Magic"); pVmcsCache->uMagic = UINT64_C(0xdeadbeefdeadbeef); #endif } /** * The VM is being reset. * * For the HM component this means that any GDT/LDT/TSS monitors * needs to be removed. * * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(void) HMR3Reset(PVM pVM) { LogFlow(("HMR3Reset:\n")); if (HMIsEnabled(pVM)) hmR3DisableRawMode(pVM); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; HMR3ResetCpu(pVCpu); } /* Clear all patch information. */ pVM->hm.s.pGuestPatchMem = 0; pVM->hm.s.pFreeGuestPatchMem = 0; pVM->hm.s.cbGuestPatchMem = 0; pVM->hm.s.cPatches = 0; pVM->hm.s.PatchTree = 0; pVM->hm.s.fTPRPatchingActive = false; ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches)); } /** * Callback to patch a TPR instruction (vmmcall or mov cr8). * * @returns VBox strict status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pvUser Unused. */ static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser) { VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser; /* Only execute the handler on the VCPU the original patch request was issued. */ if (pVCpu->idCpu != idCpu) return VINF_SUCCESS; Log(("hmR3RemovePatches\n")); for (unsigned i = 0; i < pVM->hm.s.cPatches; i++) { uint8_t abInstr[15]; PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i]; RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key; int rc; #ifdef LOG_ENABLED char szOutput[256]; rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE, szOutput, sizeof(szOutput), NULL); if (RT_SUCCESS(rc)) Log(("Patched instr: %s\n", szOutput)); #endif /* Check if the instruction is still the same. */ rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp); if (rc != VINF_SUCCESS) { Log(("Patched code removed? (rc=%Rrc0\n", rc)); continue; /* swapped out or otherwise removed; skip it. */ } if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp)) { Log(("Patched instruction was changed! (rc=%Rrc0\n", rc)); continue; /* skip it. */ } rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp); AssertRC(rc); #ifdef LOG_ENABLED rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE, szOutput, sizeof(szOutput), NULL); if (RT_SUCCESS(rc)) Log(("Original instr: %s\n", szOutput)); #endif } pVM->hm.s.cPatches = 0; pVM->hm.s.PatchTree = 0; pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem; pVM->hm.s.fTPRPatchingActive = false; return VINF_SUCCESS; } /** * Worker for enabling patching in a VT-x/AMD-V guest. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param idCpu VCPU to execute hmR3RemovePatches on. * @param pPatchMem Patch memory range. * @param cbPatchMem Size of the memory range. */ static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem) { int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu); AssertRC(rc); pVM->hm.s.pGuestPatchMem = pPatchMem; pVM->hm.s.pFreeGuestPatchMem = pPatchMem; pVM->hm.s.cbGuestPatchMem = cbPatchMem; return VINF_SUCCESS; } /** * Enable patching in a VT-x/AMD-V guest * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pPatchMem Patch memory range. * @param cbPatchMem Size of the memory range. */ VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) { VM_ASSERT_EMT(pVM); Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem)); if (pVM->cCpus > 1) { /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */ int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem); AssertRC(rc); return rc; } return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem); } /** * Disable patching in a VT-x/AMD-V guest. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pPatchMem Patch memory range. * @param cbPatchMem Size of the memory range. */ VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) { Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem)); RT_NOREF2(pPatchMem, cbPatchMem); Assert(pVM->hm.s.pGuestPatchMem == pPatchMem); Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem); /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */ int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)VMMGetCpuId(pVM)); AssertRC(rc); pVM->hm.s.pGuestPatchMem = 0; pVM->hm.s.pFreeGuestPatchMem = 0; pVM->hm.s.cbGuestPatchMem = 0; pVM->hm.s.fTPRPatchingActive = false; return VINF_SUCCESS; } /** * Callback to patch a TPR instruction (vmmcall or mov cr8). * * @returns VBox strict status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pvUser User specified CPU context. * */ static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser) { /* * Only execute the handler on the VCPU the original patch request was * issued. (The other CPU(s) might not yet have switched to protected * mode, nor have the correct memory context.) */ VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser; if (pVCpu->idCpu != idCpu) return VINF_SUCCESS; /* * We're racing other VCPUs here, so don't try patch the instruction twice * and make sure there is still room for our patch record. */ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (pPatch) { Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip)); return VINF_SUCCESS; } uint32_t const idx = pVM->hm.s.cPatches; if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches)) { Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip)); return VINF_SUCCESS; } pPatch = &pVM->hm.s.aPatches[idx]; Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx)); /* * Disassembler the instruction and get cracking. */ DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr"); PDISCPUSTATE pDis = &pVCpu->hm.s.DisState; uint32_t cbOp; int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp); AssertRC(rc); if ( rc == VINF_SUCCESS && pDis->pCurInstr->uOpcode == OP_MOV && cbOp >= 3) { static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 }; rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp); AssertRC(rc); pPatch->cbOp = cbOp; if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32) { /* write. */ if (pDis->Param2.fUse == DISUSE_REG_GEN32) { pPatch->enmType = HMTPRINSTR_WRITE_REG; pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg; Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg)); } else { Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32); pPatch->enmType = HMTPRINSTR_WRITE_IMM; pPatch->uSrcOperand = pDis->Param2.uValue; Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue)); } rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall)); AssertRC(rc); memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall)); pPatch->cbNewOp = sizeof(s_abVMMCall); STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc); } else { /* * TPR Read. * * Found: * mov eax, dword [fffe0080] (5 bytes) * Check if next instruction is: * shr eax, 4 */ Assert(pDis->Param1.fUse == DISUSE_REG_GEN32); uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg; uint8_t const cbOpMmio = cbOp; uint64_t const uSavedRip = pCtx->rip; pCtx->rip += cbOp; rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp); DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read"); pCtx->rip = uSavedRip; if ( rc == VINF_SUCCESS && pDis->pCurInstr->uOpcode == OP_SHR && pDis->Param1.fUse == DISUSE_REG_GEN32 && pDis->Param1.Base.idxGenReg == idxMmioReg && pDis->Param2.fUse == DISUSE_IMMEDIATE8 && pDis->Param2.uValue == 4 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode)) { uint8_t abInstr[15]; /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to access CR8 in 32-bit mode and not cause a #VMEXIT. */ rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp); AssertRC(rc); pPatch->cbOp = cbOpMmio + cbOp; /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */ abInstr[0] = 0xf0; abInstr[1] = 0x0f; abInstr[2] = 0x20; abInstr[3] = 0xc0 | pDis->Param1.Base.idxGenReg; for (unsigned i = 4; i < pPatch->cbOp; i++) abInstr[i] = 0x90; /* nop */ rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp); AssertRC(rc); memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp); pPatch->cbNewOp = pPatch->cbOp; STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8); Log(("Acceptable read/shr candidate!\n")); pPatch->enmType = HMTPRINSTR_READ_SHR4; } else { pPatch->enmType = HMTPRINSTR_READ; pPatch->uDstOperand = idxMmioReg; rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall)); AssertRC(rc); memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall)); pPatch->cbNewOp = sizeof(s_abVMMCall); STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc); Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand)); } } pPatch->Core.Key = pCtx->eip; rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core); AssertRC(rc); pVM->hm.s.cPatches++; return VINF_SUCCESS; } /* * Save invalid patch, so we will not try again. */ Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n")); pPatch->Core.Key = pCtx->eip; pPatch->enmType = HMTPRINSTR_INVALID; rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core); AssertRC(rc); pVM->hm.s.cPatches++; STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure); return VINF_SUCCESS; } /** * Callback to patch a TPR instruction (jump to generated code). * * @returns VBox strict status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pvUser User specified CPU context. * */ static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser) { /* * Only execute the handler on the VCPU the original patch request was * issued. (The other CPU(s) might not yet have switched to protected * mode, nor have the correct memory context.) */ VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser; if (pVCpu->idCpu != idCpu) return VINF_SUCCESS; /* * We're racing other VCPUs here, so don't try patch the instruction twice * and make sure there is still room for our patch record. */ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (pPatch) { Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip)); return VINF_SUCCESS; } uint32_t const idx = pVM->hm.s.cPatches; if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches)) { Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip)); return VINF_SUCCESS; } pPatch = &pVM->hm.s.aPatches[idx]; Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx)); DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr"); /* * Disassemble the instruction and get cracking. */ PDISCPUSTATE pDis = &pVCpu->hm.s.DisState; uint32_t cbOp; int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp); AssertRC(rc); if ( rc == VINF_SUCCESS && pDis->pCurInstr->uOpcode == OP_MOV && cbOp >= 5) { uint8_t aPatch[64]; uint32_t off = 0; rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp); AssertRC(rc); pPatch->cbOp = cbOp; pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT; if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32) { /* * TPR write: * * push ECX [51] * push EDX [52] * push EAX [50] * xor EDX,EDX [31 D2] * mov EAX,EAX [89 C0] * or * mov EAX,0000000CCh [B8 CC 00 00 00] * mov ECX,0C0000082h [B9 82 00 00 C0] * wrmsr [0F 30] * pop EAX [58] * pop EDX [5A] * pop ECX [59] * jmp return_address [E9 return_address] */ bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX); aPatch[off++] = 0x51; /* push ecx */ aPatch[off++] = 0x52; /* push edx */ if (!fUsesEax) aPatch[off++] = 0x50; /* push eax */ aPatch[off++] = 0x31; /* xor edx, edx */ aPatch[off++] = 0xd2; if (pDis->Param2.fUse == DISUSE_REG_GEN32) { if (!fUsesEax) { aPatch[off++] = 0x89; /* mov eax, src_reg */ aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX); } } else { Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32); aPatch[off++] = 0xb8; /* mov eax, immediate */ *(uint32_t *)&aPatch[off] = pDis->Param2.uValue; off += sizeof(uint32_t); } aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */ *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR; off += sizeof(uint32_t); aPatch[off++] = 0x0f; /* wrmsr */ aPatch[off++] = 0x30; if (!fUsesEax) aPatch[off++] = 0x58; /* pop eax */ aPatch[off++] = 0x5a; /* pop edx */ aPatch[off++] = 0x59; /* pop ecx */ } else { /* * TPR read: * * push ECX [51] * push EDX [52] * push EAX [50] * mov ECX,0C0000082h [B9 82 00 00 C0] * rdmsr [0F 32] * mov EAX,EAX [89 C0] * pop EAX [58] * pop EDX [5A] * pop ECX [59] * jmp return_address [E9 return_address] */ Assert(pDis->Param1.fUse == DISUSE_REG_GEN32); if (pDis->Param1.Base.idxGenReg != DISGREG_ECX) aPatch[off++] = 0x51; /* push ecx */ if (pDis->Param1.Base.idxGenReg != DISGREG_EDX ) aPatch[off++] = 0x52; /* push edx */ if (pDis->Param1.Base.idxGenReg != DISGREG_EAX) aPatch[off++] = 0x50; /* push eax */ aPatch[off++] = 0x31; /* xor edx, edx */ aPatch[off++] = 0xd2; aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */ *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR; off += sizeof(uint32_t); aPatch[off++] = 0x0f; /* rdmsr */ aPatch[off++] = 0x32; if (pDis->Param1.Base.idxGenReg != DISGREG_EAX) { aPatch[off++] = 0x89; /* mov dst_reg, eax */ aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg); } if (pDis->Param1.Base.idxGenReg != DISGREG_EAX) aPatch[off++] = 0x58; /* pop eax */ if (pDis->Param1.Base.idxGenReg != DISGREG_EDX ) aPatch[off++] = 0x5a; /* pop edx */ if (pDis->Param1.Base.idxGenReg != DISGREG_ECX) aPatch[off++] = 0x59; /* pop ecx */ } aPatch[off++] = 0xe9; /* jmp return_address */ *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4); off += sizeof(RTRCUINTPTR); if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem) { /* Write new code to the patch buffer. */ rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off); AssertRC(rc); #ifdef LOG_ENABLED uint32_t cbCurInstr; for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem; GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off; GCPtrInstr += RT_MAX(cbCurInstr, 1)) { char szOutput[256]; rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE, szOutput, sizeof(szOutput), &cbCurInstr); if (RT_SUCCESS(rc)) Log(("Patch instr %s\n", szOutput)); else Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc)); } #endif pPatch->aNewOpcode[0] = 0xE9; *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5); /* Overwrite the TPR instruction with a jump. */ rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5); AssertRC(rc); DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump"); pVM->hm.s.pFreeGuestPatchMem += off; pPatch->cbNewOp = 5; pPatch->Core.Key = pCtx->eip; rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core); AssertRC(rc); pVM->hm.s.cPatches++; pVM->hm.s.fTPRPatchingActive = true; STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess); return VINF_SUCCESS; } Log(("Ran out of space in our patch buffer!\n")); } else Log(("hmR3PatchTprInstr: Failed to patch instr!\n")); /* * Save invalid patch, so we will not try again. */ pPatch = &pVM->hm.s.aPatches[idx]; pPatch->Core.Key = pCtx->eip; pPatch->enmType = HMTPRINSTR_INVALID; rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core); AssertRC(rc); pVM->hm.s.cPatches++; STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure); return VINF_SUCCESS; } /** * Attempt to patch TPR mmio instructions. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu) { int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr, (void *)(uintptr_t)pVCpu->idCpu); AssertRC(rc); return rc; } /** * Checks if we need to reschedule due to VMM device heap changes. * * @returns true if a reschedule is required, otherwise false. * @param pVM The cross context VM structure. * @param pCtx VM execution context. */ VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx) { /* * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging * when the unrestricted guest execution feature is missing (VT-x only). */ if ( pVM->hm.s.vmx.fEnabled && !pVM->hm.s.vmx.fUnrestrictedGuest && CPUMIsGuestInRealModeEx(pCtx) && !PDMVmmDevHeapIsEnabled(pVM)) return true; return false; } /** * Noticiation callback from DBGF when interrupt breakpoints or generic debug * event settings changes. * * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this * function is just updating the VM globals. * * @param pVM The VM cross context VM structure. * @thread EMT(0) */ VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM) { /* Interrupts. */ bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0 || pVM->dbgf.ro.cHardIntBreakpoints > 0; /* CPU Exceptions. */ for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST; !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST; enmEvent = (DBGFEVENTTYPE)(enmEvent + 1)) fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent); /* Common VM exits. */ for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST; !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON; enmEvent = (DBGFEVENTTYPE)(enmEvent + 1)) fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent); /* Vendor specific VM exits. */ if (HMR3IsVmxEnabled(pVM->pUVM)) for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST; !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST; enmEvent = (DBGFEVENTTYPE)(enmEvent + 1)) fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent); else for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST; !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST; enmEvent = (DBGFEVENTTYPE)(enmEvent + 1)) fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent); /* Done. */ pVM->hm.s.fUseDebugLoop = fUseDebugLoop; } /** * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU. * * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with * per CPU settings. * * @param pVM The VM cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu) { pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop; } /** * Checks if we are currently using hardware acceleration. * * @returns true if hardware acceleration is being used, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu) { return pVCpu->hm.s.fActive; } /** * External interface for querying whether hardware acceleration is enabled. * * @returns true if VT-x or AMD-V is being used, otherwise false. * @param pUVM The user mode VM handle. * @sa HMIsEnabled, HMIsEnabledNotMacro. */ VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */ } /** * External interface for querying whether VT-x is being used. * * @returns true if VT-x is being used, otherwise false. * @param pUVM The user mode VM handle. * @sa HMR3IsSvmEnabled, HMIsEnabled */ VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->hm.s.vmx.fEnabled && pVM->hm.s.vmx.fSupported && pVM->fHMEnabled; } /** * External interface for querying whether AMD-V is being used. * * @returns true if VT-x is being used, otherwise false. * @param pUVM The user mode VM handle. * @sa HMR3IsVmxEnabled, HMIsEnabled */ VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->hm.s.svm.fEnabled && pVM->hm.s.svm.fSupported && pVM->fHMEnabled; } /** * Checks if we are currently using nested paging. * * @returns true if nested paging is being used, otherwise false. * @param pUVM The user mode VM handle. */ VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->hm.s.fNestedPaging; } /** * Checks if virtualized APIC registers is enabled. * * When enabled this feature allows the hardware to access most of the * APIC registers in the virtual-APIC page without causing VM-exits. See * Intel spec. 29.1.1 "Virtualized APIC Registers". * * @returns true if virtualized APIC registers is enabled, otherwise * false. * @param pUVM The user mode VM handle. */ VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->hm.s.fVirtApicRegs; } /** * Checks if APIC posted-interrupt processing is enabled. * * This returns whether we can deliver interrupts to the guest without * leaving guest-context by updating APIC state from host-context. * * @returns true if APIC posted-interrupt processing is enabled, * otherwise false. * @param pUVM The user mode VM handle. */ VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->hm.s.fPostedIntrs; } /** * Checks if we are currently using VPID in VT-x mode. * * @returns true if VPID is being used, otherwise false. * @param pUVM The user mode VM handle. */ VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->hm.s.vmx.fVpid; } /** * Checks if we are currently using VT-x unrestricted execution, * aka UX. * * @returns true if UX is being used, otherwise false. * @param pUVM The user mode VM handle. */ VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, false); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, false); return pVM->hm.s.vmx.fUnrestrictedGuest || pVM->hm.s.svm.fSupported; } /** * Checks if internal events are pending. In that case we are not allowed to dispatch interrupts. * * @returns true if an internal event is pending, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu) { return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending; } /** * Checks if the VMX-preemption timer is being used. * * @returns true if the VMX-preemption timer is being used, otherwise false. * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM) { return HMIsEnabled(pVM) && pVM->hm.s.vmx.fEnabled && pVM->hm.s.vmx.fUsePreemptTimer; } /** * Check fatal VT-x/AMD-V error and produce some meaningful * log release message. * * @param pVM The cross context VM structure. * @param iStatusCode VBox status code. */ VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode) { for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; switch (iStatusCode) { /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we * might be getting inaccurate values for non-guru'ing EMTs. */ case VERR_VMX_INVALID_VMCS_FIELD: break; case VERR_VMX_INVALID_VMCS_PTR: LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n")); LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VmcsPhys, pVCpu->hm.s.vmx.HCPhysVmcs)); LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VmcsRev)); LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu)); LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu)); break; case VERR_VMX_UNABLE_TO_START_VM: LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n")); LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError)); LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason)); if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS) { LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu)); LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu)); } else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS) { LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.Ctls.u32PinCtls)); { uint32_t const u32Val = pVCpu->hm.s.vmx.Ctls.u32PinCtls; HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI ); HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER); HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT ); } LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.Ctls.u32ProcCtls)); { uint32_t const u32Val = pVCpu->hm.s.vmx.Ctls.u32ProcCtls; HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS); } LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.Ctls.u32ProcCtls2)); { uint32_t const u32Val = pVCpu->hm.s.vmx.Ctls.u32ProcCtls2; HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_VE ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_FROM_PT ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS ); HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING ); } LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.Ctls.u32EntryCtls)); { uint32_t const u32Val = pVCpu->hm.s.vmx.Ctls.u32EntryCtls; HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG ); HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST ); HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM ); HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON); HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR ); HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR ); HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR ); } LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.Ctls.u32ExitCtls)); { uint32_t const u32Val = pVCpu->hm.s.vmx.Ctls.u32ExitCtls; HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR ); HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER ); } LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap)); LogRel(("HM: CPU[%u] HCPhysGuestMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr)); LogRel(("HM: CPU[%u] HCPhysHostMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr)); LogRel(("HM: CPU[%u] cMsrs %u\n", i, pVCpu->hm.s.vmx.cMsrs)); } /** @todo Log VM-entry event injection control fields * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */ break; /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */ case VERR_VMX_INVALID_VMXON_PTR: case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO: case VERR_VMX_INVALID_GUEST_STATE: case VERR_VMX_UNEXPECTED_EXIT: case VERR_SVM_UNKNOWN_EXIT: case VERR_SVM_UNEXPECTED_EXIT: case VERR_SVM_UNEXPECTED_PATCH_TYPE: case VERR_SVM_UNEXPECTED_XCPT_EXIT: case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE: break; } } if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM) { LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1)); LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0)); } else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR) LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError)); } /** * Execute state save operation. * * Save only data that cannot be re-loaded while entering HM ring-0 code. This * is because we always save the VM state from ring-3 and thus most HM state * will be re-synced dynamically at runtime and don't need to be part of the VM * saved state. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM) { int rc; Log(("hmR3Save:\n")); for (VMCPUID i = 0; i < pVM->cCpus; i++) { Assert(!pVM->aCpus[i].hm.s.Event.fPending); if (pVM->cpum.ro.GuestFeatures.fSvm) { PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache; rc = SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid); rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx); rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx); rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx); rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx); rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold); rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount); rc |= SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt); rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl); rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset); rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking); rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging); rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt); AssertRCReturn(rc, rc); } } /* Save the guest patch data. */ rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem); rc |= SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem); rc |= SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem); /* Store all the guest patch records too. */ rc |= SSMR3PutU32(pSSM, pVM->hm.s.cPatches); AssertRCReturn(rc, rc); for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++) { AssertCompileSize(HMTPRINSTR, 4); PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i]; rc = SSMR3PutU32(pSSM, pPatch->Core.Key); rc |= SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode)); rc |= SSMR3PutU32(pSSM, pPatch->cbOp); rc |= SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode)); rc |= SSMR3PutU32(pSSM, pPatch->cbNewOp); rc |= SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType); rc |= SSMR3PutU32(pSSM, pPatch->uSrcOperand); rc |= SSMR3PutU32(pSSM, pPatch->uDstOperand); rc |= SSMR3PutU32(pSSM, pPatch->pJumpTarget); rc |= SSMR3PutU32(pSSM, pPatch->cFaults); AssertRCReturn(rc, rc); } return VINF_SUCCESS; } /** * Execute state load operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. * @param uVersion Data layout version. * @param uPass The data pass. */ static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { int rc; LogFlowFunc(("uVersion=%u\n", uVersion)); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); /* * Validate version. */ if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING && uVersion != HM_SAVED_STATE_VERSION_2_0_X) { AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } /* * Load per-VCPU state. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT) { /* Load the SVM nested hw.virt state if the VM is configured for it. */ if (pVM->cpum.ro.GuestFeatures.fSvm) { PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache; rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid); rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx); rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx); rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx); rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx); rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold); rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount); rc |= SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt); rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl); rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset); rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking); rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging); rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt); AssertRCReturn(rc, rc); } } else { /* Pending HM event (obsolete for a long time since TPRM holds the info.) */ rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending); rc |= SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode); rc |= SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo); /* VMX fWasInRealMode related data. */ uint32_t uDummy; rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc); rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc); rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc); AssertRCReturn(rc, rc); } } /* * Load TPR patching data. */ if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING) { rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem); rc |= SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem); rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem); /* Fetch all TPR patch records. */ rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cPatches); AssertRCReturn(rc, rc); for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++) { PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i]; rc = SSMR3GetU32(pSSM, &pPatch->Core.Key); rc |= SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode)); rc |= SSMR3GetU32(pSSM, &pPatch->cbOp); rc |= SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode)); rc |= SSMR3GetU32(pSSM, &pPatch->cbNewOp); rc |= SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType); if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT) pVM->hm.s.fTPRPatchingActive = true; Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false); rc |= SSMR3GetU32(pSSM, &pPatch->uSrcOperand); rc |= SSMR3GetU32(pSSM, &pPatch->uDstOperand); rc |= SSMR3GetU32(pSSM, &pPatch->cFaults); rc |= SSMR3GetU32(pSSM, &pPatch->pJumpTarget); AssertRCReturn(rc, rc); LogFlow(("hmR3Load: patch %d\n", i)); LogFlow(("Key = %x\n", pPatch->Core.Key)); LogFlow(("cbOp = %d\n", pPatch->cbOp)); LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp)); LogFlow(("type = %d\n", pPatch->enmType)); LogFlow(("srcop = %d\n", pPatch->uSrcOperand)); LogFlow(("dstop = %d\n", pPatch->uDstOperand)); LogFlow(("cFaults = %d\n", pPatch->cFaults)); LogFlow(("target = %x\n", pPatch->pJumpTarget)); rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core); AssertRCReturn(rc, rc); } } return VINF_SUCCESS; } /** * Displays HM info. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = &pVM->aCpus[0]; if (HMIsEnabled(pVM)) { if (pVM->hm.s.vmx.fSupported) pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu); else pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu); pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError); pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3); if (pVM->hm.s.vmx.fSupported) { bool const fRealOnV86Active = pVCpu->hm.s.vmx.RealMode.fRealOnV86Active; pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active); if (fRealOnV86Active) { pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVCpu->hm.s.vmx.RealMode.Eflags.u32); pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVCpu->hm.s.vmx.RealMode.AttrCS.u); pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVCpu->hm.s.vmx.RealMode.AttrSS.u); pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVCpu->hm.s.vmx.RealMode.AttrDS.u); pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVCpu->hm.s.vmx.RealMode.AttrES.u); pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVCpu->hm.s.vmx.RealMode.AttrFS.u); pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVCpu->hm.s.vmx.RealMode.AttrGS.u); } } } else pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n"); } /** * Displays the HM pending event. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = &pVM->aCpus[0]; if (HMIsEnabled(pVM)) { pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending); if (pVCpu->hm.s.Event.fPending) { pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo); pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode); pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr); pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress); } } else pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n"); } /** * Displays the SVM nested-guest VMCB cache. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = &pVM->aCpus[0]; bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM); if ( fSvmEnabled && pVM->cpum.ro.GuestFeatures.fSvm) { PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache; pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu); pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid); pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx); pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx); pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx); pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx); pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold); pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount); pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt); pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl); pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset); pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking); pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging); pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt); } else { if (!fSvmEnabled) pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n"); else pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n"); } }