VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 70944

Last change on this file since 70944 was 70918, checked in by vboxsync, 7 years ago

VMM: NEM kick off.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 163.5 KB
Line 
1/* $Id: HM.cpp 70918 2018-02-08 16:11:47Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#include <VBox/vmm/cpum.h>
41#include <VBox/vmm/stam.h>
42#include <VBox/vmm/mm.h>
43#include <VBox/vmm/pdmapi.h>
44#include <VBox/vmm/pgm.h>
45#include <VBox/vmm/ssm.h>
46#include <VBox/vmm/trpm.h>
47#include <VBox/vmm/dbgf.h>
48#include <VBox/vmm/iom.h>
49#include <VBox/vmm/iem.h>
50#include <VBox/vmm/patm.h>
51#include <VBox/vmm/csam.h>
52#include <VBox/vmm/selm.h>
53#include <VBox/vmm/nem.h>
54#ifdef VBOX_WITH_REM
55# include <VBox/vmm/rem.h>
56#endif
57#include <VBox/vmm/hm_vmx.h>
58#include <VBox/vmm/hm_svm.h>
59#include "HMInternal.h"
60#include <VBox/vmm/vm.h>
61#include <VBox/vmm/uvm.h>
62#include <VBox/err.h>
63#include <VBox/param.h>
64
65#include <iprt/assert.h>
66#include <VBox/log.h>
67#include <iprt/asm.h>
68#include <iprt/asm-amd64-x86.h>
69#include <iprt/env.h>
70#include <iprt/thread.h>
71
72
73/*********************************************************************************************************************************
74* Global Variables *
75*********************************************************************************************************************************/
76#define EXIT_REASON(def, val, str) #def " - " #val " - " str
77#define EXIT_REASON_NIL() NULL
78/** Exit reason descriptions for VT-x, used to describe statistics. */
79static const char * const g_apszVTxExitReasons[MAX_EXITREASON_STAT] =
80{
81 EXIT_REASON(VMX_EXIT_XCPT_OR_NMI , 0, "Exception or non-maskable interrupt (NMI)."),
82 EXIT_REASON(VMX_EXIT_EXT_INT , 1, "External interrupt."),
83 EXIT_REASON(VMX_EXIT_TRIPLE_FAULT , 2, "Triple fault."),
84 EXIT_REASON(VMX_EXIT_INIT_SIGNAL , 3, "INIT signal."),
85 EXIT_REASON(VMX_EXIT_SIPI , 4, "Start-up IPI (SIPI)."),
86 EXIT_REASON(VMX_EXIT_IO_SMI_IRQ , 5, "I/O system-management interrupt (SMI)."),
87 EXIT_REASON(VMX_EXIT_SMI_IRQ , 6, "Other SMI."),
88 EXIT_REASON(VMX_EXIT_INT_WINDOW , 7, "Interrupt window."),
89 EXIT_REASON(VMX_EXIT_NMI_WINDOW , 8, "NMI window."),
90 EXIT_REASON(VMX_EXIT_TASK_SWITCH , 9, "Task switch."),
91 EXIT_REASON(VMX_EXIT_CPUID , 10, "CPUID instruction."),
92 EXIT_REASON(VMX_EXIT_GETSEC , 11, "GETSEC instrunction."),
93 EXIT_REASON(VMX_EXIT_HLT , 12, "HLT instruction."),
94 EXIT_REASON(VMX_EXIT_INVD , 13, "INVD instruction."),
95 EXIT_REASON(VMX_EXIT_INVLPG , 14, "INVLPG instruction."),
96 EXIT_REASON(VMX_EXIT_RDPMC , 15, "RDPMCinstruction."),
97 EXIT_REASON(VMX_EXIT_RDTSC , 16, "RDTSC instruction."),
98 EXIT_REASON(VMX_EXIT_RSM , 17, "RSM instruction in SMM."),
99 EXIT_REASON(VMX_EXIT_VMCALL , 18, "VMCALL instruction."),
100 EXIT_REASON(VMX_EXIT_VMCLEAR , 19, "VMCLEAR instruction."),
101 EXIT_REASON(VMX_EXIT_VMLAUNCH , 20, "VMLAUNCH instruction."),
102 EXIT_REASON(VMX_EXIT_VMPTRLD , 21, "VMPTRLD instruction."),
103 EXIT_REASON(VMX_EXIT_VMPTRST , 22, "VMPTRST instruction."),
104 EXIT_REASON(VMX_EXIT_VMREAD , 23, "VMREAD instruction."),
105 EXIT_REASON(VMX_EXIT_VMRESUME , 24, "VMRESUME instruction."),
106 EXIT_REASON(VMX_EXIT_VMWRITE , 25, "VMWRITE instruction."),
107 EXIT_REASON(VMX_EXIT_VMXOFF , 26, "VMXOFF instruction."),
108 EXIT_REASON(VMX_EXIT_VMXON , 27, "VMXON instruction."),
109 EXIT_REASON(VMX_EXIT_MOV_CRX , 28, "Control-register accesses."),
110 EXIT_REASON(VMX_EXIT_MOV_DRX , 29, "Debug-register accesses."),
111 EXIT_REASON(VMX_EXIT_PORT_IO , 30, "I/O instruction."),
112 EXIT_REASON(VMX_EXIT_RDMSR , 31, "RDMSR instruction."),
113 EXIT_REASON(VMX_EXIT_WRMSR , 32, "WRMSR instruction."),
114 EXIT_REASON(VMX_EXIT_ERR_INVALID_GUEST_STATE, 33, "VM-entry failure due to invalid guest state."),
115 EXIT_REASON(VMX_EXIT_ERR_MSR_LOAD , 34, "VM-entry failure due to MSR loading."),
116 EXIT_REASON_NIL(),
117 EXIT_REASON(VMX_EXIT_MWAIT , 36, "MWAIT instruction."),
118 EXIT_REASON(VMX_EXIT_MTF , 37, "Monitor Trap Flag."),
119 EXIT_REASON_NIL(),
120 EXIT_REASON(VMX_EXIT_MONITOR , 39, "MONITOR instruction."),
121 EXIT_REASON(VMX_EXIT_PAUSE , 40, "PAUSE instruction."),
122 EXIT_REASON(VMX_EXIT_ERR_MACHINE_CHECK , 41, "VM-entry failure due to machine-check."),
123 EXIT_REASON_NIL(),
124 EXIT_REASON(VMX_EXIT_TPR_BELOW_THRESHOLD , 43, "TPR below threshold (MOV to CR8)."),
125 EXIT_REASON(VMX_EXIT_APIC_ACCESS , 44, "APIC access."),
126 EXIT_REASON(VMX_EXIT_VIRTUALIZED_EOI , 45, "Virtualized EOI."),
127 EXIT_REASON(VMX_EXIT_XDTR_ACCESS , 46, "GDTR/IDTR access using LGDT/SGDT/LIDT/SIDT."),
128 EXIT_REASON(VMX_EXIT_TR_ACCESS , 47, "LDTR/TR access using LLDT/SLDT/LTR/STR."),
129 EXIT_REASON(VMX_EXIT_EPT_VIOLATION , 48, "EPT violation."),
130 EXIT_REASON(VMX_EXIT_EPT_MISCONFIG , 49, "EPT misconfiguration."),
131 EXIT_REASON(VMX_EXIT_INVEPT , 50, "INVEPT instruction."),
132 EXIT_REASON(VMX_EXIT_RDTSCP , 51, "RDTSCP instruction."),
133 EXIT_REASON(VMX_EXIT_PREEMPT_TIMER , 52, "VMX-preemption timer expired."),
134 EXIT_REASON(VMX_EXIT_INVVPID , 53, "INVVPID instruction."),
135 EXIT_REASON(VMX_EXIT_WBINVD , 54, "WBINVD instruction."),
136 EXIT_REASON(VMX_EXIT_XSETBV , 55, "XSETBV instruction."),
137 EXIT_REASON(VMX_EXIT_APIC_WRITE , 56, "APIC write completed to virtual-APIC page."),
138 EXIT_REASON(VMX_EXIT_RDRAND , 57, "RDRAND instruction."),
139 EXIT_REASON(VMX_EXIT_INVPCID , 58, "INVPCID instruction."),
140 EXIT_REASON(VMX_EXIT_VMFUNC , 59, "VMFUNC instruction."),
141 EXIT_REASON(VMX_EXIT_ENCLS , 60, "ENCLS instrunction."),
142 EXIT_REASON(VMX_EXIT_RDSEED , 61, "RDSEED instruction."),
143 EXIT_REASON(VMX_EXIT_PML_FULL , 62, "Page-modification log full."),
144 EXIT_REASON(VMX_EXIT_XSAVES , 63, "XSAVES instruction."),
145 EXIT_REASON(VMX_EXIT_XRSTORS , 64, "XRSTORS instruction.")
146};
147/** Array index of the last valid VT-x exit reason. */
148#define MAX_EXITREASON_VTX 64
149
150/** A partial list of Exit reason descriptions for AMD-V, used to describe
151 * statistics.
152 *
153 * @note AMD-V have annoyingly large gaps (e.g. \#NPF VMEXIT comes at 1024),
154 * this array doesn't contain the entire set of exit reasons, we
155 * handle them via hmSvmGetSpecialExitReasonDesc(). */
156static const char * const g_apszAmdVExitReasons[MAX_EXITREASON_STAT] =
157{
158 EXIT_REASON(SVM_EXIT_READ_CR0 , 0, "Read CR0."),
159 EXIT_REASON(SVM_EXIT_READ_CR1 , 1, "Read CR1."),
160 EXIT_REASON(SVM_EXIT_READ_CR2 , 2, "Read CR2."),
161 EXIT_REASON(SVM_EXIT_READ_CR3 , 3, "Read CR3."),
162 EXIT_REASON(SVM_EXIT_READ_CR4 , 4, "Read CR4."),
163 EXIT_REASON(SVM_EXIT_READ_CR5 , 5, "Read CR5."),
164 EXIT_REASON(SVM_EXIT_READ_CR6 , 6, "Read CR6."),
165 EXIT_REASON(SVM_EXIT_READ_CR7 , 7, "Read CR7."),
166 EXIT_REASON(SVM_EXIT_READ_CR8 , 8, "Read CR8."),
167 EXIT_REASON(SVM_EXIT_READ_CR9 , 9, "Read CR9."),
168 EXIT_REASON(SVM_EXIT_READ_CR10 , 10, "Read CR10."),
169 EXIT_REASON(SVM_EXIT_READ_CR11 , 11, "Read CR11."),
170 EXIT_REASON(SVM_EXIT_READ_CR12 , 12, "Read CR12."),
171 EXIT_REASON(SVM_EXIT_READ_CR13 , 13, "Read CR13."),
172 EXIT_REASON(SVM_EXIT_READ_CR14 , 14, "Read CR14."),
173 EXIT_REASON(SVM_EXIT_READ_CR15 , 15, "Read CR15."),
174 EXIT_REASON(SVM_EXIT_WRITE_CR0 , 16, "Write CR0."),
175 EXIT_REASON(SVM_EXIT_WRITE_CR1 , 17, "Write CR1."),
176 EXIT_REASON(SVM_EXIT_WRITE_CR2 , 18, "Write CR2."),
177 EXIT_REASON(SVM_EXIT_WRITE_CR3 , 19, "Write CR3."),
178 EXIT_REASON(SVM_EXIT_WRITE_CR4 , 20, "Write CR4."),
179 EXIT_REASON(SVM_EXIT_WRITE_CR5 , 21, "Write CR5."),
180 EXIT_REASON(SVM_EXIT_WRITE_CR6 , 22, "Write CR6."),
181 EXIT_REASON(SVM_EXIT_WRITE_CR7 , 23, "Write CR7."),
182 EXIT_REASON(SVM_EXIT_WRITE_CR8 , 24, "Write CR8."),
183 EXIT_REASON(SVM_EXIT_WRITE_CR9 , 25, "Write CR9."),
184 EXIT_REASON(SVM_EXIT_WRITE_CR10 , 26, "Write CR10."),
185 EXIT_REASON(SVM_EXIT_WRITE_CR11 , 27, "Write CR11."),
186 EXIT_REASON(SVM_EXIT_WRITE_CR12 , 28, "Write CR12."),
187 EXIT_REASON(SVM_EXIT_WRITE_CR13 , 29, "Write CR13."),
188 EXIT_REASON(SVM_EXIT_WRITE_CR14 , 30, "Write CR14."),
189 EXIT_REASON(SVM_EXIT_WRITE_CR15 , 31, "Write CR15."),
190 EXIT_REASON(SVM_EXIT_READ_DR0 , 32, "Read DR0."),
191 EXIT_REASON(SVM_EXIT_READ_DR1 , 33, "Read DR1."),
192 EXIT_REASON(SVM_EXIT_READ_DR2 , 34, "Read DR2."),
193 EXIT_REASON(SVM_EXIT_READ_DR3 , 35, "Read DR3."),
194 EXIT_REASON(SVM_EXIT_READ_DR4 , 36, "Read DR4."),
195 EXIT_REASON(SVM_EXIT_READ_DR5 , 37, "Read DR5."),
196 EXIT_REASON(SVM_EXIT_READ_DR6 , 38, "Read DR6."),
197 EXIT_REASON(SVM_EXIT_READ_DR7 , 39, "Read DR7."),
198 EXIT_REASON(SVM_EXIT_READ_DR8 , 40, "Read DR8."),
199 EXIT_REASON(SVM_EXIT_READ_DR9 , 41, "Read DR9."),
200 EXIT_REASON(SVM_EXIT_READ_DR10 , 42, "Read DR10."),
201 EXIT_REASON(SVM_EXIT_READ_DR11 , 43, "Read DR11"),
202 EXIT_REASON(SVM_EXIT_READ_DR12 , 44, "Read DR12."),
203 EXIT_REASON(SVM_EXIT_READ_DR13 , 45, "Read DR13."),
204 EXIT_REASON(SVM_EXIT_READ_DR14 , 46, "Read DR14."),
205 EXIT_REASON(SVM_EXIT_READ_DR15 , 47, "Read DR15."),
206 EXIT_REASON(SVM_EXIT_WRITE_DR0 , 48, "Write DR0."),
207 EXIT_REASON(SVM_EXIT_WRITE_DR1 , 49, "Write DR1."),
208 EXIT_REASON(SVM_EXIT_WRITE_DR2 , 50, "Write DR2."),
209 EXIT_REASON(SVM_EXIT_WRITE_DR3 , 51, "Write DR3."),
210 EXIT_REASON(SVM_EXIT_WRITE_DR4 , 52, "Write DR4."),
211 EXIT_REASON(SVM_EXIT_WRITE_DR5 , 53, "Write DR5."),
212 EXIT_REASON(SVM_EXIT_WRITE_DR6 , 54, "Write DR6."),
213 EXIT_REASON(SVM_EXIT_WRITE_DR7 , 55, "Write DR7."),
214 EXIT_REASON(SVM_EXIT_WRITE_DR8 , 56, "Write DR8."),
215 EXIT_REASON(SVM_EXIT_WRITE_DR9 , 57, "Write DR9."),
216 EXIT_REASON(SVM_EXIT_WRITE_DR10 , 58, "Write DR10."),
217 EXIT_REASON(SVM_EXIT_WRITE_DR11 , 59, "Write DR11."),
218 EXIT_REASON(SVM_EXIT_WRITE_DR12 , 60, "Write DR12."),
219 EXIT_REASON(SVM_EXIT_WRITE_DR13 , 61, "Write DR13."),
220 EXIT_REASON(SVM_EXIT_WRITE_DR14 , 62, "Write DR14."),
221 EXIT_REASON(SVM_EXIT_WRITE_DR15 , 63, "Write DR15."),
222 EXIT_REASON(SVM_EXIT_EXCEPTION_0 , 64, "Exception Vector 0 (#DE)."),
223 EXIT_REASON(SVM_EXIT_EXCEPTION_1 , 65, "Exception Vector 1 (#DB)."),
224 EXIT_REASON(SVM_EXIT_EXCEPTION_2 , 66, "Exception Vector 2 (#NMI)."),
225 EXIT_REASON(SVM_EXIT_EXCEPTION_3 , 67, "Exception Vector 3 (#BP)."),
226 EXIT_REASON(SVM_EXIT_EXCEPTION_4 , 68, "Exception Vector 4 (#OF)."),
227 EXIT_REASON(SVM_EXIT_EXCEPTION_5 , 69, "Exception Vector 5 (#BR)."),
228 EXIT_REASON(SVM_EXIT_EXCEPTION_6 , 70, "Exception Vector 6 (#UD)."),
229 EXIT_REASON(SVM_EXIT_EXCEPTION_7 , 71, "Exception Vector 7 (#NM)."),
230 EXIT_REASON(SVM_EXIT_EXCEPTION_8 , 72, "Exception Vector 8 (#DF)."),
231 EXIT_REASON(SVM_EXIT_EXCEPTION_9 , 73, "Exception Vector 9 (#CO_SEG_OVERRUN)."),
232 EXIT_REASON(SVM_EXIT_EXCEPTION_A , 74, "Exception Vector 10 (#TS)."),
233 EXIT_REASON(SVM_EXIT_EXCEPTION_B , 75, "Exception Vector 11 (#NP)."),
234 EXIT_REASON(SVM_EXIT_EXCEPTION_C , 76, "Exception Vector 12 (#SS)."),
235 EXIT_REASON(SVM_EXIT_EXCEPTION_D , 77, "Exception Vector 13 (#GP)."),
236 EXIT_REASON(SVM_EXIT_EXCEPTION_E , 78, "Exception Vector 14 (#PF)."),
237 EXIT_REASON(SVM_EXIT_EXCEPTION_F , 79, "Exception Vector 15 (0x0f)."),
238 EXIT_REASON(SVM_EXIT_EXCEPTION_10 , 80, "Exception Vector 16 (#MF)."),
239 EXIT_REASON(SVM_EXIT_EXCEPTION_11 , 81, "Exception Vector 17 (#AC)."),
240 EXIT_REASON(SVM_EXIT_EXCEPTION_12 , 82, "Exception Vector 18 (#MC)."),
241 EXIT_REASON(SVM_EXIT_EXCEPTION_13 , 83, "Exception Vector 19 (#XF)."),
242 EXIT_REASON(SVM_EXIT_EXCEPTION_14 , 84, "Exception Vector 20 (0x14)."),
243 EXIT_REASON(SVM_EXIT_EXCEPTION_15 , 85, "Exception Vector 22 (0x15)."),
244 EXIT_REASON(SVM_EXIT_EXCEPTION_16 , 86, "Exception Vector 22 (0x16)."),
245 EXIT_REASON(SVM_EXIT_EXCEPTION_17 , 87, "Exception Vector 23 (0x17)."),
246 EXIT_REASON(SVM_EXIT_EXCEPTION_18 , 88, "Exception Vector 24 (0x18)."),
247 EXIT_REASON(SVM_EXIT_EXCEPTION_19 , 89, "Exception Vector 25 (0x19)."),
248 EXIT_REASON(SVM_EXIT_EXCEPTION_1A , 90, "Exception Vector 26 (0x1A)."),
249 EXIT_REASON(SVM_EXIT_EXCEPTION_1B , 91, "Exception Vector 27 (0x1B)."),
250 EXIT_REASON(SVM_EXIT_EXCEPTION_1C , 92, "Exception Vector 28 (0x1C)."),
251 EXIT_REASON(SVM_EXIT_EXCEPTION_1D , 93, "Exception Vector 29 (0x1D)."),
252 EXIT_REASON(SVM_EXIT_EXCEPTION_1E , 94, "Exception Vector 30 (0x1E)."),
253 EXIT_REASON(SVM_EXIT_EXCEPTION_1F , 95, "Exception Vector 31 (0x1F)."),
254 EXIT_REASON(SVM_EXIT_INTR , 96, "Physical maskable interrupt (host)."),
255 EXIT_REASON(SVM_EXIT_NMI , 97, "Physical non-maskable interrupt (host)."),
256 EXIT_REASON(SVM_EXIT_SMI , 98, "System management interrupt (host)."),
257 EXIT_REASON(SVM_EXIT_INIT , 99, "Physical INIT signal (host)."),
258 EXIT_REASON(SVM_EXIT_VINTR , 100, "Virtual interrupt-window exit."),
259 EXIT_REASON(SVM_EXIT_CR0_SEL_WRITE, 101, "Write to CR0 that changed any bits other than CR0.TS or CR0.MP."),
260 EXIT_REASON(SVM_EXIT_IDTR_READ , 102, "Read IDTR"),
261 EXIT_REASON(SVM_EXIT_GDTR_READ , 103, "Read GDTR"),
262 EXIT_REASON(SVM_EXIT_LDTR_READ , 104, "Read LDTR."),
263 EXIT_REASON(SVM_EXIT_TR_READ , 105, "Read TR."),
264 EXIT_REASON(SVM_EXIT_IDTR_WRITE , 106, "Write IDTR."),
265 EXIT_REASON(SVM_EXIT_GDTR_WRITE , 107, "Write GDTR."),
266 EXIT_REASON(SVM_EXIT_LDTR_WRITE , 108, "Write LDTR."),
267 EXIT_REASON(SVM_EXIT_TR_WRITE , 109, "Write TR."),
268 EXIT_REASON(SVM_EXIT_RDTSC , 110, "RDTSC instruction."),
269 EXIT_REASON(SVM_EXIT_RDPMC , 111, "RDPMC instruction."),
270 EXIT_REASON(SVM_EXIT_PUSHF , 112, "PUSHF instruction."),
271 EXIT_REASON(SVM_EXIT_POPF , 113, "POPF instruction."),
272 EXIT_REASON(SVM_EXIT_CPUID , 114, "CPUID instruction."),
273 EXIT_REASON(SVM_EXIT_RSM , 115, "RSM instruction."),
274 EXIT_REASON(SVM_EXIT_IRET , 116, "IRET instruction."),
275 EXIT_REASON(SVM_EXIT_SWINT , 117, "Software interrupt (INTn instructions)."),
276 EXIT_REASON(SVM_EXIT_INVD , 118, "INVD instruction."),
277 EXIT_REASON(SVM_EXIT_PAUSE , 119, "PAUSE instruction."),
278 EXIT_REASON(SVM_EXIT_HLT , 120, "HLT instruction."),
279 EXIT_REASON(SVM_EXIT_INVLPG , 121, "INVLPG instruction."),
280 EXIT_REASON(SVM_EXIT_INVLPGA , 122, "INVLPGA instruction."),
281 EXIT_REASON(SVM_EXIT_IOIO , 123, "IN/OUT accessing protected port."),
282 EXIT_REASON(SVM_EXIT_MSR , 124, "RDMSR or WRMSR access to protected MSR."),
283 EXIT_REASON(SVM_EXIT_TASK_SWITCH , 125, "Task switch."),
284 EXIT_REASON(SVM_EXIT_FERR_FREEZE , 126, "Legacy FPU handling enabled; CPU frozen in an x87/mmx instr. waiting for interrupt."),
285 EXIT_REASON(SVM_EXIT_SHUTDOWN , 127, "Shutdown."),
286 EXIT_REASON(SVM_EXIT_VMRUN , 128, "VMRUN instruction."),
287 EXIT_REASON(SVM_EXIT_VMMCALL , 129, "VMCALL instruction."),
288 EXIT_REASON(SVM_EXIT_VMLOAD , 130, "VMLOAD instruction."),
289 EXIT_REASON(SVM_EXIT_VMSAVE , 131, "VMSAVE instruction."),
290 EXIT_REASON(SVM_EXIT_STGI , 132, "STGI instruction."),
291 EXIT_REASON(SVM_EXIT_CLGI , 133, "CLGI instruction."),
292 EXIT_REASON(SVM_EXIT_SKINIT , 134, "SKINIT instruction."),
293 EXIT_REASON(SVM_EXIT_RDTSCP , 135, "RDTSCP instruction."),
294 EXIT_REASON(SVM_EXIT_ICEBP , 136, "ICEBP instruction."),
295 EXIT_REASON(SVM_EXIT_WBINVD , 137, "WBINVD instruction."),
296 EXIT_REASON(SVM_EXIT_MONITOR , 138, "MONITOR instruction."),
297 EXIT_REASON(SVM_EXIT_MWAIT , 139, "MWAIT instruction."),
298 EXIT_REASON(SVM_EXIT_MWAIT_ARMED , 140, "MWAIT instruction when armed."),
299 EXIT_REASON(SVM_EXIT_XSETBV , 141, "XSETBV instruction."),
300};
301/** Array index of the last valid AMD-V exit reason. */
302#define MAX_EXITREASON_AMDV 141
303
304/** Special exit reasons not covered in the array above. */
305#define SVM_EXIT_REASON_NPF EXIT_REASON(SVM_EXIT_NPF , 1024, "Nested Page Fault.")
306#define SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI EXIT_REASON(SVM_EXIT_AVIC_INCOMPLETE_IPI, 1025, "AVIC - Incomplete IPI delivery.")
307#define SVM_EXIT_REASON_AVIC_NOACCEL EXIT_REASON(SVM_EXIT_AVIC_NOACCEL , 1026, "AVIC - Unhandled register.")
308
309/**
310 * Gets the SVM exit reason if it's one of the reasons not present in the @c
311 * g_apszAmdVExitReasons array.
312 *
313 * @returns The exit reason or NULL if unknown.
314 * @param uExit The exit.
315 */
316DECLINLINE(const char *) hmSvmGetSpecialExitReasonDesc(uint16_t uExit)
317{
318 switch (uExit)
319 {
320 case SVM_EXIT_NPF: return SVM_EXIT_REASON_NPF;
321 case SVM_EXIT_AVIC_INCOMPLETE_IPI: return SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI;
322 case SVM_EXIT_AVIC_NOACCEL: return SVM_EXIT_REASON_AVIC_NOACCEL;
323 }
324 return EXIT_REASON_NIL();
325}
326#undef EXIT_REASON_NIL
327#undef EXIT_REASON
328
329/** @def HMVMX_REPORT_FEATURE
330 * Reports VT-x feature to the release log.
331 *
332 * @param allowed1 Mask of allowed feature bits.
333 * @param disallowed0 Mask of disallowed feature bits.
334 * @param strdesc The description string to report.
335 * @param featflag Mask of the feature to report.
336 */
337#define HMVMX_REPORT_FEATURE(allowed1, disallowed0, strdesc, featflag) \
338 do { \
339 if ((allowed1) & (featflag)) \
340 { \
341 if ((disallowed0) & (featflag)) \
342 LogRel(("HM: " strdesc " (must be set)\n")); \
343 else \
344 LogRel(("HM: " strdesc "\n")); \
345 } \
346 else \
347 LogRel(("HM: " strdesc " (must be cleared)\n")); \
348 } while (0)
349
350/** @def HMVMX_REPORT_ALLOWED_FEATURE
351 * Reports an allowed VT-x feature to the release log.
352 *
353 * @param allowed1 Mask of allowed feature bits.
354 * @param strdesc The description string to report.
355 * @param featflag Mask of the feature to report.
356 */
357#define HMVMX_REPORT_ALLOWED_FEATURE(allowed1, strdesc, featflag) \
358 do { \
359 if ((allowed1) & (featflag)) \
360 LogRel(("HM: " strdesc "\n")); \
361 else \
362 LogRel(("HM: " strdesc " not supported\n")); \
363 } while (0)
364
365/** @def HMVMX_REPORT_MSR_CAPABILITY
366 * Reports MSR feature capability.
367 *
368 * @param msrcaps Mask of MSR feature bits.
369 * @param strdesc The description string to report.
370 * @param cap Mask of the feature to report.
371 */
372#define HMVMX_REPORT_MSR_CAPABILITY(msrcaps, strdesc, cap) \
373 do { \
374 if ((msrcaps) & (cap)) \
375 LogRel(("HM: " strdesc "\n")); \
376 } while (0)
377
378
379/*********************************************************************************************************************************
380* Internal Functions *
381*********************************************************************************************************************************/
382static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
383static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
384static DECLCALLBACK(void) hmR3InfoExitHistory(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
385static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
386static int hmR3InitCPU(PVM pVM);
387static int hmR3InitFinalizeR0(PVM pVM);
388static int hmR3InitFinalizeR0Intel(PVM pVM);
389static int hmR3InitFinalizeR0Amd(PVM pVM);
390static int hmR3TermCPU(PVM pVM);
391
392
393
394/**
395 * Initializes the HM.
396 *
397 * This is the very first component to really do init after CFGM so that we can
398 * establish the predominat execution engine for the VM prior to initializing
399 * other modules. It takes care of NEM initialization if needed (HM disabled or
400 * not available in HW).
401 *
402 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
403 * hypervisor API via NEM, and then back on raw-mode if that isn't available
404 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
405 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
406 * X, OS/2 and others).
407 *
408 * Note that a lot of the set up work is done in ring-0 and thus postponed till
409 * the ring-3 and ring-0 callback to HMR3InitCompleted.
410 *
411 * @returns VBox status code.
412 * @param pVM The cross context VM structure.
413 *
414 * @remarks Be careful with what we call here, since most of the VMM components
415 * are uninitialized.
416 */
417VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
418{
419 LogFlow(("HMR3Init\n"));
420
421 /*
422 * Assert alignment and sizes.
423 */
424 AssertCompileMemberAlignment(VM, hm.s, 32);
425 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
426
427 /*
428 * Register the saved state data unit.
429 */
430 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
431 NULL, NULL, NULL,
432 NULL, hmR3Save, NULL,
433 NULL, hmR3Load, NULL);
434 if (RT_FAILURE(rc))
435 return rc;
436
437 /*
438 * Register info handlers.
439 */
440 rc = DBGFR3InfoRegisterInternalEx(pVM, "exithistory", "Dumps the HM VM-exit history.", hmR3InfoExitHistory,
441 DBGFINFO_FLAGS_ALL_EMTS);
442 AssertRCReturn(rc, rc);
443
444 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
445 DBGFINFO_FLAGS_ALL_EMTS);
446 AssertRCReturn(rc, rc);
447
448 /*
449 * Read configuration.
450 */
451 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
452
453 /*
454 * Validate the HM settings.
455 */
456 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
457 "HMForced"
458 "|UseNEMInstead"
459 "|FallbackToNEM"
460 "|EnableNestedPaging"
461 "|EnableUX"
462 "|EnableLargePages"
463 "|EnableVPID"
464 "|IBPBOnVMExit"
465 "|IBPBOnVMEntry"
466 "|TPRPatchingEnabled"
467 "|64bitEnabled"
468 "|Exclusive"
469 "|MaxResumeLoops"
470 "|VmxPleGap"
471 "|VmxPleWindow"
472 "|UseVmxPreemptTimer"
473 "|SvmPauseFilter"
474 "|SvmPauseFilterThreshold"
475 "|SvmVirtVmsaveVmload"
476 "|SvmVGif",
477 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
478 if (RT_FAILURE(rc))
479 return rc;
480
481 /** @cfgm{/HM/HMForced, bool, false}
482 * Forces hardware virtualization, no falling back on raw-mode. HM must be
483 * enabled, i.e. /HMEnabled must be true. */
484 bool fHMForced;
485#ifdef VBOX_WITH_RAW_MODE
486 rc = CFGMR3QueryBoolDef(pCfgHm, "HMForced", &fHMForced, false);
487 AssertRCReturn(rc, rc);
488 AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
489 VERR_INVALID_PARAMETER);
490# if defined(RT_OS_DARWIN)
491 if (pVM->fHMEnabled)
492 fHMForced = true;
493# endif
494 AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
495 VERR_INVALID_PARAMETER);
496 if (pVM->cCpus > 1)
497 fHMForced = true;
498#else /* !VBOX_WITH_RAW_MODE */
499 AssertRelease(pVM->fHMEnabled);
500 fHMForced = true;
501#endif /* !VBOX_WITH_RAW_MODE */
502
503 /** @cfgm{/HM/UseNEMInstead, bool, true}
504 * Don't use HM, use NEM instead. */
505 bool fUseNEMInstead = false;
506 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
507 AssertRCReturn(rc, rc);
508 if (fUseNEMInstead && pVM->fHMEnabled)
509 {
510 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
511 pVM->fHMEnabled = false;
512 }
513
514 /** @cfgm{/HM/FallbackToNEM, bool, true}
515 * Enables fallback on NEM. */
516 bool fFallbackToNEM = true;
517 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
518 AssertRCReturn(rc, rc);
519
520 /** @cfgm{/HM/EnableNestedPaging, bool, false}
521 * Enables nested paging (aka extended page tables). */
522 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
523 AssertRCReturn(rc, rc);
524
525 /** @cfgm{/HM/EnableUX, bool, true}
526 * Enables the VT-x unrestricted execution feature. */
527 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
528 AssertRCReturn(rc, rc);
529
530 /** @cfgm{/HM/EnableLargePages, bool, false}
531 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
532 * page table walking and maybe better TLB hit rate in some cases. */
533 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
534 AssertRCReturn(rc, rc);
535
536 /** @cfgm{/HM/EnableVPID, bool, false}
537 * Enables the VT-x VPID feature. */
538 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
539 AssertRCReturn(rc, rc);
540
541 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
542 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
543 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
544 AssertRCReturn(rc, rc);
545
546 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
547 * Enables AMD64 cpu features.
548 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
549 * already have the support. */
550#ifdef VBOX_ENABLE_64_BITS_GUESTS
551 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
552 AssertLogRelRCReturn(rc, rc);
553#else
554 pVM->hm.s.fAllow64BitGuests = false;
555#endif
556
557 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
558 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
559 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
560 * latest PAUSE instruction to be start of a new PAUSE loop.
561 */
562 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
563 AssertRCReturn(rc, rc);
564
565 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
566 * The pause-filter exiting window in TSC ticks. When the number of ticks
567 * between the current PAUSE instruction and first PAUSE of a loop exceeds
568 * VmxPleWindow, a VM-exit is triggered.
569 *
570 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
571 */
572 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
573 AssertRCReturn(rc, rc);
574
575 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
576 * A counter that is decrement each time a PAUSE instruction is executed by the
577 * guest. When the counter is 0, a \#VMEXIT is triggered.
578 */
579 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
580 AssertRCReturn(rc, rc);
581
582 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
583 * The pause filter threshold in ticks. When the elapsed time between two
584 * successive PAUSE instructions exceeds SvmPauseFilterThreshold, the PauseFilter
585 * count is reset to its initial value. However, if PAUSE is executed PauseFilter
586 * times within PauseFilterThreshold ticks, a VM-exit will be triggered.
587 *
588 * Setting both SvmPauseFilterCount and SvmPauseFilterCount to 0 disables
589 * pause-filter exiting.
590 */
591 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
592 AssertRCReturn(rc, rc);
593
594 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
595 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
596 * available. */
597 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
598 AssertRCReturn(rc, rc);
599
600 /** @cfgm{/HM/SvmVGif, bool, true}
601 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
602 * if it's available. */
603 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
604 AssertRCReturn(rc, rc);
605
606 /** @cfgm{/HM/Exclusive, bool}
607 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
608 * global init for each host CPU. If false, we do local init each time we wish
609 * to execute guest code.
610 *
611 * On Windows, default is false due to the higher risk of conflicts with other
612 * hypervisors.
613 *
614 * On Mac OS X, this setting is ignored since the code does not handle local
615 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
616 */
617#if defined(RT_OS_DARWIN)
618 pVM->hm.s.fGlobalInit = true;
619#else
620 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
621# if defined(RT_OS_WINDOWS)
622 false
623# else
624 true
625# endif
626 );
627 AssertLogRelRCReturn(rc, rc);
628#endif
629
630 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
631 * The number of times to resume guest execution before we forcibly return to
632 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
633 * determines the default value. */
634 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
635 AssertLogRelRCReturn(rc, rc);
636
637 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
638 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
639 * available. */
640 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
641 AssertLogRelRCReturn(rc, rc);
642
643 /** @cfgm{/HM/IBPBOnVMExit, bool}
644 * Costly paranoia setting. */
645 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
646 AssertLogRelRCReturn(rc, rc);
647
648 /** @cfgm{/HM/IBPBOnVMEntry, bool}
649 * Costly paranoia setting. */
650 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
651 AssertLogRelRCReturn(rc, rc);
652
653 /*
654 * Check if VT-x or AMD-v support according to the users wishes.
655 */
656 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
657 * VERR_SVM_IN_USE. */
658 if (pVM->fHMEnabled)
659 {
660 uint32_t fCaps;
661 rc = SUPR3QueryVTCaps(&fCaps);
662 if (RT_SUCCESS(rc))
663 {
664 if (fCaps & SUPVTCAPS_AMD_V)
665 {
666 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
667 pVM->hm.s.svm.fSupported = true;
668 }
669 else if (fCaps & SUPVTCAPS_VT_X)
670 {
671 const char *pszWhy;
672 rc = SUPR3QueryVTxSupported(&pszWhy);
673 if (RT_SUCCESS(rc))
674 {
675 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
676 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
677 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
678 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
679 pVM->hm.s.vmx.fSupported = true;
680 }
681 else
682 {
683 /*
684 * Before failing, try fallback to NEM if we're allowed to do that.
685 */
686 pVM->fHMEnabled = false;
687 if (fFallbackToNEM)
688 {
689 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
690 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
691 if ( RT_SUCCESS(rc2)
692 && pVM->fNEMActive)
693 rc = VINF_SUCCESS;
694 }
695 if (RT_FAILURE(rc))
696 {
697 if (fHMForced)
698 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
699
700 /* Fall back to raw-mode. */
701 LogRel(("HM: HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x - %s\n", pszWhy));
702 }
703 }
704 }
705 else
706 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
707 VERR_INTERNAL_ERROR_5);
708
709 /*
710 * Do we require a little bit or raw-mode for 64-bit guest execution?
711 */
712 pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
713 && pVM->fHMEnabled
714 && pVM->hm.s.fAllow64BitGuests;
715
716 /*
717 * Disable nested paging and unrestricted guest execution now if they're
718 * configured so that CPUM can make decisions based on our configuration.
719 */
720 Assert(!pVM->hm.s.fNestedPaging);
721 if (pVM->hm.s.fAllowNestedPaging)
722 {
723 if (fCaps & SUPVTCAPS_NESTED_PAGING)
724 pVM->hm.s.fNestedPaging = true;
725 else
726 pVM->hm.s.fAllowNestedPaging = false;
727 }
728
729 if (fCaps & SUPVTCAPS_VT_X)
730 {
731 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
732 if (pVM->hm.s.vmx.fAllowUnrestricted)
733 {
734 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
735 && pVM->hm.s.fNestedPaging)
736 pVM->hm.s.vmx.fUnrestrictedGuest = true;
737 else
738 pVM->hm.s.vmx.fAllowUnrestricted = false;
739 }
740 }
741 }
742 else
743 {
744 const char *pszMsg;
745 switch (rc)
746 {
747 case VERR_UNSUPPORTED_CPU:
748 pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained";
749 break;
750
751 case VERR_VMX_NO_VMX:
752 pszMsg = "VT-x is not available";
753 break;
754
755 case VERR_VMX_MSR_VMX_DISABLED:
756 pszMsg = "VT-x is disabled in the BIOS";
757 break;
758
759 case VERR_VMX_MSR_ALL_VMX_DISABLED:
760 pszMsg = "VT-x is disabled in the BIOS for all CPU modes";
761 break;
762
763 case VERR_VMX_MSR_LOCKING_FAILED:
764 pszMsg = "Failed to enable and lock VT-x features";
765 break;
766
767 case VERR_SVM_NO_SVM:
768 pszMsg = "AMD-V is not available";
769 break;
770
771 case VERR_SVM_DISABLED:
772 pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)";
773 break;
774
775 default:
776 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
777 }
778
779 /*
780 * Before failing, try fallback to NEM if we're allowed to do that.
781 */
782 pVM->fHMEnabled = false;
783 if (fFallbackToNEM)
784 {
785 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
786 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
787 if ( RT_SUCCESS(rc2)
788 && pVM->fNEMActive)
789 rc = VINF_SUCCESS;
790 }
791 if (RT_FAILURE(rc))
792 {
793 if (fHMForced)
794 return VM_SET_ERROR(pVM, rc, pszMsg);
795
796 LogRel(("HM: HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
797 }
798 }
799 }
800 /*
801 * If NEM is supposed to be used instead, initialize it instead.
802 */
803 else if (fUseNEMInstead)
804 {
805 rc = NEMR3Init(pVM, false /*fFallback*/, fHMForced);
806 if (RT_FAILURE(rc))
807 return rc;
808 }
809
810 /* It's now OK to use the predicate function. */
811 pVM->fHMEnabledFixed = true;
812 return VINF_SUCCESS;
813}
814
815
816/**
817 * Initializes the per-VCPU HM.
818 *
819 * @returns VBox status code.
820 * @param pVM The cross context VM structure.
821 */
822static int hmR3InitCPU(PVM pVM)
823{
824 LogFlow(("HMR3InitCPU\n"));
825
826 if (!HMIsEnabled(pVM))
827 return VINF_SUCCESS;
828
829 for (VMCPUID i = 0; i < pVM->cCpus; i++)
830 {
831 PVMCPU pVCpu = &pVM->aCpus[i];
832 pVCpu->hm.s.fActive = false;
833 }
834
835#ifdef VBOX_WITH_STATISTICS
836 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
837 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
838 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8",STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
839 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC",STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
840 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
841#endif
842
843 /*
844 * Statistics.
845 */
846 for (VMCPUID i = 0; i < pVM->cCpus; i++)
847 {
848 PVMCPU pVCpu = &pVM->aCpus[i];
849 int rc;
850
851#ifdef VBOX_WITH_STATISTICS
852 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
853 "Profiling of RTMpPokeCpu",
854 "/PROF/CPU%d/HM/Poke", i);
855 AssertRC(rc);
856 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
857 "Profiling of poke wait",
858 "/PROF/CPU%d/HM/PokeWait", i);
859 AssertRC(rc);
860 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
861 "Profiling of poke wait when RTMpPokeCpu fails",
862 "/PROF/CPU%d/HM/PokeWaitFailed", i);
863 AssertRC(rc);
864 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
865 "Profiling of VMXR0RunGuestCode entry",
866 "/PROF/CPU%d/HM/StatEntry", i);
867 AssertRC(rc);
868 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit1, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
869 "Profiling of VMXR0RunGuestCode exit part 1",
870 "/PROF/CPU%d/HM/SwitchFromGC_1", i);
871 AssertRC(rc);
872 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit2, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
873 "Profiling of VMXR0RunGuestCode exit part 2",
874 "/PROF/CPU%d/HM/SwitchFromGC_2", i);
875 AssertRC(rc);
876
877 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
878 "I/O",
879 "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
880 AssertRC(rc);
881 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
882 "MOV CRx",
883 "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
884 AssertRC(rc);
885 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
886 "Exceptions, NMIs",
887 "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
888 AssertRC(rc);
889
890 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
891 "Profiling of VMXR0LoadGuestState",
892 "/PROF/CPU%d/HM/StatLoadGuestState", i);
893 AssertRC(rc);
894 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
895 "Profiling of VMLAUNCH/VMRESUME.",
896 "/PROF/CPU%d/HM/InGC", i);
897 AssertRC(rc);
898
899# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
900 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
901 STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
902 "/PROF/CPU%d/HM/Switcher3264", i);
903 AssertRC(rc);
904# endif
905
906# ifdef HM_PROFILE_EXIT_DISPATCH
907 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
908 STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
909 "/PROF/CPU%d/HM/ExitDispatch", i);
910 AssertRC(rc);
911# endif
912
913#endif
914# define HM_REG_COUNTER(a, b, desc) \
915 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
916 AssertRC(rc);
917
918#ifdef VBOX_WITH_STATISTICS
919 HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Exits (total).");
920 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
921 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
922 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
923 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
924 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
925 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
926 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
927 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
928 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
929 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
930 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
931 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
932 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
933 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
934 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
935 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvlpg, "/HM/CPU%d/Exit/Instr/Invlpg", "Guest attempted to execute INVLPG.");
936 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvd, "/HM/CPU%d/Exit/Instr/Invd", "Guest attempted to execute INVD.");
937 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWbinvd, "/HM/CPU%d/Exit/Instr/Wbinvd", "Guest attempted to execute WBINVD.");
938 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPause, "/HM/CPU%d/Exit/Instr/Pause", "Guest attempted to execute PAUSE.");
939 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCpuid, "/HM/CPU%d/Exit/Instr/Cpuid", "Guest attempted to execute CPUID.");
940 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtsc, "/HM/CPU%d/Exit/Instr/Rdtsc", "Guest attempted to execute RDTSC.");
941 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtscp, "/HM/CPU%d/Exit/Instr/Rdtscp", "Guest attempted to execute RDTSCP.");
942 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdpmc, "/HM/CPU%d/Exit/Instr/Rdpmc", "Guest attempted to execute RDPMC.");
943 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdrand, "/HM/CPU%d/Exit/Instr/Rdrand", "Guest attempted to execute RDRAND.");
944 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "Guest attempted to execute RDMSR.");
945 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "Guest attempted to execute WRMSR.");
946 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "Guest attempted to execute MWAIT.");
947 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "Guest attempted to execute MONITOR.");
948 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR/Write", "Guest attempted to write a debug register.");
949 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR/Read", "Guest attempted to read a debug register.");
950 HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "Guest attempted to execute CLTS.");
951 HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "Guest attempted to execute LMSW.");
952 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "Guest attempted to execute CLI.");
953 HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "Guest attempted to execute STI.");
954 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "Guest attempted to execute PUSHF.");
955 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "Guest attempted to execute POPF.");
956 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "Guest attempted to execute IRET.");
957 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "Guest attempted to execute INT.");
958 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "Guest attempted to execute HLT.");
959 HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "Guest attempted to access descriptor table register (GDTR, IDTR, LDTR).");
960 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write.");
961 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read.");
962 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write.");
963 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read.");
964 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again.");
965 HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Host interrupt received.");
966#endif
967 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context.");
968#ifdef VBOX_WITH_STATISTICS
969 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
970 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
971 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Guest attempted a task switch.");
972 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag.");
973 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
974
975 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchTprMaskedIrq, "/HM/CPU%d/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
976 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
977 HM_REG_COUNTER(&pVCpu->hm.s.StatPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
978 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
979 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
980 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
981 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchMaxResumeLoops, "/HM/CPU%d/Switch/MaxResumeToR3", "Maximum VMRESUME inner-loop counter reached.");
982 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHltToR3, "/HM/CPU%d/Switch/HltToR3", "HLT causing us to go to ring-3.");
983 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchApicAccessToR3, "/HM/CPU%d/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
984#endif
985 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreempt, "/HM/CPU%d/Switch/Preempting", "EMT has been preempted while in HM context.");
986#ifdef VBOX_WITH_STATISTICS
987 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreemptSaveHostState, "/HM/CPU%d/Switch/SaveHostState", "Preemption caused us to resave host state.");
988
989 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
990 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
991 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception (or #DF) caused due to event injection.");
992 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingInterpret, "/HM/CPU%d/EventInject/PendingInterpret", "Falling to interpreter for handling exception caused due to event injection.");
993
994 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
995 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
996 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
997 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
998 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
999 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
1000 HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
1001 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
1002 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
1003 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
1004 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
1005 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
1006 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
1007 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
1008
1009 HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect.");
1010 HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
1011 HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses.");
1012
1013 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
1014 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
1015 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
1016
1017 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadMinimal, "/HM/CPU%d/Load/Minimal", "VM-entry loading minimal guest-state.");
1018 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadFull, "/HM/CPU%d/Load/Full", "VM-entry loading the full guest-state.");
1019
1020 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
1021 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
1022 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
1023 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
1024 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
1025 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadLdt, "/HM/CPU%d/VMXCheck/LDT", "Could not use VMX due to unsuitable LDT.");
1026 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadTr, "/HM/CPU%d/VMXCheck/TR", "Could not use VMX due to unsuitable TR.");
1027 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
1028
1029#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1030 HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
1031 HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
1032#endif
1033
1034 for (unsigned j = 0; j < RT_ELEMENTS(pVCpu->hm.s.StatExitCRxWrite); j++)
1035 {
1036 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxWrite[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1037 STAMUNIT_OCCURENCES, "Profiling of CRx writes",
1038 "/HM/CPU%d/Exit/Instr/CR/Write/%x", i, j);
1039 AssertRC(rc);
1040 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxRead[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1041 STAMUNIT_OCCURENCES, "Profiling of CRx reads",
1042 "/HM/CPU%d/Exit/Instr/CR/Read/%x", i, j);
1043 AssertRC(rc);
1044 }
1045
1046#undef HM_REG_COUNTER
1047
1048 pVCpu->hm.s.paStatExitReason = NULL;
1049
1050 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
1051 (void **)&pVCpu->hm.s.paStatExitReason);
1052 AssertRC(rc);
1053 if (RT_SUCCESS(rc))
1054 {
1055 const char *const *papszDesc = ASMIsIntelCpu() || ASMIsViaCentaurCpu() ?
1056 &g_apszVTxExitReasons[0] : &g_apszAmdVExitReasons[0];
1057 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1058 {
1059 if (papszDesc[j])
1060 {
1061 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1062 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/Exit/Reason/%02x", i, j);
1063 AssertRC(rc);
1064 }
1065 }
1066 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1067 "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
1068 AssertRC(rc);
1069 }
1070 pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
1071# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1072 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1073# else
1074 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
1075# endif
1076
1077 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
1078 AssertRCReturn(rc, rc);
1079 pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1080# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1081 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1082# else
1083 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
1084# endif
1085 for (unsigned j = 0; j < 255; j++)
1086 {
1087 STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1088 "Injected event.",
1089 (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j);
1090 }
1091
1092#endif /* VBOX_WITH_STATISTICS */
1093 }
1094
1095#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1096 /*
1097 * Magic marker for searching in crash dumps.
1098 */
1099 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1100 {
1101 PVMCPU pVCpu = &pVM->aCpus[i];
1102
1103 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1104 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1105 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1106 }
1107#endif
1108
1109 return VINF_SUCCESS;
1110}
1111
1112
1113/**
1114 * Called when a init phase has completed.
1115 *
1116 * @returns VBox status code.
1117 * @param pVM The cross context VM structure.
1118 * @param enmWhat The phase that completed.
1119 */
1120VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1121{
1122 switch (enmWhat)
1123 {
1124 case VMINITCOMPLETED_RING3:
1125 return hmR3InitCPU(pVM);
1126 case VMINITCOMPLETED_RING0:
1127 return hmR3InitFinalizeR0(pVM);
1128 default:
1129 return VINF_SUCCESS;
1130 }
1131}
1132
1133
1134/**
1135 * Turns off normal raw mode features.
1136 *
1137 * @param pVM The cross context VM structure.
1138 */
1139static void hmR3DisableRawMode(PVM pVM)
1140{
1141 /* Reinit the paging mode to force the new shadow mode. */
1142 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1143 {
1144 PVMCPU pVCpu = &pVM->aCpus[i];
1145
1146 PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1147 }
1148}
1149
1150
1151/**
1152 * Initialize VT-x or AMD-V.
1153 *
1154 * @returns VBox status code.
1155 * @param pVM The cross context VM structure.
1156 */
1157static int hmR3InitFinalizeR0(PVM pVM)
1158{
1159 int rc;
1160
1161 if (!HMIsEnabled(pVM))
1162 return VINF_SUCCESS;
1163
1164 /*
1165 * Hack to allow users to work around broken BIOSes that incorrectly set
1166 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1167 */
1168 if ( !pVM->hm.s.vmx.fSupported
1169 && !pVM->hm.s.svm.fSupported
1170 && pVM->hm.s.lLastError == VERR_SVM_IN_USE /* implies functional AMD-V */
1171 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1172 {
1173 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1174 pVM->hm.s.svm.fSupported = true;
1175 pVM->hm.s.svm.fIgnoreInUseError = true;
1176 pVM->hm.s.lLastError = VINF_SUCCESS;
1177 }
1178
1179 /*
1180 * Report ring-0 init errors.
1181 */
1182 if ( !pVM->hm.s.vmx.fSupported
1183 && !pVM->hm.s.svm.fSupported)
1184 {
1185 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.lLastError));
1186 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1187 switch (pVM->hm.s.lLastError)
1188 {
1189 case VERR_VMX_IN_VMX_ROOT_MODE:
1190 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1191 case VERR_VMX_NO_VMX:
1192 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1193 case VERR_VMX_MSR_VMX_DISABLED:
1194 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1195 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1196 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1197 case VERR_VMX_MSR_LOCKING_FAILED:
1198 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1199 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1200 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1201 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1202 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1203
1204 case VERR_SVM_IN_USE:
1205 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1206 case VERR_SVM_NO_SVM:
1207 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1208 case VERR_SVM_DISABLED:
1209 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1210 }
1211 return VMSetError(pVM, pVM->hm.s.lLastError, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.lLastError);
1212 }
1213
1214 /*
1215 * Enable VT-x or AMD-V on all host CPUs.
1216 */
1217 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1218 if (RT_FAILURE(rc))
1219 {
1220 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1221 HMR3CheckError(pVM, rc);
1222 return rc;
1223 }
1224
1225 /*
1226 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1227 * (Main should have taken care of this already)
1228 */
1229 if (!PDMHasIoApic(pVM))
1230 {
1231 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1232 pVM->hm.s.fTprPatchingAllowed = false;
1233 }
1234
1235 /*
1236 * Sync options.
1237 */
1238 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1239 * That will require a little bit of work, of course. */
1240 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1241 {
1242 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1243 PCPUMCTX pCpuCtx = CPUMQueryGuestCtxPtr(pVCpu);
1244 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1245 if (pVM->cpum.ro.HostFeatures.fIbpb)
1246 {
1247 if (pVM->hm.s.fIbpbOnVmExit)
1248 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1249 if (pVM->hm.s.fIbpbOnVmEntry)
1250 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1251 }
1252 if (iCpu == 0)
1253 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%d fIbpbOnVmEntry=%d)\n",
1254 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry));
1255 }
1256
1257 /*
1258 * Do the vendor specific initialization .
1259 * .
1260 * Note! We disable release log buffering here since we're doing relatively .
1261 * lot of logging and doesn't want to hit the disk with each LogRel .
1262 * statement.
1263 */
1264 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1265 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1266 if (pVM->hm.s.vmx.fSupported)
1267 rc = hmR3InitFinalizeR0Intel(pVM);
1268 else
1269 rc = hmR3InitFinalizeR0Amd(pVM);
1270 LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL"));
1271 RTLogRelSetBuffering(fOldBuffered);
1272 pVM->hm.s.fInitialized = true;
1273
1274 return rc;
1275}
1276
1277
1278/**
1279 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1280 */
1281static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1282{
1283 NOREF(pVM);
1284 NOREF(pvAllocation);
1285 NOREF(GCPhysAllocation);
1286}
1287
1288
1289/**
1290 * Finish VT-x initialization (after ring-0 init).
1291 *
1292 * @returns VBox status code.
1293 * @param pVM The cross context VM structure.
1294 */
1295static int hmR3InitFinalizeR0Intel(PVM pVM)
1296{
1297 int rc;
1298
1299 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1300 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatureCtrl != 0, VERR_HM_IPE_4);
1301
1302 uint64_t val;
1303 uint64_t zap;
1304
1305 LogRel(("HM: Using VT-x implementation 2.0\n"));
1306 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1307 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostEfer));
1308 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1309 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1310 if (!(pVM->hm.s.vmx.Msrs.u64FeatureCtrl & MSR_IA32_FEATURE_CONTROL_LOCK))
1311 LogRel(("HM: IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1312 LogRel(("HM: MSR_IA32_VMX_BASIC_INFO = %#RX64\n", pVM->hm.s.vmx.Msrs.u64BasicInfo));
1313 LogRel(("HM: VMCS id = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1314 LogRel(("HM: VMCS size = %u bytes\n", MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1315 LogRel(("HM: VMCS physical address limit = %s\n", MSR_IA32_VMX_BASIC_INFO_VMCS_PHYS_WIDTH(pVM->hm.s.vmx.Msrs.u64BasicInfo) ? "< 4 GB" : "None"));
1316 LogRel(("HM: VMCS memory type = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_MEM_TYPE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1317 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1318 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1319 LogRel(("HM: Supports true capability MSRs = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_TRUE_CONTROLS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1320 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1321
1322 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxPinCtls.u));
1323 val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1;
1324 zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0;
1325 HMVMX_REPORT_FEATURE(val, zap, "EXT_INT_EXIT", VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT);
1326 HMVMX_REPORT_FEATURE(val, zap, "NMI_EXIT", VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT);
1327 HMVMX_REPORT_FEATURE(val, zap, "VIRTUAL_NMI", VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI);
1328 HMVMX_REPORT_FEATURE(val, zap, "PREEMPT_TIMER", VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
1329 HMVMX_REPORT_FEATURE(val, zap, "POSTED_INTR", VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
1330
1331 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls.u));
1332 val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
1333 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
1334 HMVMX_REPORT_FEATURE(val, zap, "INT_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
1335 HMVMX_REPORT_FEATURE(val, zap, "USE_TSC_OFFSETTING", VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING);
1336 HMVMX_REPORT_FEATURE(val, zap, "HLT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
1337 HMVMX_REPORT_FEATURE(val, zap, "INVLPG_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
1338 HMVMX_REPORT_FEATURE(val, zap, "MWAIT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT);
1339 HMVMX_REPORT_FEATURE(val, zap, "RDPMC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
1340 HMVMX_REPORT_FEATURE(val, zap, "RDTSC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
1341 HMVMX_REPORT_FEATURE(val, zap, "CR3_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT);
1342 HMVMX_REPORT_FEATURE(val, zap, "CR3_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
1343 HMVMX_REPORT_FEATURE(val, zap, "CR8_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT);
1344 HMVMX_REPORT_FEATURE(val, zap, "CR8_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT);
1345 HMVMX_REPORT_FEATURE(val, zap, "USE_TPR_SHADOW", VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
1346 HMVMX_REPORT_FEATURE(val, zap, "NMI_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
1347 HMVMX_REPORT_FEATURE(val, zap, "MOV_DR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
1348 HMVMX_REPORT_FEATURE(val, zap, "UNCOND_IO_EXIT", VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT);
1349 HMVMX_REPORT_FEATURE(val, zap, "USE_IO_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_IO_BITMAPS);
1350 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_TRAP_FLAG", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
1351 HMVMX_REPORT_FEATURE(val, zap, "USE_MSR_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
1352 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT);
1353 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
1354 HMVMX_REPORT_FEATURE(val, zap, "USE_SECONDARY_EXEC_CTRL", VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL);
1355 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1356 {
1357 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.u));
1358 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
1359 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0;
1360 HMVMX_REPORT_FEATURE(val, zap, "VIRT_APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC);
1361 HMVMX_REPORT_FEATURE(val, zap, "EPT", VMX_VMCS_CTRL_PROC_EXEC2_EPT);
1362 HMVMX_REPORT_FEATURE(val, zap, "DESCRIPTOR_TABLE_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT);
1363 HMVMX_REPORT_FEATURE(val, zap, "RDTSCP", VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP);
1364 HMVMX_REPORT_FEATURE(val, zap, "VIRT_X2APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_X2APIC);
1365 HMVMX_REPORT_FEATURE(val, zap, "VPID", VMX_VMCS_CTRL_PROC_EXEC2_VPID);
1366 HMVMX_REPORT_FEATURE(val, zap, "WBINVD_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
1367 HMVMX_REPORT_FEATURE(val, zap, "UNRESTRICTED_GUEST", VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST);
1368 HMVMX_REPORT_FEATURE(val, zap, "APIC_REG_VIRT", VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
1369 HMVMX_REPORT_FEATURE(val, zap, "VIRT_INTR_DELIVERY", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
1370 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_LOOP_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT);
1371 HMVMX_REPORT_FEATURE(val, zap, "RDRAND_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
1372 HMVMX_REPORT_FEATURE(val, zap, "INVPCID", VMX_VMCS_CTRL_PROC_EXEC2_INVPCID);
1373 HMVMX_REPORT_FEATURE(val, zap, "VMFUNC", VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC);
1374 HMVMX_REPORT_FEATURE(val, zap, "VMCS_SHADOWING", VMX_VMCS_CTRL_PROC_EXEC2_VMCS_SHADOWING);
1375 HMVMX_REPORT_FEATURE(val, zap, "ENCLS_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_ENCLS_EXIT);
1376 HMVMX_REPORT_FEATURE(val, zap, "RDSEED_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
1377 HMVMX_REPORT_FEATURE(val, zap, "PML", VMX_VMCS_CTRL_PROC_EXEC2_PML);
1378 HMVMX_REPORT_FEATURE(val, zap, "EPT_VE", VMX_VMCS_CTRL_PROC_EXEC2_EPT_VE);
1379 HMVMX_REPORT_FEATURE(val, zap, "CONCEAL_FROM_PT", VMX_VMCS_CTRL_PROC_EXEC2_CONCEAL_FROM_PT);
1380 HMVMX_REPORT_FEATURE(val, zap, "XSAVES_XRSTORS", VMX_VMCS_CTRL_PROC_EXEC2_XSAVES_XRSTORS);
1381 HMVMX_REPORT_FEATURE(val, zap, "TSC_SCALING", VMX_VMCS_CTRL_PROC_EXEC2_TSC_SCALING);
1382 }
1383
1384 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxEntry.u));
1385 val = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1;
1386 zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0;
1387 HMVMX_REPORT_FEATURE(val, zap, "LOAD_DEBUG", VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG);
1388 HMVMX_REPORT_FEATURE(val, zap, "IA32E_MODE_GUEST", VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
1389 HMVMX_REPORT_FEATURE(val, zap, "ENTRY_SMM", VMX_VMCS_CTRL_ENTRY_ENTRY_SMM);
1390 HMVMX_REPORT_FEATURE(val, zap, "DEACTIVATE_DUALMON", VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON);
1391 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PERF_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR);
1392 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PAT_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR);
1393 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_EFER_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR);
1394
1395 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxExit.u));
1396 val = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1;
1397 zap = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0;
1398 HMVMX_REPORT_FEATURE(val, zap, "SAVE_DEBUG", VMX_VMCS_CTRL_EXIT_SAVE_DEBUG);
1399 HMVMX_REPORT_FEATURE(val, zap, "HOST_ADDR_SPACE_SIZE", VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE);
1400 HMVMX_REPORT_FEATURE(val, zap, "LOAD_PERF_MSR", VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR);
1401 HMVMX_REPORT_FEATURE(val, zap, "ACK_EXT_INT", VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
1402 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_PAT_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR);
1403 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_PAT_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR);
1404 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_EFER_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR);
1405 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_EFER_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR);
1406 HMVMX_REPORT_FEATURE(val, zap, "SAVE_VMX_PREEMPT_TIMER", VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER);
1407
1408 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1409 {
1410 val = pVM->hm.s.vmx.Msrs.u64EptVpidCaps;
1411 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", val));
1412 HMVMX_REPORT_MSR_CAPABILITY(val, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1413 HMVMX_REPORT_MSR_CAPABILITY(val, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1414 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1415 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1416 HMVMX_REPORT_MSR_CAPABILITY(val, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1417 HMVMX_REPORT_MSR_CAPABILITY(val, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1418 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1419 HMVMX_REPORT_MSR_CAPABILITY(val, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1420 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1421 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1422 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1423 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1424 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1425 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1426 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1427 }
1428
1429 val = pVM->hm.s.vmx.Msrs.u64Misc;
1430 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", val));
1431 if (MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val) == pVM->hm.s.vmx.cPreemptTimerShift)
1432 LogRel(("HM: PREEMPT_TSC_BIT = %#x\n", MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val)));
1433 else
1434 {
1435 LogRel(("HM: PREEMPT_TSC_BIT = %#x - erratum detected, using %#x instead\n",
1436 MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val), pVM->hm.s.vmx.cPreemptTimerShift));
1437 }
1438
1439 LogRel(("HM: STORE_EFERLMA_VMEXIT = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT(val))));
1440 LogRel(("HM: ACTIVITY_STATES = %#x\n", MSR_IA32_VMX_MISC_ACTIVITY_STATES(val)));
1441 LogRel(("HM: CR3_TARGET = %#x\n", MSR_IA32_VMX_MISC_CR3_TARGET(val)));
1442 LogRel(("HM: MAX_MSR = %u\n", MSR_IA32_VMX_MISC_MAX_MSR(val)));
1443 LogRel(("HM: RDMSR_SMBASE_MSR_SMM = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM(val))));
1444 LogRel(("HM: SMM_MONITOR_CTL_B2 = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2(val))));
1445 LogRel(("HM: VMWRITE_VMEXIT_INFO = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO(val))));
1446 LogRel(("HM: MSEG_ID = %#x\n", MSR_IA32_VMX_MISC_MSEG_ID(val)));
1447
1448 /* Paranoia */
1449 AssertRelease(MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc) >= 512);
1450
1451 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed0));
1452 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed1));
1453 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed0));
1454 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed1));
1455
1456 val = pVM->hm.s.vmx.Msrs.u64VmcsEnum;
1457 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", val));
1458 LogRel(("HM: HIGHEST_INDEX = %#x\n", MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX(val)));
1459
1460 val = pVM->hm.s.vmx.Msrs.u64Vmfunc;
1461 if (val)
1462 {
1463 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", val));
1464 HMVMX_REPORT_ALLOWED_FEATURE(val, "EPTP_SWITCHING", VMX_VMCS_CTRL_VMFUNC_EPTP_SWITCHING);
1465 }
1466
1467 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1468
1469 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1470 {
1471 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap));
1472 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs));
1473 }
1474
1475 /*
1476 * EPT and unhampered guest execution are determined in HMR3Init, verify the sanity of that.
1477 */
1478 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1479 || (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT),
1480 VERR_HM_IPE_1);
1481 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1482 || ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST)
1483 && pVM->hm.s.fNestedPaging),
1484 VERR_HM_IPE_1);
1485
1486 /*
1487 * Enable VPID if configured and supported.
1488 */
1489 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VPID)
1490 pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid;
1491
1492#if 0
1493 /*
1494 * Enable APIC register virtualization and virtual-interrupt delivery if supported.
1495 */
1496 if ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT)
1497 && (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY))
1498 pVM->hm.s.fVirtApicRegs = true;
1499
1500 /*
1501 * Enable posted-interrupt processing if supported.
1502 */
1503 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1504 * here. */
1505 if ( (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR)
1506 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT))
1507 pVM->hm.s.fPostedIntrs = true;
1508#endif
1509
1510 /*
1511 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1512 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1513 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1514 */
1515 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1516 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1517 {
1518 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1519 LogRel(("HM: Disabled RDTSCP\n"));
1520 }
1521
1522 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1523 {
1524 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1525 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1526 if (RT_SUCCESS(rc))
1527 {
1528 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1529 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1530 esp. Figure 20-5.*/
1531 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1532 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1533
1534 /* Bit set to 0 means software interrupts are redirected to the
1535 8086 program interrupt handler rather than switching to
1536 protected-mode handler. */
1537 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1538
1539 /* Allow all port IO, so that port IO instructions do not cause
1540 exceptions and would instead cause a VM-exit (based on VT-x's
1541 IO bitmap which we currently configure to always cause an exit). */
1542 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1543 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1544
1545 /*
1546 * Construct a 1024 element page directory with 4 MB pages for
1547 * the identity mapped page table used in real and protected mode
1548 * without paging with EPT.
1549 */
1550 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1551 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1552 {
1553 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1554 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1555 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1556 | X86_PDE4M_G;
1557 }
1558
1559 /* We convert it here every time as PCI regions could be reconfigured. */
1560 if (PDMVmmDevHeapIsEnabled(pVM))
1561 {
1562 RTGCPHYS GCPhys;
1563 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1564 AssertRCReturn(rc, rc);
1565 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1566
1567 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1568 AssertRCReturn(rc, rc);
1569 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1570 }
1571 }
1572 else
1573 {
1574 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1575 pVM->hm.s.vmx.pRealModeTSS = NULL;
1576 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1577 return VMSetError(pVM, rc, RT_SRC_POS,
1578 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1579 }
1580 }
1581
1582 LogRel((pVM->hm.s.fAllow64BitGuests
1583 ? "HM: Guest support: 32-bit and 64-bit\n"
1584 : "HM: Guest support: 32-bit only\n"));
1585
1586 /*
1587 * Call ring-0 to set up the VM.
1588 */
1589 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1590 if (rc != VINF_SUCCESS)
1591 {
1592 AssertMsgFailed(("%Rrc\n", rc));
1593 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1594 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1595 {
1596 PVMCPU pVCpu = &pVM->aCpus[i];
1597 LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
1598 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1599 }
1600 HMR3CheckError(pVM, rc);
1601 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1602 }
1603
1604 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1605 LogRel(("HM: Enabled VMX\n"));
1606 pVM->hm.s.vmx.fEnabled = true;
1607
1608 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1609
1610 /*
1611 * Change the CPU features.
1612 */
1613 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1614 if (pVM->hm.s.fAllow64BitGuests)
1615 {
1616 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1617 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1618 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1619 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1620 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1621 }
1622 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1623 (we reuse the host EFER in the switcher). */
1624 /** @todo this needs to be fixed properly!! */
1625 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1626 {
1627 if (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE)
1628 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1629 else
1630 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1631 }
1632
1633 /*
1634 * Log configuration details.
1635 */
1636 if (pVM->hm.s.fNestedPaging)
1637 {
1638 LogRel(("HM: Enabled nested paging\n"));
1639 if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_SINGLE_CONTEXT)
1640 LogRel(("HM: EPT flush type = VMXFLUSHEPT_SINGLE_CONTEXT\n"));
1641 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_ALL_CONTEXTS)
1642 LogRel(("HM: EPT flush type = VMXFLUSHEPT_ALL_CONTEXTS\n"));
1643 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_NOT_SUPPORTED)
1644 LogRel(("HM: EPT flush type = VMXFLUSHEPT_NOT_SUPPORTED\n"));
1645 else
1646 LogRel(("HM: EPT flush type = %d\n", pVM->hm.s.vmx.enmFlushEpt));
1647
1648 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1649 LogRel(("HM: Enabled unrestricted guest execution\n"));
1650
1651#if HC_ARCH_BITS == 64
1652 if (pVM->hm.s.fLargePages)
1653 {
1654 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1655 PGMSetLargePageUsage(pVM, true);
1656 LogRel(("HM: Enabled large page support\n"));
1657 }
1658#endif
1659 }
1660 else
1661 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1662
1663 if (pVM->hm.s.fVirtApicRegs)
1664 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1665
1666 if (pVM->hm.s.fPostedIntrs)
1667 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1668
1669 if (pVM->hm.s.vmx.fVpid)
1670 {
1671 LogRel(("HM: Enabled VPID\n"));
1672 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_INDIV_ADDR)
1673 LogRel(("HM: VPID flush type = VMXFLUSHVPID_INDIV_ADDR\n"));
1674 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
1675 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT\n"));
1676 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
1677 LogRel(("HM: VPID flush type = VMXFLUSHVPID_ALL_CONTEXTS\n"));
1678 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1679 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS\n"));
1680 else
1681 LogRel(("HM: VPID flush type = %d\n", pVM->hm.s.vmx.enmFlushVpid));
1682 }
1683 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_NOT_SUPPORTED)
1684 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1685
1686 if (pVM->hm.s.vmx.fUsePreemptTimer)
1687 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1688 else
1689 LogRel(("HM: Disabled VMX-preemption timer\n"));
1690
1691 return VINF_SUCCESS;
1692}
1693
1694
1695/**
1696 * Finish AMD-V initialization (after ring-0 init).
1697 *
1698 * @returns VBox status code.
1699 * @param pVM The cross context VM structure.
1700 */
1701static int hmR3InitFinalizeR0Amd(PVM pVM)
1702{
1703 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1704
1705 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1706
1707 uint32_t u32Family;
1708 uint32_t u32Model;
1709 uint32_t u32Stepping;
1710 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
1711 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1712 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1713 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureECX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureECX));
1714 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureEDX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureEDX));
1715 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1716 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1717 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1718 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1719
1720 /*
1721 * Enumerate AMD-V features.
1722 */
1723 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1724 {
1725#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1726 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1727 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1728 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1729 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1730 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1731 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1732 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1733 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1734 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1735 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1736 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1737 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1738 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1739#undef HMSVM_REPORT_FEATURE
1740 };
1741
1742 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1743 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1744 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1745 {
1746 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1747 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1748 }
1749 if (fSvmFeatures)
1750 for (unsigned iBit = 0; iBit < 32; iBit++)
1751 if (RT_BIT_32(iBit) & fSvmFeatures)
1752 LogRel(("HM: Reserved bit %u\n", iBit));
1753
1754 /*
1755 * SVM R0 code assumes if the decode-assist feature exists, NRIP feature exists too.
1756 */
1757 AssertLogRelReturn( !(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
1758 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1759 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
1760
1761 /*
1762 * Nested paging is determined in HMR3Init, verify the sanity of that.
1763 */
1764 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1765 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1766 VERR_HM_IPE_1);
1767
1768#if 0
1769 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1770 * here. */
1771 if (RTR0IsPostIpiSupport())
1772 pVM->hm.s.fPostedIntrs = true;
1773#endif
1774
1775 /*
1776 * Call ring-0 to set up the VM.
1777 */
1778 int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1779 if (rc != VINF_SUCCESS)
1780 {
1781 AssertMsgFailed(("%Rrc\n", rc));
1782 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1783 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1784 }
1785
1786 LogRel(("HM: Enabled SVM\n"));
1787 pVM->hm.s.svm.fEnabled = true;
1788
1789 if (pVM->hm.s.fNestedPaging)
1790 {
1791 LogRel(("HM: Enabled nested paging\n"));
1792
1793 /*
1794 * Enable large pages (2 MB) if applicable.
1795 */
1796#if HC_ARCH_BITS == 64
1797 if (pVM->hm.s.fLargePages)
1798 {
1799 PGMSetLargePageUsage(pVM, true);
1800 LogRel(("HM: Enabled large page support\n"));
1801 }
1802#endif
1803 }
1804
1805 if (pVM->hm.s.fVirtApicRegs)
1806 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1807
1808 if (pVM->hm.s.fPostedIntrs)
1809 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1810
1811 hmR3DisableRawMode(pVM);
1812
1813 /*
1814 * Change the CPU features.
1815 */
1816 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1817 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1818 if (pVM->hm.s.fAllow64BitGuests)
1819 {
1820 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1821 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1822 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1823 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1824 }
1825 /* Turn on NXE if PAE has been enabled. */
1826 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1827 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1828
1829 LogRel(("HM: %s TPR patching\n", (pVM->hm.s.fTprPatchingAllowed) ? "Enabled" : "Disabled"));
1830
1831 LogRel((pVM->hm.s.fAllow64BitGuests
1832 ? "HM: Guest support: 32-bit and 64-bit\n"
1833 : "HM: Guest support: 32-bit only\n"));
1834
1835 return VINF_SUCCESS;
1836}
1837
1838
1839/**
1840 * Applies relocations to data and code managed by this
1841 * component. This function will be called at init and
1842 * whenever the VMM need to relocate it self inside the GC.
1843 *
1844 * @param pVM The cross context VM structure.
1845 */
1846VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1847{
1848 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1849
1850 /* Fetch the current paging mode during the relocate callback during state loading. */
1851 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1852 {
1853 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1854 {
1855 PVMCPU pVCpu = &pVM->aCpus[i];
1856 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1857 }
1858 }
1859#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1860 if (HMIsEnabled(pVM))
1861 {
1862 switch (PGMGetHostMode(pVM))
1863 {
1864 case PGMMODE_32_BIT:
1865 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
1866 break;
1867
1868 case PGMMODE_PAE:
1869 case PGMMODE_PAE_NX:
1870 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
1871 break;
1872
1873 default:
1874 AssertFailed();
1875 break;
1876 }
1877 }
1878#endif
1879 return;
1880}
1881
1882
1883/**
1884 * Notification callback which is called whenever there is a chance that a CR3
1885 * value might have changed.
1886 *
1887 * This is called by PGM.
1888 *
1889 * @param pVM The cross context VM structure.
1890 * @param pVCpu The cross context virtual CPU structure.
1891 * @param enmShadowMode New shadow paging mode.
1892 * @param enmGuestMode New guest paging mode.
1893 */
1894VMMR3_INT_DECL(void) HMR3PagingModeChanged(PVM pVM, PVMCPU pVCpu, PGMMODE enmShadowMode, PGMMODE enmGuestMode)
1895{
1896 RT_NOREF_PV(pVM);
1897
1898 /* Ignore page mode changes during state loading. */
1899 if (VMR3GetState(pVCpu->pVMR3) == VMSTATE_LOADING)
1900 return;
1901
1902 pVCpu->hm.s.enmShadowMode = enmShadowMode;
1903
1904 /*
1905 * If the guest left protected mode VMX execution, we'll have to be
1906 * extra careful if/when the guest switches back to protected mode.
1907 */
1908 if (enmGuestMode == PGMMODE_REAL)
1909 pVCpu->hm.s.vmx.fWasInRealMode = true;
1910
1911 Log4(("HMR3PagingModeChanged: Guest paging mode '%s', shadow paging mode '%s'\n", PGMGetModeName(enmGuestMode),
1912 PGMGetModeName(enmShadowMode)));
1913}
1914
1915
1916/**
1917 * Terminates the HM.
1918 *
1919 * Termination means cleaning up and freeing all resources,
1920 * the VM itself is, at this point, powered off or suspended.
1921 *
1922 * @returns VBox status code.
1923 * @param pVM The cross context VM structure.
1924 */
1925VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1926{
1927 if (pVM->hm.s.vmx.pRealModeTSS)
1928 {
1929 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1930 pVM->hm.s.vmx.pRealModeTSS = 0;
1931 }
1932 hmR3TermCPU(pVM);
1933 return 0;
1934}
1935
1936
1937/**
1938 * Terminates the per-VCPU HM.
1939 *
1940 * @returns VBox status code.
1941 * @param pVM The cross context VM structure.
1942 */
1943static int hmR3TermCPU(PVM pVM)
1944{
1945 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1946 {
1947 PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
1948
1949#ifdef VBOX_WITH_STATISTICS
1950 if (pVCpu->hm.s.paStatExitReason)
1951 {
1952 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1953 pVCpu->hm.s.paStatExitReason = NULL;
1954 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1955 }
1956 if (pVCpu->hm.s.paStatInjectedIrqs)
1957 {
1958 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1959 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1960 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1961 }
1962#endif
1963
1964#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1965 memset(pVCpu->hm.s.vmx.VMCSCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VMCSCache.aMagic));
1966 pVCpu->hm.s.vmx.VMCSCache.uMagic = 0;
1967 pVCpu->hm.s.vmx.VMCSCache.uPos = 0xffffffff;
1968#endif
1969 }
1970 return 0;
1971}
1972
1973
1974/**
1975 * Resets a virtual CPU.
1976 *
1977 * Used by HMR3Reset and CPU hot plugging.
1978 *
1979 * @param pVCpu The cross context virtual CPU structure to reset.
1980 */
1981VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1982{
1983 /* Sync. entire state on VM reset R0-reentry. It's safe to reset
1984 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
1985 HMCPU_CF_RESET_TO(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1986
1987 pVCpu->hm.s.vmx.u32CR0Mask = 0;
1988 pVCpu->hm.s.vmx.u32CR4Mask = 0;
1989 pVCpu->hm.s.fActive = false;
1990 pVCpu->hm.s.Event.fPending = false;
1991 pVCpu->hm.s.vmx.fWasInRealMode = true;
1992 pVCpu->hm.s.vmx.u64MsrApicBase = 0;
1993 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
1994
1995 /* Reset the contents of the read cache. */
1996 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1997 for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
1998 pCache->Read.aFieldVal[j] = 0;
1999
2000#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2001 /* Magic marker for searching in crash dumps. */
2002 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
2003 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2004#endif
2005}
2006
2007
2008/**
2009 * The VM is being reset.
2010 *
2011 * For the HM component this means that any GDT/LDT/TSS monitors
2012 * needs to be removed.
2013 *
2014 * @param pVM The cross context VM structure.
2015 */
2016VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2017{
2018 LogFlow(("HMR3Reset:\n"));
2019
2020 if (HMIsEnabled(pVM))
2021 hmR3DisableRawMode(pVM);
2022
2023 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2024 {
2025 PVMCPU pVCpu = &pVM->aCpus[i];
2026
2027 HMR3ResetCpu(pVCpu);
2028 }
2029
2030 /* Clear all patch information. */
2031 pVM->hm.s.pGuestPatchMem = 0;
2032 pVM->hm.s.pFreeGuestPatchMem = 0;
2033 pVM->hm.s.cbGuestPatchMem = 0;
2034 pVM->hm.s.cPatches = 0;
2035 pVM->hm.s.PatchTree = 0;
2036 pVM->hm.s.fTPRPatchingActive = false;
2037 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2038}
2039
2040
2041/**
2042 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2043 *
2044 * @returns VBox strict status code.
2045 * @param pVM The cross context VM structure.
2046 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2047 * @param pvUser Unused.
2048 */
2049static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2050{
2051 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2052
2053 /* Only execute the handler on the VCPU the original patch request was issued. */
2054 if (pVCpu->idCpu != idCpu)
2055 return VINF_SUCCESS;
2056
2057 Log(("hmR3RemovePatches\n"));
2058 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2059 {
2060 uint8_t abInstr[15];
2061 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2062 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2063 int rc;
2064
2065#ifdef LOG_ENABLED
2066 char szOutput[256];
2067
2068 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2069 szOutput, sizeof(szOutput), NULL);
2070 if (RT_SUCCESS(rc))
2071 Log(("Patched instr: %s\n", szOutput));
2072#endif
2073
2074 /* Check if the instruction is still the same. */
2075 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2076 if (rc != VINF_SUCCESS)
2077 {
2078 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2079 continue; /* swapped out or otherwise removed; skip it. */
2080 }
2081
2082 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2083 {
2084 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2085 continue; /* skip it. */
2086 }
2087
2088 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2089 AssertRC(rc);
2090
2091#ifdef LOG_ENABLED
2092 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2093 szOutput, sizeof(szOutput), NULL);
2094 if (RT_SUCCESS(rc))
2095 Log(("Original instr: %s\n", szOutput));
2096#endif
2097 }
2098 pVM->hm.s.cPatches = 0;
2099 pVM->hm.s.PatchTree = 0;
2100 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2101 pVM->hm.s.fTPRPatchingActive = false;
2102 return VINF_SUCCESS;
2103}
2104
2105
2106/**
2107 * Worker for enabling patching in a VT-x/AMD-V guest.
2108 *
2109 * @returns VBox status code.
2110 * @param pVM The cross context VM structure.
2111 * @param idCpu VCPU to execute hmR3RemovePatches on.
2112 * @param pPatchMem Patch memory range.
2113 * @param cbPatchMem Size of the memory range.
2114 */
2115static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2116{
2117 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2118 AssertRC(rc);
2119
2120 pVM->hm.s.pGuestPatchMem = pPatchMem;
2121 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2122 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2123 return VINF_SUCCESS;
2124}
2125
2126
2127/**
2128 * Enable patching in a VT-x/AMD-V guest
2129 *
2130 * @returns VBox status code.
2131 * @param pVM The cross context VM structure.
2132 * @param pPatchMem Patch memory range.
2133 * @param cbPatchMem Size of the memory range.
2134 */
2135VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2136{
2137 VM_ASSERT_EMT(pVM);
2138 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2139 if (pVM->cCpus > 1)
2140 {
2141 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2142 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2143 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2144 AssertRC(rc);
2145 return rc;
2146 }
2147 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2148}
2149
2150
2151/**
2152 * Disable patching in a VT-x/AMD-V guest.
2153 *
2154 * @returns VBox status code.
2155 * @param pVM The cross context VM structure.
2156 * @param pPatchMem Patch memory range.
2157 * @param cbPatchMem Size of the memory range.
2158 */
2159VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2160{
2161 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2162 RT_NOREF2(pPatchMem, cbPatchMem);
2163
2164 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2165 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2166
2167 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2168 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2169 (void *)(uintptr_t)VMMGetCpuId(pVM));
2170 AssertRC(rc);
2171
2172 pVM->hm.s.pGuestPatchMem = 0;
2173 pVM->hm.s.pFreeGuestPatchMem = 0;
2174 pVM->hm.s.cbGuestPatchMem = 0;
2175 pVM->hm.s.fTPRPatchingActive = false;
2176 return VINF_SUCCESS;
2177}
2178
2179
2180/**
2181 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2182 *
2183 * @returns VBox strict status code.
2184 * @param pVM The cross context VM structure.
2185 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2186 * @param pvUser User specified CPU context.
2187 *
2188 */
2189static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2190{
2191 /*
2192 * Only execute the handler on the VCPU the original patch request was
2193 * issued. (The other CPU(s) might not yet have switched to protected
2194 * mode, nor have the correct memory context.)
2195 */
2196 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2197 if (pVCpu->idCpu != idCpu)
2198 return VINF_SUCCESS;
2199
2200 /*
2201 * We're racing other VCPUs here, so don't try patch the instruction twice
2202 * and make sure there is still room for our patch record.
2203 */
2204 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2205 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2206 if (pPatch)
2207 {
2208 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2209 return VINF_SUCCESS;
2210 }
2211 uint32_t const idx = pVM->hm.s.cPatches;
2212 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2213 {
2214 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2215 return VINF_SUCCESS;
2216 }
2217 pPatch = &pVM->hm.s.aPatches[idx];
2218
2219 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2220
2221 /*
2222 * Disassembler the instruction and get cracking.
2223 */
2224 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2225 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2226 uint32_t cbOp;
2227 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2228 AssertRC(rc);
2229 if ( rc == VINF_SUCCESS
2230 && pDis->pCurInstr->uOpcode == OP_MOV
2231 && cbOp >= 3)
2232 {
2233 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2234
2235 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2236 AssertRC(rc);
2237
2238 pPatch->cbOp = cbOp;
2239
2240 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2241 {
2242 /* write. */
2243 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2244 {
2245 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2246 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2247 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2248 }
2249 else
2250 {
2251 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2252 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2253 pPatch->uSrcOperand = pDis->Param2.uValue;
2254 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2255 }
2256 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2257 AssertRC(rc);
2258
2259 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2260 pPatch->cbNewOp = sizeof(s_abVMMCall);
2261 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2262 }
2263 else
2264 {
2265 /*
2266 * TPR Read.
2267 *
2268 * Found:
2269 * mov eax, dword [fffe0080] (5 bytes)
2270 * Check if next instruction is:
2271 * shr eax, 4
2272 */
2273 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2274
2275 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2276 uint8_t const cbOpMmio = cbOp;
2277 uint64_t const uSavedRip = pCtx->rip;
2278
2279 pCtx->rip += cbOp;
2280 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2281 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2282 pCtx->rip = uSavedRip;
2283
2284 if ( rc == VINF_SUCCESS
2285 && pDis->pCurInstr->uOpcode == OP_SHR
2286 && pDis->Param1.fUse == DISUSE_REG_GEN32
2287 && pDis->Param1.Base.idxGenReg == idxMmioReg
2288 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2289 && pDis->Param2.uValue == 4
2290 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2291 {
2292 uint8_t abInstr[15];
2293
2294 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2295 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2296 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2297 AssertRC(rc);
2298
2299 pPatch->cbOp = cbOpMmio + cbOp;
2300
2301 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
2302 abInstr[0] = 0xF0;
2303 abInstr[1] = 0x0F;
2304 abInstr[2] = 0x20;
2305 abInstr[3] = 0xC0 | pDis->Param1.Base.idxGenReg;
2306 for (unsigned i = 4; i < pPatch->cbOp; i++)
2307 abInstr[i] = 0x90; /* nop */
2308
2309 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2310 AssertRC(rc);
2311
2312 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2313 pPatch->cbNewOp = pPatch->cbOp;
2314 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2315
2316 Log(("Acceptable read/shr candidate!\n"));
2317 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2318 }
2319 else
2320 {
2321 pPatch->enmType = HMTPRINSTR_READ;
2322 pPatch->uDstOperand = idxMmioReg;
2323
2324 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2325 AssertRC(rc);
2326
2327 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2328 pPatch->cbNewOp = sizeof(s_abVMMCall);
2329 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2330 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2331 }
2332 }
2333
2334 pPatch->Core.Key = pCtx->eip;
2335 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2336 AssertRC(rc);
2337
2338 pVM->hm.s.cPatches++;
2339 return VINF_SUCCESS;
2340 }
2341
2342 /*
2343 * Save invalid patch, so we will not try again.
2344 */
2345 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2346 pPatch->Core.Key = pCtx->eip;
2347 pPatch->enmType = HMTPRINSTR_INVALID;
2348 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2349 AssertRC(rc);
2350 pVM->hm.s.cPatches++;
2351 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2352 return VINF_SUCCESS;
2353}
2354
2355
2356/**
2357 * Callback to patch a TPR instruction (jump to generated code).
2358 *
2359 * @returns VBox strict status code.
2360 * @param pVM The cross context VM structure.
2361 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2362 * @param pvUser User specified CPU context.
2363 *
2364 */
2365static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2366{
2367 /*
2368 * Only execute the handler on the VCPU the original patch request was
2369 * issued. (The other CPU(s) might not yet have switched to protected
2370 * mode, nor have the correct memory context.)
2371 */
2372 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2373 if (pVCpu->idCpu != idCpu)
2374 return VINF_SUCCESS;
2375
2376 /*
2377 * We're racing other VCPUs here, so don't try patch the instruction twice
2378 * and make sure there is still room for our patch record.
2379 */
2380 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2381 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2382 if (pPatch)
2383 {
2384 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2385 return VINF_SUCCESS;
2386 }
2387 uint32_t const idx = pVM->hm.s.cPatches;
2388 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2389 {
2390 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2391 return VINF_SUCCESS;
2392 }
2393 pPatch = &pVM->hm.s.aPatches[idx];
2394
2395 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2396 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2397
2398 /*
2399 * Disassemble the instruction and get cracking.
2400 */
2401 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2402 uint32_t cbOp;
2403 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2404 AssertRC(rc);
2405 if ( rc == VINF_SUCCESS
2406 && pDis->pCurInstr->uOpcode == OP_MOV
2407 && cbOp >= 5)
2408 {
2409 uint8_t aPatch[64];
2410 uint32_t off = 0;
2411
2412 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2413 AssertRC(rc);
2414
2415 pPatch->cbOp = cbOp;
2416 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2417
2418 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2419 {
2420 /*
2421 * TPR write:
2422 *
2423 * push ECX [51]
2424 * push EDX [52]
2425 * push EAX [50]
2426 * xor EDX,EDX [31 D2]
2427 * mov EAX,EAX [89 C0]
2428 * or
2429 * mov EAX,0000000CCh [B8 CC 00 00 00]
2430 * mov ECX,0C0000082h [B9 82 00 00 C0]
2431 * wrmsr [0F 30]
2432 * pop EAX [58]
2433 * pop EDX [5A]
2434 * pop ECX [59]
2435 * jmp return_address [E9 return_address]
2436 *
2437 */
2438 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2439
2440 aPatch[off++] = 0x51; /* push ecx */
2441 aPatch[off++] = 0x52; /* push edx */
2442 if (!fUsesEax)
2443 aPatch[off++] = 0x50; /* push eax */
2444 aPatch[off++] = 0x31; /* xor edx, edx */
2445 aPatch[off++] = 0xD2;
2446 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2447 {
2448 if (!fUsesEax)
2449 {
2450 aPatch[off++] = 0x89; /* mov eax, src_reg */
2451 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2452 }
2453 }
2454 else
2455 {
2456 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2457 aPatch[off++] = 0xB8; /* mov eax, immediate */
2458 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2459 off += sizeof(uint32_t);
2460 }
2461 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2462 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2463 off += sizeof(uint32_t);
2464
2465 aPatch[off++] = 0x0F; /* wrmsr */
2466 aPatch[off++] = 0x30;
2467 if (!fUsesEax)
2468 aPatch[off++] = 0x58; /* pop eax */
2469 aPatch[off++] = 0x5A; /* pop edx */
2470 aPatch[off++] = 0x59; /* pop ecx */
2471 }
2472 else
2473 {
2474 /*
2475 * TPR read:
2476 *
2477 * push ECX [51]
2478 * push EDX [52]
2479 * push EAX [50]
2480 * mov ECX,0C0000082h [B9 82 00 00 C0]
2481 * rdmsr [0F 32]
2482 * mov EAX,EAX [89 C0]
2483 * pop EAX [58]
2484 * pop EDX [5A]
2485 * pop ECX [59]
2486 * jmp return_address [E9 return_address]
2487 *
2488 */
2489 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2490
2491 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2492 aPatch[off++] = 0x51; /* push ecx */
2493 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2494 aPatch[off++] = 0x52; /* push edx */
2495 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2496 aPatch[off++] = 0x50; /* push eax */
2497
2498 aPatch[off++] = 0x31; /* xor edx, edx */
2499 aPatch[off++] = 0xD2;
2500
2501 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2502 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2503 off += sizeof(uint32_t);
2504
2505 aPatch[off++] = 0x0F; /* rdmsr */
2506 aPatch[off++] = 0x32;
2507
2508 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2509 {
2510 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2511 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2512 }
2513
2514 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2515 aPatch[off++] = 0x58; /* pop eax */
2516 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2517 aPatch[off++] = 0x5A; /* pop edx */
2518 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2519 aPatch[off++] = 0x59; /* pop ecx */
2520 }
2521 aPatch[off++] = 0xE9; /* jmp return_address */
2522 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2523 off += sizeof(RTRCUINTPTR);
2524
2525 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2526 {
2527 /* Write new code to the patch buffer. */
2528 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2529 AssertRC(rc);
2530
2531#ifdef LOG_ENABLED
2532 uint32_t cbCurInstr;
2533 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2534 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2535 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2536 {
2537 char szOutput[256];
2538 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2539 szOutput, sizeof(szOutput), &cbCurInstr);
2540 if (RT_SUCCESS(rc))
2541 Log(("Patch instr %s\n", szOutput));
2542 else
2543 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2544 }
2545#endif
2546
2547 pPatch->aNewOpcode[0] = 0xE9;
2548 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2549
2550 /* Overwrite the TPR instruction with a jump. */
2551 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2552 AssertRC(rc);
2553
2554 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2555
2556 pVM->hm.s.pFreeGuestPatchMem += off;
2557 pPatch->cbNewOp = 5;
2558
2559 pPatch->Core.Key = pCtx->eip;
2560 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2561 AssertRC(rc);
2562
2563 pVM->hm.s.cPatches++;
2564 pVM->hm.s.fTPRPatchingActive = true;
2565 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2566 return VINF_SUCCESS;
2567 }
2568
2569 Log(("Ran out of space in our patch buffer!\n"));
2570 }
2571 else
2572 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2573
2574
2575 /*
2576 * Save invalid patch, so we will not try again.
2577 */
2578 pPatch = &pVM->hm.s.aPatches[idx];
2579 pPatch->Core.Key = pCtx->eip;
2580 pPatch->enmType = HMTPRINSTR_INVALID;
2581 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2582 AssertRC(rc);
2583 pVM->hm.s.cPatches++;
2584 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2585 return VINF_SUCCESS;
2586}
2587
2588
2589/**
2590 * Attempt to patch TPR mmio instructions.
2591 *
2592 * @returns VBox status code.
2593 * @param pVM The cross context VM structure.
2594 * @param pVCpu The cross context virtual CPU structure.
2595 * @param pCtx Pointer to the guest CPU context.
2596 */
2597VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2598{
2599 NOREF(pCtx);
2600 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2601 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2602 (void *)(uintptr_t)pVCpu->idCpu);
2603 AssertRC(rc);
2604 return rc;
2605}
2606
2607
2608/**
2609 * Checks if a code selector (CS) is suitable for execution
2610 * within VMX when unrestricted execution isn't available.
2611 *
2612 * @returns true if selector is suitable for VMX, otherwise
2613 * false.
2614 * @param pSel Pointer to the selector to check (CS).
2615 * @param uStackDpl The CPL, aka the DPL of the stack segment.
2616 */
2617static bool hmR3IsCodeSelectorOkForVmx(PCPUMSELREG pSel, unsigned uStackDpl)
2618{
2619 /*
2620 * Segment must be an accessed code segment, it must be present and it must
2621 * be usable.
2622 * Note! These are all standard requirements and if CS holds anything else
2623 * we've got buggy code somewhere!
2624 */
2625 AssertCompile(X86DESCATTR_TYPE == 0xf);
2626 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P | X86DESCATTR_UNUSABLE))
2627 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P),
2628 ("%#x\n", pSel->Attr.u),
2629 false);
2630
2631 /* For conforming segments, CS.DPL must be <= SS.DPL, while CS.DPL
2632 must equal SS.DPL for non-confroming segments.
2633 Note! This is also a hard requirement like above. */
2634 AssertMsgReturn( pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF
2635 ? pSel->Attr.n.u2Dpl <= uStackDpl
2636 : pSel->Attr.n.u2Dpl == uStackDpl,
2637 ("u4Type=%#x u2Dpl=%u uStackDpl=%u\n", pSel->Attr.n.u4Type, pSel->Attr.n.u2Dpl, uStackDpl),
2638 false);
2639
2640 /*
2641 * The following two requirements are VT-x specific:
2642 * - G bit must be set if any high limit bits are set.
2643 * - G bit must be clear if any low limit bits are clear.
2644 */
2645 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2646 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2647 return true;
2648 return false;
2649}
2650
2651
2652/**
2653 * Checks if a data selector (DS/ES/FS/GS) is suitable for
2654 * execution within VMX when unrestricted execution isn't
2655 * available.
2656 *
2657 * @returns true if selector is suitable for VMX, otherwise
2658 * false.
2659 * @param pSel Pointer to the selector to check
2660 * (DS/ES/FS/GS).
2661 */
2662static bool hmR3IsDataSelectorOkForVmx(PCPUMSELREG pSel)
2663{
2664 /*
2665 * Unusable segments are OK. These days they should be marked as such, as
2666 * but as an alternative we for old saved states and AMD<->VT-x migration
2667 * we also treat segments with all the attributes cleared as unusable.
2668 */
2669 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2670 return true;
2671
2672 /** @todo tighten these checks. Will require CPUM load adjusting. */
2673
2674 /* Segment must be accessed. */
2675 if (pSel->Attr.u & X86_SEL_TYPE_ACCESSED)
2676 {
2677 /* Code segments must also be readable. */
2678 if ( !(pSel->Attr.u & X86_SEL_TYPE_CODE)
2679 || (pSel->Attr.u & X86_SEL_TYPE_READ))
2680 {
2681 /* The S bit must be set. */
2682 if (pSel->Attr.n.u1DescType)
2683 {
2684 /* Except for conforming segments, DPL >= RPL. */
2685 if ( pSel->Attr.n.u2Dpl >= (pSel->Sel & X86_SEL_RPL)
2686 || pSel->Attr.n.u4Type >= X86_SEL_TYPE_ER_ACC)
2687 {
2688 /* Segment must be present. */
2689 if (pSel->Attr.n.u1Present)
2690 {
2691 /*
2692 * The following two requirements are VT-x specific:
2693 * - G bit must be set if any high limit bits are set.
2694 * - G bit must be clear if any low limit bits are clear.
2695 */
2696 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2697 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2698 return true;
2699 }
2700 }
2701 }
2702 }
2703 }
2704
2705 return false;
2706}
2707
2708
2709/**
2710 * Checks if the stack selector (SS) is suitable for execution
2711 * within VMX when unrestricted execution isn't available.
2712 *
2713 * @returns true if selector is suitable for VMX, otherwise
2714 * false.
2715 * @param pSel Pointer to the selector to check (SS).
2716 */
2717static bool hmR3IsStackSelectorOkForVmx(PCPUMSELREG pSel)
2718{
2719 /*
2720 * Unusable segments are OK. These days they should be marked as such, as
2721 * but as an alternative we for old saved states and AMD<->VT-x migration
2722 * we also treat segments with all the attributes cleared as unusable.
2723 */
2724 /** @todo r=bird: actually all zeroes isn't gonna cut it... SS.DPL == CPL. */
2725 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2726 return true;
2727
2728 /*
2729 * Segment must be an accessed writable segment, it must be present.
2730 * Note! These are all standard requirements and if SS holds anything else
2731 * we've got buggy code somewhere!
2732 */
2733 AssertCompile(X86DESCATTR_TYPE == 0xf);
2734 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P | X86_SEL_TYPE_CODE))
2735 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P),
2736 ("%#x\n", pSel->Attr.u),
2737 false);
2738
2739 /* DPL must equal RPL.
2740 Note! This is also a hard requirement like above. */
2741 AssertMsgReturn(pSel->Attr.n.u2Dpl == (pSel->Sel & X86_SEL_RPL),
2742 ("u2Dpl=%u Sel=%#x\n", pSel->Attr.n.u2Dpl, pSel->Sel),
2743 false);
2744
2745 /*
2746 * The following two requirements are VT-x specific:
2747 * - G bit must be set if any high limit bits are set.
2748 * - G bit must be clear if any low limit bits are clear.
2749 */
2750 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2751 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2752 return true;
2753 return false;
2754}
2755
2756
2757/**
2758 * Force execution of the current IO code in the recompiler.
2759 *
2760 * @returns VBox status code.
2761 * @param pVM The cross context VM structure.
2762 * @param pCtx Partial VM execution context.
2763 */
2764VMMR3_INT_DECL(int) HMR3EmulateIoBlock(PVM pVM, PCPUMCTX pCtx)
2765{
2766 PVMCPU pVCpu = VMMGetCpu(pVM);
2767
2768 Assert(HMIsEnabled(pVM));
2769 Log(("HMR3EmulateIoBlock\n"));
2770
2771 /* This is primarily intended to speed up Grub, so we don't care about paged protected mode. */
2772 if (HMCanEmulateIoBlockEx(pCtx))
2773 {
2774 Log(("HMR3EmulateIoBlock -> enabled\n"));
2775 pVCpu->hm.s.EmulateIoBlock.fEnabled = true;
2776 pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip = pCtx->rip;
2777 pVCpu->hm.s.EmulateIoBlock.cr0 = pCtx->cr0;
2778 return VINF_EM_RESCHEDULE_REM;
2779 }
2780 return VINF_SUCCESS;
2781}
2782
2783
2784/**
2785 * Checks if we can currently use hardware accelerated raw mode.
2786 *
2787 * @returns true if we can currently use hardware acceleration, otherwise false.
2788 * @param pVM The cross context VM structure.
2789 * @param pCtx Partial VM execution context.
2790 */
2791VMMR3DECL(bool) HMR3CanExecuteGuest(PVM pVM, PCPUMCTX pCtx)
2792{
2793 PVMCPU pVCpu = VMMGetCpu(pVM);
2794
2795 Assert(HMIsEnabled(pVM));
2796
2797#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
2798 if (CPUMIsGuestInNestedHwVirtMode(pCtx))
2799 {
2800 Log(("HMR3CanExecuteGuest: In nested-guest mode - returning false"));
2801 return false;
2802 }
2803#endif
2804
2805 /* If we're still executing the IO code, then return false. */
2806 if ( RT_UNLIKELY(pVCpu->hm.s.EmulateIoBlock.fEnabled)
2807 && pCtx->rip < pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip + 0x200
2808 && pCtx->rip > pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip - 0x200
2809 && pCtx->cr0 == pVCpu->hm.s.EmulateIoBlock.cr0)
2810 return false;
2811
2812 pVCpu->hm.s.EmulateIoBlock.fEnabled = false;
2813
2814 /* AMD-V supports real & protected mode with or without paging. */
2815 if (pVM->hm.s.svm.fEnabled)
2816 {
2817 pVCpu->hm.s.fActive = true;
2818 return true;
2819 }
2820
2821 pVCpu->hm.s.fActive = false;
2822
2823 /* Note! The context supplied by REM is partial. If we add more checks here, be sure to verify that REM provides this info! */
2824 Assert( (pVM->hm.s.vmx.fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS)
2825 || (!pVM->hm.s.vmx.fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS));
2826
2827 bool fSupportsRealMode = pVM->hm.s.vmx.fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM);
2828 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
2829 {
2830 /*
2831 * The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted
2832 * guest execution feature is missing (VT-x only).
2833 */
2834 if (fSupportsRealMode)
2835 {
2836 if (CPUMIsGuestInRealModeEx(pCtx))
2837 {
2838 /* In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector
2839 * bases and limits, i.e. limit must be 64K and base must be selector * 16.
2840 * If this is not true, we cannot execute real mode as V86 and have to fall
2841 * back to emulation.
2842 */
2843 if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4)
2844 || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4)
2845 || pCtx->es.Sel != (pCtx->es.u64Base >> 4)
2846 || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4)
2847 || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4)
2848 || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4))
2849 {
2850 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase);
2851 return false;
2852 }
2853 if ( (pCtx->cs.u32Limit != 0xffff)
2854 || (pCtx->ds.u32Limit != 0xffff)
2855 || (pCtx->es.u32Limit != 0xffff)
2856 || (pCtx->ss.u32Limit != 0xffff)
2857 || (pCtx->fs.u32Limit != 0xffff)
2858 || (pCtx->gs.u32Limit != 0xffff))
2859 {
2860 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit);
2861 return false;
2862 }
2863 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk);
2864 }
2865 else
2866 {
2867 /* Verify the requirements for executing code in protected
2868 mode. VT-x can't handle the CPU state right after a switch
2869 from real to protected mode. (all sorts of RPL & DPL assumptions). */
2870 if (pVCpu->hm.s.vmx.fWasInRealMode)
2871 {
2872 /** @todo If guest is in V86 mode, these checks should be different! */
2873 if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL))
2874 {
2875 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl);
2876 return false;
2877 }
2878 if ( !hmR3IsCodeSelectorOkForVmx(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl)
2879 || !hmR3IsDataSelectorOkForVmx(&pCtx->ds)
2880 || !hmR3IsDataSelectorOkForVmx(&pCtx->es)
2881 || !hmR3IsDataSelectorOkForVmx(&pCtx->fs)
2882 || !hmR3IsDataSelectorOkForVmx(&pCtx->gs)
2883 || !hmR3IsStackSelectorOkForVmx(&pCtx->ss))
2884 {
2885 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel);
2886 return false;
2887 }
2888 }
2889 /* VT-x also chokes on invalid TR or LDTR selectors (minix). */
2890 if (pCtx->gdtr.cbGdt)
2891 {
2892 if ((pCtx->tr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2893 {
2894 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadTr);
2895 return false;
2896 }
2897 else if ((pCtx->ldtr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2898 {
2899 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadLdt);
2900 return false;
2901 }
2902 }
2903 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckPmOk);
2904 }
2905 }
2906 else
2907 {
2908 if ( !CPUMIsGuestInLongModeEx(pCtx)
2909 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2910 {
2911 if ( !pVM->hm.s.fNestedPaging /* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap */
2912 || CPUMIsGuestInRealModeEx(pCtx)) /* Requires a fake TSS for real mode - stored in the VMM device heap */
2913 return false;
2914
2915 /* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */
2916 if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0)
2917 return false;
2918
2919 /* The guest is about to complete the switch to protected mode. Wait a bit longer. */
2920 /* Windows XP; switch to protected mode; all selectors are marked not present in the
2921 * hidden registers (possible recompiler bug; see load_seg_vm) */
2922 if (pCtx->cs.Attr.n.u1Present == 0)
2923 return false;
2924 if (pCtx->ss.Attr.n.u1Present == 0)
2925 return false;
2926
2927 /* Windows XP: possible same as above, but new recompiler requires new heuristics?
2928 VT-x doesn't seem to like something about the guest state and this stuff avoids it. */
2929 /** @todo This check is actually wrong, it doesn't take the direction of the
2930 * stack segment into account. But, it does the job for now. */
2931 if (pCtx->rsp >= pCtx->ss.u32Limit)
2932 return false;
2933 }
2934 }
2935 }
2936
2937 if (pVM->hm.s.vmx.fEnabled)
2938 {
2939 uint32_t mask;
2940
2941 /* if bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */
2942 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
2943 /* Note: We ignore the NE bit here on purpose; see vmmr0\hmr0.cpp for details. */
2944 mask &= ~X86_CR0_NE;
2945
2946 if (fSupportsRealMode)
2947 {
2948 /* Note: We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */
2949 mask &= ~(X86_CR0_PG|X86_CR0_PE);
2950 }
2951 else
2952 {
2953 /* We support protected mode without paging using identity mapping. */
2954 mask &= ~X86_CR0_PG;
2955 }
2956 if ((pCtx->cr0 & mask) != mask)
2957 return false;
2958
2959 /* if bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */
2960 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
2961 if ((pCtx->cr0 & mask) != 0)
2962 return false;
2963
2964 /* if bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */
2965 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
2966 mask &= ~X86_CR4_VMXE;
2967 if ((pCtx->cr4 & mask) != mask)
2968 return false;
2969
2970 /* if bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */
2971 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
2972 if ((pCtx->cr4 & mask) != 0)
2973 return false;
2974
2975 pVCpu->hm.s.fActive = true;
2976 return true;
2977 }
2978
2979 return false;
2980}
2981
2982
2983/**
2984 * Checks if we need to reschedule due to VMM device heap changes.
2985 *
2986 * @returns true if a reschedule is required, otherwise false.
2987 * @param pVM The cross context VM structure.
2988 * @param pCtx VM execution context.
2989 */
2990VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx)
2991{
2992 /*
2993 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2994 * when the unrestricted guest execution feature is missing (VT-x only).
2995 */
2996 if ( pVM->hm.s.vmx.fEnabled
2997 && !pVM->hm.s.vmx.fUnrestrictedGuest
2998 && CPUMIsGuestInRealModeEx(pCtx)
2999 && !PDMVmmDevHeapIsEnabled(pVM))
3000 {
3001 return true;
3002 }
3003
3004 return false;
3005}
3006
3007
3008/**
3009 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
3010 * event settings changes.
3011 *
3012 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
3013 * function is just updating the VM globals.
3014 *
3015 * @param pVM The VM cross context VM structure.
3016 * @thread EMT(0)
3017 */
3018VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
3019{
3020 /* Interrupts. */
3021 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
3022 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
3023
3024 /* CPU Exceptions. */
3025 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
3026 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
3027 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3028 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3029
3030 /* Common VM exits. */
3031 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
3032 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
3033 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3034 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3035
3036 /* Vendor specific VM exits. */
3037 if (HMR3IsVmxEnabled(pVM->pUVM))
3038 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
3039 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
3040 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3041 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3042 else
3043 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
3044 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
3045 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3046 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3047
3048 /* Done. */
3049 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
3050}
3051
3052
3053/**
3054 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
3055 *
3056 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
3057 * per CPU settings.
3058 *
3059 * @param pVM The VM cross context VM structure.
3060 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3061 */
3062VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
3063{
3064 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
3065}
3066
3067
3068/**
3069 * Notification from EM about a rescheduling into hardware assisted execution
3070 * mode.
3071 *
3072 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3073 */
3074VMMR3_INT_DECL(void) HMR3NotifyScheduled(PVMCPU pVCpu)
3075{
3076 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3077}
3078
3079
3080/**
3081 * Notification from EM about returning from instruction emulation (REM / EM).
3082 *
3083 * @param pVCpu The cross context virtual CPU structure.
3084 */
3085VMMR3_INT_DECL(void) HMR3NotifyEmulated(PVMCPU pVCpu)
3086{
3087 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3088}
3089
3090
3091/**
3092 * Checks if we are currently using hardware acceleration.
3093 *
3094 * @returns true if hardware acceleration is being used, otherwise false.
3095 * @param pVCpu The cross context virtual CPU structure.
3096 */
3097VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu)
3098{
3099 return pVCpu->hm.s.fActive;
3100}
3101
3102
3103/**
3104 * External interface for querying whether hardware acceleration is enabled.
3105 *
3106 * @returns true if VT-x or AMD-V is being used, otherwise false.
3107 * @param pUVM The user mode VM handle.
3108 * @sa HMIsEnabled, HMIsEnabledNotMacro.
3109 */
3110VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
3111{
3112 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3113 PVM pVM = pUVM->pVM;
3114 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3115 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
3116}
3117
3118
3119/**
3120 * External interface for querying whether VT-x is being used.
3121 *
3122 * @returns true if VT-x is being used, otherwise false.
3123 * @param pUVM The user mode VM handle.
3124 * @sa HMR3IsSvmEnabled, HMIsEnabled
3125 */
3126VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
3127{
3128 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3129 PVM pVM = pUVM->pVM;
3130 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3131 return pVM->hm.s.vmx.fEnabled
3132 && pVM->hm.s.vmx.fSupported
3133 && pVM->fHMEnabled;
3134}
3135
3136
3137/**
3138 * External interface for querying whether AMD-V is being used.
3139 *
3140 * @returns true if VT-x is being used, otherwise false.
3141 * @param pUVM The user mode VM handle.
3142 * @sa HMR3IsVmxEnabled, HMIsEnabled
3143 */
3144VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
3145{
3146 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3147 PVM pVM = pUVM->pVM;
3148 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3149 return pVM->hm.s.svm.fEnabled
3150 && pVM->hm.s.svm.fSupported
3151 && pVM->fHMEnabled;
3152}
3153
3154
3155/**
3156 * Checks if we are currently using nested paging.
3157 *
3158 * @returns true if nested paging is being used, otherwise false.
3159 * @param pUVM The user mode VM handle.
3160 */
3161VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
3162{
3163 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3164 PVM pVM = pUVM->pVM;
3165 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3166 return pVM->hm.s.fNestedPaging;
3167}
3168
3169
3170/**
3171 * Checks if virtualized APIC registers is enabled.
3172 *
3173 * When enabled this feature allows the hardware to access most of the
3174 * APIC registers in the virtual-APIC page without causing VM-exits. See
3175 * Intel spec. 29.1.1 "Virtualized APIC Registers".
3176 *
3177 * @returns true if virtualized APIC registers is enabled, otherwise
3178 * false.
3179 * @param pUVM The user mode VM handle.
3180 */
3181VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
3182{
3183 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3184 PVM pVM = pUVM->pVM;
3185 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3186 return pVM->hm.s.fVirtApicRegs;
3187}
3188
3189
3190/**
3191 * Checks if APIC posted-interrupt processing is enabled.
3192 *
3193 * This returns whether we can deliver interrupts to the guest without
3194 * leaving guest-context by updating APIC state from host-context.
3195 *
3196 * @returns true if APIC posted-interrupt processing is enabled,
3197 * otherwise false.
3198 * @param pUVM The user mode VM handle.
3199 */
3200VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
3201{
3202 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3203 PVM pVM = pUVM->pVM;
3204 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3205 return pVM->hm.s.fPostedIntrs;
3206}
3207
3208
3209/**
3210 * Checks if we are currently using VPID in VT-x mode.
3211 *
3212 * @returns true if VPID is being used, otherwise false.
3213 * @param pUVM The user mode VM handle.
3214 */
3215VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
3216{
3217 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3218 PVM pVM = pUVM->pVM;
3219 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3220 return pVM->hm.s.vmx.fVpid;
3221}
3222
3223
3224/**
3225 * Checks if we are currently using VT-x unrestricted execution,
3226 * aka UX.
3227 *
3228 * @returns true if UX is being used, otherwise false.
3229 * @param pUVM The user mode VM handle.
3230 */
3231VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
3232{
3233 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3234 PVM pVM = pUVM->pVM;
3235 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3236 return pVM->hm.s.vmx.fUnrestrictedGuest;
3237}
3238
3239
3240/**
3241 * Checks if internal events are pending. In that case we are not allowed to dispatch interrupts.
3242 *
3243 * @returns true if an internal event is pending, otherwise false.
3244 * @param pVCpu The cross context virtual CPU structure.
3245 */
3246VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu)
3247{
3248 return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending;
3249}
3250
3251
3252/**
3253 * Checks if the VMX-preemption timer is being used.
3254 *
3255 * @returns true if the VMX-preemption timer is being used, otherwise false.
3256 * @param pVM The cross context VM structure.
3257 */
3258VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
3259{
3260 return HMIsEnabled(pVM)
3261 && pVM->hm.s.vmx.fEnabled
3262 && pVM->hm.s.vmx.fUsePreemptTimer;
3263}
3264
3265
3266/**
3267 * Restart an I/O instruction that was refused in ring-0
3268 *
3269 * @returns Strict VBox status code. Informational status codes other than the one documented
3270 * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success.
3271 * @retval VINF_SUCCESS Success.
3272 * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the
3273 * status code must be passed on to EM.
3274 * @retval VERR_NOT_FOUND if no pending I/O instruction.
3275 *
3276 * @param pVM The cross context VM structure.
3277 * @param pVCpu The cross context virtual CPU structure.
3278 * @param pCtx Pointer to the guest CPU context.
3279 */
3280VMMR3_INT_DECL(VBOXSTRICTRC) HMR3RestartPendingIOInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3281{
3282 /*
3283 * Check if we've got relevant data pending.
3284 */
3285 HMPENDINGIO enmType = pVCpu->hm.s.PendingIO.enmType;
3286 if (enmType == HMPENDINGIO_INVALID)
3287 return VERR_NOT_FOUND;
3288 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_INVALID;
3289 if (pVCpu->hm.s.PendingIO.GCPtrRip != pCtx->rip)
3290 return VERR_NOT_FOUND;
3291
3292 /*
3293 * Execute pending I/O.
3294 */
3295 VBOXSTRICTRC rcStrict;
3296 switch (enmType)
3297 {
3298 case HMPENDINGIO_PORT_READ:
3299 {
3300 uint32_t uAndVal = pVCpu->hm.s.PendingIO.s.Port.uAndVal;
3301 uint32_t u32Val = 0;
3302
3303 rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort, &u32Val,
3304 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3305 if (IOM_SUCCESS(rcStrict))
3306 {
3307 /* Write back to the EAX register. */
3308 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
3309 pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
3310 }
3311 break;
3312 }
3313
3314 default:
3315 AssertLogRelFailedReturn(VERR_HM_UNKNOWN_IO_INSTRUCTION);
3316 }
3317
3318 if (IOM_SUCCESS(rcStrict))
3319 {
3320 /*
3321 * Check for I/O breakpoints.
3322 */
3323 uint32_t const uDr7 = pCtx->dr[7];
3324 if ( ( (uDr7 & X86_DR7_ENABLED_MASK)
3325 && X86_DR7_ANY_RW_IO(uDr7)
3326 && (pCtx->cr4 & X86_CR4_DE))
3327 || DBGFBpIsHwIoArmed(pVM))
3328 {
3329 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, pVCpu->hm.s.PendingIO.s.Port.uPort,
3330 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3331 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
3332 rcStrict2 = TRPMAssertTrap(pVCpu, X86_XCPT_DB, TRPM_TRAP);
3333 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
3334 else if (rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
3335 rcStrict = rcStrict2;
3336 }
3337 }
3338 return rcStrict;
3339}
3340
3341
3342/**
3343 * Check fatal VT-x/AMD-V error and produce some meaningful
3344 * log release message.
3345 *
3346 * @param pVM The cross context VM structure.
3347 * @param iStatusCode VBox status code.
3348 */
3349VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3350{
3351 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3352 {
3353 PVMCPU pVCpu = &pVM->aCpus[i];
3354 switch (iStatusCode)
3355 {
3356 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3357 * might be getting inaccurate values for non-guru'ing EMTs. */
3358 case VERR_VMX_INVALID_VMCS_FIELD:
3359 break;
3360
3361 case VERR_VMX_INVALID_VMCS_PTR:
3362 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3363 LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VMCSPhys,
3364 pVCpu->hm.s.vmx.HCPhysVmcs));
3365 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VMCSRevision));
3366 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3367 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3368 break;
3369
3370 case VERR_VMX_UNABLE_TO_START_VM:
3371 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3372 LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
3373 LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3374
3375 if ( pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMLAUCH_NON_CLEAR_VMCS
3376 || pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMRESUME_NON_LAUNCHED_VMCS)
3377 {
3378 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3379 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3380 }
3381 else if (pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMENTRY_INVALID_CONTROL_FIELDS)
3382 {
3383 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32PinCtls));
3384 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls));
3385 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls2));
3386 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32EntryCtls));
3387 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ExitCtls));
3388 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap));
3389 LogRel(("HM: CPU[%u] HCPhysGuestMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr));
3390 LogRel(("HM: CPU[%u] HCPhysHostMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr));
3391 LogRel(("HM: CPU[%u] cMsrs %u\n", i, pVCpu->hm.s.vmx.cMsrs));
3392 }
3393 /** @todo Log VM-entry event injection control fields
3394 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3395 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3396 break;
3397
3398 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3399 case VERR_VMX_INVALID_VMXON_PTR:
3400 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3401 case VERR_VMX_INVALID_GUEST_STATE:
3402 case VERR_VMX_UNEXPECTED_EXIT:
3403 case VERR_SVM_UNKNOWN_EXIT:
3404 case VERR_SVM_UNEXPECTED_EXIT:
3405 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3406 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3407 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3408 break;
3409 }
3410 }
3411
3412 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3413 {
3414 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1));
3415 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry disallowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0));
3416 }
3417 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3418 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3419}
3420
3421
3422/**
3423 * Execute state save operation.
3424 *
3425 * @returns VBox status code.
3426 * @param pVM The cross context VM structure.
3427 * @param pSSM SSM operation handle.
3428 */
3429static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3430{
3431 int rc;
3432
3433 Log(("hmR3Save:\n"));
3434
3435 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3436 {
3437 /*
3438 * Save the basic bits - fortunately all the other things can be resynced on load.
3439 */
3440 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.fPending);
3441 AssertRCReturn(rc, rc);
3442 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.u32ErrCode);
3443 AssertRCReturn(rc, rc);
3444 rc = SSMR3PutU64(pSSM, pVM->aCpus[i].hm.s.Event.u64IntInfo);
3445 AssertRCReturn(rc, rc);
3446 /** @todo Shouldn't we be saving GCPtrFaultAddress too? */
3447
3448 /** @todo We only need to save pVM->aCpus[i].hm.s.vmx.fWasInRealMode and
3449 * perhaps not even that (the initial value of @c true is safe. */
3450 uint32_t u32Dummy = PGMMODE_REAL;
3451 rc = SSMR3PutU32(pSSM, u32Dummy);
3452 AssertRCReturn(rc, rc);
3453 rc = SSMR3PutU32(pSSM, u32Dummy);
3454 AssertRCReturn(rc, rc);
3455 rc = SSMR3PutU32(pSSM, u32Dummy);
3456 AssertRCReturn(rc, rc);
3457 }
3458
3459#ifdef VBOX_HM_WITH_GUEST_PATCHING
3460 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3461 AssertRCReturn(rc, rc);
3462 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3463 AssertRCReturn(rc, rc);
3464 rc = SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3465 AssertRCReturn(rc, rc);
3466
3467 /* Store all the guest patch records too. */
3468 rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3469 AssertRCReturn(rc, rc);
3470
3471 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3472 {
3473 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3474
3475 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3476 AssertRCReturn(rc, rc);
3477
3478 rc = SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3479 AssertRCReturn(rc, rc);
3480
3481 rc = SSMR3PutU32(pSSM, pPatch->cbOp);
3482 AssertRCReturn(rc, rc);
3483
3484 rc = SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3485 AssertRCReturn(rc, rc);
3486
3487 rc = SSMR3PutU32(pSSM, pPatch->cbNewOp);
3488 AssertRCReturn(rc, rc);
3489
3490 AssertCompileSize(HMTPRINSTR, 4);
3491 rc = SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3492 AssertRCReturn(rc, rc);
3493
3494 rc = SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3495 AssertRCReturn(rc, rc);
3496
3497 rc = SSMR3PutU32(pSSM, pPatch->uDstOperand);
3498 AssertRCReturn(rc, rc);
3499
3500 rc = SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3501 AssertRCReturn(rc, rc);
3502
3503 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3504 AssertRCReturn(rc, rc);
3505 }
3506#endif
3507 return VINF_SUCCESS;
3508}
3509
3510
3511/**
3512 * Execute state load operation.
3513 *
3514 * @returns VBox status code.
3515 * @param pVM The cross context VM structure.
3516 * @param pSSM SSM operation handle.
3517 * @param uVersion Data layout version.
3518 * @param uPass The data pass.
3519 */
3520static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3521{
3522 int rc;
3523
3524 Log(("hmR3Load:\n"));
3525 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3526
3527 /*
3528 * Validate version.
3529 */
3530 if ( uVersion != HM_SAVED_STATE_VERSION
3531 && uVersion != HM_SAVED_STATE_VERSION_NO_PATCHING
3532 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3533 {
3534 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3535 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3536 }
3537 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3538 {
3539 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
3540 AssertRCReturn(rc, rc);
3541 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
3542 AssertRCReturn(rc, rc);
3543 rc = SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo);
3544 AssertRCReturn(rc, rc);
3545
3546 if (uVersion >= HM_SAVED_STATE_VERSION_NO_PATCHING)
3547 {
3548 uint32_t val;
3549 /** @todo See note in hmR3Save(). */
3550 rc = SSMR3GetU32(pSSM, &val);
3551 AssertRCReturn(rc, rc);
3552 rc = SSMR3GetU32(pSSM, &val);
3553 AssertRCReturn(rc, rc);
3554 rc = SSMR3GetU32(pSSM, &val);
3555 AssertRCReturn(rc, rc);
3556 }
3557 }
3558#ifdef VBOX_HM_WITH_GUEST_PATCHING
3559 if (uVersion > HM_SAVED_STATE_VERSION_NO_PATCHING)
3560 {
3561 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3562 AssertRCReturn(rc, rc);
3563 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3564 AssertRCReturn(rc, rc);
3565 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3566 AssertRCReturn(rc, rc);
3567
3568 /* Fetch all TPR patch records. */
3569 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3570 AssertRCReturn(rc, rc);
3571
3572 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3573 {
3574 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3575
3576 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3577 AssertRCReturn(rc, rc);
3578
3579 rc = SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3580 AssertRCReturn(rc, rc);
3581
3582 rc = SSMR3GetU32(pSSM, &pPatch->cbOp);
3583 AssertRCReturn(rc, rc);
3584
3585 rc = SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3586 AssertRCReturn(rc, rc);
3587
3588 rc = SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3589 AssertRCReturn(rc, rc);
3590
3591 rc = SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3592 AssertRCReturn(rc, rc);
3593
3594 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3595 pVM->hm.s.fTPRPatchingActive = true;
3596
3597 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3598
3599 rc = SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3600 AssertRCReturn(rc, rc);
3601
3602 rc = SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3603 AssertRCReturn(rc, rc);
3604
3605 rc = SSMR3GetU32(pSSM, &pPatch->cFaults);
3606 AssertRCReturn(rc, rc);
3607
3608 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3609 AssertRCReturn(rc, rc);
3610
3611 Log(("hmR3Load: patch %d\n", i));
3612 Log(("Key = %x\n", pPatch->Core.Key));
3613 Log(("cbOp = %d\n", pPatch->cbOp));
3614 Log(("cbNewOp = %d\n", pPatch->cbNewOp));
3615 Log(("type = %d\n", pPatch->enmType));
3616 Log(("srcop = %d\n", pPatch->uSrcOperand));
3617 Log(("dstop = %d\n", pPatch->uDstOperand));
3618 Log(("cFaults = %d\n", pPatch->cFaults));
3619 Log(("target = %x\n", pPatch->pJumpTarget));
3620 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3621 AssertRC(rc);
3622 }
3623 }
3624#endif
3625
3626 return VINF_SUCCESS;
3627}
3628
3629
3630/**
3631 * Displays the guest VM-exit history.
3632 *
3633 * @param pVM The cross context VM structure.
3634 * @param pHlp The info helper functions.
3635 * @param pszArgs Arguments, ignored.
3636 */
3637static DECLCALLBACK(void) hmR3InfoExitHistory(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3638{
3639 NOREF(pszArgs);
3640 PVMCPU pVCpu = VMMGetCpu(pVM);
3641 if (!pVCpu)
3642 pVCpu = &pVM->aCpus[0];
3643
3644 if (HMIsEnabled(pVM))
3645 {
3646 bool const fIsVtx = pVM->hm.s.vmx.fSupported;
3647 const char * const *papszDesc;
3648 unsigned cMaxExitDesc;
3649 if (fIsVtx)
3650 {
3651 cMaxExitDesc = MAX_EXITREASON_VTX;
3652 papszDesc = &g_apszVTxExitReasons[0];
3653 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x VM-exit history:\n", pVCpu->idCpu);
3654 }
3655 else
3656 {
3657 cMaxExitDesc = MAX_EXITREASON_AMDV;
3658 papszDesc = &g_apszAmdVExitReasons[0];
3659 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V #VMEXIT history:\n", pVCpu->idCpu);
3660 }
3661
3662 pHlp->pfnPrintf(pHlp, " idxExitHistoryFree = %u\n", pVCpu->hm.s.idxExitHistoryFree);
3663 unsigned const idxLast = pVCpu->hm.s.idxExitHistoryFree > 0 ?
3664 pVCpu->hm.s.idxExitHistoryFree - 1 :
3665 RT_ELEMENTS(pVCpu->hm.s.auExitHistory) - 1;
3666 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->hm.s.auExitHistory); i++)
3667 {
3668 uint16_t const uExit = pVCpu->hm.s.auExitHistory[i];
3669 const char *pszExit = NULL;
3670 if (uExit <= cMaxExitDesc)
3671 pszExit = papszDesc[uExit];
3672 else if (!fIsVtx)
3673 pszExit = hmSvmGetSpecialExitReasonDesc(uExit);
3674 else
3675 pszExit = NULL;
3676
3677 pHlp->pfnPrintf(pHlp, " auExitHistory[%2u] = 0x%04x %s %s\n", i, uExit, pszExit,
3678 idxLast == i ? "<-- Latest exit" : "");
3679 }
3680 pHlp->pfnPrintf(pHlp, "HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3681 }
3682 else
3683 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3684}
3685
3686
3687/**
3688 * Displays the HM pending event.
3689 *
3690 * @param pVM The cross context VM structure.
3691 * @param pHlp The info helper functions.
3692 * @param pszArgs Arguments, ignored.
3693 */
3694static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3695{
3696 NOREF(pszArgs);
3697 PVMCPU pVCpu = VMMGetCpu(pVM);
3698 if (!pVCpu)
3699 pVCpu = &pVM->aCpus[0];
3700
3701 if (HMIsEnabled(pVM))
3702 {
3703 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3704 if (pVCpu->hm.s.Event.fPending)
3705 {
3706 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3707 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3708 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3709 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3710 }
3711 }
3712 else
3713 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3714}
3715
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette