VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 70951

Last change on this file since 70951 was 70948, checked in by vboxsync, 7 years ago

VMM: Added a bMainExecutionEngine member to the VM structure for use instead of fHMEnabled and fNEMEnabled. Changed a lot of HMIsEnabled invocations to use the new macros VM_IS_RAW_MODE_ENABLED and VM_IS_HM_OR_NEM_ENABLED. Eliminated fHMEnabledFixed. Fixed inverted test for raw-mode debug register sanity checking. Some other minor cleanups.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 164.0 KB
Line 
1/* $Id: HM.cpp 70948 2018-02-10 15:38:12Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#include <VBox/vmm/cpum.h>
41#include <VBox/vmm/stam.h>
42#include <VBox/vmm/mm.h>
43#include <VBox/vmm/pdmapi.h>
44#include <VBox/vmm/pgm.h>
45#include <VBox/vmm/ssm.h>
46#include <VBox/vmm/trpm.h>
47#include <VBox/vmm/dbgf.h>
48#include <VBox/vmm/iom.h>
49#include <VBox/vmm/iem.h>
50#include <VBox/vmm/patm.h>
51#include <VBox/vmm/csam.h>
52#include <VBox/vmm/selm.h>
53#include <VBox/vmm/nem.h>
54#ifdef VBOX_WITH_REM
55# include <VBox/vmm/rem.h>
56#endif
57#include <VBox/vmm/hm_vmx.h>
58#include <VBox/vmm/hm_svm.h>
59#include "HMInternal.h"
60#include <VBox/vmm/vm.h>
61#include <VBox/vmm/uvm.h>
62#include <VBox/err.h>
63#include <VBox/param.h>
64
65#include <iprt/assert.h>
66#include <VBox/log.h>
67#include <iprt/asm.h>
68#include <iprt/asm-amd64-x86.h>
69#include <iprt/env.h>
70#include <iprt/thread.h>
71
72
73/*********************************************************************************************************************************
74* Global Variables *
75*********************************************************************************************************************************/
76#define EXIT_REASON(def, val, str) #def " - " #val " - " str
77#define EXIT_REASON_NIL() NULL
78/** Exit reason descriptions for VT-x, used to describe statistics. */
79static const char * const g_apszVTxExitReasons[MAX_EXITREASON_STAT] =
80{
81 EXIT_REASON(VMX_EXIT_XCPT_OR_NMI , 0, "Exception or non-maskable interrupt (NMI)."),
82 EXIT_REASON(VMX_EXIT_EXT_INT , 1, "External interrupt."),
83 EXIT_REASON(VMX_EXIT_TRIPLE_FAULT , 2, "Triple fault."),
84 EXIT_REASON(VMX_EXIT_INIT_SIGNAL , 3, "INIT signal."),
85 EXIT_REASON(VMX_EXIT_SIPI , 4, "Start-up IPI (SIPI)."),
86 EXIT_REASON(VMX_EXIT_IO_SMI_IRQ , 5, "I/O system-management interrupt (SMI)."),
87 EXIT_REASON(VMX_EXIT_SMI_IRQ , 6, "Other SMI."),
88 EXIT_REASON(VMX_EXIT_INT_WINDOW , 7, "Interrupt window."),
89 EXIT_REASON(VMX_EXIT_NMI_WINDOW , 8, "NMI window."),
90 EXIT_REASON(VMX_EXIT_TASK_SWITCH , 9, "Task switch."),
91 EXIT_REASON(VMX_EXIT_CPUID , 10, "CPUID instruction."),
92 EXIT_REASON(VMX_EXIT_GETSEC , 11, "GETSEC instrunction."),
93 EXIT_REASON(VMX_EXIT_HLT , 12, "HLT instruction."),
94 EXIT_REASON(VMX_EXIT_INVD , 13, "INVD instruction."),
95 EXIT_REASON(VMX_EXIT_INVLPG , 14, "INVLPG instruction."),
96 EXIT_REASON(VMX_EXIT_RDPMC , 15, "RDPMCinstruction."),
97 EXIT_REASON(VMX_EXIT_RDTSC , 16, "RDTSC instruction."),
98 EXIT_REASON(VMX_EXIT_RSM , 17, "RSM instruction in SMM."),
99 EXIT_REASON(VMX_EXIT_VMCALL , 18, "VMCALL instruction."),
100 EXIT_REASON(VMX_EXIT_VMCLEAR , 19, "VMCLEAR instruction."),
101 EXIT_REASON(VMX_EXIT_VMLAUNCH , 20, "VMLAUNCH instruction."),
102 EXIT_REASON(VMX_EXIT_VMPTRLD , 21, "VMPTRLD instruction."),
103 EXIT_REASON(VMX_EXIT_VMPTRST , 22, "VMPTRST instruction."),
104 EXIT_REASON(VMX_EXIT_VMREAD , 23, "VMREAD instruction."),
105 EXIT_REASON(VMX_EXIT_VMRESUME , 24, "VMRESUME instruction."),
106 EXIT_REASON(VMX_EXIT_VMWRITE , 25, "VMWRITE instruction."),
107 EXIT_REASON(VMX_EXIT_VMXOFF , 26, "VMXOFF instruction."),
108 EXIT_REASON(VMX_EXIT_VMXON , 27, "VMXON instruction."),
109 EXIT_REASON(VMX_EXIT_MOV_CRX , 28, "Control-register accesses."),
110 EXIT_REASON(VMX_EXIT_MOV_DRX , 29, "Debug-register accesses."),
111 EXIT_REASON(VMX_EXIT_PORT_IO , 30, "I/O instruction."),
112 EXIT_REASON(VMX_EXIT_RDMSR , 31, "RDMSR instruction."),
113 EXIT_REASON(VMX_EXIT_WRMSR , 32, "WRMSR instruction."),
114 EXIT_REASON(VMX_EXIT_ERR_INVALID_GUEST_STATE, 33, "VM-entry failure due to invalid guest state."),
115 EXIT_REASON(VMX_EXIT_ERR_MSR_LOAD , 34, "VM-entry failure due to MSR loading."),
116 EXIT_REASON_NIL(),
117 EXIT_REASON(VMX_EXIT_MWAIT , 36, "MWAIT instruction."),
118 EXIT_REASON(VMX_EXIT_MTF , 37, "Monitor Trap Flag."),
119 EXIT_REASON_NIL(),
120 EXIT_REASON(VMX_EXIT_MONITOR , 39, "MONITOR instruction."),
121 EXIT_REASON(VMX_EXIT_PAUSE , 40, "PAUSE instruction."),
122 EXIT_REASON(VMX_EXIT_ERR_MACHINE_CHECK , 41, "VM-entry failure due to machine-check."),
123 EXIT_REASON_NIL(),
124 EXIT_REASON(VMX_EXIT_TPR_BELOW_THRESHOLD , 43, "TPR below threshold (MOV to CR8)."),
125 EXIT_REASON(VMX_EXIT_APIC_ACCESS , 44, "APIC access."),
126 EXIT_REASON(VMX_EXIT_VIRTUALIZED_EOI , 45, "Virtualized EOI."),
127 EXIT_REASON(VMX_EXIT_XDTR_ACCESS , 46, "GDTR/IDTR access using LGDT/SGDT/LIDT/SIDT."),
128 EXIT_REASON(VMX_EXIT_TR_ACCESS , 47, "LDTR/TR access using LLDT/SLDT/LTR/STR."),
129 EXIT_REASON(VMX_EXIT_EPT_VIOLATION , 48, "EPT violation."),
130 EXIT_REASON(VMX_EXIT_EPT_MISCONFIG , 49, "EPT misconfiguration."),
131 EXIT_REASON(VMX_EXIT_INVEPT , 50, "INVEPT instruction."),
132 EXIT_REASON(VMX_EXIT_RDTSCP , 51, "RDTSCP instruction."),
133 EXIT_REASON(VMX_EXIT_PREEMPT_TIMER , 52, "VMX-preemption timer expired."),
134 EXIT_REASON(VMX_EXIT_INVVPID , 53, "INVVPID instruction."),
135 EXIT_REASON(VMX_EXIT_WBINVD , 54, "WBINVD instruction."),
136 EXIT_REASON(VMX_EXIT_XSETBV , 55, "XSETBV instruction."),
137 EXIT_REASON(VMX_EXIT_APIC_WRITE , 56, "APIC write completed to virtual-APIC page."),
138 EXIT_REASON(VMX_EXIT_RDRAND , 57, "RDRAND instruction."),
139 EXIT_REASON(VMX_EXIT_INVPCID , 58, "INVPCID instruction."),
140 EXIT_REASON(VMX_EXIT_VMFUNC , 59, "VMFUNC instruction."),
141 EXIT_REASON(VMX_EXIT_ENCLS , 60, "ENCLS instrunction."),
142 EXIT_REASON(VMX_EXIT_RDSEED , 61, "RDSEED instruction."),
143 EXIT_REASON(VMX_EXIT_PML_FULL , 62, "Page-modification log full."),
144 EXIT_REASON(VMX_EXIT_XSAVES , 63, "XSAVES instruction."),
145 EXIT_REASON(VMX_EXIT_XRSTORS , 64, "XRSTORS instruction.")
146};
147/** Array index of the last valid VT-x exit reason. */
148#define MAX_EXITREASON_VTX 64
149
150/** A partial list of Exit reason descriptions for AMD-V, used to describe
151 * statistics.
152 *
153 * @note AMD-V have annoyingly large gaps (e.g. \#NPF VMEXIT comes at 1024),
154 * this array doesn't contain the entire set of exit reasons, we
155 * handle them via hmSvmGetSpecialExitReasonDesc(). */
156static const char * const g_apszAmdVExitReasons[MAX_EXITREASON_STAT] =
157{
158 EXIT_REASON(SVM_EXIT_READ_CR0 , 0, "Read CR0."),
159 EXIT_REASON(SVM_EXIT_READ_CR1 , 1, "Read CR1."),
160 EXIT_REASON(SVM_EXIT_READ_CR2 , 2, "Read CR2."),
161 EXIT_REASON(SVM_EXIT_READ_CR3 , 3, "Read CR3."),
162 EXIT_REASON(SVM_EXIT_READ_CR4 , 4, "Read CR4."),
163 EXIT_REASON(SVM_EXIT_READ_CR5 , 5, "Read CR5."),
164 EXIT_REASON(SVM_EXIT_READ_CR6 , 6, "Read CR6."),
165 EXIT_REASON(SVM_EXIT_READ_CR7 , 7, "Read CR7."),
166 EXIT_REASON(SVM_EXIT_READ_CR8 , 8, "Read CR8."),
167 EXIT_REASON(SVM_EXIT_READ_CR9 , 9, "Read CR9."),
168 EXIT_REASON(SVM_EXIT_READ_CR10 , 10, "Read CR10."),
169 EXIT_REASON(SVM_EXIT_READ_CR11 , 11, "Read CR11."),
170 EXIT_REASON(SVM_EXIT_READ_CR12 , 12, "Read CR12."),
171 EXIT_REASON(SVM_EXIT_READ_CR13 , 13, "Read CR13."),
172 EXIT_REASON(SVM_EXIT_READ_CR14 , 14, "Read CR14."),
173 EXIT_REASON(SVM_EXIT_READ_CR15 , 15, "Read CR15."),
174 EXIT_REASON(SVM_EXIT_WRITE_CR0 , 16, "Write CR0."),
175 EXIT_REASON(SVM_EXIT_WRITE_CR1 , 17, "Write CR1."),
176 EXIT_REASON(SVM_EXIT_WRITE_CR2 , 18, "Write CR2."),
177 EXIT_REASON(SVM_EXIT_WRITE_CR3 , 19, "Write CR3."),
178 EXIT_REASON(SVM_EXIT_WRITE_CR4 , 20, "Write CR4."),
179 EXIT_REASON(SVM_EXIT_WRITE_CR5 , 21, "Write CR5."),
180 EXIT_REASON(SVM_EXIT_WRITE_CR6 , 22, "Write CR6."),
181 EXIT_REASON(SVM_EXIT_WRITE_CR7 , 23, "Write CR7."),
182 EXIT_REASON(SVM_EXIT_WRITE_CR8 , 24, "Write CR8."),
183 EXIT_REASON(SVM_EXIT_WRITE_CR9 , 25, "Write CR9."),
184 EXIT_REASON(SVM_EXIT_WRITE_CR10 , 26, "Write CR10."),
185 EXIT_REASON(SVM_EXIT_WRITE_CR11 , 27, "Write CR11."),
186 EXIT_REASON(SVM_EXIT_WRITE_CR12 , 28, "Write CR12."),
187 EXIT_REASON(SVM_EXIT_WRITE_CR13 , 29, "Write CR13."),
188 EXIT_REASON(SVM_EXIT_WRITE_CR14 , 30, "Write CR14."),
189 EXIT_REASON(SVM_EXIT_WRITE_CR15 , 31, "Write CR15."),
190 EXIT_REASON(SVM_EXIT_READ_DR0 , 32, "Read DR0."),
191 EXIT_REASON(SVM_EXIT_READ_DR1 , 33, "Read DR1."),
192 EXIT_REASON(SVM_EXIT_READ_DR2 , 34, "Read DR2."),
193 EXIT_REASON(SVM_EXIT_READ_DR3 , 35, "Read DR3."),
194 EXIT_REASON(SVM_EXIT_READ_DR4 , 36, "Read DR4."),
195 EXIT_REASON(SVM_EXIT_READ_DR5 , 37, "Read DR5."),
196 EXIT_REASON(SVM_EXIT_READ_DR6 , 38, "Read DR6."),
197 EXIT_REASON(SVM_EXIT_READ_DR7 , 39, "Read DR7."),
198 EXIT_REASON(SVM_EXIT_READ_DR8 , 40, "Read DR8."),
199 EXIT_REASON(SVM_EXIT_READ_DR9 , 41, "Read DR9."),
200 EXIT_REASON(SVM_EXIT_READ_DR10 , 42, "Read DR10."),
201 EXIT_REASON(SVM_EXIT_READ_DR11 , 43, "Read DR11"),
202 EXIT_REASON(SVM_EXIT_READ_DR12 , 44, "Read DR12."),
203 EXIT_REASON(SVM_EXIT_READ_DR13 , 45, "Read DR13."),
204 EXIT_REASON(SVM_EXIT_READ_DR14 , 46, "Read DR14."),
205 EXIT_REASON(SVM_EXIT_READ_DR15 , 47, "Read DR15."),
206 EXIT_REASON(SVM_EXIT_WRITE_DR0 , 48, "Write DR0."),
207 EXIT_REASON(SVM_EXIT_WRITE_DR1 , 49, "Write DR1."),
208 EXIT_REASON(SVM_EXIT_WRITE_DR2 , 50, "Write DR2."),
209 EXIT_REASON(SVM_EXIT_WRITE_DR3 , 51, "Write DR3."),
210 EXIT_REASON(SVM_EXIT_WRITE_DR4 , 52, "Write DR4."),
211 EXIT_REASON(SVM_EXIT_WRITE_DR5 , 53, "Write DR5."),
212 EXIT_REASON(SVM_EXIT_WRITE_DR6 , 54, "Write DR6."),
213 EXIT_REASON(SVM_EXIT_WRITE_DR7 , 55, "Write DR7."),
214 EXIT_REASON(SVM_EXIT_WRITE_DR8 , 56, "Write DR8."),
215 EXIT_REASON(SVM_EXIT_WRITE_DR9 , 57, "Write DR9."),
216 EXIT_REASON(SVM_EXIT_WRITE_DR10 , 58, "Write DR10."),
217 EXIT_REASON(SVM_EXIT_WRITE_DR11 , 59, "Write DR11."),
218 EXIT_REASON(SVM_EXIT_WRITE_DR12 , 60, "Write DR12."),
219 EXIT_REASON(SVM_EXIT_WRITE_DR13 , 61, "Write DR13."),
220 EXIT_REASON(SVM_EXIT_WRITE_DR14 , 62, "Write DR14."),
221 EXIT_REASON(SVM_EXIT_WRITE_DR15 , 63, "Write DR15."),
222 EXIT_REASON(SVM_EXIT_EXCEPTION_0 , 64, "Exception Vector 0 (#DE)."),
223 EXIT_REASON(SVM_EXIT_EXCEPTION_1 , 65, "Exception Vector 1 (#DB)."),
224 EXIT_REASON(SVM_EXIT_EXCEPTION_2 , 66, "Exception Vector 2 (#NMI)."),
225 EXIT_REASON(SVM_EXIT_EXCEPTION_3 , 67, "Exception Vector 3 (#BP)."),
226 EXIT_REASON(SVM_EXIT_EXCEPTION_4 , 68, "Exception Vector 4 (#OF)."),
227 EXIT_REASON(SVM_EXIT_EXCEPTION_5 , 69, "Exception Vector 5 (#BR)."),
228 EXIT_REASON(SVM_EXIT_EXCEPTION_6 , 70, "Exception Vector 6 (#UD)."),
229 EXIT_REASON(SVM_EXIT_EXCEPTION_7 , 71, "Exception Vector 7 (#NM)."),
230 EXIT_REASON(SVM_EXIT_EXCEPTION_8 , 72, "Exception Vector 8 (#DF)."),
231 EXIT_REASON(SVM_EXIT_EXCEPTION_9 , 73, "Exception Vector 9 (#CO_SEG_OVERRUN)."),
232 EXIT_REASON(SVM_EXIT_EXCEPTION_A , 74, "Exception Vector 10 (#TS)."),
233 EXIT_REASON(SVM_EXIT_EXCEPTION_B , 75, "Exception Vector 11 (#NP)."),
234 EXIT_REASON(SVM_EXIT_EXCEPTION_C , 76, "Exception Vector 12 (#SS)."),
235 EXIT_REASON(SVM_EXIT_EXCEPTION_D , 77, "Exception Vector 13 (#GP)."),
236 EXIT_REASON(SVM_EXIT_EXCEPTION_E , 78, "Exception Vector 14 (#PF)."),
237 EXIT_REASON(SVM_EXIT_EXCEPTION_F , 79, "Exception Vector 15 (0x0f)."),
238 EXIT_REASON(SVM_EXIT_EXCEPTION_10 , 80, "Exception Vector 16 (#MF)."),
239 EXIT_REASON(SVM_EXIT_EXCEPTION_11 , 81, "Exception Vector 17 (#AC)."),
240 EXIT_REASON(SVM_EXIT_EXCEPTION_12 , 82, "Exception Vector 18 (#MC)."),
241 EXIT_REASON(SVM_EXIT_EXCEPTION_13 , 83, "Exception Vector 19 (#XF)."),
242 EXIT_REASON(SVM_EXIT_EXCEPTION_14 , 84, "Exception Vector 20 (0x14)."),
243 EXIT_REASON(SVM_EXIT_EXCEPTION_15 , 85, "Exception Vector 22 (0x15)."),
244 EXIT_REASON(SVM_EXIT_EXCEPTION_16 , 86, "Exception Vector 22 (0x16)."),
245 EXIT_REASON(SVM_EXIT_EXCEPTION_17 , 87, "Exception Vector 23 (0x17)."),
246 EXIT_REASON(SVM_EXIT_EXCEPTION_18 , 88, "Exception Vector 24 (0x18)."),
247 EXIT_REASON(SVM_EXIT_EXCEPTION_19 , 89, "Exception Vector 25 (0x19)."),
248 EXIT_REASON(SVM_EXIT_EXCEPTION_1A , 90, "Exception Vector 26 (0x1A)."),
249 EXIT_REASON(SVM_EXIT_EXCEPTION_1B , 91, "Exception Vector 27 (0x1B)."),
250 EXIT_REASON(SVM_EXIT_EXCEPTION_1C , 92, "Exception Vector 28 (0x1C)."),
251 EXIT_REASON(SVM_EXIT_EXCEPTION_1D , 93, "Exception Vector 29 (0x1D)."),
252 EXIT_REASON(SVM_EXIT_EXCEPTION_1E , 94, "Exception Vector 30 (0x1E)."),
253 EXIT_REASON(SVM_EXIT_EXCEPTION_1F , 95, "Exception Vector 31 (0x1F)."),
254 EXIT_REASON(SVM_EXIT_INTR , 96, "Physical maskable interrupt (host)."),
255 EXIT_REASON(SVM_EXIT_NMI , 97, "Physical non-maskable interrupt (host)."),
256 EXIT_REASON(SVM_EXIT_SMI , 98, "System management interrupt (host)."),
257 EXIT_REASON(SVM_EXIT_INIT , 99, "Physical INIT signal (host)."),
258 EXIT_REASON(SVM_EXIT_VINTR , 100, "Virtual interrupt-window exit."),
259 EXIT_REASON(SVM_EXIT_CR0_SEL_WRITE, 101, "Write to CR0 that changed any bits other than CR0.TS or CR0.MP."),
260 EXIT_REASON(SVM_EXIT_IDTR_READ , 102, "Read IDTR"),
261 EXIT_REASON(SVM_EXIT_GDTR_READ , 103, "Read GDTR"),
262 EXIT_REASON(SVM_EXIT_LDTR_READ , 104, "Read LDTR."),
263 EXIT_REASON(SVM_EXIT_TR_READ , 105, "Read TR."),
264 EXIT_REASON(SVM_EXIT_IDTR_WRITE , 106, "Write IDTR."),
265 EXIT_REASON(SVM_EXIT_GDTR_WRITE , 107, "Write GDTR."),
266 EXIT_REASON(SVM_EXIT_LDTR_WRITE , 108, "Write LDTR."),
267 EXIT_REASON(SVM_EXIT_TR_WRITE , 109, "Write TR."),
268 EXIT_REASON(SVM_EXIT_RDTSC , 110, "RDTSC instruction."),
269 EXIT_REASON(SVM_EXIT_RDPMC , 111, "RDPMC instruction."),
270 EXIT_REASON(SVM_EXIT_PUSHF , 112, "PUSHF instruction."),
271 EXIT_REASON(SVM_EXIT_POPF , 113, "POPF instruction."),
272 EXIT_REASON(SVM_EXIT_CPUID , 114, "CPUID instruction."),
273 EXIT_REASON(SVM_EXIT_RSM , 115, "RSM instruction."),
274 EXIT_REASON(SVM_EXIT_IRET , 116, "IRET instruction."),
275 EXIT_REASON(SVM_EXIT_SWINT , 117, "Software interrupt (INTn instructions)."),
276 EXIT_REASON(SVM_EXIT_INVD , 118, "INVD instruction."),
277 EXIT_REASON(SVM_EXIT_PAUSE , 119, "PAUSE instruction."),
278 EXIT_REASON(SVM_EXIT_HLT , 120, "HLT instruction."),
279 EXIT_REASON(SVM_EXIT_INVLPG , 121, "INVLPG instruction."),
280 EXIT_REASON(SVM_EXIT_INVLPGA , 122, "INVLPGA instruction."),
281 EXIT_REASON(SVM_EXIT_IOIO , 123, "IN/OUT accessing protected port."),
282 EXIT_REASON(SVM_EXIT_MSR , 124, "RDMSR or WRMSR access to protected MSR."),
283 EXIT_REASON(SVM_EXIT_TASK_SWITCH , 125, "Task switch."),
284 EXIT_REASON(SVM_EXIT_FERR_FREEZE , 126, "Legacy FPU handling enabled; CPU frozen in an x87/mmx instr. waiting for interrupt."),
285 EXIT_REASON(SVM_EXIT_SHUTDOWN , 127, "Shutdown."),
286 EXIT_REASON(SVM_EXIT_VMRUN , 128, "VMRUN instruction."),
287 EXIT_REASON(SVM_EXIT_VMMCALL , 129, "VMCALL instruction."),
288 EXIT_REASON(SVM_EXIT_VMLOAD , 130, "VMLOAD instruction."),
289 EXIT_REASON(SVM_EXIT_VMSAVE , 131, "VMSAVE instruction."),
290 EXIT_REASON(SVM_EXIT_STGI , 132, "STGI instruction."),
291 EXIT_REASON(SVM_EXIT_CLGI , 133, "CLGI instruction."),
292 EXIT_REASON(SVM_EXIT_SKINIT , 134, "SKINIT instruction."),
293 EXIT_REASON(SVM_EXIT_RDTSCP , 135, "RDTSCP instruction."),
294 EXIT_REASON(SVM_EXIT_ICEBP , 136, "ICEBP instruction."),
295 EXIT_REASON(SVM_EXIT_WBINVD , 137, "WBINVD instruction."),
296 EXIT_REASON(SVM_EXIT_MONITOR , 138, "MONITOR instruction."),
297 EXIT_REASON(SVM_EXIT_MWAIT , 139, "MWAIT instruction."),
298 EXIT_REASON(SVM_EXIT_MWAIT_ARMED , 140, "MWAIT instruction when armed."),
299 EXIT_REASON(SVM_EXIT_XSETBV , 141, "XSETBV instruction."),
300};
301/** Array index of the last valid AMD-V exit reason. */
302#define MAX_EXITREASON_AMDV 141
303
304/** Special exit reasons not covered in the array above. */
305#define SVM_EXIT_REASON_NPF EXIT_REASON(SVM_EXIT_NPF , 1024, "Nested Page Fault.")
306#define SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI EXIT_REASON(SVM_EXIT_AVIC_INCOMPLETE_IPI, 1025, "AVIC - Incomplete IPI delivery.")
307#define SVM_EXIT_REASON_AVIC_NOACCEL EXIT_REASON(SVM_EXIT_AVIC_NOACCEL , 1026, "AVIC - Unhandled register.")
308
309/**
310 * Gets the SVM exit reason if it's one of the reasons not present in the @c
311 * g_apszAmdVExitReasons array.
312 *
313 * @returns The exit reason or NULL if unknown.
314 * @param uExit The exit.
315 */
316DECLINLINE(const char *) hmSvmGetSpecialExitReasonDesc(uint16_t uExit)
317{
318 switch (uExit)
319 {
320 case SVM_EXIT_NPF: return SVM_EXIT_REASON_NPF;
321 case SVM_EXIT_AVIC_INCOMPLETE_IPI: return SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI;
322 case SVM_EXIT_AVIC_NOACCEL: return SVM_EXIT_REASON_AVIC_NOACCEL;
323 }
324 return EXIT_REASON_NIL();
325}
326#undef EXIT_REASON_NIL
327#undef EXIT_REASON
328
329/** @def HMVMX_REPORT_FEATURE
330 * Reports VT-x feature to the release log.
331 *
332 * @param allowed1 Mask of allowed feature bits.
333 * @param disallowed0 Mask of disallowed feature bits.
334 * @param strdesc The description string to report.
335 * @param featflag Mask of the feature to report.
336 */
337#define HMVMX_REPORT_FEATURE(allowed1, disallowed0, strdesc, featflag) \
338 do { \
339 if ((allowed1) & (featflag)) \
340 { \
341 if ((disallowed0) & (featflag)) \
342 LogRel(("HM: " strdesc " (must be set)\n")); \
343 else \
344 LogRel(("HM: " strdesc "\n")); \
345 } \
346 else \
347 LogRel(("HM: " strdesc " (must be cleared)\n")); \
348 } while (0)
349
350/** @def HMVMX_REPORT_ALLOWED_FEATURE
351 * Reports an allowed VT-x feature to the release log.
352 *
353 * @param allowed1 Mask of allowed feature bits.
354 * @param strdesc The description string to report.
355 * @param featflag Mask of the feature to report.
356 */
357#define HMVMX_REPORT_ALLOWED_FEATURE(allowed1, strdesc, featflag) \
358 do { \
359 if ((allowed1) & (featflag)) \
360 LogRel(("HM: " strdesc "\n")); \
361 else \
362 LogRel(("HM: " strdesc " not supported\n")); \
363 } while (0)
364
365/** @def HMVMX_REPORT_MSR_CAPABILITY
366 * Reports MSR feature capability.
367 *
368 * @param msrcaps Mask of MSR feature bits.
369 * @param strdesc The description string to report.
370 * @param cap Mask of the feature to report.
371 */
372#define HMVMX_REPORT_MSR_CAPABILITY(msrcaps, strdesc, cap) \
373 do { \
374 if ((msrcaps) & (cap)) \
375 LogRel(("HM: " strdesc "\n")); \
376 } while (0)
377
378
379/*********************************************************************************************************************************
380* Internal Functions *
381*********************************************************************************************************************************/
382static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
383static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
384static DECLCALLBACK(void) hmR3InfoExitHistory(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
385static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
386static int hmR3InitCPU(PVM pVM);
387static int hmR3InitFinalizeR0(PVM pVM);
388static int hmR3InitFinalizeR0Intel(PVM pVM);
389static int hmR3InitFinalizeR0Amd(PVM pVM);
390static int hmR3TermCPU(PVM pVM);
391
392
393
394/**
395 * Initializes the HM.
396 *
397 * This is the very first component to really do init after CFGM so that we can
398 * establish the predominat execution engine for the VM prior to initializing
399 * other modules. It takes care of NEM initialization if needed (HM disabled or
400 * not available in HW).
401 *
402 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
403 * hypervisor API via NEM, and then back on raw-mode if that isn't available
404 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
405 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
406 * X, OS/2 and others).
407 *
408 * Note that a lot of the set up work is done in ring-0 and thus postponed till
409 * the ring-3 and ring-0 callback to HMR3InitCompleted.
410 *
411 * @returns VBox status code.
412 * @param pVM The cross context VM structure.
413 *
414 * @remarks Be careful with what we call here, since most of the VMM components
415 * are uninitialized.
416 */
417VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
418{
419 LogFlow(("HMR3Init\n"));
420
421 /*
422 * Assert alignment and sizes.
423 */
424 AssertCompileMemberAlignment(VM, hm.s, 32);
425 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
426
427 /*
428 * Register the saved state data unit.
429 */
430 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
431 NULL, NULL, NULL,
432 NULL, hmR3Save, NULL,
433 NULL, hmR3Load, NULL);
434 if (RT_FAILURE(rc))
435 return rc;
436
437 /*
438 * Register info handlers.
439 */
440 rc = DBGFR3InfoRegisterInternalEx(pVM, "exithistory", "Dumps the HM VM-exit history.", hmR3InfoExitHistory,
441 DBGFINFO_FLAGS_ALL_EMTS);
442 AssertRCReturn(rc, rc);
443
444 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
445 DBGFINFO_FLAGS_ALL_EMTS);
446 AssertRCReturn(rc, rc);
447
448 /*
449 * Read configuration.
450 */
451 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
452
453 /*
454 * Validate the HM settings.
455 */
456 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
457 "HMForced"
458 "|UseNEMInstead"
459 "|FallbackToNEM"
460 "|EnableNestedPaging"
461 "|EnableUX"
462 "|EnableLargePages"
463 "|EnableVPID"
464 "|IBPBOnVMExit"
465 "|IBPBOnVMEntry"
466 "|TPRPatchingEnabled"
467 "|64bitEnabled"
468 "|Exclusive"
469 "|MaxResumeLoops"
470 "|VmxPleGap"
471 "|VmxPleWindow"
472 "|UseVmxPreemptTimer"
473 "|SvmPauseFilter"
474 "|SvmPauseFilterThreshold"
475 "|SvmVirtVmsaveVmload"
476 "|SvmVGif",
477 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
478 if (RT_FAILURE(rc))
479 return rc;
480
481 /** @cfgm{/HM/HMForced, bool, false}
482 * Forces hardware virtualization, no falling back on raw-mode. HM must be
483 * enabled, i.e. /HMEnabled must be true. */
484 bool fHMForced;
485#ifdef VBOX_WITH_RAW_MODE
486 rc = CFGMR3QueryBoolDef(pCfgHm, "HMForced", &fHMForced, false);
487 AssertRCReturn(rc, rc);
488 AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
489 VERR_INVALID_PARAMETER);
490# if defined(RT_OS_DARWIN)
491 if (pVM->fHMEnabled)
492 fHMForced = true;
493# endif
494 AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
495 VERR_INVALID_PARAMETER);
496 if (pVM->cCpus > 1)
497 fHMForced = true;
498#else /* !VBOX_WITH_RAW_MODE */
499 AssertRelease(pVM->fHMEnabled);
500 fHMForced = true;
501#endif /* !VBOX_WITH_RAW_MODE */
502
503 /** @cfgm{/HM/UseNEMInstead, bool, true}
504 * Don't use HM, use NEM instead. */
505 bool fUseNEMInstead = false;
506 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
507 AssertRCReturn(rc, rc);
508 if (fUseNEMInstead && pVM->fHMEnabled)
509 {
510 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
511 pVM->fHMEnabled = false;
512 }
513
514 /** @cfgm{/HM/FallbackToNEM, bool, true}
515 * Enables fallback on NEM. */
516 bool fFallbackToNEM = true;
517 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
518 AssertRCReturn(rc, rc);
519
520 /** @cfgm{/HM/EnableNestedPaging, bool, false}
521 * Enables nested paging (aka extended page tables). */
522 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
523 AssertRCReturn(rc, rc);
524
525 /** @cfgm{/HM/EnableUX, bool, true}
526 * Enables the VT-x unrestricted execution feature. */
527 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
528 AssertRCReturn(rc, rc);
529
530 /** @cfgm{/HM/EnableLargePages, bool, false}
531 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
532 * page table walking and maybe better TLB hit rate in some cases. */
533 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
534 AssertRCReturn(rc, rc);
535
536 /** @cfgm{/HM/EnableVPID, bool, false}
537 * Enables the VT-x VPID feature. */
538 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
539 AssertRCReturn(rc, rc);
540
541 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
542 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
543 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
544 AssertRCReturn(rc, rc);
545
546 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
547 * Enables AMD64 cpu features.
548 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
549 * already have the support. */
550#ifdef VBOX_ENABLE_64_BITS_GUESTS
551 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
552 AssertLogRelRCReturn(rc, rc);
553#else
554 pVM->hm.s.fAllow64BitGuests = false;
555#endif
556
557 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
558 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
559 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
560 * latest PAUSE instruction to be start of a new PAUSE loop.
561 */
562 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
563 AssertRCReturn(rc, rc);
564
565 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
566 * The pause-filter exiting window in TSC ticks. When the number of ticks
567 * between the current PAUSE instruction and first PAUSE of a loop exceeds
568 * VmxPleWindow, a VM-exit is triggered.
569 *
570 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
571 */
572 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
573 AssertRCReturn(rc, rc);
574
575 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
576 * A counter that is decrement each time a PAUSE instruction is executed by the
577 * guest. When the counter is 0, a \#VMEXIT is triggered.
578 */
579 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
580 AssertRCReturn(rc, rc);
581
582 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
583 * The pause filter threshold in ticks. When the elapsed time between two
584 * successive PAUSE instructions exceeds SvmPauseFilterThreshold, the PauseFilter
585 * count is reset to its initial value. However, if PAUSE is executed PauseFilter
586 * times within PauseFilterThreshold ticks, a VM-exit will be triggered.
587 *
588 * Setting both SvmPauseFilterCount and SvmPauseFilterCount to 0 disables
589 * pause-filter exiting.
590 */
591 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
592 AssertRCReturn(rc, rc);
593
594 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
595 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
596 * available. */
597 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
598 AssertRCReturn(rc, rc);
599
600 /** @cfgm{/HM/SvmVGif, bool, true}
601 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
602 * if it's available. */
603 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
604 AssertRCReturn(rc, rc);
605
606 /** @cfgm{/HM/Exclusive, bool}
607 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
608 * global init for each host CPU. If false, we do local init each time we wish
609 * to execute guest code.
610 *
611 * On Windows, default is false due to the higher risk of conflicts with other
612 * hypervisors.
613 *
614 * On Mac OS X, this setting is ignored since the code does not handle local
615 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
616 */
617#if defined(RT_OS_DARWIN)
618 pVM->hm.s.fGlobalInit = true;
619#else
620 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
621# if defined(RT_OS_WINDOWS)
622 false
623# else
624 true
625# endif
626 );
627 AssertLogRelRCReturn(rc, rc);
628#endif
629
630 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
631 * The number of times to resume guest execution before we forcibly return to
632 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
633 * determines the default value. */
634 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
635 AssertLogRelRCReturn(rc, rc);
636
637 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
638 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
639 * available. */
640 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
641 AssertLogRelRCReturn(rc, rc);
642
643 /** @cfgm{/HM/IBPBOnVMExit, bool}
644 * Costly paranoia setting. */
645 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
646 AssertLogRelRCReturn(rc, rc);
647
648 /** @cfgm{/HM/IBPBOnVMEntry, bool}
649 * Costly paranoia setting. */
650 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
651 AssertLogRelRCReturn(rc, rc);
652
653 /*
654 * Check if VT-x or AMD-v support according to the users wishes.
655 */
656 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
657 * VERR_SVM_IN_USE. */
658 if (pVM->fHMEnabled)
659 {
660 uint32_t fCaps;
661 rc = SUPR3QueryVTCaps(&fCaps);
662 if (RT_SUCCESS(rc))
663 {
664 if (fCaps & SUPVTCAPS_AMD_V)
665 {
666 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
667 pVM->hm.s.svm.fSupported = true;
668 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
669 }
670 else if (fCaps & SUPVTCAPS_VT_X)
671 {
672 const char *pszWhy;
673 rc = SUPR3QueryVTxSupported(&pszWhy);
674 if (RT_SUCCESS(rc))
675 {
676 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
677 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
678 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
679 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
680 pVM->hm.s.vmx.fSupported = true;
681 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
682 }
683 else
684 {
685 /*
686 * Before failing, try fallback to NEM if we're allowed to do that.
687 */
688 pVM->fHMEnabled = false;
689 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
690 if (fFallbackToNEM)
691 {
692 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
693 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
694
695 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
696 if ( RT_SUCCESS(rc2)
697 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
698 rc = VINF_SUCCESS;
699 }
700 if (RT_FAILURE(rc))
701 {
702 if (fHMForced)
703 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
704
705 /* Fall back to raw-mode. */
706 LogRel(("HM: HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x - %s\n", pszWhy));
707 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
708 }
709 }
710 }
711 else
712 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
713 VERR_INTERNAL_ERROR_5);
714
715 /*
716 * Do we require a little bit or raw-mode for 64-bit guest execution?
717 */
718 pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
719 && pVM->fHMEnabled
720 && pVM->hm.s.fAllow64BitGuests;
721
722 /*
723 * Disable nested paging and unrestricted guest execution now if they're
724 * configured so that CPUM can make decisions based on our configuration.
725 */
726 Assert(!pVM->hm.s.fNestedPaging);
727 if (pVM->hm.s.fAllowNestedPaging)
728 {
729 if (fCaps & SUPVTCAPS_NESTED_PAGING)
730 pVM->hm.s.fNestedPaging = true;
731 else
732 pVM->hm.s.fAllowNestedPaging = false;
733 }
734
735 if (fCaps & SUPVTCAPS_VT_X)
736 {
737 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
738 if (pVM->hm.s.vmx.fAllowUnrestricted)
739 {
740 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
741 && pVM->hm.s.fNestedPaging)
742 pVM->hm.s.vmx.fUnrestrictedGuest = true;
743 else
744 pVM->hm.s.vmx.fAllowUnrestricted = false;
745 }
746 }
747 }
748 else
749 {
750 const char *pszMsg;
751 switch (rc)
752 {
753 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
754 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
755 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
756 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
757 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
758 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
759 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
760 default:
761 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
762 }
763
764 /*
765 * Before failing, try fallback to NEM if we're allowed to do that.
766 */
767 pVM->fHMEnabled = false;
768 if (fFallbackToNEM)
769 {
770 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
771 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
772 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
773 if ( RT_SUCCESS(rc2)
774 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
775 rc = VINF_SUCCESS;
776 }
777 if (RT_FAILURE(rc))
778 {
779 if (fHMForced)
780 return VM_SET_ERROR(pVM, rc, pszMsg);
781
782 LogRel(("HM: HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
783 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
784 }
785 }
786 }
787 else
788 {
789 /*
790 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
791 */
792 if (!fUseNEMInstead)
793 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
794 else
795 {
796 rc = NEMR3Init(pVM, false /*fFallback*/, true);
797 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
798 if (RT_FAILURE(rc))
799 return rc;
800 }
801 }
802
803 return VINF_SUCCESS;
804}
805
806
807/**
808 * Initializes the per-VCPU HM.
809 *
810 * @returns VBox status code.
811 * @param pVM The cross context VM structure.
812 */
813static int hmR3InitCPU(PVM pVM)
814{
815 LogFlow(("HMR3InitCPU\n"));
816
817 if (!HMIsEnabled(pVM))
818 return VINF_SUCCESS;
819
820 for (VMCPUID i = 0; i < pVM->cCpus; i++)
821 {
822 PVMCPU pVCpu = &pVM->aCpus[i];
823 pVCpu->hm.s.fActive = false;
824 }
825
826#ifdef VBOX_WITH_STATISTICS
827 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
828 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
829 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8",STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
830 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC",STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
831 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
832#endif
833
834 /*
835 * Statistics.
836 */
837 for (VMCPUID i = 0; i < pVM->cCpus; i++)
838 {
839 PVMCPU pVCpu = &pVM->aCpus[i];
840 int rc;
841
842#ifdef VBOX_WITH_STATISTICS
843 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
844 "Profiling of RTMpPokeCpu",
845 "/PROF/CPU%d/HM/Poke", i);
846 AssertRC(rc);
847 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
848 "Profiling of poke wait",
849 "/PROF/CPU%d/HM/PokeWait", i);
850 AssertRC(rc);
851 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
852 "Profiling of poke wait when RTMpPokeCpu fails",
853 "/PROF/CPU%d/HM/PokeWaitFailed", i);
854 AssertRC(rc);
855 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
856 "Profiling of VMXR0RunGuestCode entry",
857 "/PROF/CPU%d/HM/StatEntry", i);
858 AssertRC(rc);
859 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit1, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
860 "Profiling of VMXR0RunGuestCode exit part 1",
861 "/PROF/CPU%d/HM/SwitchFromGC_1", i);
862 AssertRC(rc);
863 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit2, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
864 "Profiling of VMXR0RunGuestCode exit part 2",
865 "/PROF/CPU%d/HM/SwitchFromGC_2", i);
866 AssertRC(rc);
867
868 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
869 "I/O",
870 "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
871 AssertRC(rc);
872 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
873 "MOV CRx",
874 "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
875 AssertRC(rc);
876 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
877 "Exceptions, NMIs",
878 "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
879 AssertRC(rc);
880
881 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
882 "Profiling of VMXR0LoadGuestState",
883 "/PROF/CPU%d/HM/StatLoadGuestState", i);
884 AssertRC(rc);
885 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
886 "Profiling of VMLAUNCH/VMRESUME.",
887 "/PROF/CPU%d/HM/InGC", i);
888 AssertRC(rc);
889
890# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
891 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
892 STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
893 "/PROF/CPU%d/HM/Switcher3264", i);
894 AssertRC(rc);
895# endif
896
897# ifdef HM_PROFILE_EXIT_DISPATCH
898 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
899 STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
900 "/PROF/CPU%d/HM/ExitDispatch", i);
901 AssertRC(rc);
902# endif
903
904#endif
905# define HM_REG_COUNTER(a, b, desc) \
906 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
907 AssertRC(rc);
908
909#ifdef VBOX_WITH_STATISTICS
910 HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Exits (total).");
911 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
912 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
913 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
914 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
915 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
916 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
917 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
918 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
919 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
920 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
921 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
922 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
923 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
924 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
925 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
926 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvlpg, "/HM/CPU%d/Exit/Instr/Invlpg", "Guest attempted to execute INVLPG.");
927 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvd, "/HM/CPU%d/Exit/Instr/Invd", "Guest attempted to execute INVD.");
928 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWbinvd, "/HM/CPU%d/Exit/Instr/Wbinvd", "Guest attempted to execute WBINVD.");
929 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPause, "/HM/CPU%d/Exit/Instr/Pause", "Guest attempted to execute PAUSE.");
930 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCpuid, "/HM/CPU%d/Exit/Instr/Cpuid", "Guest attempted to execute CPUID.");
931 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtsc, "/HM/CPU%d/Exit/Instr/Rdtsc", "Guest attempted to execute RDTSC.");
932 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtscp, "/HM/CPU%d/Exit/Instr/Rdtscp", "Guest attempted to execute RDTSCP.");
933 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdpmc, "/HM/CPU%d/Exit/Instr/Rdpmc", "Guest attempted to execute RDPMC.");
934 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdrand, "/HM/CPU%d/Exit/Instr/Rdrand", "Guest attempted to execute RDRAND.");
935 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "Guest attempted to execute RDMSR.");
936 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "Guest attempted to execute WRMSR.");
937 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "Guest attempted to execute MWAIT.");
938 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "Guest attempted to execute MONITOR.");
939 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR/Write", "Guest attempted to write a debug register.");
940 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR/Read", "Guest attempted to read a debug register.");
941 HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "Guest attempted to execute CLTS.");
942 HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "Guest attempted to execute LMSW.");
943 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "Guest attempted to execute CLI.");
944 HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "Guest attempted to execute STI.");
945 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "Guest attempted to execute PUSHF.");
946 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "Guest attempted to execute POPF.");
947 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "Guest attempted to execute IRET.");
948 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "Guest attempted to execute INT.");
949 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "Guest attempted to execute HLT.");
950 HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "Guest attempted to access descriptor table register (GDTR, IDTR, LDTR).");
951 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write.");
952 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read.");
953 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write.");
954 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read.");
955 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again.");
956 HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Host interrupt received.");
957#endif
958 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context.");
959#ifdef VBOX_WITH_STATISTICS
960 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
961 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
962 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Guest attempted a task switch.");
963 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag.");
964 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
965
966 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchTprMaskedIrq, "/HM/CPU%d/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
967 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
968 HM_REG_COUNTER(&pVCpu->hm.s.StatPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
969 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
970 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
971 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
972 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchMaxResumeLoops, "/HM/CPU%d/Switch/MaxResumeToR3", "Maximum VMRESUME inner-loop counter reached.");
973 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHltToR3, "/HM/CPU%d/Switch/HltToR3", "HLT causing us to go to ring-3.");
974 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchApicAccessToR3, "/HM/CPU%d/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
975#endif
976 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreempt, "/HM/CPU%d/Switch/Preempting", "EMT has been preempted while in HM context.");
977#ifdef VBOX_WITH_STATISTICS
978 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreemptSaveHostState, "/HM/CPU%d/Switch/SaveHostState", "Preemption caused us to resave host state.");
979
980 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
981 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
982 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception (or #DF) caused due to event injection.");
983 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingInterpret, "/HM/CPU%d/EventInject/PendingInterpret", "Falling to interpreter for handling exception caused due to event injection.");
984
985 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
986 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
987 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
988 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
989 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
990 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
991 HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
992 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
993 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
994 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
995 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
996 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
997 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
998 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
999
1000 HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect.");
1001 HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
1002 HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses.");
1003
1004 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
1005 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
1006 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
1007
1008 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadMinimal, "/HM/CPU%d/Load/Minimal", "VM-entry loading minimal guest-state.");
1009 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadFull, "/HM/CPU%d/Load/Full", "VM-entry loading the full guest-state.");
1010
1011 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
1012 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
1013 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
1014 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
1015 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
1016 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadLdt, "/HM/CPU%d/VMXCheck/LDT", "Could not use VMX due to unsuitable LDT.");
1017 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadTr, "/HM/CPU%d/VMXCheck/TR", "Could not use VMX due to unsuitable TR.");
1018 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
1019
1020#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1021 HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
1022 HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
1023#endif
1024
1025 for (unsigned j = 0; j < RT_ELEMENTS(pVCpu->hm.s.StatExitCRxWrite); j++)
1026 {
1027 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxWrite[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1028 STAMUNIT_OCCURENCES, "Profiling of CRx writes",
1029 "/HM/CPU%d/Exit/Instr/CR/Write/%x", i, j);
1030 AssertRC(rc);
1031 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxRead[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1032 STAMUNIT_OCCURENCES, "Profiling of CRx reads",
1033 "/HM/CPU%d/Exit/Instr/CR/Read/%x", i, j);
1034 AssertRC(rc);
1035 }
1036
1037#undef HM_REG_COUNTER
1038
1039 pVCpu->hm.s.paStatExitReason = NULL;
1040
1041 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
1042 (void **)&pVCpu->hm.s.paStatExitReason);
1043 AssertRC(rc);
1044 if (RT_SUCCESS(rc))
1045 {
1046 const char *const *papszDesc = ASMIsIntelCpu() || ASMIsViaCentaurCpu() ?
1047 &g_apszVTxExitReasons[0] : &g_apszAmdVExitReasons[0];
1048 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1049 {
1050 if (papszDesc[j])
1051 {
1052 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1053 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/Exit/Reason/%02x", i, j);
1054 AssertRC(rc);
1055 }
1056 }
1057 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1058 "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
1059 AssertRC(rc);
1060 }
1061 pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
1062# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1063 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1064# else
1065 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
1066# endif
1067
1068 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
1069 AssertRCReturn(rc, rc);
1070 pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1071# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1072 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1073# else
1074 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
1075# endif
1076 for (unsigned j = 0; j < 255; j++)
1077 {
1078 STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1079 "Injected event.",
1080 (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j);
1081 }
1082
1083#endif /* VBOX_WITH_STATISTICS */
1084 }
1085
1086#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1087 /*
1088 * Magic marker for searching in crash dumps.
1089 */
1090 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1091 {
1092 PVMCPU pVCpu = &pVM->aCpus[i];
1093
1094 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1095 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1096 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1097 }
1098#endif
1099
1100 return VINF_SUCCESS;
1101}
1102
1103
1104/**
1105 * Called when a init phase has completed.
1106 *
1107 * @returns VBox status code.
1108 * @param pVM The cross context VM structure.
1109 * @param enmWhat The phase that completed.
1110 */
1111VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1112{
1113 switch (enmWhat)
1114 {
1115 case VMINITCOMPLETED_RING3:
1116 return hmR3InitCPU(pVM);
1117 case VMINITCOMPLETED_RING0:
1118 return hmR3InitFinalizeR0(pVM);
1119 default:
1120 return VINF_SUCCESS;
1121 }
1122}
1123
1124
1125/**
1126 * Turns off normal raw mode features.
1127 *
1128 * @param pVM The cross context VM structure.
1129 */
1130static void hmR3DisableRawMode(PVM pVM)
1131{
1132 /* Reinit the paging mode to force the new shadow mode. */
1133 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1134 {
1135 PVMCPU pVCpu = &pVM->aCpus[i];
1136
1137 PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1138 }
1139}
1140
1141
1142/**
1143 * Initialize VT-x or AMD-V.
1144 *
1145 * @returns VBox status code.
1146 * @param pVM The cross context VM structure.
1147 */
1148static int hmR3InitFinalizeR0(PVM pVM)
1149{
1150 int rc;
1151
1152 if (!HMIsEnabled(pVM))
1153 return VINF_SUCCESS;
1154
1155 /*
1156 * Hack to allow users to work around broken BIOSes that incorrectly set
1157 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1158 */
1159 if ( !pVM->hm.s.vmx.fSupported
1160 && !pVM->hm.s.svm.fSupported
1161 && pVM->hm.s.lLastError == VERR_SVM_IN_USE /* implies functional AMD-V */
1162 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1163 {
1164 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1165 pVM->hm.s.svm.fSupported = true;
1166 pVM->hm.s.svm.fIgnoreInUseError = true;
1167 pVM->hm.s.lLastError = VINF_SUCCESS;
1168 }
1169
1170 /*
1171 * Report ring-0 init errors.
1172 */
1173 if ( !pVM->hm.s.vmx.fSupported
1174 && !pVM->hm.s.svm.fSupported)
1175 {
1176 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.lLastError));
1177 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1178 switch (pVM->hm.s.lLastError)
1179 {
1180 case VERR_VMX_IN_VMX_ROOT_MODE:
1181 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1182 case VERR_VMX_NO_VMX:
1183 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1184 case VERR_VMX_MSR_VMX_DISABLED:
1185 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1186 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1187 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1188 case VERR_VMX_MSR_LOCKING_FAILED:
1189 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1190 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1191 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1192 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1193 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1194
1195 case VERR_SVM_IN_USE:
1196 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1197 case VERR_SVM_NO_SVM:
1198 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1199 case VERR_SVM_DISABLED:
1200 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1201 }
1202 return VMSetError(pVM, pVM->hm.s.lLastError, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.lLastError);
1203 }
1204
1205 /*
1206 * Enable VT-x or AMD-V on all host CPUs.
1207 */
1208 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1209 if (RT_FAILURE(rc))
1210 {
1211 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1212 HMR3CheckError(pVM, rc);
1213 return rc;
1214 }
1215
1216 /*
1217 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1218 * (Main should have taken care of this already)
1219 */
1220 if (!PDMHasIoApic(pVM))
1221 {
1222 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1223 pVM->hm.s.fTprPatchingAllowed = false;
1224 }
1225
1226 /*
1227 * Sync options.
1228 */
1229 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1230 * That will require a little bit of work, of course. */
1231 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1232 {
1233 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1234 PCPUMCTX pCpuCtx = CPUMQueryGuestCtxPtr(pVCpu);
1235 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1236 if (pVM->cpum.ro.HostFeatures.fIbpb)
1237 {
1238 if (pVM->hm.s.fIbpbOnVmExit)
1239 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1240 if (pVM->hm.s.fIbpbOnVmEntry)
1241 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1242 }
1243 if (iCpu == 0)
1244 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%d fIbpbOnVmEntry=%d)\n",
1245 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry));
1246 }
1247
1248 /*
1249 * Do the vendor specific initialization .
1250 * .
1251 * Note! We disable release log buffering here since we're doing relatively .
1252 * lot of logging and doesn't want to hit the disk with each LogRel .
1253 * statement.
1254 */
1255 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1256 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1257 if (pVM->hm.s.vmx.fSupported)
1258 rc = hmR3InitFinalizeR0Intel(pVM);
1259 else
1260 rc = hmR3InitFinalizeR0Amd(pVM);
1261 LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL"));
1262 RTLogRelSetBuffering(fOldBuffered);
1263 pVM->hm.s.fInitialized = true;
1264
1265 return rc;
1266}
1267
1268
1269/**
1270 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1271 */
1272static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1273{
1274 NOREF(pVM);
1275 NOREF(pvAllocation);
1276 NOREF(GCPhysAllocation);
1277}
1278
1279
1280/**
1281 * Finish VT-x initialization (after ring-0 init).
1282 *
1283 * @returns VBox status code.
1284 * @param pVM The cross context VM structure.
1285 */
1286static int hmR3InitFinalizeR0Intel(PVM pVM)
1287{
1288 int rc;
1289
1290 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1291 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatureCtrl != 0, VERR_HM_IPE_4);
1292
1293 uint64_t val;
1294 uint64_t zap;
1295
1296 LogRel(("HM: Using VT-x implementation 2.0\n"));
1297 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1298 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostEfer));
1299 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1300 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1301 if (!(pVM->hm.s.vmx.Msrs.u64FeatureCtrl & MSR_IA32_FEATURE_CONTROL_LOCK))
1302 LogRel(("HM: IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1303 LogRel(("HM: MSR_IA32_VMX_BASIC_INFO = %#RX64\n", pVM->hm.s.vmx.Msrs.u64BasicInfo));
1304 LogRel(("HM: VMCS id = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1305 LogRel(("HM: VMCS size = %u bytes\n", MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1306 LogRel(("HM: VMCS physical address limit = %s\n", MSR_IA32_VMX_BASIC_INFO_VMCS_PHYS_WIDTH(pVM->hm.s.vmx.Msrs.u64BasicInfo) ? "< 4 GB" : "None"));
1307 LogRel(("HM: VMCS memory type = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_MEM_TYPE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1308 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1309 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1310 LogRel(("HM: Supports true capability MSRs = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_TRUE_CONTROLS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1311 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1312
1313 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxPinCtls.u));
1314 val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1;
1315 zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0;
1316 HMVMX_REPORT_FEATURE(val, zap, "EXT_INT_EXIT", VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT);
1317 HMVMX_REPORT_FEATURE(val, zap, "NMI_EXIT", VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT);
1318 HMVMX_REPORT_FEATURE(val, zap, "VIRTUAL_NMI", VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI);
1319 HMVMX_REPORT_FEATURE(val, zap, "PREEMPT_TIMER", VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
1320 HMVMX_REPORT_FEATURE(val, zap, "POSTED_INTR", VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
1321
1322 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls.u));
1323 val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
1324 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
1325 HMVMX_REPORT_FEATURE(val, zap, "INT_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
1326 HMVMX_REPORT_FEATURE(val, zap, "USE_TSC_OFFSETTING", VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING);
1327 HMVMX_REPORT_FEATURE(val, zap, "HLT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
1328 HMVMX_REPORT_FEATURE(val, zap, "INVLPG_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
1329 HMVMX_REPORT_FEATURE(val, zap, "MWAIT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT);
1330 HMVMX_REPORT_FEATURE(val, zap, "RDPMC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
1331 HMVMX_REPORT_FEATURE(val, zap, "RDTSC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
1332 HMVMX_REPORT_FEATURE(val, zap, "CR3_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT);
1333 HMVMX_REPORT_FEATURE(val, zap, "CR3_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
1334 HMVMX_REPORT_FEATURE(val, zap, "CR8_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT);
1335 HMVMX_REPORT_FEATURE(val, zap, "CR8_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT);
1336 HMVMX_REPORT_FEATURE(val, zap, "USE_TPR_SHADOW", VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
1337 HMVMX_REPORT_FEATURE(val, zap, "NMI_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
1338 HMVMX_REPORT_FEATURE(val, zap, "MOV_DR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
1339 HMVMX_REPORT_FEATURE(val, zap, "UNCOND_IO_EXIT", VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT);
1340 HMVMX_REPORT_FEATURE(val, zap, "USE_IO_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_IO_BITMAPS);
1341 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_TRAP_FLAG", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
1342 HMVMX_REPORT_FEATURE(val, zap, "USE_MSR_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
1343 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT);
1344 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
1345 HMVMX_REPORT_FEATURE(val, zap, "USE_SECONDARY_EXEC_CTRL", VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL);
1346 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1347 {
1348 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.u));
1349 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
1350 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0;
1351 HMVMX_REPORT_FEATURE(val, zap, "VIRT_APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC);
1352 HMVMX_REPORT_FEATURE(val, zap, "EPT", VMX_VMCS_CTRL_PROC_EXEC2_EPT);
1353 HMVMX_REPORT_FEATURE(val, zap, "DESCRIPTOR_TABLE_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT);
1354 HMVMX_REPORT_FEATURE(val, zap, "RDTSCP", VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP);
1355 HMVMX_REPORT_FEATURE(val, zap, "VIRT_X2APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_X2APIC);
1356 HMVMX_REPORT_FEATURE(val, zap, "VPID", VMX_VMCS_CTRL_PROC_EXEC2_VPID);
1357 HMVMX_REPORT_FEATURE(val, zap, "WBINVD_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
1358 HMVMX_REPORT_FEATURE(val, zap, "UNRESTRICTED_GUEST", VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST);
1359 HMVMX_REPORT_FEATURE(val, zap, "APIC_REG_VIRT", VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
1360 HMVMX_REPORT_FEATURE(val, zap, "VIRT_INTR_DELIVERY", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
1361 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_LOOP_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT);
1362 HMVMX_REPORT_FEATURE(val, zap, "RDRAND_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
1363 HMVMX_REPORT_FEATURE(val, zap, "INVPCID", VMX_VMCS_CTRL_PROC_EXEC2_INVPCID);
1364 HMVMX_REPORT_FEATURE(val, zap, "VMFUNC", VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC);
1365 HMVMX_REPORT_FEATURE(val, zap, "VMCS_SHADOWING", VMX_VMCS_CTRL_PROC_EXEC2_VMCS_SHADOWING);
1366 HMVMX_REPORT_FEATURE(val, zap, "ENCLS_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_ENCLS_EXIT);
1367 HMVMX_REPORT_FEATURE(val, zap, "RDSEED_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
1368 HMVMX_REPORT_FEATURE(val, zap, "PML", VMX_VMCS_CTRL_PROC_EXEC2_PML);
1369 HMVMX_REPORT_FEATURE(val, zap, "EPT_VE", VMX_VMCS_CTRL_PROC_EXEC2_EPT_VE);
1370 HMVMX_REPORT_FEATURE(val, zap, "CONCEAL_FROM_PT", VMX_VMCS_CTRL_PROC_EXEC2_CONCEAL_FROM_PT);
1371 HMVMX_REPORT_FEATURE(val, zap, "XSAVES_XRSTORS", VMX_VMCS_CTRL_PROC_EXEC2_XSAVES_XRSTORS);
1372 HMVMX_REPORT_FEATURE(val, zap, "TSC_SCALING", VMX_VMCS_CTRL_PROC_EXEC2_TSC_SCALING);
1373 }
1374
1375 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxEntry.u));
1376 val = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1;
1377 zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0;
1378 HMVMX_REPORT_FEATURE(val, zap, "LOAD_DEBUG", VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG);
1379 HMVMX_REPORT_FEATURE(val, zap, "IA32E_MODE_GUEST", VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
1380 HMVMX_REPORT_FEATURE(val, zap, "ENTRY_SMM", VMX_VMCS_CTRL_ENTRY_ENTRY_SMM);
1381 HMVMX_REPORT_FEATURE(val, zap, "DEACTIVATE_DUALMON", VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON);
1382 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PERF_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR);
1383 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PAT_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR);
1384 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_EFER_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR);
1385
1386 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxExit.u));
1387 val = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1;
1388 zap = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0;
1389 HMVMX_REPORT_FEATURE(val, zap, "SAVE_DEBUG", VMX_VMCS_CTRL_EXIT_SAVE_DEBUG);
1390 HMVMX_REPORT_FEATURE(val, zap, "HOST_ADDR_SPACE_SIZE", VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE);
1391 HMVMX_REPORT_FEATURE(val, zap, "LOAD_PERF_MSR", VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR);
1392 HMVMX_REPORT_FEATURE(val, zap, "ACK_EXT_INT", VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
1393 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_PAT_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR);
1394 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_PAT_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR);
1395 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_EFER_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR);
1396 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_EFER_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR);
1397 HMVMX_REPORT_FEATURE(val, zap, "SAVE_VMX_PREEMPT_TIMER", VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER);
1398
1399 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1400 {
1401 val = pVM->hm.s.vmx.Msrs.u64EptVpidCaps;
1402 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", val));
1403 HMVMX_REPORT_MSR_CAPABILITY(val, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1404 HMVMX_REPORT_MSR_CAPABILITY(val, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1405 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1406 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1407 HMVMX_REPORT_MSR_CAPABILITY(val, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1408 HMVMX_REPORT_MSR_CAPABILITY(val, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1409 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1410 HMVMX_REPORT_MSR_CAPABILITY(val, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1411 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1412 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1413 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1414 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1415 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1416 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1417 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1418 }
1419
1420 val = pVM->hm.s.vmx.Msrs.u64Misc;
1421 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", val));
1422 if (MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val) == pVM->hm.s.vmx.cPreemptTimerShift)
1423 LogRel(("HM: PREEMPT_TSC_BIT = %#x\n", MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val)));
1424 else
1425 {
1426 LogRel(("HM: PREEMPT_TSC_BIT = %#x - erratum detected, using %#x instead\n",
1427 MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val), pVM->hm.s.vmx.cPreemptTimerShift));
1428 }
1429
1430 LogRel(("HM: STORE_EFERLMA_VMEXIT = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT(val))));
1431 LogRel(("HM: ACTIVITY_STATES = %#x\n", MSR_IA32_VMX_MISC_ACTIVITY_STATES(val)));
1432 LogRel(("HM: CR3_TARGET = %#x\n", MSR_IA32_VMX_MISC_CR3_TARGET(val)));
1433 LogRel(("HM: MAX_MSR = %u\n", MSR_IA32_VMX_MISC_MAX_MSR(val)));
1434 LogRel(("HM: RDMSR_SMBASE_MSR_SMM = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM(val))));
1435 LogRel(("HM: SMM_MONITOR_CTL_B2 = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2(val))));
1436 LogRel(("HM: VMWRITE_VMEXIT_INFO = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO(val))));
1437 LogRel(("HM: MSEG_ID = %#x\n", MSR_IA32_VMX_MISC_MSEG_ID(val)));
1438
1439 /* Paranoia */
1440 AssertRelease(MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc) >= 512);
1441
1442 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed0));
1443 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed1));
1444 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed0));
1445 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed1));
1446
1447 val = pVM->hm.s.vmx.Msrs.u64VmcsEnum;
1448 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", val));
1449 LogRel(("HM: HIGHEST_INDEX = %#x\n", MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX(val)));
1450
1451 val = pVM->hm.s.vmx.Msrs.u64Vmfunc;
1452 if (val)
1453 {
1454 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", val));
1455 HMVMX_REPORT_ALLOWED_FEATURE(val, "EPTP_SWITCHING", VMX_VMCS_CTRL_VMFUNC_EPTP_SWITCHING);
1456 }
1457
1458 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1459
1460 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1461 {
1462 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap));
1463 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs));
1464 }
1465
1466 /*
1467 * EPT and unhampered guest execution are determined in HMR3Init, verify the sanity of that.
1468 */
1469 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1470 || (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT),
1471 VERR_HM_IPE_1);
1472 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1473 || ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST)
1474 && pVM->hm.s.fNestedPaging),
1475 VERR_HM_IPE_1);
1476
1477 /*
1478 * Enable VPID if configured and supported.
1479 */
1480 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VPID)
1481 pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid;
1482
1483#if 0
1484 /*
1485 * Enable APIC register virtualization and virtual-interrupt delivery if supported.
1486 */
1487 if ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT)
1488 && (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY))
1489 pVM->hm.s.fVirtApicRegs = true;
1490
1491 /*
1492 * Enable posted-interrupt processing if supported.
1493 */
1494 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1495 * here. */
1496 if ( (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR)
1497 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT))
1498 pVM->hm.s.fPostedIntrs = true;
1499#endif
1500
1501 /*
1502 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1503 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1504 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1505 */
1506 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1507 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1508 {
1509 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1510 LogRel(("HM: Disabled RDTSCP\n"));
1511 }
1512
1513 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1514 {
1515 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1516 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1517 if (RT_SUCCESS(rc))
1518 {
1519 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1520 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1521 esp. Figure 20-5.*/
1522 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1523 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1524
1525 /* Bit set to 0 means software interrupts are redirected to the
1526 8086 program interrupt handler rather than switching to
1527 protected-mode handler. */
1528 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1529
1530 /* Allow all port IO, so that port IO instructions do not cause
1531 exceptions and would instead cause a VM-exit (based on VT-x's
1532 IO bitmap which we currently configure to always cause an exit). */
1533 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1534 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1535
1536 /*
1537 * Construct a 1024 element page directory with 4 MB pages for
1538 * the identity mapped page table used in real and protected mode
1539 * without paging with EPT.
1540 */
1541 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1542 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1543 {
1544 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1545 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1546 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1547 | X86_PDE4M_G;
1548 }
1549
1550 /* We convert it here every time as PCI regions could be reconfigured. */
1551 if (PDMVmmDevHeapIsEnabled(pVM))
1552 {
1553 RTGCPHYS GCPhys;
1554 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1555 AssertRCReturn(rc, rc);
1556 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1557
1558 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1559 AssertRCReturn(rc, rc);
1560 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1561 }
1562 }
1563 else
1564 {
1565 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1566 pVM->hm.s.vmx.pRealModeTSS = NULL;
1567 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1568 return VMSetError(pVM, rc, RT_SRC_POS,
1569 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1570 }
1571 }
1572
1573 LogRel((pVM->hm.s.fAllow64BitGuests
1574 ? "HM: Guest support: 32-bit and 64-bit\n"
1575 : "HM: Guest support: 32-bit only\n"));
1576
1577 /*
1578 * Call ring-0 to set up the VM.
1579 */
1580 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1581 if (rc != VINF_SUCCESS)
1582 {
1583 AssertMsgFailed(("%Rrc\n", rc));
1584 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1585 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1586 {
1587 PVMCPU pVCpu = &pVM->aCpus[i];
1588 LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
1589 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1590 }
1591 HMR3CheckError(pVM, rc);
1592 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1593 }
1594
1595 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1596 LogRel(("HM: Enabled VMX\n"));
1597 pVM->hm.s.vmx.fEnabled = true;
1598
1599 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1600
1601 /*
1602 * Change the CPU features.
1603 */
1604 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1605 if (pVM->hm.s.fAllow64BitGuests)
1606 {
1607 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1608 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1609 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1610 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1611 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1612 }
1613 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1614 (we reuse the host EFER in the switcher). */
1615 /** @todo this needs to be fixed properly!! */
1616 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1617 {
1618 if (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE)
1619 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1620 else
1621 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1622 }
1623
1624 /*
1625 * Log configuration details.
1626 */
1627 if (pVM->hm.s.fNestedPaging)
1628 {
1629 LogRel(("HM: Enabled nested paging\n"));
1630 if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_SINGLE_CONTEXT)
1631 LogRel(("HM: EPT flush type = VMXFLUSHEPT_SINGLE_CONTEXT\n"));
1632 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_ALL_CONTEXTS)
1633 LogRel(("HM: EPT flush type = VMXFLUSHEPT_ALL_CONTEXTS\n"));
1634 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_NOT_SUPPORTED)
1635 LogRel(("HM: EPT flush type = VMXFLUSHEPT_NOT_SUPPORTED\n"));
1636 else
1637 LogRel(("HM: EPT flush type = %d\n", pVM->hm.s.vmx.enmFlushEpt));
1638
1639 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1640 LogRel(("HM: Enabled unrestricted guest execution\n"));
1641
1642#if HC_ARCH_BITS == 64
1643 if (pVM->hm.s.fLargePages)
1644 {
1645 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1646 PGMSetLargePageUsage(pVM, true);
1647 LogRel(("HM: Enabled large page support\n"));
1648 }
1649#endif
1650 }
1651 else
1652 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1653
1654 if (pVM->hm.s.fVirtApicRegs)
1655 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1656
1657 if (pVM->hm.s.fPostedIntrs)
1658 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1659
1660 if (pVM->hm.s.vmx.fVpid)
1661 {
1662 LogRel(("HM: Enabled VPID\n"));
1663 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_INDIV_ADDR)
1664 LogRel(("HM: VPID flush type = VMXFLUSHVPID_INDIV_ADDR\n"));
1665 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
1666 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT\n"));
1667 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
1668 LogRel(("HM: VPID flush type = VMXFLUSHVPID_ALL_CONTEXTS\n"));
1669 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1670 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS\n"));
1671 else
1672 LogRel(("HM: VPID flush type = %d\n", pVM->hm.s.vmx.enmFlushVpid));
1673 }
1674 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_NOT_SUPPORTED)
1675 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1676
1677 if (pVM->hm.s.vmx.fUsePreemptTimer)
1678 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1679 else
1680 LogRel(("HM: Disabled VMX-preemption timer\n"));
1681
1682 return VINF_SUCCESS;
1683}
1684
1685
1686/**
1687 * Finish AMD-V initialization (after ring-0 init).
1688 *
1689 * @returns VBox status code.
1690 * @param pVM The cross context VM structure.
1691 */
1692static int hmR3InitFinalizeR0Amd(PVM pVM)
1693{
1694 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1695
1696 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1697
1698 uint32_t u32Family;
1699 uint32_t u32Model;
1700 uint32_t u32Stepping;
1701 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
1702 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1703 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1704 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureECX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureECX));
1705 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureEDX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureEDX));
1706 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1707 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1708 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1709 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1710
1711 /*
1712 * Enumerate AMD-V features.
1713 */
1714 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1715 {
1716#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1717 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1718 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1719 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1720 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1721 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1722 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1723 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1724 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1725 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1726 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1727 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1728 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1729 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1730#undef HMSVM_REPORT_FEATURE
1731 };
1732
1733 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1734 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1735 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1736 {
1737 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1738 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1739 }
1740 if (fSvmFeatures)
1741 for (unsigned iBit = 0; iBit < 32; iBit++)
1742 if (RT_BIT_32(iBit) & fSvmFeatures)
1743 LogRel(("HM: Reserved bit %u\n", iBit));
1744
1745 /*
1746 * SVM R0 code assumes if the decode-assist feature exists, NRIP feature exists too.
1747 */
1748 AssertLogRelReturn( !(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
1749 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1750 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
1751
1752 /*
1753 * Nested paging is determined in HMR3Init, verify the sanity of that.
1754 */
1755 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1756 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1757 VERR_HM_IPE_1);
1758
1759#if 0
1760 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1761 * here. */
1762 if (RTR0IsPostIpiSupport())
1763 pVM->hm.s.fPostedIntrs = true;
1764#endif
1765
1766 /*
1767 * Call ring-0 to set up the VM.
1768 */
1769 int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1770 if (rc != VINF_SUCCESS)
1771 {
1772 AssertMsgFailed(("%Rrc\n", rc));
1773 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1774 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1775 }
1776
1777 LogRel(("HM: Enabled SVM\n"));
1778 pVM->hm.s.svm.fEnabled = true;
1779
1780 if (pVM->hm.s.fNestedPaging)
1781 {
1782 LogRel(("HM: Enabled nested paging\n"));
1783
1784 /*
1785 * Enable large pages (2 MB) if applicable.
1786 */
1787#if HC_ARCH_BITS == 64
1788 if (pVM->hm.s.fLargePages)
1789 {
1790 PGMSetLargePageUsage(pVM, true);
1791 LogRel(("HM: Enabled large page support\n"));
1792 }
1793#endif
1794 }
1795
1796 if (pVM->hm.s.fVirtApicRegs)
1797 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1798
1799 if (pVM->hm.s.fPostedIntrs)
1800 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1801
1802 hmR3DisableRawMode(pVM);
1803
1804 /*
1805 * Change the CPU features.
1806 */
1807 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1808 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1809 if (pVM->hm.s.fAllow64BitGuests)
1810 {
1811 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1812 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1813 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1814 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1815 }
1816 /* Turn on NXE if PAE has been enabled. */
1817 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1818 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1819
1820 LogRel(("HM: %s TPR patching\n", (pVM->hm.s.fTprPatchingAllowed) ? "Enabled" : "Disabled"));
1821
1822 LogRel((pVM->hm.s.fAllow64BitGuests
1823 ? "HM: Guest support: 32-bit and 64-bit\n"
1824 : "HM: Guest support: 32-bit only\n"));
1825
1826 return VINF_SUCCESS;
1827}
1828
1829
1830/**
1831 * Applies relocations to data and code managed by this
1832 * component. This function will be called at init and
1833 * whenever the VMM need to relocate it self inside the GC.
1834 *
1835 * @param pVM The cross context VM structure.
1836 */
1837VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1838{
1839 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1840
1841 /* Fetch the current paging mode during the relocate callback during state loading. */
1842 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1843 {
1844 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1845 {
1846 PVMCPU pVCpu = &pVM->aCpus[i];
1847 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1848 }
1849 }
1850#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1851 if (HMIsEnabled(pVM))
1852 {
1853 switch (PGMGetHostMode(pVM))
1854 {
1855 case PGMMODE_32_BIT:
1856 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
1857 break;
1858
1859 case PGMMODE_PAE:
1860 case PGMMODE_PAE_NX:
1861 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
1862 break;
1863
1864 default:
1865 AssertFailed();
1866 break;
1867 }
1868 }
1869#endif
1870 return;
1871}
1872
1873
1874/**
1875 * Notification callback which is called whenever there is a chance that a CR3
1876 * value might have changed.
1877 *
1878 * This is called by PGM.
1879 *
1880 * @param pVM The cross context VM structure.
1881 * @param pVCpu The cross context virtual CPU structure.
1882 * @param enmShadowMode New shadow paging mode.
1883 * @param enmGuestMode New guest paging mode.
1884 */
1885VMMR3_INT_DECL(void) HMR3PagingModeChanged(PVM pVM, PVMCPU pVCpu, PGMMODE enmShadowMode, PGMMODE enmGuestMode)
1886{
1887 RT_NOREF_PV(pVM);
1888
1889 /* Ignore page mode changes during state loading. */
1890 if (VMR3GetState(pVCpu->pVMR3) == VMSTATE_LOADING)
1891 return;
1892
1893 pVCpu->hm.s.enmShadowMode = enmShadowMode;
1894
1895 /*
1896 * If the guest left protected mode VMX execution, we'll have to be
1897 * extra careful if/when the guest switches back to protected mode.
1898 */
1899 if (enmGuestMode == PGMMODE_REAL)
1900 pVCpu->hm.s.vmx.fWasInRealMode = true;
1901
1902 Log4(("HMR3PagingModeChanged: Guest paging mode '%s', shadow paging mode '%s'\n", PGMGetModeName(enmGuestMode),
1903 PGMGetModeName(enmShadowMode)));
1904}
1905
1906
1907/**
1908 * Terminates the HM.
1909 *
1910 * Termination means cleaning up and freeing all resources,
1911 * the VM itself is, at this point, powered off or suspended.
1912 *
1913 * @returns VBox status code.
1914 * @param pVM The cross context VM structure.
1915 */
1916VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1917{
1918 if (pVM->hm.s.vmx.pRealModeTSS)
1919 {
1920 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1921 pVM->hm.s.vmx.pRealModeTSS = 0;
1922 }
1923 hmR3TermCPU(pVM);
1924 return 0;
1925}
1926
1927
1928/**
1929 * Terminates the per-VCPU HM.
1930 *
1931 * @returns VBox status code.
1932 * @param pVM The cross context VM structure.
1933 */
1934static int hmR3TermCPU(PVM pVM)
1935{
1936 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1937 {
1938 PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
1939
1940#ifdef VBOX_WITH_STATISTICS
1941 if (pVCpu->hm.s.paStatExitReason)
1942 {
1943 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1944 pVCpu->hm.s.paStatExitReason = NULL;
1945 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1946 }
1947 if (pVCpu->hm.s.paStatInjectedIrqs)
1948 {
1949 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1950 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1951 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1952 }
1953#endif
1954
1955#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1956 memset(pVCpu->hm.s.vmx.VMCSCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VMCSCache.aMagic));
1957 pVCpu->hm.s.vmx.VMCSCache.uMagic = 0;
1958 pVCpu->hm.s.vmx.VMCSCache.uPos = 0xffffffff;
1959#endif
1960 }
1961 return 0;
1962}
1963
1964
1965/**
1966 * Resets a virtual CPU.
1967 *
1968 * Used by HMR3Reset and CPU hot plugging.
1969 *
1970 * @param pVCpu The cross context virtual CPU structure to reset.
1971 */
1972VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1973{
1974 /* Sync. entire state on VM reset R0-reentry. It's safe to reset
1975 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
1976 HMCPU_CF_RESET_TO(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1977
1978 pVCpu->hm.s.vmx.u32CR0Mask = 0;
1979 pVCpu->hm.s.vmx.u32CR4Mask = 0;
1980 pVCpu->hm.s.fActive = false;
1981 pVCpu->hm.s.Event.fPending = false;
1982 pVCpu->hm.s.vmx.fWasInRealMode = true;
1983 pVCpu->hm.s.vmx.u64MsrApicBase = 0;
1984 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
1985
1986 /* Reset the contents of the read cache. */
1987 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1988 for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
1989 pCache->Read.aFieldVal[j] = 0;
1990
1991#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1992 /* Magic marker for searching in crash dumps. */
1993 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1994 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1995#endif
1996}
1997
1998
1999/**
2000 * The VM is being reset.
2001 *
2002 * For the HM component this means that any GDT/LDT/TSS monitors
2003 * needs to be removed.
2004 *
2005 * @param pVM The cross context VM structure.
2006 */
2007VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2008{
2009 LogFlow(("HMR3Reset:\n"));
2010
2011 if (HMIsEnabled(pVM))
2012 hmR3DisableRawMode(pVM);
2013
2014 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2015 {
2016 PVMCPU pVCpu = &pVM->aCpus[i];
2017
2018 HMR3ResetCpu(pVCpu);
2019 }
2020
2021 /* Clear all patch information. */
2022 pVM->hm.s.pGuestPatchMem = 0;
2023 pVM->hm.s.pFreeGuestPatchMem = 0;
2024 pVM->hm.s.cbGuestPatchMem = 0;
2025 pVM->hm.s.cPatches = 0;
2026 pVM->hm.s.PatchTree = 0;
2027 pVM->hm.s.fTPRPatchingActive = false;
2028 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2029}
2030
2031
2032/**
2033 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2034 *
2035 * @returns VBox strict status code.
2036 * @param pVM The cross context VM structure.
2037 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2038 * @param pvUser Unused.
2039 */
2040static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2041{
2042 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2043
2044 /* Only execute the handler on the VCPU the original patch request was issued. */
2045 if (pVCpu->idCpu != idCpu)
2046 return VINF_SUCCESS;
2047
2048 Log(("hmR3RemovePatches\n"));
2049 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2050 {
2051 uint8_t abInstr[15];
2052 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2053 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2054 int rc;
2055
2056#ifdef LOG_ENABLED
2057 char szOutput[256];
2058
2059 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2060 szOutput, sizeof(szOutput), NULL);
2061 if (RT_SUCCESS(rc))
2062 Log(("Patched instr: %s\n", szOutput));
2063#endif
2064
2065 /* Check if the instruction is still the same. */
2066 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2067 if (rc != VINF_SUCCESS)
2068 {
2069 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2070 continue; /* swapped out or otherwise removed; skip it. */
2071 }
2072
2073 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2074 {
2075 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2076 continue; /* skip it. */
2077 }
2078
2079 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2080 AssertRC(rc);
2081
2082#ifdef LOG_ENABLED
2083 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2084 szOutput, sizeof(szOutput), NULL);
2085 if (RT_SUCCESS(rc))
2086 Log(("Original instr: %s\n", szOutput));
2087#endif
2088 }
2089 pVM->hm.s.cPatches = 0;
2090 pVM->hm.s.PatchTree = 0;
2091 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2092 pVM->hm.s.fTPRPatchingActive = false;
2093 return VINF_SUCCESS;
2094}
2095
2096
2097/**
2098 * Worker for enabling patching in a VT-x/AMD-V guest.
2099 *
2100 * @returns VBox status code.
2101 * @param pVM The cross context VM structure.
2102 * @param idCpu VCPU to execute hmR3RemovePatches on.
2103 * @param pPatchMem Patch memory range.
2104 * @param cbPatchMem Size of the memory range.
2105 */
2106static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2107{
2108 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2109 AssertRC(rc);
2110
2111 pVM->hm.s.pGuestPatchMem = pPatchMem;
2112 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2113 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2114 return VINF_SUCCESS;
2115}
2116
2117
2118/**
2119 * Enable patching in a VT-x/AMD-V guest
2120 *
2121 * @returns VBox status code.
2122 * @param pVM The cross context VM structure.
2123 * @param pPatchMem Patch memory range.
2124 * @param cbPatchMem Size of the memory range.
2125 */
2126VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2127{
2128 VM_ASSERT_EMT(pVM);
2129 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2130 if (pVM->cCpus > 1)
2131 {
2132 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2133 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2134 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2135 AssertRC(rc);
2136 return rc;
2137 }
2138 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2139}
2140
2141
2142/**
2143 * Disable patching in a VT-x/AMD-V guest.
2144 *
2145 * @returns VBox status code.
2146 * @param pVM The cross context VM structure.
2147 * @param pPatchMem Patch memory range.
2148 * @param cbPatchMem Size of the memory range.
2149 */
2150VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2151{
2152 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2153 RT_NOREF2(pPatchMem, cbPatchMem);
2154
2155 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2156 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2157
2158 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2159 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2160 (void *)(uintptr_t)VMMGetCpuId(pVM));
2161 AssertRC(rc);
2162
2163 pVM->hm.s.pGuestPatchMem = 0;
2164 pVM->hm.s.pFreeGuestPatchMem = 0;
2165 pVM->hm.s.cbGuestPatchMem = 0;
2166 pVM->hm.s.fTPRPatchingActive = false;
2167 return VINF_SUCCESS;
2168}
2169
2170
2171/**
2172 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2173 *
2174 * @returns VBox strict status code.
2175 * @param pVM The cross context VM structure.
2176 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2177 * @param pvUser User specified CPU context.
2178 *
2179 */
2180static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2181{
2182 /*
2183 * Only execute the handler on the VCPU the original patch request was
2184 * issued. (The other CPU(s) might not yet have switched to protected
2185 * mode, nor have the correct memory context.)
2186 */
2187 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2188 if (pVCpu->idCpu != idCpu)
2189 return VINF_SUCCESS;
2190
2191 /*
2192 * We're racing other VCPUs here, so don't try patch the instruction twice
2193 * and make sure there is still room for our patch record.
2194 */
2195 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2196 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2197 if (pPatch)
2198 {
2199 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2200 return VINF_SUCCESS;
2201 }
2202 uint32_t const idx = pVM->hm.s.cPatches;
2203 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2204 {
2205 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2206 return VINF_SUCCESS;
2207 }
2208 pPatch = &pVM->hm.s.aPatches[idx];
2209
2210 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2211
2212 /*
2213 * Disassembler the instruction and get cracking.
2214 */
2215 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2216 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2217 uint32_t cbOp;
2218 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2219 AssertRC(rc);
2220 if ( rc == VINF_SUCCESS
2221 && pDis->pCurInstr->uOpcode == OP_MOV
2222 && cbOp >= 3)
2223 {
2224 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2225
2226 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2227 AssertRC(rc);
2228
2229 pPatch->cbOp = cbOp;
2230
2231 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2232 {
2233 /* write. */
2234 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2235 {
2236 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2237 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2238 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2239 }
2240 else
2241 {
2242 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2243 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2244 pPatch->uSrcOperand = pDis->Param2.uValue;
2245 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2246 }
2247 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2248 AssertRC(rc);
2249
2250 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2251 pPatch->cbNewOp = sizeof(s_abVMMCall);
2252 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2253 }
2254 else
2255 {
2256 /*
2257 * TPR Read.
2258 *
2259 * Found:
2260 * mov eax, dword [fffe0080] (5 bytes)
2261 * Check if next instruction is:
2262 * shr eax, 4
2263 */
2264 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2265
2266 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2267 uint8_t const cbOpMmio = cbOp;
2268 uint64_t const uSavedRip = pCtx->rip;
2269
2270 pCtx->rip += cbOp;
2271 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2272 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2273 pCtx->rip = uSavedRip;
2274
2275 if ( rc == VINF_SUCCESS
2276 && pDis->pCurInstr->uOpcode == OP_SHR
2277 && pDis->Param1.fUse == DISUSE_REG_GEN32
2278 && pDis->Param1.Base.idxGenReg == idxMmioReg
2279 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2280 && pDis->Param2.uValue == 4
2281 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2282 {
2283 uint8_t abInstr[15];
2284
2285 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2286 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2287 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2288 AssertRC(rc);
2289
2290 pPatch->cbOp = cbOpMmio + cbOp;
2291
2292 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
2293 abInstr[0] = 0xF0;
2294 abInstr[1] = 0x0F;
2295 abInstr[2] = 0x20;
2296 abInstr[3] = 0xC0 | pDis->Param1.Base.idxGenReg;
2297 for (unsigned i = 4; i < pPatch->cbOp; i++)
2298 abInstr[i] = 0x90; /* nop */
2299
2300 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2301 AssertRC(rc);
2302
2303 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2304 pPatch->cbNewOp = pPatch->cbOp;
2305 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2306
2307 Log(("Acceptable read/shr candidate!\n"));
2308 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2309 }
2310 else
2311 {
2312 pPatch->enmType = HMTPRINSTR_READ;
2313 pPatch->uDstOperand = idxMmioReg;
2314
2315 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2316 AssertRC(rc);
2317
2318 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2319 pPatch->cbNewOp = sizeof(s_abVMMCall);
2320 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2321 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2322 }
2323 }
2324
2325 pPatch->Core.Key = pCtx->eip;
2326 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2327 AssertRC(rc);
2328
2329 pVM->hm.s.cPatches++;
2330 return VINF_SUCCESS;
2331 }
2332
2333 /*
2334 * Save invalid patch, so we will not try again.
2335 */
2336 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2337 pPatch->Core.Key = pCtx->eip;
2338 pPatch->enmType = HMTPRINSTR_INVALID;
2339 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2340 AssertRC(rc);
2341 pVM->hm.s.cPatches++;
2342 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2343 return VINF_SUCCESS;
2344}
2345
2346
2347/**
2348 * Callback to patch a TPR instruction (jump to generated code).
2349 *
2350 * @returns VBox strict status code.
2351 * @param pVM The cross context VM structure.
2352 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2353 * @param pvUser User specified CPU context.
2354 *
2355 */
2356static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2357{
2358 /*
2359 * Only execute the handler on the VCPU the original patch request was
2360 * issued. (The other CPU(s) might not yet have switched to protected
2361 * mode, nor have the correct memory context.)
2362 */
2363 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2364 if (pVCpu->idCpu != idCpu)
2365 return VINF_SUCCESS;
2366
2367 /*
2368 * We're racing other VCPUs here, so don't try patch the instruction twice
2369 * and make sure there is still room for our patch record.
2370 */
2371 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2372 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2373 if (pPatch)
2374 {
2375 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2376 return VINF_SUCCESS;
2377 }
2378 uint32_t const idx = pVM->hm.s.cPatches;
2379 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2380 {
2381 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2382 return VINF_SUCCESS;
2383 }
2384 pPatch = &pVM->hm.s.aPatches[idx];
2385
2386 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2387 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2388
2389 /*
2390 * Disassemble the instruction and get cracking.
2391 */
2392 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2393 uint32_t cbOp;
2394 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2395 AssertRC(rc);
2396 if ( rc == VINF_SUCCESS
2397 && pDis->pCurInstr->uOpcode == OP_MOV
2398 && cbOp >= 5)
2399 {
2400 uint8_t aPatch[64];
2401 uint32_t off = 0;
2402
2403 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2404 AssertRC(rc);
2405
2406 pPatch->cbOp = cbOp;
2407 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2408
2409 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2410 {
2411 /*
2412 * TPR write:
2413 *
2414 * push ECX [51]
2415 * push EDX [52]
2416 * push EAX [50]
2417 * xor EDX,EDX [31 D2]
2418 * mov EAX,EAX [89 C0]
2419 * or
2420 * mov EAX,0000000CCh [B8 CC 00 00 00]
2421 * mov ECX,0C0000082h [B9 82 00 00 C0]
2422 * wrmsr [0F 30]
2423 * pop EAX [58]
2424 * pop EDX [5A]
2425 * pop ECX [59]
2426 * jmp return_address [E9 return_address]
2427 *
2428 */
2429 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2430
2431 aPatch[off++] = 0x51; /* push ecx */
2432 aPatch[off++] = 0x52; /* push edx */
2433 if (!fUsesEax)
2434 aPatch[off++] = 0x50; /* push eax */
2435 aPatch[off++] = 0x31; /* xor edx, edx */
2436 aPatch[off++] = 0xD2;
2437 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2438 {
2439 if (!fUsesEax)
2440 {
2441 aPatch[off++] = 0x89; /* mov eax, src_reg */
2442 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2443 }
2444 }
2445 else
2446 {
2447 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2448 aPatch[off++] = 0xB8; /* mov eax, immediate */
2449 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2450 off += sizeof(uint32_t);
2451 }
2452 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2453 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2454 off += sizeof(uint32_t);
2455
2456 aPatch[off++] = 0x0F; /* wrmsr */
2457 aPatch[off++] = 0x30;
2458 if (!fUsesEax)
2459 aPatch[off++] = 0x58; /* pop eax */
2460 aPatch[off++] = 0x5A; /* pop edx */
2461 aPatch[off++] = 0x59; /* pop ecx */
2462 }
2463 else
2464 {
2465 /*
2466 * TPR read:
2467 *
2468 * push ECX [51]
2469 * push EDX [52]
2470 * push EAX [50]
2471 * mov ECX,0C0000082h [B9 82 00 00 C0]
2472 * rdmsr [0F 32]
2473 * mov EAX,EAX [89 C0]
2474 * pop EAX [58]
2475 * pop EDX [5A]
2476 * pop ECX [59]
2477 * jmp return_address [E9 return_address]
2478 *
2479 */
2480 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2481
2482 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2483 aPatch[off++] = 0x51; /* push ecx */
2484 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2485 aPatch[off++] = 0x52; /* push edx */
2486 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2487 aPatch[off++] = 0x50; /* push eax */
2488
2489 aPatch[off++] = 0x31; /* xor edx, edx */
2490 aPatch[off++] = 0xD2;
2491
2492 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2493 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2494 off += sizeof(uint32_t);
2495
2496 aPatch[off++] = 0x0F; /* rdmsr */
2497 aPatch[off++] = 0x32;
2498
2499 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2500 {
2501 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2502 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2503 }
2504
2505 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2506 aPatch[off++] = 0x58; /* pop eax */
2507 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2508 aPatch[off++] = 0x5A; /* pop edx */
2509 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2510 aPatch[off++] = 0x59; /* pop ecx */
2511 }
2512 aPatch[off++] = 0xE9; /* jmp return_address */
2513 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2514 off += sizeof(RTRCUINTPTR);
2515
2516 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2517 {
2518 /* Write new code to the patch buffer. */
2519 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2520 AssertRC(rc);
2521
2522#ifdef LOG_ENABLED
2523 uint32_t cbCurInstr;
2524 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2525 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2526 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2527 {
2528 char szOutput[256];
2529 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2530 szOutput, sizeof(szOutput), &cbCurInstr);
2531 if (RT_SUCCESS(rc))
2532 Log(("Patch instr %s\n", szOutput));
2533 else
2534 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2535 }
2536#endif
2537
2538 pPatch->aNewOpcode[0] = 0xE9;
2539 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2540
2541 /* Overwrite the TPR instruction with a jump. */
2542 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2543 AssertRC(rc);
2544
2545 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2546
2547 pVM->hm.s.pFreeGuestPatchMem += off;
2548 pPatch->cbNewOp = 5;
2549
2550 pPatch->Core.Key = pCtx->eip;
2551 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2552 AssertRC(rc);
2553
2554 pVM->hm.s.cPatches++;
2555 pVM->hm.s.fTPRPatchingActive = true;
2556 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2557 return VINF_SUCCESS;
2558 }
2559
2560 Log(("Ran out of space in our patch buffer!\n"));
2561 }
2562 else
2563 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2564
2565
2566 /*
2567 * Save invalid patch, so we will not try again.
2568 */
2569 pPatch = &pVM->hm.s.aPatches[idx];
2570 pPatch->Core.Key = pCtx->eip;
2571 pPatch->enmType = HMTPRINSTR_INVALID;
2572 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2573 AssertRC(rc);
2574 pVM->hm.s.cPatches++;
2575 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Attempt to patch TPR mmio instructions.
2582 *
2583 * @returns VBox status code.
2584 * @param pVM The cross context VM structure.
2585 * @param pVCpu The cross context virtual CPU structure.
2586 * @param pCtx Pointer to the guest CPU context.
2587 */
2588VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2589{
2590 NOREF(pCtx);
2591 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2592 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2593 (void *)(uintptr_t)pVCpu->idCpu);
2594 AssertRC(rc);
2595 return rc;
2596}
2597
2598
2599/**
2600 * Checks if a code selector (CS) is suitable for execution
2601 * within VMX when unrestricted execution isn't available.
2602 *
2603 * @returns true if selector is suitable for VMX, otherwise
2604 * false.
2605 * @param pSel Pointer to the selector to check (CS).
2606 * @param uStackDpl The CPL, aka the DPL of the stack segment.
2607 */
2608static bool hmR3IsCodeSelectorOkForVmx(PCPUMSELREG pSel, unsigned uStackDpl)
2609{
2610 /*
2611 * Segment must be an accessed code segment, it must be present and it must
2612 * be usable.
2613 * Note! These are all standard requirements and if CS holds anything else
2614 * we've got buggy code somewhere!
2615 */
2616 AssertCompile(X86DESCATTR_TYPE == 0xf);
2617 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P | X86DESCATTR_UNUSABLE))
2618 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P),
2619 ("%#x\n", pSel->Attr.u),
2620 false);
2621
2622 /* For conforming segments, CS.DPL must be <= SS.DPL, while CS.DPL
2623 must equal SS.DPL for non-confroming segments.
2624 Note! This is also a hard requirement like above. */
2625 AssertMsgReturn( pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF
2626 ? pSel->Attr.n.u2Dpl <= uStackDpl
2627 : pSel->Attr.n.u2Dpl == uStackDpl,
2628 ("u4Type=%#x u2Dpl=%u uStackDpl=%u\n", pSel->Attr.n.u4Type, pSel->Attr.n.u2Dpl, uStackDpl),
2629 false);
2630
2631 /*
2632 * The following two requirements are VT-x specific:
2633 * - G bit must be set if any high limit bits are set.
2634 * - G bit must be clear if any low limit bits are clear.
2635 */
2636 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2637 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2638 return true;
2639 return false;
2640}
2641
2642
2643/**
2644 * Checks if a data selector (DS/ES/FS/GS) is suitable for
2645 * execution within VMX when unrestricted execution isn't
2646 * available.
2647 *
2648 * @returns true if selector is suitable for VMX, otherwise
2649 * false.
2650 * @param pSel Pointer to the selector to check
2651 * (DS/ES/FS/GS).
2652 */
2653static bool hmR3IsDataSelectorOkForVmx(PCPUMSELREG pSel)
2654{
2655 /*
2656 * Unusable segments are OK. These days they should be marked as such, as
2657 * but as an alternative we for old saved states and AMD<->VT-x migration
2658 * we also treat segments with all the attributes cleared as unusable.
2659 */
2660 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2661 return true;
2662
2663 /** @todo tighten these checks. Will require CPUM load adjusting. */
2664
2665 /* Segment must be accessed. */
2666 if (pSel->Attr.u & X86_SEL_TYPE_ACCESSED)
2667 {
2668 /* Code segments must also be readable. */
2669 if ( !(pSel->Attr.u & X86_SEL_TYPE_CODE)
2670 || (pSel->Attr.u & X86_SEL_TYPE_READ))
2671 {
2672 /* The S bit must be set. */
2673 if (pSel->Attr.n.u1DescType)
2674 {
2675 /* Except for conforming segments, DPL >= RPL. */
2676 if ( pSel->Attr.n.u2Dpl >= (pSel->Sel & X86_SEL_RPL)
2677 || pSel->Attr.n.u4Type >= X86_SEL_TYPE_ER_ACC)
2678 {
2679 /* Segment must be present. */
2680 if (pSel->Attr.n.u1Present)
2681 {
2682 /*
2683 * The following two requirements are VT-x specific:
2684 * - G bit must be set if any high limit bits are set.
2685 * - G bit must be clear if any low limit bits are clear.
2686 */
2687 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2688 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2689 return true;
2690 }
2691 }
2692 }
2693 }
2694 }
2695
2696 return false;
2697}
2698
2699
2700/**
2701 * Checks if the stack selector (SS) is suitable for execution
2702 * within VMX when unrestricted execution isn't available.
2703 *
2704 * @returns true if selector is suitable for VMX, otherwise
2705 * false.
2706 * @param pSel Pointer to the selector to check (SS).
2707 */
2708static bool hmR3IsStackSelectorOkForVmx(PCPUMSELREG pSel)
2709{
2710 /*
2711 * Unusable segments are OK. These days they should be marked as such, as
2712 * but as an alternative we for old saved states and AMD<->VT-x migration
2713 * we also treat segments with all the attributes cleared as unusable.
2714 */
2715 /** @todo r=bird: actually all zeroes isn't gonna cut it... SS.DPL == CPL. */
2716 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2717 return true;
2718
2719 /*
2720 * Segment must be an accessed writable segment, it must be present.
2721 * Note! These are all standard requirements and if SS holds anything else
2722 * we've got buggy code somewhere!
2723 */
2724 AssertCompile(X86DESCATTR_TYPE == 0xf);
2725 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P | X86_SEL_TYPE_CODE))
2726 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P),
2727 ("%#x\n", pSel->Attr.u),
2728 false);
2729
2730 /* DPL must equal RPL.
2731 Note! This is also a hard requirement like above. */
2732 AssertMsgReturn(pSel->Attr.n.u2Dpl == (pSel->Sel & X86_SEL_RPL),
2733 ("u2Dpl=%u Sel=%#x\n", pSel->Attr.n.u2Dpl, pSel->Sel),
2734 false);
2735
2736 /*
2737 * The following two requirements are VT-x specific:
2738 * - G bit must be set if any high limit bits are set.
2739 * - G bit must be clear if any low limit bits are clear.
2740 */
2741 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2742 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2743 return true;
2744 return false;
2745}
2746
2747
2748/**
2749 * Force execution of the current IO code in the recompiler.
2750 *
2751 * @returns VBox status code.
2752 * @param pVM The cross context VM structure.
2753 * @param pCtx Partial VM execution context.
2754 */
2755VMMR3_INT_DECL(int) HMR3EmulateIoBlock(PVM pVM, PCPUMCTX pCtx)
2756{
2757 PVMCPU pVCpu = VMMGetCpu(pVM);
2758
2759 Assert(HMIsEnabled(pVM));
2760 Log(("HMR3EmulateIoBlock\n"));
2761
2762 /* This is primarily intended to speed up Grub, so we don't care about paged protected mode. */
2763 if (HMCanEmulateIoBlockEx(pCtx))
2764 {
2765 Log(("HMR3EmulateIoBlock -> enabled\n"));
2766 pVCpu->hm.s.EmulateIoBlock.fEnabled = true;
2767 pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip = pCtx->rip;
2768 pVCpu->hm.s.EmulateIoBlock.cr0 = pCtx->cr0;
2769 return VINF_EM_RESCHEDULE_REM;
2770 }
2771 return VINF_SUCCESS;
2772}
2773
2774
2775/**
2776 * Checks if we can currently use hardware accelerated raw mode.
2777 *
2778 * @returns true if we can currently use hardware acceleration, otherwise false.
2779 * @param pVM The cross context VM structure.
2780 * @param pCtx Partial VM execution context.
2781 */
2782VMMR3DECL(bool) HMR3CanExecuteGuest(PVM pVM, PCPUMCTX pCtx)
2783{
2784 PVMCPU pVCpu = VMMGetCpu(pVM);
2785
2786 Assert(HMIsEnabled(pVM));
2787
2788#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
2789 if (CPUMIsGuestInNestedHwVirtMode(pCtx))
2790 {
2791 Log(("HMR3CanExecuteGuest: In nested-guest mode - returning false"));
2792 return false;
2793 }
2794#endif
2795
2796 /* If we're still executing the IO code, then return false. */
2797 if ( RT_UNLIKELY(pVCpu->hm.s.EmulateIoBlock.fEnabled)
2798 && pCtx->rip < pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip + 0x200
2799 && pCtx->rip > pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip - 0x200
2800 && pCtx->cr0 == pVCpu->hm.s.EmulateIoBlock.cr0)
2801 return false;
2802
2803 pVCpu->hm.s.EmulateIoBlock.fEnabled = false;
2804
2805 /* AMD-V supports real & protected mode with or without paging. */
2806 if (pVM->hm.s.svm.fEnabled)
2807 {
2808 pVCpu->hm.s.fActive = true;
2809 return true;
2810 }
2811
2812 pVCpu->hm.s.fActive = false;
2813
2814 /* Note! The context supplied by REM is partial. If we add more checks here, be sure to verify that REM provides this info! */
2815 Assert( (pVM->hm.s.vmx.fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS)
2816 || (!pVM->hm.s.vmx.fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS));
2817
2818 bool fSupportsRealMode = pVM->hm.s.vmx.fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM);
2819 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
2820 {
2821 /*
2822 * The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted
2823 * guest execution feature is missing (VT-x only).
2824 */
2825 if (fSupportsRealMode)
2826 {
2827 if (CPUMIsGuestInRealModeEx(pCtx))
2828 {
2829 /* In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector
2830 * bases and limits, i.e. limit must be 64K and base must be selector * 16.
2831 * If this is not true, we cannot execute real mode as V86 and have to fall
2832 * back to emulation.
2833 */
2834 if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4)
2835 || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4)
2836 || pCtx->es.Sel != (pCtx->es.u64Base >> 4)
2837 || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4)
2838 || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4)
2839 || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4))
2840 {
2841 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase);
2842 return false;
2843 }
2844 if ( (pCtx->cs.u32Limit != 0xffff)
2845 || (pCtx->ds.u32Limit != 0xffff)
2846 || (pCtx->es.u32Limit != 0xffff)
2847 || (pCtx->ss.u32Limit != 0xffff)
2848 || (pCtx->fs.u32Limit != 0xffff)
2849 || (pCtx->gs.u32Limit != 0xffff))
2850 {
2851 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit);
2852 return false;
2853 }
2854 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk);
2855 }
2856 else
2857 {
2858 /* Verify the requirements for executing code in protected
2859 mode. VT-x can't handle the CPU state right after a switch
2860 from real to protected mode. (all sorts of RPL & DPL assumptions). */
2861 if (pVCpu->hm.s.vmx.fWasInRealMode)
2862 {
2863 /** @todo If guest is in V86 mode, these checks should be different! */
2864 if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL))
2865 {
2866 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl);
2867 return false;
2868 }
2869 if ( !hmR3IsCodeSelectorOkForVmx(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl)
2870 || !hmR3IsDataSelectorOkForVmx(&pCtx->ds)
2871 || !hmR3IsDataSelectorOkForVmx(&pCtx->es)
2872 || !hmR3IsDataSelectorOkForVmx(&pCtx->fs)
2873 || !hmR3IsDataSelectorOkForVmx(&pCtx->gs)
2874 || !hmR3IsStackSelectorOkForVmx(&pCtx->ss))
2875 {
2876 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel);
2877 return false;
2878 }
2879 }
2880 /* VT-x also chokes on invalid TR or LDTR selectors (minix). */
2881 if (pCtx->gdtr.cbGdt)
2882 {
2883 if ((pCtx->tr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2884 {
2885 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadTr);
2886 return false;
2887 }
2888 else if ((pCtx->ldtr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2889 {
2890 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadLdt);
2891 return false;
2892 }
2893 }
2894 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckPmOk);
2895 }
2896 }
2897 else
2898 {
2899 if ( !CPUMIsGuestInLongModeEx(pCtx)
2900 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2901 {
2902 if ( !pVM->hm.s.fNestedPaging /* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap */
2903 || CPUMIsGuestInRealModeEx(pCtx)) /* Requires a fake TSS for real mode - stored in the VMM device heap */
2904 return false;
2905
2906 /* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */
2907 if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0)
2908 return false;
2909
2910 /* The guest is about to complete the switch to protected mode. Wait a bit longer. */
2911 /* Windows XP; switch to protected mode; all selectors are marked not present in the
2912 * hidden registers (possible recompiler bug; see load_seg_vm) */
2913 if (pCtx->cs.Attr.n.u1Present == 0)
2914 return false;
2915 if (pCtx->ss.Attr.n.u1Present == 0)
2916 return false;
2917
2918 /* Windows XP: possible same as above, but new recompiler requires new heuristics?
2919 VT-x doesn't seem to like something about the guest state and this stuff avoids it. */
2920 /** @todo This check is actually wrong, it doesn't take the direction of the
2921 * stack segment into account. But, it does the job for now. */
2922 if (pCtx->rsp >= pCtx->ss.u32Limit)
2923 return false;
2924 }
2925 }
2926 }
2927
2928 if (pVM->hm.s.vmx.fEnabled)
2929 {
2930 uint32_t mask;
2931
2932 /* if bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */
2933 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
2934 /* Note: We ignore the NE bit here on purpose; see vmmr0\hmr0.cpp for details. */
2935 mask &= ~X86_CR0_NE;
2936
2937 if (fSupportsRealMode)
2938 {
2939 /* Note: We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */
2940 mask &= ~(X86_CR0_PG|X86_CR0_PE);
2941 }
2942 else
2943 {
2944 /* We support protected mode without paging using identity mapping. */
2945 mask &= ~X86_CR0_PG;
2946 }
2947 if ((pCtx->cr0 & mask) != mask)
2948 return false;
2949
2950 /* if bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */
2951 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
2952 if ((pCtx->cr0 & mask) != 0)
2953 return false;
2954
2955 /* if bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */
2956 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
2957 mask &= ~X86_CR4_VMXE;
2958 if ((pCtx->cr4 & mask) != mask)
2959 return false;
2960
2961 /* if bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */
2962 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
2963 if ((pCtx->cr4 & mask) != 0)
2964 return false;
2965
2966 pVCpu->hm.s.fActive = true;
2967 return true;
2968 }
2969
2970 return false;
2971}
2972
2973
2974/**
2975 * Checks if we need to reschedule due to VMM device heap changes.
2976 *
2977 * @returns true if a reschedule is required, otherwise false.
2978 * @param pVM The cross context VM structure.
2979 * @param pCtx VM execution context.
2980 */
2981VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx)
2982{
2983 /*
2984 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2985 * when the unrestricted guest execution feature is missing (VT-x only).
2986 */
2987 if ( pVM->hm.s.vmx.fEnabled
2988 && !pVM->hm.s.vmx.fUnrestrictedGuest
2989 && CPUMIsGuestInRealModeEx(pCtx)
2990 && !PDMVmmDevHeapIsEnabled(pVM))
2991 {
2992 return true;
2993 }
2994
2995 return false;
2996}
2997
2998
2999/**
3000 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
3001 * event settings changes.
3002 *
3003 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
3004 * function is just updating the VM globals.
3005 *
3006 * @param pVM The VM cross context VM structure.
3007 * @thread EMT(0)
3008 */
3009VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
3010{
3011 /* Interrupts. */
3012 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
3013 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
3014
3015 /* CPU Exceptions. */
3016 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
3017 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
3018 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3019 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3020
3021 /* Common VM exits. */
3022 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
3023 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
3024 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3025 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3026
3027 /* Vendor specific VM exits. */
3028 if (HMR3IsVmxEnabled(pVM->pUVM))
3029 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
3030 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
3031 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3032 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3033 else
3034 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
3035 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
3036 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3037 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3038
3039 /* Done. */
3040 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
3041}
3042
3043
3044/**
3045 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
3046 *
3047 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
3048 * per CPU settings.
3049 *
3050 * @param pVM The VM cross context VM structure.
3051 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3052 */
3053VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
3054{
3055 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
3056}
3057
3058
3059/**
3060 * Notification from EM about a rescheduling into hardware assisted execution
3061 * mode.
3062 *
3063 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3064 */
3065VMMR3_INT_DECL(void) HMR3NotifyScheduled(PVMCPU pVCpu)
3066{
3067 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3068}
3069
3070
3071/**
3072 * Notification from EM about returning from instruction emulation (REM / EM).
3073 *
3074 * @param pVCpu The cross context virtual CPU structure.
3075 */
3076VMMR3_INT_DECL(void) HMR3NotifyEmulated(PVMCPU pVCpu)
3077{
3078 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3079}
3080
3081
3082/**
3083 * Checks if we are currently using hardware acceleration.
3084 *
3085 * @returns true if hardware acceleration is being used, otherwise false.
3086 * @param pVCpu The cross context virtual CPU structure.
3087 */
3088VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu)
3089{
3090 return pVCpu->hm.s.fActive;
3091}
3092
3093
3094/**
3095 * External interface for querying whether hardware acceleration is enabled.
3096 *
3097 * @returns true if VT-x or AMD-V is being used, otherwise false.
3098 * @param pUVM The user mode VM handle.
3099 * @sa HMIsEnabled, HMIsEnabledNotMacro.
3100 */
3101VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
3102{
3103 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3104 PVM pVM = pUVM->pVM;
3105 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3106 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
3107}
3108
3109
3110/**
3111 * External interface for querying whether VT-x is being used.
3112 *
3113 * @returns true if VT-x is being used, otherwise false.
3114 * @param pUVM The user mode VM handle.
3115 * @sa HMR3IsSvmEnabled, HMIsEnabled
3116 */
3117VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
3118{
3119 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3120 PVM pVM = pUVM->pVM;
3121 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3122 return pVM->hm.s.vmx.fEnabled
3123 && pVM->hm.s.vmx.fSupported
3124 && pVM->fHMEnabled;
3125}
3126
3127
3128/**
3129 * External interface for querying whether AMD-V is being used.
3130 *
3131 * @returns true if VT-x is being used, otherwise false.
3132 * @param pUVM The user mode VM handle.
3133 * @sa HMR3IsVmxEnabled, HMIsEnabled
3134 */
3135VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
3136{
3137 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3138 PVM pVM = pUVM->pVM;
3139 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3140 return pVM->hm.s.svm.fEnabled
3141 && pVM->hm.s.svm.fSupported
3142 && pVM->fHMEnabled;
3143}
3144
3145
3146/**
3147 * Checks if we are currently using nested paging.
3148 *
3149 * @returns true if nested paging is being used, otherwise false.
3150 * @param pUVM The user mode VM handle.
3151 */
3152VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
3153{
3154 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3155 PVM pVM = pUVM->pVM;
3156 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3157 return pVM->hm.s.fNestedPaging;
3158}
3159
3160
3161/**
3162 * Checks if virtualized APIC registers is enabled.
3163 *
3164 * When enabled this feature allows the hardware to access most of the
3165 * APIC registers in the virtual-APIC page without causing VM-exits. See
3166 * Intel spec. 29.1.1 "Virtualized APIC Registers".
3167 *
3168 * @returns true if virtualized APIC registers is enabled, otherwise
3169 * false.
3170 * @param pUVM The user mode VM handle.
3171 */
3172VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
3173{
3174 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3175 PVM pVM = pUVM->pVM;
3176 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3177 return pVM->hm.s.fVirtApicRegs;
3178}
3179
3180
3181/**
3182 * Checks if APIC posted-interrupt processing is enabled.
3183 *
3184 * This returns whether we can deliver interrupts to the guest without
3185 * leaving guest-context by updating APIC state from host-context.
3186 *
3187 * @returns true if APIC posted-interrupt processing is enabled,
3188 * otherwise false.
3189 * @param pUVM The user mode VM handle.
3190 */
3191VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
3192{
3193 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3194 PVM pVM = pUVM->pVM;
3195 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3196 return pVM->hm.s.fPostedIntrs;
3197}
3198
3199
3200/**
3201 * Checks if we are currently using VPID in VT-x mode.
3202 *
3203 * @returns true if VPID is being used, otherwise false.
3204 * @param pUVM The user mode VM handle.
3205 */
3206VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
3207{
3208 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3209 PVM pVM = pUVM->pVM;
3210 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3211 return pVM->hm.s.vmx.fVpid;
3212}
3213
3214
3215/**
3216 * Checks if we are currently using VT-x unrestricted execution,
3217 * aka UX.
3218 *
3219 * @returns true if UX is being used, otherwise false.
3220 * @param pUVM The user mode VM handle.
3221 */
3222VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
3223{
3224 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3225 PVM pVM = pUVM->pVM;
3226 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3227 return pVM->hm.s.vmx.fUnrestrictedGuest;
3228}
3229
3230
3231/**
3232 * Checks if internal events are pending. In that case we are not allowed to dispatch interrupts.
3233 *
3234 * @returns true if an internal event is pending, otherwise false.
3235 * @param pVCpu The cross context virtual CPU structure.
3236 */
3237VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu)
3238{
3239 return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending;
3240}
3241
3242
3243/**
3244 * Checks if the VMX-preemption timer is being used.
3245 *
3246 * @returns true if the VMX-preemption timer is being used, otherwise false.
3247 * @param pVM The cross context VM structure.
3248 */
3249VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
3250{
3251 return HMIsEnabled(pVM)
3252 && pVM->hm.s.vmx.fEnabled
3253 && pVM->hm.s.vmx.fUsePreemptTimer;
3254}
3255
3256
3257/**
3258 * Restart an I/O instruction that was refused in ring-0
3259 *
3260 * @returns Strict VBox status code. Informational status codes other than the one documented
3261 * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success.
3262 * @retval VINF_SUCCESS Success.
3263 * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the
3264 * status code must be passed on to EM.
3265 * @retval VERR_NOT_FOUND if no pending I/O instruction.
3266 *
3267 * @param pVM The cross context VM structure.
3268 * @param pVCpu The cross context virtual CPU structure.
3269 * @param pCtx Pointer to the guest CPU context.
3270 */
3271VMMR3_INT_DECL(VBOXSTRICTRC) HMR3RestartPendingIOInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3272{
3273 /*
3274 * Check if we've got relevant data pending.
3275 */
3276 HMPENDINGIO enmType = pVCpu->hm.s.PendingIO.enmType;
3277 if (enmType == HMPENDINGIO_INVALID)
3278 return VERR_NOT_FOUND;
3279 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_INVALID;
3280 if (pVCpu->hm.s.PendingIO.GCPtrRip != pCtx->rip)
3281 return VERR_NOT_FOUND;
3282
3283 /*
3284 * Execute pending I/O.
3285 */
3286 VBOXSTRICTRC rcStrict;
3287 switch (enmType)
3288 {
3289 case HMPENDINGIO_PORT_READ:
3290 {
3291 uint32_t uAndVal = pVCpu->hm.s.PendingIO.s.Port.uAndVal;
3292 uint32_t u32Val = 0;
3293
3294 rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort, &u32Val,
3295 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3296 if (IOM_SUCCESS(rcStrict))
3297 {
3298 /* Write back to the EAX register. */
3299 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
3300 pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
3301 }
3302 break;
3303 }
3304
3305 default:
3306 AssertLogRelFailedReturn(VERR_HM_UNKNOWN_IO_INSTRUCTION);
3307 }
3308
3309 if (IOM_SUCCESS(rcStrict))
3310 {
3311 /*
3312 * Check for I/O breakpoints.
3313 */
3314 uint32_t const uDr7 = pCtx->dr[7];
3315 if ( ( (uDr7 & X86_DR7_ENABLED_MASK)
3316 && X86_DR7_ANY_RW_IO(uDr7)
3317 && (pCtx->cr4 & X86_CR4_DE))
3318 || DBGFBpIsHwIoArmed(pVM))
3319 {
3320 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, pVCpu->hm.s.PendingIO.s.Port.uPort,
3321 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3322 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
3323 rcStrict2 = TRPMAssertTrap(pVCpu, X86_XCPT_DB, TRPM_TRAP);
3324 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
3325 else if (rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
3326 rcStrict = rcStrict2;
3327 }
3328 }
3329 return rcStrict;
3330}
3331
3332
3333/**
3334 * Check fatal VT-x/AMD-V error and produce some meaningful
3335 * log release message.
3336 *
3337 * @param pVM The cross context VM structure.
3338 * @param iStatusCode VBox status code.
3339 */
3340VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3341{
3342 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3343 {
3344 PVMCPU pVCpu = &pVM->aCpus[i];
3345 switch (iStatusCode)
3346 {
3347 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3348 * might be getting inaccurate values for non-guru'ing EMTs. */
3349 case VERR_VMX_INVALID_VMCS_FIELD:
3350 break;
3351
3352 case VERR_VMX_INVALID_VMCS_PTR:
3353 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3354 LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VMCSPhys,
3355 pVCpu->hm.s.vmx.HCPhysVmcs));
3356 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VMCSRevision));
3357 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3358 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3359 break;
3360
3361 case VERR_VMX_UNABLE_TO_START_VM:
3362 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3363 LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
3364 LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3365
3366 if ( pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMLAUCH_NON_CLEAR_VMCS
3367 || pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMRESUME_NON_LAUNCHED_VMCS)
3368 {
3369 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3370 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3371 }
3372 else if (pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMENTRY_INVALID_CONTROL_FIELDS)
3373 {
3374 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32PinCtls));
3375 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls));
3376 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls2));
3377 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32EntryCtls));
3378 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ExitCtls));
3379 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap));
3380 LogRel(("HM: CPU[%u] HCPhysGuestMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr));
3381 LogRel(("HM: CPU[%u] HCPhysHostMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr));
3382 LogRel(("HM: CPU[%u] cMsrs %u\n", i, pVCpu->hm.s.vmx.cMsrs));
3383 }
3384 /** @todo Log VM-entry event injection control fields
3385 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3386 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3387 break;
3388
3389 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3390 case VERR_VMX_INVALID_VMXON_PTR:
3391 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3392 case VERR_VMX_INVALID_GUEST_STATE:
3393 case VERR_VMX_UNEXPECTED_EXIT:
3394 case VERR_SVM_UNKNOWN_EXIT:
3395 case VERR_SVM_UNEXPECTED_EXIT:
3396 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3397 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3398 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3399 break;
3400 }
3401 }
3402
3403 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3404 {
3405 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1));
3406 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry disallowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0));
3407 }
3408 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3409 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3410}
3411
3412
3413/**
3414 * Execute state save operation.
3415 *
3416 * @returns VBox status code.
3417 * @param pVM The cross context VM structure.
3418 * @param pSSM SSM operation handle.
3419 */
3420static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3421{
3422 int rc;
3423
3424 Log(("hmR3Save:\n"));
3425
3426 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3427 {
3428 /*
3429 * Save the basic bits - fortunately all the other things can be resynced on load.
3430 */
3431 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.fPending);
3432 AssertRCReturn(rc, rc);
3433 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.u32ErrCode);
3434 AssertRCReturn(rc, rc);
3435 rc = SSMR3PutU64(pSSM, pVM->aCpus[i].hm.s.Event.u64IntInfo);
3436 AssertRCReturn(rc, rc);
3437 /** @todo Shouldn't we be saving GCPtrFaultAddress too? */
3438
3439 /** @todo We only need to save pVM->aCpus[i].hm.s.vmx.fWasInRealMode and
3440 * perhaps not even that (the initial value of @c true is safe. */
3441 uint32_t u32Dummy = PGMMODE_REAL;
3442 rc = SSMR3PutU32(pSSM, u32Dummy);
3443 AssertRCReturn(rc, rc);
3444 rc = SSMR3PutU32(pSSM, u32Dummy);
3445 AssertRCReturn(rc, rc);
3446 rc = SSMR3PutU32(pSSM, u32Dummy);
3447 AssertRCReturn(rc, rc);
3448 }
3449
3450#ifdef VBOX_HM_WITH_GUEST_PATCHING
3451 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3452 AssertRCReturn(rc, rc);
3453 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3454 AssertRCReturn(rc, rc);
3455 rc = SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3456 AssertRCReturn(rc, rc);
3457
3458 /* Store all the guest patch records too. */
3459 rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3460 AssertRCReturn(rc, rc);
3461
3462 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3463 {
3464 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3465
3466 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3467 AssertRCReturn(rc, rc);
3468
3469 rc = SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3470 AssertRCReturn(rc, rc);
3471
3472 rc = SSMR3PutU32(pSSM, pPatch->cbOp);
3473 AssertRCReturn(rc, rc);
3474
3475 rc = SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3476 AssertRCReturn(rc, rc);
3477
3478 rc = SSMR3PutU32(pSSM, pPatch->cbNewOp);
3479 AssertRCReturn(rc, rc);
3480
3481 AssertCompileSize(HMTPRINSTR, 4);
3482 rc = SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3483 AssertRCReturn(rc, rc);
3484
3485 rc = SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3486 AssertRCReturn(rc, rc);
3487
3488 rc = SSMR3PutU32(pSSM, pPatch->uDstOperand);
3489 AssertRCReturn(rc, rc);
3490
3491 rc = SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3492 AssertRCReturn(rc, rc);
3493
3494 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3495 AssertRCReturn(rc, rc);
3496 }
3497#endif
3498 return VINF_SUCCESS;
3499}
3500
3501
3502/**
3503 * Execute state load operation.
3504 *
3505 * @returns VBox status code.
3506 * @param pVM The cross context VM structure.
3507 * @param pSSM SSM operation handle.
3508 * @param uVersion Data layout version.
3509 * @param uPass The data pass.
3510 */
3511static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3512{
3513 int rc;
3514
3515 Log(("hmR3Load:\n"));
3516 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3517
3518 /*
3519 * Validate version.
3520 */
3521 if ( uVersion != HM_SAVED_STATE_VERSION
3522 && uVersion != HM_SAVED_STATE_VERSION_NO_PATCHING
3523 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3524 {
3525 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3526 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3527 }
3528 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3529 {
3530 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
3531 AssertRCReturn(rc, rc);
3532 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
3533 AssertRCReturn(rc, rc);
3534 rc = SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo);
3535 AssertRCReturn(rc, rc);
3536
3537 if (uVersion >= HM_SAVED_STATE_VERSION_NO_PATCHING)
3538 {
3539 uint32_t val;
3540 /** @todo See note in hmR3Save(). */
3541 rc = SSMR3GetU32(pSSM, &val);
3542 AssertRCReturn(rc, rc);
3543 rc = SSMR3GetU32(pSSM, &val);
3544 AssertRCReturn(rc, rc);
3545 rc = SSMR3GetU32(pSSM, &val);
3546 AssertRCReturn(rc, rc);
3547 }
3548 }
3549#ifdef VBOX_HM_WITH_GUEST_PATCHING
3550 if (uVersion > HM_SAVED_STATE_VERSION_NO_PATCHING)
3551 {
3552 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3553 AssertRCReturn(rc, rc);
3554 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3555 AssertRCReturn(rc, rc);
3556 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3557 AssertRCReturn(rc, rc);
3558
3559 /* Fetch all TPR patch records. */
3560 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3561 AssertRCReturn(rc, rc);
3562
3563 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3564 {
3565 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3566
3567 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3568 AssertRCReturn(rc, rc);
3569
3570 rc = SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3571 AssertRCReturn(rc, rc);
3572
3573 rc = SSMR3GetU32(pSSM, &pPatch->cbOp);
3574 AssertRCReturn(rc, rc);
3575
3576 rc = SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3577 AssertRCReturn(rc, rc);
3578
3579 rc = SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3580 AssertRCReturn(rc, rc);
3581
3582 rc = SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3583 AssertRCReturn(rc, rc);
3584
3585 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3586 pVM->hm.s.fTPRPatchingActive = true;
3587
3588 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3589
3590 rc = SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3591 AssertRCReturn(rc, rc);
3592
3593 rc = SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3594 AssertRCReturn(rc, rc);
3595
3596 rc = SSMR3GetU32(pSSM, &pPatch->cFaults);
3597 AssertRCReturn(rc, rc);
3598
3599 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3600 AssertRCReturn(rc, rc);
3601
3602 Log(("hmR3Load: patch %d\n", i));
3603 Log(("Key = %x\n", pPatch->Core.Key));
3604 Log(("cbOp = %d\n", pPatch->cbOp));
3605 Log(("cbNewOp = %d\n", pPatch->cbNewOp));
3606 Log(("type = %d\n", pPatch->enmType));
3607 Log(("srcop = %d\n", pPatch->uSrcOperand));
3608 Log(("dstop = %d\n", pPatch->uDstOperand));
3609 Log(("cFaults = %d\n", pPatch->cFaults));
3610 Log(("target = %x\n", pPatch->pJumpTarget));
3611 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3612 AssertRC(rc);
3613 }
3614 }
3615#endif
3616
3617 return VINF_SUCCESS;
3618}
3619
3620
3621/**
3622 * Displays the guest VM-exit history.
3623 *
3624 * @param pVM The cross context VM structure.
3625 * @param pHlp The info helper functions.
3626 * @param pszArgs Arguments, ignored.
3627 */
3628static DECLCALLBACK(void) hmR3InfoExitHistory(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3629{
3630 NOREF(pszArgs);
3631 PVMCPU pVCpu = VMMGetCpu(pVM);
3632 if (!pVCpu)
3633 pVCpu = &pVM->aCpus[0];
3634
3635 if (HMIsEnabled(pVM))
3636 {
3637 bool const fIsVtx = pVM->hm.s.vmx.fSupported;
3638 const char * const *papszDesc;
3639 unsigned cMaxExitDesc;
3640 if (fIsVtx)
3641 {
3642 cMaxExitDesc = MAX_EXITREASON_VTX;
3643 papszDesc = &g_apszVTxExitReasons[0];
3644 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x VM-exit history:\n", pVCpu->idCpu);
3645 }
3646 else
3647 {
3648 cMaxExitDesc = MAX_EXITREASON_AMDV;
3649 papszDesc = &g_apszAmdVExitReasons[0];
3650 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V #VMEXIT history:\n", pVCpu->idCpu);
3651 }
3652
3653 pHlp->pfnPrintf(pHlp, " idxExitHistoryFree = %u\n", pVCpu->hm.s.idxExitHistoryFree);
3654 unsigned const idxLast = pVCpu->hm.s.idxExitHistoryFree > 0 ?
3655 pVCpu->hm.s.idxExitHistoryFree - 1 :
3656 RT_ELEMENTS(pVCpu->hm.s.auExitHistory) - 1;
3657 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->hm.s.auExitHistory); i++)
3658 {
3659 uint16_t const uExit = pVCpu->hm.s.auExitHistory[i];
3660 const char *pszExit = NULL;
3661 if (uExit <= cMaxExitDesc)
3662 pszExit = papszDesc[uExit];
3663 else if (!fIsVtx)
3664 pszExit = hmSvmGetSpecialExitReasonDesc(uExit);
3665 else
3666 pszExit = NULL;
3667
3668 pHlp->pfnPrintf(pHlp, " auExitHistory[%2u] = 0x%04x %s %s\n", i, uExit, pszExit,
3669 idxLast == i ? "<-- Latest exit" : "");
3670 }
3671 pHlp->pfnPrintf(pHlp, "HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3672 }
3673 else
3674 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3675}
3676
3677
3678/**
3679 * Displays the HM pending event.
3680 *
3681 * @param pVM The cross context VM structure.
3682 * @param pHlp The info helper functions.
3683 * @param pszArgs Arguments, ignored.
3684 */
3685static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3686{
3687 NOREF(pszArgs);
3688 PVMCPU pVCpu = VMMGetCpu(pVM);
3689 if (!pVCpu)
3690 pVCpu = &pVM->aCpus[0];
3691
3692 if (HMIsEnabled(pVM))
3693 {
3694 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3695 if (pVCpu->hm.s.Event.fPending)
3696 {
3697 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3698 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3699 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3700 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3701 }
3702 }
3703 else
3704 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3705}
3706
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette