VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 72564

Last change on this file since 72564 was 72560, checked in by vboxsync, 7 years ago

EM,HM: Replaced HM exit history with the EM one. VT-x now reads TSC on every exit even when VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT is set. VT-x needed an API for updating the PC as RIP and CS are fetched from the VMCB. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 168.4 KB
Line 
1/* $Id: HM.cpp 72560 2018-06-15 11:00:02Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#include <VBox/vmm/cpum.h>
41#include <VBox/vmm/stam.h>
42#include <VBox/vmm/mm.h>
43#include <VBox/vmm/pdmapi.h>
44#include <VBox/vmm/pgm.h>
45#include <VBox/vmm/ssm.h>
46#include <VBox/vmm/trpm.h>
47#include <VBox/vmm/dbgf.h>
48#include <VBox/vmm/iom.h>
49#include <VBox/vmm/iem.h>
50#include <VBox/vmm/patm.h>
51#include <VBox/vmm/csam.h>
52#include <VBox/vmm/selm.h>
53#include <VBox/vmm/nem.h>
54#ifdef VBOX_WITH_REM
55# include <VBox/vmm/rem.h>
56#endif
57#include <VBox/vmm/hm_vmx.h>
58#include <VBox/vmm/hm_svm.h>
59#include "HMInternal.h"
60#include <VBox/vmm/vm.h>
61#include <VBox/vmm/uvm.h>
62#include <VBox/err.h>
63#include <VBox/param.h>
64
65#include <iprt/assert.h>
66#include <VBox/log.h>
67#include <iprt/asm.h>
68#include <iprt/asm-amd64-x86.h>
69#include <iprt/env.h>
70#include <iprt/thread.h>
71
72
73/*********************************************************************************************************************************
74* Global Variables *
75*********************************************************************************************************************************/
76#define EXIT_REASON(def, val, str) #def " - " #val " - " str
77#define EXIT_REASON_NIL() NULL
78/** Exit reason descriptions for VT-x, used to describe statistics. */
79static const char * const g_apszVTxExitReasons[MAX_EXITREASON_STAT] =
80{
81 EXIT_REASON(VMX_EXIT_XCPT_OR_NMI , 0, "Exception or non-maskable interrupt (NMI)."),
82 EXIT_REASON(VMX_EXIT_EXT_INT , 1, "External interrupt."),
83 EXIT_REASON(VMX_EXIT_TRIPLE_FAULT , 2, "Triple fault."),
84 EXIT_REASON(VMX_EXIT_INIT_SIGNAL , 3, "INIT signal."),
85 EXIT_REASON(VMX_EXIT_SIPI , 4, "Start-up IPI (SIPI)."),
86 EXIT_REASON(VMX_EXIT_IO_SMI_IRQ , 5, "I/O system-management interrupt (SMI)."),
87 EXIT_REASON(VMX_EXIT_SMI_IRQ , 6, "Other SMI."),
88 EXIT_REASON(VMX_EXIT_INT_WINDOW , 7, "Interrupt window."),
89 EXIT_REASON(VMX_EXIT_NMI_WINDOW , 8, "NMI window."),
90 EXIT_REASON(VMX_EXIT_TASK_SWITCH , 9, "Task switch."),
91 EXIT_REASON(VMX_EXIT_CPUID , 10, "CPUID instruction."),
92 EXIT_REASON(VMX_EXIT_GETSEC , 11, "GETSEC instrunction."),
93 EXIT_REASON(VMX_EXIT_HLT , 12, "HLT instruction."),
94 EXIT_REASON(VMX_EXIT_INVD , 13, "INVD instruction."),
95 EXIT_REASON(VMX_EXIT_INVLPG , 14, "INVLPG instruction."),
96 EXIT_REASON(VMX_EXIT_RDPMC , 15, "RDPMCinstruction."),
97 EXIT_REASON(VMX_EXIT_RDTSC , 16, "RDTSC instruction."),
98 EXIT_REASON(VMX_EXIT_RSM , 17, "RSM instruction in SMM."),
99 EXIT_REASON(VMX_EXIT_VMCALL , 18, "VMCALL instruction."),
100 EXIT_REASON(VMX_EXIT_VMCLEAR , 19, "VMCLEAR instruction."),
101 EXIT_REASON(VMX_EXIT_VMLAUNCH , 20, "VMLAUNCH instruction."),
102 EXIT_REASON(VMX_EXIT_VMPTRLD , 21, "VMPTRLD instruction."),
103 EXIT_REASON(VMX_EXIT_VMPTRST , 22, "VMPTRST instruction."),
104 EXIT_REASON(VMX_EXIT_VMREAD , 23, "VMREAD instruction."),
105 EXIT_REASON(VMX_EXIT_VMRESUME , 24, "VMRESUME instruction."),
106 EXIT_REASON(VMX_EXIT_VMWRITE , 25, "VMWRITE instruction."),
107 EXIT_REASON(VMX_EXIT_VMXOFF , 26, "VMXOFF instruction."),
108 EXIT_REASON(VMX_EXIT_VMXON , 27, "VMXON instruction."),
109 EXIT_REASON(VMX_EXIT_MOV_CRX , 28, "Control-register accesses."),
110 EXIT_REASON(VMX_EXIT_MOV_DRX , 29, "Debug-register accesses."),
111 EXIT_REASON(VMX_EXIT_PORT_IO , 30, "I/O instruction."),
112 EXIT_REASON(VMX_EXIT_RDMSR , 31, "RDMSR instruction."),
113 EXIT_REASON(VMX_EXIT_WRMSR , 32, "WRMSR instruction."),
114 EXIT_REASON(VMX_EXIT_ERR_INVALID_GUEST_STATE, 33, "VM-entry failure due to invalid guest state."),
115 EXIT_REASON(VMX_EXIT_ERR_MSR_LOAD , 34, "VM-entry failure due to MSR loading."),
116 EXIT_REASON_NIL(),
117 EXIT_REASON(VMX_EXIT_MWAIT , 36, "MWAIT instruction."),
118 EXIT_REASON(VMX_EXIT_MTF , 37, "Monitor Trap Flag."),
119 EXIT_REASON_NIL(),
120 EXIT_REASON(VMX_EXIT_MONITOR , 39, "MONITOR instruction."),
121 EXIT_REASON(VMX_EXIT_PAUSE , 40, "PAUSE instruction."),
122 EXIT_REASON(VMX_EXIT_ERR_MACHINE_CHECK , 41, "VM-entry failure due to machine-check."),
123 EXIT_REASON_NIL(),
124 EXIT_REASON(VMX_EXIT_TPR_BELOW_THRESHOLD , 43, "TPR below threshold (MOV to CR8)."),
125 EXIT_REASON(VMX_EXIT_APIC_ACCESS , 44, "APIC access."),
126 EXIT_REASON(VMX_EXIT_VIRTUALIZED_EOI , 45, "Virtualized EOI."),
127 EXIT_REASON(VMX_EXIT_XDTR_ACCESS , 46, "GDTR/IDTR access using LGDT/SGDT/LIDT/SIDT."),
128 EXIT_REASON(VMX_EXIT_TR_ACCESS , 47, "LDTR/TR access using LLDT/SLDT/LTR/STR."),
129 EXIT_REASON(VMX_EXIT_EPT_VIOLATION , 48, "EPT violation."),
130 EXIT_REASON(VMX_EXIT_EPT_MISCONFIG , 49, "EPT misconfiguration."),
131 EXIT_REASON(VMX_EXIT_INVEPT , 50, "INVEPT instruction."),
132 EXIT_REASON(VMX_EXIT_RDTSCP , 51, "RDTSCP instruction."),
133 EXIT_REASON(VMX_EXIT_PREEMPT_TIMER , 52, "VMX-preemption timer expired."),
134 EXIT_REASON(VMX_EXIT_INVVPID , 53, "INVVPID instruction."),
135 EXIT_REASON(VMX_EXIT_WBINVD , 54, "WBINVD instruction."),
136 EXIT_REASON(VMX_EXIT_XSETBV , 55, "XSETBV instruction."),
137 EXIT_REASON(VMX_EXIT_APIC_WRITE , 56, "APIC write completed to virtual-APIC page."),
138 EXIT_REASON(VMX_EXIT_RDRAND , 57, "RDRAND instruction."),
139 EXIT_REASON(VMX_EXIT_INVPCID , 58, "INVPCID instruction."),
140 EXIT_REASON(VMX_EXIT_VMFUNC , 59, "VMFUNC instruction."),
141 EXIT_REASON(VMX_EXIT_ENCLS , 60, "ENCLS instrunction."),
142 EXIT_REASON(VMX_EXIT_RDSEED , 61, "RDSEED instruction."),
143 EXIT_REASON(VMX_EXIT_PML_FULL , 62, "Page-modification log full."),
144 EXIT_REASON(VMX_EXIT_XSAVES , 63, "XSAVES instruction."),
145 EXIT_REASON(VMX_EXIT_XRSTORS , 64, "XRSTORS instruction.")
146};
147/** Array index of the last valid VT-x exit reason. */
148#define MAX_EXITREASON_VTX 64
149
150/** A partial list of Exit reason descriptions for AMD-V, used to describe
151 * statistics.
152 *
153 * @note AMD-V have annoyingly large gaps (e.g. \#NPF VMEXIT comes at 1024),
154 * this array doesn't contain the entire set of exit reasons, we
155 * handle them via hmSvmGetSpecialExitReasonDesc(). */
156static const char * const g_apszAmdVExitReasons[MAX_EXITREASON_STAT] =
157{
158 EXIT_REASON(SVM_EXIT_READ_CR0 , 0, "Read CR0."),
159 EXIT_REASON(SVM_EXIT_READ_CR1 , 1, "Read CR1."),
160 EXIT_REASON(SVM_EXIT_READ_CR2 , 2, "Read CR2."),
161 EXIT_REASON(SVM_EXIT_READ_CR3 , 3, "Read CR3."),
162 EXIT_REASON(SVM_EXIT_READ_CR4 , 4, "Read CR4."),
163 EXIT_REASON(SVM_EXIT_READ_CR5 , 5, "Read CR5."),
164 EXIT_REASON(SVM_EXIT_READ_CR6 , 6, "Read CR6."),
165 EXIT_REASON(SVM_EXIT_READ_CR7 , 7, "Read CR7."),
166 EXIT_REASON(SVM_EXIT_READ_CR8 , 8, "Read CR8."),
167 EXIT_REASON(SVM_EXIT_READ_CR9 , 9, "Read CR9."),
168 EXIT_REASON(SVM_EXIT_READ_CR10 , 10, "Read CR10."),
169 EXIT_REASON(SVM_EXIT_READ_CR11 , 11, "Read CR11."),
170 EXIT_REASON(SVM_EXIT_READ_CR12 , 12, "Read CR12."),
171 EXIT_REASON(SVM_EXIT_READ_CR13 , 13, "Read CR13."),
172 EXIT_REASON(SVM_EXIT_READ_CR14 , 14, "Read CR14."),
173 EXIT_REASON(SVM_EXIT_READ_CR15 , 15, "Read CR15."),
174 EXIT_REASON(SVM_EXIT_WRITE_CR0 , 16, "Write CR0."),
175 EXIT_REASON(SVM_EXIT_WRITE_CR1 , 17, "Write CR1."),
176 EXIT_REASON(SVM_EXIT_WRITE_CR2 , 18, "Write CR2."),
177 EXIT_REASON(SVM_EXIT_WRITE_CR3 , 19, "Write CR3."),
178 EXIT_REASON(SVM_EXIT_WRITE_CR4 , 20, "Write CR4."),
179 EXIT_REASON(SVM_EXIT_WRITE_CR5 , 21, "Write CR5."),
180 EXIT_REASON(SVM_EXIT_WRITE_CR6 , 22, "Write CR6."),
181 EXIT_REASON(SVM_EXIT_WRITE_CR7 , 23, "Write CR7."),
182 EXIT_REASON(SVM_EXIT_WRITE_CR8 , 24, "Write CR8."),
183 EXIT_REASON(SVM_EXIT_WRITE_CR9 , 25, "Write CR9."),
184 EXIT_REASON(SVM_EXIT_WRITE_CR10 , 26, "Write CR10."),
185 EXIT_REASON(SVM_EXIT_WRITE_CR11 , 27, "Write CR11."),
186 EXIT_REASON(SVM_EXIT_WRITE_CR12 , 28, "Write CR12."),
187 EXIT_REASON(SVM_EXIT_WRITE_CR13 , 29, "Write CR13."),
188 EXIT_REASON(SVM_EXIT_WRITE_CR14 , 30, "Write CR14."),
189 EXIT_REASON(SVM_EXIT_WRITE_CR15 , 31, "Write CR15."),
190 EXIT_REASON(SVM_EXIT_READ_DR0 , 32, "Read DR0."),
191 EXIT_REASON(SVM_EXIT_READ_DR1 , 33, "Read DR1."),
192 EXIT_REASON(SVM_EXIT_READ_DR2 , 34, "Read DR2."),
193 EXIT_REASON(SVM_EXIT_READ_DR3 , 35, "Read DR3."),
194 EXIT_REASON(SVM_EXIT_READ_DR4 , 36, "Read DR4."),
195 EXIT_REASON(SVM_EXIT_READ_DR5 , 37, "Read DR5."),
196 EXIT_REASON(SVM_EXIT_READ_DR6 , 38, "Read DR6."),
197 EXIT_REASON(SVM_EXIT_READ_DR7 , 39, "Read DR7."),
198 EXIT_REASON(SVM_EXIT_READ_DR8 , 40, "Read DR8."),
199 EXIT_REASON(SVM_EXIT_READ_DR9 , 41, "Read DR9."),
200 EXIT_REASON(SVM_EXIT_READ_DR10 , 42, "Read DR10."),
201 EXIT_REASON(SVM_EXIT_READ_DR11 , 43, "Read DR11"),
202 EXIT_REASON(SVM_EXIT_READ_DR12 , 44, "Read DR12."),
203 EXIT_REASON(SVM_EXIT_READ_DR13 , 45, "Read DR13."),
204 EXIT_REASON(SVM_EXIT_READ_DR14 , 46, "Read DR14."),
205 EXIT_REASON(SVM_EXIT_READ_DR15 , 47, "Read DR15."),
206 EXIT_REASON(SVM_EXIT_WRITE_DR0 , 48, "Write DR0."),
207 EXIT_REASON(SVM_EXIT_WRITE_DR1 , 49, "Write DR1."),
208 EXIT_REASON(SVM_EXIT_WRITE_DR2 , 50, "Write DR2."),
209 EXIT_REASON(SVM_EXIT_WRITE_DR3 , 51, "Write DR3."),
210 EXIT_REASON(SVM_EXIT_WRITE_DR4 , 52, "Write DR4."),
211 EXIT_REASON(SVM_EXIT_WRITE_DR5 , 53, "Write DR5."),
212 EXIT_REASON(SVM_EXIT_WRITE_DR6 , 54, "Write DR6."),
213 EXIT_REASON(SVM_EXIT_WRITE_DR7 , 55, "Write DR7."),
214 EXIT_REASON(SVM_EXIT_WRITE_DR8 , 56, "Write DR8."),
215 EXIT_REASON(SVM_EXIT_WRITE_DR9 , 57, "Write DR9."),
216 EXIT_REASON(SVM_EXIT_WRITE_DR10 , 58, "Write DR10."),
217 EXIT_REASON(SVM_EXIT_WRITE_DR11 , 59, "Write DR11."),
218 EXIT_REASON(SVM_EXIT_WRITE_DR12 , 60, "Write DR12."),
219 EXIT_REASON(SVM_EXIT_WRITE_DR13 , 61, "Write DR13."),
220 EXIT_REASON(SVM_EXIT_WRITE_DR14 , 62, "Write DR14."),
221 EXIT_REASON(SVM_EXIT_WRITE_DR15 , 63, "Write DR15."),
222 EXIT_REASON(SVM_EXIT_XCPT_0 , 64, "Exception 0 (#DE)."),
223 EXIT_REASON(SVM_EXIT_XCPT_1 , 65, "Exception 1 (#DB)."),
224 EXIT_REASON(SVM_EXIT_XCPT_2 , 66, "Exception 2 (#NMI)."),
225 EXIT_REASON(SVM_EXIT_XCPT_3 , 67, "Exception 3 (#BP)."),
226 EXIT_REASON(SVM_EXIT_XCPT_4 , 68, "Exception 4 (#OF)."),
227 EXIT_REASON(SVM_EXIT_XCPT_5 , 69, "Exception 5 (#BR)."),
228 EXIT_REASON(SVM_EXIT_XCPT_6 , 70, "Exception 6 (#UD)."),
229 EXIT_REASON(SVM_EXIT_XCPT_7 , 71, "Exception 7 (#NM)."),
230 EXIT_REASON(SVM_EXIT_XCPT_8 , 72, "Exception 8 (#DF)."),
231 EXIT_REASON(SVM_EXIT_XCPT_9 , 73, "Exception 9 (#CO_SEG_OVERRUN)."),
232 EXIT_REASON(SVM_EXIT_XCPT_10 , 74, "Exception 10 (#TS)."),
233 EXIT_REASON(SVM_EXIT_XCPT_11 , 75, "Exception 11 (#NP)."),
234 EXIT_REASON(SVM_EXIT_XCPT_12 , 76, "Exception 12 (#SS)."),
235 EXIT_REASON(SVM_EXIT_XCPT_13 , 77, "Exception 13 (#GP)."),
236 EXIT_REASON(SVM_EXIT_XCPT_14 , 78, "Exception 14 (#PF)."),
237 EXIT_REASON(SVM_EXIT_XCPT_15 , 79, "Exception 15 (0x0f)."),
238 EXIT_REASON(SVM_EXIT_XCPT_16 , 80, "Exception 16 (#MF)."),
239 EXIT_REASON(SVM_EXIT_XCPT_17 , 81, "Exception 17 (#AC)."),
240 EXIT_REASON(SVM_EXIT_XCPT_18 , 82, "Exception 18 (#MC)."),
241 EXIT_REASON(SVM_EXIT_XCPT_19 , 83, "Exception 19 (#XF)."),
242 EXIT_REASON(SVM_EXIT_XCPT_20 , 84, "Exception 20 (#VE)."),
243 EXIT_REASON(SVM_EXIT_XCPT_21 , 85, "Exception 22 (0x15)."),
244 EXIT_REASON(SVM_EXIT_XCPT_22 , 86, "Exception 22 (0x16)."),
245 EXIT_REASON(SVM_EXIT_XCPT_23 , 87, "Exception 23 (0x17)."),
246 EXIT_REASON(SVM_EXIT_XCPT_24 , 88, "Exception 24 (0x18)."),
247 EXIT_REASON(SVM_EXIT_XCPT_25 , 89, "Exception 25 (0x19)."),
248 EXIT_REASON(SVM_EXIT_XCPT_26 , 90, "Exception 26 (0x1A)."),
249 EXIT_REASON(SVM_EXIT_XCPT_27 , 91, "Exception 27 (0x1B)."),
250 EXIT_REASON(SVM_EXIT_XCPT_28 , 92, "Exception 28 (0x1C)."),
251 EXIT_REASON(SVM_EXIT_XCPT_29 , 93, "Exception 29 (0x1D)."),
252 EXIT_REASON(SVM_EXIT_XCPT_30 , 94, "Exception 30 (#SX)."),
253 EXIT_REASON(SVM_EXIT_XCPT_31 , 95, "Exception 31 (0x1F)."),
254 EXIT_REASON(SVM_EXIT_INTR , 96, "Physical maskable interrupt (host)."),
255 EXIT_REASON(SVM_EXIT_NMI , 97, "Physical non-maskable interrupt (host)."),
256 EXIT_REASON(SVM_EXIT_SMI , 98, "System management interrupt (host)."),
257 EXIT_REASON(SVM_EXIT_INIT , 99, "Physical INIT signal (host)."),
258 EXIT_REASON(SVM_EXIT_VINTR , 100, "Virtual interrupt-window exit."),
259 EXIT_REASON(SVM_EXIT_CR0_SEL_WRITE, 101, "Write to CR0 that changed any bits other than CR0.TS or CR0.MP."),
260 EXIT_REASON(SVM_EXIT_IDTR_READ , 102, "Read IDTR"),
261 EXIT_REASON(SVM_EXIT_GDTR_READ , 103, "Read GDTR"),
262 EXIT_REASON(SVM_EXIT_LDTR_READ , 104, "Read LDTR."),
263 EXIT_REASON(SVM_EXIT_TR_READ , 105, "Read TR."),
264 EXIT_REASON(SVM_EXIT_IDTR_WRITE , 106, "Write IDTR."),
265 EXIT_REASON(SVM_EXIT_GDTR_WRITE , 107, "Write GDTR."),
266 EXIT_REASON(SVM_EXIT_LDTR_WRITE , 108, "Write LDTR."),
267 EXIT_REASON(SVM_EXIT_TR_WRITE , 109, "Write TR."),
268 EXIT_REASON(SVM_EXIT_RDTSC , 110, "RDTSC instruction."),
269 EXIT_REASON(SVM_EXIT_RDPMC , 111, "RDPMC instruction."),
270 EXIT_REASON(SVM_EXIT_PUSHF , 112, "PUSHF instruction."),
271 EXIT_REASON(SVM_EXIT_POPF , 113, "POPF instruction."),
272 EXIT_REASON(SVM_EXIT_CPUID , 114, "CPUID instruction."),
273 EXIT_REASON(SVM_EXIT_RSM , 115, "RSM instruction."),
274 EXIT_REASON(SVM_EXIT_IRET , 116, "IRET instruction."),
275 EXIT_REASON(SVM_EXIT_SWINT , 117, "Software interrupt (INTn instructions)."),
276 EXIT_REASON(SVM_EXIT_INVD , 118, "INVD instruction."),
277 EXIT_REASON(SVM_EXIT_PAUSE , 119, "PAUSE instruction."),
278 EXIT_REASON(SVM_EXIT_HLT , 120, "HLT instruction."),
279 EXIT_REASON(SVM_EXIT_INVLPG , 121, "INVLPG instruction."),
280 EXIT_REASON(SVM_EXIT_INVLPGA , 122, "INVLPGA instruction."),
281 EXIT_REASON(SVM_EXIT_IOIO , 123, "IN/OUT accessing protected port."),
282 EXIT_REASON(SVM_EXIT_MSR , 124, "RDMSR or WRMSR access to protected MSR."),
283 EXIT_REASON(SVM_EXIT_TASK_SWITCH , 125, "Task switch."),
284 EXIT_REASON(SVM_EXIT_FERR_FREEZE , 126, "Legacy FPU handling enabled; CPU frozen in an x87/mmx instr. waiting for interrupt."),
285 EXIT_REASON(SVM_EXIT_SHUTDOWN , 127, "Shutdown."),
286 EXIT_REASON(SVM_EXIT_VMRUN , 128, "VMRUN instruction."),
287 EXIT_REASON(SVM_EXIT_VMMCALL , 129, "VMCALL instruction."),
288 EXIT_REASON(SVM_EXIT_VMLOAD , 130, "VMLOAD instruction."),
289 EXIT_REASON(SVM_EXIT_VMSAVE , 131, "VMSAVE instruction."),
290 EXIT_REASON(SVM_EXIT_STGI , 132, "STGI instruction."),
291 EXIT_REASON(SVM_EXIT_CLGI , 133, "CLGI instruction."),
292 EXIT_REASON(SVM_EXIT_SKINIT , 134, "SKINIT instruction."),
293 EXIT_REASON(SVM_EXIT_RDTSCP , 135, "RDTSCP instruction."),
294 EXIT_REASON(SVM_EXIT_ICEBP , 136, "ICEBP instruction."),
295 EXIT_REASON(SVM_EXIT_WBINVD , 137, "WBINVD instruction."),
296 EXIT_REASON(SVM_EXIT_MONITOR , 138, "MONITOR instruction."),
297 EXIT_REASON(SVM_EXIT_MWAIT , 139, "MWAIT instruction."),
298 EXIT_REASON(SVM_EXIT_MWAIT_ARMED , 140, "MWAIT instruction when armed."),
299 EXIT_REASON(SVM_EXIT_XSETBV , 141, "XSETBV instruction."),
300};
301/** Array index of the last valid AMD-V exit reason. */
302#define MAX_EXITREASON_AMDV 141
303
304/** Special exit reasons not covered in the array above. */
305#define SVM_EXIT_REASON_NPF EXIT_REASON(SVM_EXIT_NPF , 1024, "Nested Page Fault.")
306#define SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI EXIT_REASON(SVM_EXIT_AVIC_INCOMPLETE_IPI, 1025, "AVIC - Incomplete IPI delivery.")
307#define SVM_EXIT_REASON_AVIC_NOACCEL EXIT_REASON(SVM_EXIT_AVIC_NOACCEL , 1026, "AVIC - Unhandled register.")
308
309/**
310 * Gets the SVM exit reason if it's one of the reasons not present in the @c
311 * g_apszAmdVExitReasons array.
312 *
313 * @returns The exit reason or NULL if unknown.
314 * @param uExit The exit.
315 */
316DECLINLINE(const char *) hmSvmGetSpecialExitReasonDesc(uint16_t uExit)
317{
318 switch (uExit)
319 {
320 case SVM_EXIT_NPF: return SVM_EXIT_REASON_NPF;
321 case SVM_EXIT_AVIC_INCOMPLETE_IPI: return SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI;
322 case SVM_EXIT_AVIC_NOACCEL: return SVM_EXIT_REASON_AVIC_NOACCEL;
323 }
324 return EXIT_REASON_NIL();
325}
326#undef EXIT_REASON_NIL
327#undef EXIT_REASON
328
329/** @def HMVMX_REPORT_FEATURE
330 * Reports VT-x feature to the release log.
331 *
332 * @param allowed1 Mask of allowed feature bits.
333 * @param disallowed0 Mask of disallowed feature bits.
334 * @param strdesc The description string to report.
335 * @param featflag Mask of the feature to report.
336 */
337#define HMVMX_REPORT_FEATURE(allowed1, disallowed0, strdesc, featflag) \
338 do { \
339 if ((allowed1) & (featflag)) \
340 { \
341 if ((disallowed0) & (featflag)) \
342 LogRel(("HM: " strdesc " (must be set)\n")); \
343 else \
344 LogRel(("HM: " strdesc "\n")); \
345 } \
346 else \
347 LogRel(("HM: " strdesc " (must be cleared)\n")); \
348 } while (0)
349
350/** @def HMVMX_REPORT_ALLOWED_FEATURE
351 * Reports an allowed VT-x feature to the release log.
352 *
353 * @param allowed1 Mask of allowed feature bits.
354 * @param strdesc The description string to report.
355 * @param featflag Mask of the feature to report.
356 */
357#define HMVMX_REPORT_ALLOWED_FEATURE(allowed1, strdesc, featflag) \
358 do { \
359 if ((allowed1) & (featflag)) \
360 LogRel(("HM: " strdesc "\n")); \
361 else \
362 LogRel(("HM: " strdesc " not supported\n")); \
363 } while (0)
364
365/** @def HMVMX_REPORT_MSR_CAPABILITY
366 * Reports MSR feature capability.
367 *
368 * @param msrcaps Mask of MSR feature bits.
369 * @param strdesc The description string to report.
370 * @param cap Mask of the feature to report.
371 */
372#define HMVMX_REPORT_MSR_CAPABILITY(msrcaps, strdesc, cap) \
373 do { \
374 if ((msrcaps) & (cap)) \
375 LogRel(("HM: " strdesc "\n")); \
376 } while (0)
377
378
379/*********************************************************************************************************************************
380* Internal Functions *
381*********************************************************************************************************************************/
382static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
383static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
384static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
385static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
386static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
387static int hmR3InitCPU(PVM pVM);
388static int hmR3InitFinalizeR0(PVM pVM);
389static int hmR3InitFinalizeR0Intel(PVM pVM);
390static int hmR3InitFinalizeR0Amd(PVM pVM);
391static int hmR3TermCPU(PVM pVM);
392
393
394
395/**
396 * Initializes the HM.
397 *
398 * This is the very first component to really do init after CFGM so that we can
399 * establish the predominat execution engine for the VM prior to initializing
400 * other modules. It takes care of NEM initialization if needed (HM disabled or
401 * not available in HW).
402 *
403 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
404 * hypervisor API via NEM, and then back on raw-mode if that isn't available
405 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
406 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
407 * X, OS/2 and others).
408 *
409 * Note that a lot of the set up work is done in ring-0 and thus postponed till
410 * the ring-3 and ring-0 callback to HMR3InitCompleted.
411 *
412 * @returns VBox status code.
413 * @param pVM The cross context VM structure.
414 *
415 * @remarks Be careful with what we call here, since most of the VMM components
416 * are uninitialized.
417 */
418VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
419{
420 LogFlow(("HMR3Init\n"));
421
422 /*
423 * Assert alignment and sizes.
424 */
425 AssertCompileMemberAlignment(VM, hm.s, 32);
426 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
427
428 /*
429 * Register the saved state data unit.
430 */
431 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
432 NULL, NULL, NULL,
433 NULL, hmR3Save, NULL,
434 NULL, hmR3Load, NULL);
435 if (RT_FAILURE(rc))
436 return rc;
437
438 /*
439 * Register info handlers.
440 */
441 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
442 AssertRCReturn(rc, rc);
443
444 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
445 DBGFINFO_FLAGS_ALL_EMTS);
446 AssertRCReturn(rc, rc);
447
448 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
449 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
450 AssertRCReturn(rc, rc);
451
452 /*
453 * Read configuration.
454 */
455 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
456
457 /*
458 * Validate the HM settings.
459 */
460 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
461 "HMForced"
462 "|UseNEMInstead"
463 "|FallbackToNEM"
464 "|EnableNestedPaging"
465 "|EnableUX"
466 "|EnableLargePages"
467 "|EnableVPID"
468 "|IBPBOnVMExit"
469 "|IBPBOnVMEntry"
470 "|SpecCtrlByHost"
471 "|TPRPatchingEnabled"
472 "|64bitEnabled"
473 "|Exclusive"
474 "|MaxResumeLoops"
475 "|VmxPleGap"
476 "|VmxPleWindow"
477 "|UseVmxPreemptTimer"
478 "|SvmPauseFilter"
479 "|SvmPauseFilterThreshold"
480 "|SvmVirtVmsaveVmload"
481 "|SvmVGif",
482 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
483 if (RT_FAILURE(rc))
484 return rc;
485
486 /** @cfgm{/HM/HMForced, bool, false}
487 * Forces hardware virtualization, no falling back on raw-mode. HM must be
488 * enabled, i.e. /HMEnabled must be true. */
489 bool fHMForced;
490#ifdef VBOX_WITH_RAW_MODE
491 rc = CFGMR3QueryBoolDef(pCfgHm, "HMForced", &fHMForced, false);
492 AssertRCReturn(rc, rc);
493 AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
494 VERR_INVALID_PARAMETER);
495# if defined(RT_OS_DARWIN)
496 if (pVM->fHMEnabled)
497 fHMForced = true;
498# endif
499 AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
500 VERR_INVALID_PARAMETER);
501 if (pVM->cCpus > 1)
502 fHMForced = true;
503#else /* !VBOX_WITH_RAW_MODE */
504 AssertRelease(pVM->fHMEnabled);
505 fHMForced = true;
506#endif /* !VBOX_WITH_RAW_MODE */
507
508 /** @cfgm{/HM/UseNEMInstead, bool, true}
509 * Don't use HM, use NEM instead. */
510 bool fUseNEMInstead = false;
511 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
512 AssertRCReturn(rc, rc);
513 if (fUseNEMInstead && pVM->fHMEnabled)
514 {
515 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
516 pVM->fHMEnabled = false;
517 }
518
519 /** @cfgm{/HM/FallbackToNEM, bool, true}
520 * Enables fallback on NEM. */
521 bool fFallbackToNEM = true;
522 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
523 AssertRCReturn(rc, rc);
524
525 /** @cfgm{/HM/EnableNestedPaging, bool, false}
526 * Enables nested paging (aka extended page tables). */
527 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
528 AssertRCReturn(rc, rc);
529
530 /** @cfgm{/HM/EnableUX, bool, true}
531 * Enables the VT-x unrestricted execution feature. */
532 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
533 AssertRCReturn(rc, rc);
534
535 /** @cfgm{/HM/EnableLargePages, bool, false}
536 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
537 * page table walking and maybe better TLB hit rate in some cases. */
538 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
539 AssertRCReturn(rc, rc);
540
541 /** @cfgm{/HM/EnableVPID, bool, false}
542 * Enables the VT-x VPID feature. */
543 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
544 AssertRCReturn(rc, rc);
545
546 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
547 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
548 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
549 AssertRCReturn(rc, rc);
550
551 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
552 * Enables AMD64 cpu features.
553 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
554 * already have the support. */
555#ifdef VBOX_ENABLE_64_BITS_GUESTS
556 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
557 AssertLogRelRCReturn(rc, rc);
558#else
559 pVM->hm.s.fAllow64BitGuests = false;
560#endif
561
562 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
563 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
564 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
565 * latest PAUSE instruction to be start of a new PAUSE loop.
566 */
567 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
568 AssertRCReturn(rc, rc);
569
570 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
571 * The pause-filter exiting window in TSC ticks. When the number of ticks
572 * between the current PAUSE instruction and first PAUSE of a loop exceeds
573 * VmxPleWindow, a VM-exit is triggered.
574 *
575 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
576 */
577 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
578 AssertRCReturn(rc, rc);
579
580 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
581 * A counter that is decrement each time a PAUSE instruction is executed by the
582 * guest. When the counter is 0, a \#VMEXIT is triggered.
583 *
584 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
585 */
586 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
587 AssertRCReturn(rc, rc);
588
589 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
590 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
591 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
592 * PauseFilter count is reset to its initial value. However, if PAUSE is
593 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
594 * be triggered.
595 *
596 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
597 * activated.
598 */
599 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
600 AssertRCReturn(rc, rc);
601
602 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
603 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
604 * available. */
605 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
606 AssertRCReturn(rc, rc);
607
608 /** @cfgm{/HM/SvmVGif, bool, true}
609 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
610 * if it's available. */
611 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
612 AssertRCReturn(rc, rc);
613
614 /** @cfgm{/HM/Exclusive, bool}
615 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
616 * global init for each host CPU. If false, we do local init each time we wish
617 * to execute guest code.
618 *
619 * On Windows, default is false due to the higher risk of conflicts with other
620 * hypervisors.
621 *
622 * On Mac OS X, this setting is ignored since the code does not handle local
623 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
624 */
625#if defined(RT_OS_DARWIN)
626 pVM->hm.s.fGlobalInit = true;
627#else
628 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
629# if defined(RT_OS_WINDOWS)
630 false
631# else
632 true
633# endif
634 );
635 AssertLogRelRCReturn(rc, rc);
636#endif
637
638 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
639 * The number of times to resume guest execution before we forcibly return to
640 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
641 * determines the default value. */
642 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
643 AssertLogRelRCReturn(rc, rc);
644
645 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
646 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
647 * available. */
648 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
649 AssertLogRelRCReturn(rc, rc);
650
651 /** @cfgm{/HM/IBPBOnVMExit, bool}
652 * Costly paranoia setting. */
653 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
654 AssertLogRelRCReturn(rc, rc);
655
656 /** @cfgm{/HM/IBPBOnVMEntry, bool}
657 * Costly paranoia setting. */
658 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
659 AssertLogRelRCReturn(rc, rc);
660
661 /** @cfgm{/HM/SpecCtrlByHost, bool}
662 * Another expensive paranoia setting. */
663 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
664 AssertLogRelRCReturn(rc, rc);
665
666 /*
667 * Check if VT-x or AMD-v support according to the users wishes.
668 */
669 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
670 * VERR_SVM_IN_USE. */
671 if (pVM->fHMEnabled)
672 {
673 uint32_t fCaps;
674 rc = SUPR3QueryVTCaps(&fCaps);
675 if (RT_SUCCESS(rc))
676 {
677 if (fCaps & SUPVTCAPS_AMD_V)
678 {
679 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
680 pVM->hm.s.svm.fSupported = true;
681 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
682 }
683 else if (fCaps & SUPVTCAPS_VT_X)
684 {
685 const char *pszWhy;
686 rc = SUPR3QueryVTxSupported(&pszWhy);
687 if (RT_SUCCESS(rc))
688 {
689 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
690 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
691 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
692 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
693 pVM->hm.s.vmx.fSupported = true;
694 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
695 }
696 else
697 {
698 /*
699 * Before failing, try fallback to NEM if we're allowed to do that.
700 */
701 pVM->fHMEnabled = false;
702 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
703 if (fFallbackToNEM)
704 {
705 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
706 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
707
708 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
709 if ( RT_SUCCESS(rc2)
710 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
711 rc = VINF_SUCCESS;
712 }
713 if (RT_FAILURE(rc))
714 {
715 if (fHMForced)
716 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
717
718 /* Fall back to raw-mode. */
719 LogRel(("HM: HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x - %s\n", pszWhy));
720 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
721 }
722 }
723 }
724 else
725 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
726 VERR_INTERNAL_ERROR_5);
727
728 /*
729 * Do we require a little bit or raw-mode for 64-bit guest execution?
730 */
731 pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
732 && pVM->fHMEnabled
733 && pVM->hm.s.fAllow64BitGuests;
734
735 /*
736 * Disable nested paging and unrestricted guest execution now if they're
737 * configured so that CPUM can make decisions based on our configuration.
738 */
739 Assert(!pVM->hm.s.fNestedPaging);
740 if (pVM->hm.s.fAllowNestedPaging)
741 {
742 if (fCaps & SUPVTCAPS_NESTED_PAGING)
743 pVM->hm.s.fNestedPaging = true;
744 else
745 pVM->hm.s.fAllowNestedPaging = false;
746 }
747
748 if (fCaps & SUPVTCAPS_VT_X)
749 {
750 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
751 if (pVM->hm.s.vmx.fAllowUnrestricted)
752 {
753 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
754 && pVM->hm.s.fNestedPaging)
755 pVM->hm.s.vmx.fUnrestrictedGuest = true;
756 else
757 pVM->hm.s.vmx.fAllowUnrestricted = false;
758 }
759 }
760 }
761 else
762 {
763 const char *pszMsg;
764 switch (rc)
765 {
766 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
767 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
768 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
769 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
770 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
771 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
772 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
773 default:
774 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
775 }
776
777 /*
778 * Before failing, try fallback to NEM if we're allowed to do that.
779 */
780 pVM->fHMEnabled = false;
781 if (fFallbackToNEM)
782 {
783 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
784 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
785 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
786 if ( RT_SUCCESS(rc2)
787 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
788 rc = VINF_SUCCESS;
789 }
790 if (RT_FAILURE(rc))
791 {
792 if (fHMForced)
793 return VM_SET_ERROR(pVM, rc, pszMsg);
794
795 LogRel(("HM: HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
796 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
797 }
798 }
799 }
800 else
801 {
802 /*
803 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
804 */
805 if (!fUseNEMInstead)
806 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
807 else
808 {
809 rc = NEMR3Init(pVM, false /*fFallback*/, true);
810 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
811 if (RT_FAILURE(rc))
812 return rc;
813 }
814 }
815
816 return VINF_SUCCESS;
817}
818
819
820/**
821 * Initializes the per-VCPU HM.
822 *
823 * @returns VBox status code.
824 * @param pVM The cross context VM structure.
825 */
826static int hmR3InitCPU(PVM pVM)
827{
828 LogFlow(("HMR3InitCPU\n"));
829
830 if (!HMIsEnabled(pVM))
831 return VINF_SUCCESS;
832
833 for (VMCPUID i = 0; i < pVM->cCpus; i++)
834 {
835 PVMCPU pVCpu = &pVM->aCpus[i];
836 pVCpu->hm.s.fActive = false;
837 }
838
839#ifdef VBOX_WITH_STATISTICS
840 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
841 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
842 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8",STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
843 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC",STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
844 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
845#endif
846
847 /*
848 * Statistics.
849 */
850 for (VMCPUID i = 0; i < pVM->cCpus; i++)
851 {
852 PVMCPU pVCpu = &pVM->aCpus[i];
853 int rc;
854
855#ifdef VBOX_WITH_STATISTICS
856 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
857 "Profiling of RTMpPokeCpu",
858 "/PROF/CPU%d/HM/Poke", i);
859 AssertRC(rc);
860 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
861 "Profiling of poke wait",
862 "/PROF/CPU%d/HM/PokeWait", i);
863 AssertRC(rc);
864 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
865 "Profiling of poke wait when RTMpPokeCpu fails",
866 "/PROF/CPU%d/HM/PokeWaitFailed", i);
867 AssertRC(rc);
868 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
869 "Profiling of VMXR0RunGuestCode entry",
870 "/PROF/CPU%d/HM/StatEntry", i);
871 AssertRC(rc);
872 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit1, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
873 "Profiling of VMXR0RunGuestCode exit part 1",
874 "/PROF/CPU%d/HM/SwitchFromGC_1", i);
875 AssertRC(rc);
876 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit2, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
877 "Profiling of VMXR0RunGuestCode exit part 2",
878 "/PROF/CPU%d/HM/SwitchFromGC_2", i);
879 AssertRC(rc);
880
881 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
882 "I/O",
883 "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
884 AssertRC(rc);
885 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
886 "MOV CRx",
887 "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
888 AssertRC(rc);
889 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
890 "Exceptions, NMIs",
891 "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
892 AssertRC(rc);
893
894 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
895 "Profiling of VMXR0LoadGuestState",
896 "/PROF/CPU%d/HM/StatLoadGuestState", i);
897 AssertRC(rc);
898 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestFpuState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
899 "Profiling of CPUMR0LoadGuestFPU",
900 "/PROF/CPU%d/HM/StatLoadGuestFpuState", i);
901 AssertRC(rc);
902 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
903 "Profiling of VMLAUNCH/VMRESUME.",
904 "/PROF/CPU%d/HM/InGC", i);
905 AssertRC(rc);
906
907# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
908 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
909 STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
910 "/PROF/CPU%d/HM/Switcher3264", i);
911 AssertRC(rc);
912# endif
913
914# ifdef HM_PROFILE_EXIT_DISPATCH
915 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
916 STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
917 "/PROF/CPU%d/HM/ExitDispatch", i);
918 AssertRC(rc);
919# endif
920
921#endif
922# define HM_REG_COUNTER(a, b, desc) \
923 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
924 AssertRC(rc);
925
926#ifdef VBOX_WITH_STATISTICS
927 HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Exits (total).");
928 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
929 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
930 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
931 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
932 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
933 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
934 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
935 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
936 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
937 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
938 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
939 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
940 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
941 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
942 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
943 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvlpg, "/HM/CPU%d/Exit/Instr/Invlpg", "Guest attempted to execute INVLPG.");
944 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvd, "/HM/CPU%d/Exit/Instr/Invd", "Guest attempted to execute INVD.");
945 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWbinvd, "/HM/CPU%d/Exit/Instr/Wbinvd", "Guest attempted to execute WBINVD.");
946 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPause, "/HM/CPU%d/Exit/Instr/Pause", "Guest attempted to execute PAUSE.");
947 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCpuid, "/HM/CPU%d/Exit/Instr/Cpuid", "Guest attempted to execute CPUID.");
948 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtsc, "/HM/CPU%d/Exit/Instr/Rdtsc", "Guest attempted to execute RDTSC.");
949 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtscp, "/HM/CPU%d/Exit/Instr/Rdtscp", "Guest attempted to execute RDTSCP.");
950 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdpmc, "/HM/CPU%d/Exit/Instr/Rdpmc", "Guest attempted to execute RDPMC.");
951 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdrand, "/HM/CPU%d/Exit/Instr/Rdrand", "Guest attempted to execute RDRAND.");
952 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "Guest attempted to execute RDMSR.");
953 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "Guest attempted to execute WRMSR.");
954 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "Guest attempted to execute MWAIT.");
955 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "Guest attempted to execute MONITOR.");
956 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR/Write", "Guest attempted to write a debug register.");
957 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR/Read", "Guest attempted to read a debug register.");
958 HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "Guest attempted to execute CLTS.");
959 HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "Guest attempted to execute LMSW.");
960 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "Guest attempted to execute CLI.");
961 HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "Guest attempted to execute STI.");
962 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "Guest attempted to execute PUSHF.");
963 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "Guest attempted to execute POPF.");
964 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "Guest attempted to execute IRET.");
965 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "Guest attempted to execute INT.");
966 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "Guest attempted to execute HLT.");
967 HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "Guest attempted to access descriptor table register (GDTR, IDTR, LDTR).");
968 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write.");
969 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read.");
970 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write.");
971 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read.");
972 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again.");
973 HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Host interrupt received.");
974#endif
975 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context.");
976#ifdef VBOX_WITH_STATISTICS
977 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
978 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
979 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Guest attempted a task switch.");
980 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag.");
981 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
982
983 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchTprMaskedIrq, "/HM/CPU%d/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
984 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
985 HM_REG_COUNTER(&pVCpu->hm.s.StatPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
986 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
987 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
988 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
989 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchMaxResumeLoops, "/HM/CPU%d/Switch/MaxResumeToR3", "Maximum VMRESUME inner-loop counter reached.");
990 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHltToR3, "/HM/CPU%d/Switch/HltToR3", "HLT causing us to go to ring-3.");
991 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchApicAccessToR3, "/HM/CPU%d/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
992#endif
993 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreempt, "/HM/CPU%d/Switch/Preempting", "EMT has been preempted while in HM context.");
994#ifdef VBOX_WITH_STATISTICS
995 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreemptSaveHostState, "/HM/CPU%d/Switch/SaveHostState", "Preemption caused us to resave host state.");
996
997 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
998 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
999 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception (or #DF) caused due to event injection.");
1000 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingInterpret, "/HM/CPU%d/EventInject/PendingInterpret", "Falling to interpreter for handling exception caused due to event injection.");
1001
1002 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
1003 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
1004 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
1005 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
1006 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
1007 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
1008 HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
1009 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
1010 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
1011 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
1012 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
1013 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
1014 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
1015 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
1016
1017 HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect.");
1018 HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
1019 HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses.");
1020
1021 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
1022 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
1023 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
1024
1025 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadMinimal, "/HM/CPU%d/Load/Minimal", "VM-entry loading minimal guest-state.");
1026 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadFull, "/HM/CPU%d/Load/Full", "VM-entry loading the full guest-state.");
1027 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadFull, "/HM/CPU%d/Load/GuestFpu", "VM-entry loading the guest-FPU state.");
1028
1029 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
1030 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
1031 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
1032 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
1033 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
1034 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadLdt, "/HM/CPU%d/VMXCheck/LDT", "Could not use VMX due to unsuitable LDT.");
1035 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadTr, "/HM/CPU%d/VMXCheck/TR", "Could not use VMX due to unsuitable TR.");
1036 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
1037
1038#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1039 HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
1040 HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
1041#endif
1042
1043 for (unsigned j = 0; j < RT_ELEMENTS(pVCpu->hm.s.StatExitCRxWrite); j++)
1044 {
1045 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxWrite[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1046 STAMUNIT_OCCURENCES, "Profiling of CRx writes",
1047 "/HM/CPU%d/Exit/Instr/CR/Write/%x", i, j);
1048 AssertRC(rc);
1049 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxRead[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1050 STAMUNIT_OCCURENCES, "Profiling of CRx reads",
1051 "/HM/CPU%d/Exit/Instr/CR/Read/%x", i, j);
1052 AssertRC(rc);
1053 }
1054
1055#undef HM_REG_COUNTER
1056
1057 const char *const *papszDesc = ASMIsIntelCpu() || ASMIsViaCentaurCpu() ? &g_apszVTxExitReasons[0]
1058 : &g_apszAmdVExitReasons[0];
1059
1060 /*
1061 * Guest Exit reason stats.
1062 */
1063 pVCpu->hm.s.paStatExitReason = NULL;
1064 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
1065 (void **)&pVCpu->hm.s.paStatExitReason);
1066 AssertRCReturn(rc, rc);
1067 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1068 {
1069 if (papszDesc[j])
1070 {
1071 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1072 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/Exit/Reason/%02x", i, j);
1073 AssertRCReturn(rc, rc);
1074 }
1075 }
1076 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1077 "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
1078 AssertRCReturn(rc, rc);
1079 pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
1080# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1081 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1082# else
1083 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
1084# endif
1085
1086#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1087 /*
1088 * Nested-guest Exit reason stats.
1089 */
1090 pVCpu->hm.s.paStatNestedExitReason = NULL;
1091 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM,
1092 (void **)&pVCpu->hm.s.paStatNestedExitReason);
1093 AssertRCReturn(rc, rc);
1094 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1095 {
1096 if (papszDesc[j])
1097 {
1098 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1099 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/NestedExit/Reason/%02x", i, j);
1100 AssertRC(rc);
1101 }
1102 }
1103 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatNestedExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1104 STAMUNIT_OCCURENCES, "Nested page fault", "/HM/CPU%d/NestedExit/Reason/#NPF", i);
1105 AssertRCReturn(rc, rc);
1106 pVCpu->hm.s.paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatNestedExitReason);
1107# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1108 Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1109# else
1110 Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR);
1111# endif
1112#endif
1113
1114 /*
1115 * Injected events stats.
1116 */
1117 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
1118 AssertRCReturn(rc, rc);
1119 pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1120# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1121 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1122# else
1123 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
1124# endif
1125 for (unsigned j = 0; j < 255; j++)
1126 {
1127 STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1128 "Injected event.",
1129 (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j);
1130 }
1131
1132#endif /* VBOX_WITH_STATISTICS */
1133 }
1134
1135#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1136 /*
1137 * Magic marker for searching in crash dumps.
1138 */
1139 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1140 {
1141 PVMCPU pVCpu = &pVM->aCpus[i];
1142
1143 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1144 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1145 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1146 }
1147#endif
1148
1149 return VINF_SUCCESS;
1150}
1151
1152
1153/**
1154 * Called when a init phase has completed.
1155 *
1156 * @returns VBox status code.
1157 * @param pVM The cross context VM structure.
1158 * @param enmWhat The phase that completed.
1159 */
1160VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1161{
1162 switch (enmWhat)
1163 {
1164 case VMINITCOMPLETED_RING3:
1165 return hmR3InitCPU(pVM);
1166 case VMINITCOMPLETED_RING0:
1167 return hmR3InitFinalizeR0(pVM);
1168 default:
1169 return VINF_SUCCESS;
1170 }
1171}
1172
1173
1174/**
1175 * Turns off normal raw mode features.
1176 *
1177 * @param pVM The cross context VM structure.
1178 */
1179static void hmR3DisableRawMode(PVM pVM)
1180{
1181 /* Reinit the paging mode to force the new shadow mode. */
1182 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1183 {
1184 PVMCPU pVCpu = &pVM->aCpus[i];
1185
1186 PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1187 }
1188}
1189
1190
1191/**
1192 * Initialize VT-x or AMD-V.
1193 *
1194 * @returns VBox status code.
1195 * @param pVM The cross context VM structure.
1196 */
1197static int hmR3InitFinalizeR0(PVM pVM)
1198{
1199 int rc;
1200
1201 if (!HMIsEnabled(pVM))
1202 return VINF_SUCCESS;
1203
1204 /*
1205 * Hack to allow users to work around broken BIOSes that incorrectly set
1206 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1207 */
1208 if ( !pVM->hm.s.vmx.fSupported
1209 && !pVM->hm.s.svm.fSupported
1210 && pVM->hm.s.lLastError == VERR_SVM_IN_USE /* implies functional AMD-V */
1211 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1212 {
1213 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1214 pVM->hm.s.svm.fSupported = true;
1215 pVM->hm.s.svm.fIgnoreInUseError = true;
1216 pVM->hm.s.lLastError = VINF_SUCCESS;
1217 }
1218
1219 /*
1220 * Report ring-0 init errors.
1221 */
1222 if ( !pVM->hm.s.vmx.fSupported
1223 && !pVM->hm.s.svm.fSupported)
1224 {
1225 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.lLastError));
1226 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1227 switch (pVM->hm.s.lLastError)
1228 {
1229 case VERR_VMX_IN_VMX_ROOT_MODE:
1230 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1231 case VERR_VMX_NO_VMX:
1232 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1233 case VERR_VMX_MSR_VMX_DISABLED:
1234 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1235 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1236 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1237 case VERR_VMX_MSR_LOCKING_FAILED:
1238 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1239 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1240 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1241 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1242 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1243
1244 case VERR_SVM_IN_USE:
1245 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1246 case VERR_SVM_NO_SVM:
1247 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1248 case VERR_SVM_DISABLED:
1249 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1250 }
1251 return VMSetError(pVM, pVM->hm.s.lLastError, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.lLastError);
1252 }
1253
1254 /*
1255 * Enable VT-x or AMD-V on all host CPUs.
1256 */
1257 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1258 if (RT_FAILURE(rc))
1259 {
1260 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1261 HMR3CheckError(pVM, rc);
1262 return rc;
1263 }
1264
1265 /*
1266 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1267 * (Main should have taken care of this already)
1268 */
1269 if (!PDMHasIoApic(pVM))
1270 {
1271 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1272 pVM->hm.s.fTprPatchingAllowed = false;
1273 }
1274
1275 /*
1276 * Sync options.
1277 */
1278 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1279 * That will require a little bit of work, of course. */
1280 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1281 {
1282 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1283 PCPUMCTX pCpuCtx = CPUMQueryGuestCtxPtr(pVCpu);
1284 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1285 if (pVM->cpum.ro.HostFeatures.fIbpb)
1286 {
1287 if (pVM->hm.s.fIbpbOnVmExit)
1288 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1289 if (pVM->hm.s.fIbpbOnVmEntry)
1290 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1291 }
1292 if (iCpu == 0)
1293 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool)\n",
1294 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry));
1295 }
1296
1297 /*
1298 * Do the vendor specific initialization
1299 *
1300 * Note! We disable release log buffering here since we're doing relatively
1301 * lot of logging and doesn't want to hit the disk with each LogRel
1302 * statement.
1303 */
1304 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1305 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1306 if (pVM->hm.s.vmx.fSupported)
1307 rc = hmR3InitFinalizeR0Intel(pVM);
1308 else
1309 rc = hmR3InitFinalizeR0Amd(pVM);
1310 LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL"));
1311 RTLogRelSetBuffering(fOldBuffered);
1312 pVM->hm.s.fInitialized = true;
1313
1314 return rc;
1315}
1316
1317
1318/**
1319 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1320 */
1321static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1322{
1323 NOREF(pVM);
1324 NOREF(pvAllocation);
1325 NOREF(GCPhysAllocation);
1326}
1327
1328
1329/**
1330 * Finish VT-x initialization (after ring-0 init).
1331 *
1332 * @returns VBox status code.
1333 * @param pVM The cross context VM structure.
1334 */
1335static int hmR3InitFinalizeR0Intel(PVM pVM)
1336{
1337 int rc;
1338
1339 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1340 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatureCtrl != 0, VERR_HM_IPE_4);
1341
1342 uint64_t val;
1343 uint64_t zap;
1344
1345 LogRel(("HM: Using VT-x implementation 2.0\n"));
1346 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1347 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostEfer));
1348 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1349 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1350 if (!(pVM->hm.s.vmx.Msrs.u64FeatureCtrl & MSR_IA32_FEATURE_CONTROL_LOCK))
1351 LogRel(("HM: IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1352 LogRel(("HM: MSR_IA32_VMX_BASIC_INFO = %#RX64\n", pVM->hm.s.vmx.Msrs.u64BasicInfo));
1353 LogRel(("HM: VMCS id = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1354 LogRel(("HM: VMCS size = %u bytes\n", MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1355 LogRel(("HM: VMCS physical address limit = %s\n", MSR_IA32_VMX_BASIC_INFO_VMCS_PHYS_WIDTH(pVM->hm.s.vmx.Msrs.u64BasicInfo) ? "< 4 GB" : "None"));
1356 LogRel(("HM: VMCS memory type = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_MEM_TYPE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1357 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1358 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1359 LogRel(("HM: Supports true capability MSRs = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_TRUE_CONTROLS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1360 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1361
1362 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxPinCtls.u));
1363 val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1;
1364 zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0;
1365 HMVMX_REPORT_FEATURE(val, zap, "EXT_INT_EXIT", VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT);
1366 HMVMX_REPORT_FEATURE(val, zap, "NMI_EXIT", VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT);
1367 HMVMX_REPORT_FEATURE(val, zap, "VIRTUAL_NMI", VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI);
1368 HMVMX_REPORT_FEATURE(val, zap, "PREEMPT_TIMER", VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
1369 HMVMX_REPORT_FEATURE(val, zap, "POSTED_INTR", VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
1370
1371 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls.u));
1372 val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
1373 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
1374 HMVMX_REPORT_FEATURE(val, zap, "INT_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
1375 HMVMX_REPORT_FEATURE(val, zap, "USE_TSC_OFFSETTING", VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING);
1376 HMVMX_REPORT_FEATURE(val, zap, "HLT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
1377 HMVMX_REPORT_FEATURE(val, zap, "INVLPG_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
1378 HMVMX_REPORT_FEATURE(val, zap, "MWAIT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT);
1379 HMVMX_REPORT_FEATURE(val, zap, "RDPMC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
1380 HMVMX_REPORT_FEATURE(val, zap, "RDTSC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
1381 HMVMX_REPORT_FEATURE(val, zap, "CR3_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT);
1382 HMVMX_REPORT_FEATURE(val, zap, "CR3_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
1383 HMVMX_REPORT_FEATURE(val, zap, "CR8_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT);
1384 HMVMX_REPORT_FEATURE(val, zap, "CR8_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT);
1385 HMVMX_REPORT_FEATURE(val, zap, "USE_TPR_SHADOW", VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
1386 HMVMX_REPORT_FEATURE(val, zap, "NMI_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
1387 HMVMX_REPORT_FEATURE(val, zap, "MOV_DR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
1388 HMVMX_REPORT_FEATURE(val, zap, "UNCOND_IO_EXIT", VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT);
1389 HMVMX_REPORT_FEATURE(val, zap, "USE_IO_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_IO_BITMAPS);
1390 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_TRAP_FLAG", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
1391 HMVMX_REPORT_FEATURE(val, zap, "USE_MSR_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
1392 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT);
1393 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
1394 HMVMX_REPORT_FEATURE(val, zap, "USE_SECONDARY_EXEC_CTRL", VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL);
1395 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1396 {
1397 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.u));
1398 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
1399 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0;
1400 HMVMX_REPORT_FEATURE(val, zap, "VIRT_APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC);
1401 HMVMX_REPORT_FEATURE(val, zap, "EPT", VMX_VMCS_CTRL_PROC_EXEC2_EPT);
1402 HMVMX_REPORT_FEATURE(val, zap, "DESCRIPTOR_TABLE_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT);
1403 HMVMX_REPORT_FEATURE(val, zap, "RDTSCP", VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP);
1404 HMVMX_REPORT_FEATURE(val, zap, "VIRT_X2APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_X2APIC);
1405 HMVMX_REPORT_FEATURE(val, zap, "VPID", VMX_VMCS_CTRL_PROC_EXEC2_VPID);
1406 HMVMX_REPORT_FEATURE(val, zap, "WBINVD_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
1407 HMVMX_REPORT_FEATURE(val, zap, "UNRESTRICTED_GUEST", VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST);
1408 HMVMX_REPORT_FEATURE(val, zap, "APIC_REG_VIRT", VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
1409 HMVMX_REPORT_FEATURE(val, zap, "VIRT_INTR_DELIVERY", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
1410 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_LOOP_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT);
1411 HMVMX_REPORT_FEATURE(val, zap, "RDRAND_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
1412 HMVMX_REPORT_FEATURE(val, zap, "INVPCID", VMX_VMCS_CTRL_PROC_EXEC2_INVPCID);
1413 HMVMX_REPORT_FEATURE(val, zap, "VMFUNC", VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC);
1414 HMVMX_REPORT_FEATURE(val, zap, "VMCS_SHADOWING", VMX_VMCS_CTRL_PROC_EXEC2_VMCS_SHADOWING);
1415 HMVMX_REPORT_FEATURE(val, zap, "ENCLS_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_ENCLS_EXIT);
1416 HMVMX_REPORT_FEATURE(val, zap, "RDSEED_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
1417 HMVMX_REPORT_FEATURE(val, zap, "PML", VMX_VMCS_CTRL_PROC_EXEC2_PML);
1418 HMVMX_REPORT_FEATURE(val, zap, "EPT_VE", VMX_VMCS_CTRL_PROC_EXEC2_EPT_VE);
1419 HMVMX_REPORT_FEATURE(val, zap, "CONCEAL_FROM_PT", VMX_VMCS_CTRL_PROC_EXEC2_CONCEAL_FROM_PT);
1420 HMVMX_REPORT_FEATURE(val, zap, "XSAVES_XRSTORS", VMX_VMCS_CTRL_PROC_EXEC2_XSAVES_XRSTORS);
1421 HMVMX_REPORT_FEATURE(val, zap, "TSC_SCALING", VMX_VMCS_CTRL_PROC_EXEC2_TSC_SCALING);
1422 }
1423
1424 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxEntry.u));
1425 val = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1;
1426 zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0;
1427 HMVMX_REPORT_FEATURE(val, zap, "LOAD_DEBUG", VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG);
1428 HMVMX_REPORT_FEATURE(val, zap, "IA32E_MODE_GUEST", VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
1429 HMVMX_REPORT_FEATURE(val, zap, "ENTRY_SMM", VMX_VMCS_CTRL_ENTRY_ENTRY_SMM);
1430 HMVMX_REPORT_FEATURE(val, zap, "DEACTIVATE_DUALMON", VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON);
1431 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PERF_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR);
1432 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PAT_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR);
1433 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_EFER_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR);
1434
1435 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxExit.u));
1436 val = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1;
1437 zap = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0;
1438 HMVMX_REPORT_FEATURE(val, zap, "SAVE_DEBUG", VMX_VMCS_CTRL_EXIT_SAVE_DEBUG);
1439 HMVMX_REPORT_FEATURE(val, zap, "HOST_ADDR_SPACE_SIZE", VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE);
1440 HMVMX_REPORT_FEATURE(val, zap, "LOAD_PERF_MSR", VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR);
1441 HMVMX_REPORT_FEATURE(val, zap, "ACK_EXT_INT", VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
1442 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_PAT_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR);
1443 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_PAT_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR);
1444 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_EFER_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR);
1445 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_EFER_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR);
1446 HMVMX_REPORT_FEATURE(val, zap, "SAVE_VMX_PREEMPT_TIMER", VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER);
1447
1448 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1449 {
1450 val = pVM->hm.s.vmx.Msrs.u64EptVpidCaps;
1451 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", val));
1452 HMVMX_REPORT_MSR_CAPABILITY(val, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1453 HMVMX_REPORT_MSR_CAPABILITY(val, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1454 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1455 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1456 HMVMX_REPORT_MSR_CAPABILITY(val, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1457 HMVMX_REPORT_MSR_CAPABILITY(val, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1458 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1459 HMVMX_REPORT_MSR_CAPABILITY(val, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1460 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1461 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1462 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1463 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1464 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1465 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1466 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1467 }
1468
1469 val = pVM->hm.s.vmx.Msrs.u64Misc;
1470 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", val));
1471 if (MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val) == pVM->hm.s.vmx.cPreemptTimerShift)
1472 LogRel(("HM: PREEMPT_TSC_BIT = %#x\n", MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val)));
1473 else
1474 {
1475 LogRel(("HM: PREEMPT_TSC_BIT = %#x - erratum detected, using %#x instead\n",
1476 MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val), pVM->hm.s.vmx.cPreemptTimerShift));
1477 }
1478
1479 LogRel(("HM: STORE_EFERLMA_VMEXIT = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT(val))));
1480 LogRel(("HM: ACTIVITY_STATES = %#x\n", MSR_IA32_VMX_MISC_ACTIVITY_STATES(val)));
1481 LogRel(("HM: CR3_TARGET = %#x\n", MSR_IA32_VMX_MISC_CR3_TARGET(val)));
1482 LogRel(("HM: MAX_MSR = %u\n", MSR_IA32_VMX_MISC_MAX_MSR(val)));
1483 LogRel(("HM: RDMSR_SMBASE_MSR_SMM = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM(val))));
1484 LogRel(("HM: SMM_MONITOR_CTL_B2 = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2(val))));
1485 LogRel(("HM: VMWRITE_VMEXIT_INFO = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO(val))));
1486 LogRel(("HM: MSEG_ID = %#x\n", MSR_IA32_VMX_MISC_MSEG_ID(val)));
1487
1488 /* Paranoia */
1489 AssertRelease(MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc) >= 512);
1490
1491 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed0));
1492 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed1));
1493 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed0));
1494 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed1));
1495
1496 val = pVM->hm.s.vmx.Msrs.u64VmcsEnum;
1497 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", val));
1498 LogRel(("HM: HIGHEST_INDEX = %#x\n", MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX(val)));
1499
1500 val = pVM->hm.s.vmx.Msrs.u64Vmfunc;
1501 if (val)
1502 {
1503 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", val));
1504 HMVMX_REPORT_ALLOWED_FEATURE(val, "EPTP_SWITCHING", VMX_VMCS_CTRL_VMFUNC_EPTP_SWITCHING);
1505 }
1506
1507 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1508
1509 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1510 {
1511 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap));
1512 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs));
1513 }
1514
1515 /*
1516 * EPT and unhampered guest execution are determined in HMR3Init, verify the sanity of that.
1517 */
1518 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1519 || (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT),
1520 VERR_HM_IPE_1);
1521 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1522 || ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST)
1523 && pVM->hm.s.fNestedPaging),
1524 VERR_HM_IPE_1);
1525
1526 /*
1527 * Enable VPID if configured and supported.
1528 */
1529 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VPID)
1530 pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid;
1531
1532#if 0
1533 /*
1534 * Enable APIC register virtualization and virtual-interrupt delivery if supported.
1535 */
1536 if ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT)
1537 && (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY))
1538 pVM->hm.s.fVirtApicRegs = true;
1539
1540 /*
1541 * Enable posted-interrupt processing if supported.
1542 */
1543 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1544 * here. */
1545 if ( (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR)
1546 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT))
1547 pVM->hm.s.fPostedIntrs = true;
1548#endif
1549
1550 /*
1551 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1552 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1553 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1554 */
1555 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1556 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1557 {
1558 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1559 LogRel(("HM: Disabled RDTSCP\n"));
1560 }
1561
1562 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1563 {
1564 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1565 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1566 if (RT_SUCCESS(rc))
1567 {
1568 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1569 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1570 esp. Figure 20-5.*/
1571 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1572 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1573
1574 /* Bit set to 0 means software interrupts are redirected to the
1575 8086 program interrupt handler rather than switching to
1576 protected-mode handler. */
1577 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1578
1579 /* Allow all port IO, so that port IO instructions do not cause
1580 exceptions and would instead cause a VM-exit (based on VT-x's
1581 IO bitmap which we currently configure to always cause an exit). */
1582 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1583 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1584
1585 /*
1586 * Construct a 1024 element page directory with 4 MB pages for
1587 * the identity mapped page table used in real and protected mode
1588 * without paging with EPT.
1589 */
1590 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1591 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1592 {
1593 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1594 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1595 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1596 | X86_PDE4M_G;
1597 }
1598
1599 /* We convert it here every time as PCI regions could be reconfigured. */
1600 if (PDMVmmDevHeapIsEnabled(pVM))
1601 {
1602 RTGCPHYS GCPhys;
1603 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1604 AssertRCReturn(rc, rc);
1605 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1606
1607 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1608 AssertRCReturn(rc, rc);
1609 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1610 }
1611 }
1612 else
1613 {
1614 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1615 pVM->hm.s.vmx.pRealModeTSS = NULL;
1616 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1617 return VMSetError(pVM, rc, RT_SRC_POS,
1618 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1619 }
1620 }
1621
1622 LogRel((pVM->hm.s.fAllow64BitGuests
1623 ? "HM: Guest support: 32-bit and 64-bit\n"
1624 : "HM: Guest support: 32-bit only\n"));
1625
1626 /*
1627 * Call ring-0 to set up the VM.
1628 */
1629 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1630 if (rc != VINF_SUCCESS)
1631 {
1632 AssertMsgFailed(("%Rrc\n", rc));
1633 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1634 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1635 {
1636 PVMCPU pVCpu = &pVM->aCpus[i];
1637 LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
1638 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1639 }
1640 HMR3CheckError(pVM, rc);
1641 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1642 }
1643
1644 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1645 LogRel(("HM: Enabled VMX\n"));
1646 pVM->hm.s.vmx.fEnabled = true;
1647
1648 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1649
1650 /*
1651 * Change the CPU features.
1652 */
1653 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1654 if (pVM->hm.s.fAllow64BitGuests)
1655 {
1656 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1657 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1658 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1659 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1660 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1661 }
1662 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1663 (we reuse the host EFER in the switcher). */
1664 /** @todo this needs to be fixed properly!! */
1665 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1666 {
1667 if (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE)
1668 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1669 else
1670 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1671 }
1672
1673 /*
1674 * Log configuration details.
1675 */
1676 if (pVM->hm.s.fNestedPaging)
1677 {
1678 LogRel(("HM: Enabled nested paging\n"));
1679 if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_SINGLE_CONTEXT)
1680 LogRel(("HM: EPT flush type = VMXFLUSHEPT_SINGLE_CONTEXT\n"));
1681 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_ALL_CONTEXTS)
1682 LogRel(("HM: EPT flush type = VMXFLUSHEPT_ALL_CONTEXTS\n"));
1683 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_NOT_SUPPORTED)
1684 LogRel(("HM: EPT flush type = VMXFLUSHEPT_NOT_SUPPORTED\n"));
1685 else
1686 LogRel(("HM: EPT flush type = %d\n", pVM->hm.s.vmx.enmFlushEpt));
1687
1688 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1689 LogRel(("HM: Enabled unrestricted guest execution\n"));
1690
1691#if HC_ARCH_BITS == 64
1692 if (pVM->hm.s.fLargePages)
1693 {
1694 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1695 PGMSetLargePageUsage(pVM, true);
1696 LogRel(("HM: Enabled large page support\n"));
1697 }
1698#endif
1699 }
1700 else
1701 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1702
1703 if (pVM->hm.s.fVirtApicRegs)
1704 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1705
1706 if (pVM->hm.s.fPostedIntrs)
1707 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1708
1709 if (pVM->hm.s.vmx.fVpid)
1710 {
1711 LogRel(("HM: Enabled VPID\n"));
1712 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_INDIV_ADDR)
1713 LogRel(("HM: VPID flush type = VMXFLUSHVPID_INDIV_ADDR\n"));
1714 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
1715 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT\n"));
1716 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
1717 LogRel(("HM: VPID flush type = VMXFLUSHVPID_ALL_CONTEXTS\n"));
1718 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1719 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS\n"));
1720 else
1721 LogRel(("HM: VPID flush type = %d\n", pVM->hm.s.vmx.enmFlushVpid));
1722 }
1723 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_NOT_SUPPORTED)
1724 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1725
1726 if (pVM->hm.s.vmx.fUsePreemptTimer)
1727 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1728 else
1729 LogRel(("HM: Disabled VMX-preemption timer\n"));
1730
1731 return VINF_SUCCESS;
1732}
1733
1734
1735/**
1736 * Finish AMD-V initialization (after ring-0 init).
1737 *
1738 * @returns VBox status code.
1739 * @param pVM The cross context VM structure.
1740 */
1741static int hmR3InitFinalizeR0Amd(PVM pVM)
1742{
1743 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1744
1745 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1746
1747 uint32_t u32Family;
1748 uint32_t u32Model;
1749 uint32_t u32Stepping;
1750 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
1751 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1752 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1753 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureECX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureECX));
1754 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureEDX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureEDX));
1755 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1756 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1757 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1758 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1759
1760 /*
1761 * Enumerate AMD-V features.
1762 */
1763 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1764 {
1765#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1766 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1767 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1768 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1769 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1770 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1771 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1772 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1773 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1774 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1775 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1776 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1777 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1778 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1779#undef HMSVM_REPORT_FEATURE
1780 };
1781
1782 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1783 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1784 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1785 {
1786 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1787 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1788 }
1789 if (fSvmFeatures)
1790 for (unsigned iBit = 0; iBit < 32; iBit++)
1791 if (RT_BIT_32(iBit) & fSvmFeatures)
1792 LogRel(("HM: Reserved bit %u\n", iBit));
1793
1794 /*
1795 * Nested paging is determined in HMR3Init, verify the sanity of that.
1796 */
1797 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1798 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1799 VERR_HM_IPE_1);
1800
1801#if 0
1802 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1803 * here. */
1804 if (RTR0IsPostIpiSupport())
1805 pVM->hm.s.fPostedIntrs = true;
1806#endif
1807
1808 /*
1809 * Call ring-0 to set up the VM.
1810 */
1811 int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1812 if (rc != VINF_SUCCESS)
1813 {
1814 AssertMsgFailed(("%Rrc\n", rc));
1815 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1816 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1817 }
1818
1819 LogRel(("HM: Enabled SVM\n"));
1820 pVM->hm.s.svm.fEnabled = true;
1821
1822 if (pVM->hm.s.fNestedPaging)
1823 {
1824 LogRel(("HM: Enabled nested paging\n"));
1825
1826 /*
1827 * Enable large pages (2 MB) if applicable.
1828 */
1829#if HC_ARCH_BITS == 64
1830 if (pVM->hm.s.fLargePages)
1831 {
1832 PGMSetLargePageUsage(pVM, true);
1833 LogRel(("HM: Enabled large page support\n"));
1834 }
1835#endif
1836 }
1837
1838 if (pVM->hm.s.fVirtApicRegs)
1839 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1840
1841 if (pVM->hm.s.fPostedIntrs)
1842 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1843
1844 hmR3DisableRawMode(pVM);
1845
1846 /*
1847 * Change the CPU features.
1848 */
1849 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1850 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1851 if (pVM->hm.s.fAllow64BitGuests)
1852 {
1853 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1854 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1855 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1856 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1857 }
1858 /* Turn on NXE if PAE has been enabled. */
1859 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1860 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1861
1862 LogRel(("HM: %s TPR patching\n", (pVM->hm.s.fTprPatchingAllowed) ? "Enabled" : "Disabled"));
1863
1864 LogRel((pVM->hm.s.fAllow64BitGuests
1865 ? "HM: Guest support: 32-bit and 64-bit\n"
1866 : "HM: Guest support: 32-bit only\n"));
1867
1868 return VINF_SUCCESS;
1869}
1870
1871
1872/**
1873 * Applies relocations to data and code managed by this
1874 * component. This function will be called at init and
1875 * whenever the VMM need to relocate it self inside the GC.
1876 *
1877 * @param pVM The cross context VM structure.
1878 */
1879VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1880{
1881 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1882
1883 /* Fetch the current paging mode during the relocate callback during state loading. */
1884 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1885 {
1886 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1887 {
1888 PVMCPU pVCpu = &pVM->aCpus[i];
1889 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1890 }
1891 }
1892#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1893 if (HMIsEnabled(pVM))
1894 {
1895 switch (PGMGetHostMode(pVM))
1896 {
1897 case PGMMODE_32_BIT:
1898 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
1899 break;
1900
1901 case PGMMODE_PAE:
1902 case PGMMODE_PAE_NX:
1903 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
1904 break;
1905
1906 default:
1907 AssertFailed();
1908 break;
1909 }
1910 }
1911#endif
1912 return;
1913}
1914
1915
1916/**
1917 * Notification callback which is called whenever there is a chance that a CR3
1918 * value might have changed.
1919 *
1920 * This is called by PGM.
1921 *
1922 * @param pVM The cross context VM structure.
1923 * @param pVCpu The cross context virtual CPU structure.
1924 * @param enmShadowMode New shadow paging mode.
1925 * @param enmGuestMode New guest paging mode.
1926 */
1927VMMR3_INT_DECL(void) HMR3PagingModeChanged(PVM pVM, PVMCPU pVCpu, PGMMODE enmShadowMode, PGMMODE enmGuestMode)
1928{
1929 RT_NOREF_PV(pVM);
1930
1931 /* Ignore page mode changes during state loading. */
1932 if (VMR3GetState(pVCpu->pVMR3) == VMSTATE_LOADING)
1933 return;
1934
1935 pVCpu->hm.s.enmShadowMode = enmShadowMode;
1936
1937 /*
1938 * If the guest left protected mode VMX execution, we'll have to be
1939 * extra careful if/when the guest switches back to protected mode.
1940 */
1941 if (enmGuestMode == PGMMODE_REAL)
1942 pVCpu->hm.s.vmx.fWasInRealMode = true;
1943
1944 Log4(("HMR3PagingModeChanged: Guest paging mode '%s', shadow paging mode '%s'\n", PGMGetModeName(enmGuestMode),
1945 PGMGetModeName(enmShadowMode)));
1946}
1947
1948
1949/**
1950 * Terminates the HM.
1951 *
1952 * Termination means cleaning up and freeing all resources,
1953 * the VM itself is, at this point, powered off or suspended.
1954 *
1955 * @returns VBox status code.
1956 * @param pVM The cross context VM structure.
1957 */
1958VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1959{
1960 if (pVM->hm.s.vmx.pRealModeTSS)
1961 {
1962 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1963 pVM->hm.s.vmx.pRealModeTSS = 0;
1964 }
1965 hmR3TermCPU(pVM);
1966 return 0;
1967}
1968
1969
1970/**
1971 * Terminates the per-VCPU HM.
1972 *
1973 * @returns VBox status code.
1974 * @param pVM The cross context VM structure.
1975 */
1976static int hmR3TermCPU(PVM pVM)
1977{
1978 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1979 {
1980 PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
1981
1982#ifdef VBOX_WITH_STATISTICS
1983 if (pVCpu->hm.s.paStatExitReason)
1984 {
1985 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1986 pVCpu->hm.s.paStatExitReason = NULL;
1987 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1988 }
1989 if (pVCpu->hm.s.paStatInjectedIrqs)
1990 {
1991 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1992 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1993 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1994 }
1995#endif
1996
1997#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1998 memset(pVCpu->hm.s.vmx.VMCSCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VMCSCache.aMagic));
1999 pVCpu->hm.s.vmx.VMCSCache.uMagic = 0;
2000 pVCpu->hm.s.vmx.VMCSCache.uPos = 0xffffffff;
2001#endif
2002 }
2003 return 0;
2004}
2005
2006
2007/**
2008 * Resets a virtual CPU.
2009 *
2010 * Used by HMR3Reset and CPU hot plugging.
2011 *
2012 * @param pVCpu The cross context virtual CPU structure to reset.
2013 */
2014VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2015{
2016 /* Sync. entire state on VM reset R0-reentry. It's safe to reset
2017 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2018 HMCPU_CF_RESET_TO(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
2019
2020 pVCpu->hm.s.vmx.u32CR0Mask = 0;
2021 pVCpu->hm.s.vmx.u32CR4Mask = 0;
2022 pVCpu->hm.s.fActive = false;
2023 pVCpu->hm.s.Event.fPending = false;
2024 pVCpu->hm.s.vmx.fWasInRealMode = true;
2025 pVCpu->hm.s.vmx.u64MsrApicBase = 0;
2026 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
2027
2028 /* Reset the contents of the read cache. */
2029 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
2030 for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
2031 pCache->Read.aFieldVal[j] = 0;
2032
2033#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2034 /* Magic marker for searching in crash dumps. */
2035 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
2036 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2037#endif
2038}
2039
2040
2041/**
2042 * The VM is being reset.
2043 *
2044 * For the HM component this means that any GDT/LDT/TSS monitors
2045 * needs to be removed.
2046 *
2047 * @param pVM The cross context VM structure.
2048 */
2049VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2050{
2051 LogFlow(("HMR3Reset:\n"));
2052
2053 if (HMIsEnabled(pVM))
2054 hmR3DisableRawMode(pVM);
2055
2056 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2057 {
2058 PVMCPU pVCpu = &pVM->aCpus[i];
2059
2060 HMR3ResetCpu(pVCpu);
2061 }
2062
2063 /* Clear all patch information. */
2064 pVM->hm.s.pGuestPatchMem = 0;
2065 pVM->hm.s.pFreeGuestPatchMem = 0;
2066 pVM->hm.s.cbGuestPatchMem = 0;
2067 pVM->hm.s.cPatches = 0;
2068 pVM->hm.s.PatchTree = 0;
2069 pVM->hm.s.fTPRPatchingActive = false;
2070 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2071}
2072
2073
2074/**
2075 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2076 *
2077 * @returns VBox strict status code.
2078 * @param pVM The cross context VM structure.
2079 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2080 * @param pvUser Unused.
2081 */
2082static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2083{
2084 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2085
2086 /* Only execute the handler on the VCPU the original patch request was issued. */
2087 if (pVCpu->idCpu != idCpu)
2088 return VINF_SUCCESS;
2089
2090 Log(("hmR3RemovePatches\n"));
2091 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2092 {
2093 uint8_t abInstr[15];
2094 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2095 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2096 int rc;
2097
2098#ifdef LOG_ENABLED
2099 char szOutput[256];
2100
2101 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2102 szOutput, sizeof(szOutput), NULL);
2103 if (RT_SUCCESS(rc))
2104 Log(("Patched instr: %s\n", szOutput));
2105#endif
2106
2107 /* Check if the instruction is still the same. */
2108 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2109 if (rc != VINF_SUCCESS)
2110 {
2111 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2112 continue; /* swapped out or otherwise removed; skip it. */
2113 }
2114
2115 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2116 {
2117 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2118 continue; /* skip it. */
2119 }
2120
2121 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2122 AssertRC(rc);
2123
2124#ifdef LOG_ENABLED
2125 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2126 szOutput, sizeof(szOutput), NULL);
2127 if (RT_SUCCESS(rc))
2128 Log(("Original instr: %s\n", szOutput));
2129#endif
2130 }
2131 pVM->hm.s.cPatches = 0;
2132 pVM->hm.s.PatchTree = 0;
2133 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2134 pVM->hm.s.fTPRPatchingActive = false;
2135 return VINF_SUCCESS;
2136}
2137
2138
2139/**
2140 * Worker for enabling patching in a VT-x/AMD-V guest.
2141 *
2142 * @returns VBox status code.
2143 * @param pVM The cross context VM structure.
2144 * @param idCpu VCPU to execute hmR3RemovePatches on.
2145 * @param pPatchMem Patch memory range.
2146 * @param cbPatchMem Size of the memory range.
2147 */
2148static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2149{
2150 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2151 AssertRC(rc);
2152
2153 pVM->hm.s.pGuestPatchMem = pPatchMem;
2154 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2155 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2156 return VINF_SUCCESS;
2157}
2158
2159
2160/**
2161 * Enable patching in a VT-x/AMD-V guest
2162 *
2163 * @returns VBox status code.
2164 * @param pVM The cross context VM structure.
2165 * @param pPatchMem Patch memory range.
2166 * @param cbPatchMem Size of the memory range.
2167 */
2168VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2169{
2170 VM_ASSERT_EMT(pVM);
2171 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2172 if (pVM->cCpus > 1)
2173 {
2174 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2175 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2176 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2177 AssertRC(rc);
2178 return rc;
2179 }
2180 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2181}
2182
2183
2184/**
2185 * Disable patching in a VT-x/AMD-V guest.
2186 *
2187 * @returns VBox status code.
2188 * @param pVM The cross context VM structure.
2189 * @param pPatchMem Patch memory range.
2190 * @param cbPatchMem Size of the memory range.
2191 */
2192VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2193{
2194 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2195 RT_NOREF2(pPatchMem, cbPatchMem);
2196
2197 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2198 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2199
2200 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2201 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2202 (void *)(uintptr_t)VMMGetCpuId(pVM));
2203 AssertRC(rc);
2204
2205 pVM->hm.s.pGuestPatchMem = 0;
2206 pVM->hm.s.pFreeGuestPatchMem = 0;
2207 pVM->hm.s.cbGuestPatchMem = 0;
2208 pVM->hm.s.fTPRPatchingActive = false;
2209 return VINF_SUCCESS;
2210}
2211
2212
2213/**
2214 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2215 *
2216 * @returns VBox strict status code.
2217 * @param pVM The cross context VM structure.
2218 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2219 * @param pvUser User specified CPU context.
2220 *
2221 */
2222static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2223{
2224 /*
2225 * Only execute the handler on the VCPU the original patch request was
2226 * issued. (The other CPU(s) might not yet have switched to protected
2227 * mode, nor have the correct memory context.)
2228 */
2229 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2230 if (pVCpu->idCpu != idCpu)
2231 return VINF_SUCCESS;
2232
2233 /*
2234 * We're racing other VCPUs here, so don't try patch the instruction twice
2235 * and make sure there is still room for our patch record.
2236 */
2237 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2238 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2239 if (pPatch)
2240 {
2241 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2242 return VINF_SUCCESS;
2243 }
2244 uint32_t const idx = pVM->hm.s.cPatches;
2245 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2246 {
2247 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2248 return VINF_SUCCESS;
2249 }
2250 pPatch = &pVM->hm.s.aPatches[idx];
2251
2252 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2253
2254 /*
2255 * Disassembler the instruction and get cracking.
2256 */
2257 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2258 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2259 uint32_t cbOp;
2260 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2261 AssertRC(rc);
2262 if ( rc == VINF_SUCCESS
2263 && pDis->pCurInstr->uOpcode == OP_MOV
2264 && cbOp >= 3)
2265 {
2266 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2267
2268 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2269 AssertRC(rc);
2270
2271 pPatch->cbOp = cbOp;
2272
2273 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2274 {
2275 /* write. */
2276 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2277 {
2278 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2279 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2280 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2281 }
2282 else
2283 {
2284 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2285 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2286 pPatch->uSrcOperand = pDis->Param2.uValue;
2287 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2288 }
2289 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2290 AssertRC(rc);
2291
2292 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2293 pPatch->cbNewOp = sizeof(s_abVMMCall);
2294 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2295 }
2296 else
2297 {
2298 /*
2299 * TPR Read.
2300 *
2301 * Found:
2302 * mov eax, dword [fffe0080] (5 bytes)
2303 * Check if next instruction is:
2304 * shr eax, 4
2305 */
2306 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2307
2308 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2309 uint8_t const cbOpMmio = cbOp;
2310 uint64_t const uSavedRip = pCtx->rip;
2311
2312 pCtx->rip += cbOp;
2313 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2314 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2315 pCtx->rip = uSavedRip;
2316
2317 if ( rc == VINF_SUCCESS
2318 && pDis->pCurInstr->uOpcode == OP_SHR
2319 && pDis->Param1.fUse == DISUSE_REG_GEN32
2320 && pDis->Param1.Base.idxGenReg == idxMmioReg
2321 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2322 && pDis->Param2.uValue == 4
2323 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2324 {
2325 uint8_t abInstr[15];
2326
2327 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2328 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2329 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2330 AssertRC(rc);
2331
2332 pPatch->cbOp = cbOpMmio + cbOp;
2333
2334 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
2335 abInstr[0] = 0xF0;
2336 abInstr[1] = 0x0F;
2337 abInstr[2] = 0x20;
2338 abInstr[3] = 0xC0 | pDis->Param1.Base.idxGenReg;
2339 for (unsigned i = 4; i < pPatch->cbOp; i++)
2340 abInstr[i] = 0x90; /* nop */
2341
2342 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2343 AssertRC(rc);
2344
2345 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2346 pPatch->cbNewOp = pPatch->cbOp;
2347 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2348
2349 Log(("Acceptable read/shr candidate!\n"));
2350 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2351 }
2352 else
2353 {
2354 pPatch->enmType = HMTPRINSTR_READ;
2355 pPatch->uDstOperand = idxMmioReg;
2356
2357 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2358 AssertRC(rc);
2359
2360 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2361 pPatch->cbNewOp = sizeof(s_abVMMCall);
2362 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2363 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2364 }
2365 }
2366
2367 pPatch->Core.Key = pCtx->eip;
2368 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2369 AssertRC(rc);
2370
2371 pVM->hm.s.cPatches++;
2372 return VINF_SUCCESS;
2373 }
2374
2375 /*
2376 * Save invalid patch, so we will not try again.
2377 */
2378 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2379 pPatch->Core.Key = pCtx->eip;
2380 pPatch->enmType = HMTPRINSTR_INVALID;
2381 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2382 AssertRC(rc);
2383 pVM->hm.s.cPatches++;
2384 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2385 return VINF_SUCCESS;
2386}
2387
2388
2389/**
2390 * Callback to patch a TPR instruction (jump to generated code).
2391 *
2392 * @returns VBox strict status code.
2393 * @param pVM The cross context VM structure.
2394 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2395 * @param pvUser User specified CPU context.
2396 *
2397 */
2398static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2399{
2400 /*
2401 * Only execute the handler on the VCPU the original patch request was
2402 * issued. (The other CPU(s) might not yet have switched to protected
2403 * mode, nor have the correct memory context.)
2404 */
2405 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2406 if (pVCpu->idCpu != idCpu)
2407 return VINF_SUCCESS;
2408
2409 /*
2410 * We're racing other VCPUs here, so don't try patch the instruction twice
2411 * and make sure there is still room for our patch record.
2412 */
2413 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2414 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2415 if (pPatch)
2416 {
2417 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2418 return VINF_SUCCESS;
2419 }
2420 uint32_t const idx = pVM->hm.s.cPatches;
2421 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2422 {
2423 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2424 return VINF_SUCCESS;
2425 }
2426 pPatch = &pVM->hm.s.aPatches[idx];
2427
2428 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2429 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2430
2431 /*
2432 * Disassemble the instruction and get cracking.
2433 */
2434 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2435 uint32_t cbOp;
2436 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2437 AssertRC(rc);
2438 if ( rc == VINF_SUCCESS
2439 && pDis->pCurInstr->uOpcode == OP_MOV
2440 && cbOp >= 5)
2441 {
2442 uint8_t aPatch[64];
2443 uint32_t off = 0;
2444
2445 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2446 AssertRC(rc);
2447
2448 pPatch->cbOp = cbOp;
2449 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2450
2451 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2452 {
2453 /*
2454 * TPR write:
2455 *
2456 * push ECX [51]
2457 * push EDX [52]
2458 * push EAX [50]
2459 * xor EDX,EDX [31 D2]
2460 * mov EAX,EAX [89 C0]
2461 * or
2462 * mov EAX,0000000CCh [B8 CC 00 00 00]
2463 * mov ECX,0C0000082h [B9 82 00 00 C0]
2464 * wrmsr [0F 30]
2465 * pop EAX [58]
2466 * pop EDX [5A]
2467 * pop ECX [59]
2468 * jmp return_address [E9 return_address]
2469 *
2470 */
2471 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2472
2473 aPatch[off++] = 0x51; /* push ecx */
2474 aPatch[off++] = 0x52; /* push edx */
2475 if (!fUsesEax)
2476 aPatch[off++] = 0x50; /* push eax */
2477 aPatch[off++] = 0x31; /* xor edx, edx */
2478 aPatch[off++] = 0xD2;
2479 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2480 {
2481 if (!fUsesEax)
2482 {
2483 aPatch[off++] = 0x89; /* mov eax, src_reg */
2484 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2485 }
2486 }
2487 else
2488 {
2489 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2490 aPatch[off++] = 0xB8; /* mov eax, immediate */
2491 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2492 off += sizeof(uint32_t);
2493 }
2494 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2495 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2496 off += sizeof(uint32_t);
2497
2498 aPatch[off++] = 0x0F; /* wrmsr */
2499 aPatch[off++] = 0x30;
2500 if (!fUsesEax)
2501 aPatch[off++] = 0x58; /* pop eax */
2502 aPatch[off++] = 0x5A; /* pop edx */
2503 aPatch[off++] = 0x59; /* pop ecx */
2504 }
2505 else
2506 {
2507 /*
2508 * TPR read:
2509 *
2510 * push ECX [51]
2511 * push EDX [52]
2512 * push EAX [50]
2513 * mov ECX,0C0000082h [B9 82 00 00 C0]
2514 * rdmsr [0F 32]
2515 * mov EAX,EAX [89 C0]
2516 * pop EAX [58]
2517 * pop EDX [5A]
2518 * pop ECX [59]
2519 * jmp return_address [E9 return_address]
2520 *
2521 */
2522 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2523
2524 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2525 aPatch[off++] = 0x51; /* push ecx */
2526 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2527 aPatch[off++] = 0x52; /* push edx */
2528 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2529 aPatch[off++] = 0x50; /* push eax */
2530
2531 aPatch[off++] = 0x31; /* xor edx, edx */
2532 aPatch[off++] = 0xD2;
2533
2534 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2535 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2536 off += sizeof(uint32_t);
2537
2538 aPatch[off++] = 0x0F; /* rdmsr */
2539 aPatch[off++] = 0x32;
2540
2541 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2542 {
2543 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2544 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2545 }
2546
2547 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2548 aPatch[off++] = 0x58; /* pop eax */
2549 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2550 aPatch[off++] = 0x5A; /* pop edx */
2551 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2552 aPatch[off++] = 0x59; /* pop ecx */
2553 }
2554 aPatch[off++] = 0xE9; /* jmp return_address */
2555 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2556 off += sizeof(RTRCUINTPTR);
2557
2558 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2559 {
2560 /* Write new code to the patch buffer. */
2561 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2562 AssertRC(rc);
2563
2564#ifdef LOG_ENABLED
2565 uint32_t cbCurInstr;
2566 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2567 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2568 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2569 {
2570 char szOutput[256];
2571 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2572 szOutput, sizeof(szOutput), &cbCurInstr);
2573 if (RT_SUCCESS(rc))
2574 Log(("Patch instr %s\n", szOutput));
2575 else
2576 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2577 }
2578#endif
2579
2580 pPatch->aNewOpcode[0] = 0xE9;
2581 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2582
2583 /* Overwrite the TPR instruction with a jump. */
2584 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2585 AssertRC(rc);
2586
2587 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2588
2589 pVM->hm.s.pFreeGuestPatchMem += off;
2590 pPatch->cbNewOp = 5;
2591
2592 pPatch->Core.Key = pCtx->eip;
2593 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2594 AssertRC(rc);
2595
2596 pVM->hm.s.cPatches++;
2597 pVM->hm.s.fTPRPatchingActive = true;
2598 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2599 return VINF_SUCCESS;
2600 }
2601
2602 Log(("Ran out of space in our patch buffer!\n"));
2603 }
2604 else
2605 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2606
2607
2608 /*
2609 * Save invalid patch, so we will not try again.
2610 */
2611 pPatch = &pVM->hm.s.aPatches[idx];
2612 pPatch->Core.Key = pCtx->eip;
2613 pPatch->enmType = HMTPRINSTR_INVALID;
2614 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2615 AssertRC(rc);
2616 pVM->hm.s.cPatches++;
2617 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2618 return VINF_SUCCESS;
2619}
2620
2621
2622/**
2623 * Attempt to patch TPR mmio instructions.
2624 *
2625 * @returns VBox status code.
2626 * @param pVM The cross context VM structure.
2627 * @param pVCpu The cross context virtual CPU structure.
2628 * @param pCtx Pointer to the guest CPU context.
2629 */
2630VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2631{
2632 NOREF(pCtx);
2633 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2634 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2635 (void *)(uintptr_t)pVCpu->idCpu);
2636 AssertRC(rc);
2637 return rc;
2638}
2639
2640
2641/**
2642 * Checks if a code selector (CS) is suitable for execution
2643 * within VMX when unrestricted execution isn't available.
2644 *
2645 * @returns true if selector is suitable for VMX, otherwise
2646 * false.
2647 * @param pSel Pointer to the selector to check (CS).
2648 * @param uStackDpl The CPL, aka the DPL of the stack segment.
2649 */
2650static bool hmR3IsCodeSelectorOkForVmx(PCPUMSELREG pSel, unsigned uStackDpl)
2651{
2652 /*
2653 * Segment must be an accessed code segment, it must be present and it must
2654 * be usable.
2655 * Note! These are all standard requirements and if CS holds anything else
2656 * we've got buggy code somewhere!
2657 */
2658 AssertCompile(X86DESCATTR_TYPE == 0xf);
2659 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P | X86DESCATTR_UNUSABLE))
2660 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P),
2661 ("%#x\n", pSel->Attr.u),
2662 false);
2663
2664 /* For conforming segments, CS.DPL must be <= SS.DPL, while CS.DPL
2665 must equal SS.DPL for non-confroming segments.
2666 Note! This is also a hard requirement like above. */
2667 AssertMsgReturn( pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF
2668 ? pSel->Attr.n.u2Dpl <= uStackDpl
2669 : pSel->Attr.n.u2Dpl == uStackDpl,
2670 ("u4Type=%#x u2Dpl=%u uStackDpl=%u\n", pSel->Attr.n.u4Type, pSel->Attr.n.u2Dpl, uStackDpl),
2671 false);
2672
2673 /*
2674 * The following two requirements are VT-x specific:
2675 * - G bit must be set if any high limit bits are set.
2676 * - G bit must be clear if any low limit bits are clear.
2677 */
2678 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2679 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2680 return true;
2681 return false;
2682}
2683
2684
2685/**
2686 * Checks if a data selector (DS/ES/FS/GS) is suitable for
2687 * execution within VMX when unrestricted execution isn't
2688 * available.
2689 *
2690 * @returns true if selector is suitable for VMX, otherwise
2691 * false.
2692 * @param pSel Pointer to the selector to check
2693 * (DS/ES/FS/GS).
2694 */
2695static bool hmR3IsDataSelectorOkForVmx(PCPUMSELREG pSel)
2696{
2697 /*
2698 * Unusable segments are OK. These days they should be marked as such, as
2699 * but as an alternative we for old saved states and AMD<->VT-x migration
2700 * we also treat segments with all the attributes cleared as unusable.
2701 */
2702 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2703 return true;
2704
2705 /** @todo tighten these checks. Will require CPUM load adjusting. */
2706
2707 /* Segment must be accessed. */
2708 if (pSel->Attr.u & X86_SEL_TYPE_ACCESSED)
2709 {
2710 /* Code segments must also be readable. */
2711 if ( !(pSel->Attr.u & X86_SEL_TYPE_CODE)
2712 || (pSel->Attr.u & X86_SEL_TYPE_READ))
2713 {
2714 /* The S bit must be set. */
2715 if (pSel->Attr.n.u1DescType)
2716 {
2717 /* Except for conforming segments, DPL >= RPL. */
2718 if ( pSel->Attr.n.u2Dpl >= (pSel->Sel & X86_SEL_RPL)
2719 || pSel->Attr.n.u4Type >= X86_SEL_TYPE_ER_ACC)
2720 {
2721 /* Segment must be present. */
2722 if (pSel->Attr.n.u1Present)
2723 {
2724 /*
2725 * The following two requirements are VT-x specific:
2726 * - G bit must be set if any high limit bits are set.
2727 * - G bit must be clear if any low limit bits are clear.
2728 */
2729 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2730 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2731 return true;
2732 }
2733 }
2734 }
2735 }
2736 }
2737
2738 return false;
2739}
2740
2741
2742/**
2743 * Checks if the stack selector (SS) is suitable for execution
2744 * within VMX when unrestricted execution isn't available.
2745 *
2746 * @returns true if selector is suitable for VMX, otherwise
2747 * false.
2748 * @param pSel Pointer to the selector to check (SS).
2749 */
2750static bool hmR3IsStackSelectorOkForVmx(PCPUMSELREG pSel)
2751{
2752 /*
2753 * Unusable segments are OK. These days they should be marked as such, as
2754 * but as an alternative we for old saved states and AMD<->VT-x migration
2755 * we also treat segments with all the attributes cleared as unusable.
2756 */
2757 /** @todo r=bird: actually all zeroes isn't gonna cut it... SS.DPL == CPL. */
2758 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2759 return true;
2760
2761 /*
2762 * Segment must be an accessed writable segment, it must be present.
2763 * Note! These are all standard requirements and if SS holds anything else
2764 * we've got buggy code somewhere!
2765 */
2766 AssertCompile(X86DESCATTR_TYPE == 0xf);
2767 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P | X86_SEL_TYPE_CODE))
2768 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P),
2769 ("%#x\n", pSel->Attr.u),
2770 false);
2771
2772 /* DPL must equal RPL.
2773 Note! This is also a hard requirement like above. */
2774 AssertMsgReturn(pSel->Attr.n.u2Dpl == (pSel->Sel & X86_SEL_RPL),
2775 ("u2Dpl=%u Sel=%#x\n", pSel->Attr.n.u2Dpl, pSel->Sel),
2776 false);
2777
2778 /*
2779 * The following two requirements are VT-x specific:
2780 * - G bit must be set if any high limit bits are set.
2781 * - G bit must be clear if any low limit bits are clear.
2782 */
2783 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2784 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2785 return true;
2786 return false;
2787}
2788
2789
2790/**
2791 * Force execution of the current IO code in the recompiler.
2792 *
2793 * @returns VBox status code.
2794 * @param pVM The cross context VM structure.
2795 * @param pCtx Partial VM execution context.
2796 */
2797VMMR3_INT_DECL(int) HMR3EmulateIoBlock(PVM pVM, PCPUMCTX pCtx)
2798{
2799 PVMCPU pVCpu = VMMGetCpu(pVM);
2800
2801 Assert(HMIsEnabled(pVM));
2802 Log(("HMR3EmulateIoBlock\n"));
2803
2804 /* This is primarily intended to speed up Grub, so we don't care about paged protected mode. */
2805 if (HMCanEmulateIoBlockEx(pCtx))
2806 {
2807 Log(("HMR3EmulateIoBlock -> enabled\n"));
2808 pVCpu->hm.s.EmulateIoBlock.fEnabled = true;
2809 pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip = pCtx->rip;
2810 pVCpu->hm.s.EmulateIoBlock.cr0 = pCtx->cr0;
2811 return VINF_EM_RESCHEDULE_REM;
2812 }
2813 return VINF_SUCCESS;
2814}
2815
2816
2817/**
2818 * Checks if we can currently use hardware accelerated raw mode.
2819 *
2820 * @returns true if we can currently use hardware acceleration, otherwise false.
2821 * @param pVM The cross context VM structure.
2822 * @param pCtx Partial VM execution context.
2823 */
2824VMMR3DECL(bool) HMR3CanExecuteGuest(PVM pVM, PCPUMCTX pCtx)
2825{
2826 PVMCPU pVCpu = VMMGetCpu(pVM);
2827
2828 Assert(HMIsEnabled(pVM));
2829
2830#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
2831 if (CPUMIsGuestInNestedHwVirtMode(pCtx))
2832 {
2833 Log(("HMR3CanExecuteGuest: In nested-guest mode - returning false"));
2834 return false;
2835 }
2836#endif
2837
2838 /* If we're still executing the IO code, then return false. */
2839 if ( RT_UNLIKELY(pVCpu->hm.s.EmulateIoBlock.fEnabled)
2840 && pCtx->rip < pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip + 0x200
2841 && pCtx->rip > pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip - 0x200
2842 && pCtx->cr0 == pVCpu->hm.s.EmulateIoBlock.cr0)
2843 return false;
2844
2845 pVCpu->hm.s.EmulateIoBlock.fEnabled = false;
2846
2847 /* AMD-V supports real & protected mode with or without paging. */
2848 if (pVM->hm.s.svm.fEnabled)
2849 {
2850 pVCpu->hm.s.fActive = true;
2851 return true;
2852 }
2853
2854 pVCpu->hm.s.fActive = false;
2855
2856 /* Note! The context supplied by REM is partial. If we add more checks here, be sure to verify that REM provides this info! */
2857 Assert( (pVM->hm.s.vmx.fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS)
2858 || (!pVM->hm.s.vmx.fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS));
2859
2860 bool fSupportsRealMode = pVM->hm.s.vmx.fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM);
2861 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
2862 {
2863 /*
2864 * The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted
2865 * guest execution feature is missing (VT-x only).
2866 */
2867 if (fSupportsRealMode)
2868 {
2869 if (CPUMIsGuestInRealModeEx(pCtx))
2870 {
2871 /* In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector
2872 * bases and limits, i.e. limit must be 64K and base must be selector * 16.
2873 * If this is not true, we cannot execute real mode as V86 and have to fall
2874 * back to emulation.
2875 */
2876 if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4)
2877 || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4)
2878 || pCtx->es.Sel != (pCtx->es.u64Base >> 4)
2879 || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4)
2880 || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4)
2881 || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4))
2882 {
2883 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase);
2884 return false;
2885 }
2886 if ( (pCtx->cs.u32Limit != 0xffff)
2887 || (pCtx->ds.u32Limit != 0xffff)
2888 || (pCtx->es.u32Limit != 0xffff)
2889 || (pCtx->ss.u32Limit != 0xffff)
2890 || (pCtx->fs.u32Limit != 0xffff)
2891 || (pCtx->gs.u32Limit != 0xffff))
2892 {
2893 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit);
2894 return false;
2895 }
2896 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk);
2897 }
2898 else
2899 {
2900 /* Verify the requirements for executing code in protected
2901 mode. VT-x can't handle the CPU state right after a switch
2902 from real to protected mode. (all sorts of RPL & DPL assumptions). */
2903 if (pVCpu->hm.s.vmx.fWasInRealMode)
2904 {
2905 /** @todo If guest is in V86 mode, these checks should be different! */
2906 if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL))
2907 {
2908 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl);
2909 return false;
2910 }
2911 if ( !hmR3IsCodeSelectorOkForVmx(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl)
2912 || !hmR3IsDataSelectorOkForVmx(&pCtx->ds)
2913 || !hmR3IsDataSelectorOkForVmx(&pCtx->es)
2914 || !hmR3IsDataSelectorOkForVmx(&pCtx->fs)
2915 || !hmR3IsDataSelectorOkForVmx(&pCtx->gs)
2916 || !hmR3IsStackSelectorOkForVmx(&pCtx->ss))
2917 {
2918 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel);
2919 return false;
2920 }
2921 }
2922 /* VT-x also chokes on invalid TR or LDTR selectors (minix). */
2923 if (pCtx->gdtr.cbGdt)
2924 {
2925 if ((pCtx->tr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2926 {
2927 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadTr);
2928 return false;
2929 }
2930 else if ((pCtx->ldtr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2931 {
2932 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadLdt);
2933 return false;
2934 }
2935 }
2936 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckPmOk);
2937 }
2938 }
2939 else
2940 {
2941 if ( !CPUMIsGuestInLongModeEx(pCtx)
2942 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2943 {
2944 if ( !pVM->hm.s.fNestedPaging /* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap */
2945 || CPUMIsGuestInRealModeEx(pCtx)) /* Requires a fake TSS for real mode - stored in the VMM device heap */
2946 return false;
2947
2948 /* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */
2949 if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0)
2950 return false;
2951
2952 /* The guest is about to complete the switch to protected mode. Wait a bit longer. */
2953 /* Windows XP; switch to protected mode; all selectors are marked not present in the
2954 * hidden registers (possible recompiler bug; see load_seg_vm) */
2955 if (pCtx->cs.Attr.n.u1Present == 0)
2956 return false;
2957 if (pCtx->ss.Attr.n.u1Present == 0)
2958 return false;
2959
2960 /* Windows XP: possible same as above, but new recompiler requires new heuristics?
2961 VT-x doesn't seem to like something about the guest state and this stuff avoids it. */
2962 /** @todo This check is actually wrong, it doesn't take the direction of the
2963 * stack segment into account. But, it does the job for now. */
2964 if (pCtx->rsp >= pCtx->ss.u32Limit)
2965 return false;
2966 }
2967 }
2968 }
2969
2970 if (pVM->hm.s.vmx.fEnabled)
2971 {
2972 uint32_t mask;
2973
2974 /* if bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */
2975 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
2976 /* Note: We ignore the NE bit here on purpose; see vmmr0\hmr0.cpp for details. */
2977 mask &= ~X86_CR0_NE;
2978
2979 if (fSupportsRealMode)
2980 {
2981 /* Note: We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */
2982 mask &= ~(X86_CR0_PG|X86_CR0_PE);
2983 }
2984 else
2985 {
2986 /* We support protected mode without paging using identity mapping. */
2987 mask &= ~X86_CR0_PG;
2988 }
2989 if ((pCtx->cr0 & mask) != mask)
2990 return false;
2991
2992 /* if bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */
2993 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
2994 if ((pCtx->cr0 & mask) != 0)
2995 return false;
2996
2997 /* if bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */
2998 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
2999 mask &= ~X86_CR4_VMXE;
3000 if ((pCtx->cr4 & mask) != mask)
3001 return false;
3002
3003 /* if bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */
3004 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
3005 if ((pCtx->cr4 & mask) != 0)
3006 return false;
3007
3008 pVCpu->hm.s.fActive = true;
3009 return true;
3010 }
3011
3012 return false;
3013}
3014
3015
3016/**
3017 * Checks if we need to reschedule due to VMM device heap changes.
3018 *
3019 * @returns true if a reschedule is required, otherwise false.
3020 * @param pVM The cross context VM structure.
3021 * @param pCtx VM execution context.
3022 */
3023VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx)
3024{
3025 /*
3026 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
3027 * when the unrestricted guest execution feature is missing (VT-x only).
3028 */
3029 if ( pVM->hm.s.vmx.fEnabled
3030 && !pVM->hm.s.vmx.fUnrestrictedGuest
3031 && CPUMIsGuestInRealModeEx(pCtx)
3032 && !PDMVmmDevHeapIsEnabled(pVM))
3033 {
3034 return true;
3035 }
3036
3037 return false;
3038}
3039
3040
3041/**
3042 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
3043 * event settings changes.
3044 *
3045 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
3046 * function is just updating the VM globals.
3047 *
3048 * @param pVM The VM cross context VM structure.
3049 * @thread EMT(0)
3050 */
3051VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
3052{
3053 /* Interrupts. */
3054 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
3055 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
3056
3057 /* CPU Exceptions. */
3058 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
3059 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
3060 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3061 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3062
3063 /* Common VM exits. */
3064 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
3065 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
3066 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3067 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3068
3069 /* Vendor specific VM exits. */
3070 if (HMR3IsVmxEnabled(pVM->pUVM))
3071 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
3072 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
3073 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3074 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3075 else
3076 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
3077 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
3078 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3079 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3080
3081 /* Done. */
3082 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
3083}
3084
3085
3086/**
3087 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
3088 *
3089 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
3090 * per CPU settings.
3091 *
3092 * @param pVM The VM cross context VM structure.
3093 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3094 */
3095VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
3096{
3097 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
3098}
3099
3100
3101/**
3102 * Notification from EM about a rescheduling into hardware assisted execution
3103 * mode.
3104 *
3105 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3106 */
3107VMMR3_INT_DECL(void) HMR3NotifyScheduled(PVMCPU pVCpu)
3108{
3109 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3110}
3111
3112
3113/**
3114 * Notification from EM about returning from instruction emulation (REM / EM).
3115 *
3116 * @param pVCpu The cross context virtual CPU structure.
3117 */
3118VMMR3_INT_DECL(void) HMR3NotifyEmulated(PVMCPU pVCpu)
3119{
3120 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3121}
3122
3123
3124/**
3125 * Checks if we are currently using hardware acceleration.
3126 *
3127 * @returns true if hardware acceleration is being used, otherwise false.
3128 * @param pVCpu The cross context virtual CPU structure.
3129 */
3130VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu)
3131{
3132 return pVCpu->hm.s.fActive;
3133}
3134
3135
3136/**
3137 * External interface for querying whether hardware acceleration is enabled.
3138 *
3139 * @returns true if VT-x or AMD-V is being used, otherwise false.
3140 * @param pUVM The user mode VM handle.
3141 * @sa HMIsEnabled, HMIsEnabledNotMacro.
3142 */
3143VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
3144{
3145 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3146 PVM pVM = pUVM->pVM;
3147 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3148 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
3149}
3150
3151
3152/**
3153 * External interface for querying whether VT-x is being used.
3154 *
3155 * @returns true if VT-x is being used, otherwise false.
3156 * @param pUVM The user mode VM handle.
3157 * @sa HMR3IsSvmEnabled, HMIsEnabled
3158 */
3159VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
3160{
3161 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3162 PVM pVM = pUVM->pVM;
3163 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3164 return pVM->hm.s.vmx.fEnabled
3165 && pVM->hm.s.vmx.fSupported
3166 && pVM->fHMEnabled;
3167}
3168
3169
3170/**
3171 * External interface for querying whether AMD-V is being used.
3172 *
3173 * @returns true if VT-x is being used, otherwise false.
3174 * @param pUVM The user mode VM handle.
3175 * @sa HMR3IsVmxEnabled, HMIsEnabled
3176 */
3177VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
3178{
3179 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3180 PVM pVM = pUVM->pVM;
3181 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3182 return pVM->hm.s.svm.fEnabled
3183 && pVM->hm.s.svm.fSupported
3184 && pVM->fHMEnabled;
3185}
3186
3187
3188/**
3189 * Checks if we are currently using nested paging.
3190 *
3191 * @returns true if nested paging is being used, otherwise false.
3192 * @param pUVM The user mode VM handle.
3193 */
3194VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
3195{
3196 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3197 PVM pVM = pUVM->pVM;
3198 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3199 return pVM->hm.s.fNestedPaging;
3200}
3201
3202
3203/**
3204 * Checks if virtualized APIC registers is enabled.
3205 *
3206 * When enabled this feature allows the hardware to access most of the
3207 * APIC registers in the virtual-APIC page without causing VM-exits. See
3208 * Intel spec. 29.1.1 "Virtualized APIC Registers".
3209 *
3210 * @returns true if virtualized APIC registers is enabled, otherwise
3211 * false.
3212 * @param pUVM The user mode VM handle.
3213 */
3214VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
3215{
3216 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3217 PVM pVM = pUVM->pVM;
3218 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3219 return pVM->hm.s.fVirtApicRegs;
3220}
3221
3222
3223/**
3224 * Checks if APIC posted-interrupt processing is enabled.
3225 *
3226 * This returns whether we can deliver interrupts to the guest without
3227 * leaving guest-context by updating APIC state from host-context.
3228 *
3229 * @returns true if APIC posted-interrupt processing is enabled,
3230 * otherwise false.
3231 * @param pUVM The user mode VM handle.
3232 */
3233VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
3234{
3235 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3236 PVM pVM = pUVM->pVM;
3237 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3238 return pVM->hm.s.fPostedIntrs;
3239}
3240
3241
3242/**
3243 * Checks if we are currently using VPID in VT-x mode.
3244 *
3245 * @returns true if VPID is being used, otherwise false.
3246 * @param pUVM The user mode VM handle.
3247 */
3248VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
3249{
3250 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3251 PVM pVM = pUVM->pVM;
3252 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3253 return pVM->hm.s.vmx.fVpid;
3254}
3255
3256
3257/**
3258 * Checks if we are currently using VT-x unrestricted execution,
3259 * aka UX.
3260 *
3261 * @returns true if UX is being used, otherwise false.
3262 * @param pUVM The user mode VM handle.
3263 */
3264VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
3265{
3266 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3267 PVM pVM = pUVM->pVM;
3268 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3269 return pVM->hm.s.vmx.fUnrestrictedGuest;
3270}
3271
3272
3273/**
3274 * Checks if internal events are pending. In that case we are not allowed to dispatch interrupts.
3275 *
3276 * @returns true if an internal event is pending, otherwise false.
3277 * @param pVCpu The cross context virtual CPU structure.
3278 */
3279VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu)
3280{
3281 return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending;
3282}
3283
3284
3285/**
3286 * Checks if the VMX-preemption timer is being used.
3287 *
3288 * @returns true if the VMX-preemption timer is being used, otherwise false.
3289 * @param pVM The cross context VM structure.
3290 */
3291VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
3292{
3293 return HMIsEnabled(pVM)
3294 && pVM->hm.s.vmx.fEnabled
3295 && pVM->hm.s.vmx.fUsePreemptTimer;
3296}
3297
3298
3299/**
3300 * Restart an I/O instruction that was refused in ring-0
3301 *
3302 * @returns Strict VBox status code. Informational status codes other than the one documented
3303 * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success.
3304 * @retval VINF_SUCCESS Success.
3305 * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the
3306 * status code must be passed on to EM.
3307 * @retval VERR_NOT_FOUND if no pending I/O instruction.
3308 *
3309 * @param pVM The cross context VM structure.
3310 * @param pVCpu The cross context virtual CPU structure.
3311 * @param pCtx Pointer to the guest CPU context.
3312 */
3313VMMR3_INT_DECL(VBOXSTRICTRC) HMR3RestartPendingIOInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3314{
3315 /*
3316 * Check if we've got relevant data pending.
3317 */
3318 HMPENDINGIO enmType = pVCpu->hm.s.PendingIO.enmType;
3319 if (enmType == HMPENDINGIO_INVALID)
3320 return VERR_NOT_FOUND;
3321 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_INVALID;
3322 if (pVCpu->hm.s.PendingIO.GCPtrRip != pCtx->rip)
3323 return VERR_NOT_FOUND;
3324
3325 /*
3326 * Execute pending I/O.
3327 */
3328 VBOXSTRICTRC rcStrict;
3329 switch (enmType)
3330 {
3331 case HMPENDINGIO_PORT_READ:
3332 {
3333 uint32_t uAndVal = pVCpu->hm.s.PendingIO.s.Port.uAndVal;
3334 uint32_t u32Val = 0;
3335
3336 rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort, &u32Val,
3337 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3338 if (IOM_SUCCESS(rcStrict))
3339 {
3340 /* Write back to the EAX register. */
3341 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
3342 pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
3343 }
3344 break;
3345 }
3346
3347 default:
3348 AssertLogRelFailedReturn(VERR_HM_UNKNOWN_IO_INSTRUCTION);
3349 }
3350
3351 if (IOM_SUCCESS(rcStrict))
3352 {
3353 /*
3354 * Check for I/O breakpoints.
3355 */
3356 uint32_t const uDr7 = pCtx->dr[7];
3357 if ( ( (uDr7 & X86_DR7_ENABLED_MASK)
3358 && X86_DR7_ANY_RW_IO(uDr7)
3359 && (pCtx->cr4 & X86_CR4_DE))
3360 || DBGFBpIsHwIoArmed(pVM))
3361 {
3362 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, pVCpu->hm.s.PendingIO.s.Port.uPort,
3363 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3364 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
3365 rcStrict2 = TRPMAssertTrap(pVCpu, X86_XCPT_DB, TRPM_TRAP);
3366 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
3367 else if (rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
3368 rcStrict = rcStrict2;
3369 }
3370 }
3371 return rcStrict;
3372}
3373
3374
3375/**
3376 * Check fatal VT-x/AMD-V error and produce some meaningful
3377 * log release message.
3378 *
3379 * @param pVM The cross context VM structure.
3380 * @param iStatusCode VBox status code.
3381 */
3382VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3383{
3384 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3385 {
3386 PVMCPU pVCpu = &pVM->aCpus[i];
3387 switch (iStatusCode)
3388 {
3389 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3390 * might be getting inaccurate values for non-guru'ing EMTs. */
3391 case VERR_VMX_INVALID_VMCS_FIELD:
3392 break;
3393
3394 case VERR_VMX_INVALID_VMCS_PTR:
3395 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3396 LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VMCSPhys,
3397 pVCpu->hm.s.vmx.HCPhysVmcs));
3398 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VMCSRevision));
3399 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3400 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3401 break;
3402
3403 case VERR_VMX_UNABLE_TO_START_VM:
3404 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3405 LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
3406 LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3407
3408 if ( pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMLAUCH_NON_CLEAR_VMCS
3409 || pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMRESUME_NON_LAUNCHED_VMCS)
3410 {
3411 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3412 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3413 }
3414 else if (pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMENTRY_INVALID_CONTROL_FIELDS)
3415 {
3416 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32PinCtls));
3417 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls));
3418 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls2));
3419 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32EntryCtls));
3420 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ExitCtls));
3421 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap));
3422 LogRel(("HM: CPU[%u] HCPhysGuestMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr));
3423 LogRel(("HM: CPU[%u] HCPhysHostMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr));
3424 LogRel(("HM: CPU[%u] cMsrs %u\n", i, pVCpu->hm.s.vmx.cMsrs));
3425 }
3426 /** @todo Log VM-entry event injection control fields
3427 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3428 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3429 break;
3430
3431 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3432 case VERR_VMX_INVALID_VMXON_PTR:
3433 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3434 case VERR_VMX_INVALID_GUEST_STATE:
3435 case VERR_VMX_UNEXPECTED_EXIT:
3436 case VERR_SVM_UNKNOWN_EXIT:
3437 case VERR_SVM_UNEXPECTED_EXIT:
3438 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3439 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3440 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3441 break;
3442 }
3443 }
3444
3445 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3446 {
3447 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1));
3448 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry disallowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0));
3449 }
3450 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3451 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3452}
3453
3454
3455/**
3456 * Execute state save operation.
3457 *
3458 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3459 * is because we always save the VM state from ring-3 and thus most HM state
3460 * will be re-synced dynamically at runtime and don't need to be part of the VM
3461 * saved state.
3462 *
3463 * @returns VBox status code.
3464 * @param pVM The cross context VM structure.
3465 * @param pSSM SSM operation handle.
3466 */
3467static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3468{
3469 int rc;
3470
3471 Log(("hmR3Save:\n"));
3472
3473 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3474 {
3475 Assert(!pVM->aCpus[i].hm.s.Event.fPending);
3476 if (pVM->cpum.ro.GuestFeatures.fSvm)
3477 {
3478 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache;
3479 rc = SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3480 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3481 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3482 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3483 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3484 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3485 rc |= SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3486 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3487 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3488 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3489 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3490 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3491 AssertRCReturn(rc, rc);
3492 }
3493 }
3494
3495 /* Save the guest patch data. */
3496 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3497 rc |= SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3498 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3499
3500 /* Store all the guest patch records too. */
3501 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3502 AssertRCReturn(rc, rc);
3503
3504 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3505 {
3506 AssertCompileSize(HMTPRINSTR, 4);
3507 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3508 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3509 rc |= SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3510 rc |= SSMR3PutU32(pSSM, pPatch->cbOp);
3511 rc |= SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3512 rc |= SSMR3PutU32(pSSM, pPatch->cbNewOp);
3513 rc |= SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3514 rc |= SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3515 rc |= SSMR3PutU32(pSSM, pPatch->uDstOperand);
3516 rc |= SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3517 rc |= SSMR3PutU32(pSSM, pPatch->cFaults);
3518 AssertRCReturn(rc, rc);
3519 }
3520
3521 return VINF_SUCCESS;
3522}
3523
3524
3525/**
3526 * Execute state load operation.
3527 *
3528 * @returns VBox status code.
3529 * @param pVM The cross context VM structure.
3530 * @param pSSM SSM operation handle.
3531 * @param uVersion Data layout version.
3532 * @param uPass The data pass.
3533 */
3534static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3535{
3536 int rc;
3537
3538 LogFlowFunc(("uVersion=%u\n", uVersion));
3539 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3540
3541 /*
3542 * Validate version.
3543 */
3544 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3545 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3546 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3547 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3548 {
3549 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3550 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3551 }
3552
3553 /*
3554 * Load per-VCPU state.
3555 */
3556 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3557 {
3558 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3559 {
3560 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3561 if (pVM->cpum.ro.GuestFeatures.fSvm)
3562 {
3563 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache;
3564 rc = SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3565 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3566 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3567 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3568 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3569 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3570 rc |= SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3571 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3572 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3573 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3574 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3575 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3576 AssertRCReturn(rc, rc);
3577 }
3578 }
3579 else
3580 {
3581 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3582 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
3583 rc |= SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
3584 rc |= SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo);
3585
3586 /* VMX fWasInRealMode related data. */
3587 uint32_t uDummy;
3588 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3589 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3590 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3591 AssertRCReturn(rc, rc);
3592 }
3593 }
3594
3595 /*
3596 * Load TPR patching data.
3597 */
3598 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3599 {
3600 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3601 rc |= SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3602 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3603
3604 /* Fetch all TPR patch records. */
3605 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3606 AssertRCReturn(rc, rc);
3607 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3608 {
3609 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3610 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3611 rc |= SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3612 rc |= SSMR3GetU32(pSSM, &pPatch->cbOp);
3613 rc |= SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3614 rc |= SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3615 rc |= SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3616
3617 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3618 pVM->hm.s.fTPRPatchingActive = true;
3619 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3620
3621 rc |= SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3622 rc |= SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3623 rc |= SSMR3GetU32(pSSM, &pPatch->cFaults);
3624 rc |= SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3625 AssertRCReturn(rc, rc);
3626
3627 LogFlow(("hmR3Load: patch %d\n", i));
3628 LogFlow(("Key = %x\n", pPatch->Core.Key));
3629 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3630 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3631 LogFlow(("type = %d\n", pPatch->enmType));
3632 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3633 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3634 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3635 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3636
3637 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3638 AssertRCReturn(rc, rc);
3639 }
3640 }
3641
3642 return VINF_SUCCESS;
3643}
3644
3645
3646/**
3647 * Gets the name of a VT-x exit code.
3648 *
3649 * @returns Pointer to read only string if @a uExit is known, otherwise NULL.
3650 * @param uExit The VT-x exit to name.
3651 */
3652VMMR3DECL(const char *) HMR3GetVmxExitName(uint32_t uExit)
3653{
3654 if (uExit < RT_ELEMENTS(g_apszVTxExitReasons))
3655 return g_apszVTxExitReasons[uExit];
3656 return NULL;
3657}
3658
3659
3660/**
3661 * Gets the name of an AMD-V exit code.
3662 *
3663 * @returns Pointer to read only string if @a uExit is known, otherwise NULL.
3664 * @param uExit The AMD-V exit to name.
3665 */
3666VMMR3DECL(const char *) HMR3GetSvmExitName(uint32_t uExit)
3667{
3668 if (uExit < RT_ELEMENTS(g_apszAmdVExitReasons))
3669 return g_apszAmdVExitReasons[uExit];
3670 return hmSvmGetSpecialExitReasonDesc(uExit);
3671}
3672
3673
3674/**
3675 * Displays the guest VM-exit history.
3676 *
3677 * @param pVM The cross context VM structure.
3678 * @param pHlp The info helper functions.
3679 * @param pszArgs Arguments, ignored.
3680 */
3681static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3682{
3683 NOREF(pszArgs);
3684 PVMCPU pVCpu = VMMGetCpu(pVM);
3685 if (!pVCpu)
3686 pVCpu = &pVM->aCpus[0];
3687
3688 if (HMIsEnabled(pVM))
3689 {
3690 if (pVM->hm.s.vmx.fSupported)
3691 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3692 else
3693 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3694 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3695 }
3696 else
3697 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3698}
3699
3700
3701/**
3702 * Displays the HM pending event.
3703 *
3704 * @param pVM The cross context VM structure.
3705 * @param pHlp The info helper functions.
3706 * @param pszArgs Arguments, ignored.
3707 */
3708static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3709{
3710 NOREF(pszArgs);
3711 PVMCPU pVCpu = VMMGetCpu(pVM);
3712 if (!pVCpu)
3713 pVCpu = &pVM->aCpus[0];
3714
3715 if (HMIsEnabled(pVM))
3716 {
3717 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3718 if (pVCpu->hm.s.Event.fPending)
3719 {
3720 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3721 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3722 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3723 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3724 }
3725 }
3726 else
3727 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3728}
3729
3730
3731/**
3732 * Displays the SVM nested-guest VMCB cache.
3733 *
3734 * @param pVM The cross context VM structure.
3735 * @param pHlp The info helper functions.
3736 * @param pszArgs Arguments, ignored.
3737 */
3738static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3739{
3740 NOREF(pszArgs);
3741 PVMCPU pVCpu = VMMGetCpu(pVM);
3742 if (!pVCpu)
3743 pVCpu = &pVM->aCpus[0];
3744
3745 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3746 if ( fSvmEnabled
3747 && pVM->cpum.ro.GuestFeatures.fSvm)
3748 {
3749 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
3750 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3751 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3752 pHlp->pfnPrintf(pHlp, " fHMCachedVmcb = %#RTbool\n", pCtx->hwvirt.svm.fHMCachedVmcb);
3753 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3754 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3755 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3756 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3757 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3758 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3759 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3760 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3761 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3762 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3763 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3764 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3765 }
3766 else
3767 {
3768 if (!fSvmEnabled)
3769 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3770 else
3771 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3772 }
3773}
3774
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette