VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 72771

Last change on this file since 72771 was 72771, checked in by vboxsync, 7 years ago

VMM: Avoid calling CPUMQueryGuestCtxPtr when possible, cleanup.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 168.3 KB
Line 
1/* $Id: HM.cpp 72771 2018-06-29 11:25:05Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/mm.h>
44#include <VBox/vmm/pdmapi.h>
45#include <VBox/vmm/pgm.h>
46#include <VBox/vmm/ssm.h>
47#include <VBox/vmm/trpm.h>
48#include <VBox/vmm/dbgf.h>
49#include <VBox/vmm/iom.h>
50#include <VBox/vmm/iem.h>
51#include <VBox/vmm/patm.h>
52#include <VBox/vmm/csam.h>
53#include <VBox/vmm/selm.h>
54#include <VBox/vmm/nem.h>
55#ifdef VBOX_WITH_REM
56# include <VBox/vmm/rem.h>
57#endif
58#include <VBox/vmm/hm_vmx.h>
59#include <VBox/vmm/hm_svm.h>
60#include "HMInternal.h"
61#include <VBox/vmm/vm.h>
62#include <VBox/vmm/uvm.h>
63#include <VBox/err.h>
64#include <VBox/param.h>
65
66#include <iprt/assert.h>
67#include <VBox/log.h>
68#include <iprt/asm.h>
69#include <iprt/asm-amd64-x86.h>
70#include <iprt/env.h>
71#include <iprt/thread.h>
72
73
74/*********************************************************************************************************************************
75* Global Variables *
76*********************************************************************************************************************************/
77#define EXIT_REASON(def, val, str) #def " - " #val " - " str
78#define EXIT_REASON_NIL() NULL
79/** Exit reason descriptions for VT-x, used to describe statistics. */
80static const char * const g_apszVTxExitReasons[MAX_EXITREASON_STAT] =
81{
82 EXIT_REASON(VMX_EXIT_XCPT_OR_NMI , 0, "Exception or non-maskable interrupt (NMI)."),
83 EXIT_REASON(VMX_EXIT_EXT_INT , 1, "External interrupt."),
84 EXIT_REASON(VMX_EXIT_TRIPLE_FAULT , 2, "Triple fault."),
85 EXIT_REASON(VMX_EXIT_INIT_SIGNAL , 3, "INIT signal."),
86 EXIT_REASON(VMX_EXIT_SIPI , 4, "Start-up IPI (SIPI)."),
87 EXIT_REASON(VMX_EXIT_IO_SMI_IRQ , 5, "I/O system-management interrupt (SMI)."),
88 EXIT_REASON(VMX_EXIT_SMI_IRQ , 6, "Other SMI."),
89 EXIT_REASON(VMX_EXIT_INT_WINDOW , 7, "Interrupt window."),
90 EXIT_REASON(VMX_EXIT_NMI_WINDOW , 8, "NMI window."),
91 EXIT_REASON(VMX_EXIT_TASK_SWITCH , 9, "Task switch."),
92 EXIT_REASON(VMX_EXIT_CPUID , 10, "CPUID instruction."),
93 EXIT_REASON(VMX_EXIT_GETSEC , 11, "GETSEC instrunction."),
94 EXIT_REASON(VMX_EXIT_HLT , 12, "HLT instruction."),
95 EXIT_REASON(VMX_EXIT_INVD , 13, "INVD instruction."),
96 EXIT_REASON(VMX_EXIT_INVLPG , 14, "INVLPG instruction."),
97 EXIT_REASON(VMX_EXIT_RDPMC , 15, "RDPMCinstruction."),
98 EXIT_REASON(VMX_EXIT_RDTSC , 16, "RDTSC instruction."),
99 EXIT_REASON(VMX_EXIT_RSM , 17, "RSM instruction in SMM."),
100 EXIT_REASON(VMX_EXIT_VMCALL , 18, "VMCALL instruction."),
101 EXIT_REASON(VMX_EXIT_VMCLEAR , 19, "VMCLEAR instruction."),
102 EXIT_REASON(VMX_EXIT_VMLAUNCH , 20, "VMLAUNCH instruction."),
103 EXIT_REASON(VMX_EXIT_VMPTRLD , 21, "VMPTRLD instruction."),
104 EXIT_REASON(VMX_EXIT_VMPTRST , 22, "VMPTRST instruction."),
105 EXIT_REASON(VMX_EXIT_VMREAD , 23, "VMREAD instruction."),
106 EXIT_REASON(VMX_EXIT_VMRESUME , 24, "VMRESUME instruction."),
107 EXIT_REASON(VMX_EXIT_VMWRITE , 25, "VMWRITE instruction."),
108 EXIT_REASON(VMX_EXIT_VMXOFF , 26, "VMXOFF instruction."),
109 EXIT_REASON(VMX_EXIT_VMXON , 27, "VMXON instruction."),
110 EXIT_REASON(VMX_EXIT_MOV_CRX , 28, "Control-register accesses."),
111 EXIT_REASON(VMX_EXIT_MOV_DRX , 29, "Debug-register accesses."),
112 EXIT_REASON(VMX_EXIT_PORT_IO , 30, "I/O instruction."),
113 EXIT_REASON(VMX_EXIT_RDMSR , 31, "RDMSR instruction."),
114 EXIT_REASON(VMX_EXIT_WRMSR , 32, "WRMSR instruction."),
115 EXIT_REASON(VMX_EXIT_ERR_INVALID_GUEST_STATE, 33, "VM-entry failure due to invalid guest state."),
116 EXIT_REASON(VMX_EXIT_ERR_MSR_LOAD , 34, "VM-entry failure due to MSR loading."),
117 EXIT_REASON_NIL(),
118 EXIT_REASON(VMX_EXIT_MWAIT , 36, "MWAIT instruction."),
119 EXIT_REASON(VMX_EXIT_MTF , 37, "Monitor Trap Flag."),
120 EXIT_REASON_NIL(),
121 EXIT_REASON(VMX_EXIT_MONITOR , 39, "MONITOR instruction."),
122 EXIT_REASON(VMX_EXIT_PAUSE , 40, "PAUSE instruction."),
123 EXIT_REASON(VMX_EXIT_ERR_MACHINE_CHECK , 41, "VM-entry failure due to machine-check."),
124 EXIT_REASON_NIL(),
125 EXIT_REASON(VMX_EXIT_TPR_BELOW_THRESHOLD , 43, "TPR below threshold (MOV to CR8)."),
126 EXIT_REASON(VMX_EXIT_APIC_ACCESS , 44, "APIC access."),
127 EXIT_REASON(VMX_EXIT_VIRTUALIZED_EOI , 45, "Virtualized EOI."),
128 EXIT_REASON(VMX_EXIT_XDTR_ACCESS , 46, "GDTR/IDTR access using LGDT/SGDT/LIDT/SIDT."),
129 EXIT_REASON(VMX_EXIT_TR_ACCESS , 47, "LDTR/TR access using LLDT/SLDT/LTR/STR."),
130 EXIT_REASON(VMX_EXIT_EPT_VIOLATION , 48, "EPT violation."),
131 EXIT_REASON(VMX_EXIT_EPT_MISCONFIG , 49, "EPT misconfiguration."),
132 EXIT_REASON(VMX_EXIT_INVEPT , 50, "INVEPT instruction."),
133 EXIT_REASON(VMX_EXIT_RDTSCP , 51, "RDTSCP instruction."),
134 EXIT_REASON(VMX_EXIT_PREEMPT_TIMER , 52, "VMX-preemption timer expired."),
135 EXIT_REASON(VMX_EXIT_INVVPID , 53, "INVVPID instruction."),
136 EXIT_REASON(VMX_EXIT_WBINVD , 54, "WBINVD instruction."),
137 EXIT_REASON(VMX_EXIT_XSETBV , 55, "XSETBV instruction."),
138 EXIT_REASON(VMX_EXIT_APIC_WRITE , 56, "APIC write completed to virtual-APIC page."),
139 EXIT_REASON(VMX_EXIT_RDRAND , 57, "RDRAND instruction."),
140 EXIT_REASON(VMX_EXIT_INVPCID , 58, "INVPCID instruction."),
141 EXIT_REASON(VMX_EXIT_VMFUNC , 59, "VMFUNC instruction."),
142 EXIT_REASON(VMX_EXIT_ENCLS , 60, "ENCLS instrunction."),
143 EXIT_REASON(VMX_EXIT_RDSEED , 61, "RDSEED instruction."),
144 EXIT_REASON(VMX_EXIT_PML_FULL , 62, "Page-modification log full."),
145 EXIT_REASON(VMX_EXIT_XSAVES , 63, "XSAVES instruction."),
146 EXIT_REASON(VMX_EXIT_XRSTORS , 64, "XRSTORS instruction.")
147};
148/** Array index of the last valid VT-x exit reason. */
149#define MAX_EXITREASON_VTX 64
150
151/** A partial list of Exit reason descriptions for AMD-V, used to describe
152 * statistics.
153 *
154 * @note AMD-V have annoyingly large gaps (e.g. \#NPF VMEXIT comes at 1024),
155 * this array doesn't contain the entire set of exit reasons, we
156 * handle them via hmSvmGetSpecialExitReasonDesc(). */
157static const char * const g_apszAmdVExitReasons[MAX_EXITREASON_STAT] =
158{
159 EXIT_REASON(SVM_EXIT_READ_CR0 , 0, "Read CR0."),
160 EXIT_REASON(SVM_EXIT_READ_CR1 , 1, "Read CR1."),
161 EXIT_REASON(SVM_EXIT_READ_CR2 , 2, "Read CR2."),
162 EXIT_REASON(SVM_EXIT_READ_CR3 , 3, "Read CR3."),
163 EXIT_REASON(SVM_EXIT_READ_CR4 , 4, "Read CR4."),
164 EXIT_REASON(SVM_EXIT_READ_CR5 , 5, "Read CR5."),
165 EXIT_REASON(SVM_EXIT_READ_CR6 , 6, "Read CR6."),
166 EXIT_REASON(SVM_EXIT_READ_CR7 , 7, "Read CR7."),
167 EXIT_REASON(SVM_EXIT_READ_CR8 , 8, "Read CR8."),
168 EXIT_REASON(SVM_EXIT_READ_CR9 , 9, "Read CR9."),
169 EXIT_REASON(SVM_EXIT_READ_CR10 , 10, "Read CR10."),
170 EXIT_REASON(SVM_EXIT_READ_CR11 , 11, "Read CR11."),
171 EXIT_REASON(SVM_EXIT_READ_CR12 , 12, "Read CR12."),
172 EXIT_REASON(SVM_EXIT_READ_CR13 , 13, "Read CR13."),
173 EXIT_REASON(SVM_EXIT_READ_CR14 , 14, "Read CR14."),
174 EXIT_REASON(SVM_EXIT_READ_CR15 , 15, "Read CR15."),
175 EXIT_REASON(SVM_EXIT_WRITE_CR0 , 16, "Write CR0."),
176 EXIT_REASON(SVM_EXIT_WRITE_CR1 , 17, "Write CR1."),
177 EXIT_REASON(SVM_EXIT_WRITE_CR2 , 18, "Write CR2."),
178 EXIT_REASON(SVM_EXIT_WRITE_CR3 , 19, "Write CR3."),
179 EXIT_REASON(SVM_EXIT_WRITE_CR4 , 20, "Write CR4."),
180 EXIT_REASON(SVM_EXIT_WRITE_CR5 , 21, "Write CR5."),
181 EXIT_REASON(SVM_EXIT_WRITE_CR6 , 22, "Write CR6."),
182 EXIT_REASON(SVM_EXIT_WRITE_CR7 , 23, "Write CR7."),
183 EXIT_REASON(SVM_EXIT_WRITE_CR8 , 24, "Write CR8."),
184 EXIT_REASON(SVM_EXIT_WRITE_CR9 , 25, "Write CR9."),
185 EXIT_REASON(SVM_EXIT_WRITE_CR10 , 26, "Write CR10."),
186 EXIT_REASON(SVM_EXIT_WRITE_CR11 , 27, "Write CR11."),
187 EXIT_REASON(SVM_EXIT_WRITE_CR12 , 28, "Write CR12."),
188 EXIT_REASON(SVM_EXIT_WRITE_CR13 , 29, "Write CR13."),
189 EXIT_REASON(SVM_EXIT_WRITE_CR14 , 30, "Write CR14."),
190 EXIT_REASON(SVM_EXIT_WRITE_CR15 , 31, "Write CR15."),
191 EXIT_REASON(SVM_EXIT_READ_DR0 , 32, "Read DR0."),
192 EXIT_REASON(SVM_EXIT_READ_DR1 , 33, "Read DR1."),
193 EXIT_REASON(SVM_EXIT_READ_DR2 , 34, "Read DR2."),
194 EXIT_REASON(SVM_EXIT_READ_DR3 , 35, "Read DR3."),
195 EXIT_REASON(SVM_EXIT_READ_DR4 , 36, "Read DR4."),
196 EXIT_REASON(SVM_EXIT_READ_DR5 , 37, "Read DR5."),
197 EXIT_REASON(SVM_EXIT_READ_DR6 , 38, "Read DR6."),
198 EXIT_REASON(SVM_EXIT_READ_DR7 , 39, "Read DR7."),
199 EXIT_REASON(SVM_EXIT_READ_DR8 , 40, "Read DR8."),
200 EXIT_REASON(SVM_EXIT_READ_DR9 , 41, "Read DR9."),
201 EXIT_REASON(SVM_EXIT_READ_DR10 , 42, "Read DR10."),
202 EXIT_REASON(SVM_EXIT_READ_DR11 , 43, "Read DR11"),
203 EXIT_REASON(SVM_EXIT_READ_DR12 , 44, "Read DR12."),
204 EXIT_REASON(SVM_EXIT_READ_DR13 , 45, "Read DR13."),
205 EXIT_REASON(SVM_EXIT_READ_DR14 , 46, "Read DR14."),
206 EXIT_REASON(SVM_EXIT_READ_DR15 , 47, "Read DR15."),
207 EXIT_REASON(SVM_EXIT_WRITE_DR0 , 48, "Write DR0."),
208 EXIT_REASON(SVM_EXIT_WRITE_DR1 , 49, "Write DR1."),
209 EXIT_REASON(SVM_EXIT_WRITE_DR2 , 50, "Write DR2."),
210 EXIT_REASON(SVM_EXIT_WRITE_DR3 , 51, "Write DR3."),
211 EXIT_REASON(SVM_EXIT_WRITE_DR4 , 52, "Write DR4."),
212 EXIT_REASON(SVM_EXIT_WRITE_DR5 , 53, "Write DR5."),
213 EXIT_REASON(SVM_EXIT_WRITE_DR6 , 54, "Write DR6."),
214 EXIT_REASON(SVM_EXIT_WRITE_DR7 , 55, "Write DR7."),
215 EXIT_REASON(SVM_EXIT_WRITE_DR8 , 56, "Write DR8."),
216 EXIT_REASON(SVM_EXIT_WRITE_DR9 , 57, "Write DR9."),
217 EXIT_REASON(SVM_EXIT_WRITE_DR10 , 58, "Write DR10."),
218 EXIT_REASON(SVM_EXIT_WRITE_DR11 , 59, "Write DR11."),
219 EXIT_REASON(SVM_EXIT_WRITE_DR12 , 60, "Write DR12."),
220 EXIT_REASON(SVM_EXIT_WRITE_DR13 , 61, "Write DR13."),
221 EXIT_REASON(SVM_EXIT_WRITE_DR14 , 62, "Write DR14."),
222 EXIT_REASON(SVM_EXIT_WRITE_DR15 , 63, "Write DR15."),
223 EXIT_REASON(SVM_EXIT_XCPT_0 , 64, "Exception 0 (#DE)."),
224 EXIT_REASON(SVM_EXIT_XCPT_1 , 65, "Exception 1 (#DB)."),
225 EXIT_REASON(SVM_EXIT_XCPT_2 , 66, "Exception 2 (#NMI)."),
226 EXIT_REASON(SVM_EXIT_XCPT_3 , 67, "Exception 3 (#BP)."),
227 EXIT_REASON(SVM_EXIT_XCPT_4 , 68, "Exception 4 (#OF)."),
228 EXIT_REASON(SVM_EXIT_XCPT_5 , 69, "Exception 5 (#BR)."),
229 EXIT_REASON(SVM_EXIT_XCPT_6 , 70, "Exception 6 (#UD)."),
230 EXIT_REASON(SVM_EXIT_XCPT_7 , 71, "Exception 7 (#NM)."),
231 EXIT_REASON(SVM_EXIT_XCPT_8 , 72, "Exception 8 (#DF)."),
232 EXIT_REASON(SVM_EXIT_XCPT_9 , 73, "Exception 9 (#CO_SEG_OVERRUN)."),
233 EXIT_REASON(SVM_EXIT_XCPT_10 , 74, "Exception 10 (#TS)."),
234 EXIT_REASON(SVM_EXIT_XCPT_11 , 75, "Exception 11 (#NP)."),
235 EXIT_REASON(SVM_EXIT_XCPT_12 , 76, "Exception 12 (#SS)."),
236 EXIT_REASON(SVM_EXIT_XCPT_13 , 77, "Exception 13 (#GP)."),
237 EXIT_REASON(SVM_EXIT_XCPT_14 , 78, "Exception 14 (#PF)."),
238 EXIT_REASON(SVM_EXIT_XCPT_15 , 79, "Exception 15 (0x0f)."),
239 EXIT_REASON(SVM_EXIT_XCPT_16 , 80, "Exception 16 (#MF)."),
240 EXIT_REASON(SVM_EXIT_XCPT_17 , 81, "Exception 17 (#AC)."),
241 EXIT_REASON(SVM_EXIT_XCPT_18 , 82, "Exception 18 (#MC)."),
242 EXIT_REASON(SVM_EXIT_XCPT_19 , 83, "Exception 19 (#XF)."),
243 EXIT_REASON(SVM_EXIT_XCPT_20 , 84, "Exception 20 (#VE)."),
244 EXIT_REASON(SVM_EXIT_XCPT_21 , 85, "Exception 22 (0x15)."),
245 EXIT_REASON(SVM_EXIT_XCPT_22 , 86, "Exception 22 (0x16)."),
246 EXIT_REASON(SVM_EXIT_XCPT_23 , 87, "Exception 23 (0x17)."),
247 EXIT_REASON(SVM_EXIT_XCPT_24 , 88, "Exception 24 (0x18)."),
248 EXIT_REASON(SVM_EXIT_XCPT_25 , 89, "Exception 25 (0x19)."),
249 EXIT_REASON(SVM_EXIT_XCPT_26 , 90, "Exception 26 (0x1A)."),
250 EXIT_REASON(SVM_EXIT_XCPT_27 , 91, "Exception 27 (0x1B)."),
251 EXIT_REASON(SVM_EXIT_XCPT_28 , 92, "Exception 28 (0x1C)."),
252 EXIT_REASON(SVM_EXIT_XCPT_29 , 93, "Exception 29 (0x1D)."),
253 EXIT_REASON(SVM_EXIT_XCPT_30 , 94, "Exception 30 (#SX)."),
254 EXIT_REASON(SVM_EXIT_XCPT_31 , 95, "Exception 31 (0x1F)."),
255 EXIT_REASON(SVM_EXIT_INTR , 96, "Physical maskable interrupt (host)."),
256 EXIT_REASON(SVM_EXIT_NMI , 97, "Physical non-maskable interrupt (host)."),
257 EXIT_REASON(SVM_EXIT_SMI , 98, "System management interrupt (host)."),
258 EXIT_REASON(SVM_EXIT_INIT , 99, "Physical INIT signal (host)."),
259 EXIT_REASON(SVM_EXIT_VINTR , 100, "Virtual interrupt-window exit."),
260 EXIT_REASON(SVM_EXIT_CR0_SEL_WRITE, 101, "Write to CR0 that changed any bits other than CR0.TS or CR0.MP."),
261 EXIT_REASON(SVM_EXIT_IDTR_READ , 102, "Read IDTR"),
262 EXIT_REASON(SVM_EXIT_GDTR_READ , 103, "Read GDTR"),
263 EXIT_REASON(SVM_EXIT_LDTR_READ , 104, "Read LDTR."),
264 EXIT_REASON(SVM_EXIT_TR_READ , 105, "Read TR."),
265 EXIT_REASON(SVM_EXIT_IDTR_WRITE , 106, "Write IDTR."),
266 EXIT_REASON(SVM_EXIT_GDTR_WRITE , 107, "Write GDTR."),
267 EXIT_REASON(SVM_EXIT_LDTR_WRITE , 108, "Write LDTR."),
268 EXIT_REASON(SVM_EXIT_TR_WRITE , 109, "Write TR."),
269 EXIT_REASON(SVM_EXIT_RDTSC , 110, "RDTSC instruction."),
270 EXIT_REASON(SVM_EXIT_RDPMC , 111, "RDPMC instruction."),
271 EXIT_REASON(SVM_EXIT_PUSHF , 112, "PUSHF instruction."),
272 EXIT_REASON(SVM_EXIT_POPF , 113, "POPF instruction."),
273 EXIT_REASON(SVM_EXIT_CPUID , 114, "CPUID instruction."),
274 EXIT_REASON(SVM_EXIT_RSM , 115, "RSM instruction."),
275 EXIT_REASON(SVM_EXIT_IRET , 116, "IRET instruction."),
276 EXIT_REASON(SVM_EXIT_SWINT , 117, "Software interrupt (INTn instructions)."),
277 EXIT_REASON(SVM_EXIT_INVD , 118, "INVD instruction."),
278 EXIT_REASON(SVM_EXIT_PAUSE , 119, "PAUSE instruction."),
279 EXIT_REASON(SVM_EXIT_HLT , 120, "HLT instruction."),
280 EXIT_REASON(SVM_EXIT_INVLPG , 121, "INVLPG instruction."),
281 EXIT_REASON(SVM_EXIT_INVLPGA , 122, "INVLPGA instruction."),
282 EXIT_REASON(SVM_EXIT_IOIO , 123, "IN/OUT accessing protected port."),
283 EXIT_REASON(SVM_EXIT_MSR , 124, "RDMSR or WRMSR access to protected MSR."),
284 EXIT_REASON(SVM_EXIT_TASK_SWITCH , 125, "Task switch."),
285 EXIT_REASON(SVM_EXIT_FERR_FREEZE , 126, "Legacy FPU handling enabled; CPU frozen in an x87/mmx instr. waiting for interrupt."),
286 EXIT_REASON(SVM_EXIT_SHUTDOWN , 127, "Shutdown."),
287 EXIT_REASON(SVM_EXIT_VMRUN , 128, "VMRUN instruction."),
288 EXIT_REASON(SVM_EXIT_VMMCALL , 129, "VMCALL instruction."),
289 EXIT_REASON(SVM_EXIT_VMLOAD , 130, "VMLOAD instruction."),
290 EXIT_REASON(SVM_EXIT_VMSAVE , 131, "VMSAVE instruction."),
291 EXIT_REASON(SVM_EXIT_STGI , 132, "STGI instruction."),
292 EXIT_REASON(SVM_EXIT_CLGI , 133, "CLGI instruction."),
293 EXIT_REASON(SVM_EXIT_SKINIT , 134, "SKINIT instruction."),
294 EXIT_REASON(SVM_EXIT_RDTSCP , 135, "RDTSCP instruction."),
295 EXIT_REASON(SVM_EXIT_ICEBP , 136, "ICEBP instruction."),
296 EXIT_REASON(SVM_EXIT_WBINVD , 137, "WBINVD instruction."),
297 EXIT_REASON(SVM_EXIT_MONITOR , 138, "MONITOR instruction."),
298 EXIT_REASON(SVM_EXIT_MWAIT , 139, "MWAIT instruction."),
299 EXIT_REASON(SVM_EXIT_MWAIT_ARMED , 140, "MWAIT instruction when armed."),
300 EXIT_REASON(SVM_EXIT_XSETBV , 141, "XSETBV instruction."),
301};
302/** Array index of the last valid AMD-V exit reason. */
303#define MAX_EXITREASON_AMDV 141
304
305/** Special exit reasons not covered in the array above. */
306#define SVM_EXIT_REASON_NPF EXIT_REASON(SVM_EXIT_NPF , 1024, "Nested Page Fault.")
307#define SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI EXIT_REASON(SVM_EXIT_AVIC_INCOMPLETE_IPI, 1025, "AVIC - Incomplete IPI delivery.")
308#define SVM_EXIT_REASON_AVIC_NOACCEL EXIT_REASON(SVM_EXIT_AVIC_NOACCEL , 1026, "AVIC - Unhandled register.")
309
310/**
311 * Gets the SVM exit reason if it's one of the reasons not present in the @c
312 * g_apszAmdVExitReasons array.
313 *
314 * @returns The exit reason or NULL if unknown.
315 * @param uExit The exit.
316 */
317DECLINLINE(const char *) hmSvmGetSpecialExitReasonDesc(uint16_t uExit)
318{
319 switch (uExit)
320 {
321 case SVM_EXIT_NPF: return SVM_EXIT_REASON_NPF;
322 case SVM_EXIT_AVIC_INCOMPLETE_IPI: return SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI;
323 case SVM_EXIT_AVIC_NOACCEL: return SVM_EXIT_REASON_AVIC_NOACCEL;
324 }
325 return EXIT_REASON_NIL();
326}
327#undef EXIT_REASON_NIL
328#undef EXIT_REASON
329
330/** @def HMVMX_REPORT_FEATURE
331 * Reports VT-x feature to the release log.
332 *
333 * @param allowed1 Mask of allowed feature bits.
334 * @param disallowed0 Mask of disallowed feature bits.
335 * @param strdesc The description string to report.
336 * @param featflag Mask of the feature to report.
337 */
338#define HMVMX_REPORT_FEATURE(allowed1, disallowed0, strdesc, featflag) \
339 do { \
340 if ((allowed1) & (featflag)) \
341 { \
342 if ((disallowed0) & (featflag)) \
343 LogRel(("HM: " strdesc " (must be set)\n")); \
344 else \
345 LogRel(("HM: " strdesc "\n")); \
346 } \
347 else \
348 LogRel(("HM: " strdesc " (must be cleared)\n")); \
349 } while (0)
350
351/** @def HMVMX_REPORT_ALLOWED_FEATURE
352 * Reports an allowed VT-x feature to the release log.
353 *
354 * @param allowed1 Mask of allowed feature bits.
355 * @param strdesc The description string to report.
356 * @param featflag Mask of the feature to report.
357 */
358#define HMVMX_REPORT_ALLOWED_FEATURE(allowed1, strdesc, featflag) \
359 do { \
360 if ((allowed1) & (featflag)) \
361 LogRel(("HM: " strdesc "\n")); \
362 else \
363 LogRel(("HM: " strdesc " not supported\n")); \
364 } while (0)
365
366/** @def HMVMX_REPORT_MSR_CAPABILITY
367 * Reports MSR feature capability.
368 *
369 * @param msrcaps Mask of MSR feature bits.
370 * @param strdesc The description string to report.
371 * @param cap Mask of the feature to report.
372 */
373#define HMVMX_REPORT_MSR_CAPABILITY(msrcaps, strdesc, cap) \
374 do { \
375 if ((msrcaps) & (cap)) \
376 LogRel(("HM: " strdesc "\n")); \
377 } while (0)
378
379
380/*********************************************************************************************************************************
381* Internal Functions *
382*********************************************************************************************************************************/
383static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
384static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
385static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
386static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
387static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
388static int hmR3InitCPU(PVM pVM);
389static int hmR3InitFinalizeR0(PVM pVM);
390static int hmR3InitFinalizeR0Intel(PVM pVM);
391static int hmR3InitFinalizeR0Amd(PVM pVM);
392static int hmR3TermCPU(PVM pVM);
393
394
395
396/**
397 * Initializes the HM.
398 *
399 * This is the very first component to really do init after CFGM so that we can
400 * establish the predominat execution engine for the VM prior to initializing
401 * other modules. It takes care of NEM initialization if needed (HM disabled or
402 * not available in HW).
403 *
404 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
405 * hypervisor API via NEM, and then back on raw-mode if that isn't available
406 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
407 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
408 * X, OS/2 and others).
409 *
410 * Note that a lot of the set up work is done in ring-0 and thus postponed till
411 * the ring-3 and ring-0 callback to HMR3InitCompleted.
412 *
413 * @returns VBox status code.
414 * @param pVM The cross context VM structure.
415 *
416 * @remarks Be careful with what we call here, since most of the VMM components
417 * are uninitialized.
418 */
419VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
420{
421 LogFlow(("HMR3Init\n"));
422
423 /*
424 * Assert alignment and sizes.
425 */
426 AssertCompileMemberAlignment(VM, hm.s, 32);
427 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
428
429 /*
430 * Register the saved state data unit.
431 */
432 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
433 NULL, NULL, NULL,
434 NULL, hmR3Save, NULL,
435 NULL, hmR3Load, NULL);
436 if (RT_FAILURE(rc))
437 return rc;
438
439 /*
440 * Register info handlers.
441 */
442 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
443 AssertRCReturn(rc, rc);
444
445 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
446 DBGFINFO_FLAGS_ALL_EMTS);
447 AssertRCReturn(rc, rc);
448
449 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
450 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
451 AssertRCReturn(rc, rc);
452
453 /*
454 * Read configuration.
455 */
456 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
457
458 /*
459 * Validate the HM settings.
460 */
461 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
462 "HMForced"
463 "|UseNEMInstead"
464 "|FallbackToNEM"
465 "|EnableNestedPaging"
466 "|EnableUX"
467 "|EnableLargePages"
468 "|EnableVPID"
469 "|IBPBOnVMExit"
470 "|IBPBOnVMEntry"
471 "|SpecCtrlByHost"
472 "|TPRPatchingEnabled"
473 "|64bitEnabled"
474 "|Exclusive"
475 "|MaxResumeLoops"
476 "|VmxPleGap"
477 "|VmxPleWindow"
478 "|UseVmxPreemptTimer"
479 "|SvmPauseFilter"
480 "|SvmPauseFilterThreshold"
481 "|SvmVirtVmsaveVmload"
482 "|SvmVGif",
483 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
484 if (RT_FAILURE(rc))
485 return rc;
486
487 /** @cfgm{/HM/HMForced, bool, false}
488 * Forces hardware virtualization, no falling back on raw-mode. HM must be
489 * enabled, i.e. /HMEnabled must be true. */
490 bool fHMForced;
491#ifdef VBOX_WITH_RAW_MODE
492 rc = CFGMR3QueryBoolDef(pCfgHm, "HMForced", &fHMForced, false);
493 AssertRCReturn(rc, rc);
494 AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
495 VERR_INVALID_PARAMETER);
496# if defined(RT_OS_DARWIN)
497 if (pVM->fHMEnabled)
498 fHMForced = true;
499# endif
500 AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
501 VERR_INVALID_PARAMETER);
502 if (pVM->cCpus > 1)
503 fHMForced = true;
504#else /* !VBOX_WITH_RAW_MODE */
505 AssertRelease(pVM->fHMEnabled);
506 fHMForced = true;
507#endif /* !VBOX_WITH_RAW_MODE */
508
509 /** @cfgm{/HM/UseNEMInstead, bool, true}
510 * Don't use HM, use NEM instead. */
511 bool fUseNEMInstead = false;
512 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
513 AssertRCReturn(rc, rc);
514 if (fUseNEMInstead && pVM->fHMEnabled)
515 {
516 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
517 pVM->fHMEnabled = false;
518 }
519
520 /** @cfgm{/HM/FallbackToNEM, bool, true}
521 * Enables fallback on NEM. */
522 bool fFallbackToNEM = true;
523 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
524 AssertRCReturn(rc, rc);
525
526 /** @cfgm{/HM/EnableNestedPaging, bool, false}
527 * Enables nested paging (aka extended page tables). */
528 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
529 AssertRCReturn(rc, rc);
530
531 /** @cfgm{/HM/EnableUX, bool, true}
532 * Enables the VT-x unrestricted execution feature. */
533 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
534 AssertRCReturn(rc, rc);
535
536 /** @cfgm{/HM/EnableLargePages, bool, false}
537 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
538 * page table walking and maybe better TLB hit rate in some cases. */
539 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
540 AssertRCReturn(rc, rc);
541
542 /** @cfgm{/HM/EnableVPID, bool, false}
543 * Enables the VT-x VPID feature. */
544 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
545 AssertRCReturn(rc, rc);
546
547 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
548 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
549 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
550 AssertRCReturn(rc, rc);
551
552 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
553 * Enables AMD64 cpu features.
554 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
555 * already have the support. */
556#ifdef VBOX_ENABLE_64_BITS_GUESTS
557 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
558 AssertLogRelRCReturn(rc, rc);
559#else
560 pVM->hm.s.fAllow64BitGuests = false;
561#endif
562
563 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
564 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
565 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
566 * latest PAUSE instruction to be start of a new PAUSE loop.
567 */
568 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
569 AssertRCReturn(rc, rc);
570
571 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
572 * The pause-filter exiting window in TSC ticks. When the number of ticks
573 * between the current PAUSE instruction and first PAUSE of a loop exceeds
574 * VmxPleWindow, a VM-exit is triggered.
575 *
576 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
577 */
578 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
579 AssertRCReturn(rc, rc);
580
581 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
582 * A counter that is decrement each time a PAUSE instruction is executed by the
583 * guest. When the counter is 0, a \#VMEXIT is triggered.
584 *
585 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
586 */
587 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
588 AssertRCReturn(rc, rc);
589
590 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
591 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
592 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
593 * PauseFilter count is reset to its initial value. However, if PAUSE is
594 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
595 * be triggered.
596 *
597 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
598 * activated.
599 */
600 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
601 AssertRCReturn(rc, rc);
602
603 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
604 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
605 * available. */
606 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
607 AssertRCReturn(rc, rc);
608
609 /** @cfgm{/HM/SvmVGif, bool, true}
610 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
611 * if it's available. */
612 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
613 AssertRCReturn(rc, rc);
614
615 /** @cfgm{/HM/Exclusive, bool}
616 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
617 * global init for each host CPU. If false, we do local init each time we wish
618 * to execute guest code.
619 *
620 * On Windows, default is false due to the higher risk of conflicts with other
621 * hypervisors.
622 *
623 * On Mac OS X, this setting is ignored since the code does not handle local
624 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
625 */
626#if defined(RT_OS_DARWIN)
627 pVM->hm.s.fGlobalInit = true;
628#else
629 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
630# if defined(RT_OS_WINDOWS)
631 false
632# else
633 true
634# endif
635 );
636 AssertLogRelRCReturn(rc, rc);
637#endif
638
639 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
640 * The number of times to resume guest execution before we forcibly return to
641 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
642 * determines the default value. */
643 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
644 AssertLogRelRCReturn(rc, rc);
645
646 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
647 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
648 * available. */
649 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
650 AssertLogRelRCReturn(rc, rc);
651
652 /** @cfgm{/HM/IBPBOnVMExit, bool}
653 * Costly paranoia setting. */
654 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
655 AssertLogRelRCReturn(rc, rc);
656
657 /** @cfgm{/HM/IBPBOnVMEntry, bool}
658 * Costly paranoia setting. */
659 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
660 AssertLogRelRCReturn(rc, rc);
661
662 /** @cfgm{/HM/SpecCtrlByHost, bool}
663 * Another expensive paranoia setting. */
664 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
665 AssertLogRelRCReturn(rc, rc);
666
667 /*
668 * Check if VT-x or AMD-v support according to the users wishes.
669 */
670 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
671 * VERR_SVM_IN_USE. */
672 if (pVM->fHMEnabled)
673 {
674 uint32_t fCaps;
675 rc = SUPR3QueryVTCaps(&fCaps);
676 if (RT_SUCCESS(rc))
677 {
678 if (fCaps & SUPVTCAPS_AMD_V)
679 {
680 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
681 pVM->hm.s.svm.fSupported = true;
682 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
683 }
684 else if (fCaps & SUPVTCAPS_VT_X)
685 {
686 const char *pszWhy;
687 rc = SUPR3QueryVTxSupported(&pszWhy);
688 if (RT_SUCCESS(rc))
689 {
690 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
691 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
692 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
693 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
694 pVM->hm.s.vmx.fSupported = true;
695 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
696 }
697 else
698 {
699 /*
700 * Before failing, try fallback to NEM if we're allowed to do that.
701 */
702 pVM->fHMEnabled = false;
703 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
704 if (fFallbackToNEM)
705 {
706 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
707 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
708
709 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
710 if ( RT_SUCCESS(rc2)
711 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
712 rc = VINF_SUCCESS;
713 }
714 if (RT_FAILURE(rc))
715 {
716 if (fHMForced)
717 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
718
719 /* Fall back to raw-mode. */
720 LogRel(("HM: HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x - %s\n", pszWhy));
721 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
722 }
723 }
724 }
725 else
726 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
727 VERR_INTERNAL_ERROR_5);
728
729 /*
730 * Do we require a little bit or raw-mode for 64-bit guest execution?
731 */
732 pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
733 && pVM->fHMEnabled
734 && pVM->hm.s.fAllow64BitGuests;
735
736 /*
737 * Disable nested paging and unrestricted guest execution now if they're
738 * configured so that CPUM can make decisions based on our configuration.
739 */
740 Assert(!pVM->hm.s.fNestedPaging);
741 if (pVM->hm.s.fAllowNestedPaging)
742 {
743 if (fCaps & SUPVTCAPS_NESTED_PAGING)
744 pVM->hm.s.fNestedPaging = true;
745 else
746 pVM->hm.s.fAllowNestedPaging = false;
747 }
748
749 if (fCaps & SUPVTCAPS_VT_X)
750 {
751 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
752 if (pVM->hm.s.vmx.fAllowUnrestricted)
753 {
754 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
755 && pVM->hm.s.fNestedPaging)
756 pVM->hm.s.vmx.fUnrestrictedGuest = true;
757 else
758 pVM->hm.s.vmx.fAllowUnrestricted = false;
759 }
760 }
761 }
762 else
763 {
764 const char *pszMsg;
765 switch (rc)
766 {
767 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
768 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
769 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
770 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
771 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
772 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
773 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
774 default:
775 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
776 }
777
778 /*
779 * Before failing, try fallback to NEM if we're allowed to do that.
780 */
781 pVM->fHMEnabled = false;
782 if (fFallbackToNEM)
783 {
784 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
785 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
786 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
787 if ( RT_SUCCESS(rc2)
788 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
789 rc = VINF_SUCCESS;
790 }
791 if (RT_FAILURE(rc))
792 {
793 if (fHMForced)
794 return VM_SET_ERROR(pVM, rc, pszMsg);
795
796 LogRel(("HM: HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
797 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
798 }
799 }
800 }
801 else
802 {
803 /*
804 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
805 */
806 if (!fUseNEMInstead)
807 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
808 else
809 {
810 rc = NEMR3Init(pVM, false /*fFallback*/, true);
811 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
812 if (RT_FAILURE(rc))
813 return rc;
814 }
815 }
816
817 return VINF_SUCCESS;
818}
819
820
821/**
822 * Initializes the per-VCPU HM.
823 *
824 * @returns VBox status code.
825 * @param pVM The cross context VM structure.
826 */
827static int hmR3InitCPU(PVM pVM)
828{
829 LogFlow(("HMR3InitCPU\n"));
830
831 if (!HMIsEnabled(pVM))
832 return VINF_SUCCESS;
833
834 for (VMCPUID i = 0; i < pVM->cCpus; i++)
835 {
836 PVMCPU pVCpu = &pVM->aCpus[i];
837 pVCpu->hm.s.fActive = false;
838 }
839
840#ifdef VBOX_WITH_STATISTICS
841 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
842 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
843 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8",STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
844 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC",STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
845 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
846#endif
847
848 /*
849 * Statistics.
850 */
851 for (VMCPUID i = 0; i < pVM->cCpus; i++)
852 {
853 PVMCPU pVCpu = &pVM->aCpus[i];
854 int rc;
855
856#ifdef VBOX_WITH_STATISTICS
857 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
858 "Profiling of RTMpPokeCpu",
859 "/PROF/CPU%d/HM/Poke", i);
860 AssertRC(rc);
861 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
862 "Profiling of poke wait",
863 "/PROF/CPU%d/HM/PokeWait", i);
864 AssertRC(rc);
865 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
866 "Profiling of poke wait when RTMpPokeCpu fails",
867 "/PROF/CPU%d/HM/PokeWaitFailed", i);
868 AssertRC(rc);
869 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
870 "Profiling of VMXR0RunGuestCode entry",
871 "/PROF/CPU%d/HM/StatEntry", i);
872 AssertRC(rc);
873 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit1, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
874 "Profiling of VMXR0RunGuestCode exit part 1",
875 "/PROF/CPU%d/HM/SwitchFromGC_1", i);
876 AssertRC(rc);
877 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit2, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
878 "Profiling of VMXR0RunGuestCode exit part 2",
879 "/PROF/CPU%d/HM/SwitchFromGC_2", i);
880 AssertRC(rc);
881
882 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
883 "I/O",
884 "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
885 AssertRC(rc);
886 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
887 "MOV CRx",
888 "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
889 AssertRC(rc);
890 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
891 "Exceptions, NMIs",
892 "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
893 AssertRC(rc);
894
895 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatImportGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
896 "Profiling of hmR0VmxImportGuestState or hmR0SvmImportGuestState",
897 "/PROF/CPU%d/HM/StatImportGuestState", i);
898 AssertRC(rc);
899 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExportGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
900 "Profiling of hmR0VmxExportGuestState or hmR0SvmExportGuestState",
901 "/PROF/CPU%d/HM/StatExportGuestState", i);
902 AssertRC(rc);
903 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestFpuState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
904 "Profiling of CPUMR0LoadGuestFPU",
905 "/PROF/CPU%d/HM/StatLoadGuestFpuState", i);
906 AssertRC(rc);
907 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
908 "Profiling of VMLAUNCH/VMRESUME.",
909 "/PROF/CPU%d/HM/InGC", i);
910 AssertRC(rc);
911
912# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
913 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
914 STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
915 "/PROF/CPU%d/HM/Switcher3264", i);
916 AssertRC(rc);
917# endif
918
919# ifdef HM_PROFILE_EXIT_DISPATCH
920 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
921 STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
922 "/PROF/CPU%d/HM/ExitDispatch", i);
923 AssertRC(rc);
924# endif
925
926#endif
927# define HM_REG_COUNTER(a, b, desc) \
928 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
929 AssertRC(rc);
930
931#ifdef VBOX_WITH_STATISTICS
932 HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Exits (total).");
933 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
934 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
935 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
936 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
937 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
938 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
939 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
940 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
941 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
942 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
943 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
944 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
945 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
946 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
947 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
948 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "Guest attempted to execute HLT.");
949 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "Guest attempted to execute RDMSR.");
950 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "Guest attempted to execute WRMSR.");
951 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "Guest attempted to execute MWAIT.");
952 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "Guest attempted to execute MONITOR.");
953 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR-Write", "Guest attempted to write a debug register.");
954 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR-Read", "Guest attempted to read a debug register.");
955 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR0Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR0", "Guest attempted to read CR0.");
956 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR2Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR2", "Guest attempted to read CR2.");
957 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR3Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR3", "Guest attempted to read CR3.");
958 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR4Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR4", "Guest attempted to read CR4.");
959 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR8Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR8", "Guest attempted to read CR8.");
960 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR0Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR0", "Guest attempted to write CR0.");
961 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR2Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR2", "Guest attempted to write CR2.");
962 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR3Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR3", "Guest attempted to write CR3.");
963 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR4Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR4", "Guest attempted to write CR4.");
964 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR8Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR8", "Guest attempted to write CR8.");
965 HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "Guest attempted to execute CLTS.");
966 HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "Guest attempted to execute LMSW.");
967 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "Guest attempted to execute CLI.");
968 HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "Guest attempted to execute STI.");
969 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "Guest attempted to execute PUSHF.");
970 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "Guest attempted to execute POPF.");
971 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "Guest attempted to execute IRET.");
972 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "Guest attempted to execute INT.");
973 HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "Guest attempted to access descriptor table register (GDTR, IDTR, LDTR).");
974 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write.");
975 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read.");
976 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write.");
977 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read.");
978 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again.");
979 HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Host interrupt received.");
980#endif
981 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context.");
982#ifdef VBOX_WITH_STATISTICS
983 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
984 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
985 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Guest attempted a task switch.");
986 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag.");
987 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
988
989 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchTprMaskedIrq, "/HM/CPU%d/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
990 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
991 HM_REG_COUNTER(&pVCpu->hm.s.StatPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
992 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
993 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
994 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
995 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchMaxResumeLoops, "/HM/CPU%d/Switch/MaxResumeToR3", "Maximum VMRESUME inner-loop counter reached.");
996 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHltToR3, "/HM/CPU%d/Switch/HltToR3", "HLT causing us to go to ring-3.");
997 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchApicAccessToR3, "/HM/CPU%d/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
998#endif
999 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreempt, "/HM/CPU%d/Switch/Preempting", "EMT has been preempted while in HM context.");
1000#ifdef VBOX_WITH_STATISTICS
1001 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreemptExportHostState, "/HM/CPU%d/Switch/ExportHostState", "Preemption caused us to re-export the host state.");
1002
1003 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
1004 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
1005 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception (or #DF) caused due to event injection.");
1006 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingInterpret, "/HM/CPU%d/EventInject/PendingInterpret", "Falling to interpreter for handling exception caused due to event injection.");
1007
1008 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
1009 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
1010 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
1011 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
1012 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
1013 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
1014 HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
1015 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
1016 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
1017 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
1018 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
1019 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
1020 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
1021 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
1022
1023 HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect.");
1024 HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
1025 HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses.");
1026
1027 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
1028 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
1029 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
1030
1031 HM_REG_COUNTER(&pVCpu->hm.s.StatExportMinimal, "/HM/CPU%d/Load/Minimal", "VM-entry exporting minimal guest-state.");
1032 HM_REG_COUNTER(&pVCpu->hm.s.StatExportFull, "/HM/CPU%d/Load/Full", "VM-entry exporting the full guest-state.");
1033 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadGuestFpu, "/HM/CPU%d/Load/GuestFpu", "VM-entry loading the guest-FPU state.");
1034
1035 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
1036 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
1037 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
1038 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
1039 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
1040 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadLdt, "/HM/CPU%d/VMXCheck/LDT", "Could not use VMX due to unsuitable LDT.");
1041 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadTr, "/HM/CPU%d/VMXCheck/TR", "Could not use VMX due to unsuitable TR.");
1042 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
1043
1044#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1045 HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
1046 HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
1047#endif
1048
1049#undef HM_REG_COUNTER
1050
1051 const char *const *papszDesc = ASMIsIntelCpu() || ASMIsViaCentaurCpu() ? &g_apszVTxExitReasons[0]
1052 : &g_apszAmdVExitReasons[0];
1053
1054 /*
1055 * Guest Exit reason stats.
1056 */
1057 pVCpu->hm.s.paStatExitReason = NULL;
1058 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
1059 (void **)&pVCpu->hm.s.paStatExitReason);
1060 AssertRCReturn(rc, rc);
1061 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1062 {
1063 if (papszDesc[j])
1064 {
1065 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1066 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/Exit/Reason/%02x", i, j);
1067 AssertRCReturn(rc, rc);
1068 }
1069 }
1070 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1071 "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
1072 AssertRCReturn(rc, rc);
1073 pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
1074# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1075 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1076# else
1077 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
1078# endif
1079
1080#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
1081 /*
1082 * Nested-guest Exit reason stats.
1083 */
1084 pVCpu->hm.s.paStatNestedExitReason = NULL;
1085 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM,
1086 (void **)&pVCpu->hm.s.paStatNestedExitReason);
1087 AssertRCReturn(rc, rc);
1088 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1089 {
1090 if (papszDesc[j])
1091 {
1092 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1093 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/NestedExit/Reason/%02x", i, j);
1094 AssertRC(rc);
1095 }
1096 }
1097 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatNestedExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1098 STAMUNIT_OCCURENCES, "Nested page fault", "/HM/CPU%d/NestedExit/Reason/#NPF", i);
1099 AssertRCReturn(rc, rc);
1100 pVCpu->hm.s.paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatNestedExitReason);
1101# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1102 Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1103# else
1104 Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR);
1105# endif
1106#endif
1107
1108 /*
1109 * Injected events stats.
1110 */
1111 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
1112 AssertRCReturn(rc, rc);
1113 pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1114# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1115 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
1116# else
1117 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
1118# endif
1119 for (unsigned j = 0; j < 255; j++)
1120 {
1121 STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1122 "Injected event.",
1123 (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j);
1124 }
1125
1126#endif /* VBOX_WITH_STATISTICS */
1127 }
1128
1129#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1130 /*
1131 * Magic marker for searching in crash dumps.
1132 */
1133 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1134 {
1135 PVMCPU pVCpu = &pVM->aCpus[i];
1136
1137 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1138 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1139 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1140 }
1141#endif
1142
1143 return VINF_SUCCESS;
1144}
1145
1146
1147/**
1148 * Called when a init phase has completed.
1149 *
1150 * @returns VBox status code.
1151 * @param pVM The cross context VM structure.
1152 * @param enmWhat The phase that completed.
1153 */
1154VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1155{
1156 switch (enmWhat)
1157 {
1158 case VMINITCOMPLETED_RING3:
1159 return hmR3InitCPU(pVM);
1160 case VMINITCOMPLETED_RING0:
1161 return hmR3InitFinalizeR0(pVM);
1162 default:
1163 return VINF_SUCCESS;
1164 }
1165}
1166
1167
1168/**
1169 * Turns off normal raw mode features.
1170 *
1171 * @param pVM The cross context VM structure.
1172 */
1173static void hmR3DisableRawMode(PVM pVM)
1174{
1175 /* Reinit the paging mode to force the new shadow mode. */
1176 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1177 {
1178 PVMCPU pVCpu = &pVM->aCpus[i];
1179
1180 PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1181 }
1182}
1183
1184
1185/**
1186 * Initialize VT-x or AMD-V.
1187 *
1188 * @returns VBox status code.
1189 * @param pVM The cross context VM structure.
1190 */
1191static int hmR3InitFinalizeR0(PVM pVM)
1192{
1193 int rc;
1194
1195 if (!HMIsEnabled(pVM))
1196 return VINF_SUCCESS;
1197
1198 /*
1199 * Hack to allow users to work around broken BIOSes that incorrectly set
1200 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1201 */
1202 if ( !pVM->hm.s.vmx.fSupported
1203 && !pVM->hm.s.svm.fSupported
1204 && pVM->hm.s.lLastError == VERR_SVM_IN_USE /* implies functional AMD-V */
1205 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1206 {
1207 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1208 pVM->hm.s.svm.fSupported = true;
1209 pVM->hm.s.svm.fIgnoreInUseError = true;
1210 pVM->hm.s.lLastError = VINF_SUCCESS;
1211 }
1212
1213 /*
1214 * Report ring-0 init errors.
1215 */
1216 if ( !pVM->hm.s.vmx.fSupported
1217 && !pVM->hm.s.svm.fSupported)
1218 {
1219 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.lLastError));
1220 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1221 switch (pVM->hm.s.lLastError)
1222 {
1223 case VERR_VMX_IN_VMX_ROOT_MODE:
1224 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1225 case VERR_VMX_NO_VMX:
1226 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1227 case VERR_VMX_MSR_VMX_DISABLED:
1228 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1229 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1230 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1231 case VERR_VMX_MSR_LOCKING_FAILED:
1232 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1233 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1234 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1235 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1236 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1237
1238 case VERR_SVM_IN_USE:
1239 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1240 case VERR_SVM_NO_SVM:
1241 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1242 case VERR_SVM_DISABLED:
1243 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1244 }
1245 return VMSetError(pVM, pVM->hm.s.lLastError, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.lLastError);
1246 }
1247
1248 /*
1249 * Enable VT-x or AMD-V on all host CPUs.
1250 */
1251 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1252 if (RT_FAILURE(rc))
1253 {
1254 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1255 HMR3CheckError(pVM, rc);
1256 return rc;
1257 }
1258
1259 /*
1260 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1261 * (Main should have taken care of this already)
1262 */
1263 if (!PDMHasIoApic(pVM))
1264 {
1265 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1266 pVM->hm.s.fTprPatchingAllowed = false;
1267 }
1268
1269 /*
1270 * Sync options.
1271 */
1272 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1273 * That will require a little bit of work, of course. */
1274 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1275 {
1276 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1277 PCPUMCTX pCpuCtx = &pVCpu->cpum.GstCtx;
1278 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1279 if (pVM->cpum.ro.HostFeatures.fIbpb)
1280 {
1281 if (pVM->hm.s.fIbpbOnVmExit)
1282 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1283 if (pVM->hm.s.fIbpbOnVmEntry)
1284 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1285 }
1286 if (iCpu == 0)
1287 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool)\n",
1288 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry));
1289 }
1290
1291 /*
1292 * Do the vendor specific initialization
1293 *
1294 * Note! We disable release log buffering here since we're doing relatively
1295 * lot of logging and doesn't want to hit the disk with each LogRel
1296 * statement.
1297 */
1298 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1299 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1300 if (pVM->hm.s.vmx.fSupported)
1301 rc = hmR3InitFinalizeR0Intel(pVM);
1302 else
1303 rc = hmR3InitFinalizeR0Amd(pVM);
1304 LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL"));
1305 RTLogRelSetBuffering(fOldBuffered);
1306 pVM->hm.s.fInitialized = true;
1307
1308 return rc;
1309}
1310
1311
1312/**
1313 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1314 */
1315static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1316{
1317 NOREF(pVM);
1318 NOREF(pvAllocation);
1319 NOREF(GCPhysAllocation);
1320}
1321
1322
1323/**
1324 * Finish VT-x initialization (after ring-0 init).
1325 *
1326 * @returns VBox status code.
1327 * @param pVM The cross context VM structure.
1328 */
1329static int hmR3InitFinalizeR0Intel(PVM pVM)
1330{
1331 int rc;
1332
1333 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1334 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatureCtrl != 0, VERR_HM_IPE_4);
1335
1336 uint64_t val;
1337 uint64_t zap;
1338
1339 LogRel(("HM: Using VT-x implementation 2.0\n"));
1340 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1341 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostEfer));
1342 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1343 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1344 if (!(pVM->hm.s.vmx.Msrs.u64FeatureCtrl & MSR_IA32_FEATURE_CONTROL_LOCK))
1345 LogRel(("HM: IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1346 LogRel(("HM: MSR_IA32_VMX_BASIC_INFO = %#RX64\n", pVM->hm.s.vmx.Msrs.u64BasicInfo));
1347 LogRel(("HM: VMCS id = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1348 LogRel(("HM: VMCS size = %u bytes\n", MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1349 LogRel(("HM: VMCS physical address limit = %s\n", MSR_IA32_VMX_BASIC_INFO_VMCS_PHYS_WIDTH(pVM->hm.s.vmx.Msrs.u64BasicInfo) ? "< 4 GB" : "None"));
1350 LogRel(("HM: VMCS memory type = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_MEM_TYPE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1351 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1352 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1353 LogRel(("HM: Supports true capability MSRs = %RTbool\n", MSR_IA32_VMX_BASIC_INFO_TRUE_CONTROLS(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1354 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1355
1356 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxPinCtls.u));
1357 val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1;
1358 zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0;
1359 HMVMX_REPORT_FEATURE(val, zap, "EXT_INT_EXIT", VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT);
1360 HMVMX_REPORT_FEATURE(val, zap, "NMI_EXIT", VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT);
1361 HMVMX_REPORT_FEATURE(val, zap, "VIRTUAL_NMI", VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI);
1362 HMVMX_REPORT_FEATURE(val, zap, "PREEMPT_TIMER", VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
1363 HMVMX_REPORT_FEATURE(val, zap, "POSTED_INTR", VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
1364
1365 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls.u));
1366 val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
1367 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
1368 HMVMX_REPORT_FEATURE(val, zap, "INT_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
1369 HMVMX_REPORT_FEATURE(val, zap, "USE_TSC_OFFSETTING", VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING);
1370 HMVMX_REPORT_FEATURE(val, zap, "HLT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
1371 HMVMX_REPORT_FEATURE(val, zap, "INVLPG_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
1372 HMVMX_REPORT_FEATURE(val, zap, "MWAIT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT);
1373 HMVMX_REPORT_FEATURE(val, zap, "RDPMC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
1374 HMVMX_REPORT_FEATURE(val, zap, "RDTSC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
1375 HMVMX_REPORT_FEATURE(val, zap, "CR3_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT);
1376 HMVMX_REPORT_FEATURE(val, zap, "CR3_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
1377 HMVMX_REPORT_FEATURE(val, zap, "CR8_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT);
1378 HMVMX_REPORT_FEATURE(val, zap, "CR8_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT);
1379 HMVMX_REPORT_FEATURE(val, zap, "USE_TPR_SHADOW", VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
1380 HMVMX_REPORT_FEATURE(val, zap, "NMI_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
1381 HMVMX_REPORT_FEATURE(val, zap, "MOV_DR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
1382 HMVMX_REPORT_FEATURE(val, zap, "UNCOND_IO_EXIT", VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT);
1383 HMVMX_REPORT_FEATURE(val, zap, "USE_IO_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_IO_BITMAPS);
1384 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_TRAP_FLAG", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
1385 HMVMX_REPORT_FEATURE(val, zap, "USE_MSR_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
1386 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT);
1387 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
1388 HMVMX_REPORT_FEATURE(val, zap, "USE_SECONDARY_EXEC_CTRL", VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL);
1389 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1390 {
1391 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.u));
1392 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
1393 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0;
1394 HMVMX_REPORT_FEATURE(val, zap, "VIRT_APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC);
1395 HMVMX_REPORT_FEATURE(val, zap, "EPT", VMX_VMCS_CTRL_PROC_EXEC2_EPT);
1396 HMVMX_REPORT_FEATURE(val, zap, "DESCRIPTOR_TABLE_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT);
1397 HMVMX_REPORT_FEATURE(val, zap, "RDTSCP", VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP);
1398 HMVMX_REPORT_FEATURE(val, zap, "VIRT_X2APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_X2APIC);
1399 HMVMX_REPORT_FEATURE(val, zap, "VPID", VMX_VMCS_CTRL_PROC_EXEC2_VPID);
1400 HMVMX_REPORT_FEATURE(val, zap, "WBINVD_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
1401 HMVMX_REPORT_FEATURE(val, zap, "UNRESTRICTED_GUEST", VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST);
1402 HMVMX_REPORT_FEATURE(val, zap, "APIC_REG_VIRT", VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
1403 HMVMX_REPORT_FEATURE(val, zap, "VIRT_INTR_DELIVERY", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
1404 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_LOOP_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT);
1405 HMVMX_REPORT_FEATURE(val, zap, "RDRAND_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
1406 HMVMX_REPORT_FEATURE(val, zap, "INVPCID", VMX_VMCS_CTRL_PROC_EXEC2_INVPCID);
1407 HMVMX_REPORT_FEATURE(val, zap, "VMFUNC", VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC);
1408 HMVMX_REPORT_FEATURE(val, zap, "VMCS_SHADOWING", VMX_VMCS_CTRL_PROC_EXEC2_VMCS_SHADOWING);
1409 HMVMX_REPORT_FEATURE(val, zap, "ENCLS_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_ENCLS_EXIT);
1410 HMVMX_REPORT_FEATURE(val, zap, "RDSEED_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
1411 HMVMX_REPORT_FEATURE(val, zap, "PML", VMX_VMCS_CTRL_PROC_EXEC2_PML);
1412 HMVMX_REPORT_FEATURE(val, zap, "EPT_VE", VMX_VMCS_CTRL_PROC_EXEC2_EPT_VE);
1413 HMVMX_REPORT_FEATURE(val, zap, "CONCEAL_FROM_PT", VMX_VMCS_CTRL_PROC_EXEC2_CONCEAL_FROM_PT);
1414 HMVMX_REPORT_FEATURE(val, zap, "XSAVES_XRSTORS", VMX_VMCS_CTRL_PROC_EXEC2_XSAVES_XRSTORS);
1415 HMVMX_REPORT_FEATURE(val, zap, "TSC_SCALING", VMX_VMCS_CTRL_PROC_EXEC2_TSC_SCALING);
1416 }
1417
1418 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxEntry.u));
1419 val = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1;
1420 zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0;
1421 HMVMX_REPORT_FEATURE(val, zap, "LOAD_DEBUG", VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG);
1422 HMVMX_REPORT_FEATURE(val, zap, "IA32E_MODE_GUEST", VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
1423 HMVMX_REPORT_FEATURE(val, zap, "ENTRY_SMM", VMX_VMCS_CTRL_ENTRY_ENTRY_SMM);
1424 HMVMX_REPORT_FEATURE(val, zap, "DEACTIVATE_DUALMON", VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON);
1425 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PERF_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR);
1426 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PAT_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR);
1427 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_EFER_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR);
1428
1429 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxExit.u));
1430 val = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1;
1431 zap = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0;
1432 HMVMX_REPORT_FEATURE(val, zap, "SAVE_DEBUG", VMX_VMCS_CTRL_EXIT_SAVE_DEBUG);
1433 HMVMX_REPORT_FEATURE(val, zap, "HOST_ADDR_SPACE_SIZE", VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE);
1434 HMVMX_REPORT_FEATURE(val, zap, "LOAD_PERF_MSR", VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR);
1435 HMVMX_REPORT_FEATURE(val, zap, "ACK_EXT_INT", VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
1436 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_PAT_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR);
1437 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_PAT_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR);
1438 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_EFER_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR);
1439 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_EFER_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR);
1440 HMVMX_REPORT_FEATURE(val, zap, "SAVE_VMX_PREEMPT_TIMER", VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER);
1441
1442 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1443 {
1444 val = pVM->hm.s.vmx.Msrs.u64EptVpidCaps;
1445 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", val));
1446 HMVMX_REPORT_MSR_CAPABILITY(val, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1447 HMVMX_REPORT_MSR_CAPABILITY(val, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1448 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1449 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1450 HMVMX_REPORT_MSR_CAPABILITY(val, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1451 HMVMX_REPORT_MSR_CAPABILITY(val, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1452 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1453 HMVMX_REPORT_MSR_CAPABILITY(val, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1454 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1455 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1456 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1457 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1458 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1459 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1460 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1461 }
1462
1463 val = pVM->hm.s.vmx.Msrs.u64Misc;
1464 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", val));
1465 if (MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val) == pVM->hm.s.vmx.cPreemptTimerShift)
1466 LogRel(("HM: PREEMPT_TSC_BIT = %#x\n", MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val)));
1467 else
1468 {
1469 LogRel(("HM: PREEMPT_TSC_BIT = %#x - erratum detected, using %#x instead\n",
1470 MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val), pVM->hm.s.vmx.cPreemptTimerShift));
1471 }
1472
1473 LogRel(("HM: STORE_EFERLMA_VMEXIT = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT(val))));
1474 LogRel(("HM: ACTIVITY_STATES = %#x\n", MSR_IA32_VMX_MISC_ACTIVITY_STATES(val)));
1475 LogRel(("HM: CR3_TARGET = %#x\n", MSR_IA32_VMX_MISC_CR3_TARGET(val)));
1476 LogRel(("HM: MAX_MSR = %u\n", MSR_IA32_VMX_MISC_MAX_MSR(val)));
1477 LogRel(("HM: RDMSR_SMBASE_MSR_SMM = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM(val))));
1478 LogRel(("HM: SMM_MONITOR_CTL_B2 = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2(val))));
1479 LogRel(("HM: VMWRITE_VMEXIT_INFO = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO(val))));
1480 LogRel(("HM: MSEG_ID = %#x\n", MSR_IA32_VMX_MISC_MSEG_ID(val)));
1481
1482 /* Paranoia */
1483 AssertRelease(MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc) >= 512);
1484
1485 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed0));
1486 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed1));
1487 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed0));
1488 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed1));
1489
1490 val = pVM->hm.s.vmx.Msrs.u64VmcsEnum;
1491 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", val));
1492 LogRel(("HM: HIGHEST_INDEX = %#x\n", MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX(val)));
1493
1494 val = pVM->hm.s.vmx.Msrs.u64Vmfunc;
1495 if (val)
1496 {
1497 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", val));
1498 HMVMX_REPORT_ALLOWED_FEATURE(val, "EPTP_SWITCHING", VMX_VMCS_CTRL_VMFUNC_EPTP_SWITCHING);
1499 }
1500
1501 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1502
1503 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1504 {
1505 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap));
1506 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs));
1507 }
1508
1509 /*
1510 * EPT and unhampered guest execution are determined in HMR3Init, verify the sanity of that.
1511 */
1512 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1513 || (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT),
1514 VERR_HM_IPE_1);
1515 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1516 || ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST)
1517 && pVM->hm.s.fNestedPaging),
1518 VERR_HM_IPE_1);
1519
1520 /*
1521 * Enable VPID if configured and supported.
1522 */
1523 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VPID)
1524 pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid;
1525
1526#if 0
1527 /*
1528 * Enable APIC register virtualization and virtual-interrupt delivery if supported.
1529 */
1530 if ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT)
1531 && (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY))
1532 pVM->hm.s.fVirtApicRegs = true;
1533
1534 /*
1535 * Enable posted-interrupt processing if supported.
1536 */
1537 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1538 * here. */
1539 if ( (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR)
1540 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT))
1541 pVM->hm.s.fPostedIntrs = true;
1542#endif
1543
1544 /*
1545 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1546 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1547 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1548 */
1549 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1550 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1551 {
1552 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1553 LogRel(("HM: Disabled RDTSCP\n"));
1554 }
1555
1556 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1557 {
1558 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1559 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1560 if (RT_SUCCESS(rc))
1561 {
1562 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1563 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1564 esp. Figure 20-5.*/
1565 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1566 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1567
1568 /* Bit set to 0 means software interrupts are redirected to the
1569 8086 program interrupt handler rather than switching to
1570 protected-mode handler. */
1571 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1572
1573 /* Allow all port IO, so that port IO instructions do not cause
1574 exceptions and would instead cause a VM-exit (based on VT-x's
1575 IO bitmap which we currently configure to always cause an exit). */
1576 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1577 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1578
1579 /*
1580 * Construct a 1024 element page directory with 4 MB pages for
1581 * the identity mapped page table used in real and protected mode
1582 * without paging with EPT.
1583 */
1584 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1585 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1586 {
1587 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1588 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1589 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1590 | X86_PDE4M_G;
1591 }
1592
1593 /* We convert it here every time as PCI regions could be reconfigured. */
1594 if (PDMVmmDevHeapIsEnabled(pVM))
1595 {
1596 RTGCPHYS GCPhys;
1597 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1598 AssertRCReturn(rc, rc);
1599 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1600
1601 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1602 AssertRCReturn(rc, rc);
1603 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1604 }
1605 }
1606 else
1607 {
1608 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1609 pVM->hm.s.vmx.pRealModeTSS = NULL;
1610 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1611 return VMSetError(pVM, rc, RT_SRC_POS,
1612 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1613 }
1614 }
1615
1616 LogRel((pVM->hm.s.fAllow64BitGuests
1617 ? "HM: Guest support: 32-bit and 64-bit\n"
1618 : "HM: Guest support: 32-bit only\n"));
1619
1620 /*
1621 * Call ring-0 to set up the VM.
1622 */
1623 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1624 if (rc != VINF_SUCCESS)
1625 {
1626 AssertMsgFailed(("%Rrc\n", rc));
1627 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1628 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1629 {
1630 PVMCPU pVCpu = &pVM->aCpus[i];
1631 LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
1632 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1633 }
1634 HMR3CheckError(pVM, rc);
1635 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1636 }
1637
1638 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1639 LogRel(("HM: Enabled VMX\n"));
1640 pVM->hm.s.vmx.fEnabled = true;
1641
1642 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1643
1644 /*
1645 * Change the CPU features.
1646 */
1647 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1648 if (pVM->hm.s.fAllow64BitGuests)
1649 {
1650 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1651 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1652 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1653 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1654 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1655 }
1656 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1657 (we reuse the host EFER in the switcher). */
1658 /** @todo this needs to be fixed properly!! */
1659 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1660 {
1661 if (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE)
1662 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1663 else
1664 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1665 }
1666
1667 /*
1668 * Log configuration details.
1669 */
1670 if (pVM->hm.s.fNestedPaging)
1671 {
1672 LogRel(("HM: Enabled nested paging\n"));
1673 if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_SINGLE_CONTEXT)
1674 LogRel(("HM: EPT flush type = VMXFLUSHEPT_SINGLE_CONTEXT\n"));
1675 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_ALL_CONTEXTS)
1676 LogRel(("HM: EPT flush type = VMXFLUSHEPT_ALL_CONTEXTS\n"));
1677 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_NOT_SUPPORTED)
1678 LogRel(("HM: EPT flush type = VMXFLUSHEPT_NOT_SUPPORTED\n"));
1679 else
1680 LogRel(("HM: EPT flush type = %d\n", pVM->hm.s.vmx.enmFlushEpt));
1681
1682 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1683 LogRel(("HM: Enabled unrestricted guest execution\n"));
1684
1685#if HC_ARCH_BITS == 64
1686 if (pVM->hm.s.fLargePages)
1687 {
1688 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1689 PGMSetLargePageUsage(pVM, true);
1690 LogRel(("HM: Enabled large page support\n"));
1691 }
1692#endif
1693 }
1694 else
1695 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1696
1697 if (pVM->hm.s.fVirtApicRegs)
1698 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1699
1700 if (pVM->hm.s.fPostedIntrs)
1701 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1702
1703 if (pVM->hm.s.vmx.fVpid)
1704 {
1705 LogRel(("HM: Enabled VPID\n"));
1706 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_INDIV_ADDR)
1707 LogRel(("HM: VPID flush type = VMXFLUSHVPID_INDIV_ADDR\n"));
1708 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
1709 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT\n"));
1710 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
1711 LogRel(("HM: VPID flush type = VMXFLUSHVPID_ALL_CONTEXTS\n"));
1712 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1713 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS\n"));
1714 else
1715 LogRel(("HM: VPID flush type = %d\n", pVM->hm.s.vmx.enmFlushVpid));
1716 }
1717 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_NOT_SUPPORTED)
1718 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1719
1720 if (pVM->hm.s.vmx.fUsePreemptTimer)
1721 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1722 else
1723 LogRel(("HM: Disabled VMX-preemption timer\n"));
1724
1725 return VINF_SUCCESS;
1726}
1727
1728
1729/**
1730 * Finish AMD-V initialization (after ring-0 init).
1731 *
1732 * @returns VBox status code.
1733 * @param pVM The cross context VM structure.
1734 */
1735static int hmR3InitFinalizeR0Amd(PVM pVM)
1736{
1737 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1738
1739 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1740
1741 uint32_t u32Family;
1742 uint32_t u32Model;
1743 uint32_t u32Stepping;
1744 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
1745 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1746 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1747 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureECX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureECX));
1748 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureEDX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureEDX));
1749 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1750 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1751 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1752 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1753
1754 /*
1755 * Enumerate AMD-V features.
1756 */
1757 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1758 {
1759#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1760 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1761 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1762 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1763 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1764 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1765 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1766 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1767 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1768 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1769 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1770 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1771 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1772 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1773#undef HMSVM_REPORT_FEATURE
1774 };
1775
1776 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1777 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1778 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1779 {
1780 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1781 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1782 }
1783 if (fSvmFeatures)
1784 for (unsigned iBit = 0; iBit < 32; iBit++)
1785 if (RT_BIT_32(iBit) & fSvmFeatures)
1786 LogRel(("HM: Reserved bit %u\n", iBit));
1787
1788 /*
1789 * Nested paging is determined in HMR3Init, verify the sanity of that.
1790 */
1791 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1792 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1793 VERR_HM_IPE_1);
1794
1795#if 0
1796 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1797 * here. */
1798 if (RTR0IsPostIpiSupport())
1799 pVM->hm.s.fPostedIntrs = true;
1800#endif
1801
1802 /*
1803 * Call ring-0 to set up the VM.
1804 */
1805 int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1806 if (rc != VINF_SUCCESS)
1807 {
1808 AssertMsgFailed(("%Rrc\n", rc));
1809 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1810 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1811 }
1812
1813 LogRel(("HM: Enabled SVM\n"));
1814 pVM->hm.s.svm.fEnabled = true;
1815
1816 if (pVM->hm.s.fNestedPaging)
1817 {
1818 LogRel(("HM: Enabled nested paging\n"));
1819
1820 /*
1821 * Enable large pages (2 MB) if applicable.
1822 */
1823#if HC_ARCH_BITS == 64
1824 if (pVM->hm.s.fLargePages)
1825 {
1826 PGMSetLargePageUsage(pVM, true);
1827 LogRel(("HM: Enabled large page support\n"));
1828 }
1829#endif
1830 }
1831
1832 if (pVM->hm.s.fVirtApicRegs)
1833 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1834
1835 if (pVM->hm.s.fPostedIntrs)
1836 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1837
1838 hmR3DisableRawMode(pVM);
1839
1840 /*
1841 * Change the CPU features.
1842 */
1843 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1844 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1845 if (pVM->hm.s.fAllow64BitGuests)
1846 {
1847 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1848 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1849 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1850 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1851 }
1852 /* Turn on NXE if PAE has been enabled. */
1853 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1854 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1855
1856 LogRel(("HM: %s TPR patching\n", (pVM->hm.s.fTprPatchingAllowed) ? "Enabled" : "Disabled"));
1857
1858 LogRel((pVM->hm.s.fAllow64BitGuests
1859 ? "HM: Guest support: 32-bit and 64-bit\n"
1860 : "HM: Guest support: 32-bit only\n"));
1861
1862 return VINF_SUCCESS;
1863}
1864
1865
1866/**
1867 * Applies relocations to data and code managed by this
1868 * component. This function will be called at init and
1869 * whenever the VMM need to relocate it self inside the GC.
1870 *
1871 * @param pVM The cross context VM structure.
1872 */
1873VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1874{
1875 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1876
1877 /* Fetch the current paging mode during the relocate callback during state loading. */
1878 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1879 {
1880 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1881 {
1882 PVMCPU pVCpu = &pVM->aCpus[i];
1883 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1884 }
1885 }
1886#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1887 if (HMIsEnabled(pVM))
1888 {
1889 switch (PGMGetHostMode(pVM))
1890 {
1891 case PGMMODE_32_BIT:
1892 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
1893 break;
1894
1895 case PGMMODE_PAE:
1896 case PGMMODE_PAE_NX:
1897 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
1898 break;
1899
1900 default:
1901 AssertFailed();
1902 break;
1903 }
1904 }
1905#endif
1906 return;
1907}
1908
1909
1910/**
1911 * Notification callback which is called whenever there is a chance that a CR3
1912 * value might have changed.
1913 *
1914 * This is called by PGM.
1915 *
1916 * @param pVM The cross context VM structure.
1917 * @param pVCpu The cross context virtual CPU structure.
1918 * @param enmShadowMode New shadow paging mode.
1919 * @param enmGuestMode New guest paging mode.
1920 */
1921VMMR3_INT_DECL(void) HMR3PagingModeChanged(PVM pVM, PVMCPU pVCpu, PGMMODE enmShadowMode, PGMMODE enmGuestMode)
1922{
1923 RT_NOREF_PV(pVM);
1924
1925 /* Ignore page mode changes during state loading. */
1926 if (VMR3GetState(pVCpu->pVMR3) == VMSTATE_LOADING)
1927 return;
1928
1929 pVCpu->hm.s.enmShadowMode = enmShadowMode;
1930
1931 /*
1932 * If the guest left protected mode VMX execution, we'll have to be
1933 * extra careful if/when the guest switches back to protected mode.
1934 */
1935 if (enmGuestMode == PGMMODE_REAL)
1936 pVCpu->hm.s.vmx.fWasInRealMode = true;
1937
1938 Log4(("HMR3PagingModeChanged: Guest paging mode '%s', shadow paging mode '%s'\n", PGMGetModeName(enmGuestMode),
1939 PGMGetModeName(enmShadowMode)));
1940}
1941
1942
1943/**
1944 * Terminates the HM.
1945 *
1946 * Termination means cleaning up and freeing all resources,
1947 * the VM itself is, at this point, powered off or suspended.
1948 *
1949 * @returns VBox status code.
1950 * @param pVM The cross context VM structure.
1951 */
1952VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1953{
1954 if (pVM->hm.s.vmx.pRealModeTSS)
1955 {
1956 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1957 pVM->hm.s.vmx.pRealModeTSS = 0;
1958 }
1959 hmR3TermCPU(pVM);
1960 return 0;
1961}
1962
1963
1964/**
1965 * Terminates the per-VCPU HM.
1966 *
1967 * @returns VBox status code.
1968 * @param pVM The cross context VM structure.
1969 */
1970static int hmR3TermCPU(PVM pVM)
1971{
1972 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1973 {
1974 PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
1975
1976#ifdef VBOX_WITH_STATISTICS
1977 if (pVCpu->hm.s.paStatExitReason)
1978 {
1979 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1980 pVCpu->hm.s.paStatExitReason = NULL;
1981 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1982 }
1983 if (pVCpu->hm.s.paStatInjectedIrqs)
1984 {
1985 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1986 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1987 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1988 }
1989#endif
1990
1991#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1992 memset(pVCpu->hm.s.vmx.VMCSCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VMCSCache.aMagic));
1993 pVCpu->hm.s.vmx.VMCSCache.uMagic = 0;
1994 pVCpu->hm.s.vmx.VMCSCache.uPos = 0xffffffff;
1995#endif
1996 }
1997 return 0;
1998}
1999
2000
2001/**
2002 * Resets a virtual CPU.
2003 *
2004 * Used by HMR3Reset and CPU hot plugging.
2005 *
2006 * @param pVCpu The cross context virtual CPU structure to reset.
2007 */
2008VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2009{
2010 /* Sync. entire state on VM reset R0-reentry. It's safe to reset
2011 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2012 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2013
2014 pVCpu->hm.s.vmx.u32CR0Mask = 0;
2015 pVCpu->hm.s.vmx.u32CR4Mask = 0;
2016 pVCpu->hm.s.fActive = false;
2017 pVCpu->hm.s.Event.fPending = false;
2018 pVCpu->hm.s.vmx.fWasInRealMode = true;
2019 pVCpu->hm.s.vmx.u64MsrApicBase = 0;
2020 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
2021
2022 /* Reset the contents of the read cache. */
2023 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
2024 for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
2025 pCache->Read.aFieldVal[j] = 0;
2026
2027#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2028 /* Magic marker for searching in crash dumps. */
2029 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
2030 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2031#endif
2032}
2033
2034
2035/**
2036 * The VM is being reset.
2037 *
2038 * For the HM component this means that any GDT/LDT/TSS monitors
2039 * needs to be removed.
2040 *
2041 * @param pVM The cross context VM structure.
2042 */
2043VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2044{
2045 LogFlow(("HMR3Reset:\n"));
2046
2047 if (HMIsEnabled(pVM))
2048 hmR3DisableRawMode(pVM);
2049
2050 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2051 {
2052 PVMCPU pVCpu = &pVM->aCpus[i];
2053
2054 HMR3ResetCpu(pVCpu);
2055 }
2056
2057 /* Clear all patch information. */
2058 pVM->hm.s.pGuestPatchMem = 0;
2059 pVM->hm.s.pFreeGuestPatchMem = 0;
2060 pVM->hm.s.cbGuestPatchMem = 0;
2061 pVM->hm.s.cPatches = 0;
2062 pVM->hm.s.PatchTree = 0;
2063 pVM->hm.s.fTPRPatchingActive = false;
2064 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2065}
2066
2067
2068/**
2069 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2070 *
2071 * @returns VBox strict status code.
2072 * @param pVM The cross context VM structure.
2073 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2074 * @param pvUser Unused.
2075 */
2076static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2077{
2078 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2079
2080 /* Only execute the handler on the VCPU the original patch request was issued. */
2081 if (pVCpu->idCpu != idCpu)
2082 return VINF_SUCCESS;
2083
2084 Log(("hmR3RemovePatches\n"));
2085 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2086 {
2087 uint8_t abInstr[15];
2088 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2089 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2090 int rc;
2091
2092#ifdef LOG_ENABLED
2093 char szOutput[256];
2094
2095 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2096 szOutput, sizeof(szOutput), NULL);
2097 if (RT_SUCCESS(rc))
2098 Log(("Patched instr: %s\n", szOutput));
2099#endif
2100
2101 /* Check if the instruction is still the same. */
2102 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2103 if (rc != VINF_SUCCESS)
2104 {
2105 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2106 continue; /* swapped out or otherwise removed; skip it. */
2107 }
2108
2109 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2110 {
2111 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2112 continue; /* skip it. */
2113 }
2114
2115 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2116 AssertRC(rc);
2117
2118#ifdef LOG_ENABLED
2119 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2120 szOutput, sizeof(szOutput), NULL);
2121 if (RT_SUCCESS(rc))
2122 Log(("Original instr: %s\n", szOutput));
2123#endif
2124 }
2125 pVM->hm.s.cPatches = 0;
2126 pVM->hm.s.PatchTree = 0;
2127 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2128 pVM->hm.s.fTPRPatchingActive = false;
2129 return VINF_SUCCESS;
2130}
2131
2132
2133/**
2134 * Worker for enabling patching in a VT-x/AMD-V guest.
2135 *
2136 * @returns VBox status code.
2137 * @param pVM The cross context VM structure.
2138 * @param idCpu VCPU to execute hmR3RemovePatches on.
2139 * @param pPatchMem Patch memory range.
2140 * @param cbPatchMem Size of the memory range.
2141 */
2142static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2143{
2144 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2145 AssertRC(rc);
2146
2147 pVM->hm.s.pGuestPatchMem = pPatchMem;
2148 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2149 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2150 return VINF_SUCCESS;
2151}
2152
2153
2154/**
2155 * Enable patching in a VT-x/AMD-V guest
2156 *
2157 * @returns VBox status code.
2158 * @param pVM The cross context VM structure.
2159 * @param pPatchMem Patch memory range.
2160 * @param cbPatchMem Size of the memory range.
2161 */
2162VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2163{
2164 VM_ASSERT_EMT(pVM);
2165 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2166 if (pVM->cCpus > 1)
2167 {
2168 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2169 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2170 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2171 AssertRC(rc);
2172 return rc;
2173 }
2174 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2175}
2176
2177
2178/**
2179 * Disable patching in a VT-x/AMD-V guest.
2180 *
2181 * @returns VBox status code.
2182 * @param pVM The cross context VM structure.
2183 * @param pPatchMem Patch memory range.
2184 * @param cbPatchMem Size of the memory range.
2185 */
2186VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2187{
2188 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2189 RT_NOREF2(pPatchMem, cbPatchMem);
2190
2191 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2192 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2193
2194 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2195 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2196 (void *)(uintptr_t)VMMGetCpuId(pVM));
2197 AssertRC(rc);
2198
2199 pVM->hm.s.pGuestPatchMem = 0;
2200 pVM->hm.s.pFreeGuestPatchMem = 0;
2201 pVM->hm.s.cbGuestPatchMem = 0;
2202 pVM->hm.s.fTPRPatchingActive = false;
2203 return VINF_SUCCESS;
2204}
2205
2206
2207/**
2208 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2209 *
2210 * @returns VBox strict status code.
2211 * @param pVM The cross context VM structure.
2212 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2213 * @param pvUser User specified CPU context.
2214 *
2215 */
2216static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2217{
2218 /*
2219 * Only execute the handler on the VCPU the original patch request was
2220 * issued. (The other CPU(s) might not yet have switched to protected
2221 * mode, nor have the correct memory context.)
2222 */
2223 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2224 if (pVCpu->idCpu != idCpu)
2225 return VINF_SUCCESS;
2226
2227 /*
2228 * We're racing other VCPUs here, so don't try patch the instruction twice
2229 * and make sure there is still room for our patch record.
2230 */
2231 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2232 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2233 if (pPatch)
2234 {
2235 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2236 return VINF_SUCCESS;
2237 }
2238 uint32_t const idx = pVM->hm.s.cPatches;
2239 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2240 {
2241 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2242 return VINF_SUCCESS;
2243 }
2244 pPatch = &pVM->hm.s.aPatches[idx];
2245
2246 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2247
2248 /*
2249 * Disassembler the instruction and get cracking.
2250 */
2251 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2252 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2253 uint32_t cbOp;
2254 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2255 AssertRC(rc);
2256 if ( rc == VINF_SUCCESS
2257 && pDis->pCurInstr->uOpcode == OP_MOV
2258 && cbOp >= 3)
2259 {
2260 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2261
2262 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2263 AssertRC(rc);
2264
2265 pPatch->cbOp = cbOp;
2266
2267 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2268 {
2269 /* write. */
2270 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2271 {
2272 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2273 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2274 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2275 }
2276 else
2277 {
2278 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2279 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2280 pPatch->uSrcOperand = pDis->Param2.uValue;
2281 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2282 }
2283 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2284 AssertRC(rc);
2285
2286 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2287 pPatch->cbNewOp = sizeof(s_abVMMCall);
2288 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2289 }
2290 else
2291 {
2292 /*
2293 * TPR Read.
2294 *
2295 * Found:
2296 * mov eax, dword [fffe0080] (5 bytes)
2297 * Check if next instruction is:
2298 * shr eax, 4
2299 */
2300 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2301
2302 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2303 uint8_t const cbOpMmio = cbOp;
2304 uint64_t const uSavedRip = pCtx->rip;
2305
2306 pCtx->rip += cbOp;
2307 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2308 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2309 pCtx->rip = uSavedRip;
2310
2311 if ( rc == VINF_SUCCESS
2312 && pDis->pCurInstr->uOpcode == OP_SHR
2313 && pDis->Param1.fUse == DISUSE_REG_GEN32
2314 && pDis->Param1.Base.idxGenReg == idxMmioReg
2315 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2316 && pDis->Param2.uValue == 4
2317 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2318 {
2319 uint8_t abInstr[15];
2320
2321 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2322 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2323 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2324 AssertRC(rc);
2325
2326 pPatch->cbOp = cbOpMmio + cbOp;
2327
2328 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
2329 abInstr[0] = 0xF0;
2330 abInstr[1] = 0x0F;
2331 abInstr[2] = 0x20;
2332 abInstr[3] = 0xC0 | pDis->Param1.Base.idxGenReg;
2333 for (unsigned i = 4; i < pPatch->cbOp; i++)
2334 abInstr[i] = 0x90; /* nop */
2335
2336 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2337 AssertRC(rc);
2338
2339 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2340 pPatch->cbNewOp = pPatch->cbOp;
2341 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2342
2343 Log(("Acceptable read/shr candidate!\n"));
2344 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2345 }
2346 else
2347 {
2348 pPatch->enmType = HMTPRINSTR_READ;
2349 pPatch->uDstOperand = idxMmioReg;
2350
2351 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2352 AssertRC(rc);
2353
2354 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2355 pPatch->cbNewOp = sizeof(s_abVMMCall);
2356 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2357 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2358 }
2359 }
2360
2361 pPatch->Core.Key = pCtx->eip;
2362 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2363 AssertRC(rc);
2364
2365 pVM->hm.s.cPatches++;
2366 return VINF_SUCCESS;
2367 }
2368
2369 /*
2370 * Save invalid patch, so we will not try again.
2371 */
2372 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2373 pPatch->Core.Key = pCtx->eip;
2374 pPatch->enmType = HMTPRINSTR_INVALID;
2375 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2376 AssertRC(rc);
2377 pVM->hm.s.cPatches++;
2378 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2379 return VINF_SUCCESS;
2380}
2381
2382
2383/**
2384 * Callback to patch a TPR instruction (jump to generated code).
2385 *
2386 * @returns VBox strict status code.
2387 * @param pVM The cross context VM structure.
2388 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2389 * @param pvUser User specified CPU context.
2390 *
2391 */
2392static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2393{
2394 /*
2395 * Only execute the handler on the VCPU the original patch request was
2396 * issued. (The other CPU(s) might not yet have switched to protected
2397 * mode, nor have the correct memory context.)
2398 */
2399 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2400 if (pVCpu->idCpu != idCpu)
2401 return VINF_SUCCESS;
2402
2403 /*
2404 * We're racing other VCPUs here, so don't try patch the instruction twice
2405 * and make sure there is still room for our patch record.
2406 */
2407 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2408 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2409 if (pPatch)
2410 {
2411 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2412 return VINF_SUCCESS;
2413 }
2414 uint32_t const idx = pVM->hm.s.cPatches;
2415 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2416 {
2417 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2418 return VINF_SUCCESS;
2419 }
2420 pPatch = &pVM->hm.s.aPatches[idx];
2421
2422 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2423 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2424
2425 /*
2426 * Disassemble the instruction and get cracking.
2427 */
2428 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2429 uint32_t cbOp;
2430 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2431 AssertRC(rc);
2432 if ( rc == VINF_SUCCESS
2433 && pDis->pCurInstr->uOpcode == OP_MOV
2434 && cbOp >= 5)
2435 {
2436 uint8_t aPatch[64];
2437 uint32_t off = 0;
2438
2439 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2440 AssertRC(rc);
2441
2442 pPatch->cbOp = cbOp;
2443 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2444
2445 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2446 {
2447 /*
2448 * TPR write:
2449 *
2450 * push ECX [51]
2451 * push EDX [52]
2452 * push EAX [50]
2453 * xor EDX,EDX [31 D2]
2454 * mov EAX,EAX [89 C0]
2455 * or
2456 * mov EAX,0000000CCh [B8 CC 00 00 00]
2457 * mov ECX,0C0000082h [B9 82 00 00 C0]
2458 * wrmsr [0F 30]
2459 * pop EAX [58]
2460 * pop EDX [5A]
2461 * pop ECX [59]
2462 * jmp return_address [E9 return_address]
2463 *
2464 */
2465 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2466
2467 aPatch[off++] = 0x51; /* push ecx */
2468 aPatch[off++] = 0x52; /* push edx */
2469 if (!fUsesEax)
2470 aPatch[off++] = 0x50; /* push eax */
2471 aPatch[off++] = 0x31; /* xor edx, edx */
2472 aPatch[off++] = 0xD2;
2473 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2474 {
2475 if (!fUsesEax)
2476 {
2477 aPatch[off++] = 0x89; /* mov eax, src_reg */
2478 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2479 }
2480 }
2481 else
2482 {
2483 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2484 aPatch[off++] = 0xB8; /* mov eax, immediate */
2485 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2486 off += sizeof(uint32_t);
2487 }
2488 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2489 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2490 off += sizeof(uint32_t);
2491
2492 aPatch[off++] = 0x0F; /* wrmsr */
2493 aPatch[off++] = 0x30;
2494 if (!fUsesEax)
2495 aPatch[off++] = 0x58; /* pop eax */
2496 aPatch[off++] = 0x5A; /* pop edx */
2497 aPatch[off++] = 0x59; /* pop ecx */
2498 }
2499 else
2500 {
2501 /*
2502 * TPR read:
2503 *
2504 * push ECX [51]
2505 * push EDX [52]
2506 * push EAX [50]
2507 * mov ECX,0C0000082h [B9 82 00 00 C0]
2508 * rdmsr [0F 32]
2509 * mov EAX,EAX [89 C0]
2510 * pop EAX [58]
2511 * pop EDX [5A]
2512 * pop ECX [59]
2513 * jmp return_address [E9 return_address]
2514 *
2515 */
2516 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2517
2518 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2519 aPatch[off++] = 0x51; /* push ecx */
2520 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2521 aPatch[off++] = 0x52; /* push edx */
2522 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2523 aPatch[off++] = 0x50; /* push eax */
2524
2525 aPatch[off++] = 0x31; /* xor edx, edx */
2526 aPatch[off++] = 0xD2;
2527
2528 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2529 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2530 off += sizeof(uint32_t);
2531
2532 aPatch[off++] = 0x0F; /* rdmsr */
2533 aPatch[off++] = 0x32;
2534
2535 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2536 {
2537 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2538 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2539 }
2540
2541 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2542 aPatch[off++] = 0x58; /* pop eax */
2543 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2544 aPatch[off++] = 0x5A; /* pop edx */
2545 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2546 aPatch[off++] = 0x59; /* pop ecx */
2547 }
2548 aPatch[off++] = 0xE9; /* jmp return_address */
2549 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2550 off += sizeof(RTRCUINTPTR);
2551
2552 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2553 {
2554 /* Write new code to the patch buffer. */
2555 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2556 AssertRC(rc);
2557
2558#ifdef LOG_ENABLED
2559 uint32_t cbCurInstr;
2560 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2561 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2562 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2563 {
2564 char szOutput[256];
2565 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2566 szOutput, sizeof(szOutput), &cbCurInstr);
2567 if (RT_SUCCESS(rc))
2568 Log(("Patch instr %s\n", szOutput));
2569 else
2570 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2571 }
2572#endif
2573
2574 pPatch->aNewOpcode[0] = 0xE9;
2575 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2576
2577 /* Overwrite the TPR instruction with a jump. */
2578 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2579 AssertRC(rc);
2580
2581 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2582
2583 pVM->hm.s.pFreeGuestPatchMem += off;
2584 pPatch->cbNewOp = 5;
2585
2586 pPatch->Core.Key = pCtx->eip;
2587 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2588 AssertRC(rc);
2589
2590 pVM->hm.s.cPatches++;
2591 pVM->hm.s.fTPRPatchingActive = true;
2592 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2593 return VINF_SUCCESS;
2594 }
2595
2596 Log(("Ran out of space in our patch buffer!\n"));
2597 }
2598 else
2599 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2600
2601
2602 /*
2603 * Save invalid patch, so we will not try again.
2604 */
2605 pPatch = &pVM->hm.s.aPatches[idx];
2606 pPatch->Core.Key = pCtx->eip;
2607 pPatch->enmType = HMTPRINSTR_INVALID;
2608 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2609 AssertRC(rc);
2610 pVM->hm.s.cPatches++;
2611 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2612 return VINF_SUCCESS;
2613}
2614
2615
2616/**
2617 * Attempt to patch TPR mmio instructions.
2618 *
2619 * @returns VBox status code.
2620 * @param pVM The cross context VM structure.
2621 * @param pVCpu The cross context virtual CPU structure.
2622 * @param pCtx Pointer to the guest CPU context.
2623 */
2624VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2625{
2626 NOREF(pCtx);
2627 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2628 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2629 (void *)(uintptr_t)pVCpu->idCpu);
2630 AssertRC(rc);
2631 return rc;
2632}
2633
2634
2635/**
2636 * Checks if a code selector (CS) is suitable for execution
2637 * within VMX when unrestricted execution isn't available.
2638 *
2639 * @returns true if selector is suitable for VMX, otherwise
2640 * false.
2641 * @param pSel Pointer to the selector to check (CS).
2642 * @param uStackDpl The CPL, aka the DPL of the stack segment.
2643 */
2644static bool hmR3IsCodeSelectorOkForVmx(PCPUMSELREG pSel, unsigned uStackDpl)
2645{
2646 /*
2647 * Segment must be an accessed code segment, it must be present and it must
2648 * be usable.
2649 * Note! These are all standard requirements and if CS holds anything else
2650 * we've got buggy code somewhere!
2651 */
2652 AssertCompile(X86DESCATTR_TYPE == 0xf);
2653 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P | X86DESCATTR_UNUSABLE))
2654 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P),
2655 ("%#x\n", pSel->Attr.u),
2656 false);
2657
2658 /* For conforming segments, CS.DPL must be <= SS.DPL, while CS.DPL
2659 must equal SS.DPL for non-confroming segments.
2660 Note! This is also a hard requirement like above. */
2661 AssertMsgReturn( pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF
2662 ? pSel->Attr.n.u2Dpl <= uStackDpl
2663 : pSel->Attr.n.u2Dpl == uStackDpl,
2664 ("u4Type=%#x u2Dpl=%u uStackDpl=%u\n", pSel->Attr.n.u4Type, pSel->Attr.n.u2Dpl, uStackDpl),
2665 false);
2666
2667 /*
2668 * The following two requirements are VT-x specific:
2669 * - G bit must be set if any high limit bits are set.
2670 * - G bit must be clear if any low limit bits are clear.
2671 */
2672 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2673 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity))
2674 return true;
2675 return false;
2676}
2677
2678
2679/**
2680 * Checks if a data selector (DS/ES/FS/GS) is suitable for
2681 * execution within VMX when unrestricted execution isn't
2682 * available.
2683 *
2684 * @returns true if selector is suitable for VMX, otherwise
2685 * false.
2686 * @param pSel Pointer to the selector to check
2687 * (DS/ES/FS/GS).
2688 */
2689static bool hmR3IsDataSelectorOkForVmx(PCPUMSELREG pSel)
2690{
2691 /*
2692 * Unusable segments are OK. These days they should be marked as such, as
2693 * but as an alternative we for old saved states and AMD<->VT-x migration
2694 * we also treat segments with all the attributes cleared as unusable.
2695 */
2696 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2697 return true;
2698
2699 /** @todo tighten these checks. Will require CPUM load adjusting. */
2700
2701 /* Segment must be accessed. */
2702 if (pSel->Attr.u & X86_SEL_TYPE_ACCESSED)
2703 {
2704 /* Code segments must also be readable. */
2705 if ( !(pSel->Attr.u & X86_SEL_TYPE_CODE)
2706 || (pSel->Attr.u & X86_SEL_TYPE_READ))
2707 {
2708 /* The S bit must be set. */
2709 if (pSel->Attr.n.u1DescType)
2710 {
2711 /* Except for conforming segments, DPL >= RPL. */
2712 if ( pSel->Attr.n.u2Dpl >= (pSel->Sel & X86_SEL_RPL)
2713 || pSel->Attr.n.u4Type >= X86_SEL_TYPE_ER_ACC)
2714 {
2715 /* Segment must be present. */
2716 if (pSel->Attr.n.u1Present)
2717 {
2718 /*
2719 * The following two requirements are VT-x specific:
2720 * - G bit must be set if any high limit bits are set.
2721 * - G bit must be clear if any low limit bits are clear.
2722 */
2723 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2724 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity))
2725 return true;
2726 }
2727 }
2728 }
2729 }
2730 }
2731
2732 return false;
2733}
2734
2735
2736/**
2737 * Checks if the stack selector (SS) is suitable for execution
2738 * within VMX when unrestricted execution isn't available.
2739 *
2740 * @returns true if selector is suitable for VMX, otherwise
2741 * false.
2742 * @param pSel Pointer to the selector to check (SS).
2743 */
2744static bool hmR3IsStackSelectorOkForVmx(PCPUMSELREG pSel)
2745{
2746 /*
2747 * Unusable segments are OK. These days they should be marked as such, as
2748 * but as an alternative we for old saved states and AMD<->VT-x migration
2749 * we also treat segments with all the attributes cleared as unusable.
2750 */
2751 /** @todo r=bird: actually all zeroes isn't gonna cut it... SS.DPL == CPL. */
2752 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2753 return true;
2754
2755 /*
2756 * Segment must be an accessed writable segment, it must be present.
2757 * Note! These are all standard requirements and if SS holds anything else
2758 * we've got buggy code somewhere!
2759 */
2760 AssertCompile(X86DESCATTR_TYPE == 0xf);
2761 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P | X86_SEL_TYPE_CODE))
2762 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P),
2763 ("%#x\n", pSel->Attr.u),
2764 false);
2765
2766 /* DPL must equal RPL.
2767 Note! This is also a hard requirement like above. */
2768 AssertMsgReturn(pSel->Attr.n.u2Dpl == (pSel->Sel & X86_SEL_RPL),
2769 ("u2Dpl=%u Sel=%#x\n", pSel->Attr.n.u2Dpl, pSel->Sel),
2770 false);
2771
2772 /*
2773 * The following two requirements are VT-x specific:
2774 * - G bit must be set if any high limit bits are set.
2775 * - G bit must be clear if any low limit bits are clear.
2776 */
2777 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2778 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity))
2779 return true;
2780 return false;
2781}
2782
2783
2784/**
2785 * Force execution of the current IO code in the recompiler.
2786 *
2787 * @returns VBox status code.
2788 * @param pVM The cross context VM structure.
2789 * @param pCtx Partial VM execution context.
2790 */
2791VMMR3_INT_DECL(int) HMR3EmulateIoBlock(PVM pVM, PCPUMCTX pCtx)
2792{
2793 PVMCPU pVCpu = VMMGetCpu(pVM);
2794
2795 Assert(HMIsEnabled(pVM));
2796 Log(("HMR3EmulateIoBlock\n"));
2797
2798 /* This is primarily intended to speed up Grub, so we don't care about paged protected mode. */
2799 if (HMCanEmulateIoBlockEx(pCtx))
2800 {
2801 Log(("HMR3EmulateIoBlock -> enabled\n"));
2802 pVCpu->hm.s.EmulateIoBlock.fEnabled = true;
2803 pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip = pCtx->rip;
2804 pVCpu->hm.s.EmulateIoBlock.cr0 = pCtx->cr0;
2805 return VINF_EM_RESCHEDULE_REM;
2806 }
2807 return VINF_SUCCESS;
2808}
2809
2810
2811/**
2812 * Checks if we can currently use hardware accelerated raw mode.
2813 *
2814 * @returns true if we can currently use hardware acceleration, otherwise false.
2815 * @param pVM The cross context VM structure.
2816 * @param pCtx Partial VM execution context.
2817 */
2818VMMR3DECL(bool) HMR3CanExecuteGuest(PVM pVM, PCPUMCTX pCtx)
2819{
2820 PVMCPU pVCpu = VMMGetCpu(pVM);
2821
2822 Assert(HMIsEnabled(pVM));
2823
2824#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
2825 if (CPUMIsGuestInNestedHwVirtMode(pCtx))
2826 {
2827 Log(("HMR3CanExecuteGuest: In nested-guest mode - returning false"));
2828 return false;
2829 }
2830#endif
2831
2832 /* If we're still executing the IO code, then return false. */
2833 if ( RT_UNLIKELY(pVCpu->hm.s.EmulateIoBlock.fEnabled)
2834 && pCtx->rip < pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip + 0x200
2835 && pCtx->rip > pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip - 0x200
2836 && pCtx->cr0 == pVCpu->hm.s.EmulateIoBlock.cr0)
2837 return false;
2838
2839 pVCpu->hm.s.EmulateIoBlock.fEnabled = false;
2840
2841 /* AMD-V supports real & protected mode with or without paging. */
2842 if (pVM->hm.s.svm.fEnabled)
2843 {
2844 pVCpu->hm.s.fActive = true;
2845 return true;
2846 }
2847
2848 pVCpu->hm.s.fActive = false;
2849
2850 /* Note! The context supplied by REM is partial. If we add more checks here, be sure to verify that REM provides this info! */
2851 Assert( (pVM->hm.s.vmx.fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS)
2852 || (!pVM->hm.s.vmx.fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS));
2853
2854 bool fSupportsRealMode = pVM->hm.s.vmx.fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM);
2855 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
2856 {
2857 /*
2858 * The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted
2859 * guest execution feature is missing (VT-x only).
2860 */
2861 if (fSupportsRealMode)
2862 {
2863 if (CPUMIsGuestInRealModeEx(pCtx))
2864 {
2865 /* In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector
2866 * bases and limits, i.e. limit must be 64K and base must be selector * 16.
2867 * If this is not true, we cannot execute real mode as V86 and have to fall
2868 * back to emulation.
2869 */
2870 if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4)
2871 || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4)
2872 || pCtx->es.Sel != (pCtx->es.u64Base >> 4)
2873 || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4)
2874 || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4)
2875 || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4))
2876 {
2877 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase);
2878 return false;
2879 }
2880 if ( (pCtx->cs.u32Limit != 0xffff)
2881 || (pCtx->ds.u32Limit != 0xffff)
2882 || (pCtx->es.u32Limit != 0xffff)
2883 || (pCtx->ss.u32Limit != 0xffff)
2884 || (pCtx->fs.u32Limit != 0xffff)
2885 || (pCtx->gs.u32Limit != 0xffff))
2886 {
2887 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit);
2888 return false;
2889 }
2890 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk);
2891 }
2892 else
2893 {
2894 /* Verify the requirements for executing code in protected
2895 mode. VT-x can't handle the CPU state right after a switch
2896 from real to protected mode. (all sorts of RPL & DPL assumptions). */
2897 if (pVCpu->hm.s.vmx.fWasInRealMode)
2898 {
2899 /** @todo If guest is in V86 mode, these checks should be different! */
2900 if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL))
2901 {
2902 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl);
2903 return false;
2904 }
2905 if ( !hmR3IsCodeSelectorOkForVmx(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl)
2906 || !hmR3IsDataSelectorOkForVmx(&pCtx->ds)
2907 || !hmR3IsDataSelectorOkForVmx(&pCtx->es)
2908 || !hmR3IsDataSelectorOkForVmx(&pCtx->fs)
2909 || !hmR3IsDataSelectorOkForVmx(&pCtx->gs)
2910 || !hmR3IsStackSelectorOkForVmx(&pCtx->ss))
2911 {
2912 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel);
2913 return false;
2914 }
2915 }
2916 /* VT-x also chokes on invalid TR or LDTR selectors (minix). */
2917 if (pCtx->gdtr.cbGdt)
2918 {
2919 if ((pCtx->tr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2920 {
2921 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadTr);
2922 return false;
2923 }
2924 else if ((pCtx->ldtr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2925 {
2926 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadLdt);
2927 return false;
2928 }
2929 }
2930 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckPmOk);
2931 }
2932 }
2933 else
2934 {
2935 if ( !CPUMIsGuestInLongModeEx(pCtx)
2936 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2937 {
2938 if ( !pVM->hm.s.fNestedPaging /* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap */
2939 || CPUMIsGuestInRealModeEx(pCtx)) /* Requires a fake TSS for real mode - stored in the VMM device heap */
2940 return false;
2941
2942 /* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */
2943 if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0)
2944 return false;
2945
2946 /* The guest is about to complete the switch to protected mode. Wait a bit longer. */
2947 /* Windows XP; switch to protected mode; all selectors are marked not present in the
2948 * hidden registers (possible recompiler bug; see load_seg_vm) */
2949 /** @todo Is this supposed recompiler bug still relevant with IEM? */
2950 if (pCtx->cs.Attr.n.u1Present == 0)
2951 return false;
2952 if (pCtx->ss.Attr.n.u1Present == 0)
2953 return false;
2954
2955 /* Windows XP: possible same as above, but new recompiler requires new heuristics?
2956 VT-x doesn't seem to like something about the guest state and this stuff avoids it. */
2957 /** @todo This check is actually wrong, it doesn't take the direction of the
2958 * stack segment into account. But, it does the job for now. */
2959 if (pCtx->rsp >= pCtx->ss.u32Limit)
2960 return false;
2961 }
2962 }
2963 }
2964
2965 if (pVM->hm.s.vmx.fEnabled)
2966 {
2967 uint32_t uCR0Mask;
2968
2969 /* If bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */
2970 uCR0Mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
2971
2972 /* We ignore the NE bit here on purpose; see HMR0.cpp for details. */
2973 uCR0Mask &= ~X86_CR0_NE;
2974
2975 if (fSupportsRealMode)
2976 {
2977 /* We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */
2978 uCR0Mask &= ~(X86_CR0_PG|X86_CR0_PE);
2979 }
2980 else
2981 {
2982 /* We support protected mode without paging using identity mapping. */
2983 uCR0Mask &= ~X86_CR0_PG;
2984 }
2985 if ((pCtx->cr0 & uCR0Mask) != uCR0Mask)
2986 return false;
2987
2988 /* If bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */
2989 uCR0Mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
2990 if ((pCtx->cr0 & uCR0Mask) != 0)
2991 return false;
2992
2993 /* If bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */
2994 uCR0Mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
2995 uCR0Mask &= ~X86_CR4_VMXE;
2996 if ((pCtx->cr4 & uCR0Mask) != uCR0Mask)
2997 return false;
2998
2999 /* If bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */
3000 uCR0Mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
3001 if ((pCtx->cr4 & uCR0Mask) != 0)
3002 return false;
3003
3004 pVCpu->hm.s.fActive = true;
3005 return true;
3006 }
3007
3008 return false;
3009}
3010
3011
3012/**
3013 * Checks if we need to reschedule due to VMM device heap changes.
3014 *
3015 * @returns true if a reschedule is required, otherwise false.
3016 * @param pVM The cross context VM structure.
3017 * @param pCtx VM execution context.
3018 */
3019VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx)
3020{
3021 /*
3022 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
3023 * when the unrestricted guest execution feature is missing (VT-x only).
3024 */
3025 if ( pVM->hm.s.vmx.fEnabled
3026 && !pVM->hm.s.vmx.fUnrestrictedGuest
3027 && CPUMIsGuestInRealModeEx(pCtx)
3028 && !PDMVmmDevHeapIsEnabled(pVM))
3029 {
3030 return true;
3031 }
3032
3033 return false;
3034}
3035
3036
3037/**
3038 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
3039 * event settings changes.
3040 *
3041 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
3042 * function is just updating the VM globals.
3043 *
3044 * @param pVM The VM cross context VM structure.
3045 * @thread EMT(0)
3046 */
3047VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
3048{
3049 /* Interrupts. */
3050 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
3051 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
3052
3053 /* CPU Exceptions. */
3054 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
3055 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
3056 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3057 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3058
3059 /* Common VM exits. */
3060 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
3061 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
3062 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3063 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3064
3065 /* Vendor specific VM exits. */
3066 if (HMR3IsVmxEnabled(pVM->pUVM))
3067 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
3068 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
3069 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3070 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3071 else
3072 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
3073 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
3074 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3075 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3076
3077 /* Done. */
3078 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
3079}
3080
3081
3082/**
3083 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
3084 *
3085 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
3086 * per CPU settings.
3087 *
3088 * @param pVM The VM cross context VM structure.
3089 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3090 */
3091VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
3092{
3093 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
3094}
3095
3096
3097/**
3098 * Checks if we are currently using hardware acceleration.
3099 *
3100 * @returns true if hardware acceleration is being used, otherwise false.
3101 * @param pVCpu The cross context virtual CPU structure.
3102 */
3103VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu)
3104{
3105 return pVCpu->hm.s.fActive;
3106}
3107
3108
3109/**
3110 * External interface for querying whether hardware acceleration is enabled.
3111 *
3112 * @returns true if VT-x or AMD-V is being used, otherwise false.
3113 * @param pUVM The user mode VM handle.
3114 * @sa HMIsEnabled, HMIsEnabledNotMacro.
3115 */
3116VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
3117{
3118 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3119 PVM pVM = pUVM->pVM;
3120 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3121 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
3122}
3123
3124
3125/**
3126 * External interface for querying whether VT-x is being used.
3127 *
3128 * @returns true if VT-x is being used, otherwise false.
3129 * @param pUVM The user mode VM handle.
3130 * @sa HMR3IsSvmEnabled, HMIsEnabled
3131 */
3132VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
3133{
3134 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3135 PVM pVM = pUVM->pVM;
3136 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3137 return pVM->hm.s.vmx.fEnabled
3138 && pVM->hm.s.vmx.fSupported
3139 && pVM->fHMEnabled;
3140}
3141
3142
3143/**
3144 * External interface for querying whether AMD-V is being used.
3145 *
3146 * @returns true if VT-x is being used, otherwise false.
3147 * @param pUVM The user mode VM handle.
3148 * @sa HMR3IsVmxEnabled, HMIsEnabled
3149 */
3150VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
3151{
3152 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3153 PVM pVM = pUVM->pVM;
3154 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3155 return pVM->hm.s.svm.fEnabled
3156 && pVM->hm.s.svm.fSupported
3157 && pVM->fHMEnabled;
3158}
3159
3160
3161/**
3162 * Checks if we are currently using nested paging.
3163 *
3164 * @returns true if nested paging is being used, otherwise false.
3165 * @param pUVM The user mode VM handle.
3166 */
3167VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
3168{
3169 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3170 PVM pVM = pUVM->pVM;
3171 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3172 return pVM->hm.s.fNestedPaging;
3173}
3174
3175
3176/**
3177 * Checks if virtualized APIC registers is enabled.
3178 *
3179 * When enabled this feature allows the hardware to access most of the
3180 * APIC registers in the virtual-APIC page without causing VM-exits. See
3181 * Intel spec. 29.1.1 "Virtualized APIC Registers".
3182 *
3183 * @returns true if virtualized APIC registers is enabled, otherwise
3184 * false.
3185 * @param pUVM The user mode VM handle.
3186 */
3187VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
3188{
3189 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3190 PVM pVM = pUVM->pVM;
3191 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3192 return pVM->hm.s.fVirtApicRegs;
3193}
3194
3195
3196/**
3197 * Checks if APIC posted-interrupt processing is enabled.
3198 *
3199 * This returns whether we can deliver interrupts to the guest without
3200 * leaving guest-context by updating APIC state from host-context.
3201 *
3202 * @returns true if APIC posted-interrupt processing is enabled,
3203 * otherwise false.
3204 * @param pUVM The user mode VM handle.
3205 */
3206VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
3207{
3208 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3209 PVM pVM = pUVM->pVM;
3210 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3211 return pVM->hm.s.fPostedIntrs;
3212}
3213
3214
3215/**
3216 * Checks if we are currently using VPID in VT-x mode.
3217 *
3218 * @returns true if VPID is being used, otherwise false.
3219 * @param pUVM The user mode VM handle.
3220 */
3221VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
3222{
3223 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3224 PVM pVM = pUVM->pVM;
3225 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3226 return pVM->hm.s.vmx.fVpid;
3227}
3228
3229
3230/**
3231 * Checks if we are currently using VT-x unrestricted execution,
3232 * aka UX.
3233 *
3234 * @returns true if UX is being used, otherwise false.
3235 * @param pUVM The user mode VM handle.
3236 */
3237VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
3238{
3239 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3240 PVM pVM = pUVM->pVM;
3241 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3242 return pVM->hm.s.vmx.fUnrestrictedGuest;
3243}
3244
3245
3246/**
3247 * Checks if internal events are pending. In that case we are not allowed to dispatch interrupts.
3248 *
3249 * @returns true if an internal event is pending, otherwise false.
3250 * @param pVCpu The cross context virtual CPU structure.
3251 */
3252VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu)
3253{
3254 return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending;
3255}
3256
3257
3258/**
3259 * Checks if the VMX-preemption timer is being used.
3260 *
3261 * @returns true if the VMX-preemption timer is being used, otherwise false.
3262 * @param pVM The cross context VM structure.
3263 */
3264VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
3265{
3266 return HMIsEnabled(pVM)
3267 && pVM->hm.s.vmx.fEnabled
3268 && pVM->hm.s.vmx.fUsePreemptTimer;
3269}
3270
3271
3272/**
3273 * Checks if there is an I/O instruction pending.
3274 *
3275 * @returns true if pending, false if not.
3276 * @param pVCpu The cross context virtual CPU structure.
3277 */
3278VMMR3_INT_DECL(bool) HMR3HasPendingIOInstr(PVMCPU pVCpu)
3279{
3280 return pVCpu->hm.s.PendingIO.enmType != HMPENDINGIO_INVALID
3281 && pVCpu->hm.s.PendingIO.GCPtrRip == pVCpu->cpum.GstCtx.rip;
3282}
3283
3284
3285/**
3286 * Restart an I/O instruction that was refused in ring-0
3287 *
3288 * @returns Strict VBox status code. Informational status codes other than the one documented
3289 * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success.
3290 * @retval VINF_SUCCESS Success.
3291 * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the
3292 * status code must be passed on to EM.
3293 * @retval VERR_NOT_FOUND if no pending I/O instruction.
3294 *
3295 * @param pVM The cross context VM structure.
3296 * @param pVCpu The cross context virtual CPU structure.
3297 * @param pCtx Pointer to the guest CPU context.
3298 */
3299VMMR3_INT_DECL(VBOXSTRICTRC) HMR3RestartPendingIOInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3300{
3301 /*
3302 * Check if we've got relevant data pending.
3303 */
3304 HMPENDINGIO enmType = pVCpu->hm.s.PendingIO.enmType;
3305 if (enmType == HMPENDINGIO_INVALID)
3306 return VERR_NOT_FOUND;
3307 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_INVALID;
3308 if (pVCpu->hm.s.PendingIO.GCPtrRip != pCtx->rip)
3309 return VERR_NOT_FOUND;
3310
3311 /*
3312 * Execute pending I/O.
3313 */
3314 VBOXSTRICTRC rcStrict;
3315 switch (enmType)
3316 {
3317 case HMPENDINGIO_PORT_READ:
3318 {
3319 uint32_t uAndVal = pVCpu->hm.s.PendingIO.s.Port.uAndVal;
3320 uint32_t u32Val = 0;
3321
3322 rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort, &u32Val,
3323 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3324 if (IOM_SUCCESS(rcStrict))
3325 {
3326 /* Write back to the EAX register. */
3327 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
3328 pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
3329 }
3330 break;
3331 }
3332
3333 default:
3334 AssertLogRelFailedReturn(VERR_HM_UNKNOWN_IO_INSTRUCTION);
3335 }
3336
3337 if (IOM_SUCCESS(rcStrict))
3338 {
3339 /*
3340 * Check for I/O breakpoints.
3341 */
3342 uint32_t const uDr7 = pCtx->dr[7];
3343 if ( ( (uDr7 & X86_DR7_ENABLED_MASK)
3344 && X86_DR7_ANY_RW_IO(uDr7)
3345 && (pCtx->cr4 & X86_CR4_DE))
3346 || DBGFBpIsHwIoArmed(pVM))
3347 {
3348 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, pVCpu->hm.s.PendingIO.s.Port.uPort,
3349 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3350 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
3351 rcStrict2 = TRPMAssertTrap(pVCpu, X86_XCPT_DB, TRPM_TRAP);
3352 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
3353 else if (rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
3354 rcStrict = rcStrict2;
3355 }
3356 }
3357 return rcStrict;
3358}
3359
3360
3361/**
3362 * Check fatal VT-x/AMD-V error and produce some meaningful
3363 * log release message.
3364 *
3365 * @param pVM The cross context VM structure.
3366 * @param iStatusCode VBox status code.
3367 */
3368VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3369{
3370 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3371 {
3372 PVMCPU pVCpu = &pVM->aCpus[i];
3373 switch (iStatusCode)
3374 {
3375 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3376 * might be getting inaccurate values for non-guru'ing EMTs. */
3377 case VERR_VMX_INVALID_VMCS_FIELD:
3378 break;
3379
3380 case VERR_VMX_INVALID_VMCS_PTR:
3381 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3382 LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VMCSPhys,
3383 pVCpu->hm.s.vmx.HCPhysVmcs));
3384 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VMCSRevision));
3385 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3386 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3387 break;
3388
3389 case VERR_VMX_UNABLE_TO_START_VM:
3390 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3391 LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
3392 LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3393
3394 if ( pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMLAUCH_NON_CLEAR_VMCS
3395 || pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMRESUME_NON_LAUNCHED_VMCS)
3396 {
3397 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3398 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3399 }
3400 else if (pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMENTRY_INVALID_CONTROL_FIELDS)
3401 {
3402 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32PinCtls));
3403 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls));
3404 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls2));
3405 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32EntryCtls));
3406 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ExitCtls));
3407 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap));
3408 LogRel(("HM: CPU[%u] HCPhysGuestMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr));
3409 LogRel(("HM: CPU[%u] HCPhysHostMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr));
3410 LogRel(("HM: CPU[%u] cMsrs %u\n", i, pVCpu->hm.s.vmx.cMsrs));
3411 }
3412 /** @todo Log VM-entry event injection control fields
3413 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3414 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3415 break;
3416
3417 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3418 case VERR_VMX_INVALID_VMXON_PTR:
3419 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3420 case VERR_VMX_INVALID_GUEST_STATE:
3421 case VERR_VMX_UNEXPECTED_EXIT:
3422 case VERR_SVM_UNKNOWN_EXIT:
3423 case VERR_SVM_UNEXPECTED_EXIT:
3424 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3425 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3426 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3427 break;
3428 }
3429 }
3430
3431 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3432 {
3433 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1));
3434 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry disallowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0));
3435 }
3436 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3437 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3438}
3439
3440
3441/**
3442 * Execute state save operation.
3443 *
3444 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3445 * is because we always save the VM state from ring-3 and thus most HM state
3446 * will be re-synced dynamically at runtime and don't need to be part of the VM
3447 * saved state.
3448 *
3449 * @returns VBox status code.
3450 * @param pVM The cross context VM structure.
3451 * @param pSSM SSM operation handle.
3452 */
3453static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3454{
3455 int rc;
3456
3457 Log(("hmR3Save:\n"));
3458
3459 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3460 {
3461 Assert(!pVM->aCpus[i].hm.s.Event.fPending);
3462 if (pVM->cpum.ro.GuestFeatures.fSvm)
3463 {
3464 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache;
3465 rc = SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3466 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3467 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3468 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3469 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3470 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3471 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3472 rc |= SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3473 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3474 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3475 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3476 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3477 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3478 AssertRCReturn(rc, rc);
3479 }
3480 }
3481
3482 /* Save the guest patch data. */
3483 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3484 rc |= SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3485 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3486
3487 /* Store all the guest patch records too. */
3488 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3489 AssertRCReturn(rc, rc);
3490
3491 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3492 {
3493 AssertCompileSize(HMTPRINSTR, 4);
3494 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3495 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3496 rc |= SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3497 rc |= SSMR3PutU32(pSSM, pPatch->cbOp);
3498 rc |= SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3499 rc |= SSMR3PutU32(pSSM, pPatch->cbNewOp);
3500 rc |= SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3501 rc |= SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3502 rc |= SSMR3PutU32(pSSM, pPatch->uDstOperand);
3503 rc |= SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3504 rc |= SSMR3PutU32(pSSM, pPatch->cFaults);
3505 AssertRCReturn(rc, rc);
3506 }
3507
3508 return VINF_SUCCESS;
3509}
3510
3511
3512/**
3513 * Execute state load operation.
3514 *
3515 * @returns VBox status code.
3516 * @param pVM The cross context VM structure.
3517 * @param pSSM SSM operation handle.
3518 * @param uVersion Data layout version.
3519 * @param uPass The data pass.
3520 */
3521static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3522{
3523 int rc;
3524
3525 LogFlowFunc(("uVersion=%u\n", uVersion));
3526 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3527
3528 /*
3529 * Validate version.
3530 */
3531 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3532 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3533 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3534 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3535 {
3536 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3537 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3538 }
3539
3540 /*
3541 * Load per-VCPU state.
3542 */
3543 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3544 {
3545 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3546 {
3547 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3548 if (pVM->cpum.ro.GuestFeatures.fSvm)
3549 {
3550 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache;
3551 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3552 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3553 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3554 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3555 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3556 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3557 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3558 rc |= SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3559 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3560 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3561 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3562 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3563 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3564 AssertRCReturn(rc, rc);
3565 }
3566 }
3567 else
3568 {
3569 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3570 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
3571 rc |= SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
3572 rc |= SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo);
3573
3574 /* VMX fWasInRealMode related data. */
3575 uint32_t uDummy;
3576 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3577 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3578 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3579 AssertRCReturn(rc, rc);
3580 }
3581 }
3582
3583 /*
3584 * Load TPR patching data.
3585 */
3586 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3587 {
3588 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3589 rc |= SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3590 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3591
3592 /* Fetch all TPR patch records. */
3593 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3594 AssertRCReturn(rc, rc);
3595 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3596 {
3597 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3598 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3599 rc |= SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3600 rc |= SSMR3GetU32(pSSM, &pPatch->cbOp);
3601 rc |= SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3602 rc |= SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3603 rc |= SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3604
3605 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3606 pVM->hm.s.fTPRPatchingActive = true;
3607 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3608
3609 rc |= SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3610 rc |= SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3611 rc |= SSMR3GetU32(pSSM, &pPatch->cFaults);
3612 rc |= SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3613 AssertRCReturn(rc, rc);
3614
3615 LogFlow(("hmR3Load: patch %d\n", i));
3616 LogFlow(("Key = %x\n", pPatch->Core.Key));
3617 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3618 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3619 LogFlow(("type = %d\n", pPatch->enmType));
3620 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3621 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3622 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3623 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3624
3625 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3626 AssertRCReturn(rc, rc);
3627 }
3628 }
3629
3630 return VINF_SUCCESS;
3631}
3632
3633
3634/**
3635 * Gets the name of a VT-x exit code.
3636 *
3637 * @returns Pointer to read only string if @a uExit is known, otherwise NULL.
3638 * @param uExit The VT-x exit to name.
3639 */
3640VMMR3DECL(const char *) HMR3GetVmxExitName(uint32_t uExit)
3641{
3642 if (uExit < RT_ELEMENTS(g_apszVTxExitReasons))
3643 return g_apszVTxExitReasons[uExit];
3644 return NULL;
3645}
3646
3647
3648/**
3649 * Gets the name of an AMD-V exit code.
3650 *
3651 * @returns Pointer to read only string if @a uExit is known, otherwise NULL.
3652 * @param uExit The AMD-V exit to name.
3653 */
3654VMMR3DECL(const char *) HMR3GetSvmExitName(uint32_t uExit)
3655{
3656 if (uExit < RT_ELEMENTS(g_apszAmdVExitReasons))
3657 return g_apszAmdVExitReasons[uExit];
3658 return hmSvmGetSpecialExitReasonDesc(uExit);
3659}
3660
3661
3662/**
3663 * Displays HM info.
3664 *
3665 * @param pVM The cross context VM structure.
3666 * @param pHlp The info helper functions.
3667 * @param pszArgs Arguments, ignored.
3668 */
3669static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3670{
3671 NOREF(pszArgs);
3672 PVMCPU pVCpu = VMMGetCpu(pVM);
3673 if (!pVCpu)
3674 pVCpu = &pVM->aCpus[0];
3675
3676 if (HMIsEnabled(pVM))
3677 {
3678 if (pVM->hm.s.vmx.fSupported)
3679 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3680 else
3681 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3682 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3683 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3684 }
3685 else
3686 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3687}
3688
3689
3690/**
3691 * Displays the HM pending event.
3692 *
3693 * @param pVM The cross context VM structure.
3694 * @param pHlp The info helper functions.
3695 * @param pszArgs Arguments, ignored.
3696 */
3697static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3698{
3699 NOREF(pszArgs);
3700 PVMCPU pVCpu = VMMGetCpu(pVM);
3701 if (!pVCpu)
3702 pVCpu = &pVM->aCpus[0];
3703
3704 if (HMIsEnabled(pVM))
3705 {
3706 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3707 if (pVCpu->hm.s.Event.fPending)
3708 {
3709 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3710 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3711 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3712 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3713 }
3714 }
3715 else
3716 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3717}
3718
3719
3720/**
3721 * Displays the SVM nested-guest VMCB cache.
3722 *
3723 * @param pVM The cross context VM structure.
3724 * @param pHlp The info helper functions.
3725 * @param pszArgs Arguments, ignored.
3726 */
3727static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3728{
3729 NOREF(pszArgs);
3730 PVMCPU pVCpu = VMMGetCpu(pVM);
3731 if (!pVCpu)
3732 pVCpu = &pVM->aCpus[0];
3733
3734 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3735 if ( fSvmEnabled
3736 && pVM->cpum.ro.GuestFeatures.fSvm)
3737 {
3738 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3739 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3740 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3741 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3742 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3743 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3744 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3745 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3746 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3747 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3748 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3749 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3750 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3751 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3752 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3753 }
3754 else
3755 {
3756 if (!fSvmEnabled)
3757 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3758 else
3759 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3760 }
3761}
3762
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette