VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 79581

Last change on this file since 79581 was 79581, checked in by vboxsync, 5 years ago

VMM/HM: Nested VMX: bugref:9180 Clarify that the task switch counter here is for task switch through a task gate in IDT (and not other sources like CALL/IRET/JMP instruction).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 152.7 KB
Line 
1/* $Id: HM.cpp 79581 2019-07-08 04:46:28Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/mm.h>
44#include <VBox/vmm/em.h>
45#include <VBox/vmm/pdmapi.h>
46#include <VBox/vmm/pgm.h>
47#include <VBox/vmm/ssm.h>
48#include <VBox/vmm/gim.h>
49#include <VBox/vmm/trpm.h>
50#include <VBox/vmm/dbgf.h>
51#include <VBox/vmm/iom.h>
52#include <VBox/vmm/iem.h>
53#include <VBox/vmm/patm.h>
54#include <VBox/vmm/csam.h>
55#include <VBox/vmm/selm.h>
56#include <VBox/vmm/nem.h>
57#ifdef VBOX_WITH_REM
58# include <VBox/vmm/rem.h>
59#endif
60#include <VBox/vmm/hm_vmx.h>
61#include <VBox/vmm/hm_svm.h>
62#include "HMInternal.h"
63#include <VBox/vmm/vm.h>
64#include <VBox/vmm/uvm.h>
65#include <VBox/err.h>
66#include <VBox/param.h>
67
68#include <iprt/assert.h>
69#include <VBox/log.h>
70#include <iprt/asm.h>
71#include <iprt/asm-amd64-x86.h>
72#include <iprt/env.h>
73#include <iprt/thread.h>
74
75
76/*********************************************************************************************************************************
77* Defined Constants And Macros *
78*********************************************************************************************************************************/
79/** @def HMVMX_REPORT_FEAT
80 * Reports VT-x feature to the release log.
81 *
82 * @param a_uAllowed1 Mask of allowed-1 feature bits.
83 * @param a_uAllowed0 Mask of allowed-0 feature bits.
84 * @param a_StrDesc The description string to report.
85 * @param a_Featflag Mask of the feature to report.
86 */
87#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
88 do { \
89 if ((a_uAllowed1) & (a_Featflag)) \
90 { \
91 if ((a_uAllowed0) & (a_Featflag)) \
92 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
93 else \
94 LogRel(("HM: " a_StrDesc "\n")); \
95 } \
96 else \
97 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
98 } while (0)
99
100/** @def HMVMX_REPORT_ALLOWED_FEAT
101 * Reports an allowed VT-x feature to the release log.
102 *
103 * @param a_uAllowed1 Mask of allowed-1 feature bits.
104 * @param a_StrDesc The description string to report.
105 * @param a_FeatFlag Mask of the feature to report.
106 */
107#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
108 do { \
109 if ((a_uAllowed1) & (a_FeatFlag)) \
110 LogRel(("HM: " a_StrDesc "\n")); \
111 else \
112 LogRel(("HM: " a_StrDesc " not supported\n")); \
113 } while (0)
114
115/** @def HMVMX_REPORT_MSR_CAP
116 * Reports MSR feature capability.
117 *
118 * @param a_MsrCaps Mask of MSR feature bits.
119 * @param a_StrDesc The description string to report.
120 * @param a_fCap Mask of the feature to report.
121 */
122#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
123 do { \
124 if ((a_MsrCaps) & (a_fCap)) \
125 LogRel(("HM: " a_StrDesc "\n")); \
126 } while (0)
127
128/** @def HMVMX_LOGREL_FEAT
129 * Dumps a feature flag from a bitmap of features to the release log.
130 *
131 * @param a_fVal The value of all the features.
132 * @param a_fMask The specific bitmask of the feature.
133 */
134#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
135 do { \
136 if ((a_fVal) & (a_fMask)) \
137 LogRel(("HM: %s\n", #a_fMask)); \
138 } while (0)
139
140
141/*********************************************************************************************************************************
142* Internal Functions *
143*********************************************************************************************************************************/
144static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
145static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
146static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
147static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
148static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
149static int hmR3InitFinalizeR3(PVM pVM);
150static int hmR3InitFinalizeR0(PVM pVM);
151static int hmR3InitFinalizeR0Intel(PVM pVM);
152static int hmR3InitFinalizeR0Amd(PVM pVM);
153static int hmR3TermCPU(PVM pVM);
154
155
156
157/**
158 * Initializes the HM.
159 *
160 * This is the very first component to really do init after CFGM so that we can
161 * establish the predominant execution engine for the VM prior to initializing
162 * other modules. It takes care of NEM initialization if needed (HM disabled or
163 * not available in HW).
164 *
165 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
166 * hypervisor API via NEM, and then back on raw-mode if that isn't available
167 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
168 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
169 * X, OS/2 and others).
170 *
171 * Note that a lot of the set up work is done in ring-0 and thus postponed till
172 * the ring-3 and ring-0 callback to HMR3InitCompleted.
173 *
174 * @returns VBox status code.
175 * @param pVM The cross context VM structure.
176 *
177 * @remarks Be careful with what we call here, since most of the VMM components
178 * are uninitialized.
179 */
180VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
181{
182 LogFlowFunc(("\n"));
183
184 /*
185 * Assert alignment and sizes.
186 */
187 AssertCompileMemberAlignment(VM, hm.s, 32);
188 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
189
190 /*
191 * Register the saved state data unit.
192 */
193 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
194 NULL, NULL, NULL,
195 NULL, hmR3Save, NULL,
196 NULL, hmR3Load, NULL);
197 if (RT_FAILURE(rc))
198 return rc;
199
200 /*
201 * Register info handlers.
202 */
203 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
204 AssertRCReturn(rc, rc);
205
206 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
207 DBGFINFO_FLAGS_ALL_EMTS);
208 AssertRCReturn(rc, rc);
209
210 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
211 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
212 AssertRCReturn(rc, rc);
213
214 /*
215 * Read configuration.
216 */
217 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
218
219 /*
220 * Validate the HM settings.
221 */
222 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
223 "HMForced"
224 "|UseNEMInstead"
225 "|FallbackToNEM"
226 "|EnableNestedPaging"
227 "|EnableUX"
228 "|EnableLargePages"
229 "|EnableVPID"
230 "|IBPBOnVMExit"
231 "|IBPBOnVMEntry"
232 "|SpecCtrlByHost"
233 "|L1DFlushOnSched"
234 "|L1DFlushOnVMEntry"
235 "|MDSClearOnSched"
236 "|MDSClearOnVMEntry"
237 "|TPRPatchingEnabled"
238 "|64bitEnabled"
239 "|Exclusive"
240 "|MaxResumeLoops"
241 "|VmxPleGap"
242 "|VmxPleWindow"
243 "|UseVmxPreemptTimer"
244 "|SvmPauseFilter"
245 "|SvmPauseFilterThreshold"
246 "|SvmVirtVmsaveVmload"
247 "|SvmVGif"
248 "|LovelyMesaDrvWorkaround",
249 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
250 if (RT_FAILURE(rc))
251 return rc;
252
253 /** @cfgm{/HM/HMForced, bool, false}
254 * Forces hardware virtualization, no falling back on raw-mode. HM must be
255 * enabled, i.e. /HMEnabled must be true. */
256 bool fHMForced;
257#ifdef VBOX_WITH_RAW_MODE
258 rc = CFGMR3QueryBoolDef(pCfgHm, "HMForced", &fHMForced, false);
259 AssertRCReturn(rc, rc);
260 AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
261 VERR_INVALID_PARAMETER);
262# if defined(RT_OS_DARWIN)
263 if (pVM->fHMEnabled)
264 fHMForced = true;
265# endif
266 AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
267 VERR_INVALID_PARAMETER);
268 if (pVM->cCpus > 1)
269 fHMForced = true;
270#else /* !VBOX_WITH_RAW_MODE */
271 AssertRelease(pVM->fHMEnabled);
272 fHMForced = true;
273#endif /* !VBOX_WITH_RAW_MODE */
274
275 /** @cfgm{/HM/UseNEMInstead, bool, true}
276 * Don't use HM, use NEM instead. */
277 bool fUseNEMInstead = false;
278 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
279 AssertRCReturn(rc, rc);
280 if (fUseNEMInstead && pVM->fHMEnabled)
281 {
282 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
283 pVM->fHMEnabled = false;
284 }
285
286 /** @cfgm{/HM/FallbackToNEM, bool, true}
287 * Enables fallback on NEM. */
288 bool fFallbackToNEM = true;
289 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
290 AssertRCReturn(rc, rc);
291
292 /** @cfgm{/HM/EnableNestedPaging, bool, false}
293 * Enables nested paging (aka extended page tables). */
294 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
295 AssertRCReturn(rc, rc);
296
297 /** @cfgm{/HM/EnableUX, bool, true}
298 * Enables the VT-x unrestricted execution feature. */
299 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
300 AssertRCReturn(rc, rc);
301
302 /** @cfgm{/HM/EnableLargePages, bool, false}
303 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
304 * page table walking and maybe better TLB hit rate in some cases. */
305 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
306 AssertRCReturn(rc, rc);
307
308 /** @cfgm{/HM/EnableVPID, bool, false}
309 * Enables the VT-x VPID feature. */
310 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
311 AssertRCReturn(rc, rc);
312
313 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
314 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
315 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
316 AssertRCReturn(rc, rc);
317
318 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
319 * Enables AMD64 cpu features.
320 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
321 * already have the support. */
322#ifdef VBOX_ENABLE_64_BITS_GUESTS
323 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
324 AssertLogRelRCReturn(rc, rc);
325#else
326 pVM->hm.s.fAllow64BitGuests = false;
327#endif
328
329 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
330 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
331 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
332 * latest PAUSE instruction to be start of a new PAUSE loop.
333 */
334 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
335 AssertRCReturn(rc, rc);
336
337 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
338 * The pause-filter exiting window in TSC ticks. When the number of ticks
339 * between the current PAUSE instruction and first PAUSE of a loop exceeds
340 * VmxPleWindow, a VM-exit is triggered.
341 *
342 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
343 */
344 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
345 AssertRCReturn(rc, rc);
346
347 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
348 * A counter that is decrement each time a PAUSE instruction is executed by the
349 * guest. When the counter is 0, a \#VMEXIT is triggered.
350 *
351 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
352 */
353 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
354 AssertRCReturn(rc, rc);
355
356 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
357 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
358 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
359 * PauseFilter count is reset to its initial value. However, if PAUSE is
360 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
361 * be triggered.
362 *
363 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
364 * activated.
365 */
366 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
367 AssertRCReturn(rc, rc);
368
369 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
370 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
371 * available. */
372 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
373 AssertRCReturn(rc, rc);
374
375 /** @cfgm{/HM/SvmVGif, bool, true}
376 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
377 * if it's available. */
378 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
379 AssertRCReturn(rc, rc);
380
381 /** @cfgm{/HM/Exclusive, bool}
382 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
383 * global init for each host CPU. If false, we do local init each time we wish
384 * to execute guest code.
385 *
386 * On Windows, default is false due to the higher risk of conflicts with other
387 * hypervisors.
388 *
389 * On Mac OS X, this setting is ignored since the code does not handle local
390 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
391 */
392#if defined(RT_OS_DARWIN)
393 pVM->hm.s.fGlobalInit = true;
394#else
395 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
396# if defined(RT_OS_WINDOWS)
397 false
398# else
399 true
400# endif
401 );
402 AssertLogRelRCReturn(rc, rc);
403#endif
404
405 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
406 * The number of times to resume guest execution before we forcibly return to
407 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
408 * determines the default value. */
409 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
410 AssertLogRelRCReturn(rc, rc);
411
412 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
413 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
414 * available. */
415 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
416 AssertLogRelRCReturn(rc, rc);
417
418 /** @cfgm{/HM/IBPBOnVMExit, bool}
419 * Costly paranoia setting. */
420 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
421 AssertLogRelRCReturn(rc, rc);
422
423 /** @cfgm{/HM/IBPBOnVMEntry, bool}
424 * Costly paranoia setting. */
425 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
426 AssertLogRelRCReturn(rc, rc);
427
428 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
429 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
430 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
431 AssertLogRelRCReturn(rc, rc);
432
433 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
434 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
435 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
436 AssertLogRelRCReturn(rc, rc);
437
438 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
439 if (pVM->hm.s.fL1dFlushOnVmEntry)
440 pVM->hm.s.fL1dFlushOnSched = false;
441
442 /** @cfgm{/HM/SpecCtrlByHost, bool}
443 * Another expensive paranoia setting. */
444 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
445 AssertLogRelRCReturn(rc, rc);
446
447 /** @cfgm{/HM/MDSClearOnSched, bool, true}
448 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
449 * ignored on CPUs that aren't affected. */
450 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
451 AssertLogRelRCReturn(rc, rc);
452
453 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
454 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
455 * ignored on CPUs that aren't affected. */
456 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
457 AssertLogRelRCReturn(rc, rc);
458
459 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
460 if (pVM->hm.s.fMdsClearOnVmEntry)
461 pVM->hm.s.fMdsClearOnSched = false;
462
463 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
464 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
465 * the hypervisor it is running under. */
466 bool f;
467 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &f, false);
468 AssertLogRelRCReturn(rc, rc);
469 for (VMCPUID i = 0; i < pVM->cCpus; i++)
470 pVM->aCpus[i].hm.s.fTrapXcptGpForLovelyMesaDrv = f;
471
472 /*
473 * Check if VT-x or AMD-v support according to the users wishes.
474 */
475 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
476 * VERR_SVM_IN_USE. */
477 if (pVM->fHMEnabled)
478 {
479 uint32_t fCaps;
480 rc = SUPR3QueryVTCaps(&fCaps);
481 if (RT_SUCCESS(rc))
482 {
483 if (fCaps & SUPVTCAPS_AMD_V)
484 {
485 pVM->hm.s.svm.fSupported = true;
486 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
487 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
488 }
489 else if (fCaps & SUPVTCAPS_VT_X)
490 {
491 const char *pszWhy;
492 rc = SUPR3QueryVTxSupported(&pszWhy);
493 if (RT_SUCCESS(rc))
494 {
495 pVM->hm.s.vmx.fSupported = true;
496 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
497 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
498 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
499 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
500 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
501 }
502 else
503 {
504 /*
505 * Before failing, try fallback to NEM if we're allowed to do that.
506 */
507 pVM->fHMEnabled = false;
508 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
509 if (fFallbackToNEM)
510 {
511 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
512 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
513
514 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
515 if ( RT_SUCCESS(rc2)
516 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
517 rc = VINF_SUCCESS;
518 }
519 if (RT_FAILURE(rc))
520 {
521 if (fHMForced)
522 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
523
524 /* Fall back to raw-mode. */
525 LogRel(("HM: HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x - %s\n", pszWhy));
526 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
527 }
528 }
529 }
530 else
531 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
532 VERR_INTERNAL_ERROR_5);
533
534 /*
535 * Do we require a little bit or raw-mode for 64-bit guest execution?
536 */
537 pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
538 && pVM->fHMEnabled
539 && pVM->hm.s.fAllow64BitGuests;
540
541 /*
542 * Disable nested paging and unrestricted guest execution now if they're
543 * configured so that CPUM can make decisions based on our configuration.
544 */
545 Assert(!pVM->hm.s.fNestedPaging);
546 if (pVM->hm.s.fAllowNestedPaging)
547 {
548 if (fCaps & SUPVTCAPS_NESTED_PAGING)
549 pVM->hm.s.fNestedPaging = true;
550 else
551 pVM->hm.s.fAllowNestedPaging = false;
552 }
553
554 if (fCaps & SUPVTCAPS_VT_X)
555 {
556 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
557 if (pVM->hm.s.vmx.fAllowUnrestricted)
558 {
559 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
560 && pVM->hm.s.fNestedPaging)
561 pVM->hm.s.vmx.fUnrestrictedGuest = true;
562 else
563 pVM->hm.s.vmx.fAllowUnrestricted = false;
564 }
565 }
566 }
567 else
568 {
569 const char *pszMsg;
570 switch (rc)
571 {
572 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
573 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
574 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
575 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
576 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
577 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
578 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
579 default:
580 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
581 }
582
583 /*
584 * Before failing, try fallback to NEM if we're allowed to do that.
585 */
586 pVM->fHMEnabled = false;
587 if (fFallbackToNEM)
588 {
589 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
590 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
591 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
592 if ( RT_SUCCESS(rc2)
593 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
594 rc = VINF_SUCCESS;
595 }
596 if (RT_FAILURE(rc))
597 {
598 if (fHMForced)
599 return VM_SET_ERROR(pVM, rc, pszMsg);
600
601 LogRel(("HM: HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
602 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
603 }
604 }
605 }
606 else
607 {
608 /*
609 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
610 */
611 if (!fUseNEMInstead)
612 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_RAW_MODE);
613 else
614 {
615 rc = NEMR3Init(pVM, false /*fFallback*/, true);
616 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
617 if (RT_FAILURE(rc))
618 return rc;
619 }
620 }
621
622 return VINF_SUCCESS;
623}
624
625
626/**
627 * Initializes HM components after ring-3 phase has been fully initialized.
628 *
629 * @returns VBox status code.
630 * @param pVM The cross context VM structure.
631 */
632static int hmR3InitFinalizeR3(PVM pVM)
633{
634 LogFlowFunc(("\n"));
635
636 if (!HMIsEnabled(pVM))
637 return VINF_SUCCESS;
638
639 for (VMCPUID i = 0; i < pVM->cCpus; i++)
640 {
641 PVMCPU pVCpu = &pVM->aCpus[i];
642 pVCpu->hm.s.fActive = false;
643 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
644 }
645
646#ifdef VBOX_WITH_STATISTICS
647 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
648 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
649 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
650 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
651 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
652#endif
653
654 /*
655 * Statistics.
656 */
657 for (VMCPUID i = 0; i < pVM->cCpus; i++)
658 {
659 PVMCPU pVCpu = &pVM->aCpus[i];
660 int rc;
661
662#ifdef VBOX_WITH_STATISTICS
663 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
664 "Profiling of RTMpPokeCpu.",
665 "/PROF/CPU%d/HM/Poke", i);
666 AssertRC(rc);
667 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
668 "Profiling of poke wait.",
669 "/PROF/CPU%d/HM/PokeWait", i);
670 AssertRC(rc);
671 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
672 "Profiling of poke wait when RTMpPokeCpu fails.",
673 "/PROF/CPU%d/HM/PokeWaitFailed", i);
674 AssertRC(rc);
675 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
676 "Profiling of entry until entering GC.",
677 "/PROF/CPU%d/HM/Entry", i);
678 AssertRC(rc);
679 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPreExit, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
680 "Profiling of pre-exit processing after returning from GC.",
681 "/PROF/CPU%d/HM/SwitchFromGC_1", i);
682 AssertRC(rc);
683 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitHandling, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
684 "Profiling of exit handling (longjmps not included!)",
685 "/PROF/CPU%d/HM/SwitchFromGC_2", i);
686 AssertRC(rc);
687
688 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
689 "I/O.",
690 "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
691 AssertRC(rc);
692 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
693 "MOV CRx.",
694 "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
695 AssertRC(rc);
696 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
697 "Exceptions, NMIs.",
698 "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
699 AssertRC(rc);
700 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitVmentry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
701 "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.",
702 "/PROF/CPU%d/HM/SwitchFromGC_2/Vmentry", i);
703 AssertRC(rc);
704 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatImportGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
705 "Profiling of importing guest state from hardware after VM-exit.",
706 "/PROF/CPU%d/HM/ImportGuestState", i);
707 AssertRC(rc);
708 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExportGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
709 "Profiling of exporting guest state to hardware before VM-entry.",
710 "/PROF/CPU%d/HM/ExportGuestState", i);
711 AssertRC(rc);
712 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestFpuState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
713 "Profiling of CPUMR0LoadGuestFPU.",
714 "/PROF/CPU%d/HM/LoadGuestFpuState", i);
715 AssertRC(rc);
716 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
717 "Profiling of execution of guest-code in hardware.",
718 "/PROF/CPU%d/HM/InGC", i);
719 AssertRC(rc);
720
721# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
722 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
723 STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
724 "/PROF/CPU%d/HM/Switcher3264", i);
725 AssertRC(rc);
726# endif
727
728# ifdef HM_PROFILE_EXIT_DISPATCH
729 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
730 STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
731 "/PROF/CPU%d/HM/ExitDispatch", i);
732 AssertRC(rc);
733# endif
734
735#endif
736# define HM_REG_COUNTER(a, b, desc) \
737 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
738 AssertRC(rc);
739
740#ifdef VBOX_WITH_STATISTICS
741 HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Total exits (including nested-guest exits).");
742 HM_REG_COUNTER(&pVCpu->hm.s.StatNestedExitAll, "/HM/CPU%d/Exit/NestedGuest/All", "Total nested-guest exits.");
743 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
744 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
745 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
746 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
747 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
748 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
749 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
750 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
751 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestTS, "/HM/CPU%d/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
752 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestOF, "/HM/CPU%d/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
753 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
754 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
755 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDF, "/HM/CPU%d/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
756 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBR, "/HM/CPU%d/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
757 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestAC, "/HM/CPU%d/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
758 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
759 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
760 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
761 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
762 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
763 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "MSR read.");
764 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "MSR write.");
765 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR-Write", "Debug register write.");
766 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR-Read", "Debug register read.");
767 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR0Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR0", "CR0 read.");
768 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR2Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR2", "CR2 read.");
769 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR3Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR3", "CR3 read.");
770 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR4Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR4", "CR4 read.");
771 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR8Read, "/HM/CPU%d/Exit/Instr/CR-Read/CR8", "CR8 read.");
772 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR0Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR0", "CR0 write.");
773 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR2Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR2", "CR2 write.");
774 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR3Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR3", "CR3 write.");
775 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR4Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR4", "CR4 write.");
776 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCR8Write, "/HM/CPU%d/Exit/Instr/CR-Write/CR8", "CR8 write.");
777 HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "CLTS instruction.");
778 HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "LMSW instruction.");
779 HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
780 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/Instr/IO/Write", "I/O write.");
781 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/Instr/IO/Read", "I/O read.");
782 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/Instr/IO/WriteString", "String I/O write.");
783 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/Instr/IO/ReadString", "String I/O read.");
784 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
785 HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Physical maskable interrupt (host).");
786#endif
787 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context.");
788#ifdef VBOX_WITH_STATISTICS
789 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
790 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
791 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
792 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
793
794 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchTprMaskedIrq, "/HM/CPU%d/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
795 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
796 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
797 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
798 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchVmReq, "/HM/CPU%d/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
799 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPgmPoolFlush, "/HM/CPU%d/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
800 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchDma, "/HM/CPU%d/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
801 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
802 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
803 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchMaxResumeLoops, "/HM/CPU%d/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
804 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHltToR3, "/HM/CPU%d/Switch/HltToR3", "HLT causing us to go to ring-3.");
805 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchApicAccessToR3, "/HM/CPU%d/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
806#endif
807 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreempt, "/HM/CPU%d/Switch/Preempting", "EMT has been preempted while in HM context.");
808#ifdef VBOX_WITH_STATISTICS
809 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchNstGstVmexit, "/HM/CPU%d/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
810
811 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
812 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
813 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception (or #DF) caused due to event injection.");
814 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingInterpret, "/HM/CPU%d/EventInject/PendingInterpret", "Falling to interpreter for handling exception caused due to event injection.");
815
816 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
817 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
818 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
819 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
820 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
821 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
822 HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
823 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
824 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
825 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
826 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
827 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
828 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
829 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
830
831 HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect.");
832 HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
833 HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses.");
834
835 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
836 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
837 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
838
839 HM_REG_COUNTER(&pVCpu->hm.s.StatExportMinimal, "/HM/CPU%d/Export/Minimal", "VM-entry exporting minimal guest-state.");
840 HM_REG_COUNTER(&pVCpu->hm.s.StatExportFull, "/HM/CPU%d/Export/Full", "VM-entry exporting the full guest-state.");
841 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadGuestFpu, "/HM/CPU%d/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
842 HM_REG_COUNTER(&pVCpu->hm.s.StatExportHostState, "/HM/CPU%d/Export/HostState", "VM-entry exporting host-state.");
843
844 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
845 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
846 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelAttr, "/HM/CPU%d/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
847
848 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadV86SelBase, "/HM/CPU%d/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
849 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadV86SelLimit, "/HM/CPU%d/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
850 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadV86SelAttr, "/HM/CPU%d/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
851
852 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
853 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
854 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
855 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
856
857#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
858 HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
859 HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
860#endif
861
862#undef HM_REG_COUNTER
863
864 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
865
866 /*
867 * Guest Exit reason stats.
868 */
869 pVCpu->hm.s.paStatExitReason = NULL;
870 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
871 (void **)&pVCpu->hm.s.paStatExitReason);
872 AssertRCReturn(rc, rc);
873
874 if (fCpuSupportsVmx)
875 {
876 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
877 {
878 const char *pszExitName = HMGetVmxExitName(j);
879 if (pszExitName)
880 {
881 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
882 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/Exit/Reason/%02x", i, j);
883 AssertRCReturn(rc, rc);
884 }
885 }
886 }
887 else
888 {
889 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
890 {
891 const char *pszExitName = HMGetSvmExitName(j);
892 if (pszExitName)
893 {
894 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
895 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/Exit/Reason/%02x", i, j);
896 AssertRCReturn(rc, rc);
897 }
898 }
899 }
900 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
901 "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
902 AssertRCReturn(rc, rc);
903 pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
904# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
905 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
906# else
907 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
908# endif
909
910#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
911 /*
912 * Nested-guest VM-exit reason stats.
913 */
914 pVCpu->hm.s.paStatNestedExitReason = NULL;
915 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM,
916 (void **)&pVCpu->hm.s.paStatNestedExitReason);
917 AssertRCReturn(rc, rc);
918 if (fCpuSupportsVmx)
919 {
920 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
921 {
922 const char *pszExitName = HMGetVmxExitName(j);
923 if (pszExitName)
924 {
925 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
926 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/Exit/NestedGuest/Reason/%02x", i, j);
927 AssertRC(rc);
928 }
929 }
930 }
931 else
932 {
933 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
934 {
935 const char *pszExitName = HMGetSvmExitName(j);
936 if (pszExitName)
937 {
938 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
939 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%d/Exit/NestedGuest/Reason/%02x", i, j);
940 AssertRC(rc);
941 }
942 }
943 }
944 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatNestedExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED,
945 STAMUNIT_OCCURENCES, "Nested page fault", "/HM/CPU%d/Exit/NestedGuest/Reason/#NPF", i);
946 AssertRCReturn(rc, rc);
947 pVCpu->hm.s.paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatNestedExitReason);
948# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
949 Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
950# else
951 Assert(pVCpu->hm.s.paStatNestedExitReasonR0 != NIL_RTR0PTR);
952# endif
953#endif
954
955 /*
956 * Injected events stats.
957 */
958 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
959 AssertRCReturn(rc, rc);
960 pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
961# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
962 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
963# else
964 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
965# endif
966 for (unsigned j = 0; j < 255; j++)
967 {
968 STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
969 "Injected event.",
970 (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j);
971 }
972
973#endif /* VBOX_WITH_STATISTICS */
974 }
975
976#ifdef VBOX_WITH_CRASHDUMP_MAGIC
977 /*
978 * Magic marker for searching in crash dumps.
979 */
980 for (VMCPUID i = 0; i < pVM->cCpus; i++)
981 {
982 PVMCPU pVCpu = &pVM->aCpus[i];
983
984 PVMXVMCSCACHE pVmcsCache = &pVCpu->hm.s.vmx.VmcsCache;
985 strcpy((char *)pVmcsCache->aMagic, "VMCSCACHE Magic");
986 pVmcsCache->uMagic = UINT64_C(0xdeadbeefdeadbeef);
987 }
988#endif
989
990 return VINF_SUCCESS;
991}
992
993
994/**
995 * Called when a init phase has completed.
996 *
997 * @returns VBox status code.
998 * @param pVM The cross context VM structure.
999 * @param enmWhat The phase that completed.
1000 */
1001VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1002{
1003 switch (enmWhat)
1004 {
1005 case VMINITCOMPLETED_RING3:
1006 return hmR3InitFinalizeR3(pVM);
1007 case VMINITCOMPLETED_RING0:
1008 return hmR3InitFinalizeR0(pVM);
1009 default:
1010 return VINF_SUCCESS;
1011 }
1012}
1013
1014
1015/**
1016 * Turns off normal raw mode features.
1017 *
1018 * @param pVM The cross context VM structure.
1019 */
1020static void hmR3DisableRawMode(PVM pVM)
1021{
1022/** @todo r=bird: HM shouldn't be doing this crap. */
1023 /* Reinit the paging mode to force the new shadow mode. */
1024 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1025 {
1026 PVMCPU pVCpu = &pVM->aCpus[i];
1027 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1028 }
1029}
1030
1031
1032/**
1033 * Initialize VT-x or AMD-V.
1034 *
1035 * @returns VBox status code.
1036 * @param pVM The cross context VM structure.
1037 */
1038static int hmR3InitFinalizeR0(PVM pVM)
1039{
1040 int rc;
1041
1042 if (!HMIsEnabled(pVM))
1043 return VINF_SUCCESS;
1044
1045 /*
1046 * Hack to allow users to work around broken BIOSes that incorrectly set
1047 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1048 */
1049 if ( !pVM->hm.s.vmx.fSupported
1050 && !pVM->hm.s.svm.fSupported
1051 && pVM->hm.s.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1052 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1053 {
1054 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1055 pVM->hm.s.svm.fSupported = true;
1056 pVM->hm.s.svm.fIgnoreInUseError = true;
1057 pVM->hm.s.rcInit = VINF_SUCCESS;
1058 }
1059
1060 /*
1061 * Report ring-0 init errors.
1062 */
1063 if ( !pVM->hm.s.vmx.fSupported
1064 && !pVM->hm.s.svm.fSupported)
1065 {
1066 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.rcInit));
1067 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatCtrl));
1068 switch (pVM->hm.s.rcInit)
1069 {
1070 case VERR_VMX_IN_VMX_ROOT_MODE:
1071 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1072 case VERR_VMX_NO_VMX:
1073 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1074 case VERR_VMX_MSR_VMX_DISABLED:
1075 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1076 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1077 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1078 case VERR_VMX_MSR_LOCKING_FAILED:
1079 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1080 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1081 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1082 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1083 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1084
1085 case VERR_SVM_IN_USE:
1086 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1087 case VERR_SVM_NO_SVM:
1088 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1089 case VERR_SVM_DISABLED:
1090 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1091 }
1092 return VMSetError(pVM, pVM->hm.s.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.rcInit);
1093 }
1094
1095 /*
1096 * Enable VT-x or AMD-V on all host CPUs.
1097 */
1098 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1099 if (RT_FAILURE(rc))
1100 {
1101 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1102 HMR3CheckError(pVM, rc);
1103 return rc;
1104 }
1105
1106 /*
1107 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1108 * (Main should have taken care of this already)
1109 */
1110 if (!PDMHasIoApic(pVM))
1111 {
1112 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1113 pVM->hm.s.fTprPatchingAllowed = false;
1114 }
1115
1116 /*
1117 * Check if L1D flush is needed/possible.
1118 */
1119 if ( !pVM->cpum.ro.HostFeatures.fFlushCmd
1120 || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1121 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
1122 || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d
1123 || pVM->cpum.ro.HostFeatures.fArchRdclNo)
1124 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
1125
1126 /*
1127 * Check if MDS flush is needed/possible.
1128 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
1129 */
1130 if ( !pVM->cpum.ro.HostFeatures.fMdsClear
1131 || pVM->cpum.ro.HostFeatures.fArchMdsNo)
1132 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1133 else if ( ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
1134 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
1135 || ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
1136 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
1137 {
1138 if (!pVM->hm.s.fMdsClearOnSched)
1139 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
1140 pVM->hm.s.fMdsClearOnVmEntry = false;
1141 }
1142 else if ( pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1143 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
1144 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1145
1146 /*
1147 * Sync options.
1148 */
1149 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1150 * That will require a little bit of work, of course. */
1151 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1152 {
1153 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1154 PCPUMCTX pCpuCtx = &pVCpu->cpum.GstCtx;
1155 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1156 if (pVM->cpum.ro.HostFeatures.fIbpb)
1157 {
1158 if (pVM->hm.s.fIbpbOnVmExit)
1159 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1160 if (pVM->hm.s.fIbpbOnVmEntry)
1161 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1162 }
1163 if (pVM->cpum.ro.HostFeatures.fFlushCmd && pVM->hm.s.fL1dFlushOnVmEntry)
1164 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_L1D_ENTRY;
1165 if (pVM->cpum.ro.HostFeatures.fMdsClear && pVM->hm.s.fMdsClearOnVmEntry)
1166 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_MDS_ENTRY;
1167 if (iCpu == 0)
1168 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1169 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1170 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1171 }
1172
1173 /*
1174 * Do the vendor specific initialization
1175 *
1176 * Note! We disable release log buffering here since we're doing relatively
1177 * lot of logging and doesn't want to hit the disk with each LogRel
1178 * statement.
1179 */
1180 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1181 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1182 if (pVM->hm.s.vmx.fSupported)
1183 rc = hmR3InitFinalizeR0Intel(pVM);
1184 else
1185 rc = hmR3InitFinalizeR0Amd(pVM);
1186 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1187 : "HM: VT-x/AMD-V init method: Local\n"));
1188 RTLogRelSetBuffering(fOldBuffered);
1189 pVM->hm.s.fInitialized = true;
1190
1191 return rc;
1192}
1193
1194
1195/**
1196 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1197 */
1198static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1199{
1200 NOREF(pVM);
1201 NOREF(pvAllocation);
1202 NOREF(GCPhysAllocation);
1203}
1204
1205
1206/**
1207 * Returns a description of the VMCS (and associated regions') memory type given the
1208 * IA32_VMX_BASIC MSR.
1209 *
1210 * @returns The descriptive memory type.
1211 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1212 */
1213static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1214{
1215 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1216 switch (uMemType)
1217 {
1218 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1219 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1220 }
1221 return "Unknown";
1222}
1223
1224
1225/**
1226 * Returns a single-line description of all the activity-states supported by the CPU
1227 * given the IA32_VMX_MISC MSR.
1228 *
1229 * @returns All supported activity states.
1230 * @param uMsrMisc IA32_VMX_MISC MSR value.
1231 */
1232static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1233{
1234 static const char * const s_apszActStates[] =
1235 {
1236 "",
1237 " ( HLT )",
1238 " ( SHUTDOWN )",
1239 " ( HLT SHUTDOWN )",
1240 " ( SIPI_WAIT )",
1241 " ( HLT SIPI_WAIT )",
1242 " ( SHUTDOWN SIPI_WAIT )",
1243 " ( HLT SHUTDOWN SIPI_WAIT )"
1244 };
1245 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1246 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1247 return s_apszActStates[idxActStates];
1248}
1249
1250
1251/**
1252 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1253 *
1254 * @param fFeatMsr The feature control MSR value.
1255 */
1256static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1257{
1258 uint64_t const val = fFeatMsr;
1259 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1260 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1261 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1262 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1263 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1264 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1265 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1266 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1267 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1268 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1269 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1270 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1271 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1272 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1273 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1274 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1275 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1276}
1277
1278
1279/**
1280 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1281 *
1282 * @param uBasicMsr The VMX basic MSR value.
1283 */
1284static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1285{
1286 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1287 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1288 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1289 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1290 "< 4 GB" : "None"));
1291 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1292 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1293 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1294 LogRel(("HM: Supports true capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1295}
1296
1297
1298/**
1299 * Reports MSR_IA32_PINBASED_CTLS to the log.
1300 *
1301 * @param pVmxMsr Pointer to the VMX MSR.
1302 */
1303static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1304{
1305 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1306 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1307 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1308 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1309 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1310 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1311 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1312 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1313}
1314
1315
1316/**
1317 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1318 *
1319 * @param pVmxMsr Pointer to the VMX MSR.
1320 */
1321static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1322{
1323 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1324 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1325 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1326 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1327 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1328 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1329 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1330 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1331 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1332 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1333 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1334 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1335 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1336 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1337 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1338 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1339 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1340 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1341 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1342 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1343 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1344 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1345 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1346 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1347}
1348
1349
1350/**
1351 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1352 *
1353 * @param pVmxMsr Pointer to the VMX MSR.
1354 */
1355static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1356{
1357 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1358 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1359 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1360 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1361 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1362 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1363 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1364 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1365 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1366 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1367 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1368 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1369 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1370 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1371 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1372 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1373 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1374 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1375 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1376 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1377 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1378 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_VE", VMX_PROC_CTLS2_EPT_VE);
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1380 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1381 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1382 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPPTP_EPT", VMX_PROC_CTLS2_SPPTP_EPT);
1383 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1384 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1385 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1386 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1387}
1388
1389
1390/**
1391 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1392 *
1393 * @param pVmxMsr Pointer to the VMX MSR.
1394 */
1395static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1396{
1397 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1398 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1399 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1400 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1401 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1402 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1403 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1404 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1405 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1406 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1407 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1408 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1409 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1410}
1411
1412
1413/**
1414 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1415 *
1416 * @param pVmxMsr Pointer to the VMX MSR.
1417 */
1418static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1419{
1420 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1421 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1422 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1423 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1424 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1425 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1426 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1427 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1428 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1429 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1430 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1431 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1432 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1433 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1434 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1435}
1436
1437
1438/**
1439 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1440 *
1441 * @param fCaps The VMX EPT/VPID capability MSR value.
1442 */
1443static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1444{
1445 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1446 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1447 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1448 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1449 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1450 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1451 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1452 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1453 HMVMX_REPORT_MSR_CAP(fCaps, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1454 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1455 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1456 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1457 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1458 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1459 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1460 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1461}
1462
1463
1464/**
1465 * Reports MSR_IA32_VMX_MISC MSR to the log.
1466 *
1467 * @param pVM Pointer to the VM.
1468 * @param fMisc The VMX misc. MSR value.
1469 */
1470static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1471{
1472 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1473 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1474 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1475 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1476 else
1477 {
1478 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1479 pVM->hm.s.vmx.cPreemptTimerShift));
1480 }
1481 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1482 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1483 hmR3VmxGetActivityStateAllDesc(fMisc)));
1484 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1485 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1486 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1487 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1488 VMX_MISC_MAX_MSRS(fMisc)));
1489 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1490 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1491 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1492 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1493}
1494
1495
1496/**
1497 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1498 *
1499 * @param uVmcsEnum The VMX VMCS enum MSR value.
1500 */
1501static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1502{
1503 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1504 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1505}
1506
1507
1508/**
1509 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1510 *
1511 * @param uVmFunc The VMX VMFUNC MSR value.
1512 */
1513static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1514{
1515 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1516 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1517}
1518
1519
1520/**
1521 * Reports VMX CR0, CR4 fixed MSRs.
1522 *
1523 * @param pMsrs Pointer to the VMX MSRs.
1524 */
1525static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1526{
1527 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1528 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1529 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1530 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1531}
1532
1533
1534/**
1535 * Finish VT-x initialization (after ring-0 init).
1536 *
1537 * @returns VBox status code.
1538 * @param pVM The cross context VM structure.
1539 */
1540static int hmR3InitFinalizeR0Intel(PVM pVM)
1541{
1542 int rc;
1543
1544 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1545 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatCtrl != 0, VERR_HM_IPE_4);
1546
1547 LogRel(("HM: Using VT-x implementation 3.0\n"));
1548 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1549 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1550 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostMsrEfer));
1551 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1552
1553 hmR3VmxReportFeatCtlMsr(pVM->hm.s.vmx.Msrs.u64FeatCtrl);
1554 hmR3VmxReportBasicMsr(pVM->hm.s.vmx.Msrs.u64Basic);
1555
1556 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.PinCtls);
1557 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.ProcCtls);
1558 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1559 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.vmx.Msrs.ProcCtls2);
1560
1561 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.vmx.Msrs.EntryCtls);
1562 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.vmx.Msrs.ExitCtls);
1563
1564 if (RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1565 {
1566 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1567 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TruePinCtls));
1568 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueProcCtls));
1569 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueEntryCtls));
1570 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueExitCtls));
1571 }
1572
1573 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.vmx.Msrs.u64Misc);
1574 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.vmx.Msrs.u64VmcsEnum);
1575 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1576 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.vmx.Msrs.u64EptVpidCaps);
1577 if (pVM->hm.s.vmx.Msrs.u64VmFunc)
1578 hmR3VmxReportVmFuncMsr(pVM->hm.s.vmx.Msrs.u64VmFunc);
1579 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.vmx.Msrs);
1580
1581 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1582 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1583 {
1584 PCVMXVMCSINFO pVmcsInfo = &pVM->aCpus[i].hm.s.vmx.VmcsInfo;
1585 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVmcsInfo->HCPhysMsrBitmap));
1586 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVmcsInfo->HCPhysVmcs));
1587 }
1588#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1589 if (pVM->cpum.ro.GuestFeatures.fVmx)
1590 {
1591 LogRel(("HM: Nested-guest:\n"));
1592 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1593 {
1594 PCVMXVMCSINFO pVmcsInfoNstGst = &pVM->aCpus[i].hm.s.vmx.VmcsInfoNstGst;
1595 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVmcsInfoNstGst->HCPhysMsrBitmap));
1596 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVmcsInfoNstGst->HCPhysVmcs));
1597 }
1598 }
1599#endif
1600
1601 /*
1602 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1603 */
1604 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1605 || (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1606 VERR_HM_IPE_1);
1607 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1608 || ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1609 && pVM->hm.s.fNestedPaging),
1610 VERR_HM_IPE_1);
1611
1612 /*
1613 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1614 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1615 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1616 */
1617 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1618 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1619 {
1620 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1621 LogRel(("HM: Disabled RDTSCP\n"));
1622 }
1623
1624 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1625 {
1626 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1627 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1628 if (RT_SUCCESS(rc))
1629 {
1630 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1631 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1632 esp. Figure 20-5.*/
1633 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1634 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1635
1636 /* Bit set to 0 means software interrupts are redirected to the
1637 8086 program interrupt handler rather than switching to
1638 protected-mode handler. */
1639 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1640
1641 /* Allow all port IO, so that port IO instructions do not cause
1642 exceptions and would instead cause a VM-exit (based on VT-x's
1643 IO bitmap which we currently configure to always cause an exit). */
1644 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1645 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1646
1647 /*
1648 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1649 * page table used in real and protected mode without paging with EPT.
1650 */
1651 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1652 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1653 {
1654 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1655 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1656 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1657 | X86_PDE4M_G;
1658 }
1659
1660 /* We convert it here every time as PCI regions could be reconfigured. */
1661 if (PDMVmmDevHeapIsEnabled(pVM))
1662 {
1663 RTGCPHYS GCPhys;
1664 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1665 AssertRCReturn(rc, rc);
1666 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1667
1668 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1669 AssertRCReturn(rc, rc);
1670 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1671 }
1672 }
1673 else
1674 {
1675 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1676 pVM->hm.s.vmx.pRealModeTSS = NULL;
1677 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1678 return VMSetError(pVM, rc, RT_SRC_POS,
1679 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1680 }
1681 }
1682
1683 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1684 : "HM: Guest support: 32-bit only\n"));
1685
1686 /*
1687 * Call ring-0 to set up the VM.
1688 */
1689 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1690 if (rc != VINF_SUCCESS)
1691 {
1692 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1693 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1694 {
1695 PVMCPU pVCpu = &pVM->aCpus[i];
1696 LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
1697 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1698 }
1699 HMR3CheckError(pVM, rc);
1700 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1701 }
1702
1703 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1704 LogRel(("HM: Enabled VMX\n"));
1705 pVM->hm.s.vmx.fEnabled = true;
1706
1707 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1708
1709 /*
1710 * Change the CPU features.
1711 */
1712 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1713 if (pVM->hm.s.fAllow64BitGuests)
1714 {
1715 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1716 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1717 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1718 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1719 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1720 }
1721 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1722 (we reuse the host EFER in the switcher). */
1723 /** @todo this needs to be fixed properly!! */
1724 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1725 {
1726 if (pVM->hm.s.vmx.u64HostMsrEfer & MSR_K6_EFER_NXE)
1727 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1728 else
1729 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1730 }
1731
1732 /*
1733 * Log configuration details.
1734 */
1735 if (pVM->hm.s.fNestedPaging)
1736 {
1737 LogRel(("HM: Enabled nested paging\n"));
1738 if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1739 LogRel(("HM: EPT flush type = Single context\n"));
1740 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1741 LogRel(("HM: EPT flush type = All contexts\n"));
1742 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1743 LogRel(("HM: EPT flush type = Not supported\n"));
1744 else
1745 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushEpt));
1746
1747 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1748 LogRel(("HM: Enabled unrestricted guest execution\n"));
1749
1750#if HC_ARCH_BITS == 64
1751 if (pVM->hm.s.fLargePages)
1752 {
1753 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1754 PGMSetLargePageUsage(pVM, true);
1755 LogRel(("HM: Enabled large page support\n"));
1756 }
1757#endif
1758 }
1759 else
1760 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1761
1762 if (pVM->hm.s.vmx.fVpid)
1763 {
1764 LogRel(("HM: Enabled VPID\n"));
1765 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1766 LogRel(("HM: VPID flush type = Individual addresses\n"));
1767 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1768 LogRel(("HM: VPID flush type = Single context\n"));
1769 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1770 LogRel(("HM: VPID flush type = All contexts\n"));
1771 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1772 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1773 else
1774 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushVpid));
1775 }
1776 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1777 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1778
1779 if (pVM->hm.s.vmx.fUsePreemptTimer)
1780 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1781 else
1782 LogRel(("HM: Disabled VMX-preemption timer\n"));
1783
1784 if (pVM->hm.s.fVirtApicRegs)
1785 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1786
1787 if (pVM->hm.s.fPostedIntrs)
1788 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1789
1790 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1791 {
1792 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1793 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1794 }
1795
1796 return VINF_SUCCESS;
1797}
1798
1799
1800/**
1801 * Finish AMD-V initialization (after ring-0 init).
1802 *
1803 * @returns VBox status code.
1804 * @param pVM The cross context VM structure.
1805 */
1806static int hmR3InitFinalizeR0Amd(PVM pVM)
1807{
1808 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1809
1810 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1811
1812 uint32_t u32Family;
1813 uint32_t u32Model;
1814 uint32_t u32Stepping;
1815 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1816 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1817 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1818 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1819 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1820 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1821 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1822
1823 /*
1824 * Enumerate AMD-V features.
1825 */
1826 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1827 {
1828#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1829 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1830 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1831 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1832 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1833 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1834 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1835 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1836 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1837 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1838 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1839 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1840 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1841 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1842#undef HMSVM_REPORT_FEATURE
1843 };
1844
1845 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1846 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1847 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1848 {
1849 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1850 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1851 }
1852 if (fSvmFeatures)
1853 for (unsigned iBit = 0; iBit < 32; iBit++)
1854 if (RT_BIT_32(iBit) & fSvmFeatures)
1855 LogRel(("HM: Reserved bit %u\n", iBit));
1856
1857 /*
1858 * Nested paging is determined in HMR3Init, verify the sanity of that.
1859 */
1860 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1861 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1862 VERR_HM_IPE_1);
1863
1864#if 0
1865 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1866 * here. */
1867 if (RTR0IsPostIpiSupport())
1868 pVM->hm.s.fPostedIntrs = true;
1869#endif
1870
1871 /*
1872 * Call ring-0 to set up the VM.
1873 */
1874 int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1875 if (rc != VINF_SUCCESS)
1876 {
1877 AssertMsgFailed(("%Rrc\n", rc));
1878 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1879 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1880 }
1881
1882 LogRel(("HM: Enabled SVM\n"));
1883 pVM->hm.s.svm.fEnabled = true;
1884
1885 if (pVM->hm.s.fNestedPaging)
1886 {
1887 LogRel(("HM: Enabled nested paging\n"));
1888
1889 /*
1890 * Enable large pages (2 MB) if applicable.
1891 */
1892#if HC_ARCH_BITS == 64
1893 if (pVM->hm.s.fLargePages)
1894 {
1895 PGMSetLargePageUsage(pVM, true);
1896 LogRel(("HM: Enabled large page support\n"));
1897 }
1898#endif
1899 }
1900
1901 if (pVM->hm.s.fVirtApicRegs)
1902 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1903
1904 if (pVM->hm.s.fPostedIntrs)
1905 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1906
1907 hmR3DisableRawMode(pVM);
1908
1909 /*
1910 * Change the CPU features.
1911 */
1912 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1913 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1914 if (pVM->hm.s.fAllow64BitGuests)
1915 {
1916 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1917 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1918 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1919 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1920 }
1921 /* Turn on NXE if PAE has been enabled. */
1922 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1923 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1924
1925 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1926 : "HM: Disabled TPR patching\n"));
1927
1928 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1929 : "HM: Guest support: 32-bit only\n"));
1930 return VINF_SUCCESS;
1931}
1932
1933
1934/**
1935 * Applies relocations to data and code managed by this
1936 * component. This function will be called at init and
1937 * whenever the VMM need to relocate it self inside the GC.
1938 *
1939 * @param pVM The cross context VM structure.
1940 */
1941VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1942{
1943 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1944
1945 /* Fetch the current paging mode during the relocate callback during state loading. */
1946 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1947 {
1948 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1949 {
1950 PVMCPU pVCpu = &pVM->aCpus[i];
1951 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1952 }
1953 }
1954#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1955 if (HMIsEnabled(pVM))
1956 {
1957 switch (PGMGetHostMode(pVM))
1958 {
1959 case PGMMODE_32_BIT:
1960 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
1961 break;
1962
1963 case PGMMODE_PAE:
1964 case PGMMODE_PAE_NX:
1965 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
1966 break;
1967
1968 default:
1969 AssertFailed();
1970 break;
1971 }
1972 }
1973#endif
1974 return;
1975}
1976
1977
1978/**
1979 * Terminates the HM.
1980 *
1981 * Termination means cleaning up and freeing all resources,
1982 * the VM itself is, at this point, powered off or suspended.
1983 *
1984 * @returns VBox status code.
1985 * @param pVM The cross context VM structure.
1986 */
1987VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1988{
1989 if (pVM->hm.s.vmx.pRealModeTSS)
1990 {
1991 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1992 pVM->hm.s.vmx.pRealModeTSS = 0;
1993 }
1994 hmR3TermCPU(pVM);
1995 return 0;
1996}
1997
1998
1999/**
2000 * Terminates the per-VCPU HM.
2001 *
2002 * @returns VBox status code.
2003 * @param pVM The cross context VM structure.
2004 */
2005static int hmR3TermCPU(PVM pVM)
2006{
2007 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2008 {
2009 PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
2010
2011#ifdef VBOX_WITH_STATISTICS
2012 if (pVCpu->hm.s.paStatExitReason)
2013 {
2014 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
2015 pVCpu->hm.s.paStatExitReason = NULL;
2016 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
2017 }
2018 if (pVCpu->hm.s.paStatInjectedIrqs)
2019 {
2020 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
2021 pVCpu->hm.s.paStatInjectedIrqs = NULL;
2022 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
2023 }
2024# if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
2025 if (pVCpu->hm.s.paStatNestedExitReason)
2026 {
2027 MMHyperFree(pVM, pVCpu->hm.s.paStatNestedExitReason);
2028 pVCpu->hm.s.paStatNestedExitReason = NULL;
2029 pVCpu->hm.s.paStatNestedExitReasonR0 = NIL_RTR0PTR;
2030 }
2031# endif
2032#endif
2033
2034#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2035 memset(pVCpu->hm.s.vmx.VmcsCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VmcsCache.aMagic));
2036 pVCpu->hm.s.vmx.VmcsCache.uMagic = 0;
2037 pVCpu->hm.s.vmx.VmcsCache.uPos = 0xffffffff;
2038#endif
2039 }
2040 return 0;
2041}
2042
2043
2044/**
2045 * Resets a virtual CPU.
2046 *
2047 * Used by HMR3Reset and CPU hot plugging.
2048 *
2049 * @param pVCpu The cross context virtual CPU structure to reset.
2050 */
2051VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2052{
2053 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2054 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2055 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2056
2057 pVCpu->hm.s.fActive = false;
2058 pVCpu->hm.s.Event.fPending = false;
2059 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2060 pVCpu->hm.s.vmx.VmcsInfo.fSwitchedTo64on32 = false;
2061 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2062#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2063 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2064 {
2065 pVCpu->hm.s.vmx.VmcsInfoNstGst.fSwitchedTo64on32 = false;
2066 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2067 }
2068#endif
2069
2070 /* Reset the contents of the read cache. */
2071 PVMXVMCSCACHE pVmcsCache = &pVCpu->hm.s.vmx.VmcsCache;
2072 for (unsigned j = 0; j < pVmcsCache->Read.cValidEntries; j++)
2073 pVmcsCache->Read.aFieldVal[j] = 0;
2074
2075#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2076 /* Magic marker for searching in crash dumps. */
2077 strcpy((char *)pVmcsCache->aMagic, "VMCSCACHE Magic");
2078 pVmcsCache->uMagic = UINT64_C(0xdeadbeefdeadbeef);
2079#endif
2080}
2081
2082
2083/**
2084 * The VM is being reset.
2085 *
2086 * For the HM component this means that any GDT/LDT/TSS monitors
2087 * needs to be removed.
2088 *
2089 * @param pVM The cross context VM structure.
2090 */
2091VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2092{
2093 LogFlow(("HMR3Reset:\n"));
2094
2095 if (HMIsEnabled(pVM))
2096 hmR3DisableRawMode(pVM);
2097
2098 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2099 {
2100 PVMCPU pVCpu = &pVM->aCpus[i];
2101
2102 HMR3ResetCpu(pVCpu);
2103 }
2104
2105 /* Clear all patch information. */
2106 pVM->hm.s.pGuestPatchMem = 0;
2107 pVM->hm.s.pFreeGuestPatchMem = 0;
2108 pVM->hm.s.cbGuestPatchMem = 0;
2109 pVM->hm.s.cPatches = 0;
2110 pVM->hm.s.PatchTree = 0;
2111 pVM->hm.s.fTPRPatchingActive = false;
2112 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2113}
2114
2115
2116/**
2117 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2118 *
2119 * @returns VBox strict status code.
2120 * @param pVM The cross context VM structure.
2121 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2122 * @param pvUser Unused.
2123 */
2124static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2125{
2126 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2127
2128 /* Only execute the handler on the VCPU the original patch request was issued. */
2129 if (pVCpu->idCpu != idCpu)
2130 return VINF_SUCCESS;
2131
2132 Log(("hmR3RemovePatches\n"));
2133 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2134 {
2135 uint8_t abInstr[15];
2136 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2137 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2138 int rc;
2139
2140#ifdef LOG_ENABLED
2141 char szOutput[256];
2142 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2143 szOutput, sizeof(szOutput), NULL);
2144 if (RT_SUCCESS(rc))
2145 Log(("Patched instr: %s\n", szOutput));
2146#endif
2147
2148 /* Check if the instruction is still the same. */
2149 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2150 if (rc != VINF_SUCCESS)
2151 {
2152 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2153 continue; /* swapped out or otherwise removed; skip it. */
2154 }
2155
2156 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2157 {
2158 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2159 continue; /* skip it. */
2160 }
2161
2162 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2163 AssertRC(rc);
2164
2165#ifdef LOG_ENABLED
2166 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2167 szOutput, sizeof(szOutput), NULL);
2168 if (RT_SUCCESS(rc))
2169 Log(("Original instr: %s\n", szOutput));
2170#endif
2171 }
2172 pVM->hm.s.cPatches = 0;
2173 pVM->hm.s.PatchTree = 0;
2174 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2175 pVM->hm.s.fTPRPatchingActive = false;
2176 return VINF_SUCCESS;
2177}
2178
2179
2180/**
2181 * Worker for enabling patching in a VT-x/AMD-V guest.
2182 *
2183 * @returns VBox status code.
2184 * @param pVM The cross context VM structure.
2185 * @param idCpu VCPU to execute hmR3RemovePatches on.
2186 * @param pPatchMem Patch memory range.
2187 * @param cbPatchMem Size of the memory range.
2188 */
2189static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2190{
2191 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2192 AssertRC(rc);
2193
2194 pVM->hm.s.pGuestPatchMem = pPatchMem;
2195 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2196 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2197 return VINF_SUCCESS;
2198}
2199
2200
2201/**
2202 * Enable patching in a VT-x/AMD-V guest
2203 *
2204 * @returns VBox status code.
2205 * @param pVM The cross context VM structure.
2206 * @param pPatchMem Patch memory range.
2207 * @param cbPatchMem Size of the memory range.
2208 */
2209VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2210{
2211 VM_ASSERT_EMT(pVM);
2212 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2213 if (pVM->cCpus > 1)
2214 {
2215 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2216 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2217 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2218 AssertRC(rc);
2219 return rc;
2220 }
2221 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2222}
2223
2224
2225/**
2226 * Disable patching in a VT-x/AMD-V guest.
2227 *
2228 * @returns VBox status code.
2229 * @param pVM The cross context VM structure.
2230 * @param pPatchMem Patch memory range.
2231 * @param cbPatchMem Size of the memory range.
2232 */
2233VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2234{
2235 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2236 RT_NOREF2(pPatchMem, cbPatchMem);
2237
2238 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2239 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2240
2241 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2242 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2243 (void *)(uintptr_t)VMMGetCpuId(pVM));
2244 AssertRC(rc);
2245
2246 pVM->hm.s.pGuestPatchMem = 0;
2247 pVM->hm.s.pFreeGuestPatchMem = 0;
2248 pVM->hm.s.cbGuestPatchMem = 0;
2249 pVM->hm.s.fTPRPatchingActive = false;
2250 return VINF_SUCCESS;
2251}
2252
2253
2254/**
2255 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2256 *
2257 * @returns VBox strict status code.
2258 * @param pVM The cross context VM structure.
2259 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2260 * @param pvUser User specified CPU context.
2261 *
2262 */
2263static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2264{
2265 /*
2266 * Only execute the handler on the VCPU the original patch request was
2267 * issued. (The other CPU(s) might not yet have switched to protected
2268 * mode, nor have the correct memory context.)
2269 */
2270 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2271 if (pVCpu->idCpu != idCpu)
2272 return VINF_SUCCESS;
2273
2274 /*
2275 * We're racing other VCPUs here, so don't try patch the instruction twice
2276 * and make sure there is still room for our patch record.
2277 */
2278 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2279 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2280 if (pPatch)
2281 {
2282 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2283 return VINF_SUCCESS;
2284 }
2285 uint32_t const idx = pVM->hm.s.cPatches;
2286 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2287 {
2288 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2289 return VINF_SUCCESS;
2290 }
2291 pPatch = &pVM->hm.s.aPatches[idx];
2292
2293 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2294
2295 /*
2296 * Disassembler the instruction and get cracking.
2297 */
2298 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2299 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2300 uint32_t cbOp;
2301 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2302 AssertRC(rc);
2303 if ( rc == VINF_SUCCESS
2304 && pDis->pCurInstr->uOpcode == OP_MOV
2305 && cbOp >= 3)
2306 {
2307 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2308
2309 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2310 AssertRC(rc);
2311
2312 pPatch->cbOp = cbOp;
2313
2314 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2315 {
2316 /* write. */
2317 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2318 {
2319 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2320 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2321 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2322 }
2323 else
2324 {
2325 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2326 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2327 pPatch->uSrcOperand = pDis->Param2.uValue;
2328 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2329 }
2330 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2331 AssertRC(rc);
2332
2333 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2334 pPatch->cbNewOp = sizeof(s_abVMMCall);
2335 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2336 }
2337 else
2338 {
2339 /*
2340 * TPR Read.
2341 *
2342 * Found:
2343 * mov eax, dword [fffe0080] (5 bytes)
2344 * Check if next instruction is:
2345 * shr eax, 4
2346 */
2347 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2348
2349 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2350 uint8_t const cbOpMmio = cbOp;
2351 uint64_t const uSavedRip = pCtx->rip;
2352
2353 pCtx->rip += cbOp;
2354 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2355 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2356 pCtx->rip = uSavedRip;
2357
2358 if ( rc == VINF_SUCCESS
2359 && pDis->pCurInstr->uOpcode == OP_SHR
2360 && pDis->Param1.fUse == DISUSE_REG_GEN32
2361 && pDis->Param1.Base.idxGenReg == idxMmioReg
2362 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2363 && pDis->Param2.uValue == 4
2364 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2365 {
2366 uint8_t abInstr[15];
2367
2368 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2369 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2370 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2371 AssertRC(rc);
2372
2373 pPatch->cbOp = cbOpMmio + cbOp;
2374
2375 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2376 abInstr[0] = 0xf0;
2377 abInstr[1] = 0x0f;
2378 abInstr[2] = 0x20;
2379 abInstr[3] = 0xc0 | pDis->Param1.Base.idxGenReg;
2380 for (unsigned i = 4; i < pPatch->cbOp; i++)
2381 abInstr[i] = 0x90; /* nop */
2382
2383 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2384 AssertRC(rc);
2385
2386 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2387 pPatch->cbNewOp = pPatch->cbOp;
2388 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2389
2390 Log(("Acceptable read/shr candidate!\n"));
2391 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2392 }
2393 else
2394 {
2395 pPatch->enmType = HMTPRINSTR_READ;
2396 pPatch->uDstOperand = idxMmioReg;
2397
2398 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2399 AssertRC(rc);
2400
2401 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2402 pPatch->cbNewOp = sizeof(s_abVMMCall);
2403 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2404 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2405 }
2406 }
2407
2408 pPatch->Core.Key = pCtx->eip;
2409 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2410 AssertRC(rc);
2411
2412 pVM->hm.s.cPatches++;
2413 return VINF_SUCCESS;
2414 }
2415
2416 /*
2417 * Save invalid patch, so we will not try again.
2418 */
2419 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2420 pPatch->Core.Key = pCtx->eip;
2421 pPatch->enmType = HMTPRINSTR_INVALID;
2422 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2423 AssertRC(rc);
2424 pVM->hm.s.cPatches++;
2425 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2426 return VINF_SUCCESS;
2427}
2428
2429
2430/**
2431 * Callback to patch a TPR instruction (jump to generated code).
2432 *
2433 * @returns VBox strict status code.
2434 * @param pVM The cross context VM structure.
2435 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2436 * @param pvUser User specified CPU context.
2437 *
2438 */
2439static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2440{
2441 /*
2442 * Only execute the handler on the VCPU the original patch request was
2443 * issued. (The other CPU(s) might not yet have switched to protected
2444 * mode, nor have the correct memory context.)
2445 */
2446 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2447 if (pVCpu->idCpu != idCpu)
2448 return VINF_SUCCESS;
2449
2450 /*
2451 * We're racing other VCPUs here, so don't try patch the instruction twice
2452 * and make sure there is still room for our patch record.
2453 */
2454 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2455 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2456 if (pPatch)
2457 {
2458 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2459 return VINF_SUCCESS;
2460 }
2461 uint32_t const idx = pVM->hm.s.cPatches;
2462 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2463 {
2464 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2465 return VINF_SUCCESS;
2466 }
2467 pPatch = &pVM->hm.s.aPatches[idx];
2468
2469 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2470 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2471
2472 /*
2473 * Disassemble the instruction and get cracking.
2474 */
2475 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2476 uint32_t cbOp;
2477 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2478 AssertRC(rc);
2479 if ( rc == VINF_SUCCESS
2480 && pDis->pCurInstr->uOpcode == OP_MOV
2481 && cbOp >= 5)
2482 {
2483 uint8_t aPatch[64];
2484 uint32_t off = 0;
2485
2486 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2487 AssertRC(rc);
2488
2489 pPatch->cbOp = cbOp;
2490 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2491
2492 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2493 {
2494 /*
2495 * TPR write:
2496 *
2497 * push ECX [51]
2498 * push EDX [52]
2499 * push EAX [50]
2500 * xor EDX,EDX [31 D2]
2501 * mov EAX,EAX [89 C0]
2502 * or
2503 * mov EAX,0000000CCh [B8 CC 00 00 00]
2504 * mov ECX,0C0000082h [B9 82 00 00 C0]
2505 * wrmsr [0F 30]
2506 * pop EAX [58]
2507 * pop EDX [5A]
2508 * pop ECX [59]
2509 * jmp return_address [E9 return_address]
2510 */
2511 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2512
2513 aPatch[off++] = 0x51; /* push ecx */
2514 aPatch[off++] = 0x52; /* push edx */
2515 if (!fUsesEax)
2516 aPatch[off++] = 0x50; /* push eax */
2517 aPatch[off++] = 0x31; /* xor edx, edx */
2518 aPatch[off++] = 0xd2;
2519 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2520 {
2521 if (!fUsesEax)
2522 {
2523 aPatch[off++] = 0x89; /* mov eax, src_reg */
2524 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2525 }
2526 }
2527 else
2528 {
2529 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2530 aPatch[off++] = 0xb8; /* mov eax, immediate */
2531 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2532 off += sizeof(uint32_t);
2533 }
2534 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2535 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2536 off += sizeof(uint32_t);
2537
2538 aPatch[off++] = 0x0f; /* wrmsr */
2539 aPatch[off++] = 0x30;
2540 if (!fUsesEax)
2541 aPatch[off++] = 0x58; /* pop eax */
2542 aPatch[off++] = 0x5a; /* pop edx */
2543 aPatch[off++] = 0x59; /* pop ecx */
2544 }
2545 else
2546 {
2547 /*
2548 * TPR read:
2549 *
2550 * push ECX [51]
2551 * push EDX [52]
2552 * push EAX [50]
2553 * mov ECX,0C0000082h [B9 82 00 00 C0]
2554 * rdmsr [0F 32]
2555 * mov EAX,EAX [89 C0]
2556 * pop EAX [58]
2557 * pop EDX [5A]
2558 * pop ECX [59]
2559 * jmp return_address [E9 return_address]
2560 */
2561 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2562
2563 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2564 aPatch[off++] = 0x51; /* push ecx */
2565 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2566 aPatch[off++] = 0x52; /* push edx */
2567 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2568 aPatch[off++] = 0x50; /* push eax */
2569
2570 aPatch[off++] = 0x31; /* xor edx, edx */
2571 aPatch[off++] = 0xd2;
2572
2573 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2574 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2575 off += sizeof(uint32_t);
2576
2577 aPatch[off++] = 0x0f; /* rdmsr */
2578 aPatch[off++] = 0x32;
2579
2580 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2581 {
2582 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2583 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2584 }
2585
2586 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2587 aPatch[off++] = 0x58; /* pop eax */
2588 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2589 aPatch[off++] = 0x5a; /* pop edx */
2590 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2591 aPatch[off++] = 0x59; /* pop ecx */
2592 }
2593 aPatch[off++] = 0xe9; /* jmp return_address */
2594 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2595 off += sizeof(RTRCUINTPTR);
2596
2597 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2598 {
2599 /* Write new code to the patch buffer. */
2600 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2601 AssertRC(rc);
2602
2603#ifdef LOG_ENABLED
2604 uint32_t cbCurInstr;
2605 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2606 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2607 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2608 {
2609 char szOutput[256];
2610 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2611 szOutput, sizeof(szOutput), &cbCurInstr);
2612 if (RT_SUCCESS(rc))
2613 Log(("Patch instr %s\n", szOutput));
2614 else
2615 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2616 }
2617#endif
2618
2619 pPatch->aNewOpcode[0] = 0xE9;
2620 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2621
2622 /* Overwrite the TPR instruction with a jump. */
2623 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2624 AssertRC(rc);
2625
2626 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2627
2628 pVM->hm.s.pFreeGuestPatchMem += off;
2629 pPatch->cbNewOp = 5;
2630
2631 pPatch->Core.Key = pCtx->eip;
2632 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2633 AssertRC(rc);
2634
2635 pVM->hm.s.cPatches++;
2636 pVM->hm.s.fTPRPatchingActive = true;
2637 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2638 return VINF_SUCCESS;
2639 }
2640
2641 Log(("Ran out of space in our patch buffer!\n"));
2642 }
2643 else
2644 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2645
2646
2647 /*
2648 * Save invalid patch, so we will not try again.
2649 */
2650 pPatch = &pVM->hm.s.aPatches[idx];
2651 pPatch->Core.Key = pCtx->eip;
2652 pPatch->enmType = HMTPRINSTR_INVALID;
2653 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2654 AssertRC(rc);
2655 pVM->hm.s.cPatches++;
2656 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2657 return VINF_SUCCESS;
2658}
2659
2660
2661/**
2662 * Attempt to patch TPR mmio instructions.
2663 *
2664 * @returns VBox status code.
2665 * @param pVM The cross context VM structure.
2666 * @param pVCpu The cross context virtual CPU structure.
2667 */
2668VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2669{
2670 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2671 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2672 (void *)(uintptr_t)pVCpu->idCpu);
2673 AssertRC(rc);
2674 return rc;
2675}
2676
2677
2678/**
2679 * Checks if we need to reschedule due to VMM device heap changes.
2680 *
2681 * @returns true if a reschedule is required, otherwise false.
2682 * @param pVM The cross context VM structure.
2683 * @param pCtx VM execution context.
2684 */
2685VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2686{
2687 /*
2688 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2689 * when the unrestricted guest execution feature is missing (VT-x only).
2690 */
2691 if ( pVM->hm.s.vmx.fEnabled
2692 && !pVM->hm.s.vmx.fUnrestrictedGuest
2693 && CPUMIsGuestInRealModeEx(pCtx)
2694 && !PDMVmmDevHeapIsEnabled(pVM))
2695 return true;
2696
2697 return false;
2698}
2699
2700
2701/**
2702 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2703 * event settings changes.
2704 *
2705 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2706 * function is just updating the VM globals.
2707 *
2708 * @param pVM The VM cross context VM structure.
2709 * @thread EMT(0)
2710 */
2711VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2712{
2713 /* Interrupts. */
2714 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2715 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2716
2717 /* CPU Exceptions. */
2718 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2719 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2720 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2721 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2722
2723 /* Common VM exits. */
2724 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2725 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2726 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2727 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2728
2729 /* Vendor specific VM exits. */
2730 if (HMR3IsVmxEnabled(pVM->pUVM))
2731 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2732 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2733 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2734 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2735 else
2736 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2737 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2738 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2739 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2740
2741 /* Done. */
2742 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2743}
2744
2745
2746/**
2747 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2748 *
2749 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2750 * per CPU settings.
2751 *
2752 * @param pVM The VM cross context VM structure.
2753 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2754 */
2755VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2756{
2757 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2758}
2759
2760
2761/**
2762 * Checks if we are currently using hardware acceleration.
2763 *
2764 * @returns true if hardware acceleration is being used, otherwise false.
2765 * @param pVCpu The cross context virtual CPU structure.
2766 */
2767VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2768{
2769 return pVCpu->hm.s.fActive;
2770}
2771
2772
2773/**
2774 * External interface for querying whether hardware acceleration is enabled.
2775 *
2776 * @returns true if VT-x or AMD-V is being used, otherwise false.
2777 * @param pUVM The user mode VM handle.
2778 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2779 */
2780VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2781{
2782 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2783 PVM pVM = pUVM->pVM;
2784 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2785 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2786}
2787
2788
2789/**
2790 * External interface for querying whether VT-x is being used.
2791 *
2792 * @returns true if VT-x is being used, otherwise false.
2793 * @param pUVM The user mode VM handle.
2794 * @sa HMR3IsSvmEnabled, HMIsEnabled
2795 */
2796VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2797{
2798 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2799 PVM pVM = pUVM->pVM;
2800 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2801 return pVM->hm.s.vmx.fEnabled
2802 && pVM->hm.s.vmx.fSupported
2803 && pVM->fHMEnabled;
2804}
2805
2806
2807/**
2808 * External interface for querying whether AMD-V is being used.
2809 *
2810 * @returns true if VT-x is being used, otherwise false.
2811 * @param pUVM The user mode VM handle.
2812 * @sa HMR3IsVmxEnabled, HMIsEnabled
2813 */
2814VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2815{
2816 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2817 PVM pVM = pUVM->pVM;
2818 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2819 return pVM->hm.s.svm.fEnabled
2820 && pVM->hm.s.svm.fSupported
2821 && pVM->fHMEnabled;
2822}
2823
2824
2825/**
2826 * Checks if we are currently using nested paging.
2827 *
2828 * @returns true if nested paging is being used, otherwise false.
2829 * @param pUVM The user mode VM handle.
2830 */
2831VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2832{
2833 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2834 PVM pVM = pUVM->pVM;
2835 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2836 return pVM->hm.s.fNestedPaging;
2837}
2838
2839
2840/**
2841 * Checks if virtualized APIC registers is enabled.
2842 *
2843 * When enabled this feature allows the hardware to access most of the
2844 * APIC registers in the virtual-APIC page without causing VM-exits. See
2845 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2846 *
2847 * @returns true if virtualized APIC registers is enabled, otherwise
2848 * false.
2849 * @param pUVM The user mode VM handle.
2850 */
2851VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
2852{
2853 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2854 PVM pVM = pUVM->pVM;
2855 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2856 return pVM->hm.s.fVirtApicRegs;
2857}
2858
2859
2860/**
2861 * Checks if APIC posted-interrupt processing is enabled.
2862 *
2863 * This returns whether we can deliver interrupts to the guest without
2864 * leaving guest-context by updating APIC state from host-context.
2865 *
2866 * @returns true if APIC posted-interrupt processing is enabled,
2867 * otherwise false.
2868 * @param pUVM The user mode VM handle.
2869 */
2870VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2871{
2872 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2873 PVM pVM = pUVM->pVM;
2874 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2875 return pVM->hm.s.fPostedIntrs;
2876}
2877
2878
2879/**
2880 * Checks if we are currently using VPID in VT-x mode.
2881 *
2882 * @returns true if VPID is being used, otherwise false.
2883 * @param pUVM The user mode VM handle.
2884 */
2885VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2886{
2887 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2888 PVM pVM = pUVM->pVM;
2889 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2890 return pVM->hm.s.vmx.fVpid;
2891}
2892
2893
2894/**
2895 * Checks if we are currently using VT-x unrestricted execution,
2896 * aka UX.
2897 *
2898 * @returns true if UX is being used, otherwise false.
2899 * @param pUVM The user mode VM handle.
2900 */
2901VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2902{
2903 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2904 PVM pVM = pUVM->pVM;
2905 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2906 return pVM->hm.s.vmx.fUnrestrictedGuest
2907 || pVM->hm.s.svm.fSupported;
2908}
2909
2910
2911/**
2912 * Checks if the VMX-preemption timer is being used.
2913 *
2914 * @returns true if the VMX-preemption timer is being used, otherwise false.
2915 * @param pVM The cross context VM structure.
2916 */
2917VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2918{
2919 return HMIsEnabled(pVM)
2920 && pVM->hm.s.vmx.fEnabled
2921 && pVM->hm.s.vmx.fUsePreemptTimer;
2922}
2923
2924
2925/**
2926 * Helper for HMR3CheckError to log VMCS controls to the release log.
2927 *
2928 * @param idCpu The Virtual CPU ID.
2929 * @param pVmcsInfo The VMCS info. object.
2930 */
2931static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2932{
2933 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2934 {
2935 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2936 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2937 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2938 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2939 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2940 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2941 }
2942 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2943 {
2944 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2945 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2946 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2947 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2948 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2949 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2960 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2961 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2962 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2963 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2964 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2965 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2966 }
2967 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2968 {
2969 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2970 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2971 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2972 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2973 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2974 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2975 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2976 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2977 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2978 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2979 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2980 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2981 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2982 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2983 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2984 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2985 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2986 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2987 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2988 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_VE );
2989 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2990 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2991 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2992 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPPTP_EPT );
2993 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2994 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2995 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2996 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2997 }
2998 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2999 {
3000 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
3001 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
3002 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
3003 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
3004 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
3005 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
3006 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
3007 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
3008 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
3009 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
3010 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
3011 }
3012 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
3013 {
3014 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
3015 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
3016 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
3017 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
3018 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
3019 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
3020 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
3021 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
3022 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
3023 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
3024 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
3025 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
3026 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
3027 }
3028}
3029
3030
3031/**
3032 * Check fatal VT-x/AMD-V error and produce some meaningful
3033 * log release message.
3034 *
3035 * @param pVM The cross context VM structure.
3036 * @param iStatusCode VBox status code.
3037 */
3038VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3039{
3040 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3041 {
3042 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3043 * might be getting inaccurate values for non-guru'ing EMTs. */
3044 PVMCPU pVCpu = &pVM->aCpus[i];
3045 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3046 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
3047 switch (iStatusCode)
3048 {
3049 case VERR_VMX_INVALID_VMCS_PTR:
3050 {
3051 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3052 LogRel(("HM: CPU[%u] %s VMCS active\n", i, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3053 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", i, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
3054 pVmcsInfo->HCPhysVmcs));
3055 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
3056 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3057 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3058 break;
3059 }
3060
3061 case VERR_VMX_UNABLE_TO_START_VM:
3062 {
3063 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3064 LogRel(("HM: CPU[%u] %s VMCS active\n", i, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3065 LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
3066 LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3067
3068 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3069 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3070 {
3071 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3072 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3073 }
3074 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3075 {
3076 hmR3CheckErrorLogVmcsCtls(i, pVmcsInfo);
3077 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVmcsInfo->HCPhysMsrBitmap));
3078 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", i, pVmcsInfo->HCPhysGuestMsrLoad));
3079 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", i, pVmcsInfo->HCPhysGuestMsrStore));
3080 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", i, pVmcsInfo->HCPhysHostMsrLoad));
3081 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", i, pVmcsInfo->cEntryMsrLoad));
3082 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", i, pVmcsInfo->cExitMsrStore));
3083 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", i, pVmcsInfo->cExitMsrLoad));
3084 }
3085 /** @todo Log VM-entry event injection control fields
3086 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3087 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3088 break;
3089 }
3090
3091 case VERR_VMX_INVALID_GUEST_STATE:
3092 {
3093 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3094 hmR3CheckErrorLogVmcsCtls(i, pVmcsInfo);
3095 break;
3096 }
3097
3098 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3099 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3100 case VERR_VMX_INVALID_VMXON_PTR:
3101 case VERR_VMX_UNEXPECTED_EXIT:
3102 case VERR_VMX_INVALID_VMCS_FIELD:
3103 case VERR_SVM_UNKNOWN_EXIT:
3104 case VERR_SVM_UNEXPECTED_EXIT:
3105 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3106 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3107 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3108 break;
3109 }
3110 }
3111
3112 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3113 {
3114 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1));
3115 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0));
3116 }
3117 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3118 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3119}
3120
3121
3122/**
3123 * Execute state save operation.
3124 *
3125 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3126 * is because we always save the VM state from ring-3 and thus most HM state
3127 * will be re-synced dynamically at runtime and don't need to be part of the VM
3128 * saved state.
3129 *
3130 * @returns VBox status code.
3131 * @param pVM The cross context VM structure.
3132 * @param pSSM SSM operation handle.
3133 */
3134static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3135{
3136 int rc;
3137
3138 Log(("hmR3Save:\n"));
3139
3140 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3141 {
3142 Assert(!pVM->aCpus[i].hm.s.Event.fPending);
3143 if (pVM->cpum.ro.GuestFeatures.fSvm)
3144 {
3145 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache;
3146 rc = SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3147 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3148 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3149 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3150 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3151 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3152 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3153 rc |= SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3154 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3155 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3156 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3157 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3158 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3159 AssertRCReturn(rc, rc);
3160 }
3161 }
3162
3163 /* Save the guest patch data. */
3164 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3165 rc |= SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3166 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3167
3168 /* Store all the guest patch records too. */
3169 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3170 AssertRCReturn(rc, rc);
3171
3172 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3173 {
3174 AssertCompileSize(HMTPRINSTR, 4);
3175 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3176 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3177 rc |= SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3178 rc |= SSMR3PutU32(pSSM, pPatch->cbOp);
3179 rc |= SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3180 rc |= SSMR3PutU32(pSSM, pPatch->cbNewOp);
3181 rc |= SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3182 rc |= SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3183 rc |= SSMR3PutU32(pSSM, pPatch->uDstOperand);
3184 rc |= SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3185 rc |= SSMR3PutU32(pSSM, pPatch->cFaults);
3186 AssertRCReturn(rc, rc);
3187 }
3188
3189 return VINF_SUCCESS;
3190}
3191
3192
3193/**
3194 * Execute state load operation.
3195 *
3196 * @returns VBox status code.
3197 * @param pVM The cross context VM structure.
3198 * @param pSSM SSM operation handle.
3199 * @param uVersion Data layout version.
3200 * @param uPass The data pass.
3201 */
3202static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3203{
3204 int rc;
3205
3206 LogFlowFunc(("uVersion=%u\n", uVersion));
3207 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3208
3209 /*
3210 * Validate version.
3211 */
3212 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3213 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3214 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3215 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3216 {
3217 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3218 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3219 }
3220
3221 /*
3222 * Load per-VCPU state.
3223 */
3224 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3225 {
3226 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3227 {
3228 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3229 if (pVM->cpum.ro.GuestFeatures.fSvm)
3230 {
3231 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVM->aCpus[i].hm.s.svm.NstGstVmcbCache;
3232 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3233 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3234 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3235 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3236 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3237 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3238 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3239 rc |= SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3240 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3241 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3242 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3243 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3244 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3245 AssertRCReturn(rc, rc);
3246 }
3247 }
3248 else
3249 {
3250 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3251 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
3252 rc |= SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
3253 rc |= SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo);
3254
3255 /* VMX fWasInRealMode related data. */
3256 uint32_t uDummy;
3257 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3258 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3259 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3260 AssertRCReturn(rc, rc);
3261 }
3262 }
3263
3264 /*
3265 * Load TPR patching data.
3266 */
3267 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3268 {
3269 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3270 rc |= SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3271 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3272
3273 /* Fetch all TPR patch records. */
3274 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3275 AssertRCReturn(rc, rc);
3276 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3277 {
3278 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3279 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3280 rc |= SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3281 rc |= SSMR3GetU32(pSSM, &pPatch->cbOp);
3282 rc |= SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3283 rc |= SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3284 rc |= SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3285
3286 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3287 pVM->hm.s.fTPRPatchingActive = true;
3288 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3289
3290 rc |= SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3291 rc |= SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3292 rc |= SSMR3GetU32(pSSM, &pPatch->cFaults);
3293 rc |= SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3294 AssertRCReturn(rc, rc);
3295
3296 LogFlow(("hmR3Load: patch %d\n", i));
3297 LogFlow(("Key = %x\n", pPatch->Core.Key));
3298 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3299 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3300 LogFlow(("type = %d\n", pPatch->enmType));
3301 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3302 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3303 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3304 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3305
3306 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3307 AssertRCReturn(rc, rc);
3308 }
3309 }
3310
3311 return VINF_SUCCESS;
3312}
3313
3314
3315/**
3316 * Displays HM info.
3317 *
3318 * @param pVM The cross context VM structure.
3319 * @param pHlp The info helper functions.
3320 * @param pszArgs Arguments, ignored.
3321 */
3322static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3323{
3324 NOREF(pszArgs);
3325 PVMCPU pVCpu = VMMGetCpu(pVM);
3326 if (!pVCpu)
3327 pVCpu = &pVM->aCpus[0];
3328
3329 if (HMIsEnabled(pVM))
3330 {
3331 if (pVM->hm.s.vmx.fSupported)
3332 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3333 else
3334 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3335 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3336 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3337 if (pVM->hm.s.vmx.fSupported)
3338 {
3339 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3340 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
3341 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
3342
3343 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3344 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3345 if (fRealOnV86Active)
3346 {
3347 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfo->RealMode.Eflags.u32);
3348 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfo->RealMode.AttrCS.u);
3349 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfo->RealMode.AttrSS.u);
3350 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfo->RealMode.AttrDS.u);
3351 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfo->RealMode.AttrES.u);
3352 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfo->RealMode.AttrFS.u);
3353 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfo->RealMode.AttrGS.u);
3354 }
3355 }
3356 }
3357 else
3358 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3359}
3360
3361
3362/**
3363 * Displays the HM pending event.
3364 *
3365 * @param pVM The cross context VM structure.
3366 * @param pHlp The info helper functions.
3367 * @param pszArgs Arguments, ignored.
3368 */
3369static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3370{
3371 NOREF(pszArgs);
3372 PVMCPU pVCpu = VMMGetCpu(pVM);
3373 if (!pVCpu)
3374 pVCpu = &pVM->aCpus[0];
3375
3376 if (HMIsEnabled(pVM))
3377 {
3378 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3379 if (pVCpu->hm.s.Event.fPending)
3380 {
3381 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3382 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3383 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3384 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3385 }
3386 }
3387 else
3388 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3389}
3390
3391
3392/**
3393 * Displays the SVM nested-guest VMCB cache.
3394 *
3395 * @param pVM The cross context VM structure.
3396 * @param pHlp The info helper functions.
3397 * @param pszArgs Arguments, ignored.
3398 */
3399static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3400{
3401 NOREF(pszArgs);
3402 PVMCPU pVCpu = VMMGetCpu(pVM);
3403 if (!pVCpu)
3404 pVCpu = &pVM->aCpus[0];
3405
3406 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3407 if ( fSvmEnabled
3408 && pVM->cpum.ro.GuestFeatures.fSvm)
3409 {
3410 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3411 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3412 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3413 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3414 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3415 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3416 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3417 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3418 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3419 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3420 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3421 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3422 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3423 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3424 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3425 }
3426 else
3427 {
3428 if (!fSvmEnabled)
3429 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3430 else
3431 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3432 }
3433}
3434
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette