VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 80386

Last change on this file since 80386 was 80333, checked in by vboxsync, 6 years ago

VMM: Eliminating the VBOX_BUGREF_9217_PART_I preprocessor macro. bugref:9217

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 147.5 KB
Line 
1/* $Id: HM.cpp 80333 2019-08-16 20:28:38Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/mm.h>
44#include <VBox/vmm/em.h>
45#include <VBox/vmm/pdmapi.h>
46#include <VBox/vmm/pgm.h>
47#include <VBox/vmm/ssm.h>
48#include <VBox/vmm/gim.h>
49#include <VBox/vmm/trpm.h>
50#include <VBox/vmm/dbgf.h>
51#include <VBox/vmm/iom.h>
52#include <VBox/vmm/iem.h>
53#include <VBox/vmm/selm.h>
54#include <VBox/vmm/nem.h>
55#ifdef VBOX_WITH_REM
56# include <VBox/vmm/rem.h>
57#endif
58#include <VBox/vmm/hm_vmx.h>
59#include <VBox/vmm/hm_svm.h>
60#include "HMInternal.h"
61#include <VBox/vmm/vmcc.h>
62#include <VBox/err.h>
63#include <VBox/param.h>
64
65#include <iprt/assert.h>
66#include <VBox/log.h>
67#include <iprt/asm.h>
68#include <iprt/asm-amd64-x86.h>
69#include <iprt/env.h>
70#include <iprt/thread.h>
71
72
73/*********************************************************************************************************************************
74* Defined Constants And Macros *
75*********************************************************************************************************************************/
76/** @def HMVMX_REPORT_FEAT
77 * Reports VT-x feature to the release log.
78 *
79 * @param a_uAllowed1 Mask of allowed-1 feature bits.
80 * @param a_uAllowed0 Mask of allowed-0 feature bits.
81 * @param a_StrDesc The description string to report.
82 * @param a_Featflag Mask of the feature to report.
83 */
84#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
85 do { \
86 if ((a_uAllowed1) & (a_Featflag)) \
87 { \
88 if ((a_uAllowed0) & (a_Featflag)) \
89 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
90 else \
91 LogRel(("HM: " a_StrDesc "\n")); \
92 } \
93 else \
94 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
95 } while (0)
96
97/** @def HMVMX_REPORT_ALLOWED_FEAT
98 * Reports an allowed VT-x feature to the release log.
99 *
100 * @param a_uAllowed1 Mask of allowed-1 feature bits.
101 * @param a_StrDesc The description string to report.
102 * @param a_FeatFlag Mask of the feature to report.
103 */
104#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
105 do { \
106 if ((a_uAllowed1) & (a_FeatFlag)) \
107 LogRel(("HM: " a_StrDesc "\n")); \
108 else \
109 LogRel(("HM: " a_StrDesc " not supported\n")); \
110 } while (0)
111
112/** @def HMVMX_REPORT_MSR_CAP
113 * Reports MSR feature capability.
114 *
115 * @param a_MsrCaps Mask of MSR feature bits.
116 * @param a_StrDesc The description string to report.
117 * @param a_fCap Mask of the feature to report.
118 */
119#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
120 do { \
121 if ((a_MsrCaps) & (a_fCap)) \
122 LogRel(("HM: " a_StrDesc "\n")); \
123 } while (0)
124
125/** @def HMVMX_LOGREL_FEAT
126 * Dumps a feature flag from a bitmap of features to the release log.
127 *
128 * @param a_fVal The value of all the features.
129 * @param a_fMask The specific bitmask of the feature.
130 */
131#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
132 do { \
133 if ((a_fVal) & (a_fMask)) \
134 LogRel(("HM: %s\n", #a_fMask)); \
135 } while (0)
136
137
138/*********************************************************************************************************************************
139* Internal Functions *
140*********************************************************************************************************************************/
141static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
142static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
143static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
145static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
146static int hmR3InitFinalizeR3(PVM pVM);
147static int hmR3InitFinalizeR0(PVM pVM);
148static int hmR3InitFinalizeR0Intel(PVM pVM);
149static int hmR3InitFinalizeR0Amd(PVM pVM);
150static int hmR3TermCPU(PVM pVM);
151
152
153
154/**
155 * Initializes the HM.
156 *
157 * This is the very first component to really do init after CFGM so that we can
158 * establish the predominant execution engine for the VM prior to initializing
159 * other modules. It takes care of NEM initialization if needed (HM disabled or
160 * not available in HW).
161 *
162 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
163 * hypervisor API via NEM, and then back on raw-mode if that isn't available
164 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
165 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
166 * X, OS/2 and others).
167 *
168 * Note that a lot of the set up work is done in ring-0 and thus postponed till
169 * the ring-3 and ring-0 callback to HMR3InitCompleted.
170 *
171 * @returns VBox status code.
172 * @param pVM The cross context VM structure.
173 *
174 * @remarks Be careful with what we call here, since most of the VMM components
175 * are uninitialized.
176 */
177VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
178{
179 LogFlowFunc(("\n"));
180
181 /*
182 * Assert alignment and sizes.
183 */
184 AssertCompileMemberAlignment(VM, hm.s, 32);
185 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
186
187 /*
188 * Register the saved state data unit.
189 */
190 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
191 NULL, NULL, NULL,
192 NULL, hmR3Save, NULL,
193 NULL, hmR3Load, NULL);
194 if (RT_FAILURE(rc))
195 return rc;
196
197 /*
198 * Register info handlers.
199 */
200 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
201 AssertRCReturn(rc, rc);
202
203 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
204 DBGFINFO_FLAGS_ALL_EMTS);
205 AssertRCReturn(rc, rc);
206
207 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
208 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
209 AssertRCReturn(rc, rc);
210
211 /*
212 * Read configuration.
213 */
214 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
215
216 /*
217 * Validate the HM settings.
218 */
219 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
220 "HMForced" /* implied 'true' these days */
221 "|UseNEMInstead"
222 "|FallbackToNEM"
223 "|EnableNestedPaging"
224 "|EnableUX"
225 "|EnableLargePages"
226 "|EnableVPID"
227 "|IBPBOnVMExit"
228 "|IBPBOnVMEntry"
229 "|SpecCtrlByHost"
230 "|L1DFlushOnSched"
231 "|L1DFlushOnVMEntry"
232 "|MDSClearOnSched"
233 "|MDSClearOnVMEntry"
234 "|TPRPatchingEnabled"
235 "|64bitEnabled"
236 "|Exclusive"
237 "|MaxResumeLoops"
238 "|VmxPleGap"
239 "|VmxPleWindow"
240 "|UseVmxPreemptTimer"
241 "|SvmPauseFilter"
242 "|SvmPauseFilterThreshold"
243 "|SvmVirtVmsaveVmload"
244 "|SvmVGif"
245 "|LovelyMesaDrvWorkaround",
246 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
247 if (RT_FAILURE(rc))
248 return rc;
249
250 /** @cfgm{/HM/HMForced, bool, false}
251 * Forces hardware virtualization, no falling back on raw-mode. HM must be
252 * enabled, i.e. /HMEnabled must be true. */
253 bool fHMForced;
254 AssertRelease(pVM->fHMEnabled);
255 fHMForced = true;
256
257 /** @cfgm{/HM/UseNEMInstead, bool, true}
258 * Don't use HM, use NEM instead. */
259 bool fUseNEMInstead = false;
260 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
261 AssertRCReturn(rc, rc);
262 if (fUseNEMInstead && pVM->fHMEnabled)
263 {
264 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
265 pVM->fHMEnabled = false;
266 }
267
268 /** @cfgm{/HM/FallbackToNEM, bool, true}
269 * Enables fallback on NEM. */
270 bool fFallbackToNEM = true;
271 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
272 AssertRCReturn(rc, rc);
273
274 /** @cfgm{/HM/EnableNestedPaging, bool, false}
275 * Enables nested paging (aka extended page tables). */
276 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
277 AssertRCReturn(rc, rc);
278
279 /** @cfgm{/HM/EnableUX, bool, true}
280 * Enables the VT-x unrestricted execution feature. */
281 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
282 AssertRCReturn(rc, rc);
283
284 /** @cfgm{/HM/EnableLargePages, bool, false}
285 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
286 * page table walking and maybe better TLB hit rate in some cases. */
287 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
288 AssertRCReturn(rc, rc);
289
290 /** @cfgm{/HM/EnableVPID, bool, false}
291 * Enables the VT-x VPID feature. */
292 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
293 AssertRCReturn(rc, rc);
294
295 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
296 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
297 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
298 AssertRCReturn(rc, rc);
299
300 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
301 * Enables AMD64 cpu features.
302 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
303 * already have the support. */
304#ifdef VBOX_WITH_64_BITS_GUESTS
305 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
306 AssertLogRelRCReturn(rc, rc);
307#else
308 pVM->hm.s.fAllow64BitGuests = false;
309#endif
310
311 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
312 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
313 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
314 * latest PAUSE instruction to be start of a new PAUSE loop.
315 */
316 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
317 AssertRCReturn(rc, rc);
318
319 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
320 * The pause-filter exiting window in TSC ticks. When the number of ticks
321 * between the current PAUSE instruction and first PAUSE of a loop exceeds
322 * VmxPleWindow, a VM-exit is triggered.
323 *
324 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
325 */
326 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
327 AssertRCReturn(rc, rc);
328
329 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
330 * A counter that is decrement each time a PAUSE instruction is executed by the
331 * guest. When the counter is 0, a \#VMEXIT is triggered.
332 *
333 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
334 */
335 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
336 AssertRCReturn(rc, rc);
337
338 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
339 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
340 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
341 * PauseFilter count is reset to its initial value. However, if PAUSE is
342 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
343 * be triggered.
344 *
345 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
346 * activated.
347 */
348 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
349 AssertRCReturn(rc, rc);
350
351 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
352 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
353 * available. */
354 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
355 AssertRCReturn(rc, rc);
356
357 /** @cfgm{/HM/SvmVGif, bool, true}
358 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
359 * if it's available. */
360 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
361 AssertRCReturn(rc, rc);
362
363 /** @cfgm{/HM/Exclusive, bool}
364 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
365 * global init for each host CPU. If false, we do local init each time we wish
366 * to execute guest code.
367 *
368 * On Windows, default is false due to the higher risk of conflicts with other
369 * hypervisors.
370 *
371 * On Mac OS X, this setting is ignored since the code does not handle local
372 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
373 */
374#if defined(RT_OS_DARWIN)
375 pVM->hm.s.fGlobalInit = true;
376#else
377 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
378# if defined(RT_OS_WINDOWS)
379 false
380# else
381 true
382# endif
383 );
384 AssertLogRelRCReturn(rc, rc);
385#endif
386
387 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
388 * The number of times to resume guest execution before we forcibly return to
389 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
390 * determines the default value. */
391 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
392 AssertLogRelRCReturn(rc, rc);
393
394 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
395 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
396 * available. */
397 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
398 AssertLogRelRCReturn(rc, rc);
399
400 /** @cfgm{/HM/IBPBOnVMExit, bool}
401 * Costly paranoia setting. */
402 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
403 AssertLogRelRCReturn(rc, rc);
404
405 /** @cfgm{/HM/IBPBOnVMEntry, bool}
406 * Costly paranoia setting. */
407 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
408 AssertLogRelRCReturn(rc, rc);
409
410 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
411 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
412 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
413 AssertLogRelRCReturn(rc, rc);
414
415 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
416 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
417 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
418 AssertLogRelRCReturn(rc, rc);
419
420 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
421 if (pVM->hm.s.fL1dFlushOnVmEntry)
422 pVM->hm.s.fL1dFlushOnSched = false;
423
424 /** @cfgm{/HM/SpecCtrlByHost, bool}
425 * Another expensive paranoia setting. */
426 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
427 AssertLogRelRCReturn(rc, rc);
428
429 /** @cfgm{/HM/MDSClearOnSched, bool, true}
430 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
431 * ignored on CPUs that aren't affected. */
432 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
433 AssertLogRelRCReturn(rc, rc);
434
435 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
436 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
437 * ignored on CPUs that aren't affected. */
438 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
439 AssertLogRelRCReturn(rc, rc);
440
441 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
442 if (pVM->hm.s.fMdsClearOnVmEntry)
443 pVM->hm.s.fMdsClearOnSched = false;
444
445 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
446 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
447 * the hypervisor it is running under. */
448 bool f;
449 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &f, false);
450 AssertLogRelRCReturn(rc, rc);
451 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
452 {
453 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
454 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = f;
455 }
456
457 /*
458 * Check if VT-x or AMD-v support according to the users wishes.
459 */
460 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
461 * VERR_SVM_IN_USE. */
462 if (pVM->fHMEnabled)
463 {
464 uint32_t fCaps;
465 rc = SUPR3QueryVTCaps(&fCaps);
466 if (RT_SUCCESS(rc))
467 {
468 if (fCaps & SUPVTCAPS_AMD_V)
469 {
470 pVM->hm.s.svm.fSupported = true;
471 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
472 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
473 }
474 else if (fCaps & SUPVTCAPS_VT_X)
475 {
476 const char *pszWhy;
477 rc = SUPR3QueryVTxSupported(&pszWhy);
478 if (RT_SUCCESS(rc))
479 {
480 pVM->hm.s.vmx.fSupported = true;
481 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
482 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
483 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
484 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
485 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
486 }
487 else
488 {
489 /*
490 * Before failing, try fallback to NEM if we're allowed to do that.
491 */
492 pVM->fHMEnabled = false;
493 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
494 if (fFallbackToNEM)
495 {
496 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
497 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
498
499 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
500 if ( RT_SUCCESS(rc2)
501 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
502 rc = VINF_SUCCESS;
503 }
504 if (RT_FAILURE(rc))
505 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
506 }
507 }
508 else
509 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
510 VERR_INTERNAL_ERROR_5);
511
512 /*
513 * Disable nested paging and unrestricted guest execution now if they're
514 * configured so that CPUM can make decisions based on our configuration.
515 */
516 Assert(!pVM->hm.s.fNestedPaging);
517 if (pVM->hm.s.fAllowNestedPaging)
518 {
519 if (fCaps & SUPVTCAPS_NESTED_PAGING)
520 pVM->hm.s.fNestedPaging = true;
521 else
522 pVM->hm.s.fAllowNestedPaging = false;
523 }
524
525 if (fCaps & SUPVTCAPS_VT_X)
526 {
527 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
528 if (pVM->hm.s.vmx.fAllowUnrestricted)
529 {
530 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
531 && pVM->hm.s.fNestedPaging)
532 pVM->hm.s.vmx.fUnrestrictedGuest = true;
533 else
534 pVM->hm.s.vmx.fAllowUnrestricted = false;
535 }
536 }
537 }
538 else
539 {
540 const char *pszMsg;
541 switch (rc)
542 {
543 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
544 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
545 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
546 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
547 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
548 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
549 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
550 default:
551 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
552 }
553
554 /*
555 * Before failing, try fallback to NEM if we're allowed to do that.
556 */
557 pVM->fHMEnabled = false;
558 if (fFallbackToNEM)
559 {
560 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
561 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
562 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
563 if ( RT_SUCCESS(rc2)
564 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
565 rc = VINF_SUCCESS;
566 }
567 if (RT_FAILURE(rc))
568 return VM_SET_ERROR(pVM, rc, pszMsg);
569 }
570 }
571 else
572 {
573 /*
574 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
575 */
576 if (fUseNEMInstead)
577 {
578 rc = NEMR3Init(pVM, false /*fFallback*/, true);
579 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
580 if (RT_FAILURE(rc))
581 return rc;
582 }
583 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
584 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_RAW_MODE
585 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
586 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
587 }
588
589 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
590 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_RAW_MODE);
591 return VINF_SUCCESS;
592}
593
594
595/**
596 * Initializes HM components after ring-3 phase has been fully initialized.
597 *
598 * @returns VBox status code.
599 * @param pVM The cross context VM structure.
600 */
601static int hmR3InitFinalizeR3(PVM pVM)
602{
603 LogFlowFunc(("\n"));
604
605 if (!HMIsEnabled(pVM))
606 return VINF_SUCCESS;
607
608 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
609 {
610 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
611 pVCpu->hm.s.fActive = false;
612 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
613 }
614
615#ifdef VBOX_WITH_STATISTICS
616 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
617 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
618 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
619 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
620 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
621#endif
622
623 /*
624 * Statistics.
625 */
626 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
627 {
628 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
629 PHMCPU pHmCpu = &pVCpu->hm.s;
630 int rc;
631
632# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
633 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
634 AssertRC(rc); \
635 } while (0)
636# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
637 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
638
639#ifdef VBOX_WITH_STATISTICS
640
641 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
642 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
643 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
644 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
645 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
646 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
647 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
648 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
649 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
650 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
651 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
652 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
653 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
654 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
655# ifdef HM_PROFILE_EXIT_DISPATCH
656 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
657 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
658# endif
659#endif
660# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
661
662#ifdef VBOX_WITH_STATISTICS
663 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
664 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
665 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
666 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
667 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
668 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
669 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
670 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
671 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
672 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
673 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
674 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
675 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
676 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
677 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
678 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
679 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
680 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
681 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
682 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
683 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
684 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
685 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
686 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
687 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
688 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
689 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
690 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
691 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
692 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
693 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
694 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
695 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
696 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
697 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
698 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
699 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
700 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
701 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
702 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
703 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
704 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
705 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
706 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
707 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
708#endif
709 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
710 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
711#ifdef VBOX_WITH_STATISTICS
712 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
713 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
714 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
715 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
716
717 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
718 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
719 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
720 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
721 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
722 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
723 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
724 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
725 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
726 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
727 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
728 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
729#endif
730 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
731#ifdef VBOX_WITH_STATISTICS
732 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
733
734 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
735 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
736 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
737 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
738 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
739 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
740
741 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
742 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
743 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
744 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
745 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
746 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
747 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
748 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
749 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
750 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
751 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
752 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
753 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
754 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
755 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
756
757 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
758 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
759 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
760
761 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
762 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
763 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
764
765 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
766 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
767 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
768 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
769
770 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
771 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
772 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
773
774 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
775 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
776 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
777
778 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
779 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
780 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
781 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
782
783 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
784
785 /*
786 * Guest Exit reason stats.
787 */
788 pHmCpu->paStatExitReason = NULL;
789 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
790 (void **)&pHmCpu->paStatExitReason);
791 AssertRCReturn(rc, rc);
792
793 if (fCpuSupportsVmx)
794 {
795 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
796 {
797 const char *pszExitName = HMGetVmxExitName(j);
798 if (pszExitName)
799 {
800 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
801 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
802 AssertRCReturn(rc, rc);
803 }
804 }
805 }
806 else
807 {
808 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
809 {
810 const char *pszExitName = HMGetSvmExitName(j);
811 if (pszExitName)
812 {
813 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
814 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
815 AssertRC(rc);
816 }
817 }
818 }
819 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
820
821 pHmCpu->paStatExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatExitReason);
822 Assert(pHmCpu->paStatExitReasonR0 != NIL_RTR0PTR);
823
824#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
825 /*
826 * Nested-guest VM-exit reason stats.
827 */
828 pHmCpu->paStatNestedExitReason = NULL;
829 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM,
830 (void **)&pHmCpu->paStatNestedExitReason);
831 AssertRCReturn(rc, rc);
832 if (fCpuSupportsVmx)
833 {
834 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
835 {
836 const char *pszExitName = HMGetVmxExitName(j);
837 if (pszExitName)
838 {
839 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
840 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
841 AssertRC(rc);
842 }
843 }
844 }
845 else
846 {
847 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
848 {
849 const char *pszExitName = HMGetSvmExitName(j);
850 if (pszExitName)
851 {
852 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
853 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
854 AssertRC(rc);
855 }
856 }
857 }
858 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
859 pHmCpu->paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatNestedExitReason);
860 Assert(pHmCpu->paStatNestedExitReasonR0 != NIL_RTR0PTR);
861#endif
862
863 /*
864 * Injected events stats.
865 */
866 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pHmCpu->paStatInjectedIrqs);
867 AssertRCReturn(rc, rc);
868 pHmCpu->paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatInjectedIrqs);
869 Assert(pHmCpu->paStatInjectedIrqsR0 != NIL_RTR0PTR);
870 for (unsigned j = 0; j < 255; j++)
871 {
872 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
873 STAMUNIT_OCCURENCES, "Injected events.",
874 j < 0x20 ? "/HM/CPU%u/EventInject/InjectTrap/%02X" : "/HM/CPU%u/EventInject/InjectIRQ/%02X",
875 idCpu, j);
876 AssertRC(rc);
877 }
878
879#endif /* VBOX_WITH_STATISTICS */
880#undef HM_REG_COUNTER
881#undef HM_REG_PROFILE
882#undef HM_REG_STAT
883 }
884
885 return VINF_SUCCESS;
886}
887
888
889/**
890 * Called when a init phase has completed.
891 *
892 * @returns VBox status code.
893 * @param pVM The cross context VM structure.
894 * @param enmWhat The phase that completed.
895 */
896VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
897{
898 switch (enmWhat)
899 {
900 case VMINITCOMPLETED_RING3:
901 return hmR3InitFinalizeR3(pVM);
902 case VMINITCOMPLETED_RING0:
903 return hmR3InitFinalizeR0(pVM);
904 default:
905 return VINF_SUCCESS;
906 }
907}
908
909
910/**
911 * Turns off normal raw mode features.
912 *
913 * @param pVM The cross context VM structure.
914 */
915static void hmR3DisableRawMode(PVM pVM)
916{
917/** @todo r=bird: HM shouldn't be doing this crap. */
918 /* Reinit the paging mode to force the new shadow mode. */
919 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
920 {
921 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
922 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
923 }
924}
925
926
927/**
928 * Initialize VT-x or AMD-V.
929 *
930 * @returns VBox status code.
931 * @param pVM The cross context VM structure.
932 */
933static int hmR3InitFinalizeR0(PVM pVM)
934{
935 int rc;
936
937 if (!HMIsEnabled(pVM))
938 return VINF_SUCCESS;
939
940 /*
941 * Hack to allow users to work around broken BIOSes that incorrectly set
942 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
943 */
944 if ( !pVM->hm.s.vmx.fSupported
945 && !pVM->hm.s.svm.fSupported
946 && pVM->hm.s.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
947 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
948 {
949 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
950 pVM->hm.s.svm.fSupported = true;
951 pVM->hm.s.svm.fIgnoreInUseError = true;
952 pVM->hm.s.rcInit = VINF_SUCCESS;
953 }
954
955 /*
956 * Report ring-0 init errors.
957 */
958 if ( !pVM->hm.s.vmx.fSupported
959 && !pVM->hm.s.svm.fSupported)
960 {
961 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.rcInit));
962 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatCtrl));
963 switch (pVM->hm.s.rcInit)
964 {
965 case VERR_VMX_IN_VMX_ROOT_MODE:
966 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
967 case VERR_VMX_NO_VMX:
968 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
969 case VERR_VMX_MSR_VMX_DISABLED:
970 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
971 case VERR_VMX_MSR_ALL_VMX_DISABLED:
972 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
973 case VERR_VMX_MSR_LOCKING_FAILED:
974 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
975 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
976 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
977 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
978 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
979
980 case VERR_SVM_IN_USE:
981 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
982 case VERR_SVM_NO_SVM:
983 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
984 case VERR_SVM_DISABLED:
985 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
986 }
987 return VMSetError(pVM, pVM->hm.s.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.rcInit);
988 }
989
990 /*
991 * Enable VT-x or AMD-V on all host CPUs.
992 */
993 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
994 if (RT_FAILURE(rc))
995 {
996 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
997 HMR3CheckError(pVM, rc);
998 return rc;
999 }
1000
1001 /*
1002 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1003 * (Main should have taken care of this already)
1004 */
1005 if (!PDMHasIoApic(pVM))
1006 {
1007 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1008 pVM->hm.s.fTprPatchingAllowed = false;
1009 }
1010
1011 /*
1012 * Check if L1D flush is needed/possible.
1013 */
1014 if ( !pVM->cpum.ro.HostFeatures.fFlushCmd
1015 || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1016 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
1017 || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d
1018 || pVM->cpum.ro.HostFeatures.fArchRdclNo)
1019 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
1020
1021 /*
1022 * Check if MDS flush is needed/possible.
1023 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
1024 */
1025 if ( !pVM->cpum.ro.HostFeatures.fMdsClear
1026 || pVM->cpum.ro.HostFeatures.fArchMdsNo)
1027 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1028 else if ( ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
1029 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
1030 || ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
1031 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
1032 {
1033 if (!pVM->hm.s.fMdsClearOnSched)
1034 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
1035 pVM->hm.s.fMdsClearOnVmEntry = false;
1036 }
1037 else if ( pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1038 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
1039 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1040
1041 /*
1042 * Sync options.
1043 */
1044 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1045 * That will require a little bit of work, of course. */
1046 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1047 {
1048 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1049 PCPUMCTX pCpuCtx = &pVCpu->cpum.GstCtx;
1050 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1051 if (pVM->cpum.ro.HostFeatures.fIbpb)
1052 {
1053 if (pVM->hm.s.fIbpbOnVmExit)
1054 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1055 if (pVM->hm.s.fIbpbOnVmEntry)
1056 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1057 }
1058 if (pVM->cpum.ro.HostFeatures.fFlushCmd && pVM->hm.s.fL1dFlushOnVmEntry)
1059 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_L1D_ENTRY;
1060 if (pVM->cpum.ro.HostFeatures.fMdsClear && pVM->hm.s.fMdsClearOnVmEntry)
1061 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_MDS_ENTRY;
1062 if (idCpu == 0)
1063 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1064 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1065 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1066 }
1067
1068 /*
1069 * Do the vendor specific initialization
1070 *
1071 * Note! We disable release log buffering here since we're doing relatively
1072 * lot of logging and doesn't want to hit the disk with each LogRel
1073 * statement.
1074 */
1075 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1076 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1077 if (pVM->hm.s.vmx.fSupported)
1078 rc = hmR3InitFinalizeR0Intel(pVM);
1079 else
1080 rc = hmR3InitFinalizeR0Amd(pVM);
1081 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1082 : "HM: VT-x/AMD-V init method: Local\n"));
1083 RTLogRelSetBuffering(fOldBuffered);
1084 pVM->hm.s.fInitialized = true;
1085
1086 return rc;
1087}
1088
1089
1090/**
1091 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1092 */
1093static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1094{
1095 NOREF(pVM);
1096 NOREF(pvAllocation);
1097 NOREF(GCPhysAllocation);
1098}
1099
1100
1101/**
1102 * Returns a description of the VMCS (and associated regions') memory type given the
1103 * IA32_VMX_BASIC MSR.
1104 *
1105 * @returns The descriptive memory type.
1106 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1107 */
1108static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1109{
1110 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1111 switch (uMemType)
1112 {
1113 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1114 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1115 }
1116 return "Unknown";
1117}
1118
1119
1120/**
1121 * Returns a single-line description of all the activity-states supported by the CPU
1122 * given the IA32_VMX_MISC MSR.
1123 *
1124 * @returns All supported activity states.
1125 * @param uMsrMisc IA32_VMX_MISC MSR value.
1126 */
1127static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1128{
1129 static const char * const s_apszActStates[] =
1130 {
1131 "",
1132 " ( HLT )",
1133 " ( SHUTDOWN )",
1134 " ( HLT SHUTDOWN )",
1135 " ( SIPI_WAIT )",
1136 " ( HLT SIPI_WAIT )",
1137 " ( SHUTDOWN SIPI_WAIT )",
1138 " ( HLT SHUTDOWN SIPI_WAIT )"
1139 };
1140 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1141 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1142 return s_apszActStates[idxActStates];
1143}
1144
1145
1146/**
1147 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1148 *
1149 * @param fFeatMsr The feature control MSR value.
1150 */
1151static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1152{
1153 uint64_t const val = fFeatMsr;
1154 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1155 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1156 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1157 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1158 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1159 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1160 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1161 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1162 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1163 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1164 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1165 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1166 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1167 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1168 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1169 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1170 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1171}
1172
1173
1174/**
1175 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1176 *
1177 * @param uBasicMsr The VMX basic MSR value.
1178 */
1179static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1180{
1181 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1182 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1183 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1184 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1185 "< 4 GB" : "None"));
1186 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1187 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1188 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1189 LogRel(("HM: Supports true capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1190}
1191
1192
1193/**
1194 * Reports MSR_IA32_PINBASED_CTLS to the log.
1195 *
1196 * @param pVmxMsr Pointer to the VMX MSR.
1197 */
1198static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1199{
1200 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1201 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1202 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1203 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1204 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1205 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1206 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1207 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1208}
1209
1210
1211/**
1212 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1213 *
1214 * @param pVmxMsr Pointer to the VMX MSR.
1215 */
1216static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1217{
1218 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1219 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1220 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1221 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1222 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1223 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1224 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1225 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1226 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1227 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1228 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1229 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1230 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1231 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1232 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1233 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1234 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1235 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1236 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1237 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1238 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1239 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1240 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1241 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1242}
1243
1244
1245/**
1246 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1247 *
1248 * @param pVmxMsr Pointer to the VMX MSR.
1249 */
1250static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1251{
1252 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1253 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1254 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1255 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1256 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1257 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1258 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1259 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1260 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1261 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1262 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1263 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1264 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1265 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1266 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1267 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1268 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1269 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1270 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1271 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1272 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1273 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_VE", VMX_PROC_CTLS2_EPT_VE);
1274 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1275 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1276 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1277 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPPTP_EPT", VMX_PROC_CTLS2_SPPTP_EPT);
1278 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1279 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1280 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1281 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1282}
1283
1284
1285/**
1286 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1287 *
1288 * @param pVmxMsr Pointer to the VMX MSR.
1289 */
1290static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1291{
1292 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1293 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1294 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1295 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1296 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1297 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1298 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1299 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1300 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1301 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1302 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1303 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1304 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1305}
1306
1307
1308/**
1309 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1310 *
1311 * @param pVmxMsr Pointer to the VMX MSR.
1312 */
1313static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1314{
1315 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1316 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1317 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1318 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1319 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1320 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1321 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1322 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1323 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1324 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1325 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1326 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1327 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1328 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1329 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1330}
1331
1332
1333/**
1334 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1335 *
1336 * @param fCaps The VMX EPT/VPID capability MSR value.
1337 */
1338static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1339{
1340 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1341 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1342 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1343 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1344 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1345 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1346 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1347 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1348 HMVMX_REPORT_MSR_CAP(fCaps, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1349 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1350 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1351 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1352 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1353 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1354 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1355 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1356}
1357
1358
1359/**
1360 * Reports MSR_IA32_VMX_MISC MSR to the log.
1361 *
1362 * @param pVM Pointer to the VM.
1363 * @param fMisc The VMX misc. MSR value.
1364 */
1365static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1366{
1367 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1368 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1369 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1370 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1371 else
1372 {
1373 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1374 pVM->hm.s.vmx.cPreemptTimerShift));
1375 }
1376 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1377 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1378 hmR3VmxGetActivityStateAllDesc(fMisc)));
1379 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1380 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1381 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1382 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1383 VMX_MISC_MAX_MSRS(fMisc)));
1384 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1385 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1386 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1387 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1388}
1389
1390
1391/**
1392 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1393 *
1394 * @param uVmcsEnum The VMX VMCS enum MSR value.
1395 */
1396static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1397{
1398 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1399 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1400}
1401
1402
1403/**
1404 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1405 *
1406 * @param uVmFunc The VMX VMFUNC MSR value.
1407 */
1408static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1409{
1410 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1411 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1412}
1413
1414
1415/**
1416 * Reports VMX CR0, CR4 fixed MSRs.
1417 *
1418 * @param pMsrs Pointer to the VMX MSRs.
1419 */
1420static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1421{
1422 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1423 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1424 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1425 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1426}
1427
1428
1429/**
1430 * Finish VT-x initialization (after ring-0 init).
1431 *
1432 * @returns VBox status code.
1433 * @param pVM The cross context VM structure.
1434 */
1435static int hmR3InitFinalizeR0Intel(PVM pVM)
1436{
1437 int rc;
1438
1439 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1440 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatCtrl != 0, VERR_HM_IPE_4);
1441
1442 LogRel(("HM: Using VT-x implementation 3.0\n"));
1443 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1444 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1445 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostMsrEfer));
1446 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1447
1448 hmR3VmxReportFeatCtlMsr(pVM->hm.s.vmx.Msrs.u64FeatCtrl);
1449 hmR3VmxReportBasicMsr(pVM->hm.s.vmx.Msrs.u64Basic);
1450
1451 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.PinCtls);
1452 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.ProcCtls);
1453 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1454 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.vmx.Msrs.ProcCtls2);
1455
1456 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.vmx.Msrs.EntryCtls);
1457 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.vmx.Msrs.ExitCtls);
1458
1459 if (RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1460 {
1461 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1462 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TruePinCtls));
1463 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueProcCtls));
1464 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueEntryCtls));
1465 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueExitCtls));
1466 }
1467
1468 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.vmx.Msrs.u64Misc);
1469 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.vmx.Msrs.u64VmcsEnum);
1470 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1471 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.vmx.Msrs.u64EptVpidCaps);
1472 if (pVM->hm.s.vmx.Msrs.u64VmFunc)
1473 hmR3VmxReportVmFuncMsr(pVM->hm.s.vmx.Msrs.u64VmFunc);
1474 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.vmx.Msrs);
1475
1476 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1477 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1478 {
1479 PCVMXVMCSINFO pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1480 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1481 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1482 }
1483#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1484 if (pVM->cpum.ro.GuestFeatures.fVmx)
1485 {
1486 LogRel(("HM: Nested-guest:\n"));
1487 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1488 {
1489 PCVMXVMCSINFO pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1490 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1491 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1492 }
1493 }
1494#endif
1495
1496 /*
1497 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1498 */
1499 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1500 || (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1501 VERR_HM_IPE_1);
1502 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1503 || ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1504 && pVM->hm.s.fNestedPaging),
1505 VERR_HM_IPE_1);
1506
1507 /*
1508 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1509 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1510 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1511 */
1512 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1513 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1514 {
1515 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1516 LogRel(("HM: Disabled RDTSCP\n"));
1517 }
1518
1519 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1520 {
1521 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1522 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1523 if (RT_SUCCESS(rc))
1524 {
1525 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1526 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1527 esp. Figure 20-5.*/
1528 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1529 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1530
1531 /* Bit set to 0 means software interrupts are redirected to the
1532 8086 program interrupt handler rather than switching to
1533 protected-mode handler. */
1534 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1535
1536 /* Allow all port IO, so that port IO instructions do not cause
1537 exceptions and would instead cause a VM-exit (based on VT-x's
1538 IO bitmap which we currently configure to always cause an exit). */
1539 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1540 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1541
1542 /*
1543 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1544 * page table used in real and protected mode without paging with EPT.
1545 */
1546 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1547 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1548 {
1549 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1550 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1551 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1552 | X86_PDE4M_G;
1553 }
1554
1555 /* We convert it here every time as PCI regions could be reconfigured. */
1556 if (PDMVmmDevHeapIsEnabled(pVM))
1557 {
1558 RTGCPHYS GCPhys;
1559 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1560 AssertRCReturn(rc, rc);
1561 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1562
1563 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1564 AssertRCReturn(rc, rc);
1565 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1566 }
1567 }
1568 else
1569 {
1570 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1571 pVM->hm.s.vmx.pRealModeTSS = NULL;
1572 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1573 return VMSetError(pVM, rc, RT_SRC_POS,
1574 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1575 }
1576 }
1577
1578 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1579 : "HM: Guest support: 32-bit only\n"));
1580
1581 /*
1582 * Call ring-0 to set up the VM.
1583 */
1584 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1585 if (rc != VINF_SUCCESS)
1586 {
1587 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1588 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1589 {
1590 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1591 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1592 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1593 }
1594 HMR3CheckError(pVM, rc);
1595 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1596 }
1597
1598 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1599 LogRel(("HM: Enabled VMX\n"));
1600 pVM->hm.s.vmx.fEnabled = true;
1601
1602 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1603
1604 /*
1605 * Change the CPU features.
1606 */
1607 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1608 if (pVM->hm.s.fAllow64BitGuests)
1609 {
1610 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1611 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1612 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1613 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1614 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1615 }
1616 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1617 (we reuse the host EFER in the switcher). */
1618 /** @todo this needs to be fixed properly!! */
1619 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1620 {
1621 if (pVM->hm.s.vmx.u64HostMsrEfer & MSR_K6_EFER_NXE)
1622 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1623 else
1624 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1625 }
1626
1627 /*
1628 * Log configuration details.
1629 */
1630 if (pVM->hm.s.fNestedPaging)
1631 {
1632 LogRel(("HM: Enabled nested paging\n"));
1633 if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1634 LogRel(("HM: EPT flush type = Single context\n"));
1635 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1636 LogRel(("HM: EPT flush type = All contexts\n"));
1637 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1638 LogRel(("HM: EPT flush type = Not supported\n"));
1639 else
1640 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushEpt));
1641
1642 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1643 LogRel(("HM: Enabled unrestricted guest execution\n"));
1644
1645 if (pVM->hm.s.fLargePages)
1646 {
1647 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1648 PGMSetLargePageUsage(pVM, true);
1649 LogRel(("HM: Enabled large page support\n"));
1650 }
1651 }
1652 else
1653 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1654
1655 if (pVM->hm.s.vmx.fVpid)
1656 {
1657 LogRel(("HM: Enabled VPID\n"));
1658 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1659 LogRel(("HM: VPID flush type = Individual addresses\n"));
1660 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1661 LogRel(("HM: VPID flush type = Single context\n"));
1662 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1663 LogRel(("HM: VPID flush type = All contexts\n"));
1664 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1665 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1666 else
1667 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushVpid));
1668 }
1669 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1670 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1671
1672 if (pVM->hm.s.vmx.fUsePreemptTimer)
1673 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1674 else
1675 LogRel(("HM: Disabled VMX-preemption timer\n"));
1676
1677 if (pVM->hm.s.fVirtApicRegs)
1678 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1679
1680 if (pVM->hm.s.fPostedIntrs)
1681 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1682
1683 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1684 {
1685 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1686 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1687 }
1688
1689 return VINF_SUCCESS;
1690}
1691
1692
1693/**
1694 * Finish AMD-V initialization (after ring-0 init).
1695 *
1696 * @returns VBox status code.
1697 * @param pVM The cross context VM structure.
1698 */
1699static int hmR3InitFinalizeR0Amd(PVM pVM)
1700{
1701 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1702
1703 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1704
1705 uint32_t u32Family;
1706 uint32_t u32Model;
1707 uint32_t u32Stepping;
1708 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1709 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1710 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1711 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1712 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1713 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1714 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1715
1716 /*
1717 * Enumerate AMD-V features.
1718 */
1719 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1720 {
1721#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1722 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1723 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1724 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1725 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1726 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1727 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1728 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1729 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1730 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1731 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1732 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1733 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1734 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1735#undef HMSVM_REPORT_FEATURE
1736 };
1737
1738 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1739 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1740 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1741 {
1742 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1743 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1744 }
1745 if (fSvmFeatures)
1746 for (unsigned iBit = 0; iBit < 32; iBit++)
1747 if (RT_BIT_32(iBit) & fSvmFeatures)
1748 LogRel(("HM: Reserved bit %u\n", iBit));
1749
1750 /*
1751 * Nested paging is determined in HMR3Init, verify the sanity of that.
1752 */
1753 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1754 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1755 VERR_HM_IPE_1);
1756
1757#if 0
1758 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1759 * here. */
1760 if (RTR0IsPostIpiSupport())
1761 pVM->hm.s.fPostedIntrs = true;
1762#endif
1763
1764 /*
1765 * Call ring-0 to set up the VM.
1766 */
1767 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1768 if (rc != VINF_SUCCESS)
1769 {
1770 AssertMsgFailed(("%Rrc\n", rc));
1771 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1772 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1773 }
1774
1775 LogRel(("HM: Enabled SVM\n"));
1776 pVM->hm.s.svm.fEnabled = true;
1777
1778 if (pVM->hm.s.fNestedPaging)
1779 {
1780 LogRel(("HM: Enabled nested paging\n"));
1781
1782 /*
1783 * Enable large pages (2 MB) if applicable.
1784 */
1785 if (pVM->hm.s.fLargePages)
1786 {
1787 PGMSetLargePageUsage(pVM, true);
1788 LogRel(("HM: Enabled large page support\n"));
1789 }
1790 }
1791
1792 if (pVM->hm.s.fVirtApicRegs)
1793 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1794
1795 if (pVM->hm.s.fPostedIntrs)
1796 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1797
1798 hmR3DisableRawMode(pVM);
1799
1800 /*
1801 * Change the CPU features.
1802 */
1803 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1804 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1805 if (pVM->hm.s.fAllow64BitGuests)
1806 {
1807 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1808 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1809 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1810 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1811 }
1812 /* Turn on NXE if PAE has been enabled. */
1813 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1814 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1815
1816 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1817 : "HM: Disabled TPR patching\n"));
1818
1819 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1820 : "HM: Guest support: 32-bit only\n"));
1821 return VINF_SUCCESS;
1822}
1823
1824
1825/**
1826 * Applies relocations to data and code managed by this
1827 * component. This function will be called at init and
1828 * whenever the VMM need to relocate it self inside the GC.
1829 *
1830 * @param pVM The cross context VM structure.
1831 */
1832VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1833{
1834 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1835
1836 /* Fetch the current paging mode during the relocate callback during state loading. */
1837 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1838 {
1839 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1840 {
1841 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1842 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1843 }
1844 }
1845}
1846
1847
1848/**
1849 * Terminates the HM.
1850 *
1851 * Termination means cleaning up and freeing all resources,
1852 * the VM itself is, at this point, powered off or suspended.
1853 *
1854 * @returns VBox status code.
1855 * @param pVM The cross context VM structure.
1856 */
1857VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1858{
1859 if (pVM->hm.s.vmx.pRealModeTSS)
1860 {
1861 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1862 pVM->hm.s.vmx.pRealModeTSS = 0;
1863 }
1864 hmR3TermCPU(pVM);
1865 return 0;
1866}
1867
1868
1869/**
1870 * Terminates the per-VCPU HM.
1871 *
1872 * @returns VBox status code.
1873 * @param pVM The cross context VM structure.
1874 */
1875static int hmR3TermCPU(PVM pVM)
1876{
1877#ifdef VBOX_WITH_STATISTICS
1878 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1879 {
1880 PVMCPU pVCpu = pVM->apCpusR3[idCpu]; NOREF(pVCpu);
1881 if (pVCpu->hm.s.paStatExitReason)
1882 {
1883 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1884 pVCpu->hm.s.paStatExitReason = NULL;
1885 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1886 }
1887 if (pVCpu->hm.s.paStatInjectedIrqs)
1888 {
1889 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1890 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1891 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1892 }
1893# if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
1894 if (pVCpu->hm.s.paStatNestedExitReason)
1895 {
1896 MMHyperFree(pVM, pVCpu->hm.s.paStatNestedExitReason);
1897 pVCpu->hm.s.paStatNestedExitReason = NULL;
1898 pVCpu->hm.s.paStatNestedExitReasonR0 = NIL_RTR0PTR;
1899 }
1900# endif
1901 }
1902#else
1903 RT_NOREF(pVM);
1904#endif
1905 return VINF_SUCCESS;
1906}
1907
1908
1909/**
1910 * Resets a virtual CPU.
1911 *
1912 * Used by HMR3Reset and CPU hot plugging.
1913 *
1914 * @param pVCpu The cross context virtual CPU structure to reset.
1915 */
1916VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1917{
1918 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
1919 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
1920 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
1921
1922 pVCpu->hm.s.fActive = false;
1923 pVCpu->hm.s.Event.fPending = false;
1924 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
1925 pVCpu->hm.s.vmx.VmcsInfo.fSwitchedTo64on32Obsolete = false;
1926 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
1927#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1928 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
1929 {
1930 pVCpu->hm.s.vmx.VmcsInfoNstGst.fSwitchedTo64on32Obsolete = false;
1931 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
1932 }
1933#endif
1934}
1935
1936
1937/**
1938 * The VM is being reset.
1939 *
1940 * For the HM component this means that any GDT/LDT/TSS monitors
1941 * needs to be removed.
1942 *
1943 * @param pVM The cross context VM structure.
1944 */
1945VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
1946{
1947 LogFlow(("HMR3Reset:\n"));
1948
1949 if (HMIsEnabled(pVM))
1950 hmR3DisableRawMode(pVM);
1951
1952 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1953 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
1954
1955 /* Clear all patch information. */
1956 pVM->hm.s.pGuestPatchMem = 0;
1957 pVM->hm.s.pFreeGuestPatchMem = 0;
1958 pVM->hm.s.cbGuestPatchMem = 0;
1959 pVM->hm.s.cPatches = 0;
1960 pVM->hm.s.PatchTree = 0;
1961 pVM->hm.s.fTPRPatchingActive = false;
1962 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
1963}
1964
1965
1966/**
1967 * Callback to patch a TPR instruction (vmmcall or mov cr8).
1968 *
1969 * @returns VBox strict status code.
1970 * @param pVM The cross context VM structure.
1971 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1972 * @param pvUser Unused.
1973 */
1974static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
1975{
1976 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
1977
1978 /* Only execute the handler on the VCPU the original patch request was issued. */
1979 if (pVCpu->idCpu != idCpu)
1980 return VINF_SUCCESS;
1981
1982 Log(("hmR3RemovePatches\n"));
1983 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
1984 {
1985 uint8_t abInstr[15];
1986 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
1987 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
1988 int rc;
1989
1990#ifdef LOG_ENABLED
1991 char szOutput[256];
1992 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
1993 szOutput, sizeof(szOutput), NULL);
1994 if (RT_SUCCESS(rc))
1995 Log(("Patched instr: %s\n", szOutput));
1996#endif
1997
1998 /* Check if the instruction is still the same. */
1999 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2000 if (rc != VINF_SUCCESS)
2001 {
2002 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2003 continue; /* swapped out or otherwise removed; skip it. */
2004 }
2005
2006 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2007 {
2008 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2009 continue; /* skip it. */
2010 }
2011
2012 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2013 AssertRC(rc);
2014
2015#ifdef LOG_ENABLED
2016 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2017 szOutput, sizeof(szOutput), NULL);
2018 if (RT_SUCCESS(rc))
2019 Log(("Original instr: %s\n", szOutput));
2020#endif
2021 }
2022 pVM->hm.s.cPatches = 0;
2023 pVM->hm.s.PatchTree = 0;
2024 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2025 pVM->hm.s.fTPRPatchingActive = false;
2026 return VINF_SUCCESS;
2027}
2028
2029
2030/**
2031 * Worker for enabling patching in a VT-x/AMD-V guest.
2032 *
2033 * @returns VBox status code.
2034 * @param pVM The cross context VM structure.
2035 * @param idCpu VCPU to execute hmR3RemovePatches on.
2036 * @param pPatchMem Patch memory range.
2037 * @param cbPatchMem Size of the memory range.
2038 */
2039static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2040{
2041 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2042 AssertRC(rc);
2043
2044 pVM->hm.s.pGuestPatchMem = pPatchMem;
2045 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2046 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2047 return VINF_SUCCESS;
2048}
2049
2050
2051/**
2052 * Enable patching in a VT-x/AMD-V guest
2053 *
2054 * @returns VBox status code.
2055 * @param pVM The cross context VM structure.
2056 * @param pPatchMem Patch memory range.
2057 * @param cbPatchMem Size of the memory range.
2058 */
2059VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2060{
2061 VM_ASSERT_EMT(pVM);
2062 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2063 if (pVM->cCpus > 1)
2064 {
2065 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2066 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2067 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2068 AssertRC(rc);
2069 return rc;
2070 }
2071 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2072}
2073
2074
2075/**
2076 * Disable patching in a VT-x/AMD-V guest.
2077 *
2078 * @returns VBox status code.
2079 * @param pVM The cross context VM structure.
2080 * @param pPatchMem Patch memory range.
2081 * @param cbPatchMem Size of the memory range.
2082 */
2083VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2084{
2085 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2086 RT_NOREF2(pPatchMem, cbPatchMem);
2087
2088 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2089 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2090
2091 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2092 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2093 (void *)(uintptr_t)VMMGetCpuId(pVM));
2094 AssertRC(rc);
2095
2096 pVM->hm.s.pGuestPatchMem = 0;
2097 pVM->hm.s.pFreeGuestPatchMem = 0;
2098 pVM->hm.s.cbGuestPatchMem = 0;
2099 pVM->hm.s.fTPRPatchingActive = false;
2100 return VINF_SUCCESS;
2101}
2102
2103
2104/**
2105 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2106 *
2107 * @returns VBox strict status code.
2108 * @param pVM The cross context VM structure.
2109 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2110 * @param pvUser User specified CPU context.
2111 *
2112 */
2113static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2114{
2115 /*
2116 * Only execute the handler on the VCPU the original patch request was
2117 * issued. (The other CPU(s) might not yet have switched to protected
2118 * mode, nor have the correct memory context.)
2119 */
2120 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2121 if (pVCpu->idCpu != idCpu)
2122 return VINF_SUCCESS;
2123
2124 /*
2125 * We're racing other VCPUs here, so don't try patch the instruction twice
2126 * and make sure there is still room for our patch record.
2127 */
2128 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2129 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2130 if (pPatch)
2131 {
2132 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2133 return VINF_SUCCESS;
2134 }
2135 uint32_t const idx = pVM->hm.s.cPatches;
2136 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2137 {
2138 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2139 return VINF_SUCCESS;
2140 }
2141 pPatch = &pVM->hm.s.aPatches[idx];
2142
2143 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2144
2145 /*
2146 * Disassembler the instruction and get cracking.
2147 */
2148 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2149 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2150 uint32_t cbOp;
2151 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2152 AssertRC(rc);
2153 if ( rc == VINF_SUCCESS
2154 && pDis->pCurInstr->uOpcode == OP_MOV
2155 && cbOp >= 3)
2156 {
2157 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2158
2159 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2160 AssertRC(rc);
2161
2162 pPatch->cbOp = cbOp;
2163
2164 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2165 {
2166 /* write. */
2167 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2168 {
2169 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2170 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2171 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2172 }
2173 else
2174 {
2175 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2176 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2177 pPatch->uSrcOperand = pDis->Param2.uValue;
2178 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2179 }
2180 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2181 AssertRC(rc);
2182
2183 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2184 pPatch->cbNewOp = sizeof(s_abVMMCall);
2185 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2186 }
2187 else
2188 {
2189 /*
2190 * TPR Read.
2191 *
2192 * Found:
2193 * mov eax, dword [fffe0080] (5 bytes)
2194 * Check if next instruction is:
2195 * shr eax, 4
2196 */
2197 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2198
2199 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2200 uint8_t const cbOpMmio = cbOp;
2201 uint64_t const uSavedRip = pCtx->rip;
2202
2203 pCtx->rip += cbOp;
2204 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2205 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2206 pCtx->rip = uSavedRip;
2207
2208 if ( rc == VINF_SUCCESS
2209 && pDis->pCurInstr->uOpcode == OP_SHR
2210 && pDis->Param1.fUse == DISUSE_REG_GEN32
2211 && pDis->Param1.Base.idxGenReg == idxMmioReg
2212 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2213 && pDis->Param2.uValue == 4
2214 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2215 {
2216 uint8_t abInstr[15];
2217
2218 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2219 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2220 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2221 AssertRC(rc);
2222
2223 pPatch->cbOp = cbOpMmio + cbOp;
2224
2225 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2226 abInstr[0] = 0xf0;
2227 abInstr[1] = 0x0f;
2228 abInstr[2] = 0x20;
2229 abInstr[3] = 0xc0 | pDis->Param1.Base.idxGenReg;
2230 for (unsigned i = 4; i < pPatch->cbOp; i++)
2231 abInstr[i] = 0x90; /* nop */
2232
2233 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2234 AssertRC(rc);
2235
2236 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2237 pPatch->cbNewOp = pPatch->cbOp;
2238 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2239
2240 Log(("Acceptable read/shr candidate!\n"));
2241 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2242 }
2243 else
2244 {
2245 pPatch->enmType = HMTPRINSTR_READ;
2246 pPatch->uDstOperand = idxMmioReg;
2247
2248 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2249 AssertRC(rc);
2250
2251 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2252 pPatch->cbNewOp = sizeof(s_abVMMCall);
2253 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2254 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2255 }
2256 }
2257
2258 pPatch->Core.Key = pCtx->eip;
2259 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2260 AssertRC(rc);
2261
2262 pVM->hm.s.cPatches++;
2263 return VINF_SUCCESS;
2264 }
2265
2266 /*
2267 * Save invalid patch, so we will not try again.
2268 */
2269 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2270 pPatch->Core.Key = pCtx->eip;
2271 pPatch->enmType = HMTPRINSTR_INVALID;
2272 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2273 AssertRC(rc);
2274 pVM->hm.s.cPatches++;
2275 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2276 return VINF_SUCCESS;
2277}
2278
2279
2280/**
2281 * Callback to patch a TPR instruction (jump to generated code).
2282 *
2283 * @returns VBox strict status code.
2284 * @param pVM The cross context VM structure.
2285 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2286 * @param pvUser User specified CPU context.
2287 *
2288 */
2289static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2290{
2291 /*
2292 * Only execute the handler on the VCPU the original patch request was
2293 * issued. (The other CPU(s) might not yet have switched to protected
2294 * mode, nor have the correct memory context.)
2295 */
2296 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2297 if (pVCpu->idCpu != idCpu)
2298 return VINF_SUCCESS;
2299
2300 /*
2301 * We're racing other VCPUs here, so don't try patch the instruction twice
2302 * and make sure there is still room for our patch record.
2303 */
2304 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2305 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2306 if (pPatch)
2307 {
2308 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2309 return VINF_SUCCESS;
2310 }
2311 uint32_t const idx = pVM->hm.s.cPatches;
2312 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2313 {
2314 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2315 return VINF_SUCCESS;
2316 }
2317 pPatch = &pVM->hm.s.aPatches[idx];
2318
2319 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2320 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2321
2322 /*
2323 * Disassemble the instruction and get cracking.
2324 */
2325 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2326 uint32_t cbOp;
2327 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2328 AssertRC(rc);
2329 if ( rc == VINF_SUCCESS
2330 && pDis->pCurInstr->uOpcode == OP_MOV
2331 && cbOp >= 5)
2332 {
2333 uint8_t aPatch[64];
2334 uint32_t off = 0;
2335
2336 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2337 AssertRC(rc);
2338
2339 pPatch->cbOp = cbOp;
2340 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2341
2342 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2343 {
2344 /*
2345 * TPR write:
2346 *
2347 * push ECX [51]
2348 * push EDX [52]
2349 * push EAX [50]
2350 * xor EDX,EDX [31 D2]
2351 * mov EAX,EAX [89 C0]
2352 * or
2353 * mov EAX,0000000CCh [B8 CC 00 00 00]
2354 * mov ECX,0C0000082h [B9 82 00 00 C0]
2355 * wrmsr [0F 30]
2356 * pop EAX [58]
2357 * pop EDX [5A]
2358 * pop ECX [59]
2359 * jmp return_address [E9 return_address]
2360 */
2361 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2362
2363 aPatch[off++] = 0x51; /* push ecx */
2364 aPatch[off++] = 0x52; /* push edx */
2365 if (!fUsesEax)
2366 aPatch[off++] = 0x50; /* push eax */
2367 aPatch[off++] = 0x31; /* xor edx, edx */
2368 aPatch[off++] = 0xd2;
2369 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2370 {
2371 if (!fUsesEax)
2372 {
2373 aPatch[off++] = 0x89; /* mov eax, src_reg */
2374 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2375 }
2376 }
2377 else
2378 {
2379 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2380 aPatch[off++] = 0xb8; /* mov eax, immediate */
2381 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2382 off += sizeof(uint32_t);
2383 }
2384 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2385 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2386 off += sizeof(uint32_t);
2387
2388 aPatch[off++] = 0x0f; /* wrmsr */
2389 aPatch[off++] = 0x30;
2390 if (!fUsesEax)
2391 aPatch[off++] = 0x58; /* pop eax */
2392 aPatch[off++] = 0x5a; /* pop edx */
2393 aPatch[off++] = 0x59; /* pop ecx */
2394 }
2395 else
2396 {
2397 /*
2398 * TPR read:
2399 *
2400 * push ECX [51]
2401 * push EDX [52]
2402 * push EAX [50]
2403 * mov ECX,0C0000082h [B9 82 00 00 C0]
2404 * rdmsr [0F 32]
2405 * mov EAX,EAX [89 C0]
2406 * pop EAX [58]
2407 * pop EDX [5A]
2408 * pop ECX [59]
2409 * jmp return_address [E9 return_address]
2410 */
2411 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2412
2413 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2414 aPatch[off++] = 0x51; /* push ecx */
2415 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2416 aPatch[off++] = 0x52; /* push edx */
2417 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2418 aPatch[off++] = 0x50; /* push eax */
2419
2420 aPatch[off++] = 0x31; /* xor edx, edx */
2421 aPatch[off++] = 0xd2;
2422
2423 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2424 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2425 off += sizeof(uint32_t);
2426
2427 aPatch[off++] = 0x0f; /* rdmsr */
2428 aPatch[off++] = 0x32;
2429
2430 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2431 {
2432 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2433 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2434 }
2435
2436 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2437 aPatch[off++] = 0x58; /* pop eax */
2438 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2439 aPatch[off++] = 0x5a; /* pop edx */
2440 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2441 aPatch[off++] = 0x59; /* pop ecx */
2442 }
2443 aPatch[off++] = 0xe9; /* jmp return_address */
2444 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2445 off += sizeof(RTRCUINTPTR);
2446
2447 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2448 {
2449 /* Write new code to the patch buffer. */
2450 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2451 AssertRC(rc);
2452
2453#ifdef LOG_ENABLED
2454 uint32_t cbCurInstr;
2455 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2456 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2457 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2458 {
2459 char szOutput[256];
2460 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2461 szOutput, sizeof(szOutput), &cbCurInstr);
2462 if (RT_SUCCESS(rc))
2463 Log(("Patch instr %s\n", szOutput));
2464 else
2465 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2466 }
2467#endif
2468
2469 pPatch->aNewOpcode[0] = 0xE9;
2470 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2471
2472 /* Overwrite the TPR instruction with a jump. */
2473 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2474 AssertRC(rc);
2475
2476 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2477
2478 pVM->hm.s.pFreeGuestPatchMem += off;
2479 pPatch->cbNewOp = 5;
2480
2481 pPatch->Core.Key = pCtx->eip;
2482 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2483 AssertRC(rc);
2484
2485 pVM->hm.s.cPatches++;
2486 pVM->hm.s.fTPRPatchingActive = true;
2487 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2488 return VINF_SUCCESS;
2489 }
2490
2491 Log(("Ran out of space in our patch buffer!\n"));
2492 }
2493 else
2494 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2495
2496
2497 /*
2498 * Save invalid patch, so we will not try again.
2499 */
2500 pPatch = &pVM->hm.s.aPatches[idx];
2501 pPatch->Core.Key = pCtx->eip;
2502 pPatch->enmType = HMTPRINSTR_INVALID;
2503 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2504 AssertRC(rc);
2505 pVM->hm.s.cPatches++;
2506 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2507 return VINF_SUCCESS;
2508}
2509
2510
2511/**
2512 * Attempt to patch TPR mmio instructions.
2513 *
2514 * @returns VBox status code.
2515 * @param pVM The cross context VM structure.
2516 * @param pVCpu The cross context virtual CPU structure.
2517 */
2518VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2519{
2520 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2521 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2522 (void *)(uintptr_t)pVCpu->idCpu);
2523 AssertRC(rc);
2524 return rc;
2525}
2526
2527
2528/**
2529 * Checks if we need to reschedule due to VMM device heap changes.
2530 *
2531 * @returns true if a reschedule is required, otherwise false.
2532 * @param pVM The cross context VM structure.
2533 * @param pCtx VM execution context.
2534 */
2535VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2536{
2537 /*
2538 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2539 * when the unrestricted guest execution feature is missing (VT-x only).
2540 */
2541 if ( pVM->hm.s.vmx.fEnabled
2542 && !pVM->hm.s.vmx.fUnrestrictedGuest
2543 && CPUMIsGuestInRealModeEx(pCtx)
2544 && !PDMVmmDevHeapIsEnabled(pVM))
2545 return true;
2546
2547 return false;
2548}
2549
2550
2551/**
2552 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2553 * event settings changes.
2554 *
2555 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2556 * function is just updating the VM globals.
2557 *
2558 * @param pVM The VM cross context VM structure.
2559 * @thread EMT(0)
2560 */
2561VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2562{
2563 /* Interrupts. */
2564 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2565 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2566
2567 /* CPU Exceptions. */
2568 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2569 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2570 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2571 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2572
2573 /* Common VM exits. */
2574 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2575 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2576 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2577 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2578
2579 /* Vendor specific VM exits. */
2580 if (HMR3IsVmxEnabled(pVM->pUVM))
2581 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2582 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2583 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2584 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2585 else
2586 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2587 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2588 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2589 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2590
2591 /* Done. */
2592 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2593}
2594
2595
2596/**
2597 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2598 *
2599 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2600 * per CPU settings.
2601 *
2602 * @param pVM The VM cross context VM structure.
2603 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2604 */
2605VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2606{
2607 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2608}
2609
2610
2611/**
2612 * Checks if we are currently using hardware acceleration.
2613 *
2614 * @returns true if hardware acceleration is being used, otherwise false.
2615 * @param pVCpu The cross context virtual CPU structure.
2616 */
2617VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2618{
2619 return pVCpu->hm.s.fActive;
2620}
2621
2622
2623/**
2624 * External interface for querying whether hardware acceleration is enabled.
2625 *
2626 * @returns true if VT-x or AMD-V is being used, otherwise false.
2627 * @param pUVM The user mode VM handle.
2628 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2629 */
2630VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2631{
2632 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2633 PVM pVM = pUVM->pVM;
2634 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2635 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2636}
2637
2638
2639/**
2640 * External interface for querying whether VT-x is being used.
2641 *
2642 * @returns true if VT-x is being used, otherwise false.
2643 * @param pUVM The user mode VM handle.
2644 * @sa HMR3IsSvmEnabled, HMIsEnabled
2645 */
2646VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2647{
2648 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2649 PVM pVM = pUVM->pVM;
2650 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2651 return pVM->hm.s.vmx.fEnabled
2652 && pVM->hm.s.vmx.fSupported
2653 && pVM->fHMEnabled;
2654}
2655
2656
2657/**
2658 * External interface for querying whether AMD-V is being used.
2659 *
2660 * @returns true if VT-x is being used, otherwise false.
2661 * @param pUVM The user mode VM handle.
2662 * @sa HMR3IsVmxEnabled, HMIsEnabled
2663 */
2664VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2665{
2666 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2667 PVM pVM = pUVM->pVM;
2668 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2669 return pVM->hm.s.svm.fEnabled
2670 && pVM->hm.s.svm.fSupported
2671 && pVM->fHMEnabled;
2672}
2673
2674
2675/**
2676 * Checks if we are currently using nested paging.
2677 *
2678 * @returns true if nested paging is being used, otherwise false.
2679 * @param pUVM The user mode VM handle.
2680 */
2681VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2682{
2683 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2684 PVM pVM = pUVM->pVM;
2685 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2686 return pVM->hm.s.fNestedPaging;
2687}
2688
2689
2690/**
2691 * Checks if virtualized APIC registers is enabled.
2692 *
2693 * When enabled this feature allows the hardware to access most of the
2694 * APIC registers in the virtual-APIC page without causing VM-exits. See
2695 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2696 *
2697 * @returns true if virtualized APIC registers is enabled, otherwise
2698 * false.
2699 * @param pUVM The user mode VM handle.
2700 */
2701VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
2702{
2703 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2704 PVM pVM = pUVM->pVM;
2705 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2706 return pVM->hm.s.fVirtApicRegs;
2707}
2708
2709
2710/**
2711 * Checks if APIC posted-interrupt processing is enabled.
2712 *
2713 * This returns whether we can deliver interrupts to the guest without
2714 * leaving guest-context by updating APIC state from host-context.
2715 *
2716 * @returns true if APIC posted-interrupt processing is enabled,
2717 * otherwise false.
2718 * @param pUVM The user mode VM handle.
2719 */
2720VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2721{
2722 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2723 PVM pVM = pUVM->pVM;
2724 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2725 return pVM->hm.s.fPostedIntrs;
2726}
2727
2728
2729/**
2730 * Checks if we are currently using VPID in VT-x mode.
2731 *
2732 * @returns true if VPID is being used, otherwise false.
2733 * @param pUVM The user mode VM handle.
2734 */
2735VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2736{
2737 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2738 PVM pVM = pUVM->pVM;
2739 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2740 return pVM->hm.s.vmx.fVpid;
2741}
2742
2743
2744/**
2745 * Checks if we are currently using VT-x unrestricted execution,
2746 * aka UX.
2747 *
2748 * @returns true if UX is being used, otherwise false.
2749 * @param pUVM The user mode VM handle.
2750 */
2751VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2752{
2753 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2754 PVM pVM = pUVM->pVM;
2755 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2756 return pVM->hm.s.vmx.fUnrestrictedGuest
2757 || pVM->hm.s.svm.fSupported;
2758}
2759
2760
2761/**
2762 * Checks if the VMX-preemption timer is being used.
2763 *
2764 * @returns true if the VMX-preemption timer is being used, otherwise false.
2765 * @param pVM The cross context VM structure.
2766 */
2767VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2768{
2769 return HMIsEnabled(pVM)
2770 && pVM->hm.s.vmx.fEnabled
2771 && pVM->hm.s.vmx.fUsePreemptTimer;
2772}
2773
2774
2775/**
2776 * Helper for HMR3CheckError to log VMCS controls to the release log.
2777 *
2778 * @param idCpu The Virtual CPU ID.
2779 * @param pVmcsInfo The VMCS info. object.
2780 */
2781static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2782{
2783 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2784 {
2785 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2786 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2787 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2788 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2789 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2790 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2791 }
2792 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2793 {
2794 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2795 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2796 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2797 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2798 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2799 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2800 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2801 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2802 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2803 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2804 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2805 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2806 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2807 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2808 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2809 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2810 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2811 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2812 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2813 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2814 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2815 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2816 }
2817 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2818 {
2819 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2820 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2821 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2822 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2823 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2824 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2825 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2826 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2827 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2828 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2829 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2830 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2831 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2832 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2833 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2834 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2835 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2836 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2837 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2838 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_VE );
2839 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2840 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2841 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2842 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPPTP_EPT );
2843 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2844 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2845 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2846 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2847 }
2848 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2849 {
2850 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2851 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2852 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2853 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2854 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2855 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2856 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2857 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2858 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2859 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2860 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2861 }
2862 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2863 {
2864 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2865 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2866 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2867 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
2868 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
2869 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
2870 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
2871 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
2872 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
2873 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
2874 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
2875 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
2876 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
2877 }
2878}
2879
2880
2881/**
2882 * Check fatal VT-x/AMD-V error and produce some meaningful
2883 * log release message.
2884 *
2885 * @param pVM The cross context VM structure.
2886 * @param iStatusCode VBox status code.
2887 */
2888VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
2889{
2890 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2891 {
2892 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
2893 * might be getting inaccurate values for non-guru'ing EMTs. */
2894 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2895 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
2896 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
2897 switch (iStatusCode)
2898 {
2899 case VERR_VMX_INVALID_VMCS_PTR:
2900 {
2901 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
2902 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
2903 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
2904 pVmcsInfo->HCPhysVmcs));
2905 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
2906 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2907 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2908 break;
2909 }
2910
2911 case VERR_VMX_UNABLE_TO_START_VM:
2912 {
2913 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
2914 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
2915 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
2916 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
2917
2918 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
2919 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
2920 {
2921 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2922 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2923 }
2924 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
2925 {
2926 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
2927 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
2928 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
2929 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
2930 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
2931 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
2932 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
2933 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
2934 }
2935 /** @todo Log VM-entry event injection control fields
2936 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
2937 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
2938 break;
2939 }
2940
2941 case VERR_VMX_INVALID_GUEST_STATE:
2942 {
2943 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
2944 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
2945 break;
2946 }
2947
2948 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
2949 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
2950 case VERR_VMX_INVALID_VMXON_PTR:
2951 case VERR_VMX_UNEXPECTED_EXIT:
2952 case VERR_VMX_INVALID_VMCS_FIELD:
2953 case VERR_SVM_UNKNOWN_EXIT:
2954 case VERR_SVM_UNEXPECTED_EXIT:
2955 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
2956 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
2957 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
2958 break;
2959 }
2960 }
2961
2962 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
2963 {
2964 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1));
2965 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0));
2966 }
2967 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
2968 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
2969}
2970
2971
2972/**
2973 * Execute state save operation.
2974 *
2975 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
2976 * is because we always save the VM state from ring-3 and thus most HM state
2977 * will be re-synced dynamically at runtime and don't need to be part of the VM
2978 * saved state.
2979 *
2980 * @returns VBox status code.
2981 * @param pVM The cross context VM structure.
2982 * @param pSSM SSM operation handle.
2983 */
2984static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
2985{
2986 int rc;
2987
2988 Log(("hmR3Save:\n"));
2989
2990 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2991 {
2992 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2993 Assert(!pVCpu->hm.s.Event.fPending);
2994 if (pVM->cpum.ro.GuestFeatures.fSvm)
2995 {
2996 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
2997 rc = SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
2998 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
2999 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3000 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3001 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3002 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3003 rc |= SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3004 rc |= SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3005 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3006 rc |= SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3007 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3008 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3009 rc |= SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3010 AssertRCReturn(rc, rc);
3011 }
3012 }
3013
3014 /* Save the guest patch data. */
3015 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3016 rc |= SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3017 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3018
3019 /* Store all the guest patch records too. */
3020 rc |= SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3021 AssertRCReturn(rc, rc);
3022
3023 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3024 {
3025 AssertCompileSize(HMTPRINSTR, 4);
3026 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3027 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3028 rc |= SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3029 rc |= SSMR3PutU32(pSSM, pPatch->cbOp);
3030 rc |= SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3031 rc |= SSMR3PutU32(pSSM, pPatch->cbNewOp);
3032 rc |= SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3033 rc |= SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3034 rc |= SSMR3PutU32(pSSM, pPatch->uDstOperand);
3035 rc |= SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3036 rc |= SSMR3PutU32(pSSM, pPatch->cFaults);
3037 AssertRCReturn(rc, rc);
3038 }
3039
3040 return VINF_SUCCESS;
3041}
3042
3043
3044/**
3045 * Execute state load operation.
3046 *
3047 * @returns VBox status code.
3048 * @param pVM The cross context VM structure.
3049 * @param pSSM SSM operation handle.
3050 * @param uVersion Data layout version.
3051 * @param uPass The data pass.
3052 */
3053static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3054{
3055 int rc;
3056
3057 LogFlowFunc(("uVersion=%u\n", uVersion));
3058 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3059
3060 /*
3061 * Validate version.
3062 */
3063 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3064 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3065 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3066 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3067 {
3068 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3069 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3070 }
3071
3072 /*
3073 * Load per-VCPU state.
3074 */
3075 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3076 {
3077 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3078 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3079 {
3080 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3081 if (pVM->cpum.ro.GuestFeatures.fSvm)
3082 {
3083 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3084 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3085 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3086 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3087 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3088 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3089 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3090 rc |= SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3091 rc |= SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3092 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3093 rc |= SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3094 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3095 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3096 rc |= SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3097 AssertRCReturn(rc, rc);
3098 }
3099 }
3100 else
3101 {
3102 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3103 rc = SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3104 rc |= SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3105 rc |= SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3106
3107 /* VMX fWasInRealMode related data. */
3108 uint32_t uDummy;
3109 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3110 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3111 rc |= SSMR3GetU32(pSSM, &uDummy); AssertRCReturn(rc, rc);
3112 AssertRCReturn(rc, rc);
3113 }
3114 }
3115
3116 /*
3117 * Load TPR patching data.
3118 */
3119 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3120 {
3121 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3122 rc |= SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3123 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3124
3125 /* Fetch all TPR patch records. */
3126 rc |= SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3127 AssertRCReturn(rc, rc);
3128 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3129 {
3130 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3131 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3132 rc |= SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3133 rc |= SSMR3GetU32(pSSM, &pPatch->cbOp);
3134 rc |= SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3135 rc |= SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3136 rc |= SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3137
3138 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3139 pVM->hm.s.fTPRPatchingActive = true;
3140 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3141
3142 rc |= SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3143 rc |= SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3144 rc |= SSMR3GetU32(pSSM, &pPatch->cFaults);
3145 rc |= SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3146 AssertRCReturn(rc, rc);
3147
3148 LogFlow(("hmR3Load: patch %d\n", i));
3149 LogFlow(("Key = %x\n", pPatch->Core.Key));
3150 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3151 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3152 LogFlow(("type = %d\n", pPatch->enmType));
3153 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3154 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3155 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3156 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3157
3158 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3159 AssertRCReturn(rc, rc);
3160 }
3161 }
3162
3163 return VINF_SUCCESS;
3164}
3165
3166
3167/**
3168 * Displays HM info.
3169 *
3170 * @param pVM The cross context VM structure.
3171 * @param pHlp The info helper functions.
3172 * @param pszArgs Arguments, ignored.
3173 */
3174static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3175{
3176 NOREF(pszArgs);
3177 PVMCPU pVCpu = VMMGetCpu(pVM);
3178 if (!pVCpu)
3179 pVCpu = pVM->apCpusR3[0];
3180
3181 if (HMIsEnabled(pVM))
3182 {
3183 if (pVM->hm.s.vmx.fSupported)
3184 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3185 else
3186 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3187 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3188 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3189 if (pVM->hm.s.vmx.fSupported)
3190 {
3191 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3192 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
3193 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
3194
3195 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3196 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3197 if (fRealOnV86Active)
3198 {
3199 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfo->RealMode.Eflags.u32);
3200 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfo->RealMode.AttrCS.u);
3201 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfo->RealMode.AttrSS.u);
3202 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfo->RealMode.AttrDS.u);
3203 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfo->RealMode.AttrES.u);
3204 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfo->RealMode.AttrFS.u);
3205 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfo->RealMode.AttrGS.u);
3206 }
3207 }
3208 }
3209 else
3210 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3211}
3212
3213
3214/**
3215 * Displays the HM pending event.
3216 *
3217 * @param pVM The cross context VM structure.
3218 * @param pHlp The info helper functions.
3219 * @param pszArgs Arguments, ignored.
3220 */
3221static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3222{
3223 NOREF(pszArgs);
3224 PVMCPU pVCpu = VMMGetCpu(pVM);
3225 if (!pVCpu)
3226 pVCpu = pVM->apCpusR3[0];
3227
3228 if (HMIsEnabled(pVM))
3229 {
3230 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3231 if (pVCpu->hm.s.Event.fPending)
3232 {
3233 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3234 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3235 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3236 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3237 }
3238 }
3239 else
3240 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3241}
3242
3243
3244/**
3245 * Displays the SVM nested-guest VMCB cache.
3246 *
3247 * @param pVM The cross context VM structure.
3248 * @param pHlp The info helper functions.
3249 * @param pszArgs Arguments, ignored.
3250 */
3251static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3252{
3253 NOREF(pszArgs);
3254 PVMCPU pVCpu = VMMGetCpu(pVM);
3255 if (!pVCpu)
3256 pVCpu = pVM->apCpusR3[0];
3257
3258 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3259 if ( fSvmEnabled
3260 && pVM->cpum.ro.GuestFeatures.fSvm)
3261 {
3262 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3263 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3264 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3265 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3266 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3267 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3268 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3269 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3270 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3271 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3272 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3273 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3274 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3275 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3276 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3277 }
3278 else
3279 {
3280 if (!fSvmEnabled)
3281 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3282 else
3283 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3284 }
3285}
3286
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette