VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 85672

Last change on this file since 85672 was 85121, checked in by vboxsync, 5 years ago

iprt/cdefs.h: Refactored the typedef use of DECLCALLBACK as well as DECLCALLBACKMEMBER to wrap the whole expression, similar to the DECLR?CALLBACKMEMBER macros. This allows adding a throw() at the end when compiling with the VC++ compiler to indicate that the callbacks won't throw anything, so we can stop supressing the C5039 warning about passing functions that can potential throw C++ exceptions to extern C code that can't necessarily cope with such (unwind,++). Introduced a few _EX variations that allows specifying different/no calling convention too, as that's handy when dynamically resolving host APIs. Fixed numerous places missing DECLCALLBACK and such. Left two angry @todos regarding use of CreateThread. bugref:9794

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 154.4 KB
Line 
1/* $Id: HM.cpp 85121 2020-07-08 19:33:26Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/mm.h>
44#include <VBox/vmm/em.h>
45#include <VBox/vmm/pdmapi.h>
46#include <VBox/vmm/pgm.h>
47#include <VBox/vmm/ssm.h>
48#include <VBox/vmm/gim.h>
49#include <VBox/vmm/trpm.h>
50#include <VBox/vmm/dbgf.h>
51#include <VBox/vmm/iom.h>
52#include <VBox/vmm/iem.h>
53#include <VBox/vmm/selm.h>
54#include <VBox/vmm/nem.h>
55#include <VBox/vmm/hm_vmx.h>
56#include <VBox/vmm/hm_svm.h>
57#include "HMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/err.h>
60#include <VBox/param.h>
61
62#include <iprt/assert.h>
63#include <VBox/log.h>
64#include <iprt/asm.h>
65#include <iprt/asm-amd64-x86.h>
66#include <iprt/env.h>
67#include <iprt/thread.h>
68
69
70/*********************************************************************************************************************************
71* Defined Constants And Macros *
72*********************************************************************************************************************************/
73/** @def HMVMX_REPORT_FEAT
74 * Reports VT-x feature to the release log.
75 *
76 * @param a_uAllowed1 Mask of allowed-1 feature bits.
77 * @param a_uAllowed0 Mask of allowed-0 feature bits.
78 * @param a_StrDesc The description string to report.
79 * @param a_Featflag Mask of the feature to report.
80 */
81#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
82 do { \
83 if ((a_uAllowed1) & (a_Featflag)) \
84 { \
85 if ((a_uAllowed0) & (a_Featflag)) \
86 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
87 else \
88 LogRel(("HM: " a_StrDesc "\n")); \
89 } \
90 else \
91 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
92 } while (0)
93
94/** @def HMVMX_REPORT_ALLOWED_FEAT
95 * Reports an allowed VT-x feature to the release log.
96 *
97 * @param a_uAllowed1 Mask of allowed-1 feature bits.
98 * @param a_StrDesc The description string to report.
99 * @param a_FeatFlag Mask of the feature to report.
100 */
101#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
102 do { \
103 if ((a_uAllowed1) & (a_FeatFlag)) \
104 LogRel(("HM: " a_StrDesc "\n")); \
105 else \
106 LogRel(("HM: " a_StrDesc " not supported\n")); \
107 } while (0)
108
109/** @def HMVMX_REPORT_MSR_CAP
110 * Reports MSR feature capability.
111 *
112 * @param a_MsrCaps Mask of MSR feature bits.
113 * @param a_StrDesc The description string to report.
114 * @param a_fCap Mask of the feature to report.
115 */
116#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
117 do { \
118 if ((a_MsrCaps) & (a_fCap)) \
119 LogRel(("HM: " a_StrDesc "\n")); \
120 } while (0)
121
122/** @def HMVMX_LOGREL_FEAT
123 * Dumps a feature flag from a bitmap of features to the release log.
124 *
125 * @param a_fVal The value of all the features.
126 * @param a_fMask The specific bitmask of the feature.
127 */
128#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
129 do { \
130 if ((a_fVal) & (a_fMask)) \
131 LogRel(("HM: %s\n", #a_fMask)); \
132 } while (0)
133
134
135/*********************************************************************************************************************************
136* Internal Functions *
137*********************************************************************************************************************************/
138static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
139static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
140static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
141static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
142static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
143static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144static int hmR3InitFinalizeR3(PVM pVM);
145static int hmR3InitFinalizeR0(PVM pVM);
146static int hmR3InitFinalizeR0Intel(PVM pVM);
147static int hmR3InitFinalizeR0Amd(PVM pVM);
148static int hmR3TermCPU(PVM pVM);
149
150
151#ifdef VBOX_WITH_STATISTICS
152/**
153 * Returns the name of the hardware exception.
154 *
155 * @returns The name of the hardware exception.
156 * @param uVector The exception vector.
157 */
158static const char *hmR3GetXcptName(uint8_t uVector)
159{
160 switch (uVector)
161 {
162 case X86_XCPT_DE: return "#DE";
163 case X86_XCPT_DB: return "#DB";
164 case X86_XCPT_NMI: return "#NMI";
165 case X86_XCPT_BP: return "#BP";
166 case X86_XCPT_OF: return "#OF";
167 case X86_XCPT_BR: return "#BR";
168 case X86_XCPT_UD: return "#UD";
169 case X86_XCPT_NM: return "#NM";
170 case X86_XCPT_DF: return "#DF";
171 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
172 case X86_XCPT_TS: return "#TS";
173 case X86_XCPT_NP: return "#NP";
174 case X86_XCPT_SS: return "#SS";
175 case X86_XCPT_GP: return "#GP";
176 case X86_XCPT_PF: return "#PF";
177 case X86_XCPT_MF: return "#MF";
178 case X86_XCPT_AC: return "#AC";
179 case X86_XCPT_MC: return "#MC";
180 case X86_XCPT_XF: return "#XF";
181 case X86_XCPT_VE: return "#VE";
182 case X86_XCPT_CP: return "#CP";
183 case X86_XCPT_VC: return "#VC";
184 case X86_XCPT_SX: return "#SX";
185 }
186 return "Reserved";
187}
188#endif /* VBOX_WITH_STATISTICS */
189
190
191/**
192 * Initializes the HM.
193 *
194 * This is the very first component to really do init after CFGM so that we can
195 * establish the predominant execution engine for the VM prior to initializing
196 * other modules. It takes care of NEM initialization if needed (HM disabled or
197 * not available in HW).
198 *
199 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
200 * hypervisor API via NEM, and then back on raw-mode if that isn't available
201 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
202 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
203 * X, OS/2 and others).
204 *
205 * Note that a lot of the set up work is done in ring-0 and thus postponed till
206 * the ring-3 and ring-0 callback to HMR3InitCompleted.
207 *
208 * @returns VBox status code.
209 * @param pVM The cross context VM structure.
210 *
211 * @remarks Be careful with what we call here, since most of the VMM components
212 * are uninitialized.
213 */
214VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
215{
216 LogFlowFunc(("\n"));
217
218 /*
219 * Assert alignment and sizes.
220 */
221 AssertCompileMemberAlignment(VM, hm.s, 32);
222 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
223
224 /*
225 * Register the saved state data unit.
226 */
227 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
228 NULL, NULL, NULL,
229 NULL, hmR3Save, NULL,
230 NULL, hmR3Load, NULL);
231 if (RT_FAILURE(rc))
232 return rc;
233
234 /*
235 * Register info handlers.
236 */
237 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
238 AssertRCReturn(rc, rc);
239
240 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
241 DBGFINFO_FLAGS_ALL_EMTS);
242 AssertRCReturn(rc, rc);
243
244 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
245 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
246 AssertRCReturn(rc, rc);
247
248 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
249 AssertRCReturn(rc, rc);
250
251 /*
252 * Read configuration.
253 */
254 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
255
256 /*
257 * Validate the HM settings.
258 */
259 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
260 "HMForced" /* implied 'true' these days */
261 "|UseNEMInstead"
262 "|FallbackToNEM"
263 "|EnableNestedPaging"
264 "|EnableUX"
265 "|EnableLargePages"
266 "|EnableVPID"
267 "|IBPBOnVMExit"
268 "|IBPBOnVMEntry"
269 "|SpecCtrlByHost"
270 "|L1DFlushOnSched"
271 "|L1DFlushOnVMEntry"
272 "|MDSClearOnSched"
273 "|MDSClearOnVMEntry"
274 "|TPRPatchingEnabled"
275 "|64bitEnabled"
276 "|Exclusive"
277 "|MaxResumeLoops"
278 "|VmxPleGap"
279 "|VmxPleWindow"
280 "|VmxLbr"
281 "|UseVmxPreemptTimer"
282 "|SvmPauseFilter"
283 "|SvmPauseFilterThreshold"
284 "|SvmVirtVmsaveVmload"
285 "|SvmVGif"
286 "|LovelyMesaDrvWorkaround",
287 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
288 if (RT_FAILURE(rc))
289 return rc;
290
291 /** @cfgm{/HM/HMForced, bool, false}
292 * Forces hardware virtualization, no falling back on raw-mode. HM must be
293 * enabled, i.e. /HMEnabled must be true. */
294 bool fHMForced;
295 AssertRelease(pVM->fHMEnabled);
296 fHMForced = true;
297
298 /** @cfgm{/HM/UseNEMInstead, bool, true}
299 * Don't use HM, use NEM instead. */
300 bool fUseNEMInstead = false;
301 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
302 AssertRCReturn(rc, rc);
303 if (fUseNEMInstead && pVM->fHMEnabled)
304 {
305 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
306 pVM->fHMEnabled = false;
307 }
308
309 /** @cfgm{/HM/FallbackToNEM, bool, true}
310 * Enables fallback on NEM. */
311 bool fFallbackToNEM = true;
312 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
313 AssertRCReturn(rc, rc);
314
315 /** @cfgm{/HM/EnableNestedPaging, bool, false}
316 * Enables nested paging (aka extended page tables). */
317 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
318 AssertRCReturn(rc, rc);
319
320 /** @cfgm{/HM/EnableUX, bool, true}
321 * Enables the VT-x unrestricted execution feature. */
322 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
323 AssertRCReturn(rc, rc);
324
325 /** @cfgm{/HM/EnableLargePages, bool, false}
326 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
327 * page table walking and maybe better TLB hit rate in some cases. */
328 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
329 AssertRCReturn(rc, rc);
330
331 /** @cfgm{/HM/EnableVPID, bool, false}
332 * Enables the VT-x VPID feature. */
333 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
334 AssertRCReturn(rc, rc);
335
336 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
337 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
338 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
339 AssertRCReturn(rc, rc);
340
341 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
342 * Enables AMD64 cpu features.
343 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
344 * already have the support. */
345#ifdef VBOX_WITH_64_BITS_GUESTS
346 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
347 AssertLogRelRCReturn(rc, rc);
348#else
349 pVM->hm.s.fAllow64BitGuests = false;
350#endif
351
352 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
353 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
354 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
355 * latest PAUSE instruction to be start of a new PAUSE loop.
356 */
357 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
358 AssertRCReturn(rc, rc);
359
360 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
361 * The pause-filter exiting window in TSC ticks. When the number of ticks
362 * between the current PAUSE instruction and first PAUSE of a loop exceeds
363 * VmxPleWindow, a VM-exit is triggered.
364 *
365 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
366 */
367 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
368 AssertRCReturn(rc, rc);
369
370 /** @cfgm{/HM/VmxLbr, bool, false}
371 * Whether to enable LBR for the guest. This is disabled by default as it's only
372 * useful while debugging and enabling it causes a noticeable performance hit. */
373 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbr, false);
374 AssertRCReturn(rc, rc);
375
376 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
377 * A counter that is decrement each time a PAUSE instruction is executed by the
378 * guest. When the counter is 0, a \#VMEXIT is triggered.
379 *
380 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
381 */
382 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
383 AssertRCReturn(rc, rc);
384
385 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
386 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
387 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
388 * PauseFilter count is reset to its initial value. However, if PAUSE is
389 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
390 * be triggered.
391 *
392 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
393 * activated.
394 */
395 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
396 AssertRCReturn(rc, rc);
397
398 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
399 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
400 * available. */
401 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
402 AssertRCReturn(rc, rc);
403
404 /** @cfgm{/HM/SvmVGif, bool, true}
405 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
406 * if it's available. */
407 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
408 AssertRCReturn(rc, rc);
409
410 /** @cfgm{/HM/SvmLbrVirt, bool, false}
411 * Whether to make use of the LBR virtualization feature of the CPU if it's
412 * available. This is disabled by default as it's only useful while debugging
413 * and enabling it causes a small hit to performance. */
414 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
415 AssertRCReturn(rc, rc);
416
417 /** @cfgm{/HM/Exclusive, bool}
418 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
419 * global init for each host CPU. If false, we do local init each time we wish
420 * to execute guest code.
421 *
422 * On Windows, default is false due to the higher risk of conflicts with other
423 * hypervisors.
424 *
425 * On Mac OS X, this setting is ignored since the code does not handle local
426 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
427 */
428#if defined(RT_OS_DARWIN)
429 pVM->hm.s.fGlobalInit = true;
430#else
431 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
432# if defined(RT_OS_WINDOWS)
433 false
434# else
435 true
436# endif
437 );
438 AssertLogRelRCReturn(rc, rc);
439#endif
440
441 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
442 * The number of times to resume guest execution before we forcibly return to
443 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
444 * determines the default value. */
445 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
446 AssertLogRelRCReturn(rc, rc);
447
448 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
449 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
450 * available. */
451 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
452 AssertLogRelRCReturn(rc, rc);
453
454 /** @cfgm{/HM/IBPBOnVMExit, bool}
455 * Costly paranoia setting. */
456 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
457 AssertLogRelRCReturn(rc, rc);
458
459 /** @cfgm{/HM/IBPBOnVMEntry, bool}
460 * Costly paranoia setting. */
461 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
462 AssertLogRelRCReturn(rc, rc);
463
464 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
465 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
466 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
467 AssertLogRelRCReturn(rc, rc);
468
469 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
470 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
471 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
472 AssertLogRelRCReturn(rc, rc);
473
474 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
475 if (pVM->hm.s.fL1dFlushOnVmEntry)
476 pVM->hm.s.fL1dFlushOnSched = false;
477
478 /** @cfgm{/HM/SpecCtrlByHost, bool}
479 * Another expensive paranoia setting. */
480 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
481 AssertLogRelRCReturn(rc, rc);
482
483 /** @cfgm{/HM/MDSClearOnSched, bool, true}
484 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
485 * ignored on CPUs that aren't affected. */
486 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
487 AssertLogRelRCReturn(rc, rc);
488
489 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
490 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
491 * ignored on CPUs that aren't affected. */
492 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
493 AssertLogRelRCReturn(rc, rc);
494
495 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
496 if (pVM->hm.s.fMdsClearOnVmEntry)
497 pVM->hm.s.fMdsClearOnSched = false;
498
499 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
500 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
501 * the hypervisor it is running under. */
502 bool f;
503 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &f, false);
504 AssertLogRelRCReturn(rc, rc);
505 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
506 {
507 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
508 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = f;
509 }
510
511 /*
512 * Check if VT-x or AMD-v support according to the users wishes.
513 */
514 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
515 * VERR_SVM_IN_USE. */
516 if (pVM->fHMEnabled)
517 {
518 uint32_t fCaps;
519 rc = SUPR3QueryVTCaps(&fCaps);
520 if (RT_SUCCESS(rc))
521 {
522 if (fCaps & SUPVTCAPS_AMD_V)
523 {
524 pVM->hm.s.svm.fSupported = true;
525 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
526 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
527 }
528 else if (fCaps & SUPVTCAPS_VT_X)
529 {
530 const char *pszWhy;
531 rc = SUPR3QueryVTxSupported(&pszWhy);
532 if (RT_SUCCESS(rc))
533 {
534 pVM->hm.s.vmx.fSupported = true;
535 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
536 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
537 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
538 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
539 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
540 }
541 else
542 {
543 /*
544 * Before failing, try fallback to NEM if we're allowed to do that.
545 */
546 pVM->fHMEnabled = false;
547 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
548 if (fFallbackToNEM)
549 {
550 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
551 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
552
553 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
554 if ( RT_SUCCESS(rc2)
555 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
556 rc = VINF_SUCCESS;
557 }
558 if (RT_FAILURE(rc))
559 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
560 }
561 }
562 else
563 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
564 VERR_INTERNAL_ERROR_5);
565
566 /*
567 * Disable nested paging and unrestricted guest execution now if they're
568 * configured so that CPUM can make decisions based on our configuration.
569 */
570 Assert(!pVM->hm.s.fNestedPaging);
571 if (pVM->hm.s.fAllowNestedPaging)
572 {
573 if (fCaps & SUPVTCAPS_NESTED_PAGING)
574 pVM->hm.s.fNestedPaging = true;
575 else
576 pVM->hm.s.fAllowNestedPaging = false;
577 }
578
579 if (fCaps & SUPVTCAPS_VT_X)
580 {
581 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
582 if (pVM->hm.s.vmx.fAllowUnrestricted)
583 {
584 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
585 && pVM->hm.s.fNestedPaging)
586 pVM->hm.s.vmx.fUnrestrictedGuest = true;
587 else
588 pVM->hm.s.vmx.fAllowUnrestricted = false;
589 }
590 }
591 }
592 else
593 {
594 const char *pszMsg;
595 switch (rc)
596 {
597 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
598 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
599 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
600 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
601 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
602 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
603 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
604 default:
605 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
606 }
607
608 /*
609 * Before failing, try fallback to NEM if we're allowed to do that.
610 */
611 pVM->fHMEnabled = false;
612 if (fFallbackToNEM)
613 {
614 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
615 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
616 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
617 if ( RT_SUCCESS(rc2)
618 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
619 rc = VINF_SUCCESS;
620 }
621 if (RT_FAILURE(rc))
622 return VM_SET_ERROR(pVM, rc, pszMsg);
623 }
624 }
625 else
626 {
627 /*
628 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
629 */
630 if (fUseNEMInstead)
631 {
632 rc = NEMR3Init(pVM, false /*fFallback*/, true);
633 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
634 if (RT_FAILURE(rc))
635 return rc;
636 }
637 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
638 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_RAW_MODE
639 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
640 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
641 }
642
643 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
644 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_RAW_MODE);
645 return VINF_SUCCESS;
646}
647
648
649/**
650 * Initializes HM components after ring-3 phase has been fully initialized.
651 *
652 * @returns VBox status code.
653 * @param pVM The cross context VM structure.
654 */
655static int hmR3InitFinalizeR3(PVM pVM)
656{
657 LogFlowFunc(("\n"));
658
659 if (!HMIsEnabled(pVM))
660 return VINF_SUCCESS;
661
662 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
663 {
664 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
665 pVCpu->hm.s.fActive = false;
666 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
667 }
668
669#ifdef VBOX_WITH_STATISTICS
670 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
671 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
672 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
673 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
674 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
675#endif
676
677 /*
678 * Statistics.
679 */
680 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
681 {
682 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
683 PHMCPU pHmCpu = &pVCpu->hm.s;
684 int rc;
685
686# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
687 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
688 AssertRC(rc); \
689 } while (0)
690# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
691 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
692
693#ifdef VBOX_WITH_STATISTICS
694
695 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
696 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
697 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
698 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
699 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
700 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
701 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
702 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
703 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
704 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
705 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
706 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
707 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
708 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
709# ifdef HM_PROFILE_EXIT_DISPATCH
710 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
711 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
712# endif
713#endif
714# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
715
716#ifdef VBOX_WITH_STATISTICS
717 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
718 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
719 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
720 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
721 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
722 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
723 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
724 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
725 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
726 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
727 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
728 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
729 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
730 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
731 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
732 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
733 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
734 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
735 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
736 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
737 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
738 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
739 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
740 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
741 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
742 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
743 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
744 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
745 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
746 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
747 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
748 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
749 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
750 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
751 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
752 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
753 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
754 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
755 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
756 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
757 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
758 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
759 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
760 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
761 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
762#endif
763 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
764 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
765#ifdef VBOX_WITH_STATISTICS
766 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
767 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
768 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
769 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
770
771 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
772 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
773 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
774 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
775 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
776 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
777 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
778 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
779 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
780 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
781 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
782 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
783#endif
784 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
785#ifdef VBOX_WITH_STATISTICS
786 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
787
788 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
789 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
790 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
791 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
792 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
793 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
794
795 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
796 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
797 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
798 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
799 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
800 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
801 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
802 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
803 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
804 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
805 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
806 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
807 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
808 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
809 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
810
811 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
812 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
813 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
814
815 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
816 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
817 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
818
819 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
820 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
821 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
822 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
823
824 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
825 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
826 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
827
828 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
829 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
830 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
831
832 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
833 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
834 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
835 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
836
837 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
838
839 /*
840 * Guest Exit reason stats.
841 */
842 pHmCpu->paStatExitReason = NULL;
843 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
844 (void **)&pHmCpu->paStatExitReason);
845 AssertRCReturn(rc, rc);
846
847 if (fCpuSupportsVmx)
848 {
849 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
850 {
851 const char *pszExitName = HMGetVmxExitName(j);
852 if (pszExitName)
853 {
854 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
855 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
856 AssertRCReturn(rc, rc);
857 }
858 }
859 }
860 else
861 {
862 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
863 {
864 const char *pszExitName = HMGetSvmExitName(j);
865 if (pszExitName)
866 {
867 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
868 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
869 AssertRC(rc);
870 }
871 }
872 }
873 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
874
875 pHmCpu->paStatExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatExitReason);
876 Assert(pHmCpu->paStatExitReasonR0 != NIL_RTR0PTR);
877
878#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
879 /*
880 * Nested-guest VM-exit reason stats.
881 */
882 pHmCpu->paStatNestedExitReason = NULL;
883 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM,
884 (void **)&pHmCpu->paStatNestedExitReason);
885 AssertRCReturn(rc, rc);
886 if (fCpuSupportsVmx)
887 {
888 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
889 {
890 const char *pszExitName = HMGetVmxExitName(j);
891 if (pszExitName)
892 {
893 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
894 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
895 AssertRC(rc);
896 }
897 }
898 }
899 else
900 {
901 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
902 {
903 const char *pszExitName = HMGetSvmExitName(j);
904 if (pszExitName)
905 {
906 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
907 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
908 AssertRC(rc);
909 }
910 }
911 }
912 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
913 pHmCpu->paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatNestedExitReason);
914 Assert(pHmCpu->paStatNestedExitReasonR0 != NIL_RTR0PTR);
915#endif
916
917 /*
918 * Injected interrupts stats.
919 */
920 {
921 uint32_t const cInterrupts = 0xff + 1;
922 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * cInterrupts, 8, MM_TAG_HM, (void **)&pHmCpu->paStatInjectedIrqs);
923 AssertRCReturn(rc, rc);
924 pHmCpu->paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatInjectedIrqs);
925 Assert(pHmCpu->paStatInjectedIrqsR0 != NIL_RTR0PTR);
926 for (unsigned j = 0; j < cInterrupts; j++)
927 {
928 char aszIntrName[64];
929 RTStrPrintf(&aszIntrName[0], sizeof(aszIntrName), "Interrupt %u", j);
930 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
931 STAMUNIT_OCCURENCES, aszIntrName,
932 "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
933 AssertRC(rc);
934 }
935 }
936
937 /*
938 * Injected exception stats.
939 */
940 {
941 uint32_t const cXcpts = X86_XCPT_LAST + 1;
942 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * cXcpts, 8, MM_TAG_HM, (void **)&pHmCpu->paStatInjectedXcpts);
943 AssertRCReturn(rc, rc);
944 pHmCpu->paStatInjectedXcptsR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatInjectedXcpts);
945 Assert(pHmCpu->paStatInjectedXcptsR0 != NIL_RTR0PTR);
946 for (unsigned j = 0; j < cXcpts; j++)
947 {
948 char aszXcptName[64];
949 RTStrPrintf(&aszXcptName[0], sizeof(aszXcptName), "%s exception", hmR3GetXcptName(j));
950 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
951 STAMUNIT_OCCURENCES, aszXcptName,
952 "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
953 AssertRC(rc);
954 }
955 }
956
957#endif /* VBOX_WITH_STATISTICS */
958#undef HM_REG_COUNTER
959#undef HM_REG_PROFILE
960#undef HM_REG_STAT
961 }
962
963 return VINF_SUCCESS;
964}
965
966
967/**
968 * Called when a init phase has completed.
969 *
970 * @returns VBox status code.
971 * @param pVM The cross context VM structure.
972 * @param enmWhat The phase that completed.
973 */
974VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
975{
976 switch (enmWhat)
977 {
978 case VMINITCOMPLETED_RING3:
979 return hmR3InitFinalizeR3(pVM);
980 case VMINITCOMPLETED_RING0:
981 return hmR3InitFinalizeR0(pVM);
982 default:
983 return VINF_SUCCESS;
984 }
985}
986
987
988/**
989 * Turns off normal raw mode features.
990 *
991 * @param pVM The cross context VM structure.
992 */
993static void hmR3DisableRawMode(PVM pVM)
994{
995/** @todo r=bird: HM shouldn't be doing this crap. */
996 /* Reinit the paging mode to force the new shadow mode. */
997 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
998 {
999 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1000 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1001 }
1002}
1003
1004
1005/**
1006 * Initialize VT-x or AMD-V.
1007 *
1008 * @returns VBox status code.
1009 * @param pVM The cross context VM structure.
1010 */
1011static int hmR3InitFinalizeR0(PVM pVM)
1012{
1013 int rc;
1014
1015 if (!HMIsEnabled(pVM))
1016 return VINF_SUCCESS;
1017
1018 /*
1019 * Hack to allow users to work around broken BIOSes that incorrectly set
1020 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1021 */
1022 if ( !pVM->hm.s.vmx.fSupported
1023 && !pVM->hm.s.svm.fSupported
1024 && pVM->hm.s.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1025 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1026 {
1027 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1028 pVM->hm.s.svm.fSupported = true;
1029 pVM->hm.s.svm.fIgnoreInUseError = true;
1030 pVM->hm.s.rcInit = VINF_SUCCESS;
1031 }
1032
1033 /*
1034 * Report ring-0 init errors.
1035 */
1036 if ( !pVM->hm.s.vmx.fSupported
1037 && !pVM->hm.s.svm.fSupported)
1038 {
1039 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.rcInit));
1040 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatCtrl));
1041 switch (pVM->hm.s.rcInit)
1042 {
1043 case VERR_VMX_IN_VMX_ROOT_MODE:
1044 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1045 case VERR_VMX_NO_VMX:
1046 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1047 case VERR_VMX_MSR_VMX_DISABLED:
1048 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1049 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1050 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1051 case VERR_VMX_MSR_LOCKING_FAILED:
1052 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1053 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1054 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1055 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1056 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1057
1058 case VERR_SVM_IN_USE:
1059 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1060 case VERR_SVM_NO_SVM:
1061 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1062 case VERR_SVM_DISABLED:
1063 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1064 }
1065 return VMSetError(pVM, pVM->hm.s.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.rcInit);
1066 }
1067
1068 /*
1069 * Enable VT-x or AMD-V on all host CPUs.
1070 */
1071 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1072 if (RT_FAILURE(rc))
1073 {
1074 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1075 HMR3CheckError(pVM, rc);
1076 return rc;
1077 }
1078
1079 /*
1080 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1081 * (Main should have taken care of this already)
1082 */
1083 if (!PDMHasIoApic(pVM))
1084 {
1085 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1086 pVM->hm.s.fTprPatchingAllowed = false;
1087 }
1088
1089 /*
1090 * Check if L1D flush is needed/possible.
1091 */
1092 if ( !pVM->cpum.ro.HostFeatures.fFlushCmd
1093 || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1094 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
1095 || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d
1096 || pVM->cpum.ro.HostFeatures.fArchRdclNo)
1097 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
1098
1099 /*
1100 * Check if MDS flush is needed/possible.
1101 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
1102 */
1103 if ( !pVM->cpum.ro.HostFeatures.fMdsClear
1104 || pVM->cpum.ro.HostFeatures.fArchMdsNo)
1105 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1106 else if ( ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
1107 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
1108 || ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
1109 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
1110 {
1111 if (!pVM->hm.s.fMdsClearOnSched)
1112 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
1113 pVM->hm.s.fMdsClearOnVmEntry = false;
1114 }
1115 else if ( pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1116 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
1117 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1118
1119 /*
1120 * Sync options.
1121 */
1122 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1123 * That will require a little bit of work, of course. */
1124 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1125 {
1126 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1127 PCPUMCTX pCpuCtx = &pVCpu->cpum.GstCtx;
1128 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1129 if (pVM->cpum.ro.HostFeatures.fIbpb)
1130 {
1131 if (pVM->hm.s.fIbpbOnVmExit)
1132 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1133 if (pVM->hm.s.fIbpbOnVmEntry)
1134 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1135 }
1136 if (pVM->cpum.ro.HostFeatures.fFlushCmd && pVM->hm.s.fL1dFlushOnVmEntry)
1137 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_L1D_ENTRY;
1138 if (pVM->cpum.ro.HostFeatures.fMdsClear && pVM->hm.s.fMdsClearOnVmEntry)
1139 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_MDS_ENTRY;
1140 if (idCpu == 0)
1141 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1142 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1143 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1144 }
1145
1146 /*
1147 * Do the vendor specific initialization
1148 *
1149 * Note! We disable release log buffering here since we're doing relatively
1150 * lot of logging and doesn't want to hit the disk with each LogRel
1151 * statement.
1152 */
1153 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1154 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1155 if (pVM->hm.s.vmx.fSupported)
1156 rc = hmR3InitFinalizeR0Intel(pVM);
1157 else
1158 rc = hmR3InitFinalizeR0Amd(pVM);
1159 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1160 : "HM: VT-x/AMD-V init method: Local\n"));
1161 RTLogRelSetBuffering(fOldBuffered);
1162 pVM->hm.s.fInitialized = true;
1163
1164 return rc;
1165}
1166
1167
1168/**
1169 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1170 */
1171static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1172{
1173 NOREF(pVM);
1174 NOREF(pvAllocation);
1175 NOREF(GCPhysAllocation);
1176}
1177
1178
1179/**
1180 * Returns a description of the VMCS (and associated regions') memory type given the
1181 * IA32_VMX_BASIC MSR.
1182 *
1183 * @returns The descriptive memory type.
1184 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1185 */
1186static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1187{
1188 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1189 switch (uMemType)
1190 {
1191 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1192 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1193 }
1194 return "Unknown";
1195}
1196
1197
1198/**
1199 * Returns a single-line description of all the activity-states supported by the CPU
1200 * given the IA32_VMX_MISC MSR.
1201 *
1202 * @returns All supported activity states.
1203 * @param uMsrMisc IA32_VMX_MISC MSR value.
1204 */
1205static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1206{
1207 static const char * const s_apszActStates[] =
1208 {
1209 "",
1210 " ( HLT )",
1211 " ( SHUTDOWN )",
1212 " ( HLT SHUTDOWN )",
1213 " ( SIPI_WAIT )",
1214 " ( HLT SIPI_WAIT )",
1215 " ( SHUTDOWN SIPI_WAIT )",
1216 " ( HLT SHUTDOWN SIPI_WAIT )"
1217 };
1218 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1219 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1220 return s_apszActStates[idxActStates];
1221}
1222
1223
1224/**
1225 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1226 *
1227 * @param fFeatMsr The feature control MSR value.
1228 */
1229static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1230{
1231 uint64_t const val = fFeatMsr;
1232 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1233 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1234 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1235 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1236 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1237 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1238 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1239 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1240 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1241 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1242 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1243 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1244 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1245 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1246 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1247 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1248 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1249}
1250
1251
1252/**
1253 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1254 *
1255 * @param uBasicMsr The VMX basic MSR value.
1256 */
1257static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1258{
1259 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1260 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1261 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1262 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1263 "< 4 GB" : "None"));
1264 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1265 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1266 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1267 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1268 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1269}
1270
1271
1272/**
1273 * Reports MSR_IA32_PINBASED_CTLS to the log.
1274 *
1275 * @param pVmxMsr Pointer to the VMX MSR.
1276 */
1277static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1278{
1279 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1280 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1281 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1282 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1283 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1284 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1285 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1286 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1287}
1288
1289
1290/**
1291 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1292 *
1293 * @param pVmxMsr Pointer to the VMX MSR.
1294 */
1295static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1296{
1297 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1298 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1299 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1300 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1301 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1302 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1303 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1304 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1305 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1306 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1307 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1308 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1309 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1310 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1311 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1312 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1313 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1314 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1315 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1316 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1317 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1318 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1319 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1320 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1321}
1322
1323
1324/**
1325 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1326 *
1327 * @param pVmxMsr Pointer to the VMX MSR.
1328 */
1329static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1330{
1331 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1332 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1333 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1334 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1335 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1336 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1337 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1338 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1339 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1340 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1341 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1342 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1343 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1344 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1345 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1346 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1347 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1348 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1349 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1350 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1351 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1352 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_VE", VMX_PROC_CTLS2_EPT_VE);
1353 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1354 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1355 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1356 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPPTP_EPT", VMX_PROC_CTLS2_SPPTP_EPT);
1357 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1358 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1359 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1360 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1361}
1362
1363
1364/**
1365 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1366 *
1367 * @param pVmxMsr Pointer to the VMX MSR.
1368 */
1369static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1370{
1371 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1372 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1373 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1374 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1375 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1376 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1377 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1378 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1380 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1381 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1382 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1383 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1384}
1385
1386
1387/**
1388 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1389 *
1390 * @param pVmxMsr Pointer to the VMX MSR.
1391 */
1392static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1393{
1394 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1395 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1396 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1397 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1398 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1399 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1400 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1401 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1402 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1403 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1404 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1405 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1406 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1407 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1408 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1409}
1410
1411
1412/**
1413 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1414 *
1415 * @param fCaps The VMX EPT/VPID capability MSR value.
1416 */
1417static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1418{
1419 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1420 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1421 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1422 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1423 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1424 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1425 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1426 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1427 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1428 HMVMX_REPORT_MSR_CAP(fCaps, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1429 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT);
1430 HMVMX_REPORT_MSR_CAP(fCaps, "SSS", MSR_IA32_VMX_EPT_VPID_CAP_SSS);
1431 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1432 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1433 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1434 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1435 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1436 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1437 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1438}
1439
1440
1441/**
1442 * Reports MSR_IA32_VMX_MISC MSR to the log.
1443 *
1444 * @param pVM Pointer to the VM.
1445 * @param fMisc The VMX misc. MSR value.
1446 */
1447static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1448{
1449 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1450 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1451 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1452 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1453 else
1454 {
1455 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1456 pVM->hm.s.vmx.cPreemptTimerShift));
1457 }
1458 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1459 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1460 hmR3VmxGetActivityStateAllDesc(fMisc)));
1461 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1462 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1463 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1464 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1465 VMX_MISC_MAX_MSRS(fMisc)));
1466 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1467 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1468 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1469 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1470}
1471
1472
1473/**
1474 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1475 *
1476 * @param uVmcsEnum The VMX VMCS enum MSR value.
1477 */
1478static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1479{
1480 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1481 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1482}
1483
1484
1485/**
1486 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1487 *
1488 * @param uVmFunc The VMX VMFUNC MSR value.
1489 */
1490static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1491{
1492 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1493 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1494}
1495
1496
1497/**
1498 * Reports VMX CR0, CR4 fixed MSRs.
1499 *
1500 * @param pMsrs Pointer to the VMX MSRs.
1501 */
1502static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1503{
1504 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1505 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1506 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1507 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1508}
1509
1510
1511/**
1512 * Finish VT-x initialization (after ring-0 init).
1513 *
1514 * @returns VBox status code.
1515 * @param pVM The cross context VM structure.
1516 */
1517static int hmR3InitFinalizeR0Intel(PVM pVM)
1518{
1519 int rc;
1520
1521 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1522 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatCtrl != 0, VERR_HM_IPE_4);
1523
1524 LogRel(("HM: Using VT-x implementation 3.0\n"));
1525 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1526 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1527 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostMsrEfer));
1528 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1529
1530 hmR3VmxReportFeatCtlMsr(pVM->hm.s.vmx.Msrs.u64FeatCtrl);
1531 hmR3VmxReportBasicMsr(pVM->hm.s.vmx.Msrs.u64Basic);
1532
1533 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.PinCtls);
1534 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.ProcCtls);
1535 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1536 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.vmx.Msrs.ProcCtls2);
1537
1538 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.vmx.Msrs.EntryCtls);
1539 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.vmx.Msrs.ExitCtls);
1540
1541 if (RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1542 {
1543 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1544 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TruePinCtls));
1545 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueProcCtls));
1546 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueEntryCtls));
1547 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueExitCtls));
1548 }
1549
1550 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.vmx.Msrs.u64Misc);
1551 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.vmx.Msrs.u64VmcsEnum);
1552 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1553 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.vmx.Msrs.u64EptVpidCaps);
1554 if (pVM->hm.s.vmx.Msrs.u64VmFunc)
1555 hmR3VmxReportVmFuncMsr(pVM->hm.s.vmx.Msrs.u64VmFunc);
1556 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.vmx.Msrs);
1557
1558 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1559 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1560 {
1561 PCVMXVMCSINFO pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1562 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1563 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1564 }
1565#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1566 if (pVM->cpum.ro.GuestFeatures.fVmx)
1567 {
1568 LogRel(("HM: Nested-guest:\n"));
1569 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1570 {
1571 PCVMXVMCSINFO pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1572 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1573 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1574 }
1575 }
1576#endif
1577
1578 /*
1579 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1580 */
1581 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1582 || (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1583 VERR_HM_IPE_1);
1584 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1585 || ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1586 && pVM->hm.s.fNestedPaging),
1587 VERR_HM_IPE_1);
1588
1589 /*
1590 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1591 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1592 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1593 */
1594 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1595 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1596 {
1597 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1598 LogRel(("HM: Disabled RDTSCP\n"));
1599 }
1600
1601 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1602 {
1603 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1604 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1605 if (RT_SUCCESS(rc))
1606 {
1607 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1608 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1609 esp. Figure 20-5.*/
1610 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1611 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1612
1613 /* Bit set to 0 means software interrupts are redirected to the
1614 8086 program interrupt handler rather than switching to
1615 protected-mode handler. */
1616 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1617
1618 /* Allow all port IO, so that port IO instructions do not cause
1619 exceptions and would instead cause a VM-exit (based on VT-x's
1620 IO bitmap which we currently configure to always cause an exit). */
1621 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1622 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1623
1624 /*
1625 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1626 * page table used in real and protected mode without paging with EPT.
1627 */
1628 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1629 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1630 {
1631 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1632 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1633 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1634 | X86_PDE4M_G;
1635 }
1636
1637 /* We convert it here every time as PCI regions could be reconfigured. */
1638 if (PDMVmmDevHeapIsEnabled(pVM))
1639 {
1640 RTGCPHYS GCPhys;
1641 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1642 AssertRCReturn(rc, rc);
1643 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1644
1645 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1646 AssertRCReturn(rc, rc);
1647 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1648 }
1649 }
1650 else
1651 {
1652 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1653 pVM->hm.s.vmx.pRealModeTSS = NULL;
1654 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1655 return VMSetError(pVM, rc, RT_SRC_POS,
1656 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1657 }
1658 }
1659
1660 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1661 : "HM: Guest support: 32-bit only\n"));
1662
1663 /*
1664 * Call ring-0 to set up the VM.
1665 */
1666 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1667 if (rc != VINF_SUCCESS)
1668 {
1669 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1670 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1671 {
1672 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1673 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1674 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1675 }
1676 HMR3CheckError(pVM, rc);
1677 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1678 }
1679
1680 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1681 LogRel(("HM: Enabled VMX\n"));
1682 pVM->hm.s.vmx.fEnabled = true;
1683
1684 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1685
1686 /*
1687 * Change the CPU features.
1688 */
1689 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1690 if (pVM->hm.s.fAllow64BitGuests)
1691 {
1692 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1693 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1694 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1695 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1696 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1697 }
1698 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1699 (we reuse the host EFER in the switcher). */
1700 /** @todo this needs to be fixed properly!! */
1701 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1702 {
1703 if (pVM->hm.s.vmx.u64HostMsrEfer & MSR_K6_EFER_NXE)
1704 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1705 else
1706 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1707 }
1708
1709 /*
1710 * Log configuration details.
1711 */
1712 if (pVM->hm.s.fNestedPaging)
1713 {
1714 LogRel(("HM: Enabled nested paging\n"));
1715 if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1716 LogRel(("HM: EPT flush type = Single context\n"));
1717 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1718 LogRel(("HM: EPT flush type = All contexts\n"));
1719 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1720 LogRel(("HM: EPT flush type = Not supported\n"));
1721 else
1722 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushEpt));
1723
1724 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1725 LogRel(("HM: Enabled unrestricted guest execution\n"));
1726
1727 if (pVM->hm.s.fLargePages)
1728 {
1729 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1730 PGMSetLargePageUsage(pVM, true);
1731 LogRel(("HM: Enabled large page support\n"));
1732 }
1733 }
1734 else
1735 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1736
1737 if (pVM->hm.s.vmx.fVpid)
1738 {
1739 LogRel(("HM: Enabled VPID\n"));
1740 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1741 LogRel(("HM: VPID flush type = Individual addresses\n"));
1742 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1743 LogRel(("HM: VPID flush type = Single context\n"));
1744 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1745 LogRel(("HM: VPID flush type = All contexts\n"));
1746 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1747 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1748 else
1749 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushVpid));
1750 }
1751 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1752 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1753
1754 if (pVM->hm.s.vmx.fUsePreemptTimer)
1755 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1756 else
1757 LogRel(("HM: Disabled VMX-preemption timer\n"));
1758
1759 if (pVM->hm.s.fVirtApicRegs)
1760 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1761
1762 if (pVM->hm.s.fPostedIntrs)
1763 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1764
1765 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1766 {
1767 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1768 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1769 }
1770
1771 return VINF_SUCCESS;
1772}
1773
1774
1775/**
1776 * Finish AMD-V initialization (after ring-0 init).
1777 *
1778 * @returns VBox status code.
1779 * @param pVM The cross context VM structure.
1780 */
1781static int hmR3InitFinalizeR0Amd(PVM pVM)
1782{
1783 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1784
1785 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1786
1787 uint32_t u32Family;
1788 uint32_t u32Model;
1789 uint32_t u32Stepping;
1790 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1791 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1792 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1793 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1794 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1795 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1796 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1797
1798 /*
1799 * Enumerate AMD-V features.
1800 */
1801 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1802 {
1803#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1804 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1805 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1806 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1807 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1808 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1809 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1810 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1811 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1812 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1813 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1814 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1815 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1816 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1817 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1818#undef HMSVM_REPORT_FEATURE
1819 };
1820
1821 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1822 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1823 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1824 {
1825 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1826 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1827 }
1828 if (fSvmFeatures)
1829 for (unsigned iBit = 0; iBit < 32; iBit++)
1830 if (RT_BIT_32(iBit) & fSvmFeatures)
1831 LogRel(("HM: Reserved bit %u\n", iBit));
1832
1833 /*
1834 * Nested paging is determined in HMR3Init, verify the sanity of that.
1835 */
1836 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1837 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1838 VERR_HM_IPE_1);
1839
1840#if 0
1841 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1842 * here. */
1843 if (RTR0IsPostIpiSupport())
1844 pVM->hm.s.fPostedIntrs = true;
1845#endif
1846
1847 /*
1848 * Call ring-0 to set up the VM.
1849 */
1850 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1851 if (rc != VINF_SUCCESS)
1852 {
1853 AssertMsgFailed(("%Rrc\n", rc));
1854 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1855 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1856 }
1857
1858 LogRel(("HM: Enabled SVM\n"));
1859 pVM->hm.s.svm.fEnabled = true;
1860
1861 if (pVM->hm.s.fNestedPaging)
1862 {
1863 LogRel(("HM: Enabled nested paging\n"));
1864
1865 /*
1866 * Enable large pages (2 MB) if applicable.
1867 */
1868 if (pVM->hm.s.fLargePages)
1869 {
1870 PGMSetLargePageUsage(pVM, true);
1871 LogRel(("HM: Enabled large page support\n"));
1872 }
1873 }
1874
1875 if (pVM->hm.s.fVirtApicRegs)
1876 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1877
1878 if (pVM->hm.s.fPostedIntrs)
1879 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1880
1881 hmR3DisableRawMode(pVM);
1882
1883 /*
1884 * Change the CPU features.
1885 */
1886 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1887 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1888 if (pVM->hm.s.fAllow64BitGuests)
1889 {
1890 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1891 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1892 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1893 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1894 }
1895 /* Turn on NXE if PAE has been enabled. */
1896 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1897 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1898
1899 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1900 : "HM: Disabled TPR patching\n"));
1901
1902 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1903 : "HM: Guest support: 32-bit only\n"));
1904 return VINF_SUCCESS;
1905}
1906
1907
1908/**
1909 * Applies relocations to data and code managed by this
1910 * component. This function will be called at init and
1911 * whenever the VMM need to relocate it self inside the GC.
1912 *
1913 * @param pVM The cross context VM structure.
1914 */
1915VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1916{
1917 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1918
1919 /* Fetch the current paging mode during the relocate callback during state loading. */
1920 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1921 {
1922 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1923 {
1924 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1925 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1926 }
1927 }
1928}
1929
1930
1931/**
1932 * Terminates the HM.
1933 *
1934 * Termination means cleaning up and freeing all resources,
1935 * the VM itself is, at this point, powered off or suspended.
1936 *
1937 * @returns VBox status code.
1938 * @param pVM The cross context VM structure.
1939 */
1940VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1941{
1942 if (pVM->hm.s.vmx.pRealModeTSS)
1943 {
1944 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1945 pVM->hm.s.vmx.pRealModeTSS = 0;
1946 }
1947 hmR3TermCPU(pVM);
1948 return 0;
1949}
1950
1951
1952/**
1953 * Terminates the per-VCPU HM.
1954 *
1955 * @returns VBox status code.
1956 * @param pVM The cross context VM structure.
1957 */
1958static int hmR3TermCPU(PVM pVM)
1959{
1960#ifdef VBOX_WITH_STATISTICS
1961 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1962 {
1963 PVMCPU pVCpu = pVM->apCpusR3[idCpu]; NOREF(pVCpu);
1964 if (pVCpu->hm.s.paStatExitReason)
1965 {
1966 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1967 pVCpu->hm.s.paStatExitReason = NULL;
1968 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1969 }
1970 if (pVCpu->hm.s.paStatInjectedIrqs)
1971 {
1972 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1973 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1974 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1975 }
1976 if (pVCpu->hm.s.paStatInjectedXcpts)
1977 {
1978 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedXcpts);
1979 pVCpu->hm.s.paStatInjectedXcpts = NULL;
1980 pVCpu->hm.s.paStatInjectedXcptsR0 = NIL_RTR0PTR;
1981 }
1982# if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
1983 if (pVCpu->hm.s.paStatNestedExitReason)
1984 {
1985 MMHyperFree(pVM, pVCpu->hm.s.paStatNestedExitReason);
1986 pVCpu->hm.s.paStatNestedExitReason = NULL;
1987 pVCpu->hm.s.paStatNestedExitReasonR0 = NIL_RTR0PTR;
1988 }
1989# endif
1990 }
1991#else
1992 RT_NOREF(pVM);
1993#endif
1994 return VINF_SUCCESS;
1995}
1996
1997
1998/**
1999 * Resets a virtual CPU.
2000 *
2001 * Used by HMR3Reset and CPU hot plugging.
2002 *
2003 * @param pVCpu The cross context virtual CPU structure to reset.
2004 */
2005VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2006{
2007 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2008 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2009 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2010
2011 pVCpu->hm.s.fActive = false;
2012 pVCpu->hm.s.Event.fPending = false;
2013 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2014 pVCpu->hm.s.vmx.VmcsInfo.fSwitchedTo64on32Obsolete = false;
2015 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2016#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2017 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2018 {
2019 pVCpu->hm.s.vmx.VmcsInfoNstGst.fSwitchedTo64on32Obsolete = false;
2020 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2021 }
2022#endif
2023}
2024
2025
2026/**
2027 * The VM is being reset.
2028 *
2029 * For the HM component this means that any GDT/LDT/TSS monitors
2030 * needs to be removed.
2031 *
2032 * @param pVM The cross context VM structure.
2033 */
2034VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2035{
2036 LogFlow(("HMR3Reset:\n"));
2037
2038 if (HMIsEnabled(pVM))
2039 hmR3DisableRawMode(pVM);
2040
2041 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2042 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2043
2044 /* Clear all patch information. */
2045 pVM->hm.s.pGuestPatchMem = 0;
2046 pVM->hm.s.pFreeGuestPatchMem = 0;
2047 pVM->hm.s.cbGuestPatchMem = 0;
2048 pVM->hm.s.cPatches = 0;
2049 pVM->hm.s.PatchTree = 0;
2050 pVM->hm.s.fTPRPatchingActive = false;
2051 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2052}
2053
2054
2055/**
2056 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2057 *
2058 * @returns VBox strict status code.
2059 * @param pVM The cross context VM structure.
2060 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2061 * @param pvUser Unused.
2062 */
2063static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2064{
2065 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2066
2067 /* Only execute the handler on the VCPU the original patch request was issued. */
2068 if (pVCpu->idCpu != idCpu)
2069 return VINF_SUCCESS;
2070
2071 Log(("hmR3RemovePatches\n"));
2072 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2073 {
2074 uint8_t abInstr[15];
2075 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2076 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2077 int rc;
2078
2079#ifdef LOG_ENABLED
2080 char szOutput[256];
2081 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2082 szOutput, sizeof(szOutput), NULL);
2083 if (RT_SUCCESS(rc))
2084 Log(("Patched instr: %s\n", szOutput));
2085#endif
2086
2087 /* Check if the instruction is still the same. */
2088 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2089 if (rc != VINF_SUCCESS)
2090 {
2091 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2092 continue; /* swapped out or otherwise removed; skip it. */
2093 }
2094
2095 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2096 {
2097 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2098 continue; /* skip it. */
2099 }
2100
2101 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2102 AssertRC(rc);
2103
2104#ifdef LOG_ENABLED
2105 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2106 szOutput, sizeof(szOutput), NULL);
2107 if (RT_SUCCESS(rc))
2108 Log(("Original instr: %s\n", szOutput));
2109#endif
2110 }
2111 pVM->hm.s.cPatches = 0;
2112 pVM->hm.s.PatchTree = 0;
2113 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2114 pVM->hm.s.fTPRPatchingActive = false;
2115 return VINF_SUCCESS;
2116}
2117
2118
2119/**
2120 * Worker for enabling patching in a VT-x/AMD-V guest.
2121 *
2122 * @returns VBox status code.
2123 * @param pVM The cross context VM structure.
2124 * @param idCpu VCPU to execute hmR3RemovePatches on.
2125 * @param pPatchMem Patch memory range.
2126 * @param cbPatchMem Size of the memory range.
2127 */
2128static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2129{
2130 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2131 AssertRC(rc);
2132
2133 pVM->hm.s.pGuestPatchMem = pPatchMem;
2134 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2135 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2136 return VINF_SUCCESS;
2137}
2138
2139
2140/**
2141 * Enable patching in a VT-x/AMD-V guest
2142 *
2143 * @returns VBox status code.
2144 * @param pVM The cross context VM structure.
2145 * @param pPatchMem Patch memory range.
2146 * @param cbPatchMem Size of the memory range.
2147 */
2148VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2149{
2150 VM_ASSERT_EMT(pVM);
2151 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2152 if (pVM->cCpus > 1)
2153 {
2154 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2155 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2156 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2157 AssertRC(rc);
2158 return rc;
2159 }
2160 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2161}
2162
2163
2164/**
2165 * Disable patching in a VT-x/AMD-V guest.
2166 *
2167 * @returns VBox status code.
2168 * @param pVM The cross context VM structure.
2169 * @param pPatchMem Patch memory range.
2170 * @param cbPatchMem Size of the memory range.
2171 */
2172VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2173{
2174 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2175 RT_NOREF2(pPatchMem, cbPatchMem);
2176
2177 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2178 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2179
2180 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2181 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2182 (void *)(uintptr_t)VMMGetCpuId(pVM));
2183 AssertRC(rc);
2184
2185 pVM->hm.s.pGuestPatchMem = 0;
2186 pVM->hm.s.pFreeGuestPatchMem = 0;
2187 pVM->hm.s.cbGuestPatchMem = 0;
2188 pVM->hm.s.fTPRPatchingActive = false;
2189 return VINF_SUCCESS;
2190}
2191
2192
2193/**
2194 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2195 *
2196 * @returns VBox strict status code.
2197 * @param pVM The cross context VM structure.
2198 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2199 * @param pvUser User specified CPU context.
2200 *
2201 */
2202static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2203{
2204 /*
2205 * Only execute the handler on the VCPU the original patch request was
2206 * issued. (The other CPU(s) might not yet have switched to protected
2207 * mode, nor have the correct memory context.)
2208 */
2209 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2210 if (pVCpu->idCpu != idCpu)
2211 return VINF_SUCCESS;
2212
2213 /*
2214 * We're racing other VCPUs here, so don't try patch the instruction twice
2215 * and make sure there is still room for our patch record.
2216 */
2217 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2218 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2219 if (pPatch)
2220 {
2221 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2222 return VINF_SUCCESS;
2223 }
2224 uint32_t const idx = pVM->hm.s.cPatches;
2225 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2226 {
2227 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2228 return VINF_SUCCESS;
2229 }
2230 pPatch = &pVM->hm.s.aPatches[idx];
2231
2232 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2233
2234 /*
2235 * Disassembler the instruction and get cracking.
2236 */
2237 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2238 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2239 uint32_t cbOp;
2240 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2241 AssertRC(rc);
2242 if ( rc == VINF_SUCCESS
2243 && pDis->pCurInstr->uOpcode == OP_MOV
2244 && cbOp >= 3)
2245 {
2246 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2247
2248 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2249 AssertRC(rc);
2250
2251 pPatch->cbOp = cbOp;
2252
2253 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2254 {
2255 /* write. */
2256 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2257 {
2258 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2259 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2260 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2261 }
2262 else
2263 {
2264 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2265 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2266 pPatch->uSrcOperand = pDis->Param2.uValue;
2267 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2268 }
2269 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2270 AssertRC(rc);
2271
2272 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2273 pPatch->cbNewOp = sizeof(s_abVMMCall);
2274 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2275 }
2276 else
2277 {
2278 /*
2279 * TPR Read.
2280 *
2281 * Found:
2282 * mov eax, dword [fffe0080] (5 bytes)
2283 * Check if next instruction is:
2284 * shr eax, 4
2285 */
2286 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2287
2288 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2289 uint8_t const cbOpMmio = cbOp;
2290 uint64_t const uSavedRip = pCtx->rip;
2291
2292 pCtx->rip += cbOp;
2293 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2294 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2295 pCtx->rip = uSavedRip;
2296
2297 if ( rc == VINF_SUCCESS
2298 && pDis->pCurInstr->uOpcode == OP_SHR
2299 && pDis->Param1.fUse == DISUSE_REG_GEN32
2300 && pDis->Param1.Base.idxGenReg == idxMmioReg
2301 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2302 && pDis->Param2.uValue == 4
2303 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2304 {
2305 uint8_t abInstr[15];
2306
2307 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2308 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2309 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2310 AssertRC(rc);
2311
2312 pPatch->cbOp = cbOpMmio + cbOp;
2313
2314 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2315 abInstr[0] = 0xf0;
2316 abInstr[1] = 0x0f;
2317 abInstr[2] = 0x20;
2318 abInstr[3] = 0xc0 | pDis->Param1.Base.idxGenReg;
2319 for (unsigned i = 4; i < pPatch->cbOp; i++)
2320 abInstr[i] = 0x90; /* nop */
2321
2322 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2323 AssertRC(rc);
2324
2325 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2326 pPatch->cbNewOp = pPatch->cbOp;
2327 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2328
2329 Log(("Acceptable read/shr candidate!\n"));
2330 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2331 }
2332 else
2333 {
2334 pPatch->enmType = HMTPRINSTR_READ;
2335 pPatch->uDstOperand = idxMmioReg;
2336
2337 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2338 AssertRC(rc);
2339
2340 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2341 pPatch->cbNewOp = sizeof(s_abVMMCall);
2342 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2343 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2344 }
2345 }
2346
2347 pPatch->Core.Key = pCtx->eip;
2348 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2349 AssertRC(rc);
2350
2351 pVM->hm.s.cPatches++;
2352 return VINF_SUCCESS;
2353 }
2354
2355 /*
2356 * Save invalid patch, so we will not try again.
2357 */
2358 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2359 pPatch->Core.Key = pCtx->eip;
2360 pPatch->enmType = HMTPRINSTR_INVALID;
2361 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2362 AssertRC(rc);
2363 pVM->hm.s.cPatches++;
2364 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2365 return VINF_SUCCESS;
2366}
2367
2368
2369/**
2370 * Callback to patch a TPR instruction (jump to generated code).
2371 *
2372 * @returns VBox strict status code.
2373 * @param pVM The cross context VM structure.
2374 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2375 * @param pvUser User specified CPU context.
2376 *
2377 */
2378static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2379{
2380 /*
2381 * Only execute the handler on the VCPU the original patch request was
2382 * issued. (The other CPU(s) might not yet have switched to protected
2383 * mode, nor have the correct memory context.)
2384 */
2385 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2386 if (pVCpu->idCpu != idCpu)
2387 return VINF_SUCCESS;
2388
2389 /*
2390 * We're racing other VCPUs here, so don't try patch the instruction twice
2391 * and make sure there is still room for our patch record.
2392 */
2393 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2394 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2395 if (pPatch)
2396 {
2397 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2398 return VINF_SUCCESS;
2399 }
2400 uint32_t const idx = pVM->hm.s.cPatches;
2401 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2402 {
2403 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2404 return VINF_SUCCESS;
2405 }
2406 pPatch = &pVM->hm.s.aPatches[idx];
2407
2408 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2409 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2410
2411 /*
2412 * Disassemble the instruction and get cracking.
2413 */
2414 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2415 uint32_t cbOp;
2416 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2417 AssertRC(rc);
2418 if ( rc == VINF_SUCCESS
2419 && pDis->pCurInstr->uOpcode == OP_MOV
2420 && cbOp >= 5)
2421 {
2422 uint8_t aPatch[64];
2423 uint32_t off = 0;
2424
2425 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2426 AssertRC(rc);
2427
2428 pPatch->cbOp = cbOp;
2429 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2430
2431 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2432 {
2433 /*
2434 * TPR write:
2435 *
2436 * push ECX [51]
2437 * push EDX [52]
2438 * push EAX [50]
2439 * xor EDX,EDX [31 D2]
2440 * mov EAX,EAX [89 C0]
2441 * or
2442 * mov EAX,0000000CCh [B8 CC 00 00 00]
2443 * mov ECX,0C0000082h [B9 82 00 00 C0]
2444 * wrmsr [0F 30]
2445 * pop EAX [58]
2446 * pop EDX [5A]
2447 * pop ECX [59]
2448 * jmp return_address [E9 return_address]
2449 */
2450 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2451
2452 aPatch[off++] = 0x51; /* push ecx */
2453 aPatch[off++] = 0x52; /* push edx */
2454 if (!fUsesEax)
2455 aPatch[off++] = 0x50; /* push eax */
2456 aPatch[off++] = 0x31; /* xor edx, edx */
2457 aPatch[off++] = 0xd2;
2458 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2459 {
2460 if (!fUsesEax)
2461 {
2462 aPatch[off++] = 0x89; /* mov eax, src_reg */
2463 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2464 }
2465 }
2466 else
2467 {
2468 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2469 aPatch[off++] = 0xb8; /* mov eax, immediate */
2470 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2471 off += sizeof(uint32_t);
2472 }
2473 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2474 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2475 off += sizeof(uint32_t);
2476
2477 aPatch[off++] = 0x0f; /* wrmsr */
2478 aPatch[off++] = 0x30;
2479 if (!fUsesEax)
2480 aPatch[off++] = 0x58; /* pop eax */
2481 aPatch[off++] = 0x5a; /* pop edx */
2482 aPatch[off++] = 0x59; /* pop ecx */
2483 }
2484 else
2485 {
2486 /*
2487 * TPR read:
2488 *
2489 * push ECX [51]
2490 * push EDX [52]
2491 * push EAX [50]
2492 * mov ECX,0C0000082h [B9 82 00 00 C0]
2493 * rdmsr [0F 32]
2494 * mov EAX,EAX [89 C0]
2495 * pop EAX [58]
2496 * pop EDX [5A]
2497 * pop ECX [59]
2498 * jmp return_address [E9 return_address]
2499 */
2500 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2501
2502 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2503 aPatch[off++] = 0x51; /* push ecx */
2504 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2505 aPatch[off++] = 0x52; /* push edx */
2506 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2507 aPatch[off++] = 0x50; /* push eax */
2508
2509 aPatch[off++] = 0x31; /* xor edx, edx */
2510 aPatch[off++] = 0xd2;
2511
2512 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2513 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2514 off += sizeof(uint32_t);
2515
2516 aPatch[off++] = 0x0f; /* rdmsr */
2517 aPatch[off++] = 0x32;
2518
2519 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2520 {
2521 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2522 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2523 }
2524
2525 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2526 aPatch[off++] = 0x58; /* pop eax */
2527 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2528 aPatch[off++] = 0x5a; /* pop edx */
2529 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2530 aPatch[off++] = 0x59; /* pop ecx */
2531 }
2532 aPatch[off++] = 0xe9; /* jmp return_address */
2533 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2534 off += sizeof(RTRCUINTPTR);
2535
2536 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2537 {
2538 /* Write new code to the patch buffer. */
2539 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2540 AssertRC(rc);
2541
2542#ifdef LOG_ENABLED
2543 uint32_t cbCurInstr;
2544 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2545 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2546 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2547 {
2548 char szOutput[256];
2549 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2550 szOutput, sizeof(szOutput), &cbCurInstr);
2551 if (RT_SUCCESS(rc))
2552 Log(("Patch instr %s\n", szOutput));
2553 else
2554 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2555 }
2556#endif
2557
2558 pPatch->aNewOpcode[0] = 0xE9;
2559 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2560
2561 /* Overwrite the TPR instruction with a jump. */
2562 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2563 AssertRC(rc);
2564
2565 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2566
2567 pVM->hm.s.pFreeGuestPatchMem += off;
2568 pPatch->cbNewOp = 5;
2569
2570 pPatch->Core.Key = pCtx->eip;
2571 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2572 AssertRC(rc);
2573
2574 pVM->hm.s.cPatches++;
2575 pVM->hm.s.fTPRPatchingActive = true;
2576 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2577 return VINF_SUCCESS;
2578 }
2579
2580 Log(("Ran out of space in our patch buffer!\n"));
2581 }
2582 else
2583 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2584
2585
2586 /*
2587 * Save invalid patch, so we will not try again.
2588 */
2589 pPatch = &pVM->hm.s.aPatches[idx];
2590 pPatch->Core.Key = pCtx->eip;
2591 pPatch->enmType = HMTPRINSTR_INVALID;
2592 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2593 AssertRC(rc);
2594 pVM->hm.s.cPatches++;
2595 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2596 return VINF_SUCCESS;
2597}
2598
2599
2600/**
2601 * Attempt to patch TPR mmio instructions.
2602 *
2603 * @returns VBox status code.
2604 * @param pVM The cross context VM structure.
2605 * @param pVCpu The cross context virtual CPU structure.
2606 */
2607VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2608{
2609 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2610 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2611 (void *)(uintptr_t)pVCpu->idCpu);
2612 AssertRC(rc);
2613 return rc;
2614}
2615
2616
2617/**
2618 * Checks if we need to reschedule due to VMM device heap changes.
2619 *
2620 * @returns true if a reschedule is required, otherwise false.
2621 * @param pVM The cross context VM structure.
2622 * @param pCtx VM execution context.
2623 */
2624VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2625{
2626 /*
2627 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2628 * when the unrestricted guest execution feature is missing (VT-x only).
2629 */
2630 if ( pVM->hm.s.vmx.fEnabled
2631 && !pVM->hm.s.vmx.fUnrestrictedGuest
2632 && CPUMIsGuestInRealModeEx(pCtx)
2633 && !PDMVmmDevHeapIsEnabled(pVM))
2634 return true;
2635
2636 return false;
2637}
2638
2639
2640/**
2641 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2642 * event settings changes.
2643 *
2644 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2645 * function is just updating the VM globals.
2646 *
2647 * @param pVM The VM cross context VM structure.
2648 * @thread EMT(0)
2649 */
2650VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2651{
2652 /* Interrupts. */
2653 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2654 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2655
2656 /* CPU Exceptions. */
2657 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2658 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2659 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2660 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2661
2662 /* Common VM exits. */
2663 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2664 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2665 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2666 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2667
2668 /* Vendor specific VM exits. */
2669 if (HMR3IsVmxEnabled(pVM->pUVM))
2670 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2671 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2672 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2673 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2674 else
2675 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2676 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2677 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2678 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2679
2680 /* Done. */
2681 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2682}
2683
2684
2685/**
2686 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2687 *
2688 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2689 * per CPU settings.
2690 *
2691 * @param pVM The VM cross context VM structure.
2692 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2693 */
2694VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2695{
2696 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2697}
2698
2699
2700/**
2701 * Checks if we are currently using hardware acceleration.
2702 *
2703 * @returns true if hardware acceleration is being used, otherwise false.
2704 * @param pVCpu The cross context virtual CPU structure.
2705 */
2706VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2707{
2708 return pVCpu->hm.s.fActive;
2709}
2710
2711
2712/**
2713 * External interface for querying whether hardware acceleration is enabled.
2714 *
2715 * @returns true if VT-x or AMD-V is being used, otherwise false.
2716 * @param pUVM The user mode VM handle.
2717 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2718 */
2719VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2720{
2721 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2722 PVM pVM = pUVM->pVM;
2723 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2724 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2725}
2726
2727
2728/**
2729 * External interface for querying whether VT-x is being used.
2730 *
2731 * @returns true if VT-x is being used, otherwise false.
2732 * @param pUVM The user mode VM handle.
2733 * @sa HMR3IsSvmEnabled, HMIsEnabled
2734 */
2735VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2736{
2737 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2738 PVM pVM = pUVM->pVM;
2739 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2740 return pVM->hm.s.vmx.fEnabled
2741 && pVM->hm.s.vmx.fSupported
2742 && pVM->fHMEnabled;
2743}
2744
2745
2746/**
2747 * External interface for querying whether AMD-V is being used.
2748 *
2749 * @returns true if VT-x is being used, otherwise false.
2750 * @param pUVM The user mode VM handle.
2751 * @sa HMR3IsVmxEnabled, HMIsEnabled
2752 */
2753VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2754{
2755 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2756 PVM pVM = pUVM->pVM;
2757 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2758 return pVM->hm.s.svm.fEnabled
2759 && pVM->hm.s.svm.fSupported
2760 && pVM->fHMEnabled;
2761}
2762
2763
2764/**
2765 * Checks if we are currently using nested paging.
2766 *
2767 * @returns true if nested paging is being used, otherwise false.
2768 * @param pUVM The user mode VM handle.
2769 */
2770VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2771{
2772 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2773 PVM pVM = pUVM->pVM;
2774 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2775 return pVM->hm.s.fNestedPaging;
2776}
2777
2778
2779/**
2780 * Checks if virtualized APIC registers is enabled.
2781 *
2782 * When enabled this feature allows the hardware to access most of the
2783 * APIC registers in the virtual-APIC page without causing VM-exits. See
2784 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2785 *
2786 * @returns true if virtualized APIC registers is enabled, otherwise
2787 * false.
2788 * @param pUVM The user mode VM handle.
2789 */
2790VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
2791{
2792 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2793 PVM pVM = pUVM->pVM;
2794 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2795 return pVM->hm.s.fVirtApicRegs;
2796}
2797
2798
2799/**
2800 * Checks if APIC posted-interrupt processing is enabled.
2801 *
2802 * This returns whether we can deliver interrupts to the guest without
2803 * leaving guest-context by updating APIC state from host-context.
2804 *
2805 * @returns true if APIC posted-interrupt processing is enabled,
2806 * otherwise false.
2807 * @param pUVM The user mode VM handle.
2808 */
2809VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2810{
2811 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2812 PVM pVM = pUVM->pVM;
2813 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2814 return pVM->hm.s.fPostedIntrs;
2815}
2816
2817
2818/**
2819 * Checks if we are currently using VPID in VT-x mode.
2820 *
2821 * @returns true if VPID is being used, otherwise false.
2822 * @param pUVM The user mode VM handle.
2823 */
2824VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2825{
2826 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2827 PVM pVM = pUVM->pVM;
2828 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2829 return pVM->hm.s.vmx.fVpid;
2830}
2831
2832
2833/**
2834 * Checks if we are currently using VT-x unrestricted execution,
2835 * aka UX.
2836 *
2837 * @returns true if UX is being used, otherwise false.
2838 * @param pUVM The user mode VM handle.
2839 */
2840VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2841{
2842 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2843 PVM pVM = pUVM->pVM;
2844 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2845 return pVM->hm.s.vmx.fUnrestrictedGuest
2846 || pVM->hm.s.svm.fSupported;
2847}
2848
2849
2850/**
2851 * Checks if the VMX-preemption timer is being used.
2852 *
2853 * @returns true if the VMX-preemption timer is being used, otherwise false.
2854 * @param pVM The cross context VM structure.
2855 */
2856VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2857{
2858 return HMIsEnabled(pVM)
2859 && pVM->hm.s.vmx.fEnabled
2860 && pVM->hm.s.vmx.fUsePreemptTimer;
2861}
2862
2863
2864/**
2865 * Helper for HMR3CheckError to log VMCS controls to the release log.
2866 *
2867 * @param idCpu The Virtual CPU ID.
2868 * @param pVmcsInfo The VMCS info. object.
2869 */
2870static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2871{
2872 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2873 {
2874 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2875 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2876 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2877 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2878 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2879 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2880 }
2881 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2882 {
2883 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2884 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2885 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2886 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2887 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2888 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2889 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2890 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2891 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2892 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2893 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2894 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2895 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2896 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2897 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2898 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2899 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2900 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2901 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2902 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2903 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2904 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2905 }
2906 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2907 {
2908 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2909 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2910 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2911 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2912 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2913 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2914 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2915 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2916 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2917 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2918 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2919 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2920 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2921 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2922 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2923 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2924 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2925 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2926 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2927 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_VE );
2928 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2929 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2930 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2931 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPPTP_EPT );
2932 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2933 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2934 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2935 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2936 }
2937 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2938 {
2939 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2940 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2941 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2942 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2943 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2944 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2945 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2946 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2947 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2948 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2949 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2950 }
2951 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2952 {
2953 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
2960 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
2961 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
2962 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
2963 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
2964 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
2965 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
2966 }
2967}
2968
2969
2970/**
2971 * Check fatal VT-x/AMD-V error and produce some meaningful
2972 * log release message.
2973 *
2974 * @param pVM The cross context VM structure.
2975 * @param iStatusCode VBox status code.
2976 */
2977VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
2978{
2979 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2980 {
2981 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
2982 * might be getting inaccurate values for non-guru'ing EMTs. */
2983 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2984 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
2985 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
2986 switch (iStatusCode)
2987 {
2988 case VERR_VMX_INVALID_VMCS_PTR:
2989 {
2990 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
2991 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
2992 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
2993 pVmcsInfo->HCPhysVmcs));
2994 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
2995 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2996 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2997 break;
2998 }
2999
3000 case VERR_VMX_UNABLE_TO_START_VM:
3001 {
3002 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3003 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3004 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3005 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3006
3007 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3008 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3009 {
3010 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3011 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3012 }
3013 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3014 {
3015 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3016 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3017 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3018 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3019 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3020 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3021 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3022 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3023 }
3024 /** @todo Log VM-entry event injection control fields
3025 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3026 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3027 break;
3028 }
3029
3030 case VERR_VMX_INVALID_GUEST_STATE:
3031 {
3032 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3033 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3034 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3035 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3036 break;
3037 }
3038
3039 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3040 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3041 case VERR_VMX_INVALID_VMXON_PTR:
3042 case VERR_VMX_UNEXPECTED_EXIT:
3043 case VERR_VMX_INVALID_VMCS_FIELD:
3044 case VERR_SVM_UNKNOWN_EXIT:
3045 case VERR_SVM_UNEXPECTED_EXIT:
3046 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3047 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3048 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3049 break;
3050 }
3051 }
3052
3053 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3054 {
3055 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1));
3056 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0));
3057 }
3058 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3059 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3060}
3061
3062
3063/**
3064 * Execute state save operation.
3065 *
3066 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3067 * is because we always save the VM state from ring-3 and thus most HM state
3068 * will be re-synced dynamically at runtime and don't need to be part of the VM
3069 * saved state.
3070 *
3071 * @returns VBox status code.
3072 * @param pVM The cross context VM structure.
3073 * @param pSSM SSM operation handle.
3074 */
3075static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3076{
3077 Log(("hmR3Save:\n"));
3078
3079 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3080 {
3081 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3082 Assert(!pVCpu->hm.s.Event.fPending);
3083 if (pVM->cpum.ro.GuestFeatures.fSvm)
3084 {
3085 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3086 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3087 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3088 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3089 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3090 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3091 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3092 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3093 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3094 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3095 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3096 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3097 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3098 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3099 }
3100 }
3101
3102 /* Save the guest patch data. */
3103 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3104 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3105 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3106
3107 /* Store all the guest patch records too. */
3108 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3109 if (RT_FAILURE(rc))
3110 return rc;
3111
3112 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3113 {
3114 AssertCompileSize(HMTPRINSTR, 4);
3115 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3116 SSMR3PutU32(pSSM, pPatch->Core.Key);
3117 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3118 SSMR3PutU32(pSSM, pPatch->cbOp);
3119 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3120 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3121 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3122 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3123 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3124 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3125 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3126 if (RT_FAILURE(rc))
3127 return rc;
3128 }
3129
3130 return VINF_SUCCESS;
3131}
3132
3133
3134/**
3135 * Execute state load operation.
3136 *
3137 * @returns VBox status code.
3138 * @param pVM The cross context VM structure.
3139 * @param pSSM SSM operation handle.
3140 * @param uVersion Data layout version.
3141 * @param uPass The data pass.
3142 */
3143static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3144{
3145 int rc;
3146
3147 LogFlowFunc(("uVersion=%u\n", uVersion));
3148 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3149
3150 /*
3151 * Validate version.
3152 */
3153 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3154 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3155 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3156 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3157 {
3158 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3159 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3160 }
3161
3162 /*
3163 * Load per-VCPU state.
3164 */
3165 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3166 {
3167 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3168 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3169 {
3170 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3171 if (pVM->cpum.ro.GuestFeatures.fSvm)
3172 {
3173 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3174 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3175 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3176 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3177 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3178 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3179 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3180 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3181 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3182 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3183 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3184 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3185 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3186 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3187 AssertRCReturn(rc, rc);
3188 }
3189 }
3190 else
3191 {
3192 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3193 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3194 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3195 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3196
3197 /* VMX fWasInRealMode related data. */
3198 uint32_t uDummy;
3199 SSMR3GetU32(pSSM, &uDummy);
3200 SSMR3GetU32(pSSM, &uDummy);
3201 rc = SSMR3GetU32(pSSM, &uDummy);
3202 AssertRCReturn(rc, rc);
3203 }
3204 }
3205
3206 /*
3207 * Load TPR patching data.
3208 */
3209 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3210 {
3211 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3212 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3213 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3214
3215 /* Fetch all TPR patch records. */
3216 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3217 AssertRCReturn(rc, rc);
3218 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3219 {
3220 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3221 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3222 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3223 SSMR3GetU32(pSSM, &pPatch->cbOp);
3224 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3225 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3226 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3227
3228 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3229 pVM->hm.s.fTPRPatchingActive = true;
3230 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3231
3232 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3233 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3234 SSMR3GetU32(pSSM, &pPatch->cFaults);
3235 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3236 AssertRCReturn(rc, rc);
3237
3238 LogFlow(("hmR3Load: patch %d\n", i));
3239 LogFlow(("Key = %x\n", pPatch->Core.Key));
3240 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3241 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3242 LogFlow(("type = %d\n", pPatch->enmType));
3243 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3244 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3245 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3246 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3247
3248 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3249 AssertRCReturn(rc, rc);
3250 }
3251 }
3252
3253 return VINF_SUCCESS;
3254}
3255
3256
3257/**
3258 * Displays HM info.
3259 *
3260 * @param pVM The cross context VM structure.
3261 * @param pHlp The info helper functions.
3262 * @param pszArgs Arguments, ignored.
3263 */
3264static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3265{
3266 NOREF(pszArgs);
3267 PVMCPU pVCpu = VMMGetCpu(pVM);
3268 if (!pVCpu)
3269 pVCpu = pVM->apCpusR3[0];
3270
3271 if (HMIsEnabled(pVM))
3272 {
3273 if (pVM->hm.s.vmx.fSupported)
3274 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3275 else
3276 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3277 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3278 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3279 if (pVM->hm.s.vmx.fSupported)
3280 {
3281 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3282 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
3283 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs;
3284
3285 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3286 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3287 if (fRealOnV86Active)
3288 {
3289 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfo->RealMode.Eflags.u32);
3290 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfo->RealMode.AttrCS.u);
3291 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfo->RealMode.AttrSS.u);
3292 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfo->RealMode.AttrDS.u);
3293 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfo->RealMode.AttrES.u);
3294 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfo->RealMode.AttrFS.u);
3295 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfo->RealMode.AttrGS.u);
3296 }
3297 }
3298 }
3299 else
3300 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3301}
3302
3303
3304/**
3305 * Displays the HM Last-Branch-Record info. for the guest.
3306 *
3307 * @param pVM The cross context VM structure.
3308 * @param pHlp The info helper functions.
3309 * @param pszArgs Arguments, ignored.
3310 */
3311static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3312{
3313 NOREF(pszArgs);
3314 PVMCPU pVCpu = VMMGetCpu(pVM);
3315 if (!pVCpu)
3316 pVCpu = pVM->apCpusR3[0];
3317
3318 if (!HMIsEnabled(pVM))
3319 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3320
3321 if (HMIsVmxActive(pVM))
3322 {
3323 if (pVM->hm.s.vmx.fLbr)
3324 {
3325 PCVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
3326 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
3327
3328 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3329 * 0xf should cover everything we support thus far. Fix if necessary
3330 * later. */
3331 uint32_t const idxTopOfStack = pVmcsInfo->u64LbrTosMsr & 0xf;
3332 if (idxTopOfStack > cLbrStack)
3333 {
3334 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3335 idxTopOfStack, pVmcsInfo->u64LbrTosMsr, cLbrStack);
3336 return;
3337 }
3338
3339 /*
3340 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3341 */
3342 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3343 uint32_t idxCurrent = idxTopOfStack;
3344 Assert(idxTopOfStack < cLbrStack);
3345 Assert(RT_ELEMENTS(pVmcsInfo->au64LbrFromIpMsr) <= cLbrStack);
3346 Assert(RT_ELEMENTS(pVmcsInfo->au64LbrToIpMsr) <= cLbrStack);
3347 for (;;)
3348 {
3349 if (pVM->hm.s.vmx.idLbrToIpMsrFirst)
3350 {
3351 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3352 pVmcsInfo->au64LbrFromIpMsr[idxCurrent], pVmcsInfo->au64LbrToIpMsr[idxCurrent]);
3353 }
3354 else
3355 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfo->au64LbrFromIpMsr[idxCurrent]);
3356
3357 idxCurrent = (idxCurrent - 1) % cLbrStack;
3358 if (idxCurrent == idxTopOfStack)
3359 break;
3360 }
3361 }
3362 else
3363 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3364 }
3365 else
3366 {
3367 Assert(HMIsSvmActive(pVM));
3368 /** @todo SVM: LBRs (get them from VMCB if possible). */
3369 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented in VM debugger yet\n");
3370 }
3371}
3372
3373
3374/**
3375 * Displays the HM pending event.
3376 *
3377 * @param pVM The cross context VM structure.
3378 * @param pHlp The info helper functions.
3379 * @param pszArgs Arguments, ignored.
3380 */
3381static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3382{
3383 NOREF(pszArgs);
3384 PVMCPU pVCpu = VMMGetCpu(pVM);
3385 if (!pVCpu)
3386 pVCpu = pVM->apCpusR3[0];
3387
3388 if (HMIsEnabled(pVM))
3389 {
3390 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3391 if (pVCpu->hm.s.Event.fPending)
3392 {
3393 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3394 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3395 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3396 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3397 }
3398 }
3399 else
3400 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3401}
3402
3403
3404/**
3405 * Displays the SVM nested-guest VMCB cache.
3406 *
3407 * @param pVM The cross context VM structure.
3408 * @param pHlp The info helper functions.
3409 * @param pszArgs Arguments, ignored.
3410 */
3411static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3412{
3413 NOREF(pszArgs);
3414 PVMCPU pVCpu = VMMGetCpu(pVM);
3415 if (!pVCpu)
3416 pVCpu = pVM->apCpusR3[0];
3417
3418 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3419 if ( fSvmEnabled
3420 && pVM->cpum.ro.GuestFeatures.fSvm)
3421 {
3422 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3423 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3424 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3425 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3426 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3427 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3428 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3429 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3430 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3431 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3432 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3433 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3434 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3435 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3436 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3437 }
3438 else
3439 {
3440 if (!fSvmEnabled)
3441 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3442 else
3443 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3444 }
3445}
3446
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette