VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 87491

Last change on this file since 87491 was 87491, checked in by vboxsync, 4 years ago

VMM/HMVMX: Some stats.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 156.4 KB
Line 
1/* $Id: HM.cpp 87491 2021-01-30 01:15:50Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/mm.h>
44#include <VBox/vmm/em.h>
45#include <VBox/vmm/pdmapi.h>
46#include <VBox/vmm/pgm.h>
47#include <VBox/vmm/ssm.h>
48#include <VBox/vmm/gim.h>
49#include <VBox/vmm/trpm.h>
50#include <VBox/vmm/dbgf.h>
51#include <VBox/vmm/iom.h>
52#include <VBox/vmm/iem.h>
53#include <VBox/vmm/selm.h>
54#include <VBox/vmm/nem.h>
55#include <VBox/vmm/hm_vmx.h>
56#include <VBox/vmm/hm_svm.h>
57#include "HMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/err.h>
60#include <VBox/param.h>
61
62#include <iprt/assert.h>
63#include <VBox/log.h>
64#include <iprt/asm.h>
65#include <iprt/asm-amd64-x86.h>
66#include <iprt/env.h>
67#include <iprt/thread.h>
68
69
70/*********************************************************************************************************************************
71* Defined Constants And Macros *
72*********************************************************************************************************************************/
73/** @def HMVMX_REPORT_FEAT
74 * Reports VT-x feature to the release log.
75 *
76 * @param a_uAllowed1 Mask of allowed-1 feature bits.
77 * @param a_uAllowed0 Mask of allowed-0 feature bits.
78 * @param a_StrDesc The description string to report.
79 * @param a_Featflag Mask of the feature to report.
80 */
81#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
82 do { \
83 if ((a_uAllowed1) & (a_Featflag)) \
84 { \
85 if ((a_uAllowed0) & (a_Featflag)) \
86 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
87 else \
88 LogRel(("HM: " a_StrDesc "\n")); \
89 } \
90 else \
91 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
92 } while (0)
93
94/** @def HMVMX_REPORT_ALLOWED_FEAT
95 * Reports an allowed VT-x feature to the release log.
96 *
97 * @param a_uAllowed1 Mask of allowed-1 feature bits.
98 * @param a_StrDesc The description string to report.
99 * @param a_FeatFlag Mask of the feature to report.
100 */
101#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
102 do { \
103 if ((a_uAllowed1) & (a_FeatFlag)) \
104 LogRel(("HM: " a_StrDesc "\n")); \
105 else \
106 LogRel(("HM: " a_StrDesc " not supported\n")); \
107 } while (0)
108
109/** @def HMVMX_REPORT_MSR_CAP
110 * Reports MSR feature capability.
111 *
112 * @param a_MsrCaps Mask of MSR feature bits.
113 * @param a_StrDesc The description string to report.
114 * @param a_fCap Mask of the feature to report.
115 */
116#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
117 do { \
118 if ((a_MsrCaps) & (a_fCap)) \
119 LogRel(("HM: " a_StrDesc "\n")); \
120 } while (0)
121
122/** @def HMVMX_LOGREL_FEAT
123 * Dumps a feature flag from a bitmap of features to the release log.
124 *
125 * @param a_fVal The value of all the features.
126 * @param a_fMask The specific bitmask of the feature.
127 */
128#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
129 do { \
130 if ((a_fVal) & (a_fMask)) \
131 LogRel(("HM: %s\n", #a_fMask)); \
132 } while (0)
133
134
135/*********************************************************************************************************************************
136* Internal Functions *
137*********************************************************************************************************************************/
138static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
139static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
140static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
141static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
142static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
143static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144static int hmR3InitFinalizeR3(PVM pVM);
145static int hmR3InitFinalizeR0(PVM pVM);
146static int hmR3InitFinalizeR0Intel(PVM pVM);
147static int hmR3InitFinalizeR0Amd(PVM pVM);
148static int hmR3TermCPU(PVM pVM);
149
150
151#ifdef VBOX_WITH_STATISTICS
152/**
153 * Returns the name of the hardware exception.
154 *
155 * @returns The name of the hardware exception.
156 * @param uVector The exception vector.
157 */
158static const char *hmR3GetXcptName(uint8_t uVector)
159{
160 switch (uVector)
161 {
162 case X86_XCPT_DE: return "#DE";
163 case X86_XCPT_DB: return "#DB";
164 case X86_XCPT_NMI: return "#NMI";
165 case X86_XCPT_BP: return "#BP";
166 case X86_XCPT_OF: return "#OF";
167 case X86_XCPT_BR: return "#BR";
168 case X86_XCPT_UD: return "#UD";
169 case X86_XCPT_NM: return "#NM";
170 case X86_XCPT_DF: return "#DF";
171 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
172 case X86_XCPT_TS: return "#TS";
173 case X86_XCPT_NP: return "#NP";
174 case X86_XCPT_SS: return "#SS";
175 case X86_XCPT_GP: return "#GP";
176 case X86_XCPT_PF: return "#PF";
177 case X86_XCPT_MF: return "#MF";
178 case X86_XCPT_AC: return "#AC";
179 case X86_XCPT_MC: return "#MC";
180 case X86_XCPT_XF: return "#XF";
181 case X86_XCPT_VE: return "#VE";
182 case X86_XCPT_CP: return "#CP";
183 case X86_XCPT_VC: return "#VC";
184 case X86_XCPT_SX: return "#SX";
185 }
186 return "Reserved";
187}
188#endif /* VBOX_WITH_STATISTICS */
189
190
191/**
192 * Initializes the HM.
193 *
194 * This is the very first component to really do init after CFGM so that we can
195 * establish the predominant execution engine for the VM prior to initializing
196 * other modules. It takes care of NEM initialization if needed (HM disabled or
197 * not available in HW).
198 *
199 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
200 * hypervisor API via NEM, and then back on raw-mode if that isn't available
201 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
202 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
203 * X, OS/2 and others).
204 *
205 * Note that a lot of the set up work is done in ring-0 and thus postponed till
206 * the ring-3 and ring-0 callback to HMR3InitCompleted.
207 *
208 * @returns VBox status code.
209 * @param pVM The cross context VM structure.
210 *
211 * @remarks Be careful with what we call here, since most of the VMM components
212 * are uninitialized.
213 */
214VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
215{
216 LogFlowFunc(("\n"));
217
218 /*
219 * Assert alignment and sizes.
220 */
221 AssertCompileMemberAlignment(VM, hm.s, 32);
222 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
223
224 /*
225 * Register the saved state data unit.
226 */
227 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
228 NULL, NULL, NULL,
229 NULL, hmR3Save, NULL,
230 NULL, hmR3Load, NULL);
231 if (RT_FAILURE(rc))
232 return rc;
233
234 /*
235 * Register info handlers.
236 */
237 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
238 AssertRCReturn(rc, rc);
239
240 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
241 DBGFINFO_FLAGS_ALL_EMTS);
242 AssertRCReturn(rc, rc);
243
244 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
245 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
246 AssertRCReturn(rc, rc);
247
248 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
249 AssertRCReturn(rc, rc);
250
251 /*
252 * Read configuration.
253 */
254 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
255
256 /*
257 * Validate the HM settings.
258 */
259 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
260 "HMForced" /* implied 'true' these days */
261 "|UseNEMInstead"
262 "|FallbackToNEM"
263 "|EnableNestedPaging"
264 "|EnableUX"
265 "|EnableLargePages"
266 "|EnableVPID"
267 "|IBPBOnVMExit"
268 "|IBPBOnVMEntry"
269 "|SpecCtrlByHost"
270 "|L1DFlushOnSched"
271 "|L1DFlushOnVMEntry"
272 "|MDSClearOnSched"
273 "|MDSClearOnVMEntry"
274 "|TPRPatchingEnabled"
275 "|64bitEnabled"
276 "|Exclusive"
277 "|MaxResumeLoops"
278 "|VmxPleGap"
279 "|VmxPleWindow"
280 "|VmxLbr"
281 "|UseVmxPreemptTimer"
282 "|SvmPauseFilter"
283 "|SvmPauseFilterThreshold"
284 "|SvmVirtVmsaveVmload"
285 "|SvmVGif"
286 "|LovelyMesaDrvWorkaround",
287 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
288 if (RT_FAILURE(rc))
289 return rc;
290
291 /** @cfgm{/HM/HMForced, bool, false}
292 * Forces hardware virtualization, no falling back on raw-mode. HM must be
293 * enabled, i.e. /HMEnabled must be true. */
294 bool fHMForced;
295 AssertRelease(pVM->fHMEnabled);
296 fHMForced = true;
297
298 /** @cfgm{/HM/UseNEMInstead, bool, true}
299 * Don't use HM, use NEM instead. */
300 bool fUseNEMInstead = false;
301 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
302 AssertRCReturn(rc, rc);
303 if (fUseNEMInstead && pVM->fHMEnabled)
304 {
305 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
306 pVM->fHMEnabled = false;
307 }
308
309 /** @cfgm{/HM/FallbackToNEM, bool, true}
310 * Enables fallback on NEM. */
311 bool fFallbackToNEM = true;
312 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
313 AssertRCReturn(rc, rc);
314
315 /** @cfgm{/HM/EnableNestedPaging, bool, false}
316 * Enables nested paging (aka extended page tables). */
317 bool fAllowNestedPaging = false;
318 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &fAllowNestedPaging, false);
319 AssertRCReturn(rc, rc);
320
321 /** @cfgm{/HM/EnableUX, bool, true}
322 * Enables the VT-x unrestricted execution feature. */
323 bool fAllowUnrestricted = true;
324 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &fAllowUnrestricted, true);
325 AssertRCReturn(rc, rc);
326
327 /** @cfgm{/HM/EnableLargePages, bool, false}
328 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
329 * page table walking and maybe better TLB hit rate in some cases. */
330 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
331 AssertRCReturn(rc, rc);
332
333 /** @cfgm{/HM/EnableVPID, bool, false}
334 * Enables the VT-x VPID feature. */
335 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
336 AssertRCReturn(rc, rc);
337
338 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
339 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
340 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
341 AssertRCReturn(rc, rc);
342
343 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
344 * Enables AMD64 cpu features.
345 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
346 * already have the support. */
347#ifdef VBOX_WITH_64_BITS_GUESTS
348 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
349 AssertLogRelRCReturn(rc, rc);
350#else
351 pVM->hm.s.fAllow64BitGuests = false;
352#endif
353
354 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
355 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
356 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
357 * latest PAUSE instruction to be start of a new PAUSE loop.
358 */
359 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
360 AssertRCReturn(rc, rc);
361
362 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
363 * The pause-filter exiting window in TSC ticks. When the number of ticks
364 * between the current PAUSE instruction and first PAUSE of a loop exceeds
365 * VmxPleWindow, a VM-exit is triggered.
366 *
367 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
368 */
369 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
370 AssertRCReturn(rc, rc);
371
372 /** @cfgm{/HM/VmxLbr, bool, false}
373 * Whether to enable LBR for the guest. This is disabled by default as it's only
374 * useful while debugging and enabling it causes a noticeable performance hit. */
375 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbr, false);
376 AssertRCReturn(rc, rc);
377
378 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
379 * A counter that is decrement each time a PAUSE instruction is executed by the
380 * guest. When the counter is 0, a \#VMEXIT is triggered.
381 *
382 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
383 */
384 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
385 AssertRCReturn(rc, rc);
386
387 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
388 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
389 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
390 * PauseFilter count is reset to its initial value. However, if PAUSE is
391 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
392 * be triggered.
393 *
394 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
395 * activated.
396 */
397 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
398 AssertRCReturn(rc, rc);
399
400 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
401 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
402 * available. */
403 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
404 AssertRCReturn(rc, rc);
405
406 /** @cfgm{/HM/SvmVGif, bool, true}
407 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
408 * if it's available. */
409 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
410 AssertRCReturn(rc, rc);
411
412 /** @cfgm{/HM/SvmLbrVirt, bool, false}
413 * Whether to make use of the LBR virtualization feature of the CPU if it's
414 * available. This is disabled by default as it's only useful while debugging
415 * and enabling it causes a small hit to performance. */
416 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
417 AssertRCReturn(rc, rc);
418
419 /** @cfgm{/HM/Exclusive, bool}
420 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
421 * global init for each host CPU. If false, we do local init each time we wish
422 * to execute guest code.
423 *
424 * On Windows, default is false due to the higher risk of conflicts with other
425 * hypervisors.
426 *
427 * On Mac OS X, this setting is ignored since the code does not handle local
428 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
429 */
430#if defined(RT_OS_DARWIN)
431 pVM->hm.s.fGlobalInit = true;
432#else
433 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
434# if defined(RT_OS_WINDOWS)
435 false
436# else
437 true
438# endif
439 );
440 AssertLogRelRCReturn(rc, rc);
441#endif
442
443 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
444 * The number of times to resume guest execution before we forcibly return to
445 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
446 * determines the default value. */
447 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
448 AssertLogRelRCReturn(rc, rc);
449
450 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
451 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
452 * available. */
453 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
454 AssertLogRelRCReturn(rc, rc);
455
456 /** @cfgm{/HM/IBPBOnVMExit, bool}
457 * Costly paranoia setting. */
458 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
459 AssertLogRelRCReturn(rc, rc);
460
461 /** @cfgm{/HM/IBPBOnVMEntry, bool}
462 * Costly paranoia setting. */
463 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
464 AssertLogRelRCReturn(rc, rc);
465
466 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
467 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
468 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
469 AssertLogRelRCReturn(rc, rc);
470
471 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
472 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
473 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
474 AssertLogRelRCReturn(rc, rc);
475
476 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
477 if (pVM->hm.s.fL1dFlushOnVmEntry)
478 pVM->hm.s.fL1dFlushOnSched = false;
479
480 /** @cfgm{/HM/SpecCtrlByHost, bool}
481 * Another expensive paranoia setting. */
482 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
483 AssertLogRelRCReturn(rc, rc);
484
485 /** @cfgm{/HM/MDSClearOnSched, bool, true}
486 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
487 * ignored on CPUs that aren't affected. */
488 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
489 AssertLogRelRCReturn(rc, rc);
490
491 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
492 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
493 * ignored on CPUs that aren't affected. */
494 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
495 AssertLogRelRCReturn(rc, rc);
496
497 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
498 if (pVM->hm.s.fMdsClearOnVmEntry)
499 pVM->hm.s.fMdsClearOnSched = false;
500
501 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
502 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
503 * the hypervisor it is running under. */
504 bool f;
505 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &f, false);
506 AssertLogRelRCReturn(rc, rc);
507 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
508 {
509 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
510 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = f;
511 }
512
513 /*
514 * Check if VT-x or AMD-v support according to the users wishes.
515 */
516 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
517 * VERR_SVM_IN_USE. */
518 if (pVM->fHMEnabled)
519 {
520 uint32_t fCaps;
521 rc = SUPR3QueryVTCaps(&fCaps);
522 if (RT_SUCCESS(rc))
523 {
524 if (fCaps & SUPVTCAPS_AMD_V)
525 {
526 pVM->hm.s.svm.fSupported = true;
527 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
528 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
529 }
530 else if (fCaps & SUPVTCAPS_VT_X)
531 {
532 const char *pszWhy;
533 rc = SUPR3QueryVTxSupported(&pszWhy);
534 if (RT_SUCCESS(rc))
535 {
536 pVM->hm.s.vmx.fSupported = true;
537 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
538 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
539 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
540 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
541 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
542 }
543 else
544 {
545 /*
546 * Before failing, try fallback to NEM if we're allowed to do that.
547 */
548 pVM->fHMEnabled = false;
549 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
550 if (fFallbackToNEM)
551 {
552 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
553 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
554
555 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
556 if ( RT_SUCCESS(rc2)
557 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
558 rc = VINF_SUCCESS;
559 }
560 if (RT_FAILURE(rc))
561 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
562 }
563 }
564 else
565 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
566 VERR_INTERNAL_ERROR_5);
567
568 /*
569 * Disable nested paging and unrestricted guest execution now if they're
570 * configured so that CPUM can make decisions based on our configuration.
571 */
572 if ( fAllowNestedPaging
573 && (fCaps & SUPVTCAPS_NESTED_PAGING))
574 {
575 pVM->hm.s.fNestedPaging = true;
576 if (fCaps & SUPVTCAPS_VT_X)
577 {
578 if ( fAllowUnrestricted
579 && (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST))
580 pVM->hm.s.vmx.fUnrestrictedGuest = true;
581 else
582 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
583 }
584 }
585 else
586 Assert(!pVM->hm.s.fNestedPaging);
587 }
588 else
589 {
590 const char *pszMsg;
591 switch (rc)
592 {
593 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
594 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
595 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
596 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
597 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
598 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
599 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
600 default:
601 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
602 }
603
604 /*
605 * Before failing, try fallback to NEM if we're allowed to do that.
606 */
607 pVM->fHMEnabled = false;
608 if (fFallbackToNEM)
609 {
610 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
611 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
612 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
613 if ( RT_SUCCESS(rc2)
614 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
615 rc = VINF_SUCCESS;
616 }
617 if (RT_FAILURE(rc))
618 return VM_SET_ERROR(pVM, rc, pszMsg);
619 }
620 }
621 else
622 {
623 /*
624 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
625 */
626 if (fUseNEMInstead)
627 {
628 rc = NEMR3Init(pVM, false /*fFallback*/, true);
629 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
630 if (RT_FAILURE(rc))
631 return rc;
632 }
633 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
634 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_RAW_MODE
635 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
636 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
637 }
638
639 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
640 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_RAW_MODE);
641 return VINF_SUCCESS;
642}
643
644
645/**
646 * Initializes HM components after ring-3 phase has been fully initialized.
647 *
648 * @returns VBox status code.
649 * @param pVM The cross context VM structure.
650 */
651static int hmR3InitFinalizeR3(PVM pVM)
652{
653 LogFlowFunc(("\n"));
654
655 if (!HMIsEnabled(pVM))
656 return VINF_SUCCESS;
657
658 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
659 {
660 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
661 pVCpu->hm.s.fActive = false;
662 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
663 }
664
665#ifdef VBOX_WITH_STATISTICS
666 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
667 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
668 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
669 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
670 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
671#endif
672
673 /*
674 * Statistics.
675 */
676#ifdef VBOX_WITH_STATISTICS
677 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
678#endif
679 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
680 {
681 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
682 PHMCPU pHmCpu = &pVCpu->hm.s;
683 int rc;
684
685# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
686 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
687 AssertRC(rc); \
688 } while (0)
689# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
690 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
691
692#ifdef VBOX_WITH_STATISTICS
693
694 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
695 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
696 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
697 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
698 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
699 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
700 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
701 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
702 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
703 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
704 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
705 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
706 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
707 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
708# ifdef HM_PROFILE_EXIT_DISPATCH
709 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
710 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
711# endif
712#endif
713# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
714
715#ifdef VBOX_WITH_STATISTICS
716 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
717 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
718 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
719 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
720 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
721 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
722 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
723 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
724 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
725 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
726 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
727 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
728 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
729 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
730 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
731 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
732 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
733 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
734 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
735 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
736 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
737 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
738 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
739 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
740 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
741 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
742 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
743 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
744 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
745 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
746 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
747 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
748 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
749 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
750 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
751 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
752 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
753 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
754 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
755 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
756 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
757 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
758 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
759 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
760 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
761#endif
762 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
763 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
764#ifdef VBOX_WITH_STATISTICS
765 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
766 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
767 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
768 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
769
770 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
771 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
772 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
773 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
774 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
775 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
776 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
777 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
778 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
779 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
780 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
781 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
782#endif
783 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
784#ifdef VBOX_WITH_STATISTICS
785 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
786
787 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
788 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
789 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
790 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
791 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
792 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
793
794 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
795 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
796 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
797 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
798 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
799 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
800 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
801 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
802 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
803 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
804 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
805 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
806 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
807 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
808 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
809
810 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
811 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
812 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
813
814 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
815 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
816 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
817
818 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
819 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
820 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
821 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
822
823 if (fCpuSupportsVmx)
824 {
825 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRip, "/HM/CPU%u/WriteHostRIP", "Number of VMX_VMCS_HOST_RIP instructions.");
826 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRsp, "/HM/CPU%u/WriteHostRSP", "Number of VMX_VMCS_HOST_RSP instructions.");
827 HM_REG_COUNTER(&pHmCpu->StatVmxVmLaunch, "/HM/CPU%u/VMLaunch", "Number of VMLAUNCH instructions.");
828 HM_REG_COUNTER(&pHmCpu->StatVmxVmResume, "/HM/CPU%u/VMResume", "Number of VMRESUME instructions.");
829 }
830
831 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
832 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
833 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
834
835 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
836 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
837 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
838
839 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
840 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
841 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
842 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
843
844 /*
845 * Guest Exit reason stats.
846 */
847 pHmCpu->paStatExitReason = NULL;
848 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
849 (void **)&pHmCpu->paStatExitReason);
850 AssertRCReturn(rc, rc);
851
852 if (fCpuSupportsVmx)
853 {
854 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
855 {
856 const char *pszExitName = HMGetVmxExitName(j);
857 if (pszExitName)
858 {
859 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
860 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
861 AssertRCReturn(rc, rc);
862 }
863 }
864 }
865 else
866 {
867 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
868 {
869 const char *pszExitName = HMGetSvmExitName(j);
870 if (pszExitName)
871 {
872 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
873 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
874 AssertRC(rc);
875 }
876 }
877 }
878 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
879
880 pHmCpu->paStatExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatExitReason);
881 Assert(pHmCpu->paStatExitReasonR0 != NIL_RTR0PTR);
882
883#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
884 /*
885 * Nested-guest VM-exit reason stats.
886 */
887 pHmCpu->paStatNestedExitReason = NULL;
888 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pHmCpu->paStatNestedExitReason), 0 /* uAlignment */, MM_TAG_HM,
889 (void **)&pHmCpu->paStatNestedExitReason);
890 AssertRCReturn(rc, rc);
891 if (fCpuSupportsVmx)
892 {
893 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
894 {
895 const char *pszExitName = HMGetVmxExitName(j);
896 if (pszExitName)
897 {
898 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
899 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
900 AssertRC(rc);
901 }
902 }
903 }
904 else
905 {
906 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
907 {
908 const char *pszExitName = HMGetSvmExitName(j);
909 if (pszExitName)
910 {
911 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
912 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
913 AssertRC(rc);
914 }
915 }
916 }
917 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
918 pHmCpu->paStatNestedExitReasonR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatNestedExitReason);
919 Assert(pHmCpu->paStatNestedExitReasonR0 != NIL_RTR0PTR);
920#endif
921
922 /*
923 * Injected interrupts stats.
924 */
925 {
926 uint32_t const cInterrupts = 0xff + 1;
927 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * cInterrupts, 8, MM_TAG_HM, (void **)&pHmCpu->paStatInjectedIrqs);
928 AssertRCReturn(rc, rc);
929 pHmCpu->paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatInjectedIrqs);
930 Assert(pHmCpu->paStatInjectedIrqsR0 != NIL_RTR0PTR);
931 for (unsigned j = 0; j < cInterrupts; j++)
932 {
933 char aszIntrName[64];
934 RTStrPrintf(&aszIntrName[0], sizeof(aszIntrName), "Interrupt %u", j);
935 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
936 STAMUNIT_OCCURENCES, aszIntrName,
937 "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
938 AssertRC(rc);
939 }
940 }
941
942 /*
943 * Injected exception stats.
944 */
945 {
946 uint32_t const cXcpts = X86_XCPT_LAST + 1;
947 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * cXcpts, 8, MM_TAG_HM, (void **)&pHmCpu->paStatInjectedXcpts);
948 AssertRCReturn(rc, rc);
949 pHmCpu->paStatInjectedXcptsR0 = MMHyperR3ToR0(pVM, pHmCpu->paStatInjectedXcpts);
950 Assert(pHmCpu->paStatInjectedXcptsR0 != NIL_RTR0PTR);
951 for (unsigned j = 0; j < cXcpts; j++)
952 {
953 char aszXcptName[64];
954 RTStrPrintf(&aszXcptName[0], sizeof(aszXcptName), "%s exception", hmR3GetXcptName(j));
955 rc = STAMR3RegisterF(pVM, &pHmCpu->paStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
956 STAMUNIT_OCCURENCES, aszXcptName,
957 "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
958 AssertRC(rc);
959 }
960 }
961
962#endif /* VBOX_WITH_STATISTICS */
963#undef HM_REG_COUNTER
964#undef HM_REG_PROFILE
965#undef HM_REG_STAT
966 }
967
968 return VINF_SUCCESS;
969}
970
971
972/**
973 * Called when a init phase has completed.
974 *
975 * @returns VBox status code.
976 * @param pVM The cross context VM structure.
977 * @param enmWhat The phase that completed.
978 */
979VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
980{
981 switch (enmWhat)
982 {
983 case VMINITCOMPLETED_RING3:
984 return hmR3InitFinalizeR3(pVM);
985 case VMINITCOMPLETED_RING0:
986 return hmR3InitFinalizeR0(pVM);
987 default:
988 return VINF_SUCCESS;
989 }
990}
991
992
993/**
994 * Turns off normal raw mode features.
995 *
996 * @param pVM The cross context VM structure.
997 */
998static void hmR3DisableRawMode(PVM pVM)
999{
1000/** @todo r=bird: HM shouldn't be doing this crap. */
1001 /* Reinit the paging mode to force the new shadow mode. */
1002 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1003 {
1004 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1005 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1006 }
1007}
1008
1009
1010/**
1011 * Initialize VT-x or AMD-V.
1012 *
1013 * @returns VBox status code.
1014 * @param pVM The cross context VM structure.
1015 */
1016static int hmR3InitFinalizeR0(PVM pVM)
1017{
1018 int rc;
1019
1020 if (!HMIsEnabled(pVM))
1021 return VINF_SUCCESS;
1022
1023 /*
1024 * Hack to allow users to work around broken BIOSes that incorrectly set
1025 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1026 */
1027 if ( !pVM->hm.s.vmx.fSupported
1028 && !pVM->hm.s.svm.fSupported
1029 && pVM->hm.s.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1030 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1031 {
1032 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1033 pVM->hm.s.svm.fSupported = true;
1034 pVM->hm.s.svm.fIgnoreInUseError = true;
1035 pVM->hm.s.rcInit = VINF_SUCCESS;
1036 }
1037
1038 /*
1039 * Report ring-0 init errors.
1040 */
1041 if ( !pVM->hm.s.vmx.fSupported
1042 && !pVM->hm.s.svm.fSupported)
1043 {
1044 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.rcInit));
1045 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatCtrl));
1046 switch (pVM->hm.s.rcInit)
1047 {
1048 case VERR_VMX_IN_VMX_ROOT_MODE:
1049 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1050 case VERR_VMX_NO_VMX:
1051 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1052 case VERR_VMX_MSR_VMX_DISABLED:
1053 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1054 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1055 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1056 case VERR_VMX_MSR_LOCKING_FAILED:
1057 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1058 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1059 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1060 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1061 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1062
1063 case VERR_SVM_IN_USE:
1064 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1065 case VERR_SVM_NO_SVM:
1066 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1067 case VERR_SVM_DISABLED:
1068 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1069 }
1070 return VMSetError(pVM, pVM->hm.s.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.rcInit);
1071 }
1072
1073 /*
1074 * Enable VT-x or AMD-V on all host CPUs.
1075 */
1076 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1077 if (RT_FAILURE(rc))
1078 {
1079 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1080 HMR3CheckError(pVM, rc);
1081 return rc;
1082 }
1083
1084 /*
1085 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1086 * (Main should have taken care of this already)
1087 */
1088 if (!PDMHasIoApic(pVM))
1089 {
1090 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1091 pVM->hm.s.fTprPatchingAllowed = false;
1092 }
1093
1094 /*
1095 * Check if L1D flush is needed/possible.
1096 */
1097 if ( !pVM->cpum.ro.HostFeatures.fFlushCmd
1098 || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1099 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
1100 || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d
1101 || pVM->cpum.ro.HostFeatures.fArchRdclNo)
1102 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
1103
1104 /*
1105 * Check if MDS flush is needed/possible.
1106 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
1107 */
1108 if ( !pVM->cpum.ro.HostFeatures.fMdsClear
1109 || pVM->cpum.ro.HostFeatures.fArchMdsNo)
1110 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1111 else if ( ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
1112 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
1113 || ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
1114 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
1115 {
1116 if (!pVM->hm.s.fMdsClearOnSched)
1117 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
1118 pVM->hm.s.fMdsClearOnVmEntry = false;
1119 }
1120 else if ( pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
1121 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
1122 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
1123
1124 /*
1125 * Sync options.
1126 */
1127 /** @todo Move this out of of CPUMCTX and into some ring-0 only HM structure.
1128 * That will require a little bit of work, of course. */
1129 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1130 {
1131 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1132 PCPUMCTX pCpuCtx = &pVCpu->cpum.GstCtx;
1133 pCpuCtx->fWorldSwitcher &= ~(CPUMCTX_WSF_IBPB_EXIT | CPUMCTX_WSF_IBPB_ENTRY);
1134 if (pVM->cpum.ro.HostFeatures.fIbpb)
1135 {
1136 if (pVM->hm.s.fIbpbOnVmExit)
1137 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_EXIT;
1138 if (pVM->hm.s.fIbpbOnVmEntry)
1139 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_IBPB_ENTRY;
1140 }
1141 if (pVM->cpum.ro.HostFeatures.fFlushCmd && pVM->hm.s.fL1dFlushOnVmEntry)
1142 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_L1D_ENTRY;
1143 if (pVM->cpum.ro.HostFeatures.fMdsClear && pVM->hm.s.fMdsClearOnVmEntry)
1144 pCpuCtx->fWorldSwitcher |= CPUMCTX_WSF_MDS_ENTRY;
1145 if (idCpu == 0)
1146 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1147 pCpuCtx->fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1148 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1149 }
1150
1151 /*
1152 * Do the vendor specific initialization
1153 *
1154 * Note! We disable release log buffering here since we're doing relatively
1155 * lot of logging and doesn't want to hit the disk with each LogRel
1156 * statement.
1157 */
1158 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1159 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1160 if (pVM->hm.s.vmx.fSupported)
1161 rc = hmR3InitFinalizeR0Intel(pVM);
1162 else
1163 rc = hmR3InitFinalizeR0Amd(pVM);
1164 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1165 : "HM: VT-x/AMD-V init method: Local\n"));
1166 RTLogRelSetBuffering(fOldBuffered);
1167 pVM->hm.s.fInitialized = true;
1168
1169 return rc;
1170}
1171
1172
1173/**
1174 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1175 */
1176static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1177{
1178 NOREF(pVM);
1179 NOREF(pvAllocation);
1180 NOREF(GCPhysAllocation);
1181}
1182
1183
1184/**
1185 * Returns a description of the VMCS (and associated regions') memory type given the
1186 * IA32_VMX_BASIC MSR.
1187 *
1188 * @returns The descriptive memory type.
1189 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1190 */
1191static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1192{
1193 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1194 switch (uMemType)
1195 {
1196 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1197 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1198 }
1199 return "Unknown";
1200}
1201
1202
1203/**
1204 * Returns a single-line description of all the activity-states supported by the CPU
1205 * given the IA32_VMX_MISC MSR.
1206 *
1207 * @returns All supported activity states.
1208 * @param uMsrMisc IA32_VMX_MISC MSR value.
1209 */
1210static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1211{
1212 static const char * const s_apszActStates[] =
1213 {
1214 "",
1215 " ( HLT )",
1216 " ( SHUTDOWN )",
1217 " ( HLT SHUTDOWN )",
1218 " ( SIPI_WAIT )",
1219 " ( HLT SIPI_WAIT )",
1220 " ( SHUTDOWN SIPI_WAIT )",
1221 " ( HLT SHUTDOWN SIPI_WAIT )"
1222 };
1223 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1224 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1225 return s_apszActStates[idxActStates];
1226}
1227
1228
1229/**
1230 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1231 *
1232 * @param fFeatMsr The feature control MSR value.
1233 */
1234static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1235{
1236 uint64_t const val = fFeatMsr;
1237 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1238 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1239 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1240 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1241 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1242 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1243 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1244 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1245 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1246 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1247 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1248 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1249 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1250 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1251 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1252 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1253 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1254}
1255
1256
1257/**
1258 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1259 *
1260 * @param uBasicMsr The VMX basic MSR value.
1261 */
1262static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1263{
1264 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1265 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1266 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1267 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1268 "< 4 GB" : "None"));
1269 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1270 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1271 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1272 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1273 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1274}
1275
1276
1277/**
1278 * Reports MSR_IA32_PINBASED_CTLS to the log.
1279 *
1280 * @param pVmxMsr Pointer to the VMX MSR.
1281 */
1282static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1283{
1284 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1285 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1286 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1287 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1288 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1289 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1290 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1291 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1292}
1293
1294
1295/**
1296 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1297 *
1298 * @param pVmxMsr Pointer to the VMX MSR.
1299 */
1300static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1301{
1302 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1303 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1304 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1305 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1306 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1307 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1308 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1309 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1310 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1311 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1312 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1313 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1314 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1315 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1316 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1317 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1318 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1319 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1320 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1321 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1322 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1323 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1324 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1325 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1326}
1327
1328
1329/**
1330 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1331 *
1332 * @param pVmxMsr Pointer to the VMX MSR.
1333 */
1334static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1335{
1336 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1337 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1338 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1339 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1340 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1341 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1342 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1343 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1344 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1345 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1346 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1347 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1348 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1349 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1350 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1351 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1352 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1353 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1354 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1355 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1356 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1357 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_VE", VMX_PROC_CTLS2_EPT_VE);
1358 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1359 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1360 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1361 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPPTP_EPT", VMX_PROC_CTLS2_SPPTP_EPT);
1362 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1363 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1364 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1365 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1366}
1367
1368
1369/**
1370 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1371 *
1372 * @param pVmxMsr Pointer to the VMX MSR.
1373 */
1374static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1375{
1376 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1377 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1378 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1380 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1381 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1382 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1383 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1384 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1385 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1386 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1387 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1388 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1389}
1390
1391
1392/**
1393 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1394 *
1395 * @param pVmxMsr Pointer to the VMX MSR.
1396 */
1397static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1398{
1399 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1400 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1401 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1402 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1403 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1404 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1405 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1406 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1407 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1408 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1409 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1410 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1411 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1412 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1413 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1414}
1415
1416
1417/**
1418 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1419 *
1420 * @param fCaps The VMX EPT/VPID capability MSR value.
1421 */
1422static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1423{
1424 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1425 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1426 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1427 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1428 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1429 HMVMX_REPORT_MSR_CAP(fCaps, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1430 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1431 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1432 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1433 HMVMX_REPORT_MSR_CAP(fCaps, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1434 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT);
1435 HMVMX_REPORT_MSR_CAP(fCaps, "SSS", MSR_IA32_VMX_EPT_VPID_CAP_SSS);
1436 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1437 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1438 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1439 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1440 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1441 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1442 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1443}
1444
1445
1446/**
1447 * Reports MSR_IA32_VMX_MISC MSR to the log.
1448 *
1449 * @param pVM Pointer to the VM.
1450 * @param fMisc The VMX misc. MSR value.
1451 */
1452static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1453{
1454 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1455 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1456 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1457 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1458 else
1459 {
1460 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1461 pVM->hm.s.vmx.cPreemptTimerShift));
1462 }
1463 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1464 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1465 hmR3VmxGetActivityStateAllDesc(fMisc)));
1466 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1467 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1468 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1469 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1470 VMX_MISC_MAX_MSRS(fMisc)));
1471 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1472 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1473 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1474 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1475}
1476
1477
1478/**
1479 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1480 *
1481 * @param uVmcsEnum The VMX VMCS enum MSR value.
1482 */
1483static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1484{
1485 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1486 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1487}
1488
1489
1490/**
1491 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1492 *
1493 * @param uVmFunc The VMX VMFUNC MSR value.
1494 */
1495static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1496{
1497 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1498 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1499}
1500
1501
1502/**
1503 * Reports VMX CR0, CR4 fixed MSRs.
1504 *
1505 * @param pMsrs Pointer to the VMX MSRs.
1506 */
1507static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1508{
1509 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1510 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1511 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1512 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1513}
1514
1515
1516/**
1517 * Finish VT-x initialization (after ring-0 init).
1518 *
1519 * @returns VBox status code.
1520 * @param pVM The cross context VM structure.
1521 */
1522static int hmR3InitFinalizeR0Intel(PVM pVM)
1523{
1524 int rc;
1525
1526 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1527 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatCtrl != 0, VERR_HM_IPE_4);
1528
1529 LogRel(("HM: Using VT-x implementation 3.0\n"));
1530 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1531 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1532 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostMsrEfer));
1533 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1534
1535 hmR3VmxReportFeatCtlMsr(pVM->hm.s.vmx.Msrs.u64FeatCtrl);
1536 hmR3VmxReportBasicMsr(pVM->hm.s.vmx.Msrs.u64Basic);
1537
1538 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.PinCtls);
1539 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.vmx.Msrs.ProcCtls);
1540 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1541 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.vmx.Msrs.ProcCtls2);
1542
1543 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.vmx.Msrs.EntryCtls);
1544 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.vmx.Msrs.ExitCtls);
1545
1546 if (RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1547 {
1548 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1549 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TruePinCtls));
1550 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueProcCtls));
1551 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueEntryCtls));
1552 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.TrueExitCtls));
1553 }
1554
1555 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.vmx.Msrs.u64Misc);
1556 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.vmx.Msrs.u64VmcsEnum);
1557 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1558 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.vmx.Msrs.u64EptVpidCaps);
1559 if (pVM->hm.s.vmx.Msrs.u64VmFunc)
1560 hmR3VmxReportVmFuncMsr(pVM->hm.s.vmx.Msrs.u64VmFunc);
1561 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.vmx.Msrs);
1562
1563 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1564#ifdef TODO_9217_VMCSINFO
1565 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1566 {
1567 PCVMXVMCSINFOSHARED pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1568 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1569 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1570 }
1571#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1572 if (pVM->cpum.ro.GuestFeatures.fVmx)
1573 {
1574 LogRel(("HM: Nested-guest:\n"));
1575 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1576 {
1577 PCVMXVMCSINFOSHARED pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1578 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1579 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1580 }
1581 }
1582#endif
1583#endif /* TODO_9217_VMCSINFO */
1584
1585 /*
1586 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1587 */
1588 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1589 || (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1590 VERR_HM_IPE_1);
1591 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1592 || ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1593 && pVM->hm.s.fNestedPaging),
1594 VERR_HM_IPE_1);
1595
1596 /*
1597 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1598 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1599 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1600 */
1601 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1602 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1603 {
1604 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1605 LogRel(("HM: Disabled RDTSCP\n"));
1606 }
1607
1608 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1609 {
1610 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1611 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1612 if (RT_SUCCESS(rc))
1613 {
1614 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1615 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1616 esp. Figure 20-5.*/
1617 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1618 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1619
1620 /* Bit set to 0 means software interrupts are redirected to the
1621 8086 program interrupt handler rather than switching to
1622 protected-mode handler. */
1623 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1624
1625 /* Allow all port IO, so that port IO instructions do not cause
1626 exceptions and would instead cause a VM-exit (based on VT-x's
1627 IO bitmap which we currently configure to always cause an exit). */
1628 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1629 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1630
1631 /*
1632 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1633 * page table used in real and protected mode without paging with EPT.
1634 */
1635 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1636 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1637 {
1638 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1639 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1640 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1641 | X86_PDE4M_G;
1642 }
1643
1644 /* We convert it here every time as PCI regions could be reconfigured. */
1645 if (PDMVmmDevHeapIsEnabled(pVM))
1646 {
1647 RTGCPHYS GCPhys;
1648 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1649 AssertRCReturn(rc, rc);
1650 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1651
1652 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1653 AssertRCReturn(rc, rc);
1654 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1655 }
1656 }
1657 else
1658 {
1659 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1660 pVM->hm.s.vmx.pRealModeTSS = NULL;
1661 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1662 return VMSetError(pVM, rc, RT_SRC_POS,
1663 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1664 }
1665 }
1666
1667 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1668 : "HM: Guest support: 32-bit only\n"));
1669
1670 /*
1671 * Call ring-0 to set up the VM.
1672 */
1673 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1674 if (rc != VINF_SUCCESS)
1675 {
1676 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1677 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1678 {
1679 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1680 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1681 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1682 }
1683 HMR3CheckError(pVM, rc);
1684 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1685 }
1686
1687 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1688 LogRel(("HM: Enabled VMX\n"));
1689 pVM->hm.s.vmx.fEnabled = true;
1690
1691 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1692
1693 /*
1694 * Change the CPU features.
1695 */
1696 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1697 if (pVM->hm.s.fAllow64BitGuests)
1698 {
1699 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1700 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1701 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1702 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1703 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1704 }
1705 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1706 (we reuse the host EFER in the switcher). */
1707 /** @todo this needs to be fixed properly!! */
1708 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1709 {
1710 if (pVM->hm.s.vmx.u64HostMsrEfer & MSR_K6_EFER_NXE)
1711 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1712 else
1713 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1714 }
1715
1716 /*
1717 * Log configuration details.
1718 */
1719 if (pVM->hm.s.fNestedPaging)
1720 {
1721 LogRel(("HM: Enabled nested paging\n"));
1722 if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1723 LogRel(("HM: EPT flush type = Single context\n"));
1724 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1725 LogRel(("HM: EPT flush type = All contexts\n"));
1726 else if (pVM->hm.s.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1727 LogRel(("HM: EPT flush type = Not supported\n"));
1728 else
1729 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushEpt));
1730
1731 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1732 LogRel(("HM: Enabled unrestricted guest execution\n"));
1733
1734 if (pVM->hm.s.fLargePages)
1735 {
1736 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1737 PGMSetLargePageUsage(pVM, true);
1738 LogRel(("HM: Enabled large page support\n"));
1739 }
1740 }
1741 else
1742 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1743
1744 if (pVM->hm.s.vmx.fVpid)
1745 {
1746 LogRel(("HM: Enabled VPID\n"));
1747 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1748 LogRel(("HM: VPID flush type = Individual addresses\n"));
1749 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1750 LogRel(("HM: VPID flush type = Single context\n"));
1751 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1752 LogRel(("HM: VPID flush type = All contexts\n"));
1753 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1754 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1755 else
1756 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.vmx.enmTlbFlushVpid));
1757 }
1758 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1759 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1760
1761 if (pVM->hm.s.vmx.fUsePreemptTimer)
1762 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1763 else
1764 LogRel(("HM: Disabled VMX-preemption timer\n"));
1765
1766 if (pVM->hm.s.fVirtApicRegs)
1767 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1768
1769 if (pVM->hm.s.fPostedIntrs)
1770 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1771
1772 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1773 {
1774 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1775 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1776 }
1777
1778 return VINF_SUCCESS;
1779}
1780
1781
1782/**
1783 * Finish AMD-V initialization (after ring-0 init).
1784 *
1785 * @returns VBox status code.
1786 * @param pVM The cross context VM structure.
1787 */
1788static int hmR3InitFinalizeR0Amd(PVM pVM)
1789{
1790 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1791
1792 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1793
1794 uint32_t u32Family;
1795 uint32_t u32Model;
1796 uint32_t u32Stepping;
1797 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1798 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1799 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1800 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1801 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1802 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1803 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1804
1805 /*
1806 * Enumerate AMD-V features.
1807 */
1808 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1809 {
1810#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1811 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1812 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1813 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1814 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1815 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1816 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1817 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1818 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1819 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1820 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1821 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1822 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1823 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1824 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1825#undef HMSVM_REPORT_FEATURE
1826 };
1827
1828 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1829 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1830 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1831 {
1832 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1833 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1834 }
1835 if (fSvmFeatures)
1836 for (unsigned iBit = 0; iBit < 32; iBit++)
1837 if (RT_BIT_32(iBit) & fSvmFeatures)
1838 LogRel(("HM: Reserved bit %u\n", iBit));
1839
1840 /*
1841 * Nested paging is determined in HMR3Init, verify the sanity of that.
1842 */
1843 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1844 || (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1845 VERR_HM_IPE_1);
1846
1847#if 0
1848 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1849 * here. */
1850 if (RTR0IsPostIpiSupport())
1851 pVM->hm.s.fPostedIntrs = true;
1852#endif
1853
1854 /*
1855 * Determine whether we need to intercept #UD in SVM mode for emulating
1856 * intel SYSENTER/SYSEXIT on AMD64, as these instructions results in #UD
1857 * when executed in long-mode. This is only really applicable when
1858 * non-default CPU profiles are in effect, i.e. guest vendor differs
1859 * from the host one.
1860 */
1861 if (CPUMGetGuestCpuVendor(pVM) != CPUMGetHostCpuVendor(pVM))
1862 switch (CPUMGetGuestCpuVendor(pVM))
1863 {
1864 case CPUMCPUVENDOR_INTEL:
1865 case CPUMCPUVENDOR_VIA: /*?*/
1866 case CPUMCPUVENDOR_SHANGHAI: /*?*/
1867 switch (CPUMGetHostCpuVendor(pVM))
1868 {
1869 case CPUMCPUVENDOR_AMD:
1870 case CPUMCPUVENDOR_HYGON:
1871 if (pVM->hm.s.fAllow64BitGuests)
1872 {
1873 LogRel(("HM: Intercepting #UD for emulating SYSENTER/SYSEXIT in long mode.\n"));
1874 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1875 pVM->apCpusR3[idCpu]->hm.s.svm.fEmulateLongModeSysEnterExit = true;
1876 }
1877 break;
1878 default: break;
1879 }
1880 default: break;
1881 }
1882
1883 /*
1884 * Call ring-0 to set up the VM.
1885 */
1886 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1887 if (rc != VINF_SUCCESS)
1888 {
1889 AssertMsgFailed(("%Rrc\n", rc));
1890 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1891 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1892 }
1893
1894 LogRel(("HM: Enabled SVM\n"));
1895 pVM->hm.s.svm.fEnabled = true;
1896
1897 if (pVM->hm.s.fNestedPaging)
1898 {
1899 LogRel(("HM: Enabled nested paging\n"));
1900
1901 /*
1902 * Enable large pages (2 MB) if applicable.
1903 */
1904 if (pVM->hm.s.fLargePages)
1905 {
1906 PGMSetLargePageUsage(pVM, true);
1907 LogRel(("HM: Enabled large page support\n"));
1908 }
1909 }
1910
1911 if (pVM->hm.s.fVirtApicRegs)
1912 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1913
1914 if (pVM->hm.s.fPostedIntrs)
1915 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1916
1917 hmR3DisableRawMode(pVM);
1918
1919 /*
1920 * Change the CPU features.
1921 */
1922 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1923 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1924 if (pVM->hm.s.fAllow64BitGuests)
1925 {
1926 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1927 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1928 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1929 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1930 }
1931 /* Turn on NXE if PAE has been enabled. */
1932 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1933 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1934
1935 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1936 : "HM: Disabled TPR patching\n"));
1937
1938 LogRel((pVM->hm.s.fAllow64BitGuests ? "HM: Guest support: 32-bit and 64-bit\n"
1939 : "HM: Guest support: 32-bit only\n"));
1940 return VINF_SUCCESS;
1941}
1942
1943
1944/**
1945 * Applies relocations to data and code managed by this
1946 * component. This function will be called at init and
1947 * whenever the VMM need to relocate it self inside the GC.
1948 *
1949 * @param pVM The cross context VM structure.
1950 */
1951VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1952{
1953 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1954
1955 /* Fetch the current paging mode during the relocate callback during state loading. */
1956 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1957 {
1958 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1959 {
1960 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1961 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1962 }
1963 }
1964}
1965
1966
1967/**
1968 * Terminates the HM.
1969 *
1970 * Termination means cleaning up and freeing all resources,
1971 * the VM itself is, at this point, powered off or suspended.
1972 *
1973 * @returns VBox status code.
1974 * @param pVM The cross context VM structure.
1975 */
1976VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1977{
1978 if (pVM->hm.s.vmx.pRealModeTSS)
1979 {
1980 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1981 pVM->hm.s.vmx.pRealModeTSS = 0;
1982 }
1983 hmR3TermCPU(pVM);
1984 return 0;
1985}
1986
1987
1988/**
1989 * Terminates the per-VCPU HM.
1990 *
1991 * @returns VBox status code.
1992 * @param pVM The cross context VM structure.
1993 */
1994static int hmR3TermCPU(PVM pVM)
1995{
1996#ifdef VBOX_WITH_STATISTICS
1997 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1998 {
1999 PVMCPU pVCpu = pVM->apCpusR3[idCpu]; NOREF(pVCpu);
2000 if (pVCpu->hm.s.paStatExitReason)
2001 {
2002 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
2003 pVCpu->hm.s.paStatExitReason = NULL;
2004 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
2005 }
2006 if (pVCpu->hm.s.paStatInjectedIrqs)
2007 {
2008 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
2009 pVCpu->hm.s.paStatInjectedIrqs = NULL;
2010 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
2011 }
2012 if (pVCpu->hm.s.paStatInjectedXcpts)
2013 {
2014 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedXcpts);
2015 pVCpu->hm.s.paStatInjectedXcpts = NULL;
2016 pVCpu->hm.s.paStatInjectedXcptsR0 = NIL_RTR0PTR;
2017 }
2018# if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
2019 if (pVCpu->hm.s.paStatNestedExitReason)
2020 {
2021 MMHyperFree(pVM, pVCpu->hm.s.paStatNestedExitReason);
2022 pVCpu->hm.s.paStatNestedExitReason = NULL;
2023 pVCpu->hm.s.paStatNestedExitReasonR0 = NIL_RTR0PTR;
2024 }
2025# endif
2026 }
2027#else
2028 RT_NOREF(pVM);
2029#endif
2030 return VINF_SUCCESS;
2031}
2032
2033
2034/**
2035 * Resets a virtual CPU.
2036 *
2037 * Used by HMR3Reset and CPU hot plugging.
2038 *
2039 * @param pVCpu The cross context virtual CPU structure to reset.
2040 */
2041VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2042{
2043 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2044 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2045 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2046
2047 pVCpu->hm.s.fActive = false;
2048 pVCpu->hm.s.Event.fPending = false;
2049 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2050 pVCpu->hm.s.vmx.VmcsInfo.fSwitchedTo64on32Obsolete = false;
2051 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2052#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2053 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2054 {
2055 pVCpu->hm.s.vmx.VmcsInfoNstGst.fSwitchedTo64on32Obsolete = false;
2056 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2057 }
2058#endif
2059}
2060
2061
2062/**
2063 * The VM is being reset.
2064 *
2065 * For the HM component this means that any GDT/LDT/TSS monitors
2066 * needs to be removed.
2067 *
2068 * @param pVM The cross context VM structure.
2069 */
2070VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2071{
2072 LogFlow(("HMR3Reset:\n"));
2073
2074 if (HMIsEnabled(pVM))
2075 hmR3DisableRawMode(pVM);
2076
2077 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2078 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2079
2080 /* Clear all patch information. */
2081 pVM->hm.s.pGuestPatchMem = 0;
2082 pVM->hm.s.pFreeGuestPatchMem = 0;
2083 pVM->hm.s.cbGuestPatchMem = 0;
2084 pVM->hm.s.cPatches = 0;
2085 pVM->hm.s.PatchTree = 0;
2086 pVM->hm.s.fTPRPatchingActive = false;
2087 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2088}
2089
2090
2091/**
2092 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2093 *
2094 * @returns VBox strict status code.
2095 * @param pVM The cross context VM structure.
2096 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2097 * @param pvUser Unused.
2098 */
2099static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2100{
2101 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2102
2103 /* Only execute the handler on the VCPU the original patch request was issued. */
2104 if (pVCpu->idCpu != idCpu)
2105 return VINF_SUCCESS;
2106
2107 Log(("hmR3RemovePatches\n"));
2108 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2109 {
2110 uint8_t abInstr[15];
2111 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2112 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2113 int rc;
2114
2115#ifdef LOG_ENABLED
2116 char szOutput[256];
2117 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2118 szOutput, sizeof(szOutput), NULL);
2119 if (RT_SUCCESS(rc))
2120 Log(("Patched instr: %s\n", szOutput));
2121#endif
2122
2123 /* Check if the instruction is still the same. */
2124 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2125 if (rc != VINF_SUCCESS)
2126 {
2127 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2128 continue; /* swapped out or otherwise removed; skip it. */
2129 }
2130
2131 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2132 {
2133 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2134 continue; /* skip it. */
2135 }
2136
2137 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2138 AssertRC(rc);
2139
2140#ifdef LOG_ENABLED
2141 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2142 szOutput, sizeof(szOutput), NULL);
2143 if (RT_SUCCESS(rc))
2144 Log(("Original instr: %s\n", szOutput));
2145#endif
2146 }
2147 pVM->hm.s.cPatches = 0;
2148 pVM->hm.s.PatchTree = 0;
2149 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2150 pVM->hm.s.fTPRPatchingActive = false;
2151 return VINF_SUCCESS;
2152}
2153
2154
2155/**
2156 * Worker for enabling patching in a VT-x/AMD-V guest.
2157 *
2158 * @returns VBox status code.
2159 * @param pVM The cross context VM structure.
2160 * @param idCpu VCPU to execute hmR3RemovePatches on.
2161 * @param pPatchMem Patch memory range.
2162 * @param cbPatchMem Size of the memory range.
2163 */
2164static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2165{
2166 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2167 AssertRC(rc);
2168
2169 pVM->hm.s.pGuestPatchMem = pPatchMem;
2170 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2171 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2172 return VINF_SUCCESS;
2173}
2174
2175
2176/**
2177 * Enable patching in a VT-x/AMD-V guest
2178 *
2179 * @returns VBox status code.
2180 * @param pVM The cross context VM structure.
2181 * @param pPatchMem Patch memory range.
2182 * @param cbPatchMem Size of the memory range.
2183 */
2184VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2185{
2186 VM_ASSERT_EMT(pVM);
2187 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2188 if (pVM->cCpus > 1)
2189 {
2190 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2191 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2192 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2193 AssertRC(rc);
2194 return rc;
2195 }
2196 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2197}
2198
2199
2200/**
2201 * Disable patching in a VT-x/AMD-V guest.
2202 *
2203 * @returns VBox status code.
2204 * @param pVM The cross context VM structure.
2205 * @param pPatchMem Patch memory range.
2206 * @param cbPatchMem Size of the memory range.
2207 */
2208VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2209{
2210 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2211 RT_NOREF2(pPatchMem, cbPatchMem);
2212
2213 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2214 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2215
2216 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2217 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2218 (void *)(uintptr_t)VMMGetCpuId(pVM));
2219 AssertRC(rc);
2220
2221 pVM->hm.s.pGuestPatchMem = 0;
2222 pVM->hm.s.pFreeGuestPatchMem = 0;
2223 pVM->hm.s.cbGuestPatchMem = 0;
2224 pVM->hm.s.fTPRPatchingActive = false;
2225 return VINF_SUCCESS;
2226}
2227
2228
2229/**
2230 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2231 *
2232 * @returns VBox strict status code.
2233 * @param pVM The cross context VM structure.
2234 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2235 * @param pvUser User specified CPU context.
2236 *
2237 */
2238static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2239{
2240 /*
2241 * Only execute the handler on the VCPU the original patch request was
2242 * issued. (The other CPU(s) might not yet have switched to protected
2243 * mode, nor have the correct memory context.)
2244 */
2245 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2246 if (pVCpu->idCpu != idCpu)
2247 return VINF_SUCCESS;
2248
2249 /*
2250 * We're racing other VCPUs here, so don't try patch the instruction twice
2251 * and make sure there is still room for our patch record.
2252 */
2253 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2254 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2255 if (pPatch)
2256 {
2257 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2258 return VINF_SUCCESS;
2259 }
2260 uint32_t const idx = pVM->hm.s.cPatches;
2261 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2262 {
2263 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2264 return VINF_SUCCESS;
2265 }
2266 pPatch = &pVM->hm.s.aPatches[idx];
2267
2268 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2269
2270 /*
2271 * Disassembler the instruction and get cracking.
2272 */
2273 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2274 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2275 uint32_t cbOp;
2276 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2277 AssertRC(rc);
2278 if ( rc == VINF_SUCCESS
2279 && pDis->pCurInstr->uOpcode == OP_MOV
2280 && cbOp >= 3)
2281 {
2282 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2283
2284 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2285 AssertRC(rc);
2286
2287 pPatch->cbOp = cbOp;
2288
2289 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2290 {
2291 /* write. */
2292 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2293 {
2294 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2295 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2296 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2297 }
2298 else
2299 {
2300 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2301 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2302 pPatch->uSrcOperand = pDis->Param2.uValue;
2303 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2304 }
2305 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2306 AssertRC(rc);
2307
2308 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2309 pPatch->cbNewOp = sizeof(s_abVMMCall);
2310 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2311 }
2312 else
2313 {
2314 /*
2315 * TPR Read.
2316 *
2317 * Found:
2318 * mov eax, dword [fffe0080] (5 bytes)
2319 * Check if next instruction is:
2320 * shr eax, 4
2321 */
2322 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2323
2324 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2325 uint8_t const cbOpMmio = cbOp;
2326 uint64_t const uSavedRip = pCtx->rip;
2327
2328 pCtx->rip += cbOp;
2329 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2330 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2331 pCtx->rip = uSavedRip;
2332
2333 if ( rc == VINF_SUCCESS
2334 && pDis->pCurInstr->uOpcode == OP_SHR
2335 && pDis->Param1.fUse == DISUSE_REG_GEN32
2336 && pDis->Param1.Base.idxGenReg == idxMmioReg
2337 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2338 && pDis->Param2.uValue == 4
2339 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2340 {
2341 uint8_t abInstr[15];
2342
2343 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2344 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2345 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2346 AssertRC(rc);
2347
2348 pPatch->cbOp = cbOpMmio + cbOp;
2349
2350 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2351 abInstr[0] = 0xf0;
2352 abInstr[1] = 0x0f;
2353 abInstr[2] = 0x20;
2354 abInstr[3] = 0xc0 | pDis->Param1.Base.idxGenReg;
2355 for (unsigned i = 4; i < pPatch->cbOp; i++)
2356 abInstr[i] = 0x90; /* nop */
2357
2358 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2359 AssertRC(rc);
2360
2361 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2362 pPatch->cbNewOp = pPatch->cbOp;
2363 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2364
2365 Log(("Acceptable read/shr candidate!\n"));
2366 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2367 }
2368 else
2369 {
2370 pPatch->enmType = HMTPRINSTR_READ;
2371 pPatch->uDstOperand = idxMmioReg;
2372
2373 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2374 AssertRC(rc);
2375
2376 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2377 pPatch->cbNewOp = sizeof(s_abVMMCall);
2378 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2379 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2380 }
2381 }
2382
2383 pPatch->Core.Key = pCtx->eip;
2384 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2385 AssertRC(rc);
2386
2387 pVM->hm.s.cPatches++;
2388 return VINF_SUCCESS;
2389 }
2390
2391 /*
2392 * Save invalid patch, so we will not try again.
2393 */
2394 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2395 pPatch->Core.Key = pCtx->eip;
2396 pPatch->enmType = HMTPRINSTR_INVALID;
2397 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2398 AssertRC(rc);
2399 pVM->hm.s.cPatches++;
2400 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2401 return VINF_SUCCESS;
2402}
2403
2404
2405/**
2406 * Callback to patch a TPR instruction (jump to generated code).
2407 *
2408 * @returns VBox strict status code.
2409 * @param pVM The cross context VM structure.
2410 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2411 * @param pvUser User specified CPU context.
2412 *
2413 */
2414static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2415{
2416 /*
2417 * Only execute the handler on the VCPU the original patch request was
2418 * issued. (The other CPU(s) might not yet have switched to protected
2419 * mode, nor have the correct memory context.)
2420 */
2421 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2422 if (pVCpu->idCpu != idCpu)
2423 return VINF_SUCCESS;
2424
2425 /*
2426 * We're racing other VCPUs here, so don't try patch the instruction twice
2427 * and make sure there is still room for our patch record.
2428 */
2429 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2430 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2431 if (pPatch)
2432 {
2433 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2434 return VINF_SUCCESS;
2435 }
2436 uint32_t const idx = pVM->hm.s.cPatches;
2437 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2438 {
2439 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2440 return VINF_SUCCESS;
2441 }
2442 pPatch = &pVM->hm.s.aPatches[idx];
2443
2444 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2445 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2446
2447 /*
2448 * Disassemble the instruction and get cracking.
2449 */
2450 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2451 uint32_t cbOp;
2452 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2453 AssertRC(rc);
2454 if ( rc == VINF_SUCCESS
2455 && pDis->pCurInstr->uOpcode == OP_MOV
2456 && cbOp >= 5)
2457 {
2458 uint8_t aPatch[64];
2459 uint32_t off = 0;
2460
2461 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2462 AssertRC(rc);
2463
2464 pPatch->cbOp = cbOp;
2465 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2466
2467 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2468 {
2469 /*
2470 * TPR write:
2471 *
2472 * push ECX [51]
2473 * push EDX [52]
2474 * push EAX [50]
2475 * xor EDX,EDX [31 D2]
2476 * mov EAX,EAX [89 C0]
2477 * or
2478 * mov EAX,0000000CCh [B8 CC 00 00 00]
2479 * mov ECX,0C0000082h [B9 82 00 00 C0]
2480 * wrmsr [0F 30]
2481 * pop EAX [58]
2482 * pop EDX [5A]
2483 * pop ECX [59]
2484 * jmp return_address [E9 return_address]
2485 */
2486 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2487
2488 aPatch[off++] = 0x51; /* push ecx */
2489 aPatch[off++] = 0x52; /* push edx */
2490 if (!fUsesEax)
2491 aPatch[off++] = 0x50; /* push eax */
2492 aPatch[off++] = 0x31; /* xor edx, edx */
2493 aPatch[off++] = 0xd2;
2494 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2495 {
2496 if (!fUsesEax)
2497 {
2498 aPatch[off++] = 0x89; /* mov eax, src_reg */
2499 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2500 }
2501 }
2502 else
2503 {
2504 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2505 aPatch[off++] = 0xb8; /* mov eax, immediate */
2506 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2507 off += sizeof(uint32_t);
2508 }
2509 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2510 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2511 off += sizeof(uint32_t);
2512
2513 aPatch[off++] = 0x0f; /* wrmsr */
2514 aPatch[off++] = 0x30;
2515 if (!fUsesEax)
2516 aPatch[off++] = 0x58; /* pop eax */
2517 aPatch[off++] = 0x5a; /* pop edx */
2518 aPatch[off++] = 0x59; /* pop ecx */
2519 }
2520 else
2521 {
2522 /*
2523 * TPR read:
2524 *
2525 * push ECX [51]
2526 * push EDX [52]
2527 * push EAX [50]
2528 * mov ECX,0C0000082h [B9 82 00 00 C0]
2529 * rdmsr [0F 32]
2530 * mov EAX,EAX [89 C0]
2531 * pop EAX [58]
2532 * pop EDX [5A]
2533 * pop ECX [59]
2534 * jmp return_address [E9 return_address]
2535 */
2536 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2537
2538 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2539 aPatch[off++] = 0x51; /* push ecx */
2540 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2541 aPatch[off++] = 0x52; /* push edx */
2542 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2543 aPatch[off++] = 0x50; /* push eax */
2544
2545 aPatch[off++] = 0x31; /* xor edx, edx */
2546 aPatch[off++] = 0xd2;
2547
2548 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2549 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2550 off += sizeof(uint32_t);
2551
2552 aPatch[off++] = 0x0f; /* rdmsr */
2553 aPatch[off++] = 0x32;
2554
2555 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2556 {
2557 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2558 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2559 }
2560
2561 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2562 aPatch[off++] = 0x58; /* pop eax */
2563 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2564 aPatch[off++] = 0x5a; /* pop edx */
2565 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2566 aPatch[off++] = 0x59; /* pop ecx */
2567 }
2568 aPatch[off++] = 0xe9; /* jmp return_address */
2569 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2570 off += sizeof(RTRCUINTPTR);
2571
2572 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2573 {
2574 /* Write new code to the patch buffer. */
2575 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2576 AssertRC(rc);
2577
2578#ifdef LOG_ENABLED
2579 uint32_t cbCurInstr;
2580 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2581 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2582 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2583 {
2584 char szOutput[256];
2585 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2586 szOutput, sizeof(szOutput), &cbCurInstr);
2587 if (RT_SUCCESS(rc))
2588 Log(("Patch instr %s\n", szOutput));
2589 else
2590 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2591 }
2592#endif
2593
2594 pPatch->aNewOpcode[0] = 0xE9;
2595 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2596
2597 /* Overwrite the TPR instruction with a jump. */
2598 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2599 AssertRC(rc);
2600
2601 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2602
2603 pVM->hm.s.pFreeGuestPatchMem += off;
2604 pPatch->cbNewOp = 5;
2605
2606 pPatch->Core.Key = pCtx->eip;
2607 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2608 AssertRC(rc);
2609
2610 pVM->hm.s.cPatches++;
2611 pVM->hm.s.fTPRPatchingActive = true;
2612 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2613 return VINF_SUCCESS;
2614 }
2615
2616 Log(("Ran out of space in our patch buffer!\n"));
2617 }
2618 else
2619 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2620
2621
2622 /*
2623 * Save invalid patch, so we will not try again.
2624 */
2625 pPatch = &pVM->hm.s.aPatches[idx];
2626 pPatch->Core.Key = pCtx->eip;
2627 pPatch->enmType = HMTPRINSTR_INVALID;
2628 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2629 AssertRC(rc);
2630 pVM->hm.s.cPatches++;
2631 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2632 return VINF_SUCCESS;
2633}
2634
2635
2636/**
2637 * Attempt to patch TPR mmio instructions.
2638 *
2639 * @returns VBox status code.
2640 * @param pVM The cross context VM structure.
2641 * @param pVCpu The cross context virtual CPU structure.
2642 */
2643VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2644{
2645 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2646 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2647 (void *)(uintptr_t)pVCpu->idCpu);
2648 AssertRC(rc);
2649 return rc;
2650}
2651
2652
2653/**
2654 * Checks if we need to reschedule due to VMM device heap changes.
2655 *
2656 * @returns true if a reschedule is required, otherwise false.
2657 * @param pVM The cross context VM structure.
2658 * @param pCtx VM execution context.
2659 */
2660VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2661{
2662 /*
2663 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2664 * when the unrestricted guest execution feature is missing (VT-x only).
2665 */
2666 if ( pVM->hm.s.vmx.fEnabled
2667 && !pVM->hm.s.vmx.fUnrestrictedGuest
2668 && CPUMIsGuestInRealModeEx(pCtx)
2669 && !PDMVmmDevHeapIsEnabled(pVM))
2670 return true;
2671
2672 return false;
2673}
2674
2675
2676/**
2677 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2678 * event settings changes.
2679 *
2680 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2681 * function is just updating the VM globals.
2682 *
2683 * @param pVM The VM cross context VM structure.
2684 * @thread EMT(0)
2685 */
2686VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2687{
2688 /* Interrupts. */
2689 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2690 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2691
2692 /* CPU Exceptions. */
2693 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2694 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2695 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2696 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2697
2698 /* Common VM exits. */
2699 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2700 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2701 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2702 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2703
2704 /* Vendor specific VM exits. */
2705 if (HMR3IsVmxEnabled(pVM->pUVM))
2706 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2707 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2708 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2709 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2710 else
2711 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2712 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2713 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2714 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2715
2716 /* Done. */
2717 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2718}
2719
2720
2721/**
2722 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2723 *
2724 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2725 * per CPU settings.
2726 *
2727 * @param pVM The VM cross context VM structure.
2728 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2729 */
2730VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2731{
2732 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2733}
2734
2735
2736/**
2737 * Checks if we are currently using hardware acceleration.
2738 *
2739 * @returns true if hardware acceleration is being used, otherwise false.
2740 * @param pVCpu The cross context virtual CPU structure.
2741 */
2742VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2743{
2744 return pVCpu->hm.s.fActive;
2745}
2746
2747
2748/**
2749 * External interface for querying whether hardware acceleration is enabled.
2750 *
2751 * @returns true if VT-x or AMD-V is being used, otherwise false.
2752 * @param pUVM The user mode VM handle.
2753 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2754 */
2755VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2756{
2757 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2758 PVM pVM = pUVM->pVM;
2759 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2760 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2761}
2762
2763
2764/**
2765 * External interface for querying whether VT-x is being used.
2766 *
2767 * @returns true if VT-x is being used, otherwise false.
2768 * @param pUVM The user mode VM handle.
2769 * @sa HMR3IsSvmEnabled, HMIsEnabled
2770 */
2771VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2772{
2773 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2774 PVM pVM = pUVM->pVM;
2775 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2776 return pVM->hm.s.vmx.fEnabled
2777 && pVM->hm.s.vmx.fSupported
2778 && pVM->fHMEnabled;
2779}
2780
2781
2782/**
2783 * External interface for querying whether AMD-V is being used.
2784 *
2785 * @returns true if VT-x is being used, otherwise false.
2786 * @param pUVM The user mode VM handle.
2787 * @sa HMR3IsVmxEnabled, HMIsEnabled
2788 */
2789VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2790{
2791 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2792 PVM pVM = pUVM->pVM;
2793 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2794 return pVM->hm.s.svm.fEnabled
2795 && pVM->hm.s.svm.fSupported
2796 && pVM->fHMEnabled;
2797}
2798
2799
2800/**
2801 * Checks if we are currently using nested paging.
2802 *
2803 * @returns true if nested paging is being used, otherwise false.
2804 * @param pUVM The user mode VM handle.
2805 */
2806VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2807{
2808 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2809 PVM pVM = pUVM->pVM;
2810 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2811 return pVM->hm.s.fNestedPaging;
2812}
2813
2814
2815/**
2816 * Checks if virtualized APIC registers is enabled.
2817 *
2818 * When enabled this feature allows the hardware to access most of the
2819 * APIC registers in the virtual-APIC page without causing VM-exits. See
2820 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2821 *
2822 * @returns true if virtualized APIC registers is enabled, otherwise
2823 * false.
2824 * @param pUVM The user mode VM handle.
2825 */
2826VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
2827{
2828 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2829 PVM pVM = pUVM->pVM;
2830 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2831 return pVM->hm.s.fVirtApicRegs;
2832}
2833
2834
2835/**
2836 * Checks if APIC posted-interrupt processing is enabled.
2837 *
2838 * This returns whether we can deliver interrupts to the guest without
2839 * leaving guest-context by updating APIC state from host-context.
2840 *
2841 * @returns true if APIC posted-interrupt processing is enabled,
2842 * otherwise false.
2843 * @param pUVM The user mode VM handle.
2844 */
2845VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2846{
2847 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2848 PVM pVM = pUVM->pVM;
2849 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2850 return pVM->hm.s.fPostedIntrs;
2851}
2852
2853
2854/**
2855 * Checks if we are currently using VPID in VT-x mode.
2856 *
2857 * @returns true if VPID is being used, otherwise false.
2858 * @param pUVM The user mode VM handle.
2859 */
2860VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2861{
2862 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2863 PVM pVM = pUVM->pVM;
2864 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2865 return pVM->hm.s.vmx.fVpid;
2866}
2867
2868
2869/**
2870 * Checks if we are currently using VT-x unrestricted execution,
2871 * aka UX.
2872 *
2873 * @returns true if UX is being used, otherwise false.
2874 * @param pUVM The user mode VM handle.
2875 */
2876VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2877{
2878 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2879 PVM pVM = pUVM->pVM;
2880 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2881 return pVM->hm.s.vmx.fUnrestrictedGuest
2882 || pVM->hm.s.svm.fSupported;
2883}
2884
2885
2886/**
2887 * Checks if the VMX-preemption timer is being used.
2888 *
2889 * @returns true if the VMX-preemption timer is being used, otherwise false.
2890 * @param pVM The cross context VM structure.
2891 */
2892VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2893{
2894 return HMIsEnabled(pVM)
2895 && pVM->hm.s.vmx.fEnabled
2896 && pVM->hm.s.vmx.fUsePreemptTimer;
2897}
2898
2899
2900#ifdef TODO_9217_VMCSINFO
2901/**
2902 * Helper for HMR3CheckError to log VMCS controls to the release log.
2903 *
2904 * @param idCpu The Virtual CPU ID.
2905 * @param pVmcsInfo The VMCS info. object.
2906 */
2907static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2908{
2909 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2910 {
2911 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2912 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2913 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2914 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2915 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2916 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2917 }
2918 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2919 {
2920 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2921 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2922 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2923 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2924 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2925 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2926 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2927 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2928 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2929 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2930 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2931 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2932 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2933 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2934 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2935 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2936 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2937 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2938 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2939 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2940 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2941 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2942 }
2943 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2944 {
2945 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2946 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2947 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2948 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2949 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2960 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2961 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2962 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2963 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2964 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_VE );
2965 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2966 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2967 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2968 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPPTP_EPT );
2969 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2970 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2971 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2972 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2973 }
2974 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2975 {
2976 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2977 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2978 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2979 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2980 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2981 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2982 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2983 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2984 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2985 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2986 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2987 }
2988 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2989 {
2990 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2991 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2992 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2993 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
2994 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
2995 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
2996 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
2997 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
2998 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
2999 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
3000 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
3001 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
3002 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
3003 }
3004}
3005#endif
3006
3007
3008/**
3009 * Check fatal VT-x/AMD-V error and produce some meaningful
3010 * log release message.
3011 *
3012 * @param pVM The cross context VM structure.
3013 * @param iStatusCode VBox status code.
3014 */
3015VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3016{
3017 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3018 {
3019 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3020 * might be getting inaccurate values for non-guru'ing EMTs. */
3021 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3022#ifdef TODO_9217_VMCSINFO
3023 PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu);
3024#endif
3025 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3026 switch (iStatusCode)
3027 {
3028 case VERR_VMX_INVALID_VMCS_PTR:
3029 {
3030 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3031 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3032#ifdef TODO_9217_VMCSINFO
3033 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
3034 pVmcsInfo->HCPhysVmcs));
3035#endif
3036 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
3037 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3038 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3039 break;
3040 }
3041
3042 case VERR_VMX_UNABLE_TO_START_VM:
3043 {
3044 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3045 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3046 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3047 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3048
3049 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3050 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3051 {
3052 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3053 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3054 }
3055 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3056 {
3057#ifdef TODO_9217_VMCSINFO
3058 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3059 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3060 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3061 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3062 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3063 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3064 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3065 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3066#endif
3067 }
3068 /** @todo Log VM-entry event injection control fields
3069 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3070 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3071 break;
3072 }
3073
3074 case VERR_VMX_INVALID_GUEST_STATE:
3075 {
3076 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3077 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3078 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3079#ifdef TODO_9217_VMCSINFO
3080 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3081#endif
3082 break;
3083 }
3084
3085 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3086 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3087 case VERR_VMX_INVALID_VMXON_PTR:
3088 case VERR_VMX_UNEXPECTED_EXIT:
3089 case VERR_VMX_INVALID_VMCS_FIELD:
3090 case VERR_SVM_UNKNOWN_EXIT:
3091 case VERR_SVM_UNEXPECTED_EXIT:
3092 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3093 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3094 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3095 break;
3096 }
3097 }
3098
3099 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3100 {
3101 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1));
3102 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0));
3103 }
3104 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3105 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3106}
3107
3108
3109/**
3110 * Execute state save operation.
3111 *
3112 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3113 * is because we always save the VM state from ring-3 and thus most HM state
3114 * will be re-synced dynamically at runtime and don't need to be part of the VM
3115 * saved state.
3116 *
3117 * @returns VBox status code.
3118 * @param pVM The cross context VM structure.
3119 * @param pSSM SSM operation handle.
3120 */
3121static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3122{
3123 Log(("hmR3Save:\n"));
3124
3125 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3126 {
3127 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3128 Assert(!pVCpu->hm.s.Event.fPending);
3129 if (pVM->cpum.ro.GuestFeatures.fSvm)
3130 {
3131 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3132 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3133 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3134 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3135 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3136 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3137 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3138 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3139 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3140 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3141 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3142 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3143 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3144 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3145 }
3146 }
3147
3148 /* Save the guest patch data. */
3149 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3150 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3151 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3152
3153 /* Store all the guest patch records too. */
3154 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3155 if (RT_FAILURE(rc))
3156 return rc;
3157
3158 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3159 {
3160 AssertCompileSize(HMTPRINSTR, 4);
3161 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3162 SSMR3PutU32(pSSM, pPatch->Core.Key);
3163 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3164 SSMR3PutU32(pSSM, pPatch->cbOp);
3165 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3166 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3167 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3168 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3169 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3170 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3171 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3172 if (RT_FAILURE(rc))
3173 return rc;
3174 }
3175
3176 return VINF_SUCCESS;
3177}
3178
3179
3180/**
3181 * Execute state load operation.
3182 *
3183 * @returns VBox status code.
3184 * @param pVM The cross context VM structure.
3185 * @param pSSM SSM operation handle.
3186 * @param uVersion Data layout version.
3187 * @param uPass The data pass.
3188 */
3189static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3190{
3191 int rc;
3192
3193 LogFlowFunc(("uVersion=%u\n", uVersion));
3194 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3195
3196 /*
3197 * Validate version.
3198 */
3199 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3200 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3201 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3202 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3203 {
3204 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3205 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3206 }
3207
3208 /*
3209 * Load per-VCPU state.
3210 */
3211 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3212 {
3213 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3214 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3215 {
3216 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3217 if (pVM->cpum.ro.GuestFeatures.fSvm)
3218 {
3219 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3220 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3221 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3222 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3223 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3224 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3225 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3226 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3227 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3228 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3229 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3230 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3231 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3232 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3233 AssertRCReturn(rc, rc);
3234 }
3235 }
3236 else
3237 {
3238 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3239 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3240 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3241 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3242
3243 /* VMX fWasInRealMode related data. */
3244 uint32_t uDummy;
3245 SSMR3GetU32(pSSM, &uDummy);
3246 SSMR3GetU32(pSSM, &uDummy);
3247 rc = SSMR3GetU32(pSSM, &uDummy);
3248 AssertRCReturn(rc, rc);
3249 }
3250 }
3251
3252 /*
3253 * Load TPR patching data.
3254 */
3255 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3256 {
3257 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3258 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3259 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3260
3261 /* Fetch all TPR patch records. */
3262 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3263 AssertRCReturn(rc, rc);
3264 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3265 {
3266 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3267 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3268 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3269 SSMR3GetU32(pSSM, &pPatch->cbOp);
3270 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3271 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3272 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3273
3274 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3275 pVM->hm.s.fTPRPatchingActive = true;
3276 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3277
3278 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3279 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3280 SSMR3GetU32(pSSM, &pPatch->cFaults);
3281 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3282 AssertRCReturn(rc, rc);
3283
3284 LogFlow(("hmR3Load: patch %d\n", i));
3285 LogFlow(("Key = %x\n", pPatch->Core.Key));
3286 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3287 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3288 LogFlow(("type = %d\n", pPatch->enmType));
3289 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3290 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3291 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3292 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3293
3294 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3295 AssertRCReturn(rc, rc);
3296 }
3297 }
3298
3299 return VINF_SUCCESS;
3300}
3301
3302
3303/**
3304 * Displays HM info.
3305 *
3306 * @param pVM The cross context VM structure.
3307 * @param pHlp The info helper functions.
3308 * @param pszArgs Arguments, ignored.
3309 */
3310static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3311{
3312 NOREF(pszArgs);
3313 PVMCPU pVCpu = VMMGetCpu(pVM);
3314 if (!pVCpu)
3315 pVCpu = pVM->apCpusR3[0];
3316
3317 if (HMIsEnabled(pVM))
3318 {
3319 if (pVM->hm.s.vmx.fSupported)
3320 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3321 else
3322 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3323 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3324 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3325 if (pVM->hm.s.vmx.fSupported)
3326 {
3327 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3328 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
3329 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3330
3331 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3332 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3333 if (fRealOnV86Active)
3334 {
3335 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfoShared->RealMode.Eflags.u32);
3336 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfoShared->RealMode.AttrCS.u);
3337 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfoShared->RealMode.AttrSS.u);
3338 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfoShared->RealMode.AttrDS.u);
3339 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfoShared->RealMode.AttrES.u);
3340 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfoShared->RealMode.AttrFS.u);
3341 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfoShared->RealMode.AttrGS.u);
3342 }
3343 }
3344 }
3345 else
3346 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3347}
3348
3349
3350/**
3351 * Displays the HM Last-Branch-Record info. for the guest.
3352 *
3353 * @param pVM The cross context VM structure.
3354 * @param pHlp The info helper functions.
3355 * @param pszArgs Arguments, ignored.
3356 */
3357static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3358{
3359 NOREF(pszArgs);
3360 PVMCPU pVCpu = VMMGetCpu(pVM);
3361 if (!pVCpu)
3362 pVCpu = pVM->apCpusR3[0];
3363
3364 if (!HMIsEnabled(pVM))
3365 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3366
3367 if (HMIsVmxActive(pVM))
3368 {
3369 if (pVM->hm.s.vmx.fLbr)
3370 {
3371 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3372 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
3373
3374 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3375 * 0xf should cover everything we support thus far. Fix if necessary
3376 * later. */
3377 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
3378 if (idxTopOfStack > cLbrStack)
3379 {
3380 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3381 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
3382 return;
3383 }
3384
3385 /*
3386 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3387 */
3388 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3389 uint32_t idxCurrent = idxTopOfStack;
3390 Assert(idxTopOfStack < cLbrStack);
3391 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
3392 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
3393 for (;;)
3394 {
3395 if (pVM->hm.s.vmx.idLbrToIpMsrFirst)
3396 {
3397 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3398 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent], pVmcsInfoShared->au64LbrToIpMsr[idxCurrent]);
3399 }
3400 else
3401 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
3402
3403 idxCurrent = (idxCurrent - 1) % cLbrStack;
3404 if (idxCurrent == idxTopOfStack)
3405 break;
3406 }
3407 }
3408 else
3409 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3410 }
3411 else
3412 {
3413 Assert(HMIsSvmActive(pVM));
3414 /** @todo SVM: LBRs (get them from VMCB if possible). */
3415 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented in VM debugger yet\n");
3416 }
3417}
3418
3419
3420/**
3421 * Displays the HM pending event.
3422 *
3423 * @param pVM The cross context VM structure.
3424 * @param pHlp The info helper functions.
3425 * @param pszArgs Arguments, ignored.
3426 */
3427static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3428{
3429 NOREF(pszArgs);
3430 PVMCPU pVCpu = VMMGetCpu(pVM);
3431 if (!pVCpu)
3432 pVCpu = pVM->apCpusR3[0];
3433
3434 if (HMIsEnabled(pVM))
3435 {
3436 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3437 if (pVCpu->hm.s.Event.fPending)
3438 {
3439 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3440 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3441 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3442 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3443 }
3444 }
3445 else
3446 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3447}
3448
3449
3450/**
3451 * Displays the SVM nested-guest VMCB cache.
3452 *
3453 * @param pVM The cross context VM structure.
3454 * @param pHlp The info helper functions.
3455 * @param pszArgs Arguments, ignored.
3456 */
3457static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3458{
3459 NOREF(pszArgs);
3460 PVMCPU pVCpu = VMMGetCpu(pVM);
3461 if (!pVCpu)
3462 pVCpu = pVM->apCpusR3[0];
3463
3464 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3465 if ( fSvmEnabled
3466 && pVM->cpum.ro.GuestFeatures.fSvm)
3467 {
3468 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3469 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3470 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3471 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3472 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3473 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3474 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3475 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3476 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3477 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3478 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3479 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3480 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3481 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3482 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3483 }
3484 else
3485 {
3486 if (!fSvmEnabled)
3487 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3488 else
3489 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3490 }
3491}
3492
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette