VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 93732

Last change on this file since 93732 was 93729, checked in by vboxsync, 3 years ago

VMM/HM: Need to postpone registering the debug info handlers further, bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 156.5 KB
Line 
1/* $Id: HM.cpp 93729 2022-02-14 14:33:32Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/pdmapi.h>
45#include <VBox/vmm/pgm.h>
46#include <VBox/vmm/ssm.h>
47#include <VBox/vmm/gim.h>
48#include <VBox/vmm/trpm.h>
49#include <VBox/vmm/dbgf.h>
50#include <VBox/vmm/iom.h>
51#include <VBox/vmm/iem.h>
52#include <VBox/vmm/selm.h>
53#include <VBox/vmm/nem.h>
54#include <VBox/vmm/hm_vmx.h>
55#include <VBox/vmm/hm_svm.h>
56#include "HMInternal.h"
57#include <VBox/vmm/vmcc.h>
58#include <VBox/err.h>
59#include <VBox/param.h>
60
61#include <iprt/assert.h>
62#include <VBox/log.h>
63#include <iprt/asm.h>
64#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
65# include <iprt/asm-amd64-x86.h>
66#endif
67#include <iprt/env.h>
68#include <iprt/thread.h>
69
70
71/*********************************************************************************************************************************
72* Defined Constants And Macros *
73*********************************************************************************************************************************/
74/** @def HMVMX_REPORT_FEAT
75 * Reports VT-x feature to the release log.
76 *
77 * @param a_uAllowed1 Mask of allowed-1 feature bits.
78 * @param a_uAllowed0 Mask of allowed-0 feature bits.
79 * @param a_StrDesc The description string to report.
80 * @param a_Featflag Mask of the feature to report.
81 */
82#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
83 do { \
84 if ((a_uAllowed1) & (a_Featflag)) \
85 { \
86 if ((a_uAllowed0) & (a_Featflag)) \
87 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
88 else \
89 LogRel(("HM: " a_StrDesc "\n")); \
90 } \
91 else \
92 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
93 } while (0)
94
95/** @def HMVMX_REPORT_ALLOWED_FEAT
96 * Reports an allowed VT-x feature to the release log.
97 *
98 * @param a_uAllowed1 Mask of allowed-1 feature bits.
99 * @param a_StrDesc The description string to report.
100 * @param a_FeatFlag Mask of the feature to report.
101 */
102#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
103 do { \
104 if ((a_uAllowed1) & (a_FeatFlag)) \
105 LogRel(("HM: " a_StrDesc "\n")); \
106 else \
107 LogRel(("HM: " a_StrDesc " not supported\n")); \
108 } while (0)
109
110/** @def HMVMX_REPORT_MSR_CAP
111 * Reports MSR feature capability.
112 *
113 * @param a_MsrCaps Mask of MSR feature bits.
114 * @param a_StrDesc The description string to report.
115 * @param a_fCap Mask of the feature to report.
116 */
117#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
118 do { \
119 if ((a_MsrCaps) & (a_fCap)) \
120 LogRel(("HM: " a_StrDesc "\n")); \
121 } while (0)
122
123/** @def HMVMX_LOGREL_FEAT
124 * Dumps a feature flag from a bitmap of features to the release log.
125 *
126 * @param a_fVal The value of all the features.
127 * @param a_fMask The specific bitmask of the feature.
128 */
129#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
130 do { \
131 if ((a_fVal) & (a_fMask)) \
132 LogRel(("HM: %s\n", #a_fMask)); \
133 } while (0)
134
135
136/*********************************************************************************************************************************
137* Internal Functions *
138*********************************************************************************************************************************/
139static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
140static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
141static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
142static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
143static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
145static int hmR3InitFinalizeR3(PVM pVM);
146static int hmR3InitFinalizeR0(PVM pVM);
147static int hmR3InitFinalizeR0Intel(PVM pVM);
148static int hmR3InitFinalizeR0Amd(PVM pVM);
149static int hmR3TermCPU(PVM pVM);
150
151
152#ifdef VBOX_WITH_STATISTICS
153/**
154 * Returns the name of the hardware exception.
155 *
156 * @returns The name of the hardware exception.
157 * @param uVector The exception vector.
158 */
159static const char *hmR3GetXcptName(uint8_t uVector)
160{
161 switch (uVector)
162 {
163 case X86_XCPT_DE: return "#DE";
164 case X86_XCPT_DB: return "#DB";
165 case X86_XCPT_NMI: return "#NMI";
166 case X86_XCPT_BP: return "#BP";
167 case X86_XCPT_OF: return "#OF";
168 case X86_XCPT_BR: return "#BR";
169 case X86_XCPT_UD: return "#UD";
170 case X86_XCPT_NM: return "#NM";
171 case X86_XCPT_DF: return "#DF";
172 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
173 case X86_XCPT_TS: return "#TS";
174 case X86_XCPT_NP: return "#NP";
175 case X86_XCPT_SS: return "#SS";
176 case X86_XCPT_GP: return "#GP";
177 case X86_XCPT_PF: return "#PF";
178 case X86_XCPT_MF: return "#MF";
179 case X86_XCPT_AC: return "#AC";
180 case X86_XCPT_MC: return "#MC";
181 case X86_XCPT_XF: return "#XF";
182 case X86_XCPT_VE: return "#VE";
183 case X86_XCPT_CP: return "#CP";
184 case X86_XCPT_VC: return "#VC";
185 case X86_XCPT_SX: return "#SX";
186 }
187 return "Reserved";
188}
189#endif /* VBOX_WITH_STATISTICS */
190
191
192/**
193 * Initializes the HM.
194 *
195 * This is the very first component to really do init after CFGM so that we can
196 * establish the predominant execution engine for the VM prior to initializing
197 * other modules. It takes care of NEM initialization if needed (HM disabled or
198 * not available in HW).
199 *
200 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
201 * hypervisor API via NEM, and then back on raw-mode if that isn't available
202 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
203 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
204 * X, OS/2 and others).
205 *
206 * Note that a lot of the set up work is done in ring-0 and thus postponed till
207 * the ring-3 and ring-0 callback to HMR3InitCompleted.
208 *
209 * @returns VBox status code.
210 * @param pVM The cross context VM structure.
211 *
212 * @remarks Be careful with what we call here, since most of the VMM components
213 * are uninitialized.
214 */
215VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
216{
217 LogFlowFunc(("\n"));
218
219 /*
220 * Assert alignment and sizes.
221 */
222 AssertCompileMemberAlignment(VM, hm.s, 32);
223 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
224
225 /*
226 * Register the saved state data unit.
227 */
228 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
229 NULL, NULL, NULL,
230 NULL, hmR3Save, NULL,
231 NULL, hmR3Load, NULL);
232 if (RT_FAILURE(rc))
233 return rc;
234
235 /*
236 * Read configuration.
237 */
238 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
239
240 /*
241 * Validate the HM settings.
242 */
243 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
244 "HMForced" /* implied 'true' these days */
245 "|UseNEMInstead"
246 "|FallbackToNEM"
247 "|EnableNestedPaging"
248 "|EnableUX"
249 "|EnableLargePages"
250 "|EnableVPID"
251 "|IBPBOnVMExit"
252 "|IBPBOnVMEntry"
253 "|SpecCtrlByHost"
254 "|L1DFlushOnSched"
255 "|L1DFlushOnVMEntry"
256 "|MDSClearOnSched"
257 "|MDSClearOnVMEntry"
258 "|TPRPatchingEnabled"
259 "|64bitEnabled"
260 "|Exclusive"
261 "|MaxResumeLoops"
262 "|VmxPleGap"
263 "|VmxPleWindow"
264 "|VmxLbr"
265 "|UseVmxPreemptTimer"
266 "|SvmPauseFilter"
267 "|SvmPauseFilterThreshold"
268 "|SvmVirtVmsaveVmload"
269 "|SvmVGif"
270 "|LovelyMesaDrvWorkaround"
271 "|MissingOS2TlbFlushWorkaround",
272 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
273 if (RT_FAILURE(rc))
274 return rc;
275
276 /** @cfgm{/HM/HMForced, bool, false}
277 * Forces hardware virtualization, no falling back on raw-mode. HM must be
278 * enabled, i.e. /HMEnabled must be true. */
279 bool fHMForced;
280 AssertRelease(pVM->fHMEnabled);
281 fHMForced = true;
282
283 /** @cfgm{/HM/UseNEMInstead, bool, true}
284 * Don't use HM, use NEM instead. */
285 bool fUseNEMInstead = false;
286 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
287 AssertRCReturn(rc, rc);
288 if (fUseNEMInstead && pVM->fHMEnabled)
289 {
290 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
291 pVM->fHMEnabled = false;
292 }
293
294 /** @cfgm{/HM/FallbackToNEM, bool, true}
295 * Enables fallback on NEM. */
296 bool fFallbackToNEM = true;
297 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
298 AssertRCReturn(rc, rc);
299
300 /** @cfgm{/HM/EnableNestedPaging, bool, false}
301 * Enables nested paging (aka extended page tables). */
302 bool fAllowNestedPaging = false;
303 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &fAllowNestedPaging, false);
304 AssertRCReturn(rc, rc);
305
306 /** @cfgm{/HM/EnableUX, bool, true}
307 * Enables the VT-x unrestricted execution feature. */
308 bool fAllowUnrestricted = true;
309 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &fAllowUnrestricted, true);
310 AssertRCReturn(rc, rc);
311
312 /** @cfgm{/HM/EnableLargePages, bool, false}
313 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
314 * page table walking and maybe better TLB hit rate in some cases. */
315 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
316 AssertRCReturn(rc, rc);
317
318 /** @cfgm{/HM/EnableVPID, bool, false}
319 * Enables the VT-x VPID feature. */
320 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
321 AssertRCReturn(rc, rc);
322
323 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
324 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
325 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
326 AssertRCReturn(rc, rc);
327
328 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
329 * Enables AMD64 cpu features.
330 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
331 * already have the support. */
332#ifdef VBOX_WITH_64_BITS_GUESTS
333 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuestsCfg, HC_ARCH_BITS == 64);
334 AssertLogRelRCReturn(rc, rc);
335#else
336 pVM->hm.s.fAllow64BitGuestsCfg = false;
337#endif
338
339 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
340 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
341 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
342 * latest PAUSE instruction to be start of a new PAUSE loop.
343 */
344 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
345 AssertRCReturn(rc, rc);
346
347 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
348 * The pause-filter exiting window in TSC ticks. When the number of ticks
349 * between the current PAUSE instruction and first PAUSE of a loop exceeds
350 * VmxPleWindow, a VM-exit is triggered.
351 *
352 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
353 */
354 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
355 AssertRCReturn(rc, rc);
356
357 /** @cfgm{/HM/VmxLbr, bool, false}
358 * Whether to enable LBR for the guest. This is disabled by default as it's only
359 * useful while debugging and enabling it causes a noticeable performance hit. */
360 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbrCfg, false);
361 AssertRCReturn(rc, rc);
362
363 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
364 * A counter that is decrement each time a PAUSE instruction is executed by the
365 * guest. When the counter is 0, a \#VMEXIT is triggered.
366 *
367 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
368 */
369 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
370 AssertRCReturn(rc, rc);
371
372 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
373 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
374 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
375 * PauseFilter count is reset to its initial value. However, if PAUSE is
376 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
377 * be triggered.
378 *
379 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
380 * activated.
381 */
382 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
383 AssertRCReturn(rc, rc);
384
385 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
386 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
387 * available. */
388 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
389 AssertRCReturn(rc, rc);
390
391 /** @cfgm{/HM/SvmVGif, bool, true}
392 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
393 * if it's available. */
394 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
395 AssertRCReturn(rc, rc);
396
397 /** @cfgm{/HM/SvmLbrVirt, bool, false}
398 * Whether to make use of the LBR virtualization feature of the CPU if it's
399 * available. This is disabled by default as it's only useful while debugging
400 * and enabling it causes a small hit to performance. */
401 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
402 AssertRCReturn(rc, rc);
403
404 /** @cfgm{/HM/Exclusive, bool}
405 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
406 * global init for each host CPU. If false, we do local init each time we wish
407 * to execute guest code.
408 *
409 * On Windows, default is false due to the higher risk of conflicts with other
410 * hypervisors.
411 *
412 * On Mac OS X, this setting is ignored since the code does not handle local
413 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
414 */
415#if defined(RT_OS_DARWIN)
416 pVM->hm.s.fGlobalInit = true;
417#else
418 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
419# if defined(RT_OS_WINDOWS)
420 false
421# else
422 true
423# endif
424 );
425 AssertLogRelRCReturn(rc, rc);
426#endif
427
428 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
429 * The number of times to resume guest execution before we forcibly return to
430 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
431 * determines the default value. */
432 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoopsCfg, 0 /* set by R0 later */);
433 AssertLogRelRCReturn(rc, rc);
434
435 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
436 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
437 * available. */
438 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimerCfg, true);
439 AssertLogRelRCReturn(rc, rc);
440
441 /** @cfgm{/HM/IBPBOnVMExit, bool}
442 * Costly paranoia setting. */
443 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
444 AssertLogRelRCReturn(rc, rc);
445
446 /** @cfgm{/HM/IBPBOnVMEntry, bool}
447 * Costly paranoia setting. */
448 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
449 AssertLogRelRCReturn(rc, rc);
450
451 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
452 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
453 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
454 AssertLogRelRCReturn(rc, rc);
455
456 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
457 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
458 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
459 AssertLogRelRCReturn(rc, rc);
460
461 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
462 if (pVM->hm.s.fL1dFlushOnVmEntry)
463 pVM->hm.s.fL1dFlushOnSched = false;
464
465 /** @cfgm{/HM/SpecCtrlByHost, bool}
466 * Another expensive paranoia setting. */
467 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
468 AssertLogRelRCReturn(rc, rc);
469
470 /** @cfgm{/HM/MDSClearOnSched, bool, true}
471 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
472 * ignored on CPUs that aren't affected. */
473 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
474 AssertLogRelRCReturn(rc, rc);
475
476 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
477 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
478 * ignored on CPUs that aren't affected. */
479 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
480 AssertLogRelRCReturn(rc, rc);
481
482 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
483 if (pVM->hm.s.fMdsClearOnVmEntry)
484 pVM->hm.s.fMdsClearOnSched = false;
485
486 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
487 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
488 * the hypervisor it is running under. */
489 bool fMesaWorkaround;
490 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &fMesaWorkaround, false);
491 AssertLogRelRCReturn(rc, rc);
492 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
493 {
494 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
495 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = fMesaWorkaround;
496 }
497
498 /** @cfgm{/HM/MissingOS2TlbFlushWorkaround,bool}
499 * Workaround OS/2 not flushing the TLB after page directory and page table
500 * modifications when returning to protected mode from a real mode call
501 * (TESTCFG.SYS typically crashes). See ticketref:20625 for details. */
502 rc = CFGMR3QueryBoolDef(pCfgHm, "MissingOS2TlbFlushWorkaround", &pVM->hm.s.fMissingOS2TlbFlushWorkaround, false);
503 AssertLogRelRCReturn(rc, rc);
504
505 /*
506 * Check if VT-x or AMD-v support according to the users wishes.
507 */
508 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
509 * VERR_SVM_IN_USE. */
510 if (pVM->fHMEnabled)
511 {
512 uint32_t fCaps;
513 rc = SUPR3QueryVTCaps(&fCaps);
514 if (RT_SUCCESS(rc))
515 {
516 if (fCaps & SUPVTCAPS_AMD_V)
517 {
518 pVM->hm.s.svm.fSupported = true;
519 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
520 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
521 }
522 else if (fCaps & SUPVTCAPS_VT_X)
523 {
524 const char *pszWhy;
525 rc = SUPR3QueryVTxSupported(&pszWhy);
526 if (RT_SUCCESS(rc))
527 {
528 pVM->hm.s.vmx.fSupported = true;
529 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
530 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
531 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
532 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
533 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
534 }
535 else
536 {
537 /*
538 * Before failing, try fallback to NEM if we're allowed to do that.
539 */
540 pVM->fHMEnabled = false;
541 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
542 if (fFallbackToNEM)
543 {
544 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
545 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
546
547 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
548 if ( RT_SUCCESS(rc2)
549 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
550 rc = VINF_SUCCESS;
551 }
552 if (RT_FAILURE(rc))
553 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
554 }
555 }
556 else
557 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
558 VERR_INTERNAL_ERROR_5);
559
560 /*
561 * Disable nested paging and unrestricted guest execution now if they're
562 * configured so that CPUM can make decisions based on our configuration.
563 */
564 if ( fAllowNestedPaging
565 && (fCaps & SUPVTCAPS_NESTED_PAGING))
566 {
567 pVM->hm.s.fNestedPagingCfg = true;
568 if (fCaps & SUPVTCAPS_VT_X)
569 {
570 if ( fAllowUnrestricted
571 && (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST))
572 pVM->hm.s.vmx.fUnrestrictedGuestCfg = true;
573 else
574 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
575 }
576 }
577 else
578 Assert(!pVM->hm.s.fNestedPagingCfg);
579 }
580 else
581 {
582 const char *pszMsg;
583 switch (rc)
584 {
585 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
586 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
587 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
588 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
589 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
590 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
591 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
592 case VERR_SUP_DRIVERLESS: pszMsg = "Driverless mode"; break;
593 default:
594 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
595 }
596
597 /*
598 * Before failing, try fallback to NEM if we're allowed to do that.
599 */
600 pVM->fHMEnabled = false;
601 if (fFallbackToNEM)
602 {
603 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
604 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
605 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
606 if ( RT_SUCCESS(rc2)
607 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
608 {
609 rc = VINF_SUCCESS;
610
611 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
612 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
613 }
614 }
615 if (RT_FAILURE(rc))
616 return VM_SET_ERROR(pVM, rc, pszMsg);
617 }
618 }
619 else
620 {
621 /*
622 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
623 */
624 if (fUseNEMInstead)
625 {
626 rc = NEMR3Init(pVM, false /*fFallback*/, true);
627 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
628 if (RT_FAILURE(rc))
629 return rc;
630
631 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
632 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
633 }
634 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
635 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_RAW_MODE
636 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
637 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
638 }
639
640 if (pVM->fHMEnabled)
641 {
642 /*
643 * Register info handlers now that HM is used for sure.
644 */
645 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
646 AssertRCReturn(rc, rc);
647
648 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
649 DBGFINFO_FLAGS_ALL_EMTS);
650 AssertRCReturn(rc, rc);
651
652 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
653 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
654 AssertRCReturn(rc, rc);
655
656 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
657 AssertRCReturn(rc, rc);
658 }
659
660 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
661 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_RAW_MODE);
662 return VINF_SUCCESS;
663}
664
665
666/**
667 * Initializes HM components after ring-3 phase has been fully initialized.
668 *
669 * @returns VBox status code.
670 * @param pVM The cross context VM structure.
671 */
672static int hmR3InitFinalizeR3(PVM pVM)
673{
674 LogFlowFunc(("\n"));
675
676 if (!HMIsEnabled(pVM))
677 return VINF_SUCCESS;
678
679 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
680 {
681 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
682 pVCpu->hm.s.fActive = false;
683 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
684 }
685
686 /*
687 * Check if L1D flush is needed/possible.
688 */
689 if ( !pVM->cpum.ro.HostFeatures.fFlushCmd
690 || pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
691 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
692 || pVM->cpum.ro.HostFeatures.fArchVmmNeedNotFlushL1d
693 || pVM->cpum.ro.HostFeatures.fArchRdclNo)
694 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
695
696 /*
697 * Check if MDS flush is needed/possible.
698 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
699 */
700 if ( !pVM->cpum.ro.HostFeatures.fMdsClear
701 || pVM->cpum.ro.HostFeatures.fArchMdsNo)
702 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
703 else if ( ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
704 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
705 || ( pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
706 && pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
707 {
708 if (!pVM->hm.s.fMdsClearOnSched)
709 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
710 pVM->hm.s.fMdsClearOnVmEntry = false;
711 }
712 else if ( pVM->cpum.ro.HostFeatures.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
713 || pVM->cpum.ro.HostFeatures.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
714 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
715
716 /*
717 * Statistics.
718 */
719#ifdef VBOX_WITH_STATISTICS
720 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
721 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
722 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
723 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
724 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
725#endif
726
727 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
728 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
729 {
730 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
731 PHMCPU pHmCpu = &pVCpu->hm.s;
732 int rc;
733
734# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
735 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
736 AssertRC(rc); \
737 } while (0)
738# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
739 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
740
741#ifdef VBOX_WITH_STATISTICS
742
743 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
744 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
745 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
746 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
747 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
748 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
749 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
750 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
751 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
752 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
753 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
754 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
755 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
756 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
757# ifdef HM_PROFILE_EXIT_DISPATCH
758 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
759 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
760# endif
761#endif
762# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
763
764#ifdef VBOX_WITH_STATISTICS
765 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (excludes nested-guest and debug loops exits).");
766 HM_REG_COUNTER(&pHmCpu->StatDebugExitAll, "/HM/CPU%u/Exit/DebugAll", "Total debug-loop exits.");
767 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
768 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
769 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
770 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
771 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
772 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
773 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
774 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
775 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
776 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
777 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
778 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
779 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
780 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
781 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
782#endif
783 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
784 if (fCpuSupportsVmx)
785 HM_REG_COUNTER(&pHmCpu->StatExitGuestACSplitLock, "/HM/CPU%u/Exit/Trap/Gst/#AC-split-lock", "Guest triggered #AC due to split-lock being enabled on the host (interpreted).");
786#ifdef VBOX_WITH_STATISTICS
787 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
788 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
789 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
790 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
791 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
792 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
793 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
794 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
795 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
796 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
797 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
798 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
799 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
800 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
801 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
802 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
803 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
804 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
805 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
806 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
807 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
808 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
809 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
810 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
811 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
812 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
813 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
814 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
815#endif
816 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
817 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
818 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
819#ifdef VBOX_WITH_STATISTICS
820 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
821 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
822 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
823
824 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
825 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
826 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
827 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
828 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
829 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
830 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
831 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
832 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
833 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
834 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
835 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
836#endif
837 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
838#ifdef VBOX_WITH_STATISTICS
839 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
840
841 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
842 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
843 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
844 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
845 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
846 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
847
848 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
849 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
850 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
851 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
852 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
853 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
854 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
855 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
856 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
857 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
858 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
859 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
860 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
861 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
862 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
863
864 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
865 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
866 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
867
868 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
869 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
870 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
871
872 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
873 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
874 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
875 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
876
877 if (fCpuSupportsVmx)
878 {
879 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRip, "/HM/CPU%u/WriteHostRIP", "Number of VMX_VMCS_HOST_RIP instructions.");
880 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRsp, "/HM/CPU%u/WriteHostRSP", "Number of VMX_VMCS_HOST_RSP instructions.");
881 HM_REG_COUNTER(&pHmCpu->StatVmxVmLaunch, "/HM/CPU%u/VMLaunch", "Number of VM-entries using VMLAUNCH.");
882 HM_REG_COUNTER(&pHmCpu->StatVmxVmResume, "/HM/CPU%u/VMResume", "Number of VM-entries using VMRESUME.");
883 }
884
885 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
886 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
887 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
888
889 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
890 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
891 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
892
893 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
894 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
895 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
896 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
897#endif
898 if (fCpuSupportsVmx)
899 {
900 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/PreemptTimer", "VMX-preemption timer fired.");
901 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadline, "/HM/CPU%u/PreemptTimer/ReusingDeadline", "VMX-preemption timer arming logic using previously calculated deadline");
902 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadlineExpired, "/HM/CPU%u/PreemptTimer/ReusingDeadlineExpired", "VMX-preemption timer arming logic found previous deadline already expired (ignored)");
903 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadline, "/HM/CPU%u/PreemptTimer/RecalcingDeadline", "VMX-preemption timer arming logic recalculating the deadline (slightly expensive)");
904 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadlineExpired, "/HM/CPU%u/PreemptTimer/RecalcingDeadlineExpired", "VMX-preemption timer arming logic found recalculated deadline expired (ignored)");
905 }
906#ifdef VBOX_WITH_STATISTICS
907 /*
908 * Guest Exit reason stats.
909 */
910 if (fCpuSupportsVmx)
911 {
912 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
913 {
914 const char *pszExitName = HMGetVmxExitName(j);
915 if (pszExitName)
916 {
917 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
918 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
919 AssertRCReturn(rc, rc);
920 }
921 }
922 }
923 else
924 {
925 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
926 {
927 const char *pszExitName = HMGetSvmExitName(j);
928 if (pszExitName)
929 {
930 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
931 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
932 AssertRC(rc);
933 }
934 }
935 }
936 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
937
938#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
939 /*
940 * Nested-guest VM-exit reason stats.
941 */
942 if (fCpuSupportsVmx)
943 {
944 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
945 {
946 const char *pszExitName = HMGetVmxExitName(j);
947 if (pszExitName)
948 {
949 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
950 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
951 AssertRC(rc);
952 }
953 }
954 }
955 else
956 {
957 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
958 {
959 const char *pszExitName = HMGetSvmExitName(j);
960 if (pszExitName)
961 {
962 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
963 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
964 AssertRC(rc);
965 }
966 }
967 }
968 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
969#endif
970
971 /*
972 * Injected interrupts stats.
973 */
974 char szDesc[64];
975 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedIrqs); j++)
976 {
977 RTStrPrintf(&szDesc[0], sizeof(szDesc), "Interrupt %u", j);
978 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
979 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
980 AssertRC(rc);
981 }
982
983 /*
984 * Injected exception stats.
985 */
986 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedXcpts); j++)
987 {
988 RTStrPrintf(&szDesc[0], sizeof(szDesc), "%s exception", hmR3GetXcptName(j));
989 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
990 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
991 AssertRC(rc);
992 }
993
994#endif /* VBOX_WITH_STATISTICS */
995#undef HM_REG_COUNTER
996#undef HM_REG_PROFILE
997#undef HM_REG_STAT
998 }
999
1000 return VINF_SUCCESS;
1001}
1002
1003
1004/**
1005 * Called when a init phase has completed.
1006 *
1007 * @returns VBox status code.
1008 * @param pVM The cross context VM structure.
1009 * @param enmWhat The phase that completed.
1010 */
1011VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1012{
1013 switch (enmWhat)
1014 {
1015 case VMINITCOMPLETED_RING3:
1016 return hmR3InitFinalizeR3(pVM);
1017 case VMINITCOMPLETED_RING0:
1018 return hmR3InitFinalizeR0(pVM);
1019 default:
1020 return VINF_SUCCESS;
1021 }
1022}
1023
1024
1025/**
1026 * Turns off normal raw mode features.
1027 *
1028 * @param pVM The cross context VM structure.
1029 */
1030static void hmR3DisableRawMode(PVM pVM)
1031{
1032/** @todo r=bird: HM shouldn't be doing this crap. */
1033 /* Reinit the paging mode to force the new shadow mode. */
1034 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1035 {
1036 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1037 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1038 }
1039}
1040
1041
1042/**
1043 * Initialize VT-x or AMD-V.
1044 *
1045 * @returns VBox status code.
1046 * @param pVM The cross context VM structure.
1047 */
1048static int hmR3InitFinalizeR0(PVM pVM)
1049{
1050 int rc;
1051
1052 if (!HMIsEnabled(pVM))
1053 return VINF_SUCCESS;
1054
1055 /*
1056 * Hack to allow users to work around broken BIOSes that incorrectly set
1057 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1058 */
1059 if ( !pVM->hm.s.vmx.fSupported
1060 && !pVM->hm.s.svm.fSupported
1061 && pVM->hm.s.ForR3.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1062 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1063 {
1064 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1065 pVM->hm.s.svm.fSupported = true;
1066 pVM->hm.s.svm.fIgnoreInUseError = true;
1067 pVM->hm.s.ForR3.rcInit = VINF_SUCCESS;
1068 }
1069
1070 /*
1071 * Report ring-0 init errors.
1072 */
1073 if ( !pVM->hm.s.vmx.fSupported
1074 && !pVM->hm.s.svm.fSupported)
1075 {
1076 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.ForR3.rcInit));
1077 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.ForR3.vmx.u64HostFeatCtrl));
1078 switch (pVM->hm.s.ForR3.rcInit)
1079 {
1080 case VERR_VMX_IN_VMX_ROOT_MODE:
1081 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1082 case VERR_VMX_NO_VMX:
1083 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1084 case VERR_VMX_MSR_VMX_DISABLED:
1085 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1086 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1087 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1088 case VERR_VMX_MSR_LOCKING_FAILED:
1089 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1090 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1091 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1092 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1093 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1094
1095 case VERR_SVM_IN_USE:
1096 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1097 case VERR_SVM_NO_SVM:
1098 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1099 case VERR_SVM_DISABLED:
1100 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1101 }
1102 return VMSetError(pVM, pVM->hm.s.ForR3.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.ForR3.rcInit);
1103 }
1104
1105 /*
1106 * Enable VT-x or AMD-V on all host CPUs.
1107 */
1108 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1109 if (RT_FAILURE(rc))
1110 {
1111 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1112 HMR3CheckError(pVM, rc);
1113 return rc;
1114 }
1115
1116 /*
1117 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1118 * (Main should have taken care of this already)
1119 */
1120 if (!PDMHasIoApic(pVM))
1121 {
1122 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1123 pVM->hm.s.fTprPatchingAllowed = false;
1124 }
1125
1126 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1127 pVM->hm.s.ForR3.fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1128 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1129
1130 /*
1131 * Do the vendor specific initialization
1132 *
1133 * Note! We disable release log buffering here since we're doing relatively
1134 * lot of logging and doesn't want to hit the disk with each LogRel
1135 * statement.
1136 */
1137 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1138 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1139 if (pVM->hm.s.vmx.fSupported)
1140 rc = hmR3InitFinalizeR0Intel(pVM);
1141 else
1142 rc = hmR3InitFinalizeR0Amd(pVM);
1143 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1144 : "HM: VT-x/AMD-V init method: Local\n"));
1145 RTLogRelSetBuffering(fOldBuffered);
1146 pVM->hm.s.fInitialized = true;
1147
1148 return rc;
1149}
1150
1151
1152/**
1153 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1154 */
1155static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1156{
1157 NOREF(pVM);
1158 NOREF(pvAllocation);
1159 NOREF(GCPhysAllocation);
1160}
1161
1162
1163/**
1164 * Returns a description of the VMCS (and associated regions') memory type given the
1165 * IA32_VMX_BASIC MSR.
1166 *
1167 * @returns The descriptive memory type.
1168 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1169 */
1170static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1171{
1172 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1173 switch (uMemType)
1174 {
1175 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1176 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1177 }
1178 return "Unknown";
1179}
1180
1181
1182/**
1183 * Returns a single-line description of all the activity-states supported by the CPU
1184 * given the IA32_VMX_MISC MSR.
1185 *
1186 * @returns All supported activity states.
1187 * @param uMsrMisc IA32_VMX_MISC MSR value.
1188 */
1189static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1190{
1191 static const char * const s_apszActStates[] =
1192 {
1193 "",
1194 " ( HLT )",
1195 " ( SHUTDOWN )",
1196 " ( HLT SHUTDOWN )",
1197 " ( SIPI_WAIT )",
1198 " ( HLT SIPI_WAIT )",
1199 " ( SHUTDOWN SIPI_WAIT )",
1200 " ( HLT SHUTDOWN SIPI_WAIT )"
1201 };
1202 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1203 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1204 return s_apszActStates[idxActStates];
1205}
1206
1207
1208/**
1209 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1210 *
1211 * @param fFeatMsr The feature control MSR value.
1212 */
1213static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1214{
1215 uint64_t const val = fFeatMsr;
1216 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1217 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1218 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1219 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1220 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1221 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1222 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1223 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1224 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1225 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1226 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1227 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1228 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1229 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1230 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1231 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1232 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1233}
1234
1235
1236/**
1237 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1238 *
1239 * @param uBasicMsr The VMX basic MSR value.
1240 */
1241static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1242{
1243 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1244 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1245 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1246 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1247 "< 4 GB" : "None"));
1248 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1249 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1250 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1251 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1252 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1253}
1254
1255
1256/**
1257 * Reports MSR_IA32_PINBASED_CTLS to the log.
1258 *
1259 * @param pVmxMsr Pointer to the VMX MSR.
1260 */
1261static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1262{
1263 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1264 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1265 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1266 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1267 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1268 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1269 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1270 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1271}
1272
1273
1274/**
1275 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1276 *
1277 * @param pVmxMsr Pointer to the VMX MSR.
1278 */
1279static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1280{
1281 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1282 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1283 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1284 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1285 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1286 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1287 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1288 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1289 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1290 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1291 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1292 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1293 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TERTIARY_CTLS", VMX_PROC_CTLS_USE_TERTIARY_CTLS);
1294 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1295 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1296 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1297 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1298 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1299 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1300 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1301 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1302 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1303 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1304 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1305 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1306}
1307
1308
1309/**
1310 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1311 *
1312 * @param pVmxMsr Pointer to the VMX MSR.
1313 */
1314static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1315{
1316 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1317 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1318 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1319 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1320 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1321 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1322 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1323 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1324 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1325 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1326 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1327 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1328 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1329 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1330 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1331 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1332 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1333 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1334 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1335 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1336 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1337 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_XCPT_VE", VMX_PROC_CTLS2_EPT_XCPT_VE);
1338 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1339 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1340 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1341 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPP_EPT", VMX_PROC_CTLS2_SPP_EPT);
1342 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1343 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1344 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1345 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1346}
1347
1348
1349/**
1350 * Reports MSR_IA32_VMX_PROCBASED_CTLS3 MSR to the log.
1351 *
1352 * @param uProcCtls3 The tertiary processor-based VM-execution control MSR.
1353 */
1354static void hmR3VmxReportProcBasedCtls3Msr(uint64_t uProcCtls3)
1355{
1356 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS3 = %#RX64\n", uProcCtls3));
1357 LogRel(("HM: LOADIWKEY_EXIT = %RTbool\n", RT_BOOL(uProcCtls3 & VMX_PROC_CTLS3_LOADIWKEY_EXIT)));
1358}
1359
1360
1361/**
1362 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1363 *
1364 * @param pVmxMsr Pointer to the VMX MSR.
1365 */
1366static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1367{
1368 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1369 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1370 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1371 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1372 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1373 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1374 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1375 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1376 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1377 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1378 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1380 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1381 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_ENTRY_CTLS_LOAD_CET_STATE);
1382 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_ENTRY_CTLS_LOAD_PKRS_MSR);
1383}
1384
1385
1386/**
1387 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1388 *
1389 * @param pVmxMsr Pointer to the VMX MSR.
1390 */
1391static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1392{
1393 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1394 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1395 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1396 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1397 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1398 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1399 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1400 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1401 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1402 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1403 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1404 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1405 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1406 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1407 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1408 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_EXIT_CTLS_LOAD_CET_STATE);
1409 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_EXIT_CTLS_LOAD_PKRS_MSR);
1410}
1411
1412
1413/**
1414 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1415 *
1416 * @param fCaps The VMX EPT/VPID capability MSR value.
1417 */
1418static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1419{
1420 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1421 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1422 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1423 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1424 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_UC", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_UC);
1425 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_WB", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB);
1426 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1427 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1428 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1429 HMVMX_REPORT_MSR_CAP(fCaps, "ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
1430 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT_VIOLATION", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION);
1431 HMVMX_REPORT_MSR_CAP(fCaps, "SUPER_SHW_STACK", MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK);
1432 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1433 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1434 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1435 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1436 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1437 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1438 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1439}
1440
1441
1442/**
1443 * Reports MSR_IA32_VMX_MISC MSR to the log.
1444 *
1445 * @param pVM Pointer to the VM.
1446 * @param fMisc The VMX misc. MSR value.
1447 */
1448static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1449{
1450 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1451 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1452 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1453 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1454 else
1455 {
1456 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1457 pVM->hm.s.vmx.cPreemptTimerShift));
1458 }
1459 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1460 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1461 hmR3VmxGetActivityStateAllDesc(fMisc)));
1462 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1463 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1464 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1465 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1466 VMX_MISC_MAX_MSRS(fMisc)));
1467 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1468 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1469 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1470 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1471}
1472
1473
1474/**
1475 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1476 *
1477 * @param uVmcsEnum The VMX VMCS enum MSR value.
1478 */
1479static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1480{
1481 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1482 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1483}
1484
1485
1486/**
1487 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1488 *
1489 * @param uVmFunc The VMX VMFUNC MSR value.
1490 */
1491static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1492{
1493 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1494 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1495}
1496
1497
1498/**
1499 * Reports VMX CR0, CR4 fixed MSRs.
1500 *
1501 * @param pMsrs Pointer to the VMX MSRs.
1502 */
1503static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1504{
1505 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1506 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1507 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1508 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1509}
1510
1511
1512/**
1513 * Finish VT-x initialization (after ring-0 init).
1514 *
1515 * @returns VBox status code.
1516 * @param pVM The cross context VM structure.
1517 */
1518static int hmR3InitFinalizeR0Intel(PVM pVM)
1519{
1520 int rc;
1521
1522 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1523 AssertLogRelReturn(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl != 0, VERR_HM_IPE_4);
1524
1525 LogRel(("HM: Using VT-x implementation 3.0\n"));
1526 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1527 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostCr4));
1528 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostMsrEfer));
1529 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl));
1530
1531 hmR3VmxReportFeatCtlMsr(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl);
1532 hmR3VmxReportBasicMsr(pVM->hm.s.ForR3.vmx.Msrs.u64Basic);
1533
1534 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.PinCtls);
1535 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls);
1536 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1537 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2);
1538 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
1539 hmR3VmxReportProcBasedCtls3Msr(pVM->hm.s.ForR3.vmx.Msrs.u64ProcCtls3);
1540
1541 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.EntryCtls);
1542 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ExitCtls);
1543
1544 if (RT_BF_GET(pVM->hm.s.ForR3.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1545 {
1546 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1547 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TruePinCtls));
1548 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueProcCtls));
1549 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueEntryCtls));
1550 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueExitCtls));
1551 }
1552
1553 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.ForR3.vmx.Msrs.u64Misc);
1554 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmcsEnum);
1555 if (pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps)
1556 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps);
1557 if (pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc)
1558 hmR3VmxReportVmFuncMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc);
1559 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.ForR3.vmx.Msrs);
1560
1561#ifdef TODO_9217_VMCSINFO
1562 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1563 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1564 {
1565 PCVMXVMCSINFOSHARED pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1566 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1567 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1568 }
1569#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1570 if (pVM->cpum.ro.GuestFeatures.fVmx)
1571 {
1572 LogRel(("HM: Nested-guest:\n"));
1573 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1574 {
1575 PCVMXVMCSINFOSHARED pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1576 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1577 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1578 }
1579 }
1580#endif
1581#endif /* TODO_9217_VMCSINFO */
1582
1583 /*
1584 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1585 */
1586 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1587 || (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1588 VERR_HM_IPE_1);
1589 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuestCfg
1590 || ( (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1591 && pVM->hm.s.fNestedPagingCfg),
1592 VERR_HM_IPE_1);
1593
1594 /*
1595 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1596 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1597 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1598 */
1599 if ( !(pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1600 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1601 {
1602 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1603 LogRel(("HM: Disabled RDTSCP\n"));
1604 }
1605
1606 if (!pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1607 {
1608 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1609 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1610 if (RT_SUCCESS(rc))
1611 {
1612 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1613 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1614 esp. Figure 20-5.*/
1615 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1616 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1617
1618 /* Bit set to 0 means software interrupts are redirected to the
1619 8086 program interrupt handler rather than switching to
1620 protected-mode handler. */
1621 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1622
1623 /* Allow all port IO, so that port IO instructions do not cause
1624 exceptions and would instead cause a VM-exit (based on VT-x's
1625 IO bitmap which we currently configure to always cause an exit). */
1626 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, X86_PAGE_SIZE * 2);
1627 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1628
1629 /*
1630 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1631 * page table used in real and protected mode without paging with EPT.
1632 */
1633 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + X86_PAGE_SIZE * 3);
1634 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1635 {
1636 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1637 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1638 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1639 | X86_PDE4M_G;
1640 }
1641
1642 /* We convert it here every time as PCI regions could be reconfigured. */
1643 if (PDMVmmDevHeapIsEnabled(pVM))
1644 {
1645 RTGCPHYS GCPhys;
1646 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1647 AssertRCReturn(rc, rc);
1648 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1649
1650 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1651 AssertRCReturn(rc, rc);
1652 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1653 }
1654 }
1655 else
1656 {
1657 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1658 pVM->hm.s.vmx.pRealModeTSS = NULL;
1659 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1660 return VMSetError(pVM, rc, RT_SRC_POS,
1661 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1662 }
1663 }
1664
1665 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1666 : "HM: Guest support: 32-bit only\n"));
1667
1668 /*
1669 * Call ring-0 to set up the VM.
1670 */
1671 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1672 if (rc != VINF_SUCCESS)
1673 {
1674 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1675 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1676 {
1677 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1678 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1679 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1680 }
1681 HMR3CheckError(pVM, rc);
1682 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1683 }
1684
1685 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer));
1686 LogRel(("HM: Enabled VMX\n"));
1687 pVM->hm.s.vmx.fEnabled = true;
1688
1689 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1690
1691 /*
1692 * Change the CPU features.
1693 */
1694 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1695 if (pVM->hm.s.fAllow64BitGuestsCfg)
1696 {
1697 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1698 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1699 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* (Long mode only on Intel CPUs.) */
1700 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1701 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1702 }
1703 /* Given that we're on a long mode host, we can simply enable NX for PAE capable guests. */
1704 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1705 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1706
1707 /*
1708 * Log configuration details.
1709 */
1710 if (pVM->hm.s.fNestedPagingCfg)
1711 {
1712 LogRel(("HM: Enabled nested paging\n"));
1713 if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1714 LogRel(("HM: EPT flush type = Single context\n"));
1715 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1716 LogRel(("HM: EPT flush type = All contexts\n"));
1717 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1718 LogRel(("HM: EPT flush type = Not supported\n"));
1719 else
1720 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushEpt));
1721
1722 if (pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1723 LogRel(("HM: Enabled unrestricted guest execution\n"));
1724
1725 if (pVM->hm.s.fLargePages)
1726 {
1727 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1728 PGMSetLargePageUsage(pVM, true);
1729 LogRel(("HM: Enabled large page support\n"));
1730 }
1731 }
1732 else
1733 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
1734
1735 if (pVM->hm.s.ForR3.vmx.fVpid)
1736 {
1737 LogRel(("HM: Enabled VPID\n"));
1738 if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1739 LogRel(("HM: VPID flush type = Individual addresses\n"));
1740 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1741 LogRel(("HM: VPID flush type = Single context\n"));
1742 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1743 LogRel(("HM: VPID flush type = All contexts\n"));
1744 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1745 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1746 else
1747 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushVpid));
1748 }
1749 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1750 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1751
1752 if (pVM->hm.s.vmx.fUsePreemptTimerCfg)
1753 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1754 else
1755 LogRel(("HM: Disabled VMX-preemption timer\n"));
1756
1757 if (pVM->hm.s.fVirtApicRegs)
1758 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1759
1760 if (pVM->hm.s.fPostedIntrs)
1761 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1762
1763 if (pVM->hm.s.ForR3.vmx.fUseVmcsShadowing)
1764 {
1765 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.ForR3.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1766 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1767 }
1768
1769 return VINF_SUCCESS;
1770}
1771
1772
1773/**
1774 * Finish AMD-V initialization (after ring-0 init).
1775 *
1776 * @returns VBox status code.
1777 * @param pVM The cross context VM structure.
1778 */
1779static int hmR3InitFinalizeR0Amd(PVM pVM)
1780{
1781 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1782
1783 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1784
1785 uint32_t u32Family;
1786 uint32_t u32Model;
1787 uint32_t u32Stepping;
1788 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1789 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1790 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1791 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.ForR3.svm.u64MsrHwcr));
1792 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.ForR3.svm.u32Rev));
1793 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.ForR3.uMaxAsid));
1794 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.ForR3.svm.fFeatures));
1795
1796 /*
1797 * Enumerate AMD-V features.
1798 */
1799 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1800 {
1801#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1802 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1803 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1804 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1805 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1806 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1807 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1808 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1809 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1810 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1811 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1812 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1813 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1814 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1815 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1816#undef HMSVM_REPORT_FEATURE
1817 };
1818
1819 uint32_t fSvmFeatures = pVM->hm.s.ForR3.svm.fFeatures;
1820 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1821 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1822 {
1823 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1824 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1825 }
1826 if (fSvmFeatures)
1827 for (unsigned iBit = 0; iBit < 32; iBit++)
1828 if (RT_BIT_32(iBit) & fSvmFeatures)
1829 LogRel(("HM: Reserved bit %u\n", iBit));
1830
1831 /*
1832 * Nested paging is determined in HMR3Init, verify the sanity of that.
1833 */
1834 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1835 || (pVM->hm.s.ForR3.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1836 VERR_HM_IPE_1);
1837
1838#if 0
1839 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1840 * here. */
1841 if (RTR0IsPostIpiSupport())
1842 pVM->hm.s.fPostedIntrs = true;
1843#endif
1844
1845 /*
1846 * Determine whether we need to intercept #UD in SVM mode for emulating
1847 * intel SYSENTER/SYSEXIT on AMD64, as these instructions results in #UD
1848 * when executed in long-mode. This is only really applicable when
1849 * non-default CPU profiles are in effect, i.e. guest vendor differs
1850 * from the host one.
1851 */
1852 if (CPUMGetGuestCpuVendor(pVM) != CPUMGetHostCpuVendor(pVM))
1853 switch (CPUMGetGuestCpuVendor(pVM))
1854 {
1855 case CPUMCPUVENDOR_INTEL:
1856 case CPUMCPUVENDOR_VIA: /*?*/
1857 case CPUMCPUVENDOR_SHANGHAI: /*?*/
1858 switch (CPUMGetHostCpuVendor(pVM))
1859 {
1860 case CPUMCPUVENDOR_AMD:
1861 case CPUMCPUVENDOR_HYGON:
1862 if (pVM->hm.s.fAllow64BitGuestsCfg)
1863 {
1864 LogRel(("HM: Intercepting #UD for emulating SYSENTER/SYSEXIT in long mode.\n"));
1865 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1866 pVM->apCpusR3[idCpu]->hm.s.svm.fEmulateLongModeSysEnterExit = true;
1867 }
1868 break;
1869 default: break;
1870 }
1871 default: break;
1872 }
1873
1874 /*
1875 * Call ring-0 to set up the VM.
1876 */
1877 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1878 if (rc != VINF_SUCCESS)
1879 {
1880 AssertMsgFailed(("%Rrc\n", rc));
1881 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1882 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1883 }
1884
1885 LogRel(("HM: Enabled SVM\n"));
1886 pVM->hm.s.svm.fEnabled = true;
1887
1888 if (pVM->hm.s.fNestedPagingCfg)
1889 {
1890 LogRel(("HM: Enabled nested paging\n"));
1891
1892 /*
1893 * Enable large pages (2 MB) if applicable.
1894 */
1895 if (pVM->hm.s.fLargePages)
1896 {
1897 PGMSetLargePageUsage(pVM, true);
1898 LogRel(("HM: Enabled large page support\n"));
1899 }
1900 }
1901
1902 if (pVM->hm.s.fVirtApicRegs)
1903 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1904
1905 if (pVM->hm.s.fPostedIntrs)
1906 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1907
1908 hmR3DisableRawMode(pVM);
1909
1910 /*
1911 * Change the CPU features.
1912 */
1913 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1914 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1915 if (pVM->hm.s.fAllow64BitGuestsCfg)
1916 {
1917 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1918 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1919 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1920 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1921 }
1922 /* Turn on NXE if PAE has been enabled. */
1923 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1924 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1925
1926 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1927 : "HM: Disabled TPR patching\n"));
1928
1929 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1930 : "HM: Guest support: 32-bit only\n"));
1931 return VINF_SUCCESS;
1932}
1933
1934
1935/**
1936 * Applies relocations to data and code managed by this
1937 * component. This function will be called at init and
1938 * whenever the VMM need to relocate it self inside the GC.
1939 *
1940 * @param pVM The cross context VM structure.
1941 */
1942VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1943{
1944 /* Fetch the current paging mode during the relocate callback during state loading. */
1945 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1946 {
1947 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1948 {
1949 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1950 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1951 }
1952 }
1953}
1954
1955
1956/**
1957 * Terminates the HM.
1958 *
1959 * Termination means cleaning up and freeing all resources,
1960 * the VM itself is, at this point, powered off or suspended.
1961 *
1962 * @returns VBox status code.
1963 * @param pVM The cross context VM structure.
1964 */
1965VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1966{
1967 if (pVM->hm.s.vmx.pRealModeTSS)
1968 {
1969 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1970 pVM->hm.s.vmx.pRealModeTSS = 0;
1971 }
1972 hmR3TermCPU(pVM);
1973 return 0;
1974}
1975
1976
1977/**
1978 * Terminates the per-VCPU HM.
1979 *
1980 * @returns VBox status code.
1981 * @param pVM The cross context VM structure.
1982 */
1983static int hmR3TermCPU(PVM pVM)
1984{
1985 RT_NOREF(pVM);
1986 return VINF_SUCCESS;
1987}
1988
1989
1990/**
1991 * Resets a virtual CPU.
1992 *
1993 * Used by HMR3Reset and CPU hot plugging.
1994 *
1995 * @param pVCpu The cross context virtual CPU structure to reset.
1996 */
1997VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1998{
1999 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2000 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2001 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2002
2003 pVCpu->hm.s.fActive = false;
2004 pVCpu->hm.s.Event.fPending = false;
2005 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2006 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2007#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2008 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2009 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2010#endif
2011}
2012
2013
2014/**
2015 * The VM is being reset.
2016 *
2017 * For the HM component this means that any GDT/LDT/TSS monitors
2018 * needs to be removed.
2019 *
2020 * @param pVM The cross context VM structure.
2021 */
2022VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2023{
2024 LogFlow(("HMR3Reset:\n"));
2025
2026 if (HMIsEnabled(pVM))
2027 hmR3DisableRawMode(pVM);
2028
2029 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2030 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2031
2032 /* Clear all patch information. */
2033 pVM->hm.s.pGuestPatchMem = 0;
2034 pVM->hm.s.pFreeGuestPatchMem = 0;
2035 pVM->hm.s.cbGuestPatchMem = 0;
2036 pVM->hm.s.cPatches = 0;
2037 pVM->hm.s.PatchTree = 0;
2038 pVM->hm.s.fTprPatchingActive = false;
2039 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2040}
2041
2042
2043/**
2044 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2045 *
2046 * @returns VBox strict status code.
2047 * @param pVM The cross context VM structure.
2048 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2049 * @param pvUser Unused.
2050 */
2051static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2052{
2053 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2054
2055 /* Only execute the handler on the VCPU the original patch request was issued. */
2056 if (pVCpu->idCpu != idCpu)
2057 return VINF_SUCCESS;
2058
2059 Log(("hmR3RemovePatches\n"));
2060 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2061 {
2062 uint8_t abInstr[15];
2063 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2064 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2065 int rc;
2066
2067#ifdef LOG_ENABLED
2068 char szOutput[256];
2069 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2070 szOutput, sizeof(szOutput), NULL);
2071 if (RT_SUCCESS(rc))
2072 Log(("Patched instr: %s\n", szOutput));
2073#endif
2074
2075 /* Check if the instruction is still the same. */
2076 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2077 if (rc != VINF_SUCCESS)
2078 {
2079 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2080 continue; /* swapped out or otherwise removed; skip it. */
2081 }
2082
2083 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2084 {
2085 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2086 continue; /* skip it. */
2087 }
2088
2089 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2090 AssertRC(rc);
2091
2092#ifdef LOG_ENABLED
2093 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2094 szOutput, sizeof(szOutput), NULL);
2095 if (RT_SUCCESS(rc))
2096 Log(("Original instr: %s\n", szOutput));
2097#endif
2098 }
2099 pVM->hm.s.cPatches = 0;
2100 pVM->hm.s.PatchTree = 0;
2101 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2102 pVM->hm.s.fTprPatchingActive = false;
2103 return VINF_SUCCESS;
2104}
2105
2106
2107/**
2108 * Worker for enabling patching in a VT-x/AMD-V guest.
2109 *
2110 * @returns VBox status code.
2111 * @param pVM The cross context VM structure.
2112 * @param idCpu VCPU to execute hmR3RemovePatches on.
2113 * @param pPatchMem Patch memory range.
2114 * @param cbPatchMem Size of the memory range.
2115 */
2116static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2117{
2118 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2119 AssertRC(rc);
2120
2121 pVM->hm.s.pGuestPatchMem = pPatchMem;
2122 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2123 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2124 return VINF_SUCCESS;
2125}
2126
2127
2128/**
2129 * Enable patching in a VT-x/AMD-V guest
2130 *
2131 * @returns VBox status code.
2132 * @param pVM The cross context VM structure.
2133 * @param pPatchMem Patch memory range.
2134 * @param cbPatchMem Size of the memory range.
2135 */
2136VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2137{
2138 VM_ASSERT_EMT(pVM);
2139 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2140 if (pVM->cCpus > 1)
2141 {
2142 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2143 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2144 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2145 AssertRC(rc);
2146 return rc;
2147 }
2148 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2149}
2150
2151
2152/**
2153 * Disable patching in a VT-x/AMD-V guest.
2154 *
2155 * @returns VBox status code.
2156 * @param pVM The cross context VM structure.
2157 * @param pPatchMem Patch memory range.
2158 * @param cbPatchMem Size of the memory range.
2159 */
2160VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2161{
2162 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2163 RT_NOREF2(pPatchMem, cbPatchMem);
2164
2165 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2166 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2167
2168 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2169 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2170 (void *)(uintptr_t)VMMGetCpuId(pVM));
2171 AssertRC(rc);
2172
2173 pVM->hm.s.pGuestPatchMem = 0;
2174 pVM->hm.s.pFreeGuestPatchMem = 0;
2175 pVM->hm.s.cbGuestPatchMem = 0;
2176 pVM->hm.s.fTprPatchingActive = false;
2177 return VINF_SUCCESS;
2178}
2179
2180
2181/**
2182 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2183 *
2184 * @returns VBox strict status code.
2185 * @param pVM The cross context VM structure.
2186 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2187 * @param pvUser User specified CPU context.
2188 *
2189 */
2190static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2191{
2192 /*
2193 * Only execute the handler on the VCPU the original patch request was
2194 * issued. (The other CPU(s) might not yet have switched to protected
2195 * mode, nor have the correct memory context.)
2196 */
2197 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2198 if (pVCpu->idCpu != idCpu)
2199 return VINF_SUCCESS;
2200
2201 /*
2202 * We're racing other VCPUs here, so don't try patch the instruction twice
2203 * and make sure there is still room for our patch record.
2204 */
2205 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2206 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2207 if (pPatch)
2208 {
2209 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2210 return VINF_SUCCESS;
2211 }
2212 uint32_t const idx = pVM->hm.s.cPatches;
2213 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2214 {
2215 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2216 return VINF_SUCCESS;
2217 }
2218 pPatch = &pVM->hm.s.aPatches[idx];
2219
2220 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2221
2222 /*
2223 * Disassembler the instruction and get cracking.
2224 */
2225 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2226 DISCPUSTATE Dis;
2227 uint32_t cbOp;
2228 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2229 AssertRC(rc);
2230 if ( rc == VINF_SUCCESS
2231 && Dis.pCurInstr->uOpcode == OP_MOV
2232 && cbOp >= 3)
2233 {
2234 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2235
2236 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2237 AssertRC(rc);
2238
2239 pPatch->cbOp = cbOp;
2240
2241 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2242 {
2243 /* write. */
2244 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2245 {
2246 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2247 pPatch->uSrcOperand = Dis.Param2.Base.idxGenReg;
2248 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", Dis.Param2.Base.idxGenReg));
2249 }
2250 else
2251 {
2252 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2253 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2254 pPatch->uSrcOperand = Dis.Param2.uValue;
2255 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", Dis.Param2.uValue));
2256 }
2257 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2258 AssertRC(rc);
2259
2260 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2261 pPatch->cbNewOp = sizeof(s_abVMMCall);
2262 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2263 }
2264 else
2265 {
2266 /*
2267 * TPR Read.
2268 *
2269 * Found:
2270 * mov eax, dword [fffe0080] (5 bytes)
2271 * Check if next instruction is:
2272 * shr eax, 4
2273 */
2274 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2275
2276 uint8_t const idxMmioReg = Dis.Param1.Base.idxGenReg;
2277 uint8_t const cbOpMmio = cbOp;
2278 uint64_t const uSavedRip = pCtx->rip;
2279
2280 pCtx->rip += cbOp;
2281 rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2282 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2283 pCtx->rip = uSavedRip;
2284
2285 if ( rc == VINF_SUCCESS
2286 && Dis.pCurInstr->uOpcode == OP_SHR
2287 && Dis.Param1.fUse == DISUSE_REG_GEN32
2288 && Dis.Param1.Base.idxGenReg == idxMmioReg
2289 && Dis.Param2.fUse == DISUSE_IMMEDIATE8
2290 && Dis.Param2.uValue == 4
2291 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2292 {
2293 uint8_t abInstr[15];
2294
2295 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2296 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2297 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2298 AssertRC(rc);
2299
2300 pPatch->cbOp = cbOpMmio + cbOp;
2301
2302 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2303 abInstr[0] = 0xf0;
2304 abInstr[1] = 0x0f;
2305 abInstr[2] = 0x20;
2306 abInstr[3] = 0xc0 | Dis.Param1.Base.idxGenReg;
2307 for (unsigned i = 4; i < pPatch->cbOp; i++)
2308 abInstr[i] = 0x90; /* nop */
2309
2310 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2311 AssertRC(rc);
2312
2313 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2314 pPatch->cbNewOp = pPatch->cbOp;
2315 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2316
2317 Log(("Acceptable read/shr candidate!\n"));
2318 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2319 }
2320 else
2321 {
2322 pPatch->enmType = HMTPRINSTR_READ;
2323 pPatch->uDstOperand = idxMmioReg;
2324
2325 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2326 AssertRC(rc);
2327
2328 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2329 pPatch->cbNewOp = sizeof(s_abVMMCall);
2330 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2331 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2332 }
2333 }
2334
2335 pPatch->Core.Key = pCtx->eip;
2336 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2337 AssertRC(rc);
2338
2339 pVM->hm.s.cPatches++;
2340 return VINF_SUCCESS;
2341 }
2342
2343 /*
2344 * Save invalid patch, so we will not try again.
2345 */
2346 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2347 pPatch->Core.Key = pCtx->eip;
2348 pPatch->enmType = HMTPRINSTR_INVALID;
2349 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2350 AssertRC(rc);
2351 pVM->hm.s.cPatches++;
2352 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2353 return VINF_SUCCESS;
2354}
2355
2356
2357/**
2358 * Callback to patch a TPR instruction (jump to generated code).
2359 *
2360 * @returns VBox strict status code.
2361 * @param pVM The cross context VM structure.
2362 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2363 * @param pvUser User specified CPU context.
2364 *
2365 */
2366static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2367{
2368 /*
2369 * Only execute the handler on the VCPU the original patch request was
2370 * issued. (The other CPU(s) might not yet have switched to protected
2371 * mode, nor have the correct memory context.)
2372 */
2373 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2374 if (pVCpu->idCpu != idCpu)
2375 return VINF_SUCCESS;
2376
2377 /*
2378 * We're racing other VCPUs here, so don't try patch the instruction twice
2379 * and make sure there is still room for our patch record.
2380 */
2381 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2382 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2383 if (pPatch)
2384 {
2385 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2386 return VINF_SUCCESS;
2387 }
2388 uint32_t const idx = pVM->hm.s.cPatches;
2389 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2390 {
2391 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2392 return VINF_SUCCESS;
2393 }
2394 pPatch = &pVM->hm.s.aPatches[idx];
2395
2396 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2397 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2398
2399 /*
2400 * Disassemble the instruction and get cracking.
2401 */
2402 DISCPUSTATE Dis;
2403 uint32_t cbOp;
2404 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2405 AssertRC(rc);
2406 if ( rc == VINF_SUCCESS
2407 && Dis.pCurInstr->uOpcode == OP_MOV
2408 && cbOp >= 5)
2409 {
2410 uint8_t aPatch[64];
2411 uint32_t off = 0;
2412
2413 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2414 AssertRC(rc);
2415
2416 pPatch->cbOp = cbOp;
2417 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2418
2419 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2420 {
2421 /*
2422 * TPR write:
2423 *
2424 * push ECX [51]
2425 * push EDX [52]
2426 * push EAX [50]
2427 * xor EDX,EDX [31 D2]
2428 * mov EAX,EAX [89 C0]
2429 * or
2430 * mov EAX,0000000CCh [B8 CC 00 00 00]
2431 * mov ECX,0C0000082h [B9 82 00 00 C0]
2432 * wrmsr [0F 30]
2433 * pop EAX [58]
2434 * pop EDX [5A]
2435 * pop ECX [59]
2436 * jmp return_address [E9 return_address]
2437 */
2438 bool fUsesEax = (Dis.Param2.fUse == DISUSE_REG_GEN32 && Dis.Param2.Base.idxGenReg == DISGREG_EAX);
2439
2440 aPatch[off++] = 0x51; /* push ecx */
2441 aPatch[off++] = 0x52; /* push edx */
2442 if (!fUsesEax)
2443 aPatch[off++] = 0x50; /* push eax */
2444 aPatch[off++] = 0x31; /* xor edx, edx */
2445 aPatch[off++] = 0xd2;
2446 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2447 {
2448 if (!fUsesEax)
2449 {
2450 aPatch[off++] = 0x89; /* mov eax, src_reg */
2451 aPatch[off++] = MAKE_MODRM(3, Dis.Param2.Base.idxGenReg, DISGREG_EAX);
2452 }
2453 }
2454 else
2455 {
2456 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2457 aPatch[off++] = 0xb8; /* mov eax, immediate */
2458 *(uint32_t *)&aPatch[off] = Dis.Param2.uValue;
2459 off += sizeof(uint32_t);
2460 }
2461 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2462 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2463 off += sizeof(uint32_t);
2464
2465 aPatch[off++] = 0x0f; /* wrmsr */
2466 aPatch[off++] = 0x30;
2467 if (!fUsesEax)
2468 aPatch[off++] = 0x58; /* pop eax */
2469 aPatch[off++] = 0x5a; /* pop edx */
2470 aPatch[off++] = 0x59; /* pop ecx */
2471 }
2472 else
2473 {
2474 /*
2475 * TPR read:
2476 *
2477 * push ECX [51]
2478 * push EDX [52]
2479 * push EAX [50]
2480 * mov ECX,0C0000082h [B9 82 00 00 C0]
2481 * rdmsr [0F 32]
2482 * mov EAX,EAX [89 C0]
2483 * pop EAX [58]
2484 * pop EDX [5A]
2485 * pop ECX [59]
2486 * jmp return_address [E9 return_address]
2487 */
2488 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2489
2490 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2491 aPatch[off++] = 0x51; /* push ecx */
2492 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2493 aPatch[off++] = 0x52; /* push edx */
2494 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2495 aPatch[off++] = 0x50; /* push eax */
2496
2497 aPatch[off++] = 0x31; /* xor edx, edx */
2498 aPatch[off++] = 0xd2;
2499
2500 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2501 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2502 off += sizeof(uint32_t);
2503
2504 aPatch[off++] = 0x0f; /* rdmsr */
2505 aPatch[off++] = 0x32;
2506
2507 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2508 {
2509 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2510 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, Dis.Param1.Base.idxGenReg);
2511 }
2512
2513 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2514 aPatch[off++] = 0x58; /* pop eax */
2515 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2516 aPatch[off++] = 0x5a; /* pop edx */
2517 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2518 aPatch[off++] = 0x59; /* pop ecx */
2519 }
2520 aPatch[off++] = 0xe9; /* jmp return_address */
2521 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2522 off += sizeof(RTRCUINTPTR);
2523
2524 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2525 {
2526 /* Write new code to the patch buffer. */
2527 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2528 AssertRC(rc);
2529
2530#ifdef LOG_ENABLED
2531 uint32_t cbCurInstr;
2532 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2533 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2534 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2535 {
2536 char szOutput[256];
2537 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2538 szOutput, sizeof(szOutput), &cbCurInstr);
2539 if (RT_SUCCESS(rc))
2540 Log(("Patch instr %s\n", szOutput));
2541 else
2542 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2543 }
2544#endif
2545
2546 pPatch->aNewOpcode[0] = 0xE9;
2547 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2548
2549 /* Overwrite the TPR instruction with a jump. */
2550 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2551 AssertRC(rc);
2552
2553 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2554
2555 pVM->hm.s.pFreeGuestPatchMem += off;
2556 pPatch->cbNewOp = 5;
2557
2558 pPatch->Core.Key = pCtx->eip;
2559 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2560 AssertRC(rc);
2561
2562 pVM->hm.s.cPatches++;
2563 pVM->hm.s.fTprPatchingActive = true;
2564 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2565 return VINF_SUCCESS;
2566 }
2567
2568 Log(("Ran out of space in our patch buffer!\n"));
2569 }
2570 else
2571 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2572
2573
2574 /*
2575 * Save invalid patch, so we will not try again.
2576 */
2577 pPatch = &pVM->hm.s.aPatches[idx];
2578 pPatch->Core.Key = pCtx->eip;
2579 pPatch->enmType = HMTPRINSTR_INVALID;
2580 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2581 AssertRC(rc);
2582 pVM->hm.s.cPatches++;
2583 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2584 return VINF_SUCCESS;
2585}
2586
2587
2588/**
2589 * Attempt to patch TPR mmio instructions.
2590 *
2591 * @returns VBox status code.
2592 * @param pVM The cross context VM structure.
2593 * @param pVCpu The cross context virtual CPU structure.
2594 */
2595VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2596{
2597 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2598 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2599 (void *)(uintptr_t)pVCpu->idCpu);
2600 AssertRC(rc);
2601 return rc;
2602}
2603
2604
2605/**
2606 * Checks if we need to reschedule due to VMM device heap changes.
2607 *
2608 * @returns true if a reschedule is required, otherwise false.
2609 * @param pVM The cross context VM structure.
2610 * @param pCtx VM execution context.
2611 */
2612VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2613{
2614 /*
2615 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2616 * when the unrestricted guest execution feature is missing (VT-x only).
2617 */
2618 if ( pVM->hm.s.vmx.fEnabled
2619 && !pVM->hm.s.vmx.fUnrestrictedGuestCfg
2620 && CPUMIsGuestInRealModeEx(pCtx)
2621 && !PDMVmmDevHeapIsEnabled(pVM))
2622 return true;
2623
2624 return false;
2625}
2626
2627
2628/**
2629 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2630 * event settings changes.
2631 *
2632 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2633 * function is just updating the VM globals.
2634 *
2635 * @param pVM The VM cross context VM structure.
2636 * @thread EMT(0)
2637 */
2638VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2639{
2640 /* Interrupts. */
2641 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2642 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2643
2644 /* CPU Exceptions. */
2645 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2646 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2647 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2648 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2649
2650 /* Common VM exits. */
2651 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2652 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2653 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2654 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2655
2656 /* Vendor specific VM exits. */
2657 if (HMR3IsVmxEnabled(pVM->pUVM))
2658 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2659 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2660 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2661 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2662 else
2663 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2664 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2665 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2666 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2667
2668 /* Done. */
2669 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2670}
2671
2672
2673/**
2674 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2675 *
2676 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2677 * per CPU settings.
2678 *
2679 * @param pVM The VM cross context VM structure.
2680 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2681 */
2682VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2683{
2684 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2685}
2686
2687
2688/**
2689 * Checks if we are currently using hardware acceleration.
2690 *
2691 * @returns true if hardware acceleration is being used, otherwise false.
2692 * @param pVCpu The cross context virtual CPU structure.
2693 */
2694VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2695{
2696 return pVCpu->hm.s.fActive;
2697}
2698
2699
2700/**
2701 * External interface for querying whether hardware acceleration is enabled.
2702 *
2703 * @returns true if VT-x or AMD-V is being used, otherwise false.
2704 * @param pUVM The user mode VM handle.
2705 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2706 */
2707VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2708{
2709 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2710 PVM pVM = pUVM->pVM;
2711 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2712 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2713}
2714
2715
2716/**
2717 * External interface for querying whether VT-x is being used.
2718 *
2719 * @returns true if VT-x is being used, otherwise false.
2720 * @param pUVM The user mode VM handle.
2721 * @sa HMR3IsSvmEnabled, HMIsEnabled
2722 */
2723VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2724{
2725 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2726 PVM pVM = pUVM->pVM;
2727 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2728 return pVM->hm.s.vmx.fEnabled
2729 && pVM->hm.s.vmx.fSupported
2730 && pVM->fHMEnabled;
2731}
2732
2733
2734/**
2735 * External interface for querying whether AMD-V is being used.
2736 *
2737 * @returns true if VT-x is being used, otherwise false.
2738 * @param pUVM The user mode VM handle.
2739 * @sa HMR3IsVmxEnabled, HMIsEnabled
2740 */
2741VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2742{
2743 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2744 PVM pVM = pUVM->pVM;
2745 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2746 return pVM->hm.s.svm.fEnabled
2747 && pVM->hm.s.svm.fSupported
2748 && pVM->fHMEnabled;
2749}
2750
2751
2752/**
2753 * Checks if we are currently using nested paging.
2754 *
2755 * @returns true if nested paging is being used, otherwise false.
2756 * @param pUVM The user mode VM handle.
2757 */
2758VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2759{
2760 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2761 PVM pVM = pUVM->pVM;
2762 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2763 return pVM->hm.s.fNestedPagingCfg;
2764}
2765
2766
2767/**
2768 * Checks if virtualized APIC registers are enabled.
2769 *
2770 * When enabled this feature allows the hardware to access most of the
2771 * APIC registers in the virtual-APIC page without causing VM-exits. See
2772 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2773 *
2774 * @returns true if virtualized APIC registers is enabled, otherwise
2775 * false.
2776 * @param pUVM The user mode VM handle.
2777 */
2778VMMR3DECL(bool) HMR3AreVirtApicRegsEnabled(PUVM pUVM)
2779{
2780 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2781 PVM pVM = pUVM->pVM;
2782 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2783 return pVM->hm.s.fVirtApicRegs;
2784}
2785
2786
2787/**
2788 * Checks if APIC posted-interrupt processing is enabled.
2789 *
2790 * This returns whether we can deliver interrupts to the guest without
2791 * leaving guest-context by updating APIC state from host-context.
2792 *
2793 * @returns true if APIC posted-interrupt processing is enabled,
2794 * otherwise false.
2795 * @param pUVM The user mode VM handle.
2796 */
2797VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2798{
2799 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2800 PVM pVM = pUVM->pVM;
2801 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2802 return pVM->hm.s.fPostedIntrs;
2803}
2804
2805
2806/**
2807 * Checks if we are currently using VPID in VT-x mode.
2808 *
2809 * @returns true if VPID is being used, otherwise false.
2810 * @param pUVM The user mode VM handle.
2811 */
2812VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2813{
2814 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2815 PVM pVM = pUVM->pVM;
2816 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2817 return pVM->hm.s.ForR3.vmx.fVpid;
2818}
2819
2820
2821/**
2822 * Checks if we are currently using VT-x unrestricted execution,
2823 * aka UX.
2824 *
2825 * @returns true if UX is being used, otherwise false.
2826 * @param pUVM The user mode VM handle.
2827 */
2828VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2829{
2830 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2831 PVM pVM = pUVM->pVM;
2832 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2833 return pVM->hm.s.vmx.fUnrestrictedGuestCfg
2834 || pVM->hm.s.svm.fSupported;
2835}
2836
2837
2838/**
2839 * Checks if the VMX-preemption timer is being used.
2840 *
2841 * @returns true if the VMX-preemption timer is being used, otherwise false.
2842 * @param pVM The cross context VM structure.
2843 */
2844VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2845{
2846 return HMIsEnabled(pVM)
2847 && pVM->hm.s.vmx.fEnabled
2848 && pVM->hm.s.vmx.fUsePreemptTimerCfg;
2849}
2850
2851
2852#ifdef TODO_9217_VMCSINFO
2853/**
2854 * Helper for HMR3CheckError to log VMCS controls to the release log.
2855 *
2856 * @param idCpu The Virtual CPU ID.
2857 * @param pVmcsInfo The VMCS info. object.
2858 */
2859static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2860{
2861 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2862 {
2863 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2864 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2865 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2866 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2867 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2868 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2869 }
2870 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2871 {
2872 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2873 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2874 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2875 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2876 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2877 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2878 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2879 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2880 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2881 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2882 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TERTIARY_CTLS );
2883 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2884 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2885 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2886 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2887 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2888 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2889 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2890 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2891 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2892 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2893 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2894 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2895 }
2896 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2897 {
2898 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2899 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2900 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2901 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2902 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2903 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2904 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2905 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2906 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2907 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2908 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2909 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2910 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2911 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2912 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2913 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2914 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2915 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2916 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2917 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_XCPT_VE );
2918 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2919 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2920 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2921 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPP_EPT );
2922 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2923 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2924 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2925 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2926 }
2927 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2928 {
2929 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2930 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2931 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2932 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2933 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2934 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2935 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2936 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2937 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2938 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2939 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2940 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_CET_STATE );
2941 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PKRS_MSR );
2942 }
2943 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2944 {
2945 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2946 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2947 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2948 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
2949 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_CET_STATE );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PKRS_MSR );
2960 }
2961}
2962#endif
2963
2964
2965/**
2966 * Check fatal VT-x/AMD-V error and produce some meaningful
2967 * log release message.
2968 *
2969 * @param pVM The cross context VM structure.
2970 * @param iStatusCode VBox status code.
2971 */
2972VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
2973{
2974 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2975 {
2976 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
2977 * might be getting inaccurate values for non-guru'ing EMTs. */
2978 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2979#ifdef TODO_9217_VMCSINFO
2980 PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu);
2981#endif
2982 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
2983 switch (iStatusCode)
2984 {
2985 case VERR_VMX_INVALID_VMCS_PTR:
2986 {
2987 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
2988 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
2989#ifdef TODO_9217_VMCSINFO
2990 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
2991 pVmcsInfo->HCPhysVmcs));
2992#endif
2993 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
2994 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2995 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2996 break;
2997 }
2998
2999 case VERR_VMX_UNABLE_TO_START_VM:
3000 {
3001 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3002 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3003 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3004 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3005
3006 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3007 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3008 {
3009 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3010 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3011 }
3012 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3013 {
3014#ifdef TODO_9217_VMCSINFO
3015 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3016 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3017 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3018 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3019 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3020 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3021 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3022 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3023#endif
3024 }
3025 /** @todo Log VM-entry event injection control fields
3026 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3027 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3028 break;
3029 }
3030
3031 case VERR_VMX_INVALID_GUEST_STATE:
3032 {
3033 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3034 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3035 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3036#ifdef TODO_9217_VMCSINFO
3037 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3038#endif
3039 break;
3040 }
3041
3042 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3043 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3044 case VERR_VMX_INVALID_VMXON_PTR:
3045 case VERR_VMX_UNEXPECTED_EXIT:
3046 case VERR_VMX_INVALID_VMCS_FIELD:
3047 case VERR_SVM_UNKNOWN_EXIT:
3048 case VERR_SVM_UNEXPECTED_EXIT:
3049 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3050 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3051 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3052 break;
3053 }
3054 }
3055
3056 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3057 {
3058 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed1));
3059 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed0));
3060 }
3061 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3062 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError));
3063}
3064
3065
3066/**
3067 * Execute state save operation.
3068 *
3069 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3070 * is because we always save the VM state from ring-3 and thus most HM state
3071 * will be re-synced dynamically at runtime and don't need to be part of the VM
3072 * saved state.
3073 *
3074 * @returns VBox status code.
3075 * @param pVM The cross context VM structure.
3076 * @param pSSM SSM operation handle.
3077 */
3078static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3079{
3080 Log(("hmR3Save:\n"));
3081
3082 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3083 {
3084 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3085 Assert(!pVCpu->hm.s.Event.fPending);
3086 if (pVM->cpum.ro.GuestFeatures.fSvm)
3087 {
3088 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3089 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3090 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3091 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3092 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3093 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3094 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3095 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3096 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3097 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3098 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3099 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3100 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3101 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3102 }
3103 }
3104
3105 /* Save the guest patch data. */
3106 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3107 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3108 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3109
3110 /* Store all the guest patch records too. */
3111 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3112 if (RT_FAILURE(rc))
3113 return rc;
3114
3115 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3116 {
3117 AssertCompileSize(HMTPRINSTR, 4);
3118 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3119 SSMR3PutU32(pSSM, pPatch->Core.Key);
3120 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3121 SSMR3PutU32(pSSM, pPatch->cbOp);
3122 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3123 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3124 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3125 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3126 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3127 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3128 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3129 if (RT_FAILURE(rc))
3130 return rc;
3131 }
3132
3133 return VINF_SUCCESS;
3134}
3135
3136
3137/**
3138 * Execute state load operation.
3139 *
3140 * @returns VBox status code.
3141 * @param pVM The cross context VM structure.
3142 * @param pSSM SSM operation handle.
3143 * @param uVersion Data layout version.
3144 * @param uPass The data pass.
3145 */
3146static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3147{
3148 int rc;
3149
3150 LogFlowFunc(("uVersion=%u\n", uVersion));
3151 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3152
3153 /*
3154 * Validate version.
3155 */
3156 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3157 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3158 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3159 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3160 {
3161 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3162 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3163 }
3164
3165 /*
3166 * Load per-VCPU state.
3167 */
3168 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3169 {
3170 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3171 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3172 {
3173 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3174 if (pVM->cpum.ro.GuestFeatures.fSvm)
3175 {
3176 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3177 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3178 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3179 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3180 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3181 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3182 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3183 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3184 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3185 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3186 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3187 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3188 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3189 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3190 AssertRCReturn(rc, rc);
3191 }
3192 }
3193 else
3194 {
3195 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3196 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3197 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3198 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3199
3200 /* VMX fWasInRealMode related data. */
3201 uint32_t uDummy;
3202 SSMR3GetU32(pSSM, &uDummy);
3203 SSMR3GetU32(pSSM, &uDummy);
3204 rc = SSMR3GetU32(pSSM, &uDummy);
3205 AssertRCReturn(rc, rc);
3206 }
3207 }
3208
3209 /*
3210 * Load TPR patching data.
3211 */
3212 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3213 {
3214 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3215 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3216 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3217
3218 /* Fetch all TPR patch records. */
3219 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3220 AssertRCReturn(rc, rc);
3221 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3222 {
3223 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3224 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3225 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3226 SSMR3GetU32(pSSM, &pPatch->cbOp);
3227 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3228 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3229 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3230
3231 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3232 pVM->hm.s.fTprPatchingActive = true;
3233 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTprPatchingActive == false);
3234
3235 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3236 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3237 SSMR3GetU32(pSSM, &pPatch->cFaults);
3238 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3239 AssertRCReturn(rc, rc);
3240
3241 LogFlow(("hmR3Load: patch %d\n", i));
3242 LogFlow(("Key = %x\n", pPatch->Core.Key));
3243 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3244 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3245 LogFlow(("type = %d\n", pPatch->enmType));
3246 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3247 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3248 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3249 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3250
3251 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3252 AssertRCReturn(rc, rc);
3253 }
3254 }
3255
3256 return VINF_SUCCESS;
3257}
3258
3259
3260/**
3261 * Displays HM info.
3262 *
3263 * @param pVM The cross context VM structure.
3264 * @param pHlp The info helper functions.
3265 * @param pszArgs Arguments, ignored.
3266 */
3267static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3268{
3269 NOREF(pszArgs);
3270 PVMCPU pVCpu = VMMGetCpu(pVM);
3271 if (!pVCpu)
3272 pVCpu = pVM->apCpusR3[0];
3273
3274 if (HMIsEnabled(pVM))
3275 {
3276 if (pVM->hm.s.vmx.fSupported)
3277 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3278 else
3279 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3280 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3281 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3282 if (pVM->hm.s.vmx.fSupported)
3283 {
3284 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3285 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
3286 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3287
3288 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3289 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3290 if (fRealOnV86Active)
3291 {
3292 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfoShared->RealMode.Eflags.u32);
3293 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfoShared->RealMode.AttrCS.u);
3294 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfoShared->RealMode.AttrSS.u);
3295 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfoShared->RealMode.AttrDS.u);
3296 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfoShared->RealMode.AttrES.u);
3297 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfoShared->RealMode.AttrFS.u);
3298 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfoShared->RealMode.AttrGS.u);
3299 }
3300 }
3301 }
3302 else
3303 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3304}
3305
3306
3307/**
3308 * Displays the HM Last-Branch-Record info. for the guest.
3309 *
3310 * @param pVM The cross context VM structure.
3311 * @param pHlp The info helper functions.
3312 * @param pszArgs Arguments, ignored.
3313 */
3314static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3315{
3316 NOREF(pszArgs);
3317 PVMCPU pVCpu = VMMGetCpu(pVM);
3318 if (!pVCpu)
3319 pVCpu = pVM->apCpusR3[0];
3320
3321 if (!HMIsEnabled(pVM))
3322 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3323 else if (HMIsVmxActive(pVM))
3324 {
3325 if (pVM->hm.s.vmx.fLbrCfg)
3326 {
3327 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3328 uint32_t const cLbrStack = pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast - pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst + 1;
3329
3330 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3331 * 0xf should cover everything we support thus far. Fix if necessary
3332 * later. */
3333 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
3334 if (idxTopOfStack > cLbrStack)
3335 {
3336 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3337 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
3338 return;
3339 }
3340
3341 /*
3342 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3343 */
3344 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3345 uint32_t idxCurrent = idxTopOfStack;
3346 Assert(idxTopOfStack < cLbrStack);
3347 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
3348 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
3349 for (;;)
3350 {
3351 if (pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst)
3352 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3353 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent], pVmcsInfoShared->au64LbrToIpMsr[idxCurrent]);
3354 else
3355 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
3356
3357 idxCurrent = (idxCurrent - 1) % cLbrStack;
3358 if (idxCurrent == idxTopOfStack)
3359 break;
3360 }
3361 }
3362 else
3363 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3364 }
3365 else
3366 {
3367 Assert(HMIsSvmActive(pVM));
3368 /** @todo SVM: LBRs (get them from VMCB if possible). */
3369 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented.\n");
3370 }
3371}
3372
3373
3374/**
3375 * Displays the HM pending event.
3376 *
3377 * @param pVM The cross context VM structure.
3378 * @param pHlp The info helper functions.
3379 * @param pszArgs Arguments, ignored.
3380 */
3381static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3382{
3383 NOREF(pszArgs);
3384 PVMCPU pVCpu = VMMGetCpu(pVM);
3385 if (!pVCpu)
3386 pVCpu = pVM->apCpusR3[0];
3387
3388 if (HMIsEnabled(pVM))
3389 {
3390 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3391 if (pVCpu->hm.s.Event.fPending)
3392 {
3393 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3394 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3395 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3396 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3397 }
3398 }
3399 else
3400 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3401}
3402
3403
3404/**
3405 * Displays the SVM nested-guest VMCB cache.
3406 *
3407 * @param pVM The cross context VM structure.
3408 * @param pHlp The info helper functions.
3409 * @param pszArgs Arguments, ignored.
3410 */
3411static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3412{
3413 NOREF(pszArgs);
3414 PVMCPU pVCpu = VMMGetCpu(pVM);
3415 if (!pVCpu)
3416 pVCpu = pVM->apCpusR3[0];
3417
3418 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3419 if ( fSvmEnabled
3420 && pVM->cpum.ro.GuestFeatures.fSvm)
3421 {
3422 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3423 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3424 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3425 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3426 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3427 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3428 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3429 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3430 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3431 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3432 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3433 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3434 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3435 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3436 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3437 }
3438 else
3439 {
3440 if (!fSvmEnabled)
3441 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3442 else
3443 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3444 }
3445}
3446
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette