VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 97169

Last change on this file since 97169 was 97100, checked in by vboxsync, 2 years ago

VMM/HM: Nested VMX: bugref:10092 If the host CPU doesn't support 2M pages, disable large page support.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 158.4 KB
Line 
1/* $Id: HM.cpp 97100 2022-10-12 05:40:43Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_hm HM - Hardware Assisted Virtualization Manager
29 *
30 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
31 * extensions.
32 *
33 * {summary of what HM does}
34 *
35 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
36 * however that was cumbersome to write and parse for such a central component,
37 * so it was shortened to HM when refactoring the code in the 4.3 development
38 * cycle.
39 *
40 * {add sections with more details}
41 *
42 * @sa @ref grp_hm
43 */
44
45
46/*********************************************************************************************************************************
47* Header Files *
48*********************************************************************************************************************************/
49#define LOG_GROUP LOG_GROUP_HM
50#define VMCPU_INCL_CPUM_GST_CTX
51#include <VBox/vmm/cpum.h>
52#include <VBox/vmm/stam.h>
53#include <VBox/vmm/em.h>
54#include <VBox/vmm/pdmapi.h>
55#include <VBox/vmm/pgm.h>
56#include <VBox/vmm/ssm.h>
57#include <VBox/vmm/gim.h>
58#include <VBox/vmm/gcm.h>
59#include <VBox/vmm/trpm.h>
60#include <VBox/vmm/dbgf.h>
61#include <VBox/vmm/iom.h>
62#include <VBox/vmm/iem.h>
63#include <VBox/vmm/selm.h>
64#include <VBox/vmm/nem.h>
65#include <VBox/vmm/hm_vmx.h>
66#include <VBox/vmm/hm_svm.h>
67#include "HMInternal.h"
68#include <VBox/vmm/vmcc.h>
69#include <VBox/err.h>
70#include <VBox/param.h>
71
72#include <iprt/assert.h>
73#include <VBox/log.h>
74#include <iprt/asm.h>
75#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
76# include <iprt/asm-amd64-x86.h>
77#endif
78#include <iprt/env.h>
79#include <iprt/thread.h>
80
81
82/*********************************************************************************************************************************
83* Defined Constants And Macros *
84*********************************************************************************************************************************/
85/** @def HMVMX_REPORT_FEAT
86 * Reports VT-x feature to the release log.
87 *
88 * @param a_uAllowed1 Mask of allowed-1 feature bits.
89 * @param a_uAllowed0 Mask of allowed-0 feature bits.
90 * @param a_StrDesc The description string to report.
91 * @param a_Featflag Mask of the feature to report.
92 */
93#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
94 do { \
95 if ((a_uAllowed1) & (a_Featflag)) \
96 { \
97 if ((a_uAllowed0) & (a_Featflag)) \
98 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
99 else \
100 LogRel(("HM: " a_StrDesc "\n")); \
101 } \
102 else \
103 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
104 } while (0)
105
106/** @def HMVMX_REPORT_ALLOWED_FEAT
107 * Reports an allowed VT-x feature to the release log.
108 *
109 * @param a_uAllowed1 Mask of allowed-1 feature bits.
110 * @param a_StrDesc The description string to report.
111 * @param a_FeatFlag Mask of the feature to report.
112 */
113#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
114 do { \
115 if ((a_uAllowed1) & (a_FeatFlag)) \
116 LogRel(("HM: " a_StrDesc "\n")); \
117 else \
118 LogRel(("HM: " a_StrDesc " not supported\n")); \
119 } while (0)
120
121/** @def HMVMX_REPORT_MSR_CAP
122 * Reports MSR feature capability.
123 *
124 * @param a_MsrCaps Mask of MSR feature bits.
125 * @param a_StrDesc The description string to report.
126 * @param a_fCap Mask of the feature to report.
127 */
128#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
129 do { \
130 if ((a_MsrCaps) & (a_fCap)) \
131 LogRel(("HM: " a_StrDesc "\n")); \
132 } while (0)
133
134/** @def HMVMX_LOGREL_FEAT
135 * Dumps a feature flag from a bitmap of features to the release log.
136 *
137 * @param a_fVal The value of all the features.
138 * @param a_fMask The specific bitmask of the feature.
139 */
140#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
141 do { \
142 if ((a_fVal) & (a_fMask)) \
143 LogRel(("HM: %s\n", #a_fMask)); \
144 } while (0)
145
146
147/*********************************************************************************************************************************
148* Internal Functions *
149*********************************************************************************************************************************/
150static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
151static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
152static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
153static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
154static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
155static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
156static int hmR3InitFinalizeR3(PVM pVM);
157static int hmR3InitFinalizeR0(PVM pVM);
158static int hmR3InitFinalizeR0Intel(PVM pVM);
159static int hmR3InitFinalizeR0Amd(PVM pVM);
160static int hmR3TermCPU(PVM pVM);
161
162
163#ifdef VBOX_WITH_STATISTICS
164/**
165 * Returns the name of the hardware exception.
166 *
167 * @returns The name of the hardware exception.
168 * @param uVector The exception vector.
169 */
170static const char *hmR3GetXcptName(uint8_t uVector)
171{
172 switch (uVector)
173 {
174 case X86_XCPT_DE: return "#DE";
175 case X86_XCPT_DB: return "#DB";
176 case X86_XCPT_NMI: return "#NMI";
177 case X86_XCPT_BP: return "#BP";
178 case X86_XCPT_OF: return "#OF";
179 case X86_XCPT_BR: return "#BR";
180 case X86_XCPT_UD: return "#UD";
181 case X86_XCPT_NM: return "#NM";
182 case X86_XCPT_DF: return "#DF";
183 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
184 case X86_XCPT_TS: return "#TS";
185 case X86_XCPT_NP: return "#NP";
186 case X86_XCPT_SS: return "#SS";
187 case X86_XCPT_GP: return "#GP";
188 case X86_XCPT_PF: return "#PF";
189 case X86_XCPT_MF: return "#MF";
190 case X86_XCPT_AC: return "#AC";
191 case X86_XCPT_MC: return "#MC";
192 case X86_XCPT_XF: return "#XF";
193 case X86_XCPT_VE: return "#VE";
194 case X86_XCPT_CP: return "#CP";
195 case X86_XCPT_VC: return "#VC";
196 case X86_XCPT_SX: return "#SX";
197 }
198 return "Reserved";
199}
200#endif /* VBOX_WITH_STATISTICS */
201
202
203/**
204 * Initializes the HM.
205 *
206 * This is the very first component to really do init after CFGM so that we can
207 * establish the predominant execution engine for the VM prior to initializing
208 * other modules. It takes care of NEM initialization if needed (HM disabled or
209 * not available in HW).
210 *
211 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
212 * hypervisor API via NEM, and then back on raw-mode if that isn't available
213 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
214 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
215 * X, OS/2 and others).
216 *
217 * Note that a lot of the set up work is done in ring-0 and thus postponed till
218 * the ring-3 and ring-0 callback to HMR3InitCompleted.
219 *
220 * @returns VBox status code.
221 * @param pVM The cross context VM structure.
222 *
223 * @remarks Be careful with what we call here, since most of the VMM components
224 * are uninitialized.
225 */
226VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
227{
228 LogFlowFunc(("\n"));
229
230 /*
231 * Assert alignment and sizes.
232 */
233 AssertCompileMemberAlignment(VM, hm.s, 32);
234 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
235
236 /*
237 * Register the saved state data unit.
238 */
239 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
240 NULL, NULL, NULL,
241 NULL, hmR3Save, NULL,
242 NULL, hmR3Load, NULL);
243 if (RT_FAILURE(rc))
244 return rc;
245
246 /*
247 * Read configuration.
248 */
249 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
250
251 /*
252 * Validate the HM settings.
253 */
254 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
255 "HMForced" /* implied 'true' these days */
256 "|UseNEMInstead"
257 "|FallbackToNEM"
258 "|FallbackToIEM"
259 "|EnableNestedPaging"
260 "|EnableUX"
261 "|EnableLargePages"
262 "|EnableVPID"
263 "|IBPBOnVMExit"
264 "|IBPBOnVMEntry"
265 "|SpecCtrlByHost"
266 "|L1DFlushOnSched"
267 "|L1DFlushOnVMEntry"
268 "|MDSClearOnSched"
269 "|MDSClearOnVMEntry"
270 "|TPRPatchingEnabled"
271 "|64bitEnabled"
272 "|Exclusive"
273 "|MaxResumeLoops"
274 "|VmxPleGap"
275 "|VmxPleWindow"
276 "|VmxLbr"
277 "|UseVmxPreemptTimer"
278 "|SvmPauseFilter"
279 "|SvmPauseFilterThreshold"
280 "|SvmVirtVmsaveVmload"
281 "|SvmVGif"
282 "|LovelyMesaDrvWorkaround"
283 "|MissingOS2TlbFlushWorkaround",
284 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
285 if (RT_FAILURE(rc))
286 return rc;
287
288 /** @cfgm{/HM/HMForced, bool, false}
289 * Forces hardware virtualization, no falling back on raw-mode. HM must be
290 * enabled, i.e. /HMEnabled must be true. */
291 bool const fHMForced = true;
292#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
293 AssertRelease(pVM->fHMEnabled);
294#else
295 AssertRelease(!pVM->fHMEnabled);
296#endif
297
298 /** @cfgm{/HM/UseNEMInstead, bool, true}
299 * Don't use HM, use NEM instead. */
300 bool fUseNEMInstead = false;
301 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
302 AssertRCReturn(rc, rc);
303 if (fUseNEMInstead && pVM->fHMEnabled)
304 {
305 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
306 pVM->fHMEnabled = false;
307 }
308
309 /** @cfgm{/HM/FallbackToNEM, bool, true}
310 * Enables fallback on NEM. */
311 bool fFallbackToNEM = true;
312 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
313 AssertRCReturn(rc, rc);
314
315 /** @cfgm{/HM/FallbackToIEM, bool, false on AMD64 else true }
316 * Enables fallback on NEM. */
317#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
318 bool fFallbackToIEM = false;
319#else
320 bool fFallbackToIEM = true;
321#endif
322 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToIEM", &fFallbackToIEM, fFallbackToIEM);
323 AssertRCReturn(rc, rc);
324
325 /** @cfgm{/HM/EnableNestedPaging, bool, false}
326 * Enables nested paging (aka extended page tables). */
327 bool fAllowNestedPaging = false;
328 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &fAllowNestedPaging, false);
329 AssertRCReturn(rc, rc);
330
331 /** @cfgm{/HM/EnableUX, bool, true}
332 * Enables the VT-x unrestricted execution feature. */
333 bool fAllowUnrestricted = true;
334 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &fAllowUnrestricted, true);
335 AssertRCReturn(rc, rc);
336
337 /** @cfgm{/HM/EnableLargePages, bool, false}
338 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
339 * page table walking and maybe better TLB hit rate in some cases. */
340 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
341 AssertRCReturn(rc, rc);
342
343 /** @cfgm{/HM/EnableVPID, bool, false}
344 * Enables the VT-x VPID feature. */
345 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
346 AssertRCReturn(rc, rc);
347
348 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
349 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
350 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
351 AssertRCReturn(rc, rc);
352
353 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
354 * Enables AMD64 cpu features.
355 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
356 * already have the support. */
357#ifdef VBOX_WITH_64_BITS_GUESTS
358 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuestsCfg, HC_ARCH_BITS == 64);
359 AssertLogRelRCReturn(rc, rc);
360#else
361 pVM->hm.s.fAllow64BitGuestsCfg = false;
362#endif
363
364 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
365 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
366 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
367 * latest PAUSE instruction to be start of a new PAUSE loop.
368 */
369 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
370 AssertRCReturn(rc, rc);
371
372 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
373 * The pause-filter exiting window in TSC ticks. When the number of ticks
374 * between the current PAUSE instruction and first PAUSE of a loop exceeds
375 * VmxPleWindow, a VM-exit is triggered.
376 *
377 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
378 */
379 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
380 AssertRCReturn(rc, rc);
381
382 /** @cfgm{/HM/VmxLbr, bool, false}
383 * Whether to enable LBR for the guest. This is disabled by default as it's only
384 * useful while debugging and enabling it causes a noticeable performance hit. */
385 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbrCfg, false);
386 AssertRCReturn(rc, rc);
387
388 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
389 * A counter that is decrement each time a PAUSE instruction is executed by the
390 * guest. When the counter is 0, a \#VMEXIT is triggered.
391 *
392 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
393 */
394 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
395 AssertRCReturn(rc, rc);
396
397 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
398 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
399 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
400 * PauseFilter count is reset to its initial value. However, if PAUSE is
401 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
402 * be triggered.
403 *
404 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
405 * activated.
406 */
407 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
408 AssertRCReturn(rc, rc);
409
410 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
411 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
412 * available. */
413 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
414 AssertRCReturn(rc, rc);
415
416 /** @cfgm{/HM/SvmVGif, bool, true}
417 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
418 * if it's available. */
419 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
420 AssertRCReturn(rc, rc);
421
422 /** @cfgm{/HM/SvmLbrVirt, bool, false}
423 * Whether to make use of the LBR virtualization feature of the CPU if it's
424 * available. This is disabled by default as it's only useful while debugging
425 * and enabling it causes a small hit to performance. */
426 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
427 AssertRCReturn(rc, rc);
428
429 /** @cfgm{/HM/Exclusive, bool}
430 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
431 * global init for each host CPU. If false, we do local init each time we wish
432 * to execute guest code.
433 *
434 * On Windows, default is false due to the higher risk of conflicts with other
435 * hypervisors.
436 *
437 * On Mac OS X, this setting is ignored since the code does not handle local
438 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
439 */
440#if defined(RT_OS_DARWIN)
441 pVM->hm.s.fGlobalInit = true;
442#else
443 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
444# if defined(RT_OS_WINDOWS)
445 false
446# else
447 true
448# endif
449 );
450 AssertLogRelRCReturn(rc, rc);
451#endif
452
453 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
454 * The number of times to resume guest execution before we forcibly return to
455 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
456 * determines the default value. */
457 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoopsCfg, 0 /* set by R0 later */);
458 AssertLogRelRCReturn(rc, rc);
459
460 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
461 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
462 * available. */
463 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimerCfg, true);
464 AssertLogRelRCReturn(rc, rc);
465
466 /** @cfgm{/HM/IBPBOnVMExit, bool}
467 * Costly paranoia setting. */
468 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
469 AssertLogRelRCReturn(rc, rc);
470
471 /** @cfgm{/HM/IBPBOnVMEntry, bool}
472 * Costly paranoia setting. */
473 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
474 AssertLogRelRCReturn(rc, rc);
475
476 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
477 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
478 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
479 AssertLogRelRCReturn(rc, rc);
480
481 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
482 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
483 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
484 AssertLogRelRCReturn(rc, rc);
485
486 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
487 if (pVM->hm.s.fL1dFlushOnVmEntry)
488 pVM->hm.s.fL1dFlushOnSched = false;
489
490 /** @cfgm{/HM/SpecCtrlByHost, bool}
491 * Another expensive paranoia setting. */
492 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
493 AssertLogRelRCReturn(rc, rc);
494
495 /** @cfgm{/HM/MDSClearOnSched, bool, true}
496 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
497 * ignored on CPUs that aren't affected. */
498 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
499 AssertLogRelRCReturn(rc, rc);
500
501 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
502 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
503 * ignored on CPUs that aren't affected. */
504 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
505 AssertLogRelRCReturn(rc, rc);
506
507 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
508 if (pVM->hm.s.fMdsClearOnVmEntry)
509 pVM->hm.s.fMdsClearOnSched = false;
510
511 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
512 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
513 * the hypervisor it is running under. */
514 bool fMesaWorkaround;
515 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &fMesaWorkaround, false);
516 AssertLogRelRCReturn(rc, rc);
517 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
518 {
519 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
520 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = fMesaWorkaround;
521 }
522
523 /** @cfgm{/HM/MissingOS2TlbFlushWorkaround,bool}
524 * Workaround OS/2 not flushing the TLB after page directory and page table
525 * modifications when returning to protected mode from a real mode call
526 * (TESTCFG.SYS typically crashes). See ticketref:20625 for details. */
527 rc = CFGMR3QueryBoolDef(pCfgHm, "MissingOS2TlbFlushWorkaround", &pVM->hm.s.fMissingOS2TlbFlushWorkaround, false);
528 AssertLogRelRCReturn(rc, rc);
529
530 /*
531 * Check if VT-x or AMD-v support according to the users wishes.
532 */
533 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
534 * VERR_SVM_IN_USE. */
535 if (pVM->fHMEnabled)
536 {
537 uint32_t fCaps;
538 rc = SUPR3QueryVTCaps(&fCaps);
539 if (RT_SUCCESS(rc))
540 {
541 if (fCaps & SUPVTCAPS_AMD_V)
542 {
543 pVM->hm.s.svm.fSupported = true;
544 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
545 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
546 }
547 else if (fCaps & SUPVTCAPS_VT_X)
548 {
549 const char *pszWhy;
550 rc = SUPR3QueryVTxSupported(&pszWhy);
551 if (RT_SUCCESS(rc))
552 {
553 pVM->hm.s.vmx.fSupported = true;
554 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
555 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
556 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
557 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
558 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
559 }
560 else
561 {
562 /*
563 * Before failing, try fallback to NEM if we're allowed to do that.
564 */
565 pVM->fHMEnabled = false;
566 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
567 if (fFallbackToNEM)
568 {
569 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
570 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
571
572 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
573 if ( RT_SUCCESS(rc2)
574 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
575 rc = VINF_SUCCESS;
576 }
577 if (RT_FAILURE(rc))
578 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
579 }
580 }
581 else
582 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
583 VERR_INTERNAL_ERROR_5);
584
585 /*
586 * Disable nested paging and unrestricted guest execution now if they're
587 * configured so that CPUM can make decisions based on our configuration.
588 */
589 if ( fAllowNestedPaging
590 && (fCaps & SUPVTCAPS_NESTED_PAGING))
591 {
592 pVM->hm.s.fNestedPagingCfg = true;
593 if (fCaps & SUPVTCAPS_VT_X)
594 {
595 if ( fAllowUnrestricted
596 && (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST))
597 pVM->hm.s.vmx.fUnrestrictedGuestCfg = true;
598 else
599 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
600 }
601 }
602 else
603 Assert(!pVM->hm.s.fNestedPagingCfg);
604 }
605 else
606 {
607 const char *pszMsg;
608 switch (rc)
609 {
610 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
611 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
612 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
613 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
614 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
615 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
616 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
617 case VERR_SUP_DRIVERLESS: pszMsg = "Driverless mode"; break;
618 default:
619 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
620 }
621
622 /*
623 * Before failing, try fallback to NEM if we're allowed to do that.
624 */
625 pVM->fHMEnabled = false;
626 if (fFallbackToNEM)
627 {
628 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
629 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
630 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
631 if ( RT_SUCCESS(rc2)
632 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
633 {
634 rc = VINF_SUCCESS;
635
636 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
637 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
638 }
639 }
640
641 /*
642 * Then try fall back on IEM if NEM isn't available and we're allowed to.
643 */
644 if (RT_FAILURE(rc))
645 {
646 if ( fFallbackToIEM
647 && (!fFallbackToNEM || rc == VERR_NEM_NOT_AVAILABLE || rc == VERR_SUP_DRIVERLESS))
648 {
649 LogRel(("HM: HMR3Init: Falling back on IEM: %s\n", !fFallbackToNEM ? pszMsg : "NEM not available"));
650 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
651#ifdef VBOX_WITH_PGM_NEM_MODE
652 PGMR3EnableNemMode(pVM);
653#endif
654 }
655 else
656 return VM_SET_ERROR(pVM, rc, pszMsg);
657 }
658 }
659 }
660 else
661 {
662 /*
663 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
664 */
665 rc = VERR_NEM_NOT_AVAILABLE;
666 if (fUseNEMInstead)
667 {
668 rc = NEMR3Init(pVM, false /*fFallback*/, true);
669 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
670 if (RT_SUCCESS(rc))
671 {
672 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
673 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
674 }
675 else if (!fFallbackToIEM || rc != VERR_NEM_NOT_AVAILABLE)
676 return rc;
677 }
678
679 if (fFallbackToIEM && rc == VERR_NEM_NOT_AVAILABLE)
680 {
681 LogRel(("HM: HMR3Init: Falling back on IEM%s\n", fUseNEMInstead ? ": NEM not available" : ""));
682 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
683#ifdef VBOX_WITH_PGM_NEM_MODE
684 PGMR3EnableNemMode(pVM);
685#endif
686 }
687
688 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
689 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
690 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
691 }
692
693 if (pVM->fHMEnabled)
694 {
695 /*
696 * Register info handlers now that HM is used for sure.
697 */
698 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
699 AssertRCReturn(rc, rc);
700
701 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
702 DBGFINFO_FLAGS_ALL_EMTS);
703 AssertRCReturn(rc, rc);
704
705 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
706 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
707 AssertRCReturn(rc, rc);
708
709 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
710 AssertRCReturn(rc, rc);
711 }
712
713 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
714 return VINF_SUCCESS;
715}
716
717
718/**
719 * Initializes HM components after ring-3 phase has been fully initialized.
720 *
721 * @returns VBox status code.
722 * @param pVM The cross context VM structure.
723 */
724static int hmR3InitFinalizeR3(PVM pVM)
725{
726 LogFlowFunc(("\n"));
727
728 if (!HMIsEnabled(pVM))
729 return VINF_SUCCESS;
730
731 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
732 {
733 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
734 pVCpu->hm.s.fActive = false;
735 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
736 pVCpu->hm.s.fGCMTrapXcptDE = GCMShouldTrapXcptDE(pVCpu); /* Is safe to call now since GCMR3Init() has completed. */
737 }
738
739#if defined(RT_ARCH_AMD64) ||defined(RT_ARCH_X86)
740 /*
741 * Check if L1D flush is needed/possible.
742 */
743 if ( !g_CpumHostFeatures.s.fFlushCmd
744 || g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
745 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
746 || g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d
747 || g_CpumHostFeatures.s.fArchRdclNo)
748 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
749
750 /*
751 * Check if MDS flush is needed/possible.
752 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
753 */
754 if ( !g_CpumHostFeatures.s.fMdsClear
755 || g_CpumHostFeatures.s.fArchMdsNo)
756 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
757 else if ( ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
758 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
759 || ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
760 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
761 {
762 if (!pVM->hm.s.fMdsClearOnSched)
763 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
764 pVM->hm.s.fMdsClearOnVmEntry = false;
765 }
766 else if ( g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
767 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
768 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
769#endif
770
771 /*
772 * Statistics.
773 */
774#ifdef VBOX_WITH_STATISTICS
775 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
776 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
777 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
778 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
779 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
780#endif
781
782#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
783 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
784#else
785 bool const fCpuSupportsVmx = false;
786#endif
787 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
788 {
789 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
790 PHMCPU pHmCpu = &pVCpu->hm.s;
791 int rc;
792
793# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
794 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
795 AssertRC(rc); \
796 } while (0)
797# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
798 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
799
800#ifdef VBOX_WITH_STATISTICS
801 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
802 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
803 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
804 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
805 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
806 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
807 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
808 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
809 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
810 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
811 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
812 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
813 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
814 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
815# ifdef HM_PROFILE_EXIT_DISPATCH
816 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
817 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
818# endif
819#endif
820# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
821
822 HM_REG_COUNTER(&pHmCpu->StatImportGuestStateFallback, "/HM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
823 HM_REG_COUNTER(&pHmCpu->StatReadToTransientFallback, "/HM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
824#ifdef VBOX_WITH_STATISTICS
825 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (excludes nested-guest and debug loops exits).");
826 HM_REG_COUNTER(&pHmCpu->StatDebugExitAll, "/HM/CPU%u/Exit/DebugAll", "Total debug-loop exits.");
827 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
828 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
829 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
830 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
831 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
832 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
833 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
834 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
835 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
836 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
837 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
838 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
839 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
840 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
841 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
842#endif
843 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
844 if (fCpuSupportsVmx)
845 HM_REG_COUNTER(&pHmCpu->StatExitGuestACSplitLock, "/HM/CPU%u/Exit/Trap/Gst/#AC-split-lock", "Guest triggered #AC due to split-lock being enabled on the host (interpreted).");
846#ifdef VBOX_WITH_STATISTICS
847 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
848 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
849 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
850 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
851 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
852 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
853 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
854 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
855 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
856 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
857 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
858 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
859 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
860 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
861 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
862 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
863 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
864 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
865 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
866 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
867 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
868 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
869 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
870 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
871 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
872 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
873 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
874 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
875#endif
876 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
877 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
878 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
879#ifdef VBOX_WITH_STATISTICS
880 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
881 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
882 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
883
884 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
885 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
886 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
887 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
888 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
889 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
890 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
891 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
892 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
893 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
894 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
895 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
896#endif
897 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
898#ifdef VBOX_WITH_STATISTICS
899 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
900
901 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
902 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
903 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
904 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
905 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
906 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
907
908 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
909 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
910 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
911 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
912 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
913 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
914 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
915 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
916 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
917 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
918 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
919 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
920 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
921 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
922 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
923
924 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
925 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
926 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
927
928 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
929 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
930 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
931
932 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
933 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
934 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
935 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
936
937 if (fCpuSupportsVmx)
938 {
939 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRip, "/HM/CPU%u/WriteHostRIP", "Number of VMX_VMCS_HOST_RIP instructions.");
940 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRsp, "/HM/CPU%u/WriteHostRSP", "Number of VMX_VMCS_HOST_RSP instructions.");
941 HM_REG_COUNTER(&pHmCpu->StatVmxVmLaunch, "/HM/CPU%u/VMLaunch", "Number of VM-entries using VMLAUNCH.");
942 HM_REG_COUNTER(&pHmCpu->StatVmxVmResume, "/HM/CPU%u/VMResume", "Number of VM-entries using VMRESUME.");
943 }
944
945 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
946 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
947 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
948
949 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
950 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
951 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
952
953 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
954 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
955 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
956 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
957#endif
958 if (fCpuSupportsVmx)
959 {
960 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/PreemptTimer", "VMX-preemption timer fired.");
961 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadline, "/HM/CPU%u/PreemptTimer/ReusingDeadline", "VMX-preemption timer arming logic using previously calculated deadline");
962 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadlineExpired, "/HM/CPU%u/PreemptTimer/ReusingDeadlineExpired", "VMX-preemption timer arming logic found previous deadline already expired (ignored)");
963 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadline, "/HM/CPU%u/PreemptTimer/RecalcingDeadline", "VMX-preemption timer arming logic recalculating the deadline (slightly expensive)");
964 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadlineExpired, "/HM/CPU%u/PreemptTimer/RecalcingDeadlineExpired", "VMX-preemption timer arming logic found recalculated deadline expired (ignored)");
965 }
966#ifdef VBOX_WITH_STATISTICS
967 /*
968 * Guest Exit reason stats.
969 */
970 if (fCpuSupportsVmx)
971 {
972 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
973 {
974 const char *pszExitName = HMGetVmxExitName(j);
975 if (pszExitName)
976 {
977 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
978 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
979 AssertRCReturn(rc, rc);
980 }
981 }
982 }
983 else
984 {
985 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
986 {
987 const char *pszExitName = HMGetSvmExitName(j);
988 if (pszExitName)
989 {
990 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
991 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
992 AssertRC(rc);
993 }
994 }
995 }
996 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
997
998#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
999 /*
1000 * Nested-guest VM-exit reason stats.
1001 */
1002 if (fCpuSupportsVmx)
1003 {
1004 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1005 {
1006 const char *pszExitName = HMGetVmxExitName(j);
1007 if (pszExitName)
1008 {
1009 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1010 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
1011 AssertRC(rc);
1012 }
1013 }
1014 }
1015 else
1016 {
1017 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1018 {
1019 const char *pszExitName = HMGetSvmExitName(j);
1020 if (pszExitName)
1021 {
1022 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1023 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
1024 AssertRC(rc);
1025 }
1026 }
1027 }
1028 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
1029#endif
1030
1031 /*
1032 * Injected interrupts stats.
1033 */
1034 char szDesc[64];
1035 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedIrqs); j++)
1036 {
1037 RTStrPrintf(&szDesc[0], sizeof(szDesc), "Interrupt %u", j);
1038 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1039 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
1040 AssertRC(rc);
1041 }
1042
1043 /*
1044 * Injected exception stats.
1045 */
1046 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedXcpts); j++)
1047 {
1048 RTStrPrintf(&szDesc[0], sizeof(szDesc), "%s exception", hmR3GetXcptName(j));
1049 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1050 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
1051 AssertRC(rc);
1052 }
1053
1054#endif /* VBOX_WITH_STATISTICS */
1055#undef HM_REG_COUNTER
1056#undef HM_REG_PROFILE
1057#undef HM_REG_STAT
1058 }
1059
1060 return VINF_SUCCESS;
1061}
1062
1063
1064/**
1065 * Called when a init phase has completed.
1066 *
1067 * @returns VBox status code.
1068 * @param pVM The cross context VM structure.
1069 * @param enmWhat The phase that completed.
1070 */
1071VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1072{
1073 switch (enmWhat)
1074 {
1075 case VMINITCOMPLETED_RING3:
1076 return hmR3InitFinalizeR3(pVM);
1077 case VMINITCOMPLETED_RING0:
1078 return hmR3InitFinalizeR0(pVM);
1079 default:
1080 return VINF_SUCCESS;
1081 }
1082}
1083
1084
1085/**
1086 * Turns off normal raw mode features.
1087 *
1088 * @param pVM The cross context VM structure.
1089 */
1090static void hmR3DisableRawMode(PVM pVM)
1091{
1092/** @todo r=bird: HM shouldn't be doing this crap. */
1093 /* Reinit the paging mode to force the new shadow mode. */
1094 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1095 {
1096 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1097 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1098 }
1099}
1100
1101
1102/**
1103 * Initialize VT-x or AMD-V.
1104 *
1105 * @returns VBox status code.
1106 * @param pVM The cross context VM structure.
1107 */
1108static int hmR3InitFinalizeR0(PVM pVM)
1109{
1110 int rc;
1111
1112 /*
1113 * Since HM is in charge of large pages, if large pages isn't supported on Intel CPUs,
1114 * we must disable it here. Doing it here rather than in hmR3InitFinalizeR0Intel covers
1115 * the case of informing PGM even when NEM is the execution engine.
1116 */
1117 if ( pVM->hm.s.fLargePages
1118 && pVM->hm.s.vmx.fSupported
1119 && !(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M))
1120 {
1121 pVM->hm.s.fLargePages = false;
1122 PGMSetLargePageUsage(pVM, false);
1123 LogRel(("HM: Disabled large page support as the CPU doesn't allow EPT PDEs to map 2MB pages\n"));
1124 }
1125
1126 if (!HMIsEnabled(pVM))
1127 return VINF_SUCCESS;
1128
1129 /*
1130 * Hack to allow users to work around broken BIOSes that incorrectly set
1131 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1132 */
1133 if ( !pVM->hm.s.vmx.fSupported
1134 && !pVM->hm.s.svm.fSupported
1135 && pVM->hm.s.ForR3.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1136 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1137 {
1138 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1139 pVM->hm.s.svm.fSupported = true;
1140 pVM->hm.s.svm.fIgnoreInUseError = true;
1141 pVM->hm.s.ForR3.rcInit = VINF_SUCCESS;
1142 }
1143
1144 /*
1145 * Report ring-0 init errors.
1146 */
1147 if ( !pVM->hm.s.vmx.fSupported
1148 && !pVM->hm.s.svm.fSupported)
1149 {
1150 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.ForR3.rcInit));
1151 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.ForR3.vmx.u64HostFeatCtrl));
1152 switch (pVM->hm.s.ForR3.rcInit)
1153 {
1154 case VERR_VMX_IN_VMX_ROOT_MODE:
1155 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1156 case VERR_VMX_NO_VMX:
1157 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1158 case VERR_VMX_MSR_VMX_DISABLED:
1159 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1160 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1161 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1162 case VERR_VMX_MSR_LOCKING_FAILED:
1163 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1164 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1165 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1166 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1167 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1168
1169 case VERR_SVM_IN_USE:
1170 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1171 case VERR_SVM_NO_SVM:
1172 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1173 case VERR_SVM_DISABLED:
1174 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1175 }
1176 return VMSetError(pVM, pVM->hm.s.ForR3.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.ForR3.rcInit);
1177 }
1178
1179 /*
1180 * Enable VT-x or AMD-V on all host CPUs.
1181 */
1182 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1183 if (RT_FAILURE(rc))
1184 {
1185 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1186 HMR3CheckError(pVM, rc);
1187 return rc;
1188 }
1189
1190 /*
1191 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1192 * (Main should have taken care of this already)
1193 */
1194 if (!PDMHasIoApic(pVM))
1195 {
1196 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1197 pVM->hm.s.fTprPatchingAllowed = false;
1198 }
1199
1200 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1201 pVM->hm.s.ForR3.fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1202 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1203
1204 /*
1205 * Do the vendor specific initialization
1206 *
1207 * Note! We disable release log buffering here since we're doing relatively
1208 * lot of logging and doesn't want to hit the disk with each LogRel
1209 * statement.
1210 */
1211 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1212 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1213 if (pVM->hm.s.vmx.fSupported)
1214 rc = hmR3InitFinalizeR0Intel(pVM);
1215 else
1216 rc = hmR3InitFinalizeR0Amd(pVM);
1217 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1218 : "HM: VT-x/AMD-V init method: Local\n"));
1219 RTLogRelSetBuffering(fOldBuffered);
1220 pVM->hm.s.fInitialized = true;
1221
1222 return rc;
1223}
1224
1225
1226/**
1227 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1228 */
1229static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1230{
1231 NOREF(pVM);
1232 NOREF(pvAllocation);
1233 NOREF(GCPhysAllocation);
1234}
1235
1236
1237/**
1238 * Returns a description of the VMCS (and associated regions') memory type given the
1239 * IA32_VMX_BASIC MSR.
1240 *
1241 * @returns The descriptive memory type.
1242 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1243 */
1244static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1245{
1246 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1247 switch (uMemType)
1248 {
1249 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1250 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1251 }
1252 return "Unknown";
1253}
1254
1255
1256/**
1257 * Returns a single-line description of all the activity-states supported by the CPU
1258 * given the IA32_VMX_MISC MSR.
1259 *
1260 * @returns All supported activity states.
1261 * @param uMsrMisc IA32_VMX_MISC MSR value.
1262 */
1263static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1264{
1265 static const char * const s_apszActStates[] =
1266 {
1267 "",
1268 " ( HLT )",
1269 " ( SHUTDOWN )",
1270 " ( HLT SHUTDOWN )",
1271 " ( SIPI_WAIT )",
1272 " ( HLT SIPI_WAIT )",
1273 " ( SHUTDOWN SIPI_WAIT )",
1274 " ( HLT SHUTDOWN SIPI_WAIT )"
1275 };
1276 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1277 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1278 return s_apszActStates[idxActStates];
1279}
1280
1281
1282/**
1283 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1284 *
1285 * @param fFeatMsr The feature control MSR value.
1286 */
1287static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1288{
1289 uint64_t const val = fFeatMsr;
1290 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1291 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1292 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1293 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1294 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1295 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1296 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1297 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1298 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1299 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1300 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1301 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1302 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1303 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1304 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1305 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1306 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1307}
1308
1309
1310/**
1311 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1312 *
1313 * @param uBasicMsr The VMX basic MSR value.
1314 */
1315static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1316{
1317 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1318 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1319 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1320 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1321 "< 4 GB" : "None"));
1322 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1323 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1324 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1325 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1326 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1327}
1328
1329
1330/**
1331 * Reports MSR_IA32_PINBASED_CTLS to the log.
1332 *
1333 * @param pVmxMsr Pointer to the VMX MSR.
1334 */
1335static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1336{
1337 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1338 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1339 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1340 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1341 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1342 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1343 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1344 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1345}
1346
1347
1348/**
1349 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1350 *
1351 * @param pVmxMsr Pointer to the VMX MSR.
1352 */
1353static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1354{
1355 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1356 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1357 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1358 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1359 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1360 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1361 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1362 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1363 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1364 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1365 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1366 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1367 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TERTIARY_CTLS", VMX_PROC_CTLS_USE_TERTIARY_CTLS);
1368 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1369 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1370 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1371 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1372 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1373 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1374 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1375 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1376 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1377 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1378 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1380}
1381
1382
1383/**
1384 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1385 *
1386 * @param pVmxMsr Pointer to the VMX MSR.
1387 */
1388static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1389{
1390 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1391 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1392 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1393 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1394 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1395 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1396 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1397 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1398 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1399 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1400 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1401 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1402 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1403 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1404 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1405 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1406 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1407 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1408 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1409 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1410 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1411 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_XCPT_VE", VMX_PROC_CTLS2_EPT_XCPT_VE);
1412 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1413 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1414 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1415 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPP_EPT", VMX_PROC_CTLS2_SPP_EPT);
1416 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1417 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1418 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1419 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1420}
1421
1422
1423/**
1424 * Reports MSR_IA32_VMX_PROCBASED_CTLS3 MSR to the log.
1425 *
1426 * @param uProcCtls3 The tertiary processor-based VM-execution control MSR.
1427 */
1428static void hmR3VmxReportProcBasedCtls3Msr(uint64_t uProcCtls3)
1429{
1430 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS3 = %#RX64\n", uProcCtls3));
1431 LogRel(("HM: LOADIWKEY_EXIT = %RTbool\n", RT_BOOL(uProcCtls3 & VMX_PROC_CTLS3_LOADIWKEY_EXIT)));
1432}
1433
1434
1435/**
1436 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1437 *
1438 * @param pVmxMsr Pointer to the VMX MSR.
1439 */
1440static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1441{
1442 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1443 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1444 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1445 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1446 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1447 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1448 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1449 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1450 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1451 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1452 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1453 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1454 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1455 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_ENTRY_CTLS_LOAD_CET_STATE);
1456 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_ENTRY_CTLS_LOAD_PKRS_MSR);
1457}
1458
1459
1460/**
1461 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1462 *
1463 * @param pVmxMsr Pointer to the VMX MSR.
1464 */
1465static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1466{
1467 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1468 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1469 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1470 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1471 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1472 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1473 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1474 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1475 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1476 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1477 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1478 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1479 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1480 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1481 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1482 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_EXIT_CTLS_LOAD_CET_STATE);
1483 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_EXIT_CTLS_LOAD_PKRS_MSR);
1484}
1485
1486
1487/**
1488 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1489 *
1490 * @param fCaps The VMX EPT/VPID capability MSR value.
1491 */
1492static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1493{
1494 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1495 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1496 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1497 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1498 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_UC", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_UC);
1499 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_WB", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB);
1500 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1501 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1502 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1503 HMVMX_REPORT_MSR_CAP(fCaps, "ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
1504 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT_VIOLATION", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION);
1505 HMVMX_REPORT_MSR_CAP(fCaps, "SUPER_SHW_STACK", MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK);
1506 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1507 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1508 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1509 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1510 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1511 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1512 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1513}
1514
1515
1516/**
1517 * Reports MSR_IA32_VMX_MISC MSR to the log.
1518 *
1519 * @param pVM Pointer to the VM.
1520 * @param fMisc The VMX misc. MSR value.
1521 */
1522static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1523{
1524 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1525 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1526 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1527 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1528 else
1529 {
1530 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1531 pVM->hm.s.vmx.cPreemptTimerShift));
1532 }
1533 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1534 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1535 hmR3VmxGetActivityStateAllDesc(fMisc)));
1536 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1537 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1538 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1539 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1540 VMX_MISC_MAX_MSRS(fMisc)));
1541 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1542 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1543 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1544 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1545}
1546
1547
1548/**
1549 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1550 *
1551 * @param uVmcsEnum The VMX VMCS enum MSR value.
1552 */
1553static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1554{
1555 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1556 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1557}
1558
1559
1560/**
1561 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1562 *
1563 * @param uVmFunc The VMX VMFUNC MSR value.
1564 */
1565static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1566{
1567 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1568 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1569}
1570
1571
1572/**
1573 * Reports VMX CR0, CR4 fixed MSRs.
1574 *
1575 * @param pMsrs Pointer to the VMX MSRs.
1576 */
1577static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1578{
1579 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1580 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1581 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1582 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1583}
1584
1585
1586/**
1587 * Finish VT-x initialization (after ring-0 init).
1588 *
1589 * @returns VBox status code.
1590 * @param pVM The cross context VM structure.
1591 */
1592static int hmR3InitFinalizeR0Intel(PVM pVM)
1593{
1594 int rc;
1595
1596 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1597 AssertLogRelReturn(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl != 0, VERR_HM_IPE_4);
1598
1599 LogRel(("HM: Using VT-x implementation 3.0\n"));
1600 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1601 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostCr4));
1602 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostMsrEfer));
1603 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl));
1604
1605 hmR3VmxReportFeatCtlMsr(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl);
1606 hmR3VmxReportBasicMsr(pVM->hm.s.ForR3.vmx.Msrs.u64Basic);
1607
1608 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.PinCtls);
1609 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls);
1610 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1611 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2);
1612 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
1613 hmR3VmxReportProcBasedCtls3Msr(pVM->hm.s.ForR3.vmx.Msrs.u64ProcCtls3);
1614
1615 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.EntryCtls);
1616 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ExitCtls);
1617
1618 if (RT_BF_GET(pVM->hm.s.ForR3.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1619 {
1620 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1621 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TruePinCtls));
1622 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueProcCtls));
1623 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueEntryCtls));
1624 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueExitCtls));
1625 }
1626
1627 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.ForR3.vmx.Msrs.u64Misc);
1628 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmcsEnum);
1629 if (pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps)
1630 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps);
1631 if (pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc)
1632 hmR3VmxReportVmFuncMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc);
1633 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.ForR3.vmx.Msrs);
1634
1635#ifdef TODO_9217_VMCSINFO
1636 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1637 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1638 {
1639 PCVMXVMCSINFOSHARED pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1640 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1641 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1642 }
1643#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1644 if (pVM->cpum.ro.GuestFeatures.fVmx)
1645 {
1646 LogRel(("HM: Nested-guest:\n"));
1647 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1648 {
1649 PCVMXVMCSINFOSHARED pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1650 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1651 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1652 }
1653 }
1654#endif
1655#endif /* TODO_9217_VMCSINFO */
1656
1657 /*
1658 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1659 */
1660 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1661 || (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1662 VERR_HM_IPE_1);
1663 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuestCfg
1664 || ( (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1665 && pVM->hm.s.fNestedPagingCfg),
1666 VERR_HM_IPE_1);
1667
1668 /*
1669 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1670 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1671 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1672 */
1673 if ( !(pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1674 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1675 {
1676 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1677 LogRel(("HM: Disabled RDTSCP\n"));
1678 }
1679
1680 if (!pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1681 {
1682 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1683 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1684 if (RT_SUCCESS(rc))
1685 {
1686 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1687 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1688 esp. Figure 20-5.*/
1689 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1690 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1691
1692 /* Bit set to 0 means software interrupts are redirected to the
1693 8086 program interrupt handler rather than switching to
1694 protected-mode handler. */
1695 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1696
1697 /* Allow all port IO, so that port IO instructions do not cause
1698 exceptions and would instead cause a VM-exit (based on VT-x's
1699 IO bitmap which we currently configure to always cause an exit). */
1700 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, X86_PAGE_SIZE * 2);
1701 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1702
1703 /*
1704 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1705 * page table used in real and protected mode without paging with EPT.
1706 */
1707 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + X86_PAGE_SIZE * 3);
1708 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1709 {
1710 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1711 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1712 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1713 | X86_PDE4M_G;
1714 }
1715
1716 /* We convert it here every time as PCI regions could be reconfigured. */
1717 if (PDMVmmDevHeapIsEnabled(pVM))
1718 {
1719 RTGCPHYS GCPhys;
1720 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1721 AssertRCReturn(rc, rc);
1722 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1723
1724 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1725 AssertRCReturn(rc, rc);
1726 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1727 }
1728 }
1729 else
1730 {
1731 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1732 pVM->hm.s.vmx.pRealModeTSS = NULL;
1733 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1734 return VMSetError(pVM, rc, RT_SRC_POS,
1735 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1736 }
1737 }
1738
1739 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1740 : "HM: Guest support: 32-bit only\n"));
1741
1742 /*
1743 * Call ring-0 to set up the VM.
1744 */
1745 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1746 if (rc != VINF_SUCCESS)
1747 {
1748 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1749 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1750 {
1751 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1752 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1753 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1754 }
1755 HMR3CheckError(pVM, rc);
1756 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1757 }
1758
1759 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer));
1760 LogRel(("HM: Enabled VMX\n"));
1761 pVM->hm.s.vmx.fEnabled = true;
1762
1763 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1764
1765 /*
1766 * Log configuration details.
1767 */
1768 if (pVM->hm.s.fNestedPagingCfg)
1769 {
1770 LogRel(("HM: Enabled nested paging\n"));
1771 if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1772 LogRel(("HM: EPT flush type = Single context\n"));
1773 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1774 LogRel(("HM: EPT flush type = All contexts\n"));
1775 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1776 LogRel(("HM: EPT flush type = Not supported\n"));
1777 else
1778 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushEpt));
1779
1780 if (pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1781 LogRel(("HM: Enabled unrestricted guest execution\n"));
1782
1783 if (pVM->hm.s.fLargePages)
1784 {
1785 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1786 PGMSetLargePageUsage(pVM, true);
1787 LogRel(("HM: Enabled large page support\n"));
1788 }
1789 }
1790 else
1791 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
1792
1793 if (pVM->hm.s.ForR3.vmx.fVpid)
1794 {
1795 LogRel(("HM: Enabled VPID\n"));
1796 if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1797 LogRel(("HM: VPID flush type = Individual addresses\n"));
1798 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1799 LogRel(("HM: VPID flush type = Single context\n"));
1800 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1801 LogRel(("HM: VPID flush type = All contexts\n"));
1802 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1803 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1804 else
1805 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushVpid));
1806 }
1807 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1808 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1809
1810 if (pVM->hm.s.vmx.fUsePreemptTimerCfg)
1811 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1812 else
1813 LogRel(("HM: Disabled VMX-preemption timer\n"));
1814
1815 if (pVM->hm.s.fVirtApicRegs)
1816 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1817
1818 if (pVM->hm.s.fPostedIntrs)
1819 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1820
1821 if (pVM->hm.s.ForR3.vmx.fUseVmcsShadowing)
1822 {
1823 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.ForR3.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1824 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1825 }
1826
1827 return VINF_SUCCESS;
1828}
1829
1830
1831/**
1832 * Finish AMD-V initialization (after ring-0 init).
1833 *
1834 * @returns VBox status code.
1835 * @param pVM The cross context VM structure.
1836 */
1837static int hmR3InitFinalizeR0Amd(PVM pVM)
1838{
1839 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1840
1841 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1842
1843#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1844 uint32_t u32Family;
1845 uint32_t u32Model;
1846 uint32_t u32Stepping;
1847 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1848 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1849#endif
1850 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1851 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.ForR3.svm.u64MsrHwcr));
1852 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.ForR3.svm.u32Rev));
1853 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.ForR3.uMaxAsid));
1854 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.ForR3.svm.fFeatures));
1855
1856 /*
1857 * Enumerate AMD-V features.
1858 */
1859 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1860 {
1861#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1862 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1863 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1864 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1865 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1866 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1867 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1868 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1869 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1870 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1871 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1872 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1873 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1874 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1875 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1876 HMSVM_REPORT_FEATURE("SSSCHECK", X86_CPUID_SVM_FEATURE_EDX_SSSCHECK),
1877 HMSVM_REPORT_FEATURE("SPEC_CTRL", X86_CPUID_SVM_FEATURE_EDX_SPEC_CTRL),
1878 HMSVM_REPORT_FEATURE("HOST_MCE_OVERRIDE", X86_CPUID_SVM_FEATURE_EDX_HOST_MCE_OVERRIDE),
1879 HMSVM_REPORT_FEATURE("TLBICTL", X86_CPUID_SVM_FEATURE_EDX_TLBICTL),
1880#undef HMSVM_REPORT_FEATURE
1881 };
1882
1883 uint32_t fSvmFeatures = pVM->hm.s.ForR3.svm.fFeatures;
1884 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1885 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1886 {
1887 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1888 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1889 }
1890 if (fSvmFeatures)
1891 for (unsigned iBit = 0; iBit < 32; iBit++)
1892 if (RT_BIT_32(iBit) & fSvmFeatures)
1893 LogRel(("HM: Reserved bit %u\n", iBit));
1894
1895 /*
1896 * Nested paging is determined in HMR3Init, verify the sanity of that.
1897 */
1898 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1899 || (pVM->hm.s.ForR3.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1900 VERR_HM_IPE_1);
1901
1902#if 0
1903 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1904 * here. */
1905 if (RTR0IsPostIpiSupport())
1906 pVM->hm.s.fPostedIntrs = true;
1907#endif
1908
1909 /*
1910 * Determine whether we need to intercept #UD in SVM mode for emulating
1911 * intel SYSENTER/SYSEXIT on AMD64, as these instructions results in #UD
1912 * when executed in long-mode. This is only really applicable when
1913 * non-default CPU profiles are in effect, i.e. guest vendor differs
1914 * from the host one.
1915 */
1916 if (CPUMGetGuestCpuVendor(pVM) != CPUMGetHostCpuVendor(pVM))
1917 switch (CPUMGetGuestCpuVendor(pVM))
1918 {
1919 case CPUMCPUVENDOR_INTEL:
1920 case CPUMCPUVENDOR_VIA: /*?*/
1921 case CPUMCPUVENDOR_SHANGHAI: /*?*/
1922 switch (CPUMGetHostCpuVendor(pVM))
1923 {
1924 case CPUMCPUVENDOR_AMD:
1925 case CPUMCPUVENDOR_HYGON:
1926 if (pVM->hm.s.fAllow64BitGuestsCfg)
1927 {
1928 LogRel(("HM: Intercepting #UD for emulating SYSENTER/SYSEXIT in long mode.\n"));
1929 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1930 pVM->apCpusR3[idCpu]->hm.s.svm.fEmulateLongModeSysEnterExit = true;
1931 }
1932 break;
1933 default: break;
1934 }
1935 default: break;
1936 }
1937
1938 /*
1939 * Call ring-0 to set up the VM.
1940 */
1941 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1942 if (rc != VINF_SUCCESS)
1943 {
1944 AssertMsgFailed(("%Rrc\n", rc));
1945 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1946 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1947 }
1948
1949 LogRel(("HM: Enabled SVM\n"));
1950 pVM->hm.s.svm.fEnabled = true;
1951
1952 if (pVM->hm.s.fNestedPagingCfg)
1953 {
1954 LogRel(("HM: Enabled nested paging\n"));
1955
1956 /*
1957 * Enable large pages (2 MB) if applicable.
1958 */
1959 if (pVM->hm.s.fLargePages)
1960 {
1961 PGMSetLargePageUsage(pVM, true);
1962 LogRel(("HM: Enabled large page support\n"));
1963 }
1964 }
1965
1966 if (pVM->hm.s.fVirtApicRegs)
1967 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1968
1969 if (pVM->hm.s.fPostedIntrs)
1970 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1971
1972 hmR3DisableRawMode(pVM);
1973
1974 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1975 : "HM: Disabled TPR patching\n"));
1976
1977 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1978 : "HM: Guest support: 32-bit only\n"));
1979 return VINF_SUCCESS;
1980}
1981
1982
1983/**
1984 * Applies relocations to data and code managed by this
1985 * component. This function will be called at init and
1986 * whenever the VMM need to relocate it self inside the GC.
1987 *
1988 * @param pVM The cross context VM structure.
1989 */
1990VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1991{
1992 /* Fetch the current paging mode during the relocate callback during state loading. */
1993 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1994 {
1995 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1996 {
1997 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1998 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1999 }
2000 }
2001}
2002
2003
2004/**
2005 * Terminates the HM.
2006 *
2007 * Termination means cleaning up and freeing all resources,
2008 * the VM itself is, at this point, powered off or suspended.
2009 *
2010 * @returns VBox status code.
2011 * @param pVM The cross context VM structure.
2012 */
2013VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
2014{
2015 if (pVM->hm.s.vmx.pRealModeTSS)
2016 {
2017 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
2018 pVM->hm.s.vmx.pRealModeTSS = 0;
2019 }
2020 hmR3TermCPU(pVM);
2021 return 0;
2022}
2023
2024
2025/**
2026 * Terminates the per-VCPU HM.
2027 *
2028 * @returns VBox status code.
2029 * @param pVM The cross context VM structure.
2030 */
2031static int hmR3TermCPU(PVM pVM)
2032{
2033 RT_NOREF(pVM);
2034 return VINF_SUCCESS;
2035}
2036
2037
2038/**
2039 * Resets a virtual CPU.
2040 *
2041 * Used by HMR3Reset and CPU hot plugging.
2042 *
2043 * @param pVCpu The cross context virtual CPU structure to reset.
2044 */
2045VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2046{
2047 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2048 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2049 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2050
2051 pVCpu->hm.s.fActive = false;
2052 pVCpu->hm.s.Event.fPending = false;
2053 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2054 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2055#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2056 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2057 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2058#endif
2059}
2060
2061
2062/**
2063 * The VM is being reset.
2064 *
2065 * For the HM component this means that any GDT/LDT/TSS monitors
2066 * needs to be removed.
2067 *
2068 * @param pVM The cross context VM structure.
2069 */
2070VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2071{
2072 LogFlow(("HMR3Reset:\n"));
2073
2074 if (HMIsEnabled(pVM))
2075 hmR3DisableRawMode(pVM);
2076
2077 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2078 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2079
2080 /* Clear all patch information. */
2081 pVM->hm.s.pGuestPatchMem = 0;
2082 pVM->hm.s.pFreeGuestPatchMem = 0;
2083 pVM->hm.s.cbGuestPatchMem = 0;
2084 pVM->hm.s.cPatches = 0;
2085 pVM->hm.s.PatchTree = 0;
2086 pVM->hm.s.fTprPatchingActive = false;
2087 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2088}
2089
2090
2091/**
2092 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2093 *
2094 * @returns VBox strict status code.
2095 * @param pVM The cross context VM structure.
2096 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2097 * @param pvUser Unused.
2098 */
2099static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2100{
2101 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2102
2103 /* Only execute the handler on the VCPU the original patch request was issued. */
2104 if (pVCpu->idCpu != idCpu)
2105 return VINF_SUCCESS;
2106
2107 Log(("hmR3RemovePatches\n"));
2108 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2109 {
2110 uint8_t abInstr[15];
2111 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2112 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2113 int rc;
2114
2115#ifdef LOG_ENABLED
2116 char szOutput[256];
2117 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2118 szOutput, sizeof(szOutput), NULL);
2119 if (RT_SUCCESS(rc))
2120 Log(("Patched instr: %s\n", szOutput));
2121#endif
2122
2123 /* Check if the instruction is still the same. */
2124 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2125 if (rc != VINF_SUCCESS)
2126 {
2127 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2128 continue; /* swapped out or otherwise removed; skip it. */
2129 }
2130
2131 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2132 {
2133 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2134 continue; /* skip it. */
2135 }
2136
2137 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2138 AssertRC(rc);
2139
2140#ifdef LOG_ENABLED
2141 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2142 szOutput, sizeof(szOutput), NULL);
2143 if (RT_SUCCESS(rc))
2144 Log(("Original instr: %s\n", szOutput));
2145#endif
2146 }
2147 pVM->hm.s.cPatches = 0;
2148 pVM->hm.s.PatchTree = 0;
2149 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2150 pVM->hm.s.fTprPatchingActive = false;
2151 return VINF_SUCCESS;
2152}
2153
2154
2155/**
2156 * Worker for enabling patching in a VT-x/AMD-V guest.
2157 *
2158 * @returns VBox status code.
2159 * @param pVM The cross context VM structure.
2160 * @param idCpu VCPU to execute hmR3RemovePatches on.
2161 * @param pPatchMem Patch memory range.
2162 * @param cbPatchMem Size of the memory range.
2163 */
2164static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2165{
2166 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2167 AssertRC(rc);
2168
2169 pVM->hm.s.pGuestPatchMem = pPatchMem;
2170 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2171 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2172 return VINF_SUCCESS;
2173}
2174
2175
2176/**
2177 * Enable patching in a VT-x/AMD-V guest
2178 *
2179 * @returns VBox status code.
2180 * @param pVM The cross context VM structure.
2181 * @param pPatchMem Patch memory range.
2182 * @param cbPatchMem Size of the memory range.
2183 */
2184VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2185{
2186 VM_ASSERT_EMT(pVM);
2187 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2188 if (pVM->cCpus > 1)
2189 {
2190 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2191 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2192 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2193 AssertRC(rc);
2194 return rc;
2195 }
2196 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2197}
2198
2199
2200/**
2201 * Disable patching in a VT-x/AMD-V guest.
2202 *
2203 * @returns VBox status code.
2204 * @param pVM The cross context VM structure.
2205 * @param pPatchMem Patch memory range.
2206 * @param cbPatchMem Size of the memory range.
2207 */
2208VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2209{
2210 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2211 RT_NOREF2(pPatchMem, cbPatchMem);
2212
2213 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2214 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2215
2216 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2217 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2218 (void *)(uintptr_t)VMMGetCpuId(pVM));
2219 AssertRC(rc);
2220
2221 pVM->hm.s.pGuestPatchMem = 0;
2222 pVM->hm.s.pFreeGuestPatchMem = 0;
2223 pVM->hm.s.cbGuestPatchMem = 0;
2224 pVM->hm.s.fTprPatchingActive = false;
2225 return VINF_SUCCESS;
2226}
2227
2228
2229/**
2230 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2231 *
2232 * @returns VBox strict status code.
2233 * @param pVM The cross context VM structure.
2234 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2235 * @param pvUser User specified CPU context.
2236 *
2237 */
2238static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2239{
2240 /*
2241 * Only execute the handler on the VCPU the original patch request was
2242 * issued. (The other CPU(s) might not yet have switched to protected
2243 * mode, nor have the correct memory context.)
2244 */
2245 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2246 if (pVCpu->idCpu != idCpu)
2247 return VINF_SUCCESS;
2248
2249 /*
2250 * We're racing other VCPUs here, so don't try patch the instruction twice
2251 * and make sure there is still room for our patch record.
2252 */
2253 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2254 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2255 if (pPatch)
2256 {
2257 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2258 return VINF_SUCCESS;
2259 }
2260 uint32_t const idx = pVM->hm.s.cPatches;
2261 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2262 {
2263 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2264 return VINF_SUCCESS;
2265 }
2266 pPatch = &pVM->hm.s.aPatches[idx];
2267
2268 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2269
2270 /*
2271 * Disassembler the instruction and get cracking.
2272 */
2273 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2274 DISCPUSTATE Dis;
2275 uint32_t cbOp;
2276 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2277 AssertRC(rc);
2278 if ( rc == VINF_SUCCESS
2279 && Dis.pCurInstr->uOpcode == OP_MOV
2280 && cbOp >= 3)
2281 {
2282 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2283
2284 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2285 AssertRC(rc);
2286
2287 pPatch->cbOp = cbOp;
2288
2289 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2290 {
2291 /* write. */
2292 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2293 {
2294 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2295 pPatch->uSrcOperand = Dis.Param2.Base.idxGenReg;
2296 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", Dis.Param2.Base.idxGenReg));
2297 }
2298 else
2299 {
2300 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2301 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2302 pPatch->uSrcOperand = Dis.Param2.uValue;
2303 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", Dis.Param2.uValue));
2304 }
2305 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2306 AssertRC(rc);
2307
2308 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2309 pPatch->cbNewOp = sizeof(s_abVMMCall);
2310 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2311 }
2312 else
2313 {
2314 /*
2315 * TPR Read.
2316 *
2317 * Found:
2318 * mov eax, dword [fffe0080] (5 bytes)
2319 * Check if next instruction is:
2320 * shr eax, 4
2321 */
2322 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2323
2324 uint8_t const idxMmioReg = Dis.Param1.Base.idxGenReg;
2325 uint8_t const cbOpMmio = cbOp;
2326 uint64_t const uSavedRip = pCtx->rip;
2327
2328 pCtx->rip += cbOp;
2329 rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2330 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2331 pCtx->rip = uSavedRip;
2332
2333 if ( rc == VINF_SUCCESS
2334 && Dis.pCurInstr->uOpcode == OP_SHR
2335 && Dis.Param1.fUse == DISUSE_REG_GEN32
2336 && Dis.Param1.Base.idxGenReg == idxMmioReg
2337 && Dis.Param2.fUse == DISUSE_IMMEDIATE8
2338 && Dis.Param2.uValue == 4
2339 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2340 {
2341 uint8_t abInstr[15];
2342
2343 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2344 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2345 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2346 AssertRC(rc);
2347
2348 pPatch->cbOp = cbOpMmio + cbOp;
2349
2350 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2351 abInstr[0] = 0xf0;
2352 abInstr[1] = 0x0f;
2353 abInstr[2] = 0x20;
2354 abInstr[3] = 0xc0 | Dis.Param1.Base.idxGenReg;
2355 for (unsigned i = 4; i < pPatch->cbOp; i++)
2356 abInstr[i] = 0x90; /* nop */
2357
2358 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2359 AssertRC(rc);
2360
2361 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2362 pPatch->cbNewOp = pPatch->cbOp;
2363 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2364
2365 Log(("Acceptable read/shr candidate!\n"));
2366 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2367 }
2368 else
2369 {
2370 pPatch->enmType = HMTPRINSTR_READ;
2371 pPatch->uDstOperand = idxMmioReg;
2372
2373 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2374 AssertRC(rc);
2375
2376 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2377 pPatch->cbNewOp = sizeof(s_abVMMCall);
2378 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2379 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2380 }
2381 }
2382
2383 pPatch->Core.Key = pCtx->eip;
2384 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2385 AssertRC(rc);
2386
2387 pVM->hm.s.cPatches++;
2388 return VINF_SUCCESS;
2389 }
2390
2391 /*
2392 * Save invalid patch, so we will not try again.
2393 */
2394 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2395 pPatch->Core.Key = pCtx->eip;
2396 pPatch->enmType = HMTPRINSTR_INVALID;
2397 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2398 AssertRC(rc);
2399 pVM->hm.s.cPatches++;
2400 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2401 return VINF_SUCCESS;
2402}
2403
2404
2405/**
2406 * Callback to patch a TPR instruction (jump to generated code).
2407 *
2408 * @returns VBox strict status code.
2409 * @param pVM The cross context VM structure.
2410 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2411 * @param pvUser User specified CPU context.
2412 *
2413 */
2414static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2415{
2416 /*
2417 * Only execute the handler on the VCPU the original patch request was
2418 * issued. (The other CPU(s) might not yet have switched to protected
2419 * mode, nor have the correct memory context.)
2420 */
2421 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2422 if (pVCpu->idCpu != idCpu)
2423 return VINF_SUCCESS;
2424
2425 /*
2426 * We're racing other VCPUs here, so don't try patch the instruction twice
2427 * and make sure there is still room for our patch record.
2428 */
2429 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2430 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2431 if (pPatch)
2432 {
2433 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2434 return VINF_SUCCESS;
2435 }
2436 uint32_t const idx = pVM->hm.s.cPatches;
2437 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2438 {
2439 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2440 return VINF_SUCCESS;
2441 }
2442 pPatch = &pVM->hm.s.aPatches[idx];
2443
2444 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2445 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2446
2447 /*
2448 * Disassemble the instruction and get cracking.
2449 */
2450 DISCPUSTATE Dis;
2451 uint32_t cbOp;
2452 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2453 AssertRC(rc);
2454 if ( rc == VINF_SUCCESS
2455 && Dis.pCurInstr->uOpcode == OP_MOV
2456 && cbOp >= 5)
2457 {
2458 uint8_t aPatch[64];
2459 uint32_t off = 0;
2460
2461 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2462 AssertRC(rc);
2463
2464 pPatch->cbOp = cbOp;
2465 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2466
2467 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2468 {
2469 /*
2470 * TPR write:
2471 *
2472 * push ECX [51]
2473 * push EDX [52]
2474 * push EAX [50]
2475 * xor EDX,EDX [31 D2]
2476 * mov EAX,EAX [89 C0]
2477 * or
2478 * mov EAX,0000000CCh [B8 CC 00 00 00]
2479 * mov ECX,0C0000082h [B9 82 00 00 C0]
2480 * wrmsr [0F 30]
2481 * pop EAX [58]
2482 * pop EDX [5A]
2483 * pop ECX [59]
2484 * jmp return_address [E9 return_address]
2485 */
2486 bool fUsesEax = (Dis.Param2.fUse == DISUSE_REG_GEN32 && Dis.Param2.Base.idxGenReg == DISGREG_EAX);
2487
2488 aPatch[off++] = 0x51; /* push ecx */
2489 aPatch[off++] = 0x52; /* push edx */
2490 if (!fUsesEax)
2491 aPatch[off++] = 0x50; /* push eax */
2492 aPatch[off++] = 0x31; /* xor edx, edx */
2493 aPatch[off++] = 0xd2;
2494 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2495 {
2496 if (!fUsesEax)
2497 {
2498 aPatch[off++] = 0x89; /* mov eax, src_reg */
2499 aPatch[off++] = MAKE_MODRM(3, Dis.Param2.Base.idxGenReg, DISGREG_EAX);
2500 }
2501 }
2502 else
2503 {
2504 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2505 aPatch[off++] = 0xb8; /* mov eax, immediate */
2506 *(uint32_t *)&aPatch[off] = Dis.Param2.uValue;
2507 off += sizeof(uint32_t);
2508 }
2509 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2510 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2511 off += sizeof(uint32_t);
2512
2513 aPatch[off++] = 0x0f; /* wrmsr */
2514 aPatch[off++] = 0x30;
2515 if (!fUsesEax)
2516 aPatch[off++] = 0x58; /* pop eax */
2517 aPatch[off++] = 0x5a; /* pop edx */
2518 aPatch[off++] = 0x59; /* pop ecx */
2519 }
2520 else
2521 {
2522 /*
2523 * TPR read:
2524 *
2525 * push ECX [51]
2526 * push EDX [52]
2527 * push EAX [50]
2528 * mov ECX,0C0000082h [B9 82 00 00 C0]
2529 * rdmsr [0F 32]
2530 * mov EAX,EAX [89 C0]
2531 * pop EAX [58]
2532 * pop EDX [5A]
2533 * pop ECX [59]
2534 * jmp return_address [E9 return_address]
2535 */
2536 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2537
2538 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2539 aPatch[off++] = 0x51; /* push ecx */
2540 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2541 aPatch[off++] = 0x52; /* push edx */
2542 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2543 aPatch[off++] = 0x50; /* push eax */
2544
2545 aPatch[off++] = 0x31; /* xor edx, edx */
2546 aPatch[off++] = 0xd2;
2547
2548 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2549 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2550 off += sizeof(uint32_t);
2551
2552 aPatch[off++] = 0x0f; /* rdmsr */
2553 aPatch[off++] = 0x32;
2554
2555 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2556 {
2557 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2558 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, Dis.Param1.Base.idxGenReg);
2559 }
2560
2561 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2562 aPatch[off++] = 0x58; /* pop eax */
2563 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2564 aPatch[off++] = 0x5a; /* pop edx */
2565 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2566 aPatch[off++] = 0x59; /* pop ecx */
2567 }
2568 aPatch[off++] = 0xe9; /* jmp return_address */
2569 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2570 off += sizeof(RTRCUINTPTR);
2571
2572 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2573 {
2574 /* Write new code to the patch buffer. */
2575 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2576 AssertRC(rc);
2577
2578#ifdef LOG_ENABLED
2579 uint32_t cbCurInstr;
2580 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2581 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2582 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2583 {
2584 char szOutput[256];
2585 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2586 szOutput, sizeof(szOutput), &cbCurInstr);
2587 if (RT_SUCCESS(rc))
2588 Log(("Patch instr %s\n", szOutput));
2589 else
2590 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2591 }
2592#endif
2593
2594 pPatch->aNewOpcode[0] = 0xE9;
2595 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2596
2597 /* Overwrite the TPR instruction with a jump. */
2598 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2599 AssertRC(rc);
2600
2601 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2602
2603 pVM->hm.s.pFreeGuestPatchMem += off;
2604 pPatch->cbNewOp = 5;
2605
2606 pPatch->Core.Key = pCtx->eip;
2607 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2608 AssertRC(rc);
2609
2610 pVM->hm.s.cPatches++;
2611 pVM->hm.s.fTprPatchingActive = true;
2612 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2613 return VINF_SUCCESS;
2614 }
2615
2616 Log(("Ran out of space in our patch buffer!\n"));
2617 }
2618 else
2619 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2620
2621
2622 /*
2623 * Save invalid patch, so we will not try again.
2624 */
2625 pPatch = &pVM->hm.s.aPatches[idx];
2626 pPatch->Core.Key = pCtx->eip;
2627 pPatch->enmType = HMTPRINSTR_INVALID;
2628 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2629 AssertRC(rc);
2630 pVM->hm.s.cPatches++;
2631 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2632 return VINF_SUCCESS;
2633}
2634
2635
2636/**
2637 * Attempt to patch TPR mmio instructions.
2638 *
2639 * @returns VBox status code.
2640 * @param pVM The cross context VM structure.
2641 * @param pVCpu The cross context virtual CPU structure.
2642 */
2643VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2644{
2645 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2646 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2647 (void *)(uintptr_t)pVCpu->idCpu);
2648 AssertRC(rc);
2649 return rc;
2650}
2651
2652
2653/**
2654 * Checks if we need to reschedule due to VMM device heap changes.
2655 *
2656 * @returns true if a reschedule is required, otherwise false.
2657 * @param pVM The cross context VM structure.
2658 * @param pCtx VM execution context.
2659 */
2660VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2661{
2662 /*
2663 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2664 * when the unrestricted guest execution feature is missing (VT-x only).
2665 */
2666 if ( pVM->hm.s.vmx.fEnabled
2667 && !pVM->hm.s.vmx.fUnrestrictedGuestCfg
2668 && CPUMIsGuestInRealModeEx(pCtx)
2669 && !PDMVmmDevHeapIsEnabled(pVM))
2670 return true;
2671
2672 return false;
2673}
2674
2675
2676/**
2677 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2678 * event settings changes.
2679 *
2680 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2681 * function is just updating the VM globals.
2682 *
2683 * @param pVM The VM cross context VM structure.
2684 * @thread EMT(0)
2685 */
2686VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2687{
2688 /* Interrupts. */
2689 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2690 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2691
2692 /* CPU Exceptions. */
2693 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2694 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2695 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2696 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2697
2698 /* Common VM exits. */
2699 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2700 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2701 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2702 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2703
2704 /* Vendor specific VM exits. */
2705 if (HMR3IsVmxEnabled(pVM->pUVM))
2706 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2707 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2708 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2709 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2710 else
2711 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2712 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2713 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2714 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2715
2716 /* Done. */
2717 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2718}
2719
2720
2721/**
2722 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2723 *
2724 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2725 * per CPU settings.
2726 *
2727 * @param pVM The VM cross context VM structure.
2728 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2729 */
2730VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2731{
2732 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2733}
2734
2735
2736/**
2737 * Checks if we are currently using hardware acceleration.
2738 *
2739 * @returns true if hardware acceleration is being used, otherwise false.
2740 * @param pVCpu The cross context virtual CPU structure.
2741 */
2742VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2743{
2744 return pVCpu->hm.s.fActive;
2745}
2746
2747
2748/**
2749 * External interface for querying whether hardware acceleration is enabled.
2750 *
2751 * @returns true if VT-x or AMD-V is being used, otherwise false.
2752 * @param pUVM The user mode VM handle.
2753 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2754 */
2755VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2756{
2757 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2758 PVM pVM = pUVM->pVM;
2759 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2760 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2761}
2762
2763
2764/**
2765 * External interface for querying whether VT-x is being used.
2766 *
2767 * @returns true if VT-x is being used, otherwise false.
2768 * @param pUVM The user mode VM handle.
2769 * @sa HMR3IsSvmEnabled, HMIsEnabled
2770 */
2771VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2772{
2773 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2774 PVM pVM = pUVM->pVM;
2775 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2776 return pVM->hm.s.vmx.fEnabled
2777 && pVM->hm.s.vmx.fSupported
2778 && pVM->fHMEnabled;
2779}
2780
2781
2782/**
2783 * External interface for querying whether AMD-V is being used.
2784 *
2785 * @returns true if VT-x is being used, otherwise false.
2786 * @param pUVM The user mode VM handle.
2787 * @sa HMR3IsVmxEnabled, HMIsEnabled
2788 */
2789VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2790{
2791 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2792 PVM pVM = pUVM->pVM;
2793 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2794 return pVM->hm.s.svm.fEnabled
2795 && pVM->hm.s.svm.fSupported
2796 && pVM->fHMEnabled;
2797}
2798
2799
2800/**
2801 * Checks if we are currently using nested paging.
2802 *
2803 * @returns true if nested paging is being used, otherwise false.
2804 * @param pUVM The user mode VM handle.
2805 */
2806VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2807{
2808 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2809 PVM pVM = pUVM->pVM;
2810 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2811 return pVM->hm.s.fNestedPagingCfg;
2812}
2813
2814
2815/**
2816 * Checks if virtualized APIC registers are enabled.
2817 *
2818 * When enabled this feature allows the hardware to access most of the
2819 * APIC registers in the virtual-APIC page without causing VM-exits. See
2820 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2821 *
2822 * @returns true if virtualized APIC registers is enabled, otherwise
2823 * false.
2824 * @param pUVM The user mode VM handle.
2825 */
2826VMMR3DECL(bool) HMR3AreVirtApicRegsEnabled(PUVM pUVM)
2827{
2828 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2829 PVM pVM = pUVM->pVM;
2830 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2831 return pVM->hm.s.fVirtApicRegs;
2832}
2833
2834
2835/**
2836 * Checks if APIC posted-interrupt processing is enabled.
2837 *
2838 * This returns whether we can deliver interrupts to the guest without
2839 * leaving guest-context by updating APIC state from host-context.
2840 *
2841 * @returns true if APIC posted-interrupt processing is enabled,
2842 * otherwise false.
2843 * @param pUVM The user mode VM handle.
2844 */
2845VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2846{
2847 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2848 PVM pVM = pUVM->pVM;
2849 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2850 return pVM->hm.s.fPostedIntrs;
2851}
2852
2853
2854/**
2855 * Checks if we are currently using VPID in VT-x mode.
2856 *
2857 * @returns true if VPID is being used, otherwise false.
2858 * @param pUVM The user mode VM handle.
2859 */
2860VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2861{
2862 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2863 PVM pVM = pUVM->pVM;
2864 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2865 return pVM->hm.s.ForR3.vmx.fVpid;
2866}
2867
2868
2869/**
2870 * Checks if we are currently using VT-x unrestricted execution,
2871 * aka UX.
2872 *
2873 * @returns true if UX is being used, otherwise false.
2874 * @param pUVM The user mode VM handle.
2875 */
2876VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2877{
2878 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2879 PVM pVM = pUVM->pVM;
2880 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2881 return pVM->hm.s.vmx.fUnrestrictedGuestCfg
2882 || pVM->hm.s.svm.fSupported;
2883}
2884
2885
2886/**
2887 * Checks if the VMX-preemption timer is being used.
2888 *
2889 * @returns true if the VMX-preemption timer is being used, otherwise false.
2890 * @param pVM The cross context VM structure.
2891 */
2892VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2893{
2894 return HMIsEnabled(pVM)
2895 && pVM->hm.s.vmx.fEnabled
2896 && pVM->hm.s.vmx.fUsePreemptTimerCfg;
2897}
2898
2899
2900#ifdef TODO_9217_VMCSINFO
2901/**
2902 * Helper for HMR3CheckError to log VMCS controls to the release log.
2903 *
2904 * @param idCpu The Virtual CPU ID.
2905 * @param pVmcsInfo The VMCS info. object.
2906 */
2907static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2908{
2909 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2910 {
2911 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2912 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2913 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2914 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2915 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2916 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2917 }
2918 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2919 {
2920 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2921 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2922 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2923 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2924 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2925 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2926 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2927 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2928 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2929 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2930 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TERTIARY_CTLS );
2931 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2932 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2933 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2934 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2935 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2936 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2937 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2938 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2939 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2940 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2941 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2942 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2943 }
2944 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2945 {
2946 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2947 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2948 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2949 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2960 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2961 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2962 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2963 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2964 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2965 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_XCPT_VE );
2966 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2967 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2968 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2969 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPP_EPT );
2970 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2971 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2972 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2973 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2974 }
2975 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2976 {
2977 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2978 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2979 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2980 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2981 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2982 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2983 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2984 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2985 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2986 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2987 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2988 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_CET_STATE );
2989 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PKRS_MSR );
2990 }
2991 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2992 {
2993 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2994 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2995 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2996 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
2997 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
2998 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
2999 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
3000 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
3001 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
3002 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
3003 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
3004 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
3005 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
3006 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_CET_STATE );
3007 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PKRS_MSR );
3008 }
3009}
3010#endif
3011
3012
3013/**
3014 * Check fatal VT-x/AMD-V error and produce some meaningful
3015 * log release message.
3016 *
3017 * @param pVM The cross context VM structure.
3018 * @param iStatusCode VBox status code.
3019 */
3020VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3021{
3022 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3023 {
3024 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3025 * might be getting inaccurate values for non-guru'ing EMTs. */
3026 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3027#ifdef TODO_9217_VMCSINFO
3028 PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu);
3029#endif
3030 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3031 switch (iStatusCode)
3032 {
3033 case VERR_VMX_INVALID_VMCS_PTR:
3034 {
3035 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3036 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3037#ifdef TODO_9217_VMCSINFO
3038 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
3039 pVmcsInfo->HCPhysVmcs));
3040#endif
3041 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
3042 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3043 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3044 break;
3045 }
3046
3047 case VERR_VMX_UNABLE_TO_START_VM:
3048 {
3049 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3050 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3051 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3052 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3053
3054 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3055 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3056 {
3057 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3058 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3059 }
3060 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3061 {
3062#ifdef TODO_9217_VMCSINFO
3063 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3064 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3065 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3066 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3067 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3068 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3069 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3070 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3071#endif
3072 }
3073 /** @todo Log VM-entry event injection control fields
3074 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3075 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3076 break;
3077 }
3078
3079 case VERR_VMX_INVALID_GUEST_STATE:
3080 {
3081 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3082 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3083 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3084#ifdef TODO_9217_VMCSINFO
3085 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3086#endif
3087 break;
3088 }
3089
3090 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3091 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3092 case VERR_VMX_INVALID_VMXON_PTR:
3093 case VERR_VMX_UNEXPECTED_EXIT:
3094 case VERR_VMX_INVALID_VMCS_FIELD:
3095 case VERR_SVM_UNKNOWN_EXIT:
3096 case VERR_SVM_UNEXPECTED_EXIT:
3097 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3098 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3099 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3100 break;
3101 }
3102 }
3103
3104 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3105 {
3106 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed1));
3107 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed0));
3108 }
3109 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3110 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError));
3111}
3112
3113
3114/**
3115 * Execute state save operation.
3116 *
3117 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3118 * is because we always save the VM state from ring-3 and thus most HM state
3119 * will be re-synced dynamically at runtime and don't need to be part of the VM
3120 * saved state.
3121 *
3122 * @returns VBox status code.
3123 * @param pVM The cross context VM structure.
3124 * @param pSSM SSM operation handle.
3125 */
3126static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3127{
3128 Log(("hmR3Save:\n"));
3129
3130 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3131 {
3132 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3133 Assert(!pVCpu->hm.s.Event.fPending);
3134 if (pVM->cpum.ro.GuestFeatures.fSvm)
3135 {
3136 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3137 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3138 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3139 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3140 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3141 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3142 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3143 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3144 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3145 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3146 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3147 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3148 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3149 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3150 }
3151 }
3152
3153 /* Save the guest patch data. */
3154 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3155 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3156 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3157
3158 /* Store all the guest patch records too. */
3159 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3160 if (RT_FAILURE(rc))
3161 return rc;
3162
3163 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3164 {
3165 AssertCompileSize(HMTPRINSTR, 4);
3166 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3167 SSMR3PutU32(pSSM, pPatch->Core.Key);
3168 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3169 SSMR3PutU32(pSSM, pPatch->cbOp);
3170 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3171 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3172 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3173 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3174 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3175 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3176 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3177 if (RT_FAILURE(rc))
3178 return rc;
3179 }
3180
3181 return VINF_SUCCESS;
3182}
3183
3184
3185/**
3186 * Execute state load operation.
3187 *
3188 * @returns VBox status code.
3189 * @param pVM The cross context VM structure.
3190 * @param pSSM SSM operation handle.
3191 * @param uVersion Data layout version.
3192 * @param uPass The data pass.
3193 */
3194static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3195{
3196 int rc;
3197
3198 LogFlowFunc(("uVersion=%u\n", uVersion));
3199 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3200
3201 /*
3202 * Validate version.
3203 */
3204 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3205 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3206 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3207 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3208 {
3209 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3210 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3211 }
3212
3213 /*
3214 * Load per-VCPU state.
3215 */
3216 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3217 {
3218 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3219 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3220 {
3221 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3222 if (pVM->cpum.ro.GuestFeatures.fSvm)
3223 {
3224 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3225 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3226 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3227 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3228 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3229 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3230 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3231 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3232 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3233 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3234 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3235 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3236 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3237 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3238 AssertRCReturn(rc, rc);
3239 }
3240 }
3241 else
3242 {
3243 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3244 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3245 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3246 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3247
3248 /* VMX fWasInRealMode related data. */
3249 uint32_t uDummy;
3250 SSMR3GetU32(pSSM, &uDummy);
3251 SSMR3GetU32(pSSM, &uDummy);
3252 rc = SSMR3GetU32(pSSM, &uDummy);
3253 AssertRCReturn(rc, rc);
3254 }
3255 }
3256
3257 /*
3258 * Load TPR patching data.
3259 */
3260 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3261 {
3262 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3263 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3264 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3265
3266 /* Fetch all TPR patch records. */
3267 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3268 AssertRCReturn(rc, rc);
3269 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3270 {
3271 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3272 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3273 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3274 SSMR3GetU32(pSSM, &pPatch->cbOp);
3275 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3276 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3277 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3278
3279 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3280 pVM->hm.s.fTprPatchingActive = true;
3281 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTprPatchingActive == false);
3282
3283 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3284 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3285 SSMR3GetU32(pSSM, &pPatch->cFaults);
3286 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3287 AssertRCReturn(rc, rc);
3288
3289 LogFlow(("hmR3Load: patch %d\n", i));
3290 LogFlow(("Key = %x\n", pPatch->Core.Key));
3291 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3292 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3293 LogFlow(("type = %d\n", pPatch->enmType));
3294 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3295 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3296 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3297 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3298
3299 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3300 AssertRCReturn(rc, rc);
3301 }
3302 }
3303
3304 return VINF_SUCCESS;
3305}
3306
3307
3308/**
3309 * Displays HM info.
3310 *
3311 * @param pVM The cross context VM structure.
3312 * @param pHlp The info helper functions.
3313 * @param pszArgs Arguments, ignored.
3314 */
3315static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3316{
3317 NOREF(pszArgs);
3318 PVMCPU pVCpu = VMMGetCpu(pVM);
3319 if (!pVCpu)
3320 pVCpu = pVM->apCpusR3[0];
3321
3322 if (HMIsEnabled(pVM))
3323 {
3324 if (pVM->hm.s.vmx.fSupported)
3325 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3326 else
3327 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3328 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3329 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3330 if (pVM->hm.s.vmx.fSupported)
3331 {
3332 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3333 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
3334 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3335
3336 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3337 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3338 if (fRealOnV86Active)
3339 {
3340 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfoShared->RealMode.Eflags.u32);
3341 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfoShared->RealMode.AttrCS.u);
3342 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfoShared->RealMode.AttrSS.u);
3343 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfoShared->RealMode.AttrDS.u);
3344 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfoShared->RealMode.AttrES.u);
3345 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfoShared->RealMode.AttrFS.u);
3346 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfoShared->RealMode.AttrGS.u);
3347 }
3348 }
3349 }
3350 else
3351 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3352}
3353
3354
3355/**
3356 * Displays the HM Last-Branch-Record info. for the guest.
3357 *
3358 * @param pVM The cross context VM structure.
3359 * @param pHlp The info helper functions.
3360 * @param pszArgs Arguments, ignored.
3361 */
3362static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3363{
3364 NOREF(pszArgs);
3365 PVMCPU pVCpu = VMMGetCpu(pVM);
3366 if (!pVCpu)
3367 pVCpu = pVM->apCpusR3[0];
3368
3369 if (!HMIsEnabled(pVM))
3370 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3371 else if (HMIsVmxActive(pVM))
3372 {
3373 if (pVM->hm.s.vmx.fLbrCfg)
3374 {
3375 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3376 uint32_t const cLbrStack = pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast - pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst + 1;
3377
3378 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3379 * 0xf should cover everything we support thus far. Fix if necessary
3380 * later. */
3381 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
3382 if (idxTopOfStack > cLbrStack)
3383 {
3384 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3385 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
3386 return;
3387 }
3388
3389 /*
3390 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3391 */
3392 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3393 uint32_t idxCurrent = idxTopOfStack;
3394 Assert(idxTopOfStack < cLbrStack);
3395 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
3396 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
3397 for (;;)
3398 {
3399 if (pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst)
3400 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3401 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent], pVmcsInfoShared->au64LbrToIpMsr[idxCurrent]);
3402 else
3403 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
3404
3405 idxCurrent = (idxCurrent - 1) % cLbrStack;
3406 if (idxCurrent == idxTopOfStack)
3407 break;
3408 }
3409 }
3410 else
3411 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3412 }
3413 else
3414 {
3415 Assert(HMIsSvmActive(pVM));
3416 /** @todo SVM: LBRs (get them from VMCB if possible). */
3417 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented.\n");
3418 }
3419}
3420
3421
3422/**
3423 * Displays the HM pending event.
3424 *
3425 * @param pVM The cross context VM structure.
3426 * @param pHlp The info helper functions.
3427 * @param pszArgs Arguments, ignored.
3428 */
3429static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3430{
3431 NOREF(pszArgs);
3432 PVMCPU pVCpu = VMMGetCpu(pVM);
3433 if (!pVCpu)
3434 pVCpu = pVM->apCpusR3[0];
3435
3436 if (HMIsEnabled(pVM))
3437 {
3438 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3439 if (pVCpu->hm.s.Event.fPending)
3440 {
3441 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3442 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3443 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3444 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3445 }
3446 }
3447 else
3448 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3449}
3450
3451
3452/**
3453 * Displays the SVM nested-guest VMCB cache.
3454 *
3455 * @param pVM The cross context VM structure.
3456 * @param pHlp The info helper functions.
3457 * @param pszArgs Arguments, ignored.
3458 */
3459static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3460{
3461 NOREF(pszArgs);
3462 PVMCPU pVCpu = VMMGetCpu(pVM);
3463 if (!pVCpu)
3464 pVCpu = pVM->apCpusR3[0];
3465
3466 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3467 if ( fSvmEnabled
3468 && pVM->cpum.ro.GuestFeatures.fSvm)
3469 {
3470 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3471 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3472 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3473 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3474 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3475 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3476 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3477 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3478 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3479 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3480 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3481 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3482 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3483 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3484 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3485 }
3486 else
3487 {
3488 if (!fSvmEnabled)
3489 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3490 else
3491 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3492 }
3493}
3494
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette