VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 99238

Last change on this file since 99238 was 99220, checked in by vboxsync, 22 months ago

Disassember,*: Start separating the disassembler into a architecture specific and common part, bugref:10394

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 160.0 KB
Line 
1/* $Id: HM.cpp 99220 2023-03-30 12:40:46Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_hm HM - Hardware Assisted Virtualization Manager
29 *
30 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
31 * extensions.
32 *
33 * {summary of what HM does}
34 *
35 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
36 * however that was cumbersome to write and parse for such a central component,
37 * so it was shortened to HM when refactoring the code in the 4.3 development
38 * cycle.
39 *
40 * {add sections with more details}
41 *
42 * @sa @ref grp_hm
43 */
44
45
46/*********************************************************************************************************************************
47* Header Files *
48*********************************************************************************************************************************/
49#define LOG_GROUP LOG_GROUP_HM
50#define VMCPU_INCL_CPUM_GST_CTX
51#include <VBox/vmm/cpum.h>
52#include <VBox/vmm/stam.h>
53#include <VBox/vmm/em.h>
54#include <VBox/vmm/pdmapi.h>
55#include <VBox/vmm/pgm.h>
56#include <VBox/vmm/ssm.h>
57#include <VBox/vmm/gim.h>
58#include <VBox/vmm/gcm.h>
59#include <VBox/vmm/trpm.h>
60#include <VBox/vmm/dbgf.h>
61#include <VBox/vmm/iom.h>
62#include <VBox/vmm/iem.h>
63#include <VBox/vmm/selm.h>
64#include <VBox/vmm/nem.h>
65#include <VBox/vmm/hm_vmx.h>
66#include <VBox/vmm/hm_svm.h>
67#include "HMInternal.h"
68#include <VBox/vmm/vmcc.h>
69#include <VBox/err.h>
70#include <VBox/param.h>
71
72#include <iprt/assert.h>
73#include <VBox/log.h>
74#include <iprt/asm.h>
75#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
76# include <iprt/asm-amd64-x86.h>
77#endif
78#include <iprt/env.h>
79#include <iprt/thread.h>
80
81
82/*********************************************************************************************************************************
83* Defined Constants And Macros *
84*********************************************************************************************************************************/
85/** @def HMVMX_REPORT_FEAT
86 * Reports VT-x feature to the release log.
87 *
88 * @param a_uAllowed1 Mask of allowed-1 feature bits.
89 * @param a_uAllowed0 Mask of allowed-0 feature bits.
90 * @param a_StrDesc The description string to report.
91 * @param a_Featflag Mask of the feature to report.
92 */
93#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
94 do { \
95 if ((a_uAllowed1) & (a_Featflag)) \
96 { \
97 if ((a_uAllowed0) & (a_Featflag)) \
98 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
99 else \
100 LogRel(("HM: " a_StrDesc "\n")); \
101 } \
102 else \
103 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
104 } while (0)
105
106/** @def HMVMX_REPORT_ALLOWED_FEAT
107 * Reports an allowed VT-x feature to the release log.
108 *
109 * @param a_uAllowed1 Mask of allowed-1 feature bits.
110 * @param a_StrDesc The description string to report.
111 * @param a_FeatFlag Mask of the feature to report.
112 */
113#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
114 do { \
115 if ((a_uAllowed1) & (a_FeatFlag)) \
116 LogRel(("HM: " a_StrDesc "\n")); \
117 else \
118 LogRel(("HM: " a_StrDesc " not supported\n")); \
119 } while (0)
120
121/** @def HMVMX_REPORT_MSR_CAP
122 * Reports MSR feature capability.
123 *
124 * @param a_MsrCaps Mask of MSR feature bits.
125 * @param a_StrDesc The description string to report.
126 * @param a_fCap Mask of the feature to report.
127 */
128#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
129 do { \
130 if ((a_MsrCaps) & (a_fCap)) \
131 LogRel(("HM: " a_StrDesc "\n")); \
132 } while (0)
133
134/** @def HMVMX_LOGREL_FEAT
135 * Dumps a feature flag from a bitmap of features to the release log.
136 *
137 * @param a_fVal The value of all the features.
138 * @param a_fMask The specific bitmask of the feature.
139 */
140#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
141 do { \
142 if ((a_fVal) & (a_fMask)) \
143 LogRel(("HM: %s\n", #a_fMask)); \
144 } while (0)
145
146
147/*********************************************************************************************************************************
148* Internal Functions *
149*********************************************************************************************************************************/
150static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
151static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
152static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
153static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
154static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
155static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
156static int hmR3InitFinalizeR3(PVM pVM);
157static int hmR3InitFinalizeR0(PVM pVM);
158static int hmR3InitFinalizeR0Intel(PVM pVM);
159static int hmR3InitFinalizeR0Amd(PVM pVM);
160static int hmR3TermCPU(PVM pVM);
161
162
163#ifdef VBOX_WITH_STATISTICS
164/**
165 * Returns the name of the hardware exception.
166 *
167 * @returns The name of the hardware exception.
168 * @param uVector The exception vector.
169 */
170static const char *hmR3GetXcptName(uint8_t uVector)
171{
172 switch (uVector)
173 {
174 case X86_XCPT_DE: return "#DE";
175 case X86_XCPT_DB: return "#DB";
176 case X86_XCPT_NMI: return "#NMI";
177 case X86_XCPT_BP: return "#BP";
178 case X86_XCPT_OF: return "#OF";
179 case X86_XCPT_BR: return "#BR";
180 case X86_XCPT_UD: return "#UD";
181 case X86_XCPT_NM: return "#NM";
182 case X86_XCPT_DF: return "#DF";
183 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
184 case X86_XCPT_TS: return "#TS";
185 case X86_XCPT_NP: return "#NP";
186 case X86_XCPT_SS: return "#SS";
187 case X86_XCPT_GP: return "#GP";
188 case X86_XCPT_PF: return "#PF";
189 case X86_XCPT_MF: return "#MF";
190 case X86_XCPT_AC: return "#AC";
191 case X86_XCPT_MC: return "#MC";
192 case X86_XCPT_XF: return "#XF";
193 case X86_XCPT_VE: return "#VE";
194 case X86_XCPT_CP: return "#CP";
195 case X86_XCPT_VC: return "#VC";
196 case X86_XCPT_SX: return "#SX";
197 }
198 return "Reserved";
199}
200#endif /* VBOX_WITH_STATISTICS */
201
202
203/**
204 * Initializes the HM.
205 *
206 * This is the very first component to really do init after CFGM so that we can
207 * establish the predominant execution engine for the VM prior to initializing
208 * other modules. It takes care of NEM initialization if needed (HM disabled or
209 * not available in HW).
210 *
211 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
212 * hypervisor API via NEM, and then back on raw-mode if that isn't available
213 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
214 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
215 * X, OS/2 and others).
216 *
217 * Note that a lot of the set up work is done in ring-0 and thus postponed till
218 * the ring-3 and ring-0 callback to HMR3InitCompleted.
219 *
220 * @returns VBox status code.
221 * @param pVM The cross context VM structure.
222 *
223 * @remarks Be careful with what we call here, since most of the VMM components
224 * are uninitialized.
225 */
226VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
227{
228 LogFlowFunc(("\n"));
229
230 /*
231 * Assert alignment and sizes.
232 */
233 AssertCompileMemberAlignment(VM, hm.s, 32);
234 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
235
236 /*
237 * Register the saved state data unit.
238 */
239 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
240 NULL, NULL, NULL,
241 NULL, hmR3Save, NULL,
242 NULL, hmR3Load, NULL);
243 if (RT_FAILURE(rc))
244 return rc;
245
246 /*
247 * Read configuration.
248 */
249 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
250
251 /*
252 * Validate the HM settings.
253 */
254 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
255 "HMForced" /* implied 'true' these days */
256 "|UseNEMInstead"
257 "|FallbackToNEM"
258 "|FallbackToIEM"
259 "|EnableNestedPaging"
260 "|EnableUX"
261 "|EnableLargePages"
262 "|EnableVPID"
263 "|IBPBOnVMExit"
264 "|IBPBOnVMEntry"
265 "|SpecCtrlByHost"
266 "|L1DFlushOnSched"
267 "|L1DFlushOnVMEntry"
268 "|MDSClearOnSched"
269 "|MDSClearOnVMEntry"
270 "|TPRPatchingEnabled"
271 "|64bitEnabled"
272 "|Exclusive"
273 "|MaxResumeLoops"
274 "|VmxPleGap"
275 "|VmxPleWindow"
276 "|VmxLbr"
277 "|UseVmxPreemptTimer"
278 "|SvmPauseFilter"
279 "|SvmPauseFilterThreshold"
280 "|SvmVirtVmsaveVmload"
281 "|SvmVGif"
282 "|LovelyMesaDrvWorkaround"
283 "|MissingOS2TlbFlushWorkaround"
284 "|AlwaysInterceptVmxMovDRx"
285 , "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
286 if (RT_FAILURE(rc))
287 return rc;
288
289 /** @cfgm{/HM/HMForced, bool, false}
290 * Forces hardware virtualization, no falling back on raw-mode. HM must be
291 * enabled, i.e. /HMEnabled must be true. */
292 bool const fHMForced = true;
293#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
294 AssertRelease(pVM->fHMEnabled);
295#else
296 AssertRelease(!pVM->fHMEnabled);
297#endif
298
299 /** @cfgm{/HM/UseNEMInstead, bool, true}
300 * Don't use HM, use NEM instead. */
301 bool fUseNEMInstead = false;
302 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
303 AssertRCReturn(rc, rc);
304 if (fUseNEMInstead && pVM->fHMEnabled)
305 {
306 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
307 pVM->fHMEnabled = false;
308 }
309
310 /** @cfgm{/HM/FallbackToNEM, bool, true}
311 * Enables fallback on NEM. */
312 bool fFallbackToNEM = true;
313 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
314 AssertRCReturn(rc, rc);
315
316 /** @cfgm{/HM/FallbackToIEM, bool, false on AMD64 else true }
317 * Enables fallback on NEM. */
318#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
319 bool fFallbackToIEM = false;
320#else
321 bool fFallbackToIEM = true;
322#endif
323 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToIEM", &fFallbackToIEM, fFallbackToIEM);
324 AssertRCReturn(rc, rc);
325
326 /** @cfgm{/HM/EnableNestedPaging, bool, false}
327 * Enables nested paging (aka extended page tables). */
328 bool fAllowNestedPaging = false;
329 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &fAllowNestedPaging, false);
330 AssertRCReturn(rc, rc);
331
332 /** @cfgm{/HM/EnableUX, bool, true}
333 * Enables the VT-x unrestricted execution feature. */
334 bool fAllowUnrestricted = true;
335 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &fAllowUnrestricted, true);
336 AssertRCReturn(rc, rc);
337
338 /** @cfgm{/HM/EnableLargePages, bool, false}
339 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
340 * page table walking and maybe better TLB hit rate in some cases. */
341 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
342 AssertRCReturn(rc, rc);
343
344 /** @cfgm{/HM/EnableVPID, bool, false}
345 * Enables the VT-x VPID feature. */
346 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
347 AssertRCReturn(rc, rc);
348
349 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
350 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
351 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
352 AssertRCReturn(rc, rc);
353
354 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
355 * Enables AMD64 cpu features.
356 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
357 * already have the support. */
358#ifdef VBOX_WITH_64_BITS_GUESTS
359 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuestsCfg, HC_ARCH_BITS == 64);
360 AssertLogRelRCReturn(rc, rc);
361#else
362 pVM->hm.s.fAllow64BitGuestsCfg = false;
363#endif
364
365 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
366 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
367 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
368 * latest PAUSE instruction to be start of a new PAUSE loop.
369 */
370 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
371 AssertRCReturn(rc, rc);
372
373 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
374 * The pause-filter exiting window in TSC ticks. When the number of ticks
375 * between the current PAUSE instruction and first PAUSE of a loop exceeds
376 * VmxPleWindow, a VM-exit is triggered.
377 *
378 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
379 */
380 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
381 AssertRCReturn(rc, rc);
382
383 /** @cfgm{/HM/VmxLbr, bool, false}
384 * Whether to enable LBR for the guest. This is disabled by default as it's only
385 * useful while debugging and enabling it causes a noticeable performance hit. */
386 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbrCfg, false);
387 AssertRCReturn(rc, rc);
388
389 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
390 * A counter that is decrement each time a PAUSE instruction is executed by the
391 * guest. When the counter is 0, a \#VMEXIT is triggered.
392 *
393 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
394 */
395 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
396 AssertRCReturn(rc, rc);
397
398 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
399 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
400 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
401 * PauseFilter count is reset to its initial value. However, if PAUSE is
402 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
403 * be triggered.
404 *
405 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
406 * activated.
407 */
408 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
409 AssertRCReturn(rc, rc);
410
411 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
412 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
413 * available. */
414 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
415 AssertRCReturn(rc, rc);
416
417 /** @cfgm{/HM/SvmVGif, bool, true}
418 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
419 * if it's available. */
420 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
421 AssertRCReturn(rc, rc);
422
423 /** @cfgm{/HM/SvmLbrVirt, bool, false}
424 * Whether to make use of the LBR virtualization feature of the CPU if it's
425 * available. This is disabled by default as it's only useful while debugging
426 * and enabling it causes a small hit to performance. */
427 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
428 AssertRCReturn(rc, rc);
429
430 /** @cfgm{/HM/Exclusive, bool}
431 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
432 * global init for each host CPU. If false, we do local init each time we wish
433 * to execute guest code.
434 *
435 * On Windows, default is false due to the higher risk of conflicts with other
436 * hypervisors.
437 *
438 * On Mac OS X, this setting is ignored since the code does not handle local
439 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
440 */
441#if defined(RT_OS_DARWIN)
442 pVM->hm.s.fGlobalInit = true;
443#else
444 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
445# if defined(RT_OS_WINDOWS)
446 false
447# else
448 true
449# endif
450 );
451 AssertLogRelRCReturn(rc, rc);
452#endif
453
454 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
455 * The number of times to resume guest execution before we forcibly return to
456 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
457 * determines the default value. */
458 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoopsCfg, 0 /* set by R0 later */);
459 AssertLogRelRCReturn(rc, rc);
460
461 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
462 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
463 * available. */
464 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimerCfg, true);
465 AssertLogRelRCReturn(rc, rc);
466
467 /** @cfgm{/HM/IBPBOnVMExit, bool}
468 * Costly paranoia setting. */
469 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
470 AssertLogRelRCReturn(rc, rc);
471
472 /** @cfgm{/HM/IBPBOnVMEntry, bool}
473 * Costly paranoia setting. */
474 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
475 AssertLogRelRCReturn(rc, rc);
476
477 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
478 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
479 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
480 AssertLogRelRCReturn(rc, rc);
481
482 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
483 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
484 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
485 AssertLogRelRCReturn(rc, rc);
486
487 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
488 if (pVM->hm.s.fL1dFlushOnVmEntry)
489 pVM->hm.s.fL1dFlushOnSched = false;
490
491 /** @cfgm{/HM/SpecCtrlByHost, bool}
492 * Another expensive paranoia setting. */
493 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
494 AssertLogRelRCReturn(rc, rc);
495
496 /** @cfgm{/HM/MDSClearOnSched, bool, true}
497 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
498 * ignored on CPUs that aren't affected. */
499 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
500 AssertLogRelRCReturn(rc, rc);
501
502 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
503 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
504 * ignored on CPUs that aren't affected. */
505 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
506 AssertLogRelRCReturn(rc, rc);
507
508 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
509 if (pVM->hm.s.fMdsClearOnVmEntry)
510 pVM->hm.s.fMdsClearOnSched = false;
511
512 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
513 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
514 * the hypervisor it is running under. */
515 bool fMesaWorkaround;
516 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &fMesaWorkaround, false);
517 AssertLogRelRCReturn(rc, rc);
518 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
519 {
520 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
521 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = fMesaWorkaround;
522 }
523
524 /** @cfgm{/HM/MissingOS2TlbFlushWorkaround,bool}
525 * Workaround OS/2 not flushing the TLB after page directory and page table
526 * modifications when returning to protected mode from a real mode call
527 * (TESTCFG.SYS typically crashes). See ticketref:20625 for details. */
528 rc = CFGMR3QueryBoolDef(pCfgHm, "MissingOS2TlbFlushWorkaround", &pVM->hm.s.fMissingOS2TlbFlushWorkaround, false);
529 AssertLogRelRCReturn(rc, rc);
530
531 /** @cfgm{/HM/AlwaysInterceptVmxMovDRx,int8_t,0}
532 * Whether to always intercept MOV DRx when using VMX.
533 * The value is a tristate: 1 for always intercepting, -1 for lazy intercept,
534 * and 0 for default. The default means that it's always intercepted when the
535 * host DR6 contains bits not known to the guest.
536 *
537 * With the introduction of transactional synchronization extensions new
538 * instructions, aka TSX-NI or RTM, bit 16 in DR6 is cleared to indicate that a
539 * \#DB was related to a transaction. The bit is also cleared when writing zero
540 * to it, so guest lazily resetting DR6 by writing 0 to it, ends up with an
541 * unexpected value. Similiarly, bit 11 in DR7 is used to enabled RTM
542 * debugging support and therefore writable by the guest.
543 *
544 * Out of caution/paranoia, we will by default intercept DRx moves when setting
545 * DR6 to zero (on the host) doesn't result in 0xffff0ff0 (X86_DR6_RA1_MASK).
546 * Note that it seems DR6.RTM remains writable even after the microcode updates
547 * disabling TSX. */
548 rc = CFGMR3QueryS8Def(pCfgHm, "AlwaysInterceptVmxMovDRx", &pVM->hm.s.vmx.fAlwaysInterceptMovDRxCfg, 0);
549 AssertLogRelRCReturn(rc, rc);
550
551 /*
552 * Check if VT-x or AMD-v support according to the users wishes.
553 */
554 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
555 * VERR_SVM_IN_USE. */
556 if (pVM->fHMEnabled)
557 {
558 uint32_t fCaps;
559 rc = SUPR3QueryVTCaps(&fCaps);
560 if (RT_SUCCESS(rc))
561 {
562 if (fCaps & SUPVTCAPS_AMD_V)
563 {
564 pVM->hm.s.svm.fSupported = true;
565 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
566 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
567 }
568 else if (fCaps & SUPVTCAPS_VT_X)
569 {
570 const char *pszWhy;
571 rc = SUPR3QueryVTxSupported(&pszWhy);
572 if (RT_SUCCESS(rc))
573 {
574 pVM->hm.s.vmx.fSupported = true;
575 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
576 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
577 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
578 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
579 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
580 }
581 else
582 {
583 /*
584 * Before failing, try fallback to NEM if we're allowed to do that.
585 */
586 pVM->fHMEnabled = false;
587 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
588 if (fFallbackToNEM)
589 {
590 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
591 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
592
593 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
594 if ( RT_SUCCESS(rc2)
595 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
596 rc = VINF_SUCCESS;
597 }
598 if (RT_FAILURE(rc))
599 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
600 }
601 }
602 else
603 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
604 VERR_INTERNAL_ERROR_5);
605
606 /*
607 * Disable nested paging and unrestricted guest execution now if they're
608 * configured so that CPUM can make decisions based on our configuration.
609 */
610 if ( fAllowNestedPaging
611 && (fCaps & SUPVTCAPS_NESTED_PAGING))
612 {
613 pVM->hm.s.fNestedPagingCfg = true;
614 if (fCaps & SUPVTCAPS_VT_X)
615 {
616 if ( fAllowUnrestricted
617 && (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST))
618 pVM->hm.s.vmx.fUnrestrictedGuestCfg = true;
619 else
620 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
621 }
622 }
623 else
624 Assert(!pVM->hm.s.fNestedPagingCfg);
625 }
626 else
627 {
628 const char *pszMsg;
629 switch (rc)
630 {
631 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
632 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
633 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
634 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
635 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
636 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
637 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
638 case VERR_SUP_DRIVERLESS: pszMsg = "Driverless mode"; break;
639 default:
640 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
641 }
642
643 /*
644 * Before failing, try fallback to NEM if we're allowed to do that.
645 */
646 pVM->fHMEnabled = false;
647 if (fFallbackToNEM)
648 {
649 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
650 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
651 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
652 if ( RT_SUCCESS(rc2)
653 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
654 {
655 rc = VINF_SUCCESS;
656
657 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
658 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
659 }
660 }
661
662 /*
663 * Then try fall back on IEM if NEM isn't available and we're allowed to.
664 */
665 if (RT_FAILURE(rc))
666 {
667 if ( fFallbackToIEM
668 && (!fFallbackToNEM || rc == VERR_NEM_NOT_AVAILABLE || rc == VERR_SUP_DRIVERLESS))
669 {
670 LogRel(("HM: HMR3Init: Falling back on IEM: %s\n", !fFallbackToNEM ? pszMsg : "NEM not available"));
671 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
672#ifdef VBOX_WITH_PGM_NEM_MODE
673 PGMR3EnableNemMode(pVM);
674#endif
675 }
676 else
677 return VM_SET_ERROR(pVM, rc, pszMsg);
678 }
679 }
680 }
681 else
682 {
683 /*
684 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
685 */
686 rc = VERR_NEM_NOT_AVAILABLE;
687 if (fUseNEMInstead)
688 {
689 rc = NEMR3Init(pVM, false /*fFallback*/, true);
690 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
691 if (RT_SUCCESS(rc))
692 {
693 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
694 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
695 }
696 else if (!fFallbackToIEM || rc != VERR_NEM_NOT_AVAILABLE)
697 return rc;
698 }
699
700 if (fFallbackToIEM && rc == VERR_NEM_NOT_AVAILABLE)
701 {
702 LogRel(("HM: HMR3Init: Falling back on IEM%s\n", fUseNEMInstead ? ": NEM not available" : ""));
703 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
704#ifdef VBOX_WITH_PGM_NEM_MODE
705 PGMR3EnableNemMode(pVM);
706#endif
707 }
708
709 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
710 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
711 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
712 }
713
714 if (pVM->fHMEnabled)
715 {
716 /*
717 * Register info handlers now that HM is used for sure.
718 */
719 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
720 AssertRCReturn(rc, rc);
721
722 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
723 DBGFINFO_FLAGS_ALL_EMTS);
724 AssertRCReturn(rc, rc);
725
726 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
727 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
728 AssertRCReturn(rc, rc);
729
730 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
731 AssertRCReturn(rc, rc);
732 }
733
734 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
735 return VINF_SUCCESS;
736}
737
738
739/**
740 * Initializes HM components after ring-3 phase has been fully initialized.
741 *
742 * @returns VBox status code.
743 * @param pVM The cross context VM structure.
744 */
745static int hmR3InitFinalizeR3(PVM pVM)
746{
747 LogFlowFunc(("\n"));
748
749 if (!HMIsEnabled(pVM))
750 return VINF_SUCCESS;
751
752 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
753 {
754 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
755 pVCpu->hm.s.fActive = false;
756 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
757 pVCpu->hm.s.fGCMTrapXcptDE = GCMShouldTrapXcptDE(pVCpu); /* Is safe to call now since GCMR3Init() has completed. */
758 }
759
760#if defined(RT_ARCH_AMD64) ||defined(RT_ARCH_X86)
761 /*
762 * Check if L1D flush is needed/possible.
763 */
764 if ( !g_CpumHostFeatures.s.fFlushCmd
765 || g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
766 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
767 || g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d
768 || g_CpumHostFeatures.s.fArchRdclNo)
769 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
770
771 /*
772 * Check if MDS flush is needed/possible.
773 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
774 */
775 if ( !g_CpumHostFeatures.s.fMdsClear
776 || g_CpumHostFeatures.s.fArchMdsNo)
777 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
778 else if ( ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
779 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
780 || ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
781 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
782 {
783 if (!pVM->hm.s.fMdsClearOnSched)
784 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
785 pVM->hm.s.fMdsClearOnVmEntry = false;
786 }
787 else if ( g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
788 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
789 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
790#endif
791
792 /*
793 * Statistics.
794 */
795#ifdef VBOX_WITH_STATISTICS
796 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
797 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
798 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
799 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
800 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
801#endif
802
803#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
804 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
805#else
806 bool const fCpuSupportsVmx = false;
807#endif
808 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
809 {
810 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
811 PHMCPU pHmCpu = &pVCpu->hm.s;
812 int rc;
813
814# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
815 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
816 AssertRC(rc); \
817 } while (0)
818# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
819 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
820
821#ifdef VBOX_WITH_STATISTICS
822 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
823 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
824 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
825 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
826 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
827 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
828 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
829 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
830 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
831 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
832 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
833 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
834 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
835 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
836# ifdef HM_PROFILE_EXIT_DISPATCH
837 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
838 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
839# endif
840#endif
841# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
842
843 HM_REG_COUNTER(&pHmCpu->StatImportGuestStateFallback, "/HM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
844 HM_REG_COUNTER(&pHmCpu->StatReadToTransientFallback, "/HM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
845#ifdef VBOX_WITH_STATISTICS
846 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (excludes nested-guest and debug loops exits).");
847 HM_REG_COUNTER(&pHmCpu->StatDebugExitAll, "/HM/CPU%u/Exit/DebugAll", "Total debug-loop exits.");
848 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
849 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
850 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
851 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
852 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
853 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
854 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
855 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
856 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
857 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
858 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
859 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
860 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
861 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
862 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
863#endif
864 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
865 if (fCpuSupportsVmx)
866 HM_REG_COUNTER(&pHmCpu->StatExitGuestACSplitLock, "/HM/CPU%u/Exit/Trap/Gst/#AC-split-lock", "Guest triggered #AC due to split-lock being enabled on the host (interpreted).");
867#ifdef VBOX_WITH_STATISTICS
868 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
869 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
870 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
871 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
872 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
873 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
874 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
875 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
876 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
877 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
878 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
879 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
880 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
881 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
882 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
883 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
884 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
885 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
886 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
887 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
888 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
889 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
890 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
891 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
892 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
893 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
894 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
895 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
896#endif
897 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
898 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
899 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
900#ifdef VBOX_WITH_STATISTICS
901 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
902 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
903 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
904
905 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
906 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
907 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
908 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
909 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
910 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
911 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
912 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
913 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
914 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
915 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
916 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
917#endif
918 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
919#ifdef VBOX_WITH_STATISTICS
920 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
921
922 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
923 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
924 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
925 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
926 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
927 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
928
929 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
930 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
931 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
932 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
933 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
934 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
935 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
936 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
937 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
938 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
939 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
940 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
941 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
942 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
943 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
944
945 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
946 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
947 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
948
949 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
950 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
951 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
952
953 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
954 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
955 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
956 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
957
958 if (fCpuSupportsVmx)
959 {
960 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRip, "/HM/CPU%u/WriteHostRIP", "Number of VMX_VMCS_HOST_RIP instructions.");
961 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRsp, "/HM/CPU%u/WriteHostRSP", "Number of VMX_VMCS_HOST_RSP instructions.");
962 HM_REG_COUNTER(&pHmCpu->StatVmxVmLaunch, "/HM/CPU%u/VMLaunch", "Number of VM-entries using VMLAUNCH.");
963 HM_REG_COUNTER(&pHmCpu->StatVmxVmResume, "/HM/CPU%u/VMResume", "Number of VM-entries using VMRESUME.");
964 }
965
966 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
967 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
968 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
969
970 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
971 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
972 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
973
974 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
975 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
976 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
977 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
978#endif
979 if (fCpuSupportsVmx)
980 {
981 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/PreemptTimer", "VMX-preemption timer fired.");
982 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadline, "/HM/CPU%u/PreemptTimer/ReusingDeadline", "VMX-preemption timer arming logic using previously calculated deadline");
983 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadlineExpired, "/HM/CPU%u/PreemptTimer/ReusingDeadlineExpired", "VMX-preemption timer arming logic found previous deadline already expired (ignored)");
984 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadline, "/HM/CPU%u/PreemptTimer/RecalcingDeadline", "VMX-preemption timer arming logic recalculating the deadline (slightly expensive)");
985 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadlineExpired, "/HM/CPU%u/PreemptTimer/RecalcingDeadlineExpired", "VMX-preemption timer arming logic found recalculated deadline expired (ignored)");
986 }
987#ifdef VBOX_WITH_STATISTICS
988 /*
989 * Guest Exit reason stats.
990 */
991 if (fCpuSupportsVmx)
992 {
993 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
994 {
995 const char *pszExitName = HMGetVmxExitName(j);
996 if (pszExitName)
997 {
998 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
999 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
1000 AssertRCReturn(rc, rc);
1001 }
1002 }
1003 }
1004 else
1005 {
1006 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1007 {
1008 const char *pszExitName = HMGetSvmExitName(j);
1009 if (pszExitName)
1010 {
1011 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1012 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
1013 AssertRC(rc);
1014 }
1015 }
1016 }
1017 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
1018
1019#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
1020 /*
1021 * Nested-guest VM-exit reason stats.
1022 */
1023 if (fCpuSupportsVmx)
1024 {
1025 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1026 {
1027 const char *pszExitName = HMGetVmxExitName(j);
1028 if (pszExitName)
1029 {
1030 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1031 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
1032 AssertRC(rc);
1033 }
1034 }
1035 }
1036 else
1037 {
1038 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1039 {
1040 const char *pszExitName = HMGetSvmExitName(j);
1041 if (pszExitName)
1042 {
1043 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1044 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
1045 AssertRC(rc);
1046 }
1047 }
1048 }
1049 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
1050#endif
1051
1052 /*
1053 * Injected interrupts stats.
1054 */
1055 char szDesc[64];
1056 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedIrqs); j++)
1057 {
1058 RTStrPrintf(&szDesc[0], sizeof(szDesc), "Interrupt %u", j);
1059 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1060 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
1061 AssertRC(rc);
1062 }
1063
1064 /*
1065 * Injected exception stats.
1066 */
1067 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedXcpts); j++)
1068 {
1069 RTStrPrintf(&szDesc[0], sizeof(szDesc), "%s exception", hmR3GetXcptName(j));
1070 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1071 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
1072 AssertRC(rc);
1073 }
1074
1075#endif /* VBOX_WITH_STATISTICS */
1076#undef HM_REG_COUNTER
1077#undef HM_REG_PROFILE
1078#undef HM_REG_STAT
1079 }
1080
1081 return VINF_SUCCESS;
1082}
1083
1084
1085/**
1086 * Called when a init phase has completed.
1087 *
1088 * @returns VBox status code.
1089 * @param pVM The cross context VM structure.
1090 * @param enmWhat The phase that completed.
1091 */
1092VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1093{
1094 switch (enmWhat)
1095 {
1096 case VMINITCOMPLETED_RING3:
1097 return hmR3InitFinalizeR3(pVM);
1098 case VMINITCOMPLETED_RING0:
1099 return hmR3InitFinalizeR0(pVM);
1100 default:
1101 return VINF_SUCCESS;
1102 }
1103}
1104
1105
1106/**
1107 * Turns off normal raw mode features.
1108 *
1109 * @param pVM The cross context VM structure.
1110 */
1111static void hmR3DisableRawMode(PVM pVM)
1112{
1113/** @todo r=bird: HM shouldn't be doing this crap. */
1114 /* Reinit the paging mode to force the new shadow mode. */
1115 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1116 {
1117 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1118 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1119 }
1120}
1121
1122
1123/**
1124 * Initialize VT-x or AMD-V.
1125 *
1126 * @returns VBox status code.
1127 * @param pVM The cross context VM structure.
1128 */
1129static int hmR3InitFinalizeR0(PVM pVM)
1130{
1131 int rc;
1132
1133 /*
1134 * Since HM is in charge of large pages, if large pages isn't supported on Intel CPUs,
1135 * we must disable it here. Doing it here rather than in hmR3InitFinalizeR0Intel covers
1136 * the case of informing PGM even when NEM is the execution engine.
1137 */
1138 if ( pVM->hm.s.fLargePages
1139 && pVM->hm.s.vmx.fSupported
1140 && !(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M))
1141 {
1142 pVM->hm.s.fLargePages = false;
1143 PGMSetLargePageUsage(pVM, false);
1144 LogRel(("HM: Disabled large page support as the CPU doesn't allow EPT PDEs to map 2MB pages\n"));
1145 }
1146
1147 if (!HMIsEnabled(pVM))
1148 return VINF_SUCCESS;
1149
1150 /*
1151 * Hack to allow users to work around broken BIOSes that incorrectly set
1152 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1153 */
1154 if ( !pVM->hm.s.vmx.fSupported
1155 && !pVM->hm.s.svm.fSupported
1156 && pVM->hm.s.ForR3.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1157 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1158 {
1159 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1160 pVM->hm.s.svm.fSupported = true;
1161 pVM->hm.s.svm.fIgnoreInUseError = true;
1162 pVM->hm.s.ForR3.rcInit = VINF_SUCCESS;
1163 }
1164
1165 /*
1166 * Report ring-0 init errors.
1167 */
1168 if ( !pVM->hm.s.vmx.fSupported
1169 && !pVM->hm.s.svm.fSupported)
1170 {
1171 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.ForR3.rcInit));
1172 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.ForR3.vmx.u64HostFeatCtrl));
1173 switch (pVM->hm.s.ForR3.rcInit)
1174 {
1175 case VERR_VMX_IN_VMX_ROOT_MODE:
1176 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1177 case VERR_VMX_NO_VMX:
1178 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1179 case VERR_VMX_MSR_VMX_DISABLED:
1180 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1181 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1182 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1183 case VERR_VMX_MSR_LOCKING_FAILED:
1184 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1185 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1186 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1187 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1188 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1189
1190 case VERR_SVM_IN_USE:
1191 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1192 case VERR_SVM_NO_SVM:
1193 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1194 case VERR_SVM_DISABLED:
1195 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1196 }
1197 return VMSetError(pVM, pVM->hm.s.ForR3.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.ForR3.rcInit);
1198 }
1199
1200 /*
1201 * Enable VT-x or AMD-V on all host CPUs.
1202 */
1203 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1204 if (RT_FAILURE(rc))
1205 {
1206 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1207 HMR3CheckError(pVM, rc);
1208 return rc;
1209 }
1210
1211 /*
1212 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1213 * (Main should have taken care of this already)
1214 */
1215 if (!PDMHasIoApic(pVM))
1216 {
1217 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1218 pVM->hm.s.fTprPatchingAllowed = false;
1219 }
1220
1221 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1222 pVM->hm.s.ForR3.fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1223 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1224
1225 /*
1226 * Do the vendor specific initialization
1227 *
1228 * Note! We disable release log buffering here since we're doing relatively
1229 * lot of logging and doesn't want to hit the disk with each LogRel
1230 * statement.
1231 */
1232 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1233 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1234 if (pVM->hm.s.vmx.fSupported)
1235 rc = hmR3InitFinalizeR0Intel(pVM);
1236 else
1237 rc = hmR3InitFinalizeR0Amd(pVM);
1238 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1239 : "HM: VT-x/AMD-V init method: Local\n"));
1240 RTLogRelSetBuffering(fOldBuffered);
1241 pVM->hm.s.fInitialized = true;
1242
1243 return rc;
1244}
1245
1246
1247/**
1248 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1249 */
1250static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1251{
1252 NOREF(pVM);
1253 NOREF(pvAllocation);
1254 NOREF(GCPhysAllocation);
1255}
1256
1257
1258/**
1259 * Returns a description of the VMCS (and associated regions') memory type given the
1260 * IA32_VMX_BASIC MSR.
1261 *
1262 * @returns The descriptive memory type.
1263 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1264 */
1265static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1266{
1267 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1268 switch (uMemType)
1269 {
1270 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1271 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1272 }
1273 return "Unknown";
1274}
1275
1276
1277/**
1278 * Returns a single-line description of all the activity-states supported by the CPU
1279 * given the IA32_VMX_MISC MSR.
1280 *
1281 * @returns All supported activity states.
1282 * @param uMsrMisc IA32_VMX_MISC MSR value.
1283 */
1284static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1285{
1286 static const char * const s_apszActStates[] =
1287 {
1288 "",
1289 " ( HLT )",
1290 " ( SHUTDOWN )",
1291 " ( HLT SHUTDOWN )",
1292 " ( SIPI_WAIT )",
1293 " ( HLT SIPI_WAIT )",
1294 " ( SHUTDOWN SIPI_WAIT )",
1295 " ( HLT SHUTDOWN SIPI_WAIT )"
1296 };
1297 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1298 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1299 return s_apszActStates[idxActStates];
1300}
1301
1302
1303/**
1304 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1305 *
1306 * @param fFeatMsr The feature control MSR value.
1307 */
1308static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1309{
1310 uint64_t const val = fFeatMsr;
1311 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1312 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1313 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1314 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1315 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1316 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1317 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1318 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1319 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1320 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1321 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1322 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1323 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1324 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1325 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1326 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1327 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1328}
1329
1330
1331/**
1332 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1333 *
1334 * @param uBasicMsr The VMX basic MSR value.
1335 */
1336static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1337{
1338 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1339 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1340 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1341 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1342 "< 4 GB" : "None"));
1343 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1344 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1345 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1346 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1347 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1348}
1349
1350
1351/**
1352 * Reports MSR_IA32_PINBASED_CTLS to the log.
1353 *
1354 * @param pVmxMsr Pointer to the VMX MSR.
1355 */
1356static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1357{
1358 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1359 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1360 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1361 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1362 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1363 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1364 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1365 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1366}
1367
1368
1369/**
1370 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1371 *
1372 * @param pVmxMsr Pointer to the VMX MSR.
1373 */
1374static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1375{
1376 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1377 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1378 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1380 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1381 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1382 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1383 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1384 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1385 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1386 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1387 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1388 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TERTIARY_CTLS", VMX_PROC_CTLS_USE_TERTIARY_CTLS);
1389 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1390 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1391 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1392 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1393 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1394 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1395 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1396 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1397 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1398 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1399 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1400 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1401}
1402
1403
1404/**
1405 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1406 *
1407 * @param pVmxMsr Pointer to the VMX MSR.
1408 */
1409static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1410{
1411 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1412 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1413 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1414 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1415 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1416 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1417 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1418 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1419 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1420 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1421 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1422 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1423 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1424 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1425 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1426 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1427 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1428 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1429 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1430 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1431 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1432 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_XCPT_VE", VMX_PROC_CTLS2_EPT_XCPT_VE);
1433 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1434 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1435 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1436 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPP_EPT", VMX_PROC_CTLS2_SPP_EPT);
1437 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1438 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1439 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1440 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1441}
1442
1443
1444/**
1445 * Reports MSR_IA32_VMX_PROCBASED_CTLS3 MSR to the log.
1446 *
1447 * @param uProcCtls3 The tertiary processor-based VM-execution control MSR.
1448 */
1449static void hmR3VmxReportProcBasedCtls3Msr(uint64_t uProcCtls3)
1450{
1451 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS3 = %#RX64\n", uProcCtls3));
1452 LogRel(("HM: LOADIWKEY_EXIT = %RTbool\n", RT_BOOL(uProcCtls3 & VMX_PROC_CTLS3_LOADIWKEY_EXIT)));
1453}
1454
1455
1456/**
1457 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1458 *
1459 * @param pVmxMsr Pointer to the VMX MSR.
1460 */
1461static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1462{
1463 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1464 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1465 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1466 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1467 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1468 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1469 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1470 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1471 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1472 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1473 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1474 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1475 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1476 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_ENTRY_CTLS_LOAD_CET_STATE);
1477 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_ENTRY_CTLS_LOAD_PKRS_MSR);
1478}
1479
1480
1481/**
1482 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1483 *
1484 * @param pVmxMsr Pointer to the VMX MSR.
1485 */
1486static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1487{
1488 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1489 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1490 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1491 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1492 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1493 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1494 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1495 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1496 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1497 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1498 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1499 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1500 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1501 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1502 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1503 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_EXIT_CTLS_LOAD_CET_STATE);
1504 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_EXIT_CTLS_LOAD_PKRS_MSR);
1505}
1506
1507
1508/**
1509 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1510 *
1511 * @param fCaps The VMX EPT/VPID capability MSR value.
1512 */
1513static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1514{
1515 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1516 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1517 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1518 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1519 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_UC", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_UC);
1520 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_WB", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB);
1521 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1522 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1523 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1524 HMVMX_REPORT_MSR_CAP(fCaps, "ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
1525 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT_VIOLATION", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION);
1526 HMVMX_REPORT_MSR_CAP(fCaps, "SUPER_SHW_STACK", MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK);
1527 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1528 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1529 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1530 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1531 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1532 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1533 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1534}
1535
1536
1537/**
1538 * Reports MSR_IA32_VMX_MISC MSR to the log.
1539 *
1540 * @param pVM Pointer to the VM.
1541 * @param fMisc The VMX misc. MSR value.
1542 */
1543static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1544{
1545 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1546 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1547 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1548 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1549 else
1550 {
1551 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1552 pVM->hm.s.vmx.cPreemptTimerShift));
1553 }
1554 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1555 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1556 hmR3VmxGetActivityStateAllDesc(fMisc)));
1557 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1558 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1559 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1560 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1561 VMX_MISC_MAX_MSRS(fMisc)));
1562 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1563 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1564 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1565 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1566}
1567
1568
1569/**
1570 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1571 *
1572 * @param uVmcsEnum The VMX VMCS enum MSR value.
1573 */
1574static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1575{
1576 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1577 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1578}
1579
1580
1581/**
1582 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1583 *
1584 * @param uVmFunc The VMX VMFUNC MSR value.
1585 */
1586static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1587{
1588 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1589 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1590}
1591
1592
1593/**
1594 * Reports VMX CR0, CR4 fixed MSRs.
1595 *
1596 * @param pMsrs Pointer to the VMX MSRs.
1597 */
1598static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1599{
1600 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1601 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1602 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1603 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1604}
1605
1606
1607/**
1608 * Finish VT-x initialization (after ring-0 init).
1609 *
1610 * @returns VBox status code.
1611 * @param pVM The cross context VM structure.
1612 */
1613static int hmR3InitFinalizeR0Intel(PVM pVM)
1614{
1615 int rc;
1616
1617 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1618 AssertLogRelReturn(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl != 0, VERR_HM_IPE_4);
1619
1620 LogRel(("HM: Using VT-x implementation 3.0\n"));
1621 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1622 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostCr4));
1623 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostMsrEfer));
1624 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl));
1625 LogRel(("HM: Host DR6 zero'ed = %#RX64%s\n", pVM->hm.s.ForR3.vmx.u64HostDr6Zeroed,
1626 pVM->hm.s.ForR3.vmx.fAlwaysInterceptMovDRx ? " - always intercept MOV DRx" : ""));
1627
1628 hmR3VmxReportFeatCtlMsr(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl);
1629 hmR3VmxReportBasicMsr(pVM->hm.s.ForR3.vmx.Msrs.u64Basic);
1630
1631 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.PinCtls);
1632 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls);
1633 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1634 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2);
1635 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
1636 hmR3VmxReportProcBasedCtls3Msr(pVM->hm.s.ForR3.vmx.Msrs.u64ProcCtls3);
1637
1638 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.EntryCtls);
1639 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ExitCtls);
1640
1641 if (RT_BF_GET(pVM->hm.s.ForR3.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1642 {
1643 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1644 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TruePinCtls));
1645 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueProcCtls));
1646 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueEntryCtls));
1647 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueExitCtls));
1648 }
1649
1650 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.ForR3.vmx.Msrs.u64Misc);
1651 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmcsEnum);
1652 if (pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps)
1653 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps);
1654 if (pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc)
1655 hmR3VmxReportVmFuncMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc);
1656 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.ForR3.vmx.Msrs);
1657
1658#ifdef TODO_9217_VMCSINFO
1659 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1660 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1661 {
1662 PCVMXVMCSINFOSHARED pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1663 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1664 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1665 }
1666#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1667 if (pVM->cpum.ro.GuestFeatures.fVmx)
1668 {
1669 LogRel(("HM: Nested-guest:\n"));
1670 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1671 {
1672 PCVMXVMCSINFOSHARED pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1673 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1674 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1675 }
1676 }
1677#endif
1678#endif /* TODO_9217_VMCSINFO */
1679
1680 /*
1681 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1682 */
1683 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1684 || (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1685 VERR_HM_IPE_1);
1686 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuestCfg
1687 || ( (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1688 && pVM->hm.s.fNestedPagingCfg),
1689 VERR_HM_IPE_1);
1690
1691 /*
1692 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1693 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1694 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1695 */
1696 if ( !(pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1697 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1698 {
1699 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1700 LogRel(("HM: Disabled RDTSCP\n"));
1701 }
1702
1703 if (!pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1704 {
1705 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1706 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1707 if (RT_SUCCESS(rc))
1708 {
1709 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1710 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1711 esp. Figure 20-5.*/
1712 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1713 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1714
1715 /* Bit set to 0 means software interrupts are redirected to the
1716 8086 program interrupt handler rather than switching to
1717 protected-mode handler. */
1718 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1719
1720 /* Allow all port IO, so that port IO instructions do not cause
1721 exceptions and would instead cause a VM-exit (based on VT-x's
1722 IO bitmap which we currently configure to always cause an exit). */
1723 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, X86_PAGE_SIZE * 2);
1724 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1725
1726 /*
1727 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1728 * page table used in real and protected mode without paging with EPT.
1729 */
1730 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + X86_PAGE_SIZE * 3);
1731 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1732 {
1733 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1734 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1735 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1736 | X86_PDE4M_G;
1737 }
1738
1739 /* We convert it here every time as PCI regions could be reconfigured. */
1740 if (PDMVmmDevHeapIsEnabled(pVM))
1741 {
1742 RTGCPHYS GCPhys;
1743 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1744 AssertRCReturn(rc, rc);
1745 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1746
1747 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1748 AssertRCReturn(rc, rc);
1749 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1750 }
1751 }
1752 else
1753 {
1754 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1755 pVM->hm.s.vmx.pRealModeTSS = NULL;
1756 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1757 return VMSetError(pVM, rc, RT_SRC_POS,
1758 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1759 }
1760 }
1761
1762 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1763 : "HM: Guest support: 32-bit only\n"));
1764
1765 /*
1766 * Call ring-0 to set up the VM.
1767 */
1768 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1769 if (rc != VINF_SUCCESS)
1770 {
1771 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1772 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1773 {
1774 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1775 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1776 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1777 }
1778 HMR3CheckError(pVM, rc);
1779 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1780 }
1781
1782 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer));
1783 LogRel(("HM: Enabled VMX\n"));
1784 pVM->hm.s.vmx.fEnabled = true;
1785
1786 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1787
1788 /*
1789 * Log configuration details.
1790 */
1791 if (pVM->hm.s.fNestedPagingCfg)
1792 {
1793 LogRel(("HM: Enabled nested paging\n"));
1794 if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1795 LogRel(("HM: EPT flush type = Single context\n"));
1796 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1797 LogRel(("HM: EPT flush type = All contexts\n"));
1798 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1799 LogRel(("HM: EPT flush type = Not supported\n"));
1800 else
1801 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushEpt));
1802
1803 if (pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1804 LogRel(("HM: Enabled unrestricted guest execution\n"));
1805
1806 if (pVM->hm.s.fLargePages)
1807 {
1808 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1809 PGMSetLargePageUsage(pVM, true);
1810 LogRel(("HM: Enabled large page support\n"));
1811 }
1812 }
1813 else
1814 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
1815
1816 if (pVM->hm.s.ForR3.vmx.fVpid)
1817 {
1818 LogRel(("HM: Enabled VPID\n"));
1819 if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1820 LogRel(("HM: VPID flush type = Individual addresses\n"));
1821 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1822 LogRel(("HM: VPID flush type = Single context\n"));
1823 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1824 LogRel(("HM: VPID flush type = All contexts\n"));
1825 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1826 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1827 else
1828 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushVpid));
1829 }
1830 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1831 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1832
1833 if (pVM->hm.s.vmx.fUsePreemptTimerCfg)
1834 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1835 else
1836 LogRel(("HM: Disabled VMX-preemption timer\n"));
1837
1838 if (pVM->hm.s.fVirtApicRegs)
1839 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1840
1841 if (pVM->hm.s.fPostedIntrs)
1842 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1843
1844 if (pVM->hm.s.ForR3.vmx.fUseVmcsShadowing)
1845 {
1846 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.ForR3.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1847 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1848 }
1849
1850 return VINF_SUCCESS;
1851}
1852
1853
1854/**
1855 * Finish AMD-V initialization (after ring-0 init).
1856 *
1857 * @returns VBox status code.
1858 * @param pVM The cross context VM structure.
1859 */
1860static int hmR3InitFinalizeR0Amd(PVM pVM)
1861{
1862 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1863
1864 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1865
1866#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1867 uint32_t u32Family;
1868 uint32_t u32Model;
1869 uint32_t u32Stepping;
1870 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1871 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1872#endif
1873 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1874 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.ForR3.svm.u64MsrHwcr));
1875 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.ForR3.svm.u32Rev));
1876 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.ForR3.uMaxAsid));
1877 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.ForR3.svm.fFeatures));
1878
1879 /*
1880 * Enumerate AMD-V features.
1881 */
1882 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1883 {
1884#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1885 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1886 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1887 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1888 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1889 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1890 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1891 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1892 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1893 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1894 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1895 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1896 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1897 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1898 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1899 HMSVM_REPORT_FEATURE("SSSCHECK", X86_CPUID_SVM_FEATURE_EDX_SSSCHECK),
1900 HMSVM_REPORT_FEATURE("SPEC_CTRL", X86_CPUID_SVM_FEATURE_EDX_SPEC_CTRL),
1901 HMSVM_REPORT_FEATURE("HOST_MCE_OVERRIDE", X86_CPUID_SVM_FEATURE_EDX_HOST_MCE_OVERRIDE),
1902 HMSVM_REPORT_FEATURE("TLBICTL", X86_CPUID_SVM_FEATURE_EDX_TLBICTL),
1903#undef HMSVM_REPORT_FEATURE
1904 };
1905
1906 uint32_t fSvmFeatures = pVM->hm.s.ForR3.svm.fFeatures;
1907 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1908 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1909 {
1910 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1911 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1912 }
1913 if (fSvmFeatures)
1914 for (unsigned iBit = 0; iBit < 32; iBit++)
1915 if (RT_BIT_32(iBit) & fSvmFeatures)
1916 LogRel(("HM: Reserved bit %u\n", iBit));
1917
1918 /*
1919 * Nested paging is determined in HMR3Init, verify the sanity of that.
1920 */
1921 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1922 || (pVM->hm.s.ForR3.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1923 VERR_HM_IPE_1);
1924
1925#if 0
1926 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1927 * here. */
1928 if (RTR0IsPostIpiSupport())
1929 pVM->hm.s.fPostedIntrs = true;
1930#endif
1931
1932 /*
1933 * Determine whether we need to intercept #UD in SVM mode for emulating
1934 * intel SYSENTER/SYSEXIT on AMD64, as these instructions results in #UD
1935 * when executed in long-mode. This is only really applicable when
1936 * non-default CPU profiles are in effect, i.e. guest vendor differs
1937 * from the host one.
1938 */
1939 if (CPUMGetGuestCpuVendor(pVM) != CPUMGetHostCpuVendor(pVM))
1940 switch (CPUMGetGuestCpuVendor(pVM))
1941 {
1942 case CPUMCPUVENDOR_INTEL:
1943 case CPUMCPUVENDOR_VIA: /*?*/
1944 case CPUMCPUVENDOR_SHANGHAI: /*?*/
1945 switch (CPUMGetHostCpuVendor(pVM))
1946 {
1947 case CPUMCPUVENDOR_AMD:
1948 case CPUMCPUVENDOR_HYGON:
1949 if (pVM->hm.s.fAllow64BitGuestsCfg)
1950 {
1951 LogRel(("HM: Intercepting #UD for emulating SYSENTER/SYSEXIT in long mode.\n"));
1952 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1953 pVM->apCpusR3[idCpu]->hm.s.svm.fEmulateLongModeSysEnterExit = true;
1954 }
1955 break;
1956 default: break;
1957 }
1958 default: break;
1959 }
1960
1961 /*
1962 * Call ring-0 to set up the VM.
1963 */
1964 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1965 if (rc != VINF_SUCCESS)
1966 {
1967 AssertMsgFailed(("%Rrc\n", rc));
1968 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1969 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1970 }
1971
1972 LogRel(("HM: Enabled SVM\n"));
1973 pVM->hm.s.svm.fEnabled = true;
1974
1975 if (pVM->hm.s.fNestedPagingCfg)
1976 {
1977 LogRel(("HM: Enabled nested paging\n"));
1978
1979 /*
1980 * Enable large pages (2 MB) if applicable.
1981 */
1982 if (pVM->hm.s.fLargePages)
1983 {
1984 PGMSetLargePageUsage(pVM, true);
1985 LogRel(("HM: Enabled large page support\n"));
1986 }
1987 }
1988
1989 if (pVM->hm.s.fVirtApicRegs)
1990 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1991
1992 if (pVM->hm.s.fPostedIntrs)
1993 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1994
1995 hmR3DisableRawMode(pVM);
1996
1997 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1998 : "HM: Disabled TPR patching\n"));
1999
2000 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
2001 : "HM: Guest support: 32-bit only\n"));
2002 return VINF_SUCCESS;
2003}
2004
2005
2006/**
2007 * Applies relocations to data and code managed by this
2008 * component. This function will be called at init and
2009 * whenever the VMM need to relocate it self inside the GC.
2010 *
2011 * @param pVM The cross context VM structure.
2012 */
2013VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
2014{
2015 /* Fetch the current paging mode during the relocate callback during state loading. */
2016 if (VMR3GetState(pVM) == VMSTATE_LOADING)
2017 {
2018 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2019 {
2020 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2021 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
2022 }
2023 }
2024}
2025
2026
2027/**
2028 * Terminates the HM.
2029 *
2030 * Termination means cleaning up and freeing all resources,
2031 * the VM itself is, at this point, powered off or suspended.
2032 *
2033 * @returns VBox status code.
2034 * @param pVM The cross context VM structure.
2035 */
2036VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
2037{
2038 if (pVM->hm.s.vmx.pRealModeTSS)
2039 {
2040 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
2041 pVM->hm.s.vmx.pRealModeTSS = 0;
2042 }
2043 hmR3TermCPU(pVM);
2044 return 0;
2045}
2046
2047
2048/**
2049 * Terminates the per-VCPU HM.
2050 *
2051 * @returns VBox status code.
2052 * @param pVM The cross context VM structure.
2053 */
2054static int hmR3TermCPU(PVM pVM)
2055{
2056 RT_NOREF(pVM);
2057 return VINF_SUCCESS;
2058}
2059
2060
2061/**
2062 * Resets a virtual CPU.
2063 *
2064 * Used by HMR3Reset and CPU hot plugging.
2065 *
2066 * @param pVCpu The cross context virtual CPU structure to reset.
2067 */
2068VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2069{
2070 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2071 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2072 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2073
2074 pVCpu->hm.s.fActive = false;
2075 pVCpu->hm.s.Event.fPending = false;
2076 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2077 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2078#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2079 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2080 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2081#endif
2082}
2083
2084
2085/**
2086 * The VM is being reset.
2087 *
2088 * For the HM component this means that any GDT/LDT/TSS monitors
2089 * needs to be removed.
2090 *
2091 * @param pVM The cross context VM structure.
2092 */
2093VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2094{
2095 LogFlow(("HMR3Reset:\n"));
2096
2097 if (HMIsEnabled(pVM))
2098 hmR3DisableRawMode(pVM);
2099
2100 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2101 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2102
2103 /* Clear all patch information. */
2104 pVM->hm.s.pGuestPatchMem = 0;
2105 pVM->hm.s.pFreeGuestPatchMem = 0;
2106 pVM->hm.s.cbGuestPatchMem = 0;
2107 pVM->hm.s.cPatches = 0;
2108 pVM->hm.s.PatchTree = 0;
2109 pVM->hm.s.fTprPatchingActive = false;
2110 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2111}
2112
2113
2114/**
2115 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2116 *
2117 * @returns VBox strict status code.
2118 * @param pVM The cross context VM structure.
2119 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2120 * @param pvUser Unused.
2121 */
2122static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2123{
2124 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2125
2126 /* Only execute the handler on the VCPU the original patch request was issued. */
2127 if (pVCpu->idCpu != idCpu)
2128 return VINF_SUCCESS;
2129
2130 Log(("hmR3RemovePatches\n"));
2131 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2132 {
2133 uint8_t abInstr[15];
2134 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2135 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2136 int rc;
2137
2138#ifdef LOG_ENABLED
2139 char szOutput[256];
2140 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2141 szOutput, sizeof(szOutput), NULL);
2142 if (RT_SUCCESS(rc))
2143 Log(("Patched instr: %s\n", szOutput));
2144#endif
2145
2146 /* Check if the instruction is still the same. */
2147 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2148 if (rc != VINF_SUCCESS)
2149 {
2150 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2151 continue; /* swapped out or otherwise removed; skip it. */
2152 }
2153
2154 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2155 {
2156 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2157 continue; /* skip it. */
2158 }
2159
2160 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2161 AssertRC(rc);
2162
2163#ifdef LOG_ENABLED
2164 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2165 szOutput, sizeof(szOutput), NULL);
2166 if (RT_SUCCESS(rc))
2167 Log(("Original instr: %s\n", szOutput));
2168#endif
2169 }
2170 pVM->hm.s.cPatches = 0;
2171 pVM->hm.s.PatchTree = 0;
2172 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2173 pVM->hm.s.fTprPatchingActive = false;
2174 return VINF_SUCCESS;
2175}
2176
2177
2178/**
2179 * Worker for enabling patching in a VT-x/AMD-V guest.
2180 *
2181 * @returns VBox status code.
2182 * @param pVM The cross context VM structure.
2183 * @param idCpu VCPU to execute hmR3RemovePatches on.
2184 * @param pPatchMem Patch memory range.
2185 * @param cbPatchMem Size of the memory range.
2186 */
2187static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2188{
2189 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2190 AssertRC(rc);
2191
2192 pVM->hm.s.pGuestPatchMem = pPatchMem;
2193 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2194 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2195 return VINF_SUCCESS;
2196}
2197
2198
2199/**
2200 * Enable patching in a VT-x/AMD-V guest
2201 *
2202 * @returns VBox status code.
2203 * @param pVM The cross context VM structure.
2204 * @param pPatchMem Patch memory range.
2205 * @param cbPatchMem Size of the memory range.
2206 */
2207VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2208{
2209 VM_ASSERT_EMT(pVM);
2210 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2211 if (pVM->cCpus > 1)
2212 {
2213 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2214 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2215 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2216 AssertRC(rc);
2217 return rc;
2218 }
2219 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2220}
2221
2222
2223/**
2224 * Disable patching in a VT-x/AMD-V guest.
2225 *
2226 * @returns VBox status code.
2227 * @param pVM The cross context VM structure.
2228 * @param pPatchMem Patch memory range.
2229 * @param cbPatchMem Size of the memory range.
2230 */
2231VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2232{
2233 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2234 RT_NOREF2(pPatchMem, cbPatchMem);
2235
2236 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2237 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2238
2239 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2240 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2241 (void *)(uintptr_t)VMMGetCpuId(pVM));
2242 AssertRC(rc);
2243
2244 pVM->hm.s.pGuestPatchMem = 0;
2245 pVM->hm.s.pFreeGuestPatchMem = 0;
2246 pVM->hm.s.cbGuestPatchMem = 0;
2247 pVM->hm.s.fTprPatchingActive = false;
2248 return VINF_SUCCESS;
2249}
2250
2251
2252/**
2253 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2254 *
2255 * @returns VBox strict status code.
2256 * @param pVM The cross context VM structure.
2257 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2258 * @param pvUser User specified CPU context.
2259 *
2260 */
2261static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2262{
2263 /*
2264 * Only execute the handler on the VCPU the original patch request was
2265 * issued. (The other CPU(s) might not yet have switched to protected
2266 * mode, nor have the correct memory context.)
2267 */
2268 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2269 if (pVCpu->idCpu != idCpu)
2270 return VINF_SUCCESS;
2271
2272 /*
2273 * We're racing other VCPUs here, so don't try patch the instruction twice
2274 * and make sure there is still room for our patch record.
2275 */
2276 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2277 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2278 if (pPatch)
2279 {
2280 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2281 return VINF_SUCCESS;
2282 }
2283 uint32_t const idx = pVM->hm.s.cPatches;
2284 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2285 {
2286 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2287 return VINF_SUCCESS;
2288 }
2289 pPatch = &pVM->hm.s.aPatches[idx];
2290
2291 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2292
2293 /*
2294 * Disassembler the instruction and get cracking.
2295 */
2296 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2297 DISSTATE Dis;
2298 uint32_t cbOp;
2299 int rc = EMInterpretDisasCurrent(pVCpu, &Dis, &cbOp);
2300 AssertRC(rc);
2301 if ( rc == VINF_SUCCESS
2302 && Dis.pCurInstr->uOpcode == OP_MOV
2303 && cbOp >= 3)
2304 {
2305 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2306
2307 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2308 AssertRC(rc);
2309
2310 pPatch->cbOp = cbOp;
2311
2312 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2313 {
2314 /* write. */
2315 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2316 {
2317 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2318 pPatch->uSrcOperand = Dis.Param2.arch.x86.Base.idxGenReg;
2319 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", Dis.Param2.arch.x86.Base.idxGenReg));
2320 }
2321 else
2322 {
2323 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2324 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2325 pPatch->uSrcOperand = Dis.Param2.uValue;
2326 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", Dis.Param2.uValue));
2327 }
2328 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2329 AssertRC(rc);
2330
2331 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2332 pPatch->cbNewOp = sizeof(s_abVMMCall);
2333 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2334 }
2335 else
2336 {
2337 /*
2338 * TPR Read.
2339 *
2340 * Found:
2341 * mov eax, dword [fffe0080] (5 bytes)
2342 * Check if next instruction is:
2343 * shr eax, 4
2344 */
2345 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2346
2347 uint8_t const idxMmioReg = Dis.Param1.arch.x86.Base.idxGenReg;
2348 uint8_t const cbOpMmio = cbOp;
2349 uint64_t const uSavedRip = pCtx->rip;
2350
2351 pCtx->rip += cbOp;
2352 rc = EMInterpretDisasCurrent(pVCpu, &Dis, &cbOp);
2353 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2354 pCtx->rip = uSavedRip;
2355
2356 if ( rc == VINF_SUCCESS
2357 && Dis.pCurInstr->uOpcode == OP_SHR
2358 && Dis.Param1.fUse == DISUSE_REG_GEN32
2359 && Dis.Param1.arch.x86.Base.idxGenReg == idxMmioReg
2360 && Dis.Param2.fUse == DISUSE_IMMEDIATE8
2361 && Dis.Param2.uValue == 4
2362 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2363 {
2364 uint8_t abInstr[15];
2365
2366 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2367 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2368 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2369 AssertRC(rc);
2370
2371 pPatch->cbOp = cbOpMmio + cbOp;
2372
2373 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2374 abInstr[0] = 0xf0;
2375 abInstr[1] = 0x0f;
2376 abInstr[2] = 0x20;
2377 abInstr[3] = 0xc0 | Dis.Param1.arch.x86.Base.idxGenReg;
2378 for (unsigned i = 4; i < pPatch->cbOp; i++)
2379 abInstr[i] = 0x90; /* nop */
2380
2381 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2382 AssertRC(rc);
2383
2384 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2385 pPatch->cbNewOp = pPatch->cbOp;
2386 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2387
2388 Log(("Acceptable read/shr candidate!\n"));
2389 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2390 }
2391 else
2392 {
2393 pPatch->enmType = HMTPRINSTR_READ;
2394 pPatch->uDstOperand = idxMmioReg;
2395
2396 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2397 AssertRC(rc);
2398
2399 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2400 pPatch->cbNewOp = sizeof(s_abVMMCall);
2401 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2402 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2403 }
2404 }
2405
2406 pPatch->Core.Key = pCtx->eip;
2407 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2408 AssertRC(rc);
2409
2410 pVM->hm.s.cPatches++;
2411 return VINF_SUCCESS;
2412 }
2413
2414 /*
2415 * Save invalid patch, so we will not try again.
2416 */
2417 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2418 pPatch->Core.Key = pCtx->eip;
2419 pPatch->enmType = HMTPRINSTR_INVALID;
2420 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2421 AssertRC(rc);
2422 pVM->hm.s.cPatches++;
2423 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2424 return VINF_SUCCESS;
2425}
2426
2427
2428/**
2429 * Callback to patch a TPR instruction (jump to generated code).
2430 *
2431 * @returns VBox strict status code.
2432 * @param pVM The cross context VM structure.
2433 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2434 * @param pvUser User specified CPU context.
2435 *
2436 */
2437static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2438{
2439 /*
2440 * Only execute the handler on the VCPU the original patch request was
2441 * issued. (The other CPU(s) might not yet have switched to protected
2442 * mode, nor have the correct memory context.)
2443 */
2444 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2445 if (pVCpu->idCpu != idCpu)
2446 return VINF_SUCCESS;
2447
2448 /*
2449 * We're racing other VCPUs here, so don't try patch the instruction twice
2450 * and make sure there is still room for our patch record.
2451 */
2452 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2453 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2454 if (pPatch)
2455 {
2456 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2457 return VINF_SUCCESS;
2458 }
2459 uint32_t const idx = pVM->hm.s.cPatches;
2460 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2461 {
2462 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2463 return VINF_SUCCESS;
2464 }
2465 pPatch = &pVM->hm.s.aPatches[idx];
2466
2467 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2468 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2469
2470 /*
2471 * Disassemble the instruction and get cracking.
2472 */
2473 DISSTATE Dis;
2474 uint32_t cbOp;
2475 int rc = EMInterpretDisasCurrent(pVCpu, &Dis, &cbOp);
2476 AssertRC(rc);
2477 if ( rc == VINF_SUCCESS
2478 && Dis.pCurInstr->uOpcode == OP_MOV
2479 && cbOp >= 5)
2480 {
2481 uint8_t aPatch[64];
2482 uint32_t off = 0;
2483
2484 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2485 AssertRC(rc);
2486
2487 pPatch->cbOp = cbOp;
2488 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2489
2490 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2491 {
2492 /*
2493 * TPR write:
2494 *
2495 * push ECX [51]
2496 * push EDX [52]
2497 * push EAX [50]
2498 * xor EDX,EDX [31 D2]
2499 * mov EAX,EAX [89 C0]
2500 * or
2501 * mov EAX,0000000CCh [B8 CC 00 00 00]
2502 * mov ECX,0C0000082h [B9 82 00 00 C0]
2503 * wrmsr [0F 30]
2504 * pop EAX [58]
2505 * pop EDX [5A]
2506 * pop ECX [59]
2507 * jmp return_address [E9 return_address]
2508 */
2509 bool fUsesEax = (Dis.Param2.fUse == DISUSE_REG_GEN32 && Dis.Param2.arch.x86.Base.idxGenReg == DISGREG_EAX);
2510
2511 aPatch[off++] = 0x51; /* push ecx */
2512 aPatch[off++] = 0x52; /* push edx */
2513 if (!fUsesEax)
2514 aPatch[off++] = 0x50; /* push eax */
2515 aPatch[off++] = 0x31; /* xor edx, edx */
2516 aPatch[off++] = 0xd2;
2517 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2518 {
2519 if (!fUsesEax)
2520 {
2521 aPatch[off++] = 0x89; /* mov eax, src_reg */
2522 aPatch[off++] = MAKE_MODRM(3, Dis.Param2.arch.x86.Base.idxGenReg, DISGREG_EAX);
2523 }
2524 }
2525 else
2526 {
2527 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2528 aPatch[off++] = 0xb8; /* mov eax, immediate */
2529 *(uint32_t *)&aPatch[off] = Dis.Param2.uValue;
2530 off += sizeof(uint32_t);
2531 }
2532 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2533 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2534 off += sizeof(uint32_t);
2535
2536 aPatch[off++] = 0x0f; /* wrmsr */
2537 aPatch[off++] = 0x30;
2538 if (!fUsesEax)
2539 aPatch[off++] = 0x58; /* pop eax */
2540 aPatch[off++] = 0x5a; /* pop edx */
2541 aPatch[off++] = 0x59; /* pop ecx */
2542 }
2543 else
2544 {
2545 /*
2546 * TPR read:
2547 *
2548 * push ECX [51]
2549 * push EDX [52]
2550 * push EAX [50]
2551 * mov ECX,0C0000082h [B9 82 00 00 C0]
2552 * rdmsr [0F 32]
2553 * mov EAX,EAX [89 C0]
2554 * pop EAX [58]
2555 * pop EDX [5A]
2556 * pop ECX [59]
2557 * jmp return_address [E9 return_address]
2558 */
2559 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2560
2561 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_ECX)
2562 aPatch[off++] = 0x51; /* push ecx */
2563 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EDX )
2564 aPatch[off++] = 0x52; /* push edx */
2565 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EAX)
2566 aPatch[off++] = 0x50; /* push eax */
2567
2568 aPatch[off++] = 0x31; /* xor edx, edx */
2569 aPatch[off++] = 0xd2;
2570
2571 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2572 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2573 off += sizeof(uint32_t);
2574
2575 aPatch[off++] = 0x0f; /* rdmsr */
2576 aPatch[off++] = 0x32;
2577
2578 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EAX)
2579 {
2580 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2581 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, Dis.Param1.arch.x86.Base.idxGenReg);
2582 }
2583
2584 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EAX)
2585 aPatch[off++] = 0x58; /* pop eax */
2586 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EDX )
2587 aPatch[off++] = 0x5a; /* pop edx */
2588 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_ECX)
2589 aPatch[off++] = 0x59; /* pop ecx */
2590 }
2591 aPatch[off++] = 0xe9; /* jmp return_address */
2592 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2593 off += sizeof(RTRCUINTPTR);
2594
2595 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2596 {
2597 /* Write new code to the patch buffer. */
2598 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2599 AssertRC(rc);
2600
2601#ifdef LOG_ENABLED
2602 uint32_t cbCurInstr;
2603 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2604 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2605 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2606 {
2607 char szOutput[256];
2608 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2609 szOutput, sizeof(szOutput), &cbCurInstr);
2610 if (RT_SUCCESS(rc))
2611 Log(("Patch instr %s\n", szOutput));
2612 else
2613 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2614 }
2615#endif
2616
2617 pPatch->aNewOpcode[0] = 0xE9;
2618 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2619
2620 /* Overwrite the TPR instruction with a jump. */
2621 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2622 AssertRC(rc);
2623
2624 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2625
2626 pVM->hm.s.pFreeGuestPatchMem += off;
2627 pPatch->cbNewOp = 5;
2628
2629 pPatch->Core.Key = pCtx->eip;
2630 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2631 AssertRC(rc);
2632
2633 pVM->hm.s.cPatches++;
2634 pVM->hm.s.fTprPatchingActive = true;
2635 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2636 return VINF_SUCCESS;
2637 }
2638
2639 Log(("Ran out of space in our patch buffer!\n"));
2640 }
2641 else
2642 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2643
2644
2645 /*
2646 * Save invalid patch, so we will not try again.
2647 */
2648 pPatch = &pVM->hm.s.aPatches[idx];
2649 pPatch->Core.Key = pCtx->eip;
2650 pPatch->enmType = HMTPRINSTR_INVALID;
2651 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2652 AssertRC(rc);
2653 pVM->hm.s.cPatches++;
2654 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2655 return VINF_SUCCESS;
2656}
2657
2658
2659/**
2660 * Attempt to patch TPR mmio instructions.
2661 *
2662 * @returns VBox status code.
2663 * @param pVM The cross context VM structure.
2664 * @param pVCpu The cross context virtual CPU structure.
2665 */
2666VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2667{
2668 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2669 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2670 (void *)(uintptr_t)pVCpu->idCpu);
2671 AssertRC(rc);
2672 return rc;
2673}
2674
2675
2676/**
2677 * Checks if we need to reschedule due to VMM device heap changes.
2678 *
2679 * @returns true if a reschedule is required, otherwise false.
2680 * @param pVM The cross context VM structure.
2681 * @param pCtx VM execution context.
2682 */
2683VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2684{
2685 /*
2686 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2687 * when the unrestricted guest execution feature is missing (VT-x only).
2688 */
2689 if ( pVM->hm.s.vmx.fEnabled
2690 && !pVM->hm.s.vmx.fUnrestrictedGuestCfg
2691 && CPUMIsGuestInRealModeEx(pCtx)
2692 && !PDMVmmDevHeapIsEnabled(pVM))
2693 return true;
2694
2695 return false;
2696}
2697
2698
2699/**
2700 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2701 * event settings changes.
2702 *
2703 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2704 * function is just updating the VM globals.
2705 *
2706 * @param pVM The VM cross context VM structure.
2707 * @thread EMT(0)
2708 */
2709VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2710{
2711 /* Interrupts. */
2712 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2713 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2714
2715 /* CPU Exceptions. */
2716 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2717 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2718 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2719 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2720
2721 /* Common VM exits. */
2722 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2723 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2724 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2725 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2726
2727 /* Vendor specific VM exits. */
2728 if (HMR3IsVmxEnabled(pVM->pUVM))
2729 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2730 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2731 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2732 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2733 else
2734 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2735 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2736 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2737 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2738
2739 /* Done. */
2740 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2741}
2742
2743
2744/**
2745 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2746 *
2747 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2748 * per CPU settings.
2749 *
2750 * @param pVM The VM cross context VM structure.
2751 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2752 */
2753VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2754{
2755 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2756}
2757
2758
2759/**
2760 * Checks if we are currently using hardware acceleration.
2761 *
2762 * @returns true if hardware acceleration is being used, otherwise false.
2763 * @param pVCpu The cross context virtual CPU structure.
2764 */
2765VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2766{
2767 return pVCpu->hm.s.fActive;
2768}
2769
2770
2771/**
2772 * External interface for querying whether hardware acceleration is enabled.
2773 *
2774 * @returns true if VT-x or AMD-V is being used, otherwise false.
2775 * @param pUVM The user mode VM handle.
2776 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2777 */
2778VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2779{
2780 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2781 PVM pVM = pUVM->pVM;
2782 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2783 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2784}
2785
2786
2787/**
2788 * External interface for querying whether VT-x is being used.
2789 *
2790 * @returns true if VT-x is being used, otherwise false.
2791 * @param pUVM The user mode VM handle.
2792 * @sa HMR3IsSvmEnabled, HMIsEnabled
2793 */
2794VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2795{
2796 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2797 PVM pVM = pUVM->pVM;
2798 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2799 return pVM->hm.s.vmx.fEnabled
2800 && pVM->hm.s.vmx.fSupported
2801 && pVM->fHMEnabled;
2802}
2803
2804
2805/**
2806 * External interface for querying whether AMD-V is being used.
2807 *
2808 * @returns true if VT-x is being used, otherwise false.
2809 * @param pUVM The user mode VM handle.
2810 * @sa HMR3IsVmxEnabled, HMIsEnabled
2811 */
2812VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2813{
2814 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2815 PVM pVM = pUVM->pVM;
2816 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2817 return pVM->hm.s.svm.fEnabled
2818 && pVM->hm.s.svm.fSupported
2819 && pVM->fHMEnabled;
2820}
2821
2822
2823/**
2824 * Checks if we are currently using nested paging.
2825 *
2826 * @returns true if nested paging is being used, otherwise false.
2827 * @param pUVM The user mode VM handle.
2828 */
2829VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2830{
2831 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2832 PVM pVM = pUVM->pVM;
2833 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2834 return pVM->hm.s.fNestedPagingCfg;
2835}
2836
2837
2838/**
2839 * Checks if virtualized APIC registers are enabled.
2840 *
2841 * When enabled this feature allows the hardware to access most of the
2842 * APIC registers in the virtual-APIC page without causing VM-exits. See
2843 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2844 *
2845 * @returns true if virtualized APIC registers is enabled, otherwise
2846 * false.
2847 * @param pUVM The user mode VM handle.
2848 */
2849VMMR3DECL(bool) HMR3AreVirtApicRegsEnabled(PUVM pUVM)
2850{
2851 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2852 PVM pVM = pUVM->pVM;
2853 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2854 return pVM->hm.s.fVirtApicRegs;
2855}
2856
2857
2858/**
2859 * Checks if APIC posted-interrupt processing is enabled.
2860 *
2861 * This returns whether we can deliver interrupts to the guest without
2862 * leaving guest-context by updating APIC state from host-context.
2863 *
2864 * @returns true if APIC posted-interrupt processing is enabled,
2865 * otherwise false.
2866 * @param pUVM The user mode VM handle.
2867 */
2868VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2869{
2870 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2871 PVM pVM = pUVM->pVM;
2872 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2873 return pVM->hm.s.fPostedIntrs;
2874}
2875
2876
2877/**
2878 * Checks if we are currently using VPID in VT-x mode.
2879 *
2880 * @returns true if VPID is being used, otherwise false.
2881 * @param pUVM The user mode VM handle.
2882 */
2883VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2884{
2885 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2886 PVM pVM = pUVM->pVM;
2887 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2888 return pVM->hm.s.ForR3.vmx.fVpid;
2889}
2890
2891
2892/**
2893 * Checks if we are currently using VT-x unrestricted execution,
2894 * aka UX.
2895 *
2896 * @returns true if UX is being used, otherwise false.
2897 * @param pUVM The user mode VM handle.
2898 */
2899VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2900{
2901 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2902 PVM pVM = pUVM->pVM;
2903 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2904 return pVM->hm.s.vmx.fUnrestrictedGuestCfg
2905 || pVM->hm.s.svm.fSupported;
2906}
2907
2908
2909/**
2910 * Checks if the VMX-preemption timer is being used.
2911 *
2912 * @returns true if the VMX-preemption timer is being used, otherwise false.
2913 * @param pVM The cross context VM structure.
2914 */
2915VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2916{
2917 return HMIsEnabled(pVM)
2918 && pVM->hm.s.vmx.fEnabled
2919 && pVM->hm.s.vmx.fUsePreemptTimerCfg;
2920}
2921
2922
2923#ifdef TODO_9217_VMCSINFO
2924/**
2925 * Helper for HMR3CheckError to log VMCS controls to the release log.
2926 *
2927 * @param idCpu The Virtual CPU ID.
2928 * @param pVmcsInfo The VMCS info. object.
2929 */
2930static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2931{
2932 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2933 {
2934 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2935 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2936 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2937 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2938 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2939 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2940 }
2941 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2942 {
2943 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2944 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2945 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2946 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2947 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2948 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2949 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TERTIARY_CTLS );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2960 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2961 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2962 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2963 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2964 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2965 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2966 }
2967 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2968 {
2969 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2970 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2971 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2972 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2973 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2974 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2975 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2976 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2977 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2978 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2979 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2980 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2981 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2982 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2983 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2984 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2985 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2986 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2987 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2988 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_XCPT_VE );
2989 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2990 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2991 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2992 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPP_EPT );
2993 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2994 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2995 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2996 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2997 }
2998 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2999 {
3000 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
3001 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
3002 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
3003 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
3004 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
3005 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
3006 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
3007 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
3008 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
3009 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
3010 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
3011 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_CET_STATE );
3012 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PKRS_MSR );
3013 }
3014 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
3015 {
3016 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
3017 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
3018 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
3019 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
3020 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
3021 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
3022 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
3023 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
3024 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
3025 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
3026 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
3027 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
3028 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
3029 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_CET_STATE );
3030 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PKRS_MSR );
3031 }
3032}
3033#endif
3034
3035
3036/**
3037 * Check fatal VT-x/AMD-V error and produce some meaningful
3038 * log release message.
3039 *
3040 * @param pVM The cross context VM structure.
3041 * @param iStatusCode VBox status code.
3042 */
3043VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3044{
3045 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3046 {
3047 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3048 * might be getting inaccurate values for non-guru'ing EMTs. */
3049 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3050#ifdef TODO_9217_VMCSINFO
3051 PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu);
3052#endif
3053 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3054 switch (iStatusCode)
3055 {
3056 case VERR_VMX_INVALID_VMCS_PTR:
3057 {
3058 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3059 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3060#ifdef TODO_9217_VMCSINFO
3061 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
3062 pVmcsInfo->HCPhysVmcs));
3063#endif
3064 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
3065 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3066 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3067 break;
3068 }
3069
3070 case VERR_VMX_UNABLE_TO_START_VM:
3071 {
3072 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3073 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3074 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3075 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3076
3077 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3078 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3079 {
3080 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3081 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3082 }
3083 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3084 {
3085#ifdef TODO_9217_VMCSINFO
3086 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3087 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3088 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3089 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3090 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3091 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3092 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3093 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3094#endif
3095 }
3096 /** @todo Log VM-entry event injection control fields
3097 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3098 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3099 break;
3100 }
3101
3102 case VERR_VMX_INVALID_GUEST_STATE:
3103 {
3104 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3105 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3106 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3107#ifdef TODO_9217_VMCSINFO
3108 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3109#endif
3110 break;
3111 }
3112
3113 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3114 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3115 case VERR_VMX_INVALID_VMXON_PTR:
3116 case VERR_VMX_UNEXPECTED_EXIT:
3117 case VERR_VMX_INVALID_VMCS_FIELD:
3118 case VERR_SVM_UNKNOWN_EXIT:
3119 case VERR_SVM_UNEXPECTED_EXIT:
3120 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3121 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3122 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3123 break;
3124 }
3125 }
3126
3127 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3128 {
3129 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed1));
3130 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed0));
3131 }
3132 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3133 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError));
3134}
3135
3136
3137/**
3138 * Execute state save operation.
3139 *
3140 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3141 * is because we always save the VM state from ring-3 and thus most HM state
3142 * will be re-synced dynamically at runtime and don't need to be part of the VM
3143 * saved state.
3144 *
3145 * @returns VBox status code.
3146 * @param pVM The cross context VM structure.
3147 * @param pSSM SSM operation handle.
3148 */
3149static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3150{
3151 Log(("hmR3Save:\n"));
3152
3153 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3154 {
3155 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3156 Assert(!pVCpu->hm.s.Event.fPending);
3157 if (pVM->cpum.ro.GuestFeatures.fSvm)
3158 {
3159 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3160 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3161 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3162 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3163 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3164 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3165 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3166 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3167 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3168 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3169 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3170 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3171 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3172 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3173 }
3174 }
3175
3176 /* Save the guest patch data. */
3177 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3178 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3179 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3180
3181 /* Store all the guest patch records too. */
3182 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3183 if (RT_FAILURE(rc))
3184 return rc;
3185
3186 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3187 {
3188 AssertCompileSize(HMTPRINSTR, 4);
3189 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3190 SSMR3PutU32(pSSM, pPatch->Core.Key);
3191 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3192 SSMR3PutU32(pSSM, pPatch->cbOp);
3193 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3194 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3195 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3196 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3197 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3198 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3199 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3200 if (RT_FAILURE(rc))
3201 return rc;
3202 }
3203
3204 return VINF_SUCCESS;
3205}
3206
3207
3208/**
3209 * Execute state load operation.
3210 *
3211 * @returns VBox status code.
3212 * @param pVM The cross context VM structure.
3213 * @param pSSM SSM operation handle.
3214 * @param uVersion Data layout version.
3215 * @param uPass The data pass.
3216 */
3217static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3218{
3219 int rc;
3220
3221 LogFlowFunc(("uVersion=%u\n", uVersion));
3222 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3223
3224 /*
3225 * Validate version.
3226 */
3227 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3228 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3229 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3230 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3231 {
3232 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3233 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3234 }
3235
3236 /*
3237 * Load per-VCPU state.
3238 */
3239 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3240 {
3241 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3242 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3243 {
3244 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3245 if (pVM->cpum.ro.GuestFeatures.fSvm)
3246 {
3247 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3248 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3249 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3250 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3251 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3252 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3253 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3254 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3255 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3256 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3257 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3258 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3259 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3260 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3261 AssertRCReturn(rc, rc);
3262 }
3263 }
3264 else
3265 {
3266 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3267 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3268 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3269 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3270
3271 /* VMX fWasInRealMode related data. */
3272 uint32_t uDummy;
3273 SSMR3GetU32(pSSM, &uDummy);
3274 SSMR3GetU32(pSSM, &uDummy);
3275 rc = SSMR3GetU32(pSSM, &uDummy);
3276 AssertRCReturn(rc, rc);
3277 }
3278 }
3279
3280 /*
3281 * Load TPR patching data.
3282 */
3283 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3284 {
3285 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3286 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3287 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3288
3289 /* Fetch all TPR patch records. */
3290 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3291 AssertRCReturn(rc, rc);
3292 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3293 {
3294 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3295 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3296 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3297 SSMR3GetU32(pSSM, &pPatch->cbOp);
3298 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3299 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3300 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3301
3302 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3303 pVM->hm.s.fTprPatchingActive = true;
3304 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTprPatchingActive == false);
3305
3306 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3307 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3308 SSMR3GetU32(pSSM, &pPatch->cFaults);
3309 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3310 AssertRCReturn(rc, rc);
3311
3312 LogFlow(("hmR3Load: patch %d\n", i));
3313 LogFlow(("Key = %x\n", pPatch->Core.Key));
3314 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3315 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3316 LogFlow(("type = %d\n", pPatch->enmType));
3317 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3318 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3319 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3320 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3321
3322 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3323 AssertRCReturn(rc, rc);
3324 }
3325 }
3326
3327 return VINF_SUCCESS;
3328}
3329
3330
3331/**
3332 * Displays HM info.
3333 *
3334 * @param pVM The cross context VM structure.
3335 * @param pHlp The info helper functions.
3336 * @param pszArgs Arguments, ignored.
3337 */
3338static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3339{
3340 NOREF(pszArgs);
3341 PVMCPU pVCpu = VMMGetCpu(pVM);
3342 if (!pVCpu)
3343 pVCpu = pVM->apCpusR3[0];
3344
3345 if (HMIsEnabled(pVM))
3346 {
3347 if (pVM->hm.s.vmx.fSupported)
3348 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3349 else
3350 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3351 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3352 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3353 if (pVM->hm.s.vmx.fSupported)
3354 {
3355 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3356 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
3357 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3358
3359 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3360 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3361 if (fRealOnV86Active)
3362 {
3363 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfoShared->RealMode.Eflags.u32);
3364 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfoShared->RealMode.AttrCS.u);
3365 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfoShared->RealMode.AttrSS.u);
3366 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfoShared->RealMode.AttrDS.u);
3367 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfoShared->RealMode.AttrES.u);
3368 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfoShared->RealMode.AttrFS.u);
3369 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfoShared->RealMode.AttrGS.u);
3370 }
3371 }
3372 }
3373 else
3374 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3375}
3376
3377
3378/**
3379 * Displays the HM Last-Branch-Record info. for the guest.
3380 *
3381 * @param pVM The cross context VM structure.
3382 * @param pHlp The info helper functions.
3383 * @param pszArgs Arguments, ignored.
3384 */
3385static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3386{
3387 NOREF(pszArgs);
3388 PVMCPU pVCpu = VMMGetCpu(pVM);
3389 if (!pVCpu)
3390 pVCpu = pVM->apCpusR3[0];
3391
3392 if (!HMIsEnabled(pVM))
3393 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3394 else if (HMIsVmxActive(pVM))
3395 {
3396 if (pVM->hm.s.vmx.fLbrCfg)
3397 {
3398 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3399 uint32_t const cLbrStack = pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast - pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst + 1;
3400
3401 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3402 * 0xf should cover everything we support thus far. Fix if necessary
3403 * later. */
3404 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
3405 if (idxTopOfStack > cLbrStack)
3406 {
3407 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3408 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
3409 return;
3410 }
3411
3412 /*
3413 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3414 */
3415 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3416 uint32_t idxCurrent = idxTopOfStack;
3417 Assert(idxTopOfStack < cLbrStack);
3418 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
3419 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
3420 for (;;)
3421 {
3422 if (pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst)
3423 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3424 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent], pVmcsInfoShared->au64LbrToIpMsr[idxCurrent]);
3425 else
3426 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
3427
3428 idxCurrent = (idxCurrent - 1) % cLbrStack;
3429 if (idxCurrent == idxTopOfStack)
3430 break;
3431 }
3432 }
3433 else
3434 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3435 }
3436 else
3437 {
3438 Assert(HMIsSvmActive(pVM));
3439 /** @todo SVM: LBRs (get them from VMCB if possible). */
3440 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented.\n");
3441 }
3442}
3443
3444
3445/**
3446 * Displays the HM pending event.
3447 *
3448 * @param pVM The cross context VM structure.
3449 * @param pHlp The info helper functions.
3450 * @param pszArgs Arguments, ignored.
3451 */
3452static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3453{
3454 NOREF(pszArgs);
3455 PVMCPU pVCpu = VMMGetCpu(pVM);
3456 if (!pVCpu)
3457 pVCpu = pVM->apCpusR3[0];
3458
3459 if (HMIsEnabled(pVM))
3460 {
3461 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3462 if (pVCpu->hm.s.Event.fPending)
3463 {
3464 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3465 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3466 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3467 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3468 }
3469 }
3470 else
3471 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3472}
3473
3474
3475/**
3476 * Displays the SVM nested-guest VMCB cache.
3477 *
3478 * @param pVM The cross context VM structure.
3479 * @param pHlp The info helper functions.
3480 * @param pszArgs Arguments, ignored.
3481 */
3482static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3483{
3484 NOREF(pszArgs);
3485 PVMCPU pVCpu = VMMGetCpu(pVM);
3486 if (!pVCpu)
3487 pVCpu = pVM->apCpusR3[0];
3488
3489 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3490 if ( fSvmEnabled
3491 && pVM->cpum.ro.GuestFeatures.fSvm)
3492 {
3493 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3494 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3495 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3496 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3497 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3498 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3499 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3500 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3501 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3502 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3503 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3504 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3505 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3506 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3507 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3508 }
3509 else
3510 {
3511 if (!fSvmEnabled)
3512 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3513 else
3514 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3515 }
3516}
3517
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette