VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/MM.cpp@ 100696

Last change on this file since 100696 was 99911, checked in by vboxsync, 19 months ago

VMM/MM: make it possible to prepopulate a RAM region with data from a file using CFGM, bugref:10388 [fix]

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 31.6 KB
Line 
1/* $Id: MM.cpp 99911 2023-05-22 17:57:56Z vboxsync $ */
2/** @file
3 * MM - Memory Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/** @page pg_mm MM - The Memory Manager
30 *
31 * The memory manager is in charge of the following memory:
32 * - Hypervisor Memory Area (HMA) - Address space management (obsolete in 6.1).
33 * - Hypervisor Heap - A memory heap that lives in all contexts.
34 * - User-Kernel Heap - A memory heap lives in both host context.
35 * - Tagged ring-3 heap.
36 * - Page pools - Primarily used by PGM for shadow page tables.
37 * - Locked process memory - Guest RAM and other. (reduce/obsolete this)
38 * - Physical guest memory (RAM & ROM) - Moving to PGM. (obsolete this)
39 *
40 * The global memory manager (GMM) is the global counter part / partner of MM.
41 * MM will provide therefore ring-3 callable interfaces for some of the GMM APIs
42 * related to resource tracking (PGM is the user).
43 *
44 * @see grp_mm
45 *
46 *
47 * @section sec_mm_hma Hypervisor Memory Area - Obsolete in 6.1
48 *
49 * The HMA is used when executing in raw-mode. We borrow, with the help of
50 * PGMMap, some unused space (one or more page directory entries to be precise)
51 * in the guest's virtual memory context. PGM will monitor the guest's virtual
52 * address space for changes and relocate the HMA when required.
53 *
54 * To give some idea what's in the HMA, study the 'info hma' output:
55 * @verbatim
56VBoxDbg> info hma
57Hypervisor Memory Area (HMA) Layout: Base 00000000a0000000, 0x00800000 bytes
5800000000a05cc000-00000000a05cd000 DYNAMIC fence
5900000000a05c4000-00000000a05cc000 DYNAMIC Dynamic mapping
6000000000a05c3000-00000000a05c4000 DYNAMIC fence
6100000000a05b8000-00000000a05c3000 DYNAMIC Paging
6200000000a05b6000-00000000a05b8000 MMIO2 0000000000000000 PCNetShMem
6300000000a0536000-00000000a05b6000 MMIO2 0000000000000000 VGA VRam
6400000000a0523000-00000000a0536000 00002aaab3d0c000 LOCKED autofree alloc once (PDM_DEVICE)
6500000000a0522000-00000000a0523000 DYNAMIC fence
6600000000a051e000-00000000a0522000 00002aaab36f5000 LOCKED autofree VBoxDD2RC.rc
6700000000a051d000-00000000a051e000 DYNAMIC fence
6800000000a04eb000-00000000a051d000 00002aaab36c3000 LOCKED autofree VBoxDDRC.rc
6900000000a04ea000-00000000a04eb000 DYNAMIC fence
7000000000a04e9000-00000000a04ea000 00002aaab36c2000 LOCKED autofree ram range (High ROM Region)
7100000000a04e8000-00000000a04e9000 DYNAMIC fence
7200000000a040e000-00000000a04e8000 00002aaab2e6d000 LOCKED autofree VMMRC.rc
7300000000a0208000-00000000a040e000 00002aaab2c67000 LOCKED autofree alloc once (PATM)
7400000000a01f7000-00000000a0208000 00002aaaab92d000 LOCKED autofree alloc once (SELM)
7500000000a01e7000-00000000a01f7000 00002aaaab5e8000 LOCKED autofree alloc once (SELM)
7600000000a01e6000-00000000a01e7000 DYNAMIC fence
7700000000a01e5000-00000000a01e6000 00002aaaab5e7000 HCPHYS 00000000c363c000 Core Code
7800000000a01e4000-00000000a01e5000 DYNAMIC fence
7900000000a01e3000-00000000a01e4000 00002aaaaab26000 HCPHYS 00000000619cf000 GIP
8000000000a01a2000-00000000a01e3000 00002aaaabf32000 LOCKED autofree alloc once (PGM_PHYS)
8100000000a016b000-00000000a01a2000 00002aaab233f000 LOCKED autofree alloc once (PGM_POOL)
8200000000a016a000-00000000a016b000 DYNAMIC fence
8300000000a0165000-00000000a016a000 DYNAMIC CR3 mapping
8400000000a0164000-00000000a0165000 DYNAMIC fence
8500000000a0024000-00000000a0164000 00002aaab215f000 LOCKED autofree Heap
8600000000a0023000-00000000a0024000 DYNAMIC fence
8700000000a0001000-00000000a0023000 00002aaab1d24000 LOCKED pages VM
8800000000a0000000-00000000a0001000 DYNAMIC fence
89 @endverbatim
90 *
91 *
92 * @section sec_mm_hyperheap Hypervisor Heap
93 *
94 * The heap is accessible from ring-3, ring-0 and the raw-mode context. That
95 * said, it's not necessarily mapped into ring-0 on if that's possible since we
96 * don't wish to waste kernel address space without a good reason.
97 *
98 * Allocations within the heap are always in the same relative position in all
99 * contexts, so, it's possible to use offset based linking. In fact, the heap is
100 * internally using offset based linked lists tracking heap blocks. We use
101 * offset linked AVL trees and lists in a lot of places where share structures
102 * between RC, R3 and R0, so this is a strict requirement of the heap. However
103 * this means that we cannot easily extend the heap since the extension won't
104 * necessarily be in the continuation of the current heap memory in all (or any)
105 * context.
106 *
107 * All allocations are tagged. Per tag allocation statistics will be maintaining
108 * and exposed thru STAM when VBOX_WITH_STATISTICS is defined.
109 *
110 *
111 * @section sec_mm_r3heap Tagged Ring-3 Heap
112 *
113 * The ring-3 heap is a wrapper around the RTMem API adding allocation
114 * statistics and automatic cleanup on VM destruction.
115 *
116 * Per tag allocation statistics will be maintaining and exposed thru STAM when
117 * VBOX_WITH_STATISTICS is defined.
118 *
119 *
120 * @section sec_mm_page Page Pool
121 *
122 * The MM manages a page pool from which other components can allocate locked,
123 * page aligned and page sized memory objects. The pool provides facilities to
124 * convert back and forth between (host) physical and virtual addresses (within
125 * the pool of course). Several specialized interfaces are provided for the most
126 * common allocations and conversions to save the caller from bothersome casting
127 * and extra parameter passing.
128 *
129 *
130 * @section sec_mm_locked Locked Process Memory
131 *
132 * MM manages the locked process memory. This is used for a bunch of things
133 * (count the LOCKED entries in the 'info hma' output found in @ref sec_mm_hma),
134 * but the main consumer of memory is currently for guest RAM. There is an
135 * ongoing rewrite that will move all the guest RAM allocation to PGM and
136 * GMM.
137 *
138 * The locking of memory is something doing in cooperation with the VirtualBox
139 * support driver, SUPDrv (aka. VBoxDrv), thru the support library API,
140 * SUPR3 (aka. SUPLib).
141 *
142 *
143 * @section sec_mm_phys Physical Guest Memory
144 *
145 * MM is currently managing the physical memory for the guest. It relies heavily
146 * on PGM for this. There is an ongoing rewrite that will move this to PGM. (The
147 * rewrite is driven by the need for more flexible guest ram allocation, but
148 * also motivated by the fact that MMPhys is just adding stupid bureaucracy and
149 * that MMR3PhysReserve is a totally weird artifact that must go away.)
150 *
151 */
152
153
154/*********************************************************************************************************************************
155* Header Files *
156*********************************************************************************************************************************/
157#define LOG_GROUP LOG_GROUP_MM
158#include <VBox/vmm/mm.h>
159#include <VBox/vmm/pgm.h>
160#include <VBox/vmm/cfgm.h>
161#include <VBox/vmm/ssm.h>
162#include <VBox/vmm/gmm.h>
163#include "MMInternal.h"
164#include <VBox/vmm/vm.h>
165#include <VBox/vmm/uvm.h>
166#include <VBox/err.h>
167#include <VBox/param.h>
168
169#include <VBox/log.h>
170#include <iprt/alloc.h>
171#include <iprt/assert.h>
172#include <iprt/string.h>
173#if defined(VBOX_VMM_TARGET_ARMV8)
174# include <iprt/file.h>
175#endif
176
177
178/*********************************************************************************************************************************
179* Defined Constants And Macros *
180*********************************************************************************************************************************/
181/** The current saved state version of MM. */
182#define MM_SAVED_STATE_VERSION 2
183
184
185/*********************************************************************************************************************************
186* Internal Functions *
187*********************************************************************************************************************************/
188static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
189static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
190
191
192
193
194/**
195 * Initializes the MM members of the UVM.
196 *
197 * This is currently only the ring-3 heap.
198 *
199 * @returns VBox status code.
200 * @param pUVM Pointer to the user mode VM structure.
201 */
202VMMR3DECL(int) MMR3InitUVM(PUVM pUVM)
203{
204 /*
205 * Assert sizes and order.
206 */
207 AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
208 AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
209 Assert(!pUVM->mm.s.pHeap);
210
211 /*
212 * Init the heap.
213 */
214 int rc = mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap);
215 if (RT_SUCCESS(rc))
216 return VINF_SUCCESS;
217 return rc;
218}
219
220
221/**
222 * Initializes the MM.
223 *
224 * MM is managing the virtual address space (among other things) and
225 * setup the hypervisor memory area mapping in the VM structure and
226 * the hypervisor alloc-only-heap. Assuming the current init order
227 * and components the hypervisor memory area looks like this:
228 * -# VM Structure.
229 * -# Hypervisor alloc only heap (also call Hypervisor memory region).
230 * -# Core code.
231 *
232 * MM determines the virtual address of the hypervisor memory area by
233 * checking for location at previous run. If that property isn't available
234 * it will choose a default starting location, currently 0xa0000000.
235 *
236 * @returns VBox status code.
237 * @param pVM The cross context VM structure.
238 */
239VMMR3DECL(int) MMR3Init(PVM pVM)
240{
241 LogFlow(("MMR3Init\n"));
242
243 /*
244 * Assert alignment, sizes and order.
245 */
246 AssertRelease(!(RT_UOFFSETOF(VM, mm.s) & 31));
247 AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
248
249 /*
250 * Register the saved state data unit.
251 */
252 int rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2,
253 NULL, NULL, NULL,
254 NULL, mmR3Save, NULL,
255 NULL, mmR3Load, NULL);
256 if (RT_SUCCESS(rc))
257 {
258 /*
259 * Statistics.
260 */
261 STAM_REG(pVM, &pVM->mm.s.cBasePages, STAMTYPE_U64, "/MM/Reserved/cBasePages", STAMUNIT_PAGES, "Reserved number of base pages, ROM and Shadow ROM included.");
262 STAM_REG(pVM, &pVM->mm.s.cHandyPages, STAMTYPE_U32, "/MM/Reserved/cHandyPages", STAMUNIT_PAGES, "Reserved number of handy pages.");
263 STAM_REG(pVM, &pVM->mm.s.cShadowPages, STAMTYPE_U32, "/MM/Reserved/cShadowPages", STAMUNIT_PAGES, "Reserved number of shadow paging pages.");
264 STAM_REG(pVM, &pVM->mm.s.cFixedPages, STAMTYPE_U32, "/MM/Reserved/cFixedPages", STAMUNIT_PAGES, "Reserved number of fixed pages (MMIO2).");
265 STAM_REG(pVM, &pVM->mm.s.cbRamBase, STAMTYPE_U64, "/MM/cbRamBase", STAMUNIT_BYTES, "Size of the base RAM.");
266
267 return rc;
268 }
269
270 return rc;
271}
272
273
274#if defined(VBOX_VMM_TARGET_ARMV8)
275/**
276 * Initializes the given RAM range with data from the given file.
277 *
278 * @returns VBox status code.
279 * @param pVM The cross context VM structure.
280 * @param GCPhysStart Where to start putting the file content.
281 * @param pszFilename The file to read the data from.
282 */
283static int mmR3RamRegionInitFromFile(PVM pVM, RTGCPHYS GCPhysStart, const char *pszFilename)
284{
285 RTFILE hFile = NIL_RTFILE;
286 int rc = RTFileOpen(&hFile, pszFilename, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_WRITE);
287 if (RT_SUCCESS(rc))
288 {
289 uint8_t abRead[GUEST_PAGE_SIZE];
290 RTGCPHYS GCPhys = GCPhysStart;
291
292 for (;;)
293 {
294 size_t cbThisRead = 0;
295 rc = RTFileRead(hFile, &abRead[0], sizeof(abRead), &cbThisRead);
296 if (RT_FAILURE(rc))
297 break;
298
299 rc = PGMPhysSimpleWriteGCPhys(pVM, GCPhys, &abRead[0], cbThisRead);
300 if (RT_FAILURE(rc))
301 break;
302
303 GCPhys += cbThisRead;
304 if (cbThisRead < sizeof(abRead))
305 break;
306 }
307
308 RTFileClose(hFile);
309 }
310
311 if (RT_FAILURE(rc))
312 LogRel(("RAM#%RGp: Loading file %s failed -> %Rrc\n", GCPhysStart, pszFilename, rc));
313
314 return rc;
315}
316
317
318/**
319 * This sets up the RAM ranges from the VM config.
320 *
321 * @returns VBox status code.
322 * @param pVM The cross context VM structure.
323 * @param pMMCfg Pointer to the CFGM node holding the RAM config.
324 *
325 * @note On ARM there is no "standard" way to handle RAM like on x86.
326 * Every SoC can have multiple RAM regions scattered across the whole
327 * address space so we have to be much more flexible here.
328 */
329static int mmR3InitRamArmV8(PVM pVM, PCFGMNODE pMMCfg)
330{
331 int rc = VINF_SUCCESS;
332 PCFGMNODE pMemRegions = CFGMR3GetChild(pMMCfg, "MemRegions");
333
334 pVM->mm.s.cbRamBase = 0;
335 pVM->mm.s.cbRamHole = 0;
336 pVM->mm.s.cbRamBelow4GB = 0;
337 pVM->mm.s.cbRamAbove4GB = 0;
338
339 for (PCFGMNODE pCur = CFGMR3GetFirstChild(pMemRegions); pCur; pCur = CFGMR3GetNextChild(pCur))
340 {
341 char szMemRegion[512]; RT_ZERO(szMemRegion);
342 rc = CFGMR3GetName(pCur, &szMemRegion[0], sizeof(szMemRegion));
343 if (RT_FAILURE(rc))
344 {
345 LogRel(("Failed to query memory region name -> %Rrc\n", rc));
346 break;
347 }
348
349 uint64_t u64GCPhysStart = 0;
350 rc = CFGMR3QueryU64(pCur, "GCPhysStart", &u64GCPhysStart);
351 if (RT_FAILURE(rc))
352 {
353 LogRel(("Failed to query \"GCPhysStart\" for memory region %s -> %Rrc\n", szMemRegion, rc));
354 break;
355 }
356
357 uint64_t u64MemSize = 0;
358 rc = CFGMR3QueryU64(pCur, "Size", &u64MemSize);
359 if (RT_FAILURE(rc))
360 {
361 LogRel(("Failed to query \"Size\" for memory region %s -> %Rrc\n", szMemRegion, rc));
362 break;
363 }
364
365 rc = PGMR3PhysRegisterRam(pVM, u64GCPhysStart, u64MemSize, "Conventional RAM");
366 if (RT_FAILURE(rc))
367 {
368 LogRel(("Failed to register memory region '%s' GCPhysStart=%RGp Size=%#RX64 -> %Rrc\n",
369 szMemRegion, u64GCPhysStart, u64MemSize));
370 break;
371 }
372
373 char *pszFilename = NULL;
374 rc = CFGMR3QueryStringAlloc(pCur, "PrepopulateFromFile", &pszFilename);
375 if (RT_SUCCESS(rc))
376 {
377 rc = mmR3RamRegionInitFromFile(pVM, u64GCPhysStart, pszFilename);
378 MMR3HeapFree(pszFilename);
379 if (RT_FAILURE(rc))
380 break;
381 }
382 else if (rc != VERR_CFGM_VALUE_NOT_FOUND)
383 {
384 LogRel(("Failed to query \"PrepopulateFromFile\" for memory region %s -> %Rrc\n", szMemRegion, rc));
385 break;
386 }
387 else
388 rc = VINF_SUCCESS;
389
390 pVM->mm.s.cbRamBase += u64MemSize;
391 if (u64GCPhysStart >= _4G)
392 pVM->mm.s.cbRamAbove4GB += u64MemSize;
393 else if (u64GCPhysStart + u64MemSize > _4G)
394 {
395 uint64_t cbRamAbove4GB = (u64GCPhysStart + u64MemSize) - _4G;
396 pVM->mm.s.cbRamAbove4GB += cbRamAbove4GB;
397 pVM->mm.s.cbRamBelow4GB += (u64MemSize - cbRamAbove4GB);
398 }
399 else
400 pVM->mm.s.cbRamBelow4GB += (uint32_t)u64MemSize;
401 }
402
403 return rc;
404}
405#endif
406
407
408/**
409 * Initializes the MM parts which depends on PGM being initialized.
410 *
411 * @returns VBox status code.
412 * @param pVM The cross context VM structure.
413 * @remark No cleanup necessary since MMR3Term() will be called on failure.
414 */
415VMMR3DECL(int) MMR3InitPaging(PVM pVM)
416{
417 LogFlow(("MMR3InitPaging:\n"));
418
419 /*
420 * Query the CFGM values.
421 */
422 int rc;
423 PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM");
424 if (!pMMCfg)
425 {
426 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg);
427 AssertRCReturn(rc, rc);
428 }
429
430#if defined(VBOX_VMM_TARGET_ARMV8)
431 rc = mmR3InitRamArmV8(pVM, pMMCfg);
432#else
433 /** @cfgm{/RamSize, uint64_t, 0, 16TB, 0}
434 * Specifies the size of the base RAM that is to be set up during
435 * VM initialization.
436 */
437 uint64_t cbRam;
438 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
439 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
440 cbRam = 0;
441 else
442 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc), rc);
443 AssertLogRelMsg(!(cbRam & ~X86_PTE_PAE_PG_MASK), ("%RGp X86_PTE_PAE_PG_MASK=%RX64\n", cbRam, X86_PTE_PAE_PG_MASK));
444 AssertLogRelMsgReturn(cbRam <= GMM_GCPHYS_LAST, ("cbRam=%RGp GMM_GCPHYS_LAST=%RX64\n", cbRam, GMM_GCPHYS_LAST), VERR_OUT_OF_RANGE);
445 cbRam &= X86_PTE_PAE_PG_MASK;
446 pVM->mm.s.cbRamBase = cbRam;
447
448 /** @cfgm{/RamHoleSize, uint32_t, 0, 4032MB, 512MB}
449 * Specifies the size of the memory hole. The memory hole is used
450 * to avoid mapping RAM to the range normally used for PCI memory regions.
451 * Must be aligned on a 4MB boundary. */
452 uint32_t cbRamHole;
453 rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
454 AssertLogRelMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamHoleSize\", rc=%Rrc.\n", rc), rc);
455 AssertLogRelMsgReturn(cbRamHole <= 4032U * _1M,
456 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
457 AssertLogRelMsgReturn(cbRamHole > 16 * _1M,
458 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
459 AssertLogRelMsgReturn(!(cbRamHole & (_4M - 1)),
460 ("Configuration error: \"RamHoleSize\"=%#RX32 is misaligned.\n", cbRamHole), VERR_OUT_OF_RANGE);
461 uint64_t const offRamHole = _4G - cbRamHole;
462 if (cbRam < offRamHole)
463 Log(("MM: %RU64 bytes of RAM\n", cbRam));
464 else
465 Log(("MM: %RU64 bytes of RAM with a hole at %RU64 up to 4GB.\n", cbRam, offRamHole));
466
467 /** @cfgm{/MM/Policy, string, no overcommitment}
468 * Specifies the policy to use when reserving memory for this VM. The recognized
469 * value is 'no overcommitment' (default). See GMMPOLICY.
470 */
471 GMMOCPOLICY enmOcPolicy;
472 char sz[64];
473 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz));
474 if (RT_SUCCESS(rc))
475 {
476 if ( !RTStrICmp(sz, "no_oc")
477 || !RTStrICmp(sz, "no overcommitment"))
478 enmOcPolicy = GMMOCPOLICY_NO_OC;
479 else
480 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz);
481 }
482 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
483 enmOcPolicy = GMMOCPOLICY_NO_OC;
484 else
485 AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Policy\", rc=%Rrc.\n", rc), rc);
486
487 /** @cfgm{/MM/Priority, string, normal}
488 * Specifies the memory priority of this VM. The priority comes into play when the
489 * system is overcommitted and the VMs needs to be milked for memory. The recognized
490 * values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY.
491 */
492 GMMPRIORITY enmPriority;
493 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz));
494 if (RT_SUCCESS(rc))
495 {
496 if (!RTStrICmp(sz, "low"))
497 enmPriority = GMMPRIORITY_LOW;
498 else if (!RTStrICmp(sz, "normal"))
499 enmPriority = GMMPRIORITY_NORMAL;
500 else if (!RTStrICmp(sz, "high"))
501 enmPriority = GMMPRIORITY_HIGH;
502 else
503 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz);
504 }
505 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
506 enmPriority = GMMPRIORITY_NORMAL;
507 else
508 AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Priority\", rc=%Rrc.\n", rc), rc);
509
510 /*
511 * Make the initial memory reservation with GMM.
512 */
513 uint32_t const cbUma = _1M - 640*_1K;
514 uint64_t cBasePages = ((cbRam - cbUma) >> GUEST_PAGE_SHIFT) + pVM->mm.s.cBasePages;
515 rc = GMMR3InitialReservation(pVM,
516 RT_MAX(cBasePages + pVM->mm.s.cHandyPages, 1),
517 RT_MAX(pVM->mm.s.cShadowPages, 1),
518 RT_MAX(pVM->mm.s.cFixedPages, 1),
519 enmOcPolicy,
520 enmPriority);
521 if (RT_FAILURE(rc))
522 {
523 if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED)
524 return VMSetError(pVM, rc, RT_SRC_POS,
525 N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmOcPolicy=%d enmPriority=%d)"),
526 cbRam, enmOcPolicy, enmPriority);
527 return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)",
528 cbRam >> GUEST_PAGE_SHIFT, enmOcPolicy, enmPriority);
529 }
530
531 /*
532 * If RamSize is 0 we're done now.
533 */
534 if (cbRam < GUEST_PAGE_SIZE)
535 {
536 Log(("MM: No RAM configured\n"));
537 return VINF_SUCCESS;
538 }
539
540 /*
541 * Setup the base ram (PGM).
542 */
543 pVM->mm.s.cbRamHole = cbRamHole;
544 pVM->mm.s.cbRamBelow4GB = cbRam > offRamHole ? offRamHole : cbRam;
545 pVM->mm.s.cbRamAbove4GB = cbRam > offRamHole ? cbRam - offRamHole : 0;
546
547 /* First the conventional memory: */
548 rc = PGMR3PhysRegisterRam(pVM, 0, RT_MIN(cbRam, 640*_1K), "Conventional RAM");
549 if (RT_SUCCESS(rc) && cbRam >= _1M)
550 {
551 /* The extended memory from 1MiB to 2MiB to align better with large pages in NEM mode: */
552 rc = PGMR3PhysRegisterRam(pVM, _1M, RT_MIN(_1M, cbRam - _1M), "Extended RAM, 1-2MB");
553 if (cbRam > _2M)
554 {
555 /* The extended memory from 2MiB up to 4GiB: */
556 rc = PGMR3PhysRegisterRam(pVM, _2M, pVM->mm.s.cbRamBelow4GB - _2M, "Extended RAM, >2MB");
557
558 /* Then all the memory above 4GiB: */
559 if (RT_SUCCESS(rc) && pVM->mm.s.cbRamAbove4GB > 0)
560 rc = PGMR3PhysRegisterRam(pVM, _4G, cbRam - offRamHole, "Above 4GB Base RAM");
561 }
562 }
563#endif /* !VBOX_VMM_TARGET_ARMV8 */
564
565 /*
566 * Enabled mmR3UpdateReservation here since we don't want the
567 * PGMR3PhysRegisterRam calls above mess things up.
568 */
569 pVM->mm.s.fDoneMMR3InitPaging = true;
570#if !defined(VBOX_VMM_TARGET_ARMV8)
571 AssertMsg(pVM->mm.s.cBasePages == cBasePages || RT_FAILURE(rc), ("%RX64 != %RX64\n", pVM->mm.s.cBasePages, cBasePages));
572#endif
573
574 LogFlow(("MMR3InitPaging: returns %Rrc\n", rc));
575 return rc;
576}
577
578
579/**
580 * Terminates the MM.
581 *
582 * Termination means cleaning up and freeing all resources,
583 * the VM it self is at this point powered off or suspended.
584 *
585 * @returns VBox status code.
586 * @param pVM The cross context VM structure.
587 */
588VMMR3DECL(int) MMR3Term(PVM pVM)
589{
590 RT_NOREF(pVM);
591 return VINF_SUCCESS;
592}
593
594
595/**
596 * Terminates the UVM part of MM.
597 *
598 * Termination means cleaning up and freeing all resources,
599 * the VM it self is at this point powered off or suspended.
600 *
601 * @param pUVM Pointer to the user mode VM structure.
602 */
603VMMR3DECL(void) MMR3TermUVM(PUVM pUVM)
604{
605 /*
606 * Destroy the heap.
607 */
608 mmR3HeapDestroy(pUVM->mm.s.pHeap);
609 pUVM->mm.s.pHeap = NULL;
610}
611
612
613/**
614 * Execute state save operation.
615 *
616 * @returns VBox status code.
617 * @param pVM The cross context VM structure.
618 * @param pSSM SSM operation handle.
619 */
620static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
621{
622 LogFlow(("mmR3Save:\n"));
623
624 /* (PGM saves the physical memory.) */
625 SSMR3PutU64(pSSM, pVM->mm.s.cBasePages);
626 return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase);
627}
628
629
630/**
631 * Execute state load operation.
632 *
633 * @returns VBox status code.
634 * @param pVM The cross context VM structure.
635 * @param pSSM SSM operation handle.
636 * @param uVersion Data layout version.
637 * @param uPass The data pass.
638 */
639static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
640{
641 LogFlow(("mmR3Load:\n"));
642 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
643
644 /*
645 * Validate version.
646 */
647 if ( SSM_VERSION_MAJOR_CHANGED(uVersion, MM_SAVED_STATE_VERSION)
648 || !uVersion)
649 {
650 AssertMsgFailed(("mmR3Load: Invalid version uVersion=%d!\n", uVersion));
651 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
652 }
653
654 /*
655 * Check the cBasePages and cbRamBase values.
656 */
657 int rc;
658 RTUINT cb1;
659
660 /* cBasePages (ignored) */
661 uint64_t cGuestPages;
662 if (uVersion >= 2)
663 rc = SSMR3GetU64(pSSM, &cGuestPages);
664 else
665 {
666 rc = SSMR3GetUInt(pSSM, &cb1);
667 cGuestPages = cb1 >> GUEST_PAGE_SHIFT;
668 }
669 if (RT_FAILURE(rc))
670 return rc;
671
672 /* cbRamBase */
673 uint64_t cb;
674 if (uVersion != 1)
675 rc = SSMR3GetU64(pSSM, &cb);
676 else
677 {
678 rc = SSMR3GetUInt(pSSM, &cb1);
679 cb = cb1;
680 }
681 if (RT_FAILURE(rc))
682 return rc;
683 AssertLogRelMsgReturn(cb == pVM->mm.s.cbRamBase,
684 ("Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb),
685 VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
686
687 /* (PGM restores the physical memory.) */
688 return rc;
689}
690
691
692/**
693 * Updates GMM with memory reservation changes.
694 *
695 * Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes.
696 *
697 * @returns VBox status code - see GMMR0UpdateReservation.
698 * @param pVM The cross context VM structure.
699 */
700int mmR3UpdateReservation(PVM pVM)
701{
702 VM_ASSERT_EMT(pVM);
703 if (pVM->mm.s.fDoneMMR3InitPaging)
704 return GMMR3UpdateReservation(pVM,
705 RT_MAX(pVM->mm.s.cBasePages + pVM->mm.s.cHandyPages, 1),
706 RT_MAX(pVM->mm.s.cShadowPages, 1),
707 RT_MAX(pVM->mm.s.cFixedPages, 1));
708 return VINF_SUCCESS;
709}
710
711
712/**
713 * Interface for PGM to increase the reservation of RAM and ROM pages.
714 *
715 * This can be called before MMR3InitPaging.
716 *
717 * @returns VBox status code. Will set VM error on failure.
718 * @param pVM The cross context VM structure.
719 * @param cAddBasePages The number of pages to add.
720 */
721VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages)
722{
723 uint64_t cOld = pVM->mm.s.cBasePages;
724 pVM->mm.s.cBasePages += cAddBasePages;
725 LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64)\n", cAddBasePages, cOld, pVM->mm.s.cBasePages));
726 int rc = mmR3UpdateReservation(pVM);
727 if (RT_FAILURE(rc))
728 {
729 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64 + %#RX32)"),
730 cOld, pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
731 pVM->mm.s.cBasePages = cOld;
732 }
733 return rc;
734}
735
736
737/**
738 * Interface for PGM to make reservations for handy pages in addition to the
739 * base memory.
740 *
741 * This can be called before MMR3InitPaging.
742 *
743 * @returns VBox status code. Will set VM error on failure.
744 * @param pVM The cross context VM structure.
745 * @param cHandyPages The number of handy pages.
746 */
747VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages)
748{
749 AssertReturn(!pVM->mm.s.cHandyPages, VERR_WRONG_ORDER);
750
751 pVM->mm.s.cHandyPages = cHandyPages;
752 LogFlow(("MMR3ReserveHandyPages: %RU32 (base %RU64)\n", pVM->mm.s.cHandyPages, pVM->mm.s.cBasePages));
753 int rc = mmR3UpdateReservation(pVM);
754 if (RT_FAILURE(rc))
755 {
756 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 + %#RX32)"),
757 pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
758 pVM->mm.s.cHandyPages = 0;
759 }
760 return rc;
761}
762
763
764/**
765 * Interface for PGM to adjust the reservation of fixed pages.
766 *
767 * This can be called before MMR3InitPaging.
768 *
769 * @returns VBox status code. Will set VM error on failure.
770 * @param pVM The cross context VM structure.
771 * @param cDeltaFixedPages The number of guest pages to add (positive) or
772 * subtract (negative).
773 * @param pszDesc Some description associated with the reservation.
774 */
775VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc)
776{
777 const uint32_t cOld = pVM->mm.s.cFixedPages;
778 pVM->mm.s.cFixedPages += cDeltaFixedPages;
779 LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages));
780 int rc = mmR3UpdateReservation(pVM);
781 if (RT_FAILURE(rc))
782 {
783 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"),
784 cOld, pVM->mm.s.cFixedPages, pszDesc);
785 pVM->mm.s.cFixedPages = cOld;
786 }
787 return rc;
788}
789
790
791/**
792 * Interface for PGM to update the reservation of shadow pages.
793 *
794 * This can be called before MMR3InitPaging.
795 *
796 * @returns VBox status code. Will set VM error on failure.
797 * @param pVM The cross context VM structure.
798 * @param cShadowPages The new page count.
799 */
800VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages)
801{
802 const uint32_t cOld = pVM->mm.s.cShadowPages;
803 pVM->mm.s.cShadowPages = cShadowPages;
804 LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages));
805 int rc = mmR3UpdateReservation(pVM);
806 if (RT_FAILURE(rc))
807 {
808 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages);
809 pVM->mm.s.cShadowPages = cOld;
810 }
811 return rc;
812}
813
814
815/**
816 * Get the size of the base RAM.
817 * This usually means the size of the first contiguous block of physical memory.
818 *
819 * @returns The guest base RAM size.
820 * @param pVM The cross context VM structure.
821 * @thread Any.
822 *
823 * @deprecated
824 */
825VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM)
826{
827 return pVM->mm.s.cbRamBase;
828}
829
830
831/**
832 * Get the size of RAM below 4GB (starts at address 0x00000000).
833 *
834 * @returns The amount of RAM below 4GB in bytes.
835 * @param pVM The cross context VM structure.
836 * @thread Any.
837 */
838VMMR3DECL(uint32_t) MMR3PhysGetRamSizeBelow4GB(PVM pVM)
839{
840 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
841 return pVM->mm.s.cbRamBelow4GB;
842}
843
844
845/**
846 * Get the size of RAM above 4GB (starts at address 0x000100000000).
847 *
848 * @returns The amount of RAM above 4GB in bytes.
849 * @param pVM The cross context VM structure.
850 * @thread Any.
851 */
852VMMR3DECL(uint64_t) MMR3PhysGetRamSizeAbove4GB(PVM pVM)
853{
854 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
855 return pVM->mm.s.cbRamAbove4GB;
856}
857
858
859/**
860 * Get the size of the RAM hole below 4GB.
861 *
862 * @returns Size in bytes.
863 * @param pVM The cross context VM structure.
864 * @thread Any.
865 */
866VMMR3DECL(uint32_t) MMR3PhysGet4GBRamHoleSize(PVM pVM)
867{
868 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
869 return pVM->mm.s.cbRamHole;
870}
871
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette