/* $Id: MMHyper.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */ /** @file * MM - Memory Manager - Hypervisor Memory Area. */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_MM_HYPER #include #include #include #include #include "MMInternal.h" #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifndef PGM_WITHOUT_MAPPINGS static DECLCALLBACK(bool) mmR3HyperRelocateCallback(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser); #endif static int mmR3HyperMap(PVM pVM, const size_t cb, const char *pszDesc, PRTGCPTR pGCPtr, PMMLOOKUPHYPER *ppLookup); static int mmR3HyperHeapCreate(PVM pVM, const size_t cb, PMMHYPERHEAP *ppHeap, PRTR0PTR pR0PtrHeap); static int mmR3HyperHeapMap(PVM pVM, PMMHYPERHEAP pHeap, PRTGCPTR ppHeapGC); static DECLCALLBACK(void) mmR3HyperInfoHma(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); /** * Determin the default heap size. * * @returns The heap size in bytes. * @param pVM The cross context VM structure. */ static uint32_t mmR3HyperComputeHeapSize(PVM pVM) { /** @todo Redo after moving allocations off the hyper heap. */ /* * Gather parameters. */ bool fCanUseLargerHeap = true; //bool fCanUseLargerHeap; //int rc = CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM"), "CanUseLargerHeap", &fCanUseLargerHeap, false); //AssertStmt(RT_SUCCESS(rc), fCanUseLargerHeap = false); uint64_t cbRam; int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam); AssertStmt(RT_SUCCESS(rc), cbRam = _1G); /* * We need to keep saved state compatibility if raw-mode is an option, * so lets filter out that case first. */ if ( !fCanUseLargerHeap && VM_IS_RAW_MODE_ENABLED(pVM) && cbRam < 16*_1G64) return 1280 * _1K; /* * Calculate the heap size. */ uint32_t cbHeap = _1M; /* The newer chipset may have more devices attached, putting additional pressure on the heap. */ if (fCanUseLargerHeap) cbHeap += _1M; /* More CPUs means some extra memory usage. */ if (pVM->cCpus > 1) cbHeap += pVM->cCpus * _64K; /* Lots of memory means extra memory consumption as well (pool). */ if (cbRam > 16*_1G64) cbHeap += _2M; /** @todo figure out extactly how much */ return RT_ALIGN(cbHeap, _256K); } /** * Initializes the hypervisor related MM stuff without * calling down to PGM. * * PGM is not initialized at this point, PGM relies on * the heap to initialize. * * @returns VBox status code. */ int mmR3HyperInit(PVM pVM) { LogFlow(("mmR3HyperInit:\n")); /* * Decide Hypervisor mapping in the guest context * And setup various hypervisor area and heap parameters. */ pVM->mm.s.pvHyperAreaGC = (RTGCPTR)MM_HYPER_AREA_ADDRESS; pVM->mm.s.cbHyperArea = MM_HYPER_AREA_MAX_SIZE; AssertRelease(RT_ALIGN_T(pVM->mm.s.pvHyperAreaGC, 1 << X86_PD_SHIFT, RTGCPTR) == pVM->mm.s.pvHyperAreaGC); Assert(pVM->mm.s.pvHyperAreaGC < 0xff000000); /** @todo @bugref{1865}, @bugref{3202}: Change the cbHyperHeap default * depending on whether VT-x/AMD-V is enabled or not! Don't waste * precious kernel space on heap for the PATM. */ PCFGMNODE pMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM"); uint32_t cbHyperHeap; int rc = CFGMR3QueryU32Def(pMM, "cbHyperHeap", &cbHyperHeap, mmR3HyperComputeHeapSize(pVM)); AssertLogRelRCReturn(rc, rc); cbHyperHeap = RT_ALIGN_32(cbHyperHeap, PAGE_SIZE); LogRel(("MM: cbHyperHeap=%#x (%u)\n", cbHyperHeap, cbHyperHeap)); /* * Allocate the hypervisor heap. * * (This must be done before we start adding memory to the * hypervisor static area because lookup records are allocated from it.) */ rc = mmR3HyperHeapCreate(pVM, cbHyperHeap, &pVM->mm.s.pHyperHeapR3, &pVM->mm.s.pHyperHeapR0); if (RT_SUCCESS(rc)) { /* * Make a small head fence to fend of accidental sequential access. */ MMR3HyperReserveFence(pVM); /* * Map the VM structure into the hypervisor space. * Note! Keeping the mappings here for now in case someone is using * MMHyperR3ToR0 or similar. */ AssertCompileSizeAlignment(VM, PAGE_SIZE); AssertCompileSizeAlignment(VMCPU, PAGE_SIZE); AssertCompileSizeAlignment(GVM, PAGE_SIZE); AssertCompileSizeAlignment(GVMCPU, PAGE_SIZE); AssertRelease(pVM->cbSelf == sizeof(VM)); AssertRelease(pVM->cbVCpu == sizeof(VMCPU)); /** @todo get rid of this */ RTGCPTR GCPtr; rc = MMR3HyperMapPages(pVM, pVM, pVM->pVMR0ForCall, sizeof(VM) >> PAGE_SHIFT, pVM->paVMPagesR3, "VM", &GCPtr); uint32_t offPages = RT_UOFFSETOF_DYN(GVM, aCpus) >> PAGE_SHIFT; /* (Using the _DYN variant avoids -Winvalid-offset) */ for (uint32_t idCpu = 0; idCpu < pVM->cCpus && RT_SUCCESS(rc); idCpu++, offPages += sizeof(GVMCPU) >> PAGE_SHIFT) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; RTGCPTR GCPtrIgn; rc = MMR3HyperMapPages(pVM, pVCpu, pVM->pVMR0ForCall + offPages * PAGE_SIZE, sizeof(VMCPU) >> PAGE_SHIFT, &pVM->paVMPagesR3[offPages], "VMCPU", &GCPtrIgn); } if (RT_SUCCESS(rc)) { pVM->pVMRC = (RTRCPTR)GCPtr; for (VMCPUID i = 0; i < pVM->cCpus; i++) pVM->apCpusR3[i]->pVMRC = pVM->pVMRC; /* Reserve a page for fencing. */ MMR3HyperReserveFence(pVM); /* * Map the heap into the hypervisor space. */ rc = mmR3HyperHeapMap(pVM, pVM->mm.s.pHyperHeapR3, &GCPtr); if (RT_SUCCESS(rc)) { pVM->mm.s.pHyperHeapRC = (RTRCPTR)GCPtr; Assert(pVM->mm.s.pHyperHeapRC == GCPtr); /* * Register info handlers. */ DBGFR3InfoRegisterInternal(pVM, "hma", "Show the layout of the Hypervisor Memory Area.", mmR3HyperInfoHma); LogFlow(("mmR3HyperInit: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /* Caller will do proper cleanup. */ } } LogFlow(("mmR3HyperInit: returns %Rrc\n", rc)); return rc; } /** * Cleans up the hypervisor heap. * * @returns VBox status code. */ int mmR3HyperTerm(PVM pVM) { if (pVM->mm.s.pHyperHeapR3) PDMR3CritSectDelete(&pVM->mm.s.pHyperHeapR3->Lock); return VINF_SUCCESS; } /** * Finalizes the HMA mapping. * * This is called later during init, most (all) HMA allocations should be done * by the time this function is called. * * @returns VBox status code. */ VMMR3DECL(int) MMR3HyperInitFinalize(PVM pVM) { LogFlow(("MMR3HyperInitFinalize:\n")); /* * Initialize the hyper heap critical section. */ int rc = PDMR3CritSectInit(pVM, &pVM->mm.s.pHyperHeapR3->Lock, RT_SRC_POS, "MM-HYPER"); AssertRC(rc); #ifndef PGM_WITHOUT_MAPPINGS /* * Adjust and create the HMA mapping. */ while ((RTINT)pVM->mm.s.offHyperNextStatic + 64*_1K < (RTINT)pVM->mm.s.cbHyperArea - _4M) pVM->mm.s.cbHyperArea -= _4M; rc = PGMR3MapPT(pVM, pVM->mm.s.pvHyperAreaGC, pVM->mm.s.cbHyperArea, 0 /*fFlags*/, mmR3HyperRelocateCallback, NULL, "Hypervisor Memory Area"); if (RT_FAILURE(rc)) return rc; #endif pVM->mm.s.fPGMInitialized = true; #ifndef PGM_WITHOUT_MAPPINGS /* * Do all the delayed mappings. */ PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uintptr_t)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { RTGCPTR GCPtr = pVM->mm.s.pvHyperAreaGC + pLookup->off; uint32_t cPages = pLookup->cb >> PAGE_SHIFT; switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: { PCRTHCPHYS paHCPhysPages = pLookup->u.Locked.paHCPhysPages; for (uint32_t i = 0; i < cPages; i++) { rc = PGMMap(pVM, GCPtr + (i << PAGE_SHIFT), paHCPhysPages[i], PAGE_SIZE, 0); AssertRCReturn(rc, rc); } break; } case MMLOOKUPHYPERTYPE_HCPHYS: rc = PGMMap(pVM, GCPtr, pLookup->u.HCPhys.HCPhys, pLookup->cb, 0); break; case MMLOOKUPHYPERTYPE_GCPHYS: { const RTGCPHYS GCPhys = pLookup->u.GCPhys.GCPhys; const uint32_t cb = pLookup->cb; for (uint32_t off = 0; off < cb; off += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys + off, &HCPhys); if (RT_FAILURE(rc)) break; rc = PGMMap(pVM, GCPtr + off, HCPhys, PAGE_SIZE, 0); if (RT_FAILURE(rc)) break; } break; } case MMLOOKUPHYPERTYPE_MMIO2: { const RTGCPHYS offEnd = pLookup->u.MMIO2.off + pLookup->cb; for (RTGCPHYS offCur = pLookup->u.MMIO2.off; offCur < offEnd; offCur += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMR3PhysMMIO2GetHCPhys(pVM, pLookup->u.MMIO2.pDevIns, pLookup->u.MMIO2.iSubDev, pLookup->u.MMIO2.iRegion, offCur, &HCPhys); if (RT_FAILURE(rc)) break; rc = PGMMap(pVM, GCPtr + (offCur - pLookup->u.MMIO2.off), HCPhys, PAGE_SIZE, 0); if (RT_FAILURE(rc)) break; } break; } case MMLOOKUPHYPERTYPE_DYNAMIC: /* do nothing here since these are either fences or managed by someone else using PGM. */ break; default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); break; } if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc cb=%d off=%#RX32 enmType=%d pszDesc=%s\n", rc, pLookup->cb, pLookup->off, pLookup->enmType, pLookup->pszDesc)); return rc; } /* next */ if (pLookup->offNext == (int32_t)NIL_OFFSET) break; pLookup = (PMMLOOKUPHYPER)((uintptr_t)pLookup + pLookup->offNext); } #endif /* !PGM_WITHOUT_MAPPINGS */ LogFlow(("MMR3HyperInitFinalize: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } #ifndef PGM_WITHOUT_MAPPINGS /** * Callback function which will be called when PGM is trying to find a new * location for the mapping. * * The callback is called in two modes, 1) the check mode and 2) the relocate mode. * In 1) the callback should say if it objects to a suggested new location. If it * accepts the new location, it is called again for doing it's relocation. * * * @returns true if the location is ok. * @returns false if another location should be found. * @param pVM The cross context VM structure. * @param GCPtrOld The old virtual address. * @param GCPtrNew The new virtual address. * @param enmMode Used to indicate the callback mode. * @param pvUser User argument. Ignored. * @remark The return value is no a failure indicator, it's an acceptance * indicator. Relocation can not fail! */ static DECLCALLBACK(bool) mmR3HyperRelocateCallback(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser) { NOREF(pvUser); switch (enmMode) { /* * Verify location - all locations are good for us. */ case PGMRELOCATECALL_SUGGEST: return true; /* * Execute the relocation. */ case PGMRELOCATECALL_RELOCATE: { /* * Accepted! */ AssertMsg(GCPtrOld == pVM->mm.s.pvHyperAreaGC, ("GCPtrOld=%RGv pVM->mm.s.pvHyperAreaGC=%RGv\n", GCPtrOld, pVM->mm.s.pvHyperAreaGC)); Log(("Relocating the hypervisor from %RGv to %RGv\n", GCPtrOld, GCPtrNew)); /* * Relocate the VM structure and ourselves. */ RTGCINTPTR offDelta = GCPtrNew - GCPtrOld; pVM->pVMRC += offDelta; for (VMCPUID i = 0; i < pVM->cCpus; i++) pVM->aCpus[i].pVMRC = pVM->pVMRC; pVM->mm.s.pvHyperAreaGC += offDelta; Assert(pVM->mm.s.pvHyperAreaGC < _4G); pVM->mm.s.pHyperHeapRC += offDelta; pVM->mm.s.pHyperHeapR3->pbHeapRC += offDelta; pVM->mm.s.pHyperHeapR3->pVMRC = pVM->pVMRC; /* * Relocate the rest. */ VMR3Relocate(pVM, offDelta); return true; } default: AssertMsgFailed(("Invalid relocation mode %d\n", enmMode)); } return false; } #endif /* !PGM_WITHOUT_MAPPINGS */ /** * Service a VMMCALLRING3_MMHYPER_LOCK call. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) MMR3LockCall(PVM pVM) { PMMHYPERHEAP pHeap = pVM->mm.s.CTX_SUFF(pHyperHeap); int rc = PDMR3CritSectEnterEx(&pHeap->Lock, true /* fHostCall */); AssertRC(rc); return rc; } #ifndef PGM_WITHOUT_MAPPINGS /** * Maps contiguous HC physical memory into the hypervisor region in the GC. * * @return VBox status code. * * @param pVM The cross context VM structure. * @param pvR3 Ring-3 address of the memory. Must be page aligned! * @param pvR0 Optional ring-0 address of the memory. * @param HCPhys Host context physical address of the memory to be * mapped. Must be page aligned! * @param cb Size of the memory. Will be rounded up to nearest page. * @param pszDesc Description. * @param pGCPtr Where to store the GC address. */ VMMR3DECL(int) MMR3HyperMapHCPhys(PVM pVM, void *pvR3, RTR0PTR pvR0, RTHCPHYS HCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapHCPhys: pvR3=%p pvR0=%p HCPhys=%RHp cb=%d pszDesc=%p:{%s} pGCPtr=%p\n", pvR3, pvR0, HCPhys, (int)cb, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ AssertReturn(RT_ALIGN_P(pvR3, PAGE_SIZE) == pvR3, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(pvR0, PAGE_SIZE, RTR0PTR) == pvR0, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(HCPhys, PAGE_SIZE, RTHCPHYS) == HCPhys, VERR_INVALID_PARAMETER); AssertReturn(pszDesc && *pszDesc, VERR_INVALID_PARAMETER); /* * Add the memory to the hypervisor area. */ uint32_t cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cbAligned, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_HCPHYS; pLookup->u.HCPhys.pvR3 = pvR3; pLookup->u.HCPhys.pvR0 = pvR0; pLookup->u.HCPhys.HCPhys = HCPhys; /* * Update the page table. */ if (pVM->mm.s.fPGMInitialized) rc = PGMMap(pVM, GCPtr, HCPhys, cbAligned, 0); if (RT_SUCCESS(rc)) *pGCPtr = GCPtr; } return rc; } /** * Maps contiguous GC physical memory into the hypervisor region in the GC. * * @return VBox status code. * * @param pVM The cross context VM structure. * @param GCPhys Guest context physical address of the memory to be mapped. Must be page aligned! * @param cb Size of the memory. Will be rounded up to nearest page. * @param pszDesc Mapping description. * @param pGCPtr Where to store the GC address. */ VMMR3DECL(int) MMR3HyperMapGCPhys(PVM pVM, RTGCPHYS GCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapGCPhys: GCPhys=%RGp cb=%d pszDesc=%p:{%s} pGCPtr=%p\n", GCPhys, (int)cb, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(pszDesc && *pszDesc, VERR_INVALID_PARAMETER); /* * Add the memory to the hypervisor area. */ cb = RT_ALIGN_Z(cb, PAGE_SIZE); RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cb, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_GCPHYS; pLookup->u.GCPhys.GCPhys = GCPhys; /* * Update the page table. */ for (unsigned off = 0; off < cb; off += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMPhysGCPhys2HCPhys(pVM, GCPhys + off, &HCPhys); AssertRC(rc); if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc GCPhys=%RGp off=%#x %s\n", rc, GCPhys, off, pszDesc)); break; } if (pVM->mm.s.fPGMInitialized) { rc = PGMMap(pVM, GCPtr + off, HCPhys, PAGE_SIZE, 0); AssertRC(rc); if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc GCPhys=%RGp off=%#x %s\n", rc, GCPhys, off, pszDesc)); break; } } } if (RT_SUCCESS(rc) && pGCPtr) *pGCPtr = GCPtr; } return rc; } /** * Maps a portion of an MMIO2 region into the hypervisor region. * * Callers of this API must never deregister the MMIO2 region before the * VM is powered off. If this becomes a requirement MMR3HyperUnmapMMIO2 * API will be needed to perform cleanups. * * @return VBox status code. * * @param pVM The cross context VM structure. * @param pDevIns The device owning the MMIO2 memory. * @param iSubDev The sub-device number. * @param iRegion The region. * @param off The offset into the region. Will be rounded down to closest page boundary. * @param cb The number of bytes to map. Will be rounded up to the closest page boundary. * @param pszDesc Mapping description. * @param pRCPtr Where to store the RC address. */ VMMR3DECL(int) MMR3HyperMapMMIO2(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTRCPTR pRCPtr) { LogFlow(("MMR3HyperMapMMIO2: pDevIns=%p iSubDev=%#x iRegion=%#x off=%RGp cb=%RGp pszDesc=%p:{%s} pRCPtr=%p\n", pDevIns, iSubDev, iRegion, off, cb, pszDesc, pszDesc, pRCPtr)); int rc; /* * Validate input. */ AssertReturn(pszDesc && *pszDesc, VERR_INVALID_PARAMETER); AssertReturn(off + cb > off, VERR_INVALID_PARAMETER); uint32_t const offPage = off & PAGE_OFFSET_MASK; off &= ~(RTGCPHYS)PAGE_OFFSET_MASK; cb += offPage; cb = RT_ALIGN_Z(cb, PAGE_SIZE); const RTGCPHYS offEnd = off + cb; AssertReturn(offEnd > off, VERR_INVALID_PARAMETER); for (RTGCPHYS offCur = off; offCur < offEnd; offCur += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMR3PhysMMIO2GetHCPhys(pVM, pDevIns, iSubDev, iRegion, offCur, &HCPhys); AssertMsgRCReturn(rc, ("rc=%Rrc - iSubDev=%#x iRegion=%#x off=%RGp\n", rc, iSubDev, iRegion, off), rc); } /* * Add the memory to the hypervisor area. */ RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; rc = mmR3HyperMap(pVM, cb, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_MMIO2; pLookup->u.MMIO2.pDevIns = pDevIns; pLookup->u.MMIO2.iSubDev = iSubDev; pLookup->u.MMIO2.iRegion = iRegion; pLookup->u.MMIO2.off = off; /* * Update the page table. */ if (pVM->mm.s.fPGMInitialized) { for (RTGCPHYS offCur = off; offCur < offEnd; offCur += PAGE_SIZE) { RTHCPHYS HCPhys; rc = PGMR3PhysMMIO2GetHCPhys(pVM, pDevIns, iSubDev, iRegion, offCur, &HCPhys); AssertRCReturn(rc, rc); rc = PGMMap(pVM, GCPtr + (offCur - off), HCPhys, PAGE_SIZE, 0); if (RT_FAILURE(rc)) { AssertMsgFailed(("rc=%Rrc offCur=%RGp %s\n", rc, offCur, pszDesc)); break; } } } if (RT_SUCCESS(rc)) { GCPtr |= offPage; *pRCPtr = GCPtr; AssertLogRelReturn(*pRCPtr == GCPtr, VERR_INTERNAL_ERROR); } } return rc; } #endif /* !PGM_WITHOUT_MAPPINGS */ /** * Maps locked R3 virtual memory into the hypervisor region in the GC. * * @return VBox status code. * * @param pVM The cross context VM structure. * @param pvR3 The ring-3 address of the memory, must be page aligned. * @param pvR0 The ring-0 address of the memory, must be page aligned. (optional) * @param cPages The number of pages. * @param paPages The page descriptors. * @param pszDesc Mapping description. * @param pGCPtr Where to store the GC address corresponding to pvR3. */ VMMR3DECL(int) MMR3HyperMapPages(PVM pVM, void *pvR3, RTR0PTR pvR0, size_t cPages, PCSUPPAGE paPages, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapPages: pvR3=%p pvR0=%p cPages=%zu paPages=%p pszDesc=%p:{%s} pGCPtr=%p\n", pvR3, pvR0, cPages, paPages, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ AssertPtrReturn(pvR3, VERR_INVALID_POINTER); AssertPtrReturn(paPages, VERR_INVALID_POINTER); AssertReturn(cPages > 0, VERR_PAGE_COUNT_OUT_OF_RANGE); AssertReturn(cPages <= VBOX_MAX_ALLOC_PAGE_COUNT, VERR_PAGE_COUNT_OUT_OF_RANGE); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); AssertPtrReturn(pGCPtr, VERR_INVALID_PARAMETER); /* * Add the memory to the hypervisor area. */ RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cPages << PAGE_SHIFT, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { /* * Copy the physical page addresses and tell PGM about them. */ PRTHCPHYS paHCPhysPages = (PRTHCPHYS)MMR3HeapAlloc(pVM, MM_TAG_MM, sizeof(RTHCPHYS) * cPages); if (paHCPhysPages) { for (size_t i = 0; i < cPages; i++) { AssertReleaseMsgReturn( paPages[i].Phys != 0 && paPages[i].Phys != NIL_RTHCPHYS && !(paPages[i].Phys & PAGE_OFFSET_MASK), ("i=%#zx Phys=%RHp %s\n", i, paPages[i].Phys, pszDesc), VERR_INTERNAL_ERROR); paHCPhysPages[i] = paPages[i].Phys; } #ifndef PGM_WITHOUT_MAPPINGS if (pVM->mm.s.fPGMInitialized) { for (size_t i = 0; i < cPages; i++) { rc = PGMMap(pVM, GCPtr + (i << PAGE_SHIFT), paHCPhysPages[i], PAGE_SIZE, 0); AssertRCBreak(rc); } } #endif if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_LOCKED; pLookup->u.Locked.pvR3 = pvR3; pLookup->u.Locked.pvR0 = pvR0; pLookup->u.Locked.paHCPhysPages = paHCPhysPages; /* done. */ *pGCPtr = GCPtr; return rc; } /* Don't care about failure clean, we're screwed if this fails anyway. */ } } return rc; } #ifndef PGM_WITHOUT_MAPPINGS /** * Reserves a hypervisor memory area. * Most frequent usage is fence pages and dynamically mappings like the guest PD and PDPT. * * @return VBox status code. * * @param pVM The cross context VM structure. * @param cb Size of the memory. Will be rounded up to nearest page. * @param pszDesc Mapping description. * @param pGCPtr Where to store the assigned GC address. Optional. */ VMMR3DECL(int) MMR3HyperReserve(PVM pVM, unsigned cb, const char *pszDesc, PRTGCPTR pGCPtr) { LogFlow(("MMR3HyperMapHCRam: cb=%d pszDesc=%p:{%s} pGCPtr=%p\n", (int)cb, pszDesc, pszDesc, pGCPtr)); /* * Validate input. */ if ( cb <= 0 || !pszDesc || !*pszDesc) { AssertMsgFailed(("Invalid parameter\n")); return VERR_INVALID_PARAMETER; } /* * Add the memory to the hypervisor area. */ RTGCPTR GCPtr; PMMLOOKUPHYPER pLookup; int rc = mmR3HyperMap(pVM, cb, pszDesc, &GCPtr, &pLookup); if (RT_SUCCESS(rc)) { pLookup->enmType = MMLOOKUPHYPERTYPE_DYNAMIC; if (pGCPtr) *pGCPtr = GCPtr; return VINF_SUCCESS; } return rc; } #endif /* !PGM_WITHOUT_MAPPINGS */ /** * Reserves an electric fence page. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) MMR3HyperReserveFence(PVM pVM) { #ifndef PGM_WITHOUT_MAPPINGS return MMR3HyperReserve(pVM, cb, "fence", NULL); #else RT_NOREF(pVM); return VINF_SUCCESS; #endif } /** * Adds memory to the hypervisor memory arena. * * @return VBox status code. * @param pVM The cross context VM structure. * @param cb Size of the memory. Will be rounded up to nearest page. * @param pszDesc The description of the memory. * @param pGCPtr Where to store the GC address. * @param ppLookup Where to store the pointer to the lookup record. * @remark We assume the threading structure of VBox imposes natural * serialization of most functions, this one included. */ static int mmR3HyperMap(PVM pVM, const size_t cb, const char *pszDesc, PRTGCPTR pGCPtr, PMMLOOKUPHYPER *ppLookup) { /* * Validate input. */ const uint32_t cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); if (pVM->mm.s.offHyperNextStatic + cbAligned >= pVM->mm.s.cbHyperArea) /* don't use the last page, it's a fence. */ { AssertMsgFailed(("Out of static mapping space in the HMA! offHyperAreaGC=%x cbAligned=%x cbHyperArea=%x\n", pVM->mm.s.offHyperNextStatic, cbAligned, pVM->mm.s.cbHyperArea)); return VERR_NO_MEMORY; } /* * Allocate lookup record. */ PMMLOOKUPHYPER pLookup; int rc = MMHyperAlloc(pVM, sizeof(*pLookup), 1, MM_TAG_MM, (void **)&pLookup); if (RT_SUCCESS(rc)) { /* * Initialize it and insert it. */ pLookup->offNext = pVM->mm.s.offLookupHyper; pLookup->cb = cbAligned; pLookup->off = pVM->mm.s.offHyperNextStatic; pVM->mm.s.offLookupHyper = (uint8_t *)pLookup - (uint8_t *)pVM->mm.s.pHyperHeapR3; if (pLookup->offNext != (int32_t)NIL_OFFSET) pLookup->offNext -= pVM->mm.s.offLookupHyper; pLookup->enmType = MMLOOKUPHYPERTYPE_INVALID; memset(&pLookup->u, 0xff, sizeof(pLookup->u)); pLookup->pszDesc = pszDesc; /* Mapping. */ *pGCPtr = pVM->mm.s.pvHyperAreaGC + pVM->mm.s.offHyperNextStatic; pVM->mm.s.offHyperNextStatic += cbAligned; /* Return pointer. */ *ppLookup = pLookup; } AssertRC(rc); LogFlow(("mmR3HyperMap: returns %Rrc *pGCPtr=%RGv\n", rc, *pGCPtr)); return rc; } /** * Allocates a new heap. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param cb The size of the new heap. * @param ppHeap Where to store the heap pointer on successful return. * @param pR0PtrHeap Where to store the ring-0 address of the heap on * success. */ static int mmR3HyperHeapCreate(PVM pVM, const size_t cb, PMMHYPERHEAP *ppHeap, PRTR0PTR pR0PtrHeap) { /* * Allocate the hypervisor heap. */ const uint32_t cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); uint32_t const cPages = cbAligned >> PAGE_SHIFT; PSUPPAGE paPages = (PSUPPAGE)MMR3HeapAlloc(pVM, MM_TAG_MM, cPages * sizeof(paPages[0])); if (!paPages) return VERR_NO_MEMORY; void *pv; RTR0PTR pvR0 = NIL_RTR0PTR; int rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pv, &pvR0, paPages); if (RT_SUCCESS(rc)) { Assert(pvR0 != NIL_RTR0PTR && !(PAGE_OFFSET_MASK & pvR0)); memset(pv, 0, cbAligned); /* * Initialize the heap and first free chunk. */ PMMHYPERHEAP pHeap = (PMMHYPERHEAP)pv; pHeap->u32Magic = MMHYPERHEAP_MAGIC; pHeap->pbHeapR3 = (uint8_t *)pHeap + MMYPERHEAP_HDR_SIZE; pHeap->pbHeapR0 = pvR0 + MMYPERHEAP_HDR_SIZE; //pHeap->pbHeapRC = 0; // set by mmR3HyperHeapMap() pHeap->pVMR3 = pVM; pHeap->pVMR0 = pVM->pVMR0ForCall; pHeap->pVMRC = pVM->pVMRC; pHeap->cbHeap = cbAligned - MMYPERHEAP_HDR_SIZE; pHeap->cbFree = pHeap->cbHeap - sizeof(MMHYPERCHUNK); //pHeap->offFreeHead = 0; //pHeap->offFreeTail = 0; pHeap->offPageAligned = pHeap->cbHeap; //pHeap->HyperHeapStatTree = 0; pHeap->paPages = paPages; PMMHYPERCHUNKFREE pFree = (PMMHYPERCHUNKFREE)pHeap->pbHeapR3; pFree->cb = pHeap->cbFree; //pFree->core.offNext = 0; MMHYPERCHUNK_SET_TYPE(&pFree->core, MMHYPERCHUNK_FLAGS_FREE); pFree->core.offHeap = -(int32_t)MMYPERHEAP_HDR_SIZE; //pFree->offNext = 0; //pFree->offPrev = 0; STAMR3Register(pVM, &pHeap->cbHeap, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, "/MM/HyperHeap/cbHeap", STAMUNIT_BYTES, "The heap size."); STAMR3Register(pVM, &pHeap->cbFree, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, "/MM/HyperHeap/cbFree", STAMUNIT_BYTES, "The free space."); *ppHeap = pHeap; *pR0PtrHeap = pvR0; return VINF_SUCCESS; } AssertMsgFailed(("SUPR3PageAllocEx(%d,,,,) -> %Rrc\n", cbAligned >> PAGE_SHIFT, rc)); *ppHeap = NULL; return rc; } /** * Allocates a new heap. */ static int mmR3HyperHeapMap(PVM pVM, PMMHYPERHEAP pHeap, PRTGCPTR ppHeapGC) { Assert(RT_ALIGN_Z(pHeap->cbHeap + MMYPERHEAP_HDR_SIZE, PAGE_SIZE) == pHeap->cbHeap + MMYPERHEAP_HDR_SIZE); Assert(pHeap->pbHeapR0); Assert(pHeap->paPages); int rc = MMR3HyperMapPages(pVM, pHeap, pHeap->pbHeapR0 - MMYPERHEAP_HDR_SIZE, (pHeap->cbHeap + MMYPERHEAP_HDR_SIZE) >> PAGE_SHIFT, pHeap->paPages, "Heap", ppHeapGC); if (RT_SUCCESS(rc)) { pHeap->pVMRC = pVM->pVMRC; pHeap->pbHeapRC = *ppHeapGC + MMYPERHEAP_HDR_SIZE; /* Reserve a page for fencing. */ MMR3HyperReserveFence(pVM); /* We won't need these any more. */ MMR3HeapFree(pHeap->paPages); pHeap->paPages = NULL; } return rc; } /** * Allocates memory in the Hypervisor (GC VMM) area which never will * be freed and doesn't have any offset based relation to other heap blocks. * * The latter means that two blocks allocated by this API will not have the * same relative position to each other in GC and HC. In short, never use * this API for allocating nodes for an offset based AVL tree! * * The returned memory is of course zeroed. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param cb Number of bytes to allocate. * @param uAlignment Required memory alignment in bytes. * Values are 0,8,16,32 and PAGE_SIZE. * 0 -> default alignment, i.e. 8 bytes. * @param enmTag The statistics tag. * @param ppv Where to store the address to the allocated * memory. * @remark This is assumed not to be used at times when serialization is required. */ VMMR3DECL(int) MMR3HyperAllocOnceNoRel(PVM pVM, size_t cb, unsigned uAlignment, MMTAG enmTag, void **ppv) { return MMR3HyperAllocOnceNoRelEx(pVM, cb, uAlignment, enmTag, 0/*fFlags*/, ppv); } /** * Allocates memory in the Hypervisor (GC VMM) area which never will * be freed and doesn't have any offset based relation to other heap blocks. * * The latter means that two blocks allocated by this API will not have the * same relative position to each other in GC and HC. In short, never use * this API for allocating nodes for an offset based AVL tree! * * The returned memory is of course zeroed. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param cb Number of bytes to allocate. * @param uAlignment Required memory alignment in bytes. * Values are 0,8,16,32 and PAGE_SIZE. * 0 -> default alignment, i.e. 8 bytes. * @param enmTag The statistics tag. * @param fFlags Flags, see MMHYPER_AONR_FLAGS_KERNEL_MAPPING. * @param ppv Where to store the address to the allocated memory. * @remark This is assumed not to be used at times when serialization is required. */ VMMR3DECL(int) MMR3HyperAllocOnceNoRelEx(PVM pVM, size_t cb, unsigned uAlignment, MMTAG enmTag, uint32_t fFlags, void **ppv) { AssertMsg(cb >= 8, ("Hey! Do you really mean to allocate less than 8 bytes?! cb=%d\n", cb)); Assert(!(fFlags & ~(MMHYPER_AONR_FLAGS_KERNEL_MAPPING))); /* * Choose between allocating a new chunk of HMA memory * and the heap. We will only do BIG allocations from HMA and * only at creation time. */ if ( ( cb < _64K && ( uAlignment != PAGE_SIZE || cb < 48*_1K) && !(fFlags & MMHYPER_AONR_FLAGS_KERNEL_MAPPING) ) || VMR3GetState(pVM) != VMSTATE_CREATING ) { Assert(!(fFlags & MMHYPER_AONR_FLAGS_KERNEL_MAPPING)); int rc = MMHyperAlloc(pVM, cb, uAlignment, enmTag, ppv); if ( rc != VERR_MM_HYPER_NO_MEMORY || cb <= 8*_1K) { Log2(("MMR3HyperAllocOnceNoRel: cb=%#zx uAlignment=%#x returns %Rrc and *ppv=%p\n", cb, uAlignment, rc, *ppv)); return rc; } } #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE /* * Set MMHYPER_AONR_FLAGS_KERNEL_MAPPING if we're in going to execute in ring-0. */ if (VM_IS_HM_OR_NEM_ENABLED(pVM)) fFlags |= MMHYPER_AONR_FLAGS_KERNEL_MAPPING; #endif /* * Validate alignment. */ switch (uAlignment) { case 0: case 8: case 16: case 32: case PAGE_SIZE: break; default: AssertMsgFailed(("Invalid alignment %u\n", uAlignment)); return VERR_INVALID_PARAMETER; } /* * Allocate the pages and map them into HMA space. */ uint32_t const cbAligned = RT_ALIGN_32(cb, PAGE_SIZE); AssertReturn(cbAligned >= cb, VERR_INVALID_PARAMETER); uint32_t const cPages = cbAligned >> PAGE_SHIFT; PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(paPages[0])); if (!paPages) return VERR_NO_TMP_MEMORY; void *pvPages; RTR0PTR pvR0 = NIL_RTR0PTR; int rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvR0, paPages); if (RT_SUCCESS(rc)) { Assert(pvR0 != NIL_RTR0PTR); memset(pvPages, 0, cbAligned); RTGCPTR GCPtr; rc = MMR3HyperMapPages(pVM, pvPages, pvR0, cPages, paPages, MMR3HeapAPrintf(pVM, MM_TAG_MM, "alloc once (%s)", mmGetTagName(enmTag)), &GCPtr); /* not needed anymore */ RTMemTmpFree(paPages); if (RT_SUCCESS(rc)) { *ppv = pvPages; Log2(("MMR3HyperAllocOnceNoRel: cbAligned=%#x uAlignment=%#x returns VINF_SUCCESS and *ppv=%p\n", cbAligned, uAlignment, *ppv)); MMR3HyperReserveFence(pVM); return rc; } AssertMsgFailed(("Failed to allocate %zd bytes! %Rrc\n", cbAligned, rc)); SUPR3PageFreeEx(pvPages, cPages); /* * HACK ALERT! Try allocate it off the heap so that we don't freak * out during vga/vmmdev mmio2 allocation with certain ram sizes. */ /** @todo make a proper fix for this so we will never end up in this kind of situation! */ Log(("MMR3HyperAllocOnceNoRel: MMR3HyperMapHCRam failed with rc=%Rrc, try MMHyperAlloc(,%#x,,) instead\n", rc, cb)); int rc2 = MMHyperAlloc(pVM, cb, uAlignment, enmTag, ppv); if (RT_SUCCESS(rc2)) { Log2(("MMR3HyperAllocOnceNoRel: cb=%#x uAlignment=%#x returns %Rrc and *ppv=%p\n", cb, uAlignment, rc, *ppv)); return rc; } } else AssertMsgFailed(("Failed to allocate %zd bytes! %Rrc\n", cbAligned, rc)); if (rc == VERR_NO_MEMORY) rc = VERR_MM_HYPER_NO_MEMORY; LogRel(("MMR3HyperAllocOnceNoRel: cb=%#zx uAlignment=%#x returns %Rrc\n", cb, uAlignment, rc)); return rc; } /** * Lookus up a ring-3 pointer to HMA. * * @returns The lookup record on success, NULL on failure. * @param pVM The cross context VM structure. * @param pvR3 The ring-3 address to look up. */ DECLINLINE(PMMLOOKUPHYPER) mmR3HyperLookupR3(PVM pVM, void *pvR3) { PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: { unsigned off = (uint8_t *)pvR3 - (uint8_t *)pLookup->u.Locked.pvR3; if (off < pLookup->cb) return pLookup; break; } case MMLOOKUPHYPERTYPE_HCPHYS: { unsigned off = (uint8_t *)pvR3 - (uint8_t *)pLookup->u.HCPhys.pvR3; if (off < pLookup->cb) return pLookup; break; } case MMLOOKUPHYPERTYPE_GCPHYS: case MMLOOKUPHYPERTYPE_MMIO2: case MMLOOKUPHYPERTYPE_DYNAMIC: /** @todo ? */ break; default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); return NULL; } /* next */ if ((unsigned)pLookup->offNext == NIL_OFFSET) return NULL; pLookup = (PMMLOOKUPHYPER)((uint8_t *)pLookup + pLookup->offNext); } } /** * Set / unset guard status on one or more hyper heap pages. * * @returns VBox status code (first failure). * @param pVM The cross context VM structure. * @param pvStart The hyper heap page address. Must be page * aligned. * @param cb The number of bytes. Must be page aligned. * @param fSet Whether to set or unset guard page status. */ VMMR3DECL(int) MMR3HyperSetGuard(PVM pVM, void *pvStart, size_t cb, bool fSet) { /* * Validate input. */ AssertReturn(!((uintptr_t)pvStart & PAGE_OFFSET_MASK), VERR_INVALID_POINTER); AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(cb <= UINT32_MAX, VERR_INVALID_PARAMETER); PMMLOOKUPHYPER pLookup = mmR3HyperLookupR3(pVM, pvStart); AssertReturn(pLookup, VERR_INVALID_PARAMETER); AssertReturn(pLookup->enmType == MMLOOKUPHYPERTYPE_LOCKED, VERR_INVALID_PARAMETER); /* * Get down to business. * Note! We quietly ignore errors from the support library since the * protection stuff isn't possible to implement on all platforms. */ uint8_t *pbR3 = (uint8_t *)pLookup->u.Locked.pvR3; RTR0PTR R0Ptr = pLookup->u.Locked.pvR0 != (uintptr_t)pLookup->u.Locked.pvR3 ? pLookup->u.Locked.pvR0 : NIL_RTR0PTR; uint32_t off = (uint32_t)((uint8_t *)pvStart - pbR3); int rc; if (fSet) { #ifndef PGM_WITHOUT_MAPPINGS rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, pvStart), cb, 0); #else rc = VINF_SUCCESS; #endif SUPR3PageProtect(pbR3, R0Ptr, off, (uint32_t)cb, RTMEM_PROT_NONE); } else { #ifndef PGM_WITHOUT_MAPPINGS rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, pvStart), cb, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW); #else rc = VINF_SUCCESS; #endif SUPR3PageProtect(pbR3, R0Ptr, off, (uint32_t)cb, RTMEM_PROT_READ | RTMEM_PROT_WRITE); } return rc; } /** * Convert hypervisor HC virtual address to HC physical address. * * @returns HC physical address. * @param pVM The cross context VM structure. * @param pvR3 Host context virtual address. */ VMMR3DECL(RTHCPHYS) MMR3HyperHCVirt2HCPhys(PVM pVM, void *pvR3) { PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: { unsigned off = (uint8_t *)pvR3 - (uint8_t *)pLookup->u.Locked.pvR3; if (off < pLookup->cb) return pLookup->u.Locked.paHCPhysPages[off >> PAGE_SHIFT] | (off & PAGE_OFFSET_MASK); break; } case MMLOOKUPHYPERTYPE_HCPHYS: { unsigned off = (uint8_t *)pvR3 - (uint8_t *)pLookup->u.HCPhys.pvR3; if (off < pLookup->cb) return pLookup->u.HCPhys.HCPhys + off; break; } case MMLOOKUPHYPERTYPE_GCPHYS: case MMLOOKUPHYPERTYPE_MMIO2: case MMLOOKUPHYPERTYPE_DYNAMIC: /* can (or don't want to) convert these kind of records. */ break; default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); break; } /* next */ if ((unsigned)pLookup->offNext == NIL_OFFSET) break; pLookup = (PMMLOOKUPHYPER)((uint8_t *)pLookup + pLookup->offNext); } AssertMsgFailed(("pvR3=%p is not inside the hypervisor memory area!\n", pvR3)); return NIL_RTHCPHYS; } #ifndef PGM_WITHOUT_MAPPINGS /** * Implements the hcphys-not-found return case of MMR3HyperQueryInfoFromHCPhys. * * @returns VINF_SUCCESS, VINF_BUFFER_OVERFLOW. * @param pVM The cross context VM structure. * @param HCPhys The host physical address to look for. * @param pLookup The HMA lookup entry corresponding to HCPhys. * @param pszWhat Where to return the description. * @param cbWhat Size of the return buffer. * @param pcbAlloc Where to return the size of whatever it is. */ static int mmR3HyperQueryInfoFromHCPhysFound(PVM pVM, RTHCPHYS HCPhys, PMMLOOKUPHYPER pLookup, char *pszWhat, size_t cbWhat, uint32_t *pcbAlloc) { NOREF(pVM); NOREF(HCPhys); *pcbAlloc = pLookup->cb; int rc = RTStrCopy(pszWhat, cbWhat, pLookup->pszDesc); return rc == VERR_BUFFER_OVERFLOW ? VINF_BUFFER_OVERFLOW : rc; } /** * Scans the HMA for the physical page and reports back a description if found. * * @returns VINF_SUCCESS, VINF_BUFFER_OVERFLOW, VERR_NOT_FOUND. * @param pVM The cross context VM structure. * @param HCPhys The host physical address to look for. * @param pszWhat Where to return the description. * @param cbWhat Size of the return buffer. * @param pcbAlloc Where to return the size of whatever it is. */ VMMR3_INT_DECL(int) MMR3HyperQueryInfoFromHCPhys(PVM pVM, RTHCPHYS HCPhys, char *pszWhat, size_t cbWhat, uint32_t *pcbAlloc) { RTHCPHYS HCPhysPage = HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK; PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: { uint32_t i = pLookup->cb >> PAGE_SHIFT; while (i-- > 0) if (pLookup->u.Locked.paHCPhysPages[i] == HCPhysPage) return mmR3HyperQueryInfoFromHCPhysFound(pVM, HCPhys, pLookup, pszWhat, cbWhat, pcbAlloc); break; } case MMLOOKUPHYPERTYPE_HCPHYS: { if (pLookup->u.HCPhys.HCPhys - HCPhysPage < pLookup->cb) return mmR3HyperQueryInfoFromHCPhysFound(pVM, HCPhys, pLookup, pszWhat, cbWhat, pcbAlloc); break; } case MMLOOKUPHYPERTYPE_MMIO2: case MMLOOKUPHYPERTYPE_GCPHYS: case MMLOOKUPHYPERTYPE_DYNAMIC: { /* brute force. */ uint32_t i = pLookup->cb >> PAGE_SHIFT; while (i-- > 0) { RTGCPTR GCPtr = pLookup->off + pVM->mm.s.pvHyperAreaGC; RTHCPHYS HCPhysCur; int rc = PGMMapGetPage(pVM, GCPtr, NULL, &HCPhysCur); if (RT_SUCCESS(rc) && HCPhysCur == HCPhysPage) return mmR3HyperQueryInfoFromHCPhysFound(pVM, HCPhys, pLookup, pszWhat, cbWhat, pcbAlloc); } break; } default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); break; } /* next */ if ((unsigned)pLookup->offNext == NIL_OFFSET) break; pLookup = (PMMLOOKUPHYPER)((uint8_t *)pLookup + pLookup->offNext); } return VERR_NOT_FOUND; } /** * Read hypervisor memory from GC virtual address. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pvDst Destination address (HC of course). * @param GCPtr GC virtual address. * @param cb Number of bytes to read. * * @remarks For DBGF only. */ VMMR3DECL(int) MMR3HyperReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb) { if (GCPtr - pVM->mm.s.pvHyperAreaGC >= pVM->mm.s.cbHyperArea) return VERR_INVALID_POINTER; return PGMR3MapRead(pVM, pvDst, GCPtr, cb); } #endif /* !PGM_WITHOUT_MAPPINGS */ /** * Info handler for 'hma', it dumps the list of lookup records for the hypervisor memory area. * * @param pVM The cross context VM structure. * @param pHlp Callback functions for doing output. * @param pszArgs Argument string. Optional and specific to the handler. */ static DECLCALLBACK(void) mmR3HyperInfoHma(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); pHlp->pfnPrintf(pHlp, "Hypervisor Memory Area (HMA) Layout: Base %RGv, 0x%08x bytes\n", pVM->mm.s.pvHyperAreaGC, pVM->mm.s.cbHyperArea); PMMLOOKUPHYPER pLookup = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.pHyperHeapR3 + pVM->mm.s.offLookupHyper); for (;;) { switch (pLookup->enmType) { case MMLOOKUPHYPERTYPE_LOCKED: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %RHv %RHv LOCKED %-*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, pLookup->u.Locked.pvR3, pLookup->u.Locked.pvR0, sizeof(RTHCPTR) * 2, "", pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_HCPHYS: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %RHv %RHv HCPHYS %RHp %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, pLookup->u.HCPhys.pvR3, pLookup->u.HCPhys.pvR0, pLookup->u.HCPhys.HCPhys, pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_GCPHYS: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %*s GCPHYS %RGp%*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, sizeof(RTHCPTR) * 2 * 2 + 1, "", pLookup->u.GCPhys.GCPhys, RT_ABS((int)(sizeof(RTHCPHYS) - sizeof(RTGCPHYS))) * 2, "", pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_MMIO2: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %*s MMIO2 %RGp%*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, sizeof(RTHCPTR) * 2 * 2 + 1, "", pLookup->u.MMIO2.off, RT_ABS((int)(sizeof(RTHCPHYS) - sizeof(RTGCPHYS))) * 2, "", pLookup->pszDesc); break; case MMLOOKUPHYPERTYPE_DYNAMIC: pHlp->pfnPrintf(pHlp, "%RGv-%RGv %*s DYNAMIC %*s %s\n", pLookup->off + pVM->mm.s.pvHyperAreaGC, pLookup->off + pVM->mm.s.pvHyperAreaGC + pLookup->cb, sizeof(RTHCPTR) * 2 * 2 + 1, "", sizeof(RTHCPTR) * 2, "", pLookup->pszDesc); break; default: AssertMsgFailed(("enmType=%d\n", pLookup->enmType)); break; } /* next */ if ((unsigned)pLookup->offNext == NIL_OFFSET) break; pLookup = (PMMLOOKUPHYPER)((uint8_t *)pLookup + pLookup->offNext); } } /** * Re-allocates memory from the hyper heap. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pvOld The existing block of memory in the hyper heap to * re-allocate (can be NULL). * @param cbOld Size of the existing block. * @param uAlignmentNew Required memory alignment in bytes. Values are * 0,8,16,32 and PAGE_SIZE. 0 -> default alignment, * i.e. 8 bytes. * @param enmTagNew The statistics tag. * @param cbNew The required size of the new block. * @param ppv Where to store the address to the re-allocated * block. * * @remarks This does not work like normal realloc() on failure, the memory * pointed to by @a pvOld is lost if there isn't sufficient space on * the hyper heap for the re-allocation to succeed. */ VMMR3DECL(int) MMR3HyperRealloc(PVM pVM, void *pvOld, size_t cbOld, unsigned uAlignmentNew, MMTAG enmTagNew, size_t cbNew, void **ppv) { if (!pvOld) return MMHyperAlloc(pVM, cbNew, uAlignmentNew, enmTagNew, ppv); if (!cbNew && pvOld) return MMHyperFree(pVM, pvOld); if (cbOld == cbNew) return VINF_SUCCESS; size_t cbData = RT_MIN(cbNew, cbOld); void *pvTmp = RTMemTmpAlloc(cbData); if (RT_UNLIKELY(!pvTmp)) { MMHyperFree(pVM, pvOld); return VERR_NO_TMP_MEMORY; } memcpy(pvTmp, pvOld, cbData); int rc = MMHyperFree(pVM, pvOld); if (RT_SUCCESS(rc)) { rc = MMHyperAlloc(pVM, cbNew, uAlignmentNew, enmTagNew, ppv); if (RT_SUCCESS(rc)) { Assert(cbData <= cbNew); memcpy(*ppv, pvTmp, cbData); } } else AssertMsgFailed(("Failed to free hyper heap block pvOld=%p cbOld=%u\n", pvOld, cbOld)); RTMemTmpFree(pvTmp); return rc; }