1 | /* $Id: NEMR3.cpp 71275 2018-03-08 14:31:07Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * NEM - Native execution manager.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | /** @page pg_nem NEM - Native Execution Manager.
|
---|
19 | *
|
---|
20 | * Later.
|
---|
21 | *
|
---|
22 | *
|
---|
23 | * @section sec_nem_win Windows
|
---|
24 | *
|
---|
25 | * On Windows the Hyper-V root partition (dom0 in zen terminology) does not have
|
---|
26 | * nested VT-x or AMD-V capabilities. For a while raw-mode worked in it,
|
---|
27 | * however now we \#GP when modifying CR4. So, when Hyper-V is active on
|
---|
28 | * Windows we have little choice but to use Hyper-V to run our VMs.
|
---|
29 | *
|
---|
30 | * @subsection subsec_nem_win_whv The WinHvPlatform API
|
---|
31 | *
|
---|
32 | * Since Windows 10 build 17083 there is a documented API for managing Hyper-V
|
---|
33 | * VMs, header file WinHvPlatform.h and implementation in WinHvPlatform.dll.
|
---|
34 | * This interface is a wrapper around the undocumented Virtualization
|
---|
35 | * Infrastructure Driver (VID) API - VID.DLL and VID.SYS. The wrapper is
|
---|
36 | * written in C++, namespaced and early version (at least) was using standard
|
---|
37 | * container templates in several places.
|
---|
38 | *
|
---|
39 | * When creating a VM using WHvCreatePartition, it will only create the
|
---|
40 | * WinHvPlatform structures for it, to which you get an abstract pointer. The
|
---|
41 | * VID API that actually creates the partition is first engaged when you call
|
---|
42 | * WHvSetupPartition after first setting a lot of properties using
|
---|
43 | * WHvSetPartitionProperty. Since the VID API is just a very thin wrapper
|
---|
44 | * around CreateFile and NtDeviceIoControl, it returns an actual HANDLE for the
|
---|
45 | * partition WinHvPlatform. We fish this HANDLE out of the WinHvPlatform
|
---|
46 | * partition structures because we need to talk directly to VID for reasons
|
---|
47 | * we'll get to in a bit. (Btw. we could also intercept the CreateFileW or
|
---|
48 | * NtDeviceIoControl calls from VID.DLL to get the HANDLE should fishing in the
|
---|
49 | * partition structures become difficult.)
|
---|
50 | *
|
---|
51 | * The WinHvPlatform API requires us to both set the number of guest CPUs before
|
---|
52 | * setting up the partition and call WHvCreateVirtualProcessor for each of them.
|
---|
53 | * The CPU creation function boils down to a VidMessageSlotMap call that sets up
|
---|
54 | * and maps a message buffer into ring-3 for async communication with hyper-V
|
---|
55 | * and/or the VID.SYS thread actually running the CPU. When for instance a
|
---|
56 | * VMEXIT is encountered, hyper-V sends a message that the
|
---|
57 | * WHvRunVirtualProcessor API retrieves (and later acknowledges) via
|
---|
58 | * VidMessageSlotHandleAndGetNext. It should be noteded that
|
---|
59 | * WHvDeleteVirtualProcessor doesn't do much as there seems to be no partner
|
---|
60 | * function VidMessagesSlotMap that reverses what it did.
|
---|
61 | *
|
---|
62 | * Memory is managed thru calls to WHvMapGpaRange and WHvUnmapGpaRange (GPA does
|
---|
63 | * not mean grade point average here, but rather guest physical addressspace),
|
---|
64 | * which corresponds to VidCreateVaGpaRangeSpecifyUserVa and VidDestroyGpaRange
|
---|
65 | * respectively. As 'UserVa' indicates, the functions works on user process
|
---|
66 | * memory. The mappings are also subject to quota restrictions, so the number
|
---|
67 | * of ranges are limited and probably their total size as well. Obviously
|
---|
68 | * VID.SYS keeps track of the ranges, but so does WinHvPlatform, which means
|
---|
69 | * there is a bit of overhead involved and quota restrctions makes sense. For
|
---|
70 | * some reason though, regions are lazily mapped on VMEXIT/memory by
|
---|
71 | * WHvRunVirtualProcessor.
|
---|
72 | *
|
---|
73 | * Running guest code is done thru the WHvRunVirtualProcessor function. It
|
---|
74 | * asynchronously starts or resumes hyper-V CPU execution and then waits for an
|
---|
75 | * VMEXIT message. Other threads can interrupt the execution by using
|
---|
76 | * WHvCancelVirtualProcessor, which which case the thread in
|
---|
77 | * WHvRunVirtualProcessor is woken up via a dummy QueueUserAPC and will call
|
---|
78 | * VidStopVirtualProcessor to asynchronously end execution. The stop CPU call
|
---|
79 | * not immediately succeed if the CPU encountered a VMEXIT before the stop was
|
---|
80 | * processed, in which case the VMEXIT needs to be processed first, and the
|
---|
81 | * pending stop will be processed in a subsequent call to
|
---|
82 | * WHvRunVirtualProcessor.
|
---|
83 | *
|
---|
84 | * {something about registers}
|
---|
85 | *
|
---|
86 | * @subsubsection subsubsec_nem_win_whv_cons Issues / Disadvantages
|
---|
87 | *
|
---|
88 | * Here are some observations:
|
---|
89 | *
|
---|
90 | * - The WHvCancelVirtualProcessor API schedules a dummy usermode APC callback
|
---|
91 | * in order to cancel any current or future alertable wait in VID.SYS during
|
---|
92 | * the VidMessageSlotHandleAndGetNext call.
|
---|
93 | *
|
---|
94 | * IIRC this will make the kernel schedule the callback thru
|
---|
95 | * NTDLL!KiUserApcDispatcher by modifying the thread context and quite
|
---|
96 | * possibly the userland thread stack. When the APC callback returns to
|
---|
97 | * KiUserApcDispatcher, it will call NtContinue to restore the old thread
|
---|
98 | * context and resume execution from there. Upshot this is a bit expensive.
|
---|
99 | *
|
---|
100 | * Using NtAltertThread call could do the same without the thread context
|
---|
101 | * modifications and the extra kernel call.
|
---|
102 | *
|
---|
103 | *
|
---|
104 | * - Not sure if this is a thing, but WHvCancelVirtualProcessor seems to cause
|
---|
105 | * cause a lot more spurious WHvRunVirtualProcessor returns that what we get
|
---|
106 | * with the replacement code. By spurious returns we mean that the
|
---|
107 | * subsequent call to WHvRunVirtualProcessor would return immediately.
|
---|
108 | *
|
---|
109 | *
|
---|
110 | * - When WHvRunVirtualProcessor returns without a message, or on a terse
|
---|
111 | * VID message like HLT, it will make a kernel call to get some registers.
|
---|
112 | * This is potentially inefficient if the caller decides he needs more
|
---|
113 | * register state.
|
---|
114 | *
|
---|
115 | * It would be better to just return what's available and let the caller fetch
|
---|
116 | * what is missing from his point of view in a single kernel call.
|
---|
117 | *
|
---|
118 | *
|
---|
119 | * - The WHvRunVirtualProcessor implementation does lazy GPA range mappings when
|
---|
120 | * a unmapped GPA message is received from hyper-V.
|
---|
121 | *
|
---|
122 | * Since MMIO is currently realized as unmapped GPA, this will slow down all
|
---|
123 | * MMIO accesses a tiny little bit as WHvRunVirtualProcessor looks up the
|
---|
124 | * guest physical address the checks if it's a pending lazy mapping.
|
---|
125 | *
|
---|
126 | *
|
---|
127 | * - There is no API for modifying protection of a page within a GPA range.
|
---|
128 | *
|
---|
129 | * We're left with having to unmap the range and then remap it with the new
|
---|
130 | * protection. For instance we're actively using this to track dirty VRAM
|
---|
131 | * pages, which means there are occational readonly->writable transitions at
|
---|
132 | * run time followed by bulk reversal to readonly when the display is
|
---|
133 | * refreshed.
|
---|
134 | *
|
---|
135 | * Now to work around the issue, we do page sized GPA ranges. In addition to
|
---|
136 | * add a lot of tracking overhead to WinHvPlatform and VID.SYS, it also causes
|
---|
137 | * us to exceed our quota before we've even mapped a default sized VRAM
|
---|
138 | * page-by-page. So, to work around this quota issue we have to lazily map
|
---|
139 | * pages and actively restrict the number of mappings.
|
---|
140 | *
|
---|
141 | * Out best workaround thus far is bypassing WinHvPlatform and VID when in
|
---|
142 | * comes to memory and instead us the hypercalls to do it (HvCallMapGpaPages,
|
---|
143 | * HvCallUnmapGpaPages). (This also maps a whole lot better into our own
|
---|
144 | * guest page management infrastructure.)
|
---|
145 | *
|
---|
146 | *
|
---|
147 | * - Observed problems doing WHvUnmapGpaRange followed by WHvMapGpaRange.
|
---|
148 | *
|
---|
149 | * As mentioned above, we've been forced to use this sequence when modifying
|
---|
150 | * page protection. However, when upgrading from readonly to writable, we've
|
---|
151 | * ended up looping forever with the same write to readonly memory exit.
|
---|
152 | *
|
---|
153 | * Workaround: Insert a WHvRunVirtualProcessor call and make sure to get a GPA
|
---|
154 | * unmapped exit between the two calls. Terrible for performance and code
|
---|
155 | * sanity.
|
---|
156 | *
|
---|
157 | *
|
---|
158 | * - WHVRunVirtualProcessor wastes time converting VID/Hyper-V messages to it's
|
---|
159 | * own defined format.
|
---|
160 | *
|
---|
161 | * We understand this might be because Microsoft wishes to remain free to
|
---|
162 | * modify the VID/Hyper-V messages, but it's still rather silly and does slow
|
---|
163 | * things down.
|
---|
164 | *
|
---|
165 | *
|
---|
166 | * - WHVRunVirtualProcessor would've benefited from using a callback interface:
|
---|
167 | * - The potential size changes of the exit context structure wouldn't be
|
---|
168 | * an issue, since the function could manage that itself.
|
---|
169 | * - State handling could be optimized simplified (esp. cancellation).
|
---|
170 | *
|
---|
171 | *
|
---|
172 | * - WHvGetVirtualProcessorRegisters and WHvSetVirtualProcessorRegisters
|
---|
173 | * internally converts register names, probably using temporary heap buffers.
|
---|
174 | *
|
---|
175 | * From the looks of things, it's converting from WHV_REGISTER_NAME to
|
---|
176 | * HV_REGISTER_NAME that's documented in the "Virtual Processor Register
|
---|
177 | * Names" section of "Hypervisor Top-Level Functional Specification". This
|
---|
178 | * feels like an awful waste of time. We simply cannot understand why it
|
---|
179 | * wouldn't have sufficed to use HV_REGISTER_NAME here and simply checked the
|
---|
180 | * input values if restrictions were desired.
|
---|
181 | *
|
---|
182 | * To avoid the heap + conversion overhead, we're currently using the
|
---|
183 | * HvCallGetVpRegisters and HvCallSetVpRegisters calls directly.
|
---|
184 | *
|
---|
185 | *
|
---|
186 | * - Why does WINHVR.SYS (or VID.SYS) only query/set 32 registers at the time
|
---|
187 | * thru the HvCallGetVpRegisters and HvCallSetVpRegisters hypercalls?
|
---|
188 | *
|
---|
189 | * We've not trouble getting/setting all the registers defined by
|
---|
190 | * WHV_REGISTER_NAME in one hypercall...
|
---|
191 | *
|
---|
192 | *
|
---|
193 | * - .
|
---|
194 | *
|
---|
195 | */
|
---|
196 |
|
---|
197 |
|
---|
198 | /*********************************************************************************************************************************
|
---|
199 | * Header Files *
|
---|
200 | *********************************************************************************************************************************/
|
---|
201 | #define LOG_GROUP LOG_GROUP_NEM
|
---|
202 | #include <VBox/vmm/nem.h>
|
---|
203 | #include "NEMInternal.h"
|
---|
204 | #include <VBox/vmm/vm.h>
|
---|
205 |
|
---|
206 | #include <iprt/asm.h>
|
---|
207 |
|
---|
208 |
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * Basic init and configuration reading.
|
---|
212 | *
|
---|
213 | * Always call NEMR3Term after calling this.
|
---|
214 | *
|
---|
215 | * @returns VBox status code.
|
---|
216 | * @param pVM The cross context VM structure.
|
---|
217 | */
|
---|
218 | VMMR3_INT_DECL(int) NEMR3InitConfig(PVM pVM)
|
---|
219 | {
|
---|
220 | LogFlow(("NEMR3Init\n"));
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Assert alignment and sizes.
|
---|
224 | */
|
---|
225 | AssertCompileMemberAlignment(VM, nem.s, 64);
|
---|
226 | AssertCompile(sizeof(pVM->nem.s) <= sizeof(pVM->nem.padding));
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * Initialize state info so NEMR3Term will always be happy.
|
---|
230 | * No returning prior to setting magics!
|
---|
231 | */
|
---|
232 | pVM->nem.s.u32Magic = NEM_MAGIC;
|
---|
233 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
234 | pVM->aCpus[iCpu].nem.s.u32Magic = NEMCPU_MAGIC;
|
---|
235 |
|
---|
236 | /*
|
---|
237 | * Read configuration.
|
---|
238 | */
|
---|
239 | PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");
|
---|
240 |
|
---|
241 | /*
|
---|
242 | * Validate the NEM settings.
|
---|
243 | */
|
---|
244 | int rc = CFGMR3ValidateConfig(pCfgNem,
|
---|
245 | "/NEM/",
|
---|
246 | "Enabled",
|
---|
247 | "" /* pszValidNodes */, "NEM" /* pszWho */, 0 /* uInstance */);
|
---|
248 | if (RT_FAILURE(rc))
|
---|
249 | return rc;
|
---|
250 |
|
---|
251 | /** @cfgm{/NEM/NEMEnabled, bool, true}
|
---|
252 | * Whether NEM is enabled. */
|
---|
253 | rc = CFGMR3QueryBoolDef(pCfgNem, "Enabled", &pVM->nem.s.fEnabled, true);
|
---|
254 | AssertLogRelRCReturn(rc, rc);
|
---|
255 |
|
---|
256 | return VINF_SUCCESS;
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | /**
|
---|
261 | * This is called by HMR3Init() when HM cannot be used.
|
---|
262 | *
|
---|
263 | * Sets VM::bMainExecutionEngine to VM_EXEC_ENGINE_NATIVE_API if we can use a
|
---|
264 | * native hypervisor API to execute the VM.
|
---|
265 | *
|
---|
266 | * @returns VBox status code.
|
---|
267 | * @param pVM The cross context VM structure.
|
---|
268 | * @param fFallback Whether this is a fallback call. Cleared if the VM is
|
---|
269 | * configured to use NEM instead of HM.
|
---|
270 | * @param fForced Whether /HM/HMForced was set. If set and we fail to
|
---|
271 | * enable NEM, we'll return a failure status code.
|
---|
272 | * Otherwise we'll assume HMR3Init falls back on raw-mode.
|
---|
273 | */
|
---|
274 | VMMR3_INT_DECL(int) NEMR3Init(PVM pVM, bool fFallback, bool fForced)
|
---|
275 | {
|
---|
276 | Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API);
|
---|
277 | int rc;
|
---|
278 | if (pVM->nem.s.fEnabled)
|
---|
279 | {
|
---|
280 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
281 | rc = nemR3NativeInit(pVM, fFallback, fForced);
|
---|
282 | ASMCompilerBarrier(); /* May have changed bMainExecutionEngine. */
|
---|
283 | #else
|
---|
284 | RT_NOREF(fFallback);
|
---|
285 | rc = VINF_SUCCESS;
|
---|
286 | #endif
|
---|
287 | if (RT_SUCCESS(rc))
|
---|
288 | {
|
---|
289 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
290 | LogRel(("NEM: NEMR3Init: Active.\n"));
|
---|
291 | else
|
---|
292 | {
|
---|
293 | LogRel(("NEM: NEMR3Init: Not available.\n"));
|
---|
294 | if (fForced)
|
---|
295 | rc = VERR_NEM_NOT_AVAILABLE;
|
---|
296 | }
|
---|
297 | }
|
---|
298 | else
|
---|
299 | LogRel(("NEM: NEMR3Init: Native init failed: %Rrc.\n", rc));
|
---|
300 | }
|
---|
301 | else
|
---|
302 | {
|
---|
303 | LogRel(("NEM: NEMR3Init: Disabled.\n"));
|
---|
304 | rc = fForced ? VERR_NEM_NOT_ENABLED : VINF_SUCCESS;
|
---|
305 | }
|
---|
306 | return rc;
|
---|
307 | }
|
---|
308 |
|
---|
309 |
|
---|
310 | /**
|
---|
311 | * Perform initialization that depends on CPUM working.
|
---|
312 | *
|
---|
313 | * This is a noop if NEM wasn't activated by a previous NEMR3Init() call.
|
---|
314 | *
|
---|
315 | * @returns VBox status code.
|
---|
316 | * @param pVM The cross context VM structure.
|
---|
317 | */
|
---|
318 | VMMR3_INT_DECL(int) NEMR3InitAfterCPUM(PVM pVM)
|
---|
319 | {
|
---|
320 | int rc = VINF_SUCCESS;
|
---|
321 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
322 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
323 | rc = nemR3NativeInitAfterCPUM(pVM);
|
---|
324 | #else
|
---|
325 | RT_NOREF(pVM);
|
---|
326 | #endif
|
---|
327 | return rc;
|
---|
328 | }
|
---|
329 |
|
---|
330 |
|
---|
331 | /**
|
---|
332 | * Called when a init phase has completed.
|
---|
333 | *
|
---|
334 | * @returns VBox status code.
|
---|
335 | * @param pVM The cross context VM structure.
|
---|
336 | * @param enmWhat The phase that completed.
|
---|
337 | */
|
---|
338 | VMMR3_INT_DECL(int) NEMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
|
---|
339 | {
|
---|
340 | int rc = VINF_SUCCESS;
|
---|
341 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
342 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
343 | rc = nemR3NativeInitCompleted(pVM, enmWhat);
|
---|
344 | #else
|
---|
345 | RT_NOREF(pVM, enmWhat);
|
---|
346 | #endif
|
---|
347 | return rc;
|
---|
348 | }
|
---|
349 |
|
---|
350 |
|
---|
351 | /**
|
---|
352 | *
|
---|
353 | * @returns VBox status code.
|
---|
354 | * @param pVM The cross context VM structure.
|
---|
355 | */
|
---|
356 | VMMR3_INT_DECL(int) NEMR3Term(PVM pVM)
|
---|
357 | {
|
---|
358 | AssertReturn(pVM->nem.s.u32Magic == NEM_MAGIC, VERR_WRONG_ORDER);
|
---|
359 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
360 | AssertReturn(pVM->aCpus[iCpu].nem.s.u32Magic == NEMCPU_MAGIC, VERR_WRONG_ORDER);
|
---|
361 |
|
---|
362 | /* Do native termination. */
|
---|
363 | int rc = VINF_SUCCESS;
|
---|
364 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
365 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
366 | rc = nemR3NativeTerm(pVM);
|
---|
367 | #endif
|
---|
368 |
|
---|
369 | /* Mark it as terminated. */
|
---|
370 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
371 | pVM->aCpus[iCpu].nem.s.u32Magic = NEMCPU_MAGIC_DEAD;
|
---|
372 | pVM->nem.s.u32Magic = NEM_MAGIC_DEAD;
|
---|
373 | return rc;
|
---|
374 | }
|
---|
375 |
|
---|
376 |
|
---|
377 | /**
|
---|
378 | * The VM is being reset.
|
---|
379 | *
|
---|
380 | * @param pVM The cross context VM structure.
|
---|
381 | */
|
---|
382 | VMMR3_INT_DECL(void) NEMR3Reset(PVM pVM)
|
---|
383 | {
|
---|
384 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
385 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
386 | nemR3NativeReset(pVM);
|
---|
387 | #else
|
---|
388 | RT_NOREF(pVM);
|
---|
389 | #endif
|
---|
390 | }
|
---|
391 |
|
---|
392 |
|
---|
393 | /**
|
---|
394 | * Resets a virtual CPU.
|
---|
395 | *
|
---|
396 | * Used to bring up secondary CPUs on SMP as well as CPU hot plugging.
|
---|
397 | *
|
---|
398 | * @param pVCpu The cross context virtual CPU structure to reset.
|
---|
399 | * @param fInitIpi Set if being reset due to INIT IPI.
|
---|
400 | */
|
---|
401 | VMMR3_INT_DECL(void) NEMR3ResetCpu(PVMCPU pVCpu, bool fInitIpi)
|
---|
402 | {
|
---|
403 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
404 | if (pVCpu->pVMR3->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
405 | nemR3NativeResetCpu(pVCpu, fInitIpi);
|
---|
406 | #else
|
---|
407 | RT_NOREF(pVCpu, fInitIpi);
|
---|
408 | #endif
|
---|
409 | }
|
---|
410 |
|
---|
411 |
|
---|
412 | VMMR3_INT_DECL(VBOXSTRICTRC) NEMR3RunGC(PVM pVM, PVMCPU pVCpu)
|
---|
413 | {
|
---|
414 | Assert(VM_IS_NEM_ENABLED(pVM));
|
---|
415 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
416 | return nemR3NativeRunGC(pVM, pVCpu);
|
---|
417 | #else
|
---|
418 | NOREF(pVM); NOREF(pVCpu);
|
---|
419 | return VERR_INTERNAL_ERROR_3;
|
---|
420 | #endif
|
---|
421 | }
|
---|
422 |
|
---|
423 |
|
---|
424 | VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
425 | {
|
---|
426 | Assert(VM_IS_NEM_ENABLED(pVM));
|
---|
427 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
428 | return nemR3NativeCanExecuteGuest(pVM, pVCpu, pCtx);
|
---|
429 | #else
|
---|
430 | NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
|
---|
431 | return false;
|
---|
432 | #endif
|
---|
433 | }
|
---|
434 |
|
---|
435 |
|
---|
436 | VMMR3_INT_DECL(bool) NEMR3SetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
|
---|
437 | {
|
---|
438 | Assert(VM_IS_NEM_ENABLED(pVM));
|
---|
439 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
440 | return nemR3NativeSetSingleInstruction(pVM, pVCpu, fEnable);
|
---|
441 | #else
|
---|
442 | NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
|
---|
443 | return false;
|
---|
444 | #endif
|
---|
445 | }
|
---|
446 |
|
---|
447 |
|
---|
448 | VMMR3_INT_DECL(void) NEMR3NotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
|
---|
449 | {
|
---|
450 | AssertLogRelReturnVoid(VM_IS_NEM_ENABLED(pVM));
|
---|
451 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
452 | nemR3NativeNotifyFF(pVM, pVCpu, fFlags);
|
---|
453 | #else
|
---|
454 | RT_NOREF(pVM, pVCpu, fFlags);
|
---|
455 | #endif
|
---|
456 | }
|
---|
457 |
|
---|
458 |
|
---|
459 |
|
---|
460 |
|
---|
461 | VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
|
---|
462 | {
|
---|
463 | int rc = VINF_SUCCESS;
|
---|
464 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
465 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
466 | rc = nemR3NativeNotifyPhysRamRegister(pVM, GCPhys, cb);
|
---|
467 | #else
|
---|
468 | NOREF(pVM); NOREF(GCPhys); NOREF(cb);
|
---|
469 | #endif
|
---|
470 | return rc;
|
---|
471 | }
|
---|
472 |
|
---|
473 |
|
---|
474 | VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvMmio2)
|
---|
475 | {
|
---|
476 | int rc = VINF_SUCCESS;
|
---|
477 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
478 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
479 | rc = nemR3NativeNotifyPhysMmioExMap(pVM, GCPhys, cb, fFlags, pvMmio2);
|
---|
480 | #else
|
---|
481 | NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags); NOREF(pvMmio2);
|
---|
482 | #endif
|
---|
483 | return rc;
|
---|
484 | }
|
---|
485 |
|
---|
486 |
|
---|
487 | VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
|
---|
488 | {
|
---|
489 | int rc = VINF_SUCCESS;
|
---|
490 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
491 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
492 | rc = nemR3NativeNotifyPhysMmioExUnmap(pVM, GCPhys, cb, fFlags);
|
---|
493 | #else
|
---|
494 | NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
|
---|
495 | #endif
|
---|
496 | return rc;
|
---|
497 | }
|
---|
498 |
|
---|
499 |
|
---|
500 | VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
|
---|
501 | {
|
---|
502 | int rc = VINF_SUCCESS;
|
---|
503 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
504 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
505 | rc = nemR3NativeNotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fFlags);
|
---|
506 | #else
|
---|
507 | NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
|
---|
508 | #endif
|
---|
509 | return rc;
|
---|
510 | }
|
---|
511 |
|
---|
512 |
|
---|
513 | /**
|
---|
514 | * Called after the ROM range has been fully completed.
|
---|
515 | *
|
---|
516 | * This will be preceeded by a NEMR3NotifyPhysRomRegisterEarly() call as well a
|
---|
517 | * number of NEMHCNotifyPhysPageProtChanged calls.
|
---|
518 | *
|
---|
519 | * @returns VBox status code
|
---|
520 | * @param pVM The cross context VM structure.
|
---|
521 | * @param GCPhys The ROM address (page aligned).
|
---|
522 | * @param cb The size (page aligned).
|
---|
523 | * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
|
---|
524 | */
|
---|
525 | VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
|
---|
526 | {
|
---|
527 | int rc = VINF_SUCCESS;
|
---|
528 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
529 | if (pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
530 | rc = nemR3NativeNotifyPhysRomRegisterLate(pVM, GCPhys, cb, fFlags);
|
---|
531 | #else
|
---|
532 | NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
|
---|
533 | #endif
|
---|
534 | return rc;
|
---|
535 | }
|
---|
536 |
|
---|
537 |
|
---|
538 | VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
|
---|
539 | {
|
---|
540 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
541 | if (pVCpu->pVMR3->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
|
---|
542 | nemR3NativeNotifySetA20(pVCpu, fEnabled);
|
---|
543 | #else
|
---|
544 | NOREF(pVCpu); NOREF(fEnabled);
|
---|
545 | #endif
|
---|
546 | }
|
---|
547 |
|
---|