VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin-armv8.cpp@ 105695

Last change on this file since 105695 was 105695, checked in by vboxsync, 7 months ago

VMMArm/NEM: Resolve hv_vm_config_create() dynamically as it is only available since 13.0, fixes building with older SDKs, bugref:10747

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 113.9 KB
Line 
1/* $Id: NEMR3Native-darwin-armv8.cpp 105695 2024-08-15 16:24:06Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework, ARMv8 variant.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2023 Oracle and/or its affiliates.
12 *
13 * This file is part of VirtualBox base platform packages, as
14 * available from https://www.virtualbox.org.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation, in version 3 of the
19 * License.
20 *
21 * This program is distributed in the hope that it will be useful, but
22 * WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 * General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, see <https://www.gnu.org/licenses>.
28 *
29 * SPDX-License-Identifier: GPL-3.0-only
30 */
31
32
33/*********************************************************************************************************************************
34* Header Files *
35*********************************************************************************************************************************/
36#define LOG_GROUP LOG_GROUP_NEM
37#define VMCPU_INCL_CPUM_GST_CTX
38#include <VBox/vmm/nem.h>
39#include <VBox/vmm/iem.h>
40#include <VBox/vmm/em.h>
41#include <VBox/vmm/gic.h>
42#include <VBox/vmm/pdm.h>
43#include <VBox/vmm/dbgftrace.h>
44#include <VBox/vmm/gcm.h>
45#include "NEMInternal.h"
46#include <VBox/vmm/vmcc.h>
47#include <VBox/vmm/vmm.h>
48#include <VBox/gic.h>
49#include "dtrace/VBoxVMM.h"
50
51#include <iprt/armv8.h>
52#include <iprt/asm.h>
53#include <iprt/asm-arm.h>
54#include <iprt/asm-math.h>
55#include <iprt/ldr.h>
56#include <iprt/mem.h>
57#include <iprt/path.h>
58#include <iprt/string.h>
59#include <iprt/system.h>
60#include <iprt/utf16.h>
61
62#include <iprt/formats/arm-psci.h>
63
64#include <mach/mach_time.h>
65#include <mach/kern_return.h>
66
67#include <Hypervisor/Hypervisor.h>
68
69
70/*********************************************************************************************************************************
71* Defined Constants And Macros *
72*********************************************************************************************************************************/
73
74
75/*********************************************************************************************************************************
76* Structures and Typedefs *
77*********************************************************************************************************************************/
78
79#if MAC_OS_X_VERSION_MIN_REQUIRED < 150000
80
81/* Since 15.0+ */
82typedef enum hv_gic_distributor_reg_t : uint16_t
83{
84 HV_GIC_DISTRIBUTOR_REG_GICD_CTLR,
85 HV_GIC_DISTRIBUTOR_REG_GICD_ICACTIVER0
86 /** @todo */
87} hv_gic_distributor_reg_t;
88
89
90typedef enum hv_gic_icc_reg_t : uint16_t
91{
92 HV_GIC_ICC_REG_AP0R0_EL1
93 /** @todo */
94} hv_gic_icc_reg_t;
95
96
97typedef enum hv_gic_ich_reg_t : uint16_t
98{
99 HV_GIC_ICH_REG_AP0R0_EL2
100 /** @todo */
101} hv_gic_ich_reg_t;
102
103
104typedef enum hv_gic_icv_reg_t : uint16_t
105{
106 HV_GIC_ICV_REG_AP0R0_EL1
107 /** @todo */
108} hv_gic_icv_reg_t;
109
110
111typedef enum hv_gic_msi_reg_t : uint16_t
112{
113 HV_GIC_REG_GICM_SET_SPI_NSR
114 /** @todo */
115} hv_gic_msi_reg_t;
116
117
118typedef enum hv_gic_redistributor_reg_t : uint16_t
119{
120 HV_GIC_REDISTRIBUTOR_REG_GICR_ICACTIVER0
121 /** @todo */
122} hv_gic_redistributor_reg_t;
123
124
125typedef enum hv_gic_intid_t : uint16_t
126{
127 HV_GIC_INT_EL1_PHYSICAL_TIMER = 23,
128 HV_GIC_INT_EL1_VIRTUAL_TIMER = 25,
129 HV_GIC_INT_EL2_PHYSICAL_TIMER = 26,
130 HV_GIC_INT_MAINTENANCE = 27,
131 HV_GIC_INT_PERFORMANCE_MONITOR = 30
132} hv_gic_intid_t;
133
134#endif
135
136typedef hv_vm_config_t FN_HV_VM_CONFIG_CREATE(void);
137typedef hv_return_t FN_HV_VM_CONFIG_GET_EL2_SUPPORTED(bool *el2_supported);
138typedef hv_return_t FN_HV_VM_CONFIG_GET_EL2_ENABLED(hv_vm_config_t config, bool *el2_enabled);
139typedef hv_return_t FN_HV_VM_CONFIG_SET_EL2_ENABLED(hv_vm_config_t config, bool el2_enabled);
140
141typedef struct hv_gic_config_s *hv_gic_config_t;
142typedef hv_return_t FN_HV_GIC_CREATE(hv_gic_config_t gic_config);
143typedef hv_return_t FN_HV_GIC_RESET(void);
144typedef hv_gic_config_t FN_HV_GIC_CONFIG_CREATE(void);
145typedef hv_return_t FN_HV_GIC_CONFIG_SET_DISTRIBUTOR_BASE(hv_gic_config_t config, hv_ipa_t distributor_base_address);
146typedef hv_return_t FN_HV_GIC_CONFIG_SET_REDISTRIBUTOR_BASE(hv_gic_config_t config, hv_ipa_t redistributor_base_address);
147typedef hv_return_t FN_HV_GIC_CONFIG_SET_MSI_REGION_BASE(hv_gic_config_t config, hv_ipa_t msi_region_base_address);
148typedef hv_return_t FN_HV_GIC_CONFIG_SET_MSI_INTERRUPT_RANGE(hv_gic_config_t config, uint32_t msi_intid_base, uint32_t msi_intid_count);
149
150typedef hv_return_t FN_HV_GIC_GET_REDISTRIBUTOR_BASE(hv_vcpu_t vcpu, hv_ipa_t *redistributor_base_address);
151typedef hv_return_t FN_HV_GIC_GET_REDISTRIBUTOR_REGION_SIZE(size_t *redistributor_region_size);
152typedef hv_return_t FN_HV_GIC_GET_REDISTRIBUTOR_SIZE(size_t *redistributor_size);
153typedef hv_return_t FN_HV_GIC_GET_DISTRIBUTOR_SIZE(size_t *distributor_size);
154typedef hv_return_t FN_HV_GIC_GET_DISTRIBUTOR_BASE_ALIGNMENT(size_t *distributor_base_alignment);
155typedef hv_return_t FN_HV_GIC_GET_REDISTRIBUTOR_BASE_ALIGNMENT(size_t *redistributor_base_alignment);
156typedef hv_return_t FN_HV_GIC_GET_MSI_REGION_BASE_ALIGNMENT(size_t *msi_region_base_alignment);
157typedef hv_return_t FN_HV_GIC_GET_MSI_REGION_SIZE(size_t *msi_region_size);
158typedef hv_return_t FN_HV_GIC_GET_SPI_INTERRUPT_RANGE(uint32_t *spi_intid_base, uint32_t *spi_intid_count);
159
160typedef struct hv_gic_state_s *hv_gic_state_t;
161typedef hv_gic_state_t FN_HV_GIC_STATE_CREATE(void);
162typedef hv_return_t FN_HV_GIC_SET_STATE(const void *gic_state_data, size_t gic_state_size);
163typedef hv_return_t FN_HV_GIC_STATE_GET_SIZE(hv_gic_state_t state, size_t *gic_state_size);
164typedef hv_return_t FN_HV_GIC_STATE_GET_DATA(hv_gic_state_t state, void *gic_state_data);
165
166typedef hv_return_t FN_HV_GIC_SEND_MSI(hv_ipa_t address, uint32_t intid);
167typedef hv_return_t FN_HV_GIC_SET_SPI(uint32_t intid, bool level);
168
169typedef hv_return_t FN_HV_GIC_GET_DISTRIBUTOR_REG(hv_gic_distributor_reg_t reg, uint64_t *value);
170typedef hv_return_t FN_HV_GIC_GET_MSI_REG(hv_gic_msi_reg_t reg, uint64_t *value);
171typedef hv_return_t FN_HV_GIC_GET_ICC_REG(hv_vcpu_t vcpu, hv_gic_icc_reg_t reg, uint64_t *value);
172typedef hv_return_t FN_HV_GIC_GET_ICH_REG(hv_vcpu_t vcpu, hv_gic_ich_reg_t reg, uint64_t *value);
173typedef hv_return_t FN_HV_GIC_GET_ICV_REG(hv_vcpu_t vcpu, hv_gic_icv_reg_t reg, uint64_t *value);
174typedef hv_return_t FN_HV_GIC_GET_REDISTRIBUTOR_REG(hv_vcpu_t vcpu, hv_gic_redistributor_reg_t reg, uint64_t *value);
175
176typedef hv_return_t FN_HV_GIC_SET_DISTRIBUTOR_REG(hv_gic_distributor_reg_t reg, uint64_t value);
177typedef hv_return_t FN_HV_GIC_SET_MSI_REG(hv_gic_msi_reg_t reg, uint64_t value);
178typedef hv_return_t FN_HV_GIC_SET_ICC_REG(hv_vcpu_t vcpu, hv_gic_icc_reg_t reg, uint64_t value);
179typedef hv_return_t FN_HV_GIC_SET_ICH_REG(hv_vcpu_t vcpu, hv_gic_ich_reg_t reg, uint64_t value);
180typedef hv_return_t FN_HV_GIC_SET_ICV_REG(hv_vcpu_t vcpu, hv_gic_icv_reg_t reg, uint64_t value);
181typedef hv_return_t FN_HV_GIC_SET_REDISTRIBUTOR_REG(hv_vcpu_t vcpu, hv_gic_redistributor_reg_t reg, uint64_t value);
182
183typedef hv_return_t FN_HV_GIC_GET_INTID(hv_gic_intid_t interrupt, uint32_t *intid);
184
185
186/*********************************************************************************************************************************
187* Global Variables *
188*********************************************************************************************************************************/
189/** @name Optional APIs imported from Hypervisor.framework.
190 * @{ */
191static FN_HV_VM_CONFIG_CREATE *g_pfnHvVmConfigCreate = NULL; /* Since 13.0 */
192static FN_HV_VM_CONFIG_GET_EL2_SUPPORTED *g_pfnHvVmConfigGetEl2Supported = NULL; /* Since 15.0 */
193static FN_HV_VM_CONFIG_GET_EL2_ENABLED *g_pfnHvVmConfigGetEl2Enabled = NULL; /* Since 15.0 */
194static FN_HV_VM_CONFIG_SET_EL2_ENABLED *g_pfnHvVmConfigSetEl2Enabled = NULL; /* Since 15.0 */
195
196static FN_HV_GIC_CREATE *g_pfnHvGicCreate = NULL; /* Since 15.0 */
197static FN_HV_GIC_RESET *g_pfnHvGicReset = NULL; /* Since 15.0 */
198static FN_HV_GIC_CONFIG_CREATE *g_pfnHvGicConfigCreate = NULL; /* Since 15.0 */
199static FN_HV_GIC_CONFIG_SET_DISTRIBUTOR_BASE *g_pfnHvGicConfigSetDistributorBase = NULL; /* Since 15.0 */
200static FN_HV_GIC_CONFIG_SET_REDISTRIBUTOR_BASE *g_pfnHvGicConfigSetRedistributorBase = NULL; /* Since 15.0 */
201static FN_HV_GIC_CONFIG_SET_MSI_REGION_BASE *g_pfnHvGicConfigSetMsiRegionBase = NULL; /* Since 15.0 */
202static FN_HV_GIC_CONFIG_SET_MSI_INTERRUPT_RANGE *g_pfnHvGicConfigSetMsiInterruptRange = NULL; /* Since 15.0 */
203static FN_HV_GIC_GET_REDISTRIBUTOR_BASE *g_pfnHvGicGetRedistributorBase = NULL; /* Since 15.0 */
204static FN_HV_GIC_GET_REDISTRIBUTOR_REGION_SIZE *g_pfnHvGicGetRedistributorRegionSize = NULL; /* Since 15.0 */
205static FN_HV_GIC_GET_REDISTRIBUTOR_SIZE *g_pfnHvGicGetRedistributorSize = NULL; /* Since 15.0 */
206static FN_HV_GIC_GET_DISTRIBUTOR_SIZE *g_pfnHvGicGetDistributorSize = NULL; /* Since 15.0 */
207static FN_HV_GIC_GET_DISTRIBUTOR_BASE_ALIGNMENT *g_pfnHvGicGetDistributorBaseAlignment = NULL; /* Since 15.0 */
208static FN_HV_GIC_GET_REDISTRIBUTOR_BASE_ALIGNMENT *g_pfnHvGicGetRedistributorBaseAlignment = NULL; /* Since 15.0 */
209static FN_HV_GIC_GET_MSI_REGION_BASE_ALIGNMENT *g_pfnHvGicGetMsiRegionBaseAlignment = NULL; /* Since 15.0 */
210static FN_HV_GIC_GET_MSI_REGION_SIZE *g_pfnHvGicGetMsiRegionSize = NULL; /* Since 15.0 */
211static FN_HV_GIC_GET_SPI_INTERRUPT_RANGE *g_pfnHvGicGetSpiInterruptRange = NULL; /* Since 15.0 */
212static FN_HV_GIC_STATE_CREATE *g_pfnHvGicStateCreate = NULL; /* Since 15.0 */
213static FN_HV_GIC_SET_STATE *g_pfnHvGicSetState = NULL; /* Since 15.0 */
214static FN_HV_GIC_STATE_GET_SIZE *g_pfnHvGicStateGetSize = NULL; /* Since 15.0 */
215static FN_HV_GIC_STATE_GET_DATA *g_pfnHvGicStateGetData = NULL; /* Since 15.0 */
216static FN_HV_GIC_SEND_MSI *g_pfnHvGicSendMsi = NULL; /* Since 15.0 */
217static FN_HV_GIC_SET_SPI *g_pfnHvGicSetSpi = NULL; /* Since 15.0 */
218static FN_HV_GIC_GET_DISTRIBUTOR_REG *g_pfnHvGicGetDistributorReg = NULL; /* Since 15.0 */
219static FN_HV_GIC_GET_MSI_REG *g_pfnHvGicGetMsiReg = NULL; /* Since 15.0 */
220static FN_HV_GIC_GET_ICC_REG *g_pfnHvGicGetIccReg = NULL; /* Since 15.0 */
221static FN_HV_GIC_GET_ICH_REG *g_pfnHvGicGetIchReg = NULL; /* Since 15.0 */
222static FN_HV_GIC_GET_ICV_REG *g_pfnHvGicGetIcvReg = NULL; /* Since 15.0 */
223static FN_HV_GIC_GET_REDISTRIBUTOR_REG *g_pfnHvGicGetRedistributorReg = NULL; /* Since 15.0 */
224static FN_HV_GIC_SET_DISTRIBUTOR_REG *g_pfnHvGicSetDistributorReg = NULL; /* Since 15.0 */
225static FN_HV_GIC_SET_MSI_REG *g_pfnHvGicSetMsiReg = NULL; /* Since 15.0 */
226static FN_HV_GIC_SET_ICC_REG *g_pfnHvGicSetIccReg = NULL; /* Since 15.0 */
227static FN_HV_GIC_SET_ICH_REG *g_pfnHvGicSetIchReg = NULL; /* Since 15.0 */
228static FN_HV_GIC_SET_ICV_REG *g_pfnHvGicSetIcvReg = NULL; /* Since 15.0 */
229static FN_HV_GIC_SET_REDISTRIBUTOR_REG *g_pfnHvGicSetRedistributorReg = NULL; /* Since 15.0 */
230static FN_HV_GIC_GET_INTID *g_pfnHvGicGetIntid = NULL; /* Since 15.0 */
231/** @} */
232
233
234/**
235 * Import instructions.
236 */
237static const struct
238{
239 void **ppfn; /**< The function pointer variable. */
240 const char *pszName; /**< The function name. */
241} g_aImports[] =
242{
243#define NEM_DARWIN_IMPORT(a_Pfn, a_Name) { (void **)&(a_Pfn), #a_Name }
244 NEM_DARWIN_IMPORT(g_pfnHvVmConfigCreate, hv_vm_config_create),
245 NEM_DARWIN_IMPORT(g_pfnHvVmConfigGetEl2Supported, hv_vm_config_get_el2_supported),
246 NEM_DARWIN_IMPORT(g_pfnHvVmConfigGetEl2Enabled, hv_vm_config_get_el2_enabled),
247 NEM_DARWIN_IMPORT(g_pfnHvVmConfigSetEl2Enabled, hv_vm_config_set_el2_enabled),
248
249 NEM_DARWIN_IMPORT(g_pfnHvGicCreate, hv_gic_create),
250 NEM_DARWIN_IMPORT(g_pfnHvGicReset, hv_gic_reset),
251 NEM_DARWIN_IMPORT(g_pfnHvGicConfigCreate, hv_gic_config_create),
252 NEM_DARWIN_IMPORT(g_pfnHvGicConfigSetDistributorBase, hv_gic_config_set_distributor_base),
253 NEM_DARWIN_IMPORT(g_pfnHvGicConfigSetRedistributorBase, hv_gic_config_set_redistributor_base),
254 NEM_DARWIN_IMPORT(g_pfnHvGicConfigSetMsiRegionBase, hv_gic_config_set_msi_region_base),
255 NEM_DARWIN_IMPORT(g_pfnHvGicConfigSetMsiInterruptRange, hv_gic_config_set_msi_interrupt_range),
256 NEM_DARWIN_IMPORT(g_pfnHvGicGetRedistributorBase, hv_gic_get_redistributor_base),
257 NEM_DARWIN_IMPORT(g_pfnHvGicGetRedistributorRegionSize, hv_gic_get_redistributor_region_size),
258 NEM_DARWIN_IMPORT(g_pfnHvGicGetRedistributorSize, hv_gic_get_redistributor_size),
259 NEM_DARWIN_IMPORT(g_pfnHvGicGetDistributorSize, hv_gic_get_distributor_size),
260 NEM_DARWIN_IMPORT(g_pfnHvGicGetDistributorBaseAlignment, hv_gic_get_distributor_base_alignment),
261 NEM_DARWIN_IMPORT(g_pfnHvGicGetRedistributorBaseAlignment, hv_gic_get_redistributor_base_alignment),
262 NEM_DARWIN_IMPORT(g_pfnHvGicGetMsiRegionBaseAlignment, hv_gic_get_msi_region_base_alignment),
263 NEM_DARWIN_IMPORT(g_pfnHvGicGetMsiRegionSize, hv_gic_get_msi_region_size),
264 NEM_DARWIN_IMPORT(g_pfnHvGicGetSpiInterruptRange, hv_gic_get_spi_interrupt_range),
265 NEM_DARWIN_IMPORT(g_pfnHvGicStateCreate, hv_gic_state_create),
266 NEM_DARWIN_IMPORT(g_pfnHvGicSetState, hv_gic_set_state),
267 NEM_DARWIN_IMPORT(g_pfnHvGicStateGetSize, hv_gic_state_get_size),
268 NEM_DARWIN_IMPORT(g_pfnHvGicStateGetData, hv_gic_state_get_data),
269 NEM_DARWIN_IMPORT(g_pfnHvGicSendMsi, hv_gic_send_msi),
270 NEM_DARWIN_IMPORT(g_pfnHvGicSetSpi, hv_gic_set_spi),
271 NEM_DARWIN_IMPORT(g_pfnHvGicGetDistributorReg, hv_gic_get_distributor_reg),
272 NEM_DARWIN_IMPORT(g_pfnHvGicGetMsiReg, hv_gic_get_msi_reg),
273 NEM_DARWIN_IMPORT(g_pfnHvGicGetIccReg, hv_gic_get_icc_reg),
274 NEM_DARWIN_IMPORT(g_pfnHvGicGetIchReg, hv_gic_get_ich_reg),
275 NEM_DARWIN_IMPORT(g_pfnHvGicGetIcvReg, hv_gic_get_icv_reg),
276 NEM_DARWIN_IMPORT(g_pfnHvGicGetRedistributorReg, hv_gic_get_redistributor_reg),
277 NEM_DARWIN_IMPORT(g_pfnHvGicSetDistributorReg, hv_gic_set_distributor_reg),
278 NEM_DARWIN_IMPORT(g_pfnHvGicSetMsiReg, hv_gic_set_msi_reg),
279 NEM_DARWIN_IMPORT(g_pfnHvGicSetIccReg, hv_gic_set_icc_reg),
280 NEM_DARWIN_IMPORT(g_pfnHvGicSetIchReg, hv_gic_set_ich_reg),
281 NEM_DARWIN_IMPORT(g_pfnHvGicSetIcvReg, hv_gic_set_icv_reg),
282 NEM_DARWIN_IMPORT(g_pfnHvGicSetRedistributorReg, hv_gic_set_redistributor_reg),
283 NEM_DARWIN_IMPORT(g_pfnHvGicGetIntid, hv_gic_get_intid)
284#undef NEM_DARWIN_IMPORT
285};
286
287
288/*
289 * Let the preprocessor alias the APIs to import variables for better autocompletion.
290 */
291#ifndef IN_SLICKEDIT
292# define hv_vm_config_create g_pfnHvVmConfigCreate
293# define hv_vm_config_get_el2_supported g_pfnHvVmConfigGetEl2Supported
294# define hv_vm_config_get_el2_enabled g_pfnHvVmConfigGetEl2Enabled
295# define hv_vm_config_set_el2_enabled g_pfnHvVmConfigSetEl2Enabled
296
297# define hv_gic_create g_pfnHvGicCreate
298# define hv_gic_reset g_pfnHvGicReset
299# define hv_gic_config_create g_pfnHvGicConfigCreate
300# define hv_gic_config_set_distributor_base g_pfnHvGicConfigSetDistributorBase
301# define hv_gic_config_set_redistributor_base g_pfnHvGicConfigSetRedistributorBase
302# define hv_gic_config_set_msi_region_base g_pfnHvGicConfigSetMsiRegionBase
303# define hv_gic_config_set_msi_interrupt_range g_pfnHvGicConfigSetMsiInterruptRange
304# define hv_gic_get_redistributor_base g_pfnHvGicGetRedistributorBase
305# define hv_gic_get_redistributor_region_size g_pfnHvGicGetRedistributorRegionSize
306# define hv_gic_get_redistributor_size g_pfnHvGicGetRedistributorSize
307# define hv_gic_get_distributor_size g_pfnHvGicGetDistributorSize
308# define hv_gic_get_distributor_base_alignment g_pfnHvGicGetDistributorBaseAlignment
309# define hv_gic_get_redistributor_base_alignment g_pfnHvGicGetRedistributorBaseAlignment
310# define hv_gic_get_msi_region_base_alignment g_pfnHvGicGetMsiRegionBaseAlignment
311# define hv_gic_get_msi_region_size g_pfnHvGicGetMsiRegionSize
312# define hv_gic_get_spi_interrupt_range g_pfnHvGicGetSpiInterruptRange
313# define hv_gic_state_create g_pfnHvGicStateCreate
314# define hv_gic_set_state g_pfnHvGicSetState
315# define hv_gic_state_get_size g_pfnHvGicStateGetSize
316# define hv_gic_state_get_data g_pfnHvGicStateGetData
317# define hv_gic_send_msi g_pfnHvGicSendMsi
318# define hv_gic_set_spi g_pfnHvGicSetSpi
319# define hv_gic_get_distributor_reg g_pfnHvGicGetDistributorReg
320# define hv_gic_get_msi_reg g_pfnHvGicGetMsiReg
321# define hv_gic_get_icc_reg g_pfnHvGicGetIccReg
322# define hv_gic_get_ich_reg g_pfnHvGicGetIchReg
323# define hv_gic_get_icv_reg g_pfnHvGicGetIcvReg
324# define hv_gic_get_redistributor_reg g_pfnHvGicGetRedistributorReg
325# define hv_gic_set_distributor_reg g_pfnHvGicSetDistributorReg
326# define hv_gic_set_msi_reg g_pfnHvGicSetMsiReg
327# define hv_gic_set_icc_reg g_pfnHvGicSetIccReg
328# define hv_gic_set_ich_reg g_pfnHvGicSetIchReg
329# define hv_gic_set_icv_reg g_pfnHvGicSetIcvReg
330# define hv_gic_set_redistributor_reg g_pfnHvGicSetRedistributorReg
331# define hv_gic_get_intid g_pfnHvGicGetIntid
332#endif
333
334
335/** The general registers. */
336static const struct
337{
338 hv_reg_t enmHvReg;
339 uint32_t fCpumExtrn;
340 uint32_t offCpumCtx;
341} s_aCpumRegs[] =
342{
343#define CPUM_GREG_EMIT_X0_X3(a_Idx) { HV_REG_X ## a_Idx, CPUMCTX_EXTRN_X ## a_Idx, RT_UOFFSETOF(CPUMCTX, aGRegs[a_Idx].x) }
344#define CPUM_GREG_EMIT_X4_X28(a_Idx) { HV_REG_X ## a_Idx, CPUMCTX_EXTRN_X4_X28, RT_UOFFSETOF(CPUMCTX, aGRegs[a_Idx].x) }
345 CPUM_GREG_EMIT_X0_X3(0),
346 CPUM_GREG_EMIT_X0_X3(1),
347 CPUM_GREG_EMIT_X0_X3(2),
348 CPUM_GREG_EMIT_X0_X3(3),
349 CPUM_GREG_EMIT_X4_X28(4),
350 CPUM_GREG_EMIT_X4_X28(5),
351 CPUM_GREG_EMIT_X4_X28(6),
352 CPUM_GREG_EMIT_X4_X28(7),
353 CPUM_GREG_EMIT_X4_X28(8),
354 CPUM_GREG_EMIT_X4_X28(9),
355 CPUM_GREG_EMIT_X4_X28(10),
356 CPUM_GREG_EMIT_X4_X28(11),
357 CPUM_GREG_EMIT_X4_X28(12),
358 CPUM_GREG_EMIT_X4_X28(13),
359 CPUM_GREG_EMIT_X4_X28(14),
360 CPUM_GREG_EMIT_X4_X28(15),
361 CPUM_GREG_EMIT_X4_X28(16),
362 CPUM_GREG_EMIT_X4_X28(17),
363 CPUM_GREG_EMIT_X4_X28(18),
364 CPUM_GREG_EMIT_X4_X28(19),
365 CPUM_GREG_EMIT_X4_X28(20),
366 CPUM_GREG_EMIT_X4_X28(21),
367 CPUM_GREG_EMIT_X4_X28(22),
368 CPUM_GREG_EMIT_X4_X28(23),
369 CPUM_GREG_EMIT_X4_X28(24),
370 CPUM_GREG_EMIT_X4_X28(25),
371 CPUM_GREG_EMIT_X4_X28(26),
372 CPUM_GREG_EMIT_X4_X28(27),
373 CPUM_GREG_EMIT_X4_X28(28),
374 { HV_REG_FP, CPUMCTX_EXTRN_FP, RT_UOFFSETOF(CPUMCTX, aGRegs[29].x) },
375 { HV_REG_LR, CPUMCTX_EXTRN_LR, RT_UOFFSETOF(CPUMCTX, aGRegs[30].x) },
376 { HV_REG_PC, CPUMCTX_EXTRN_PC, RT_UOFFSETOF(CPUMCTX, Pc.u64) },
377 { HV_REG_FPCR, CPUMCTX_EXTRN_FPCR, RT_UOFFSETOF(CPUMCTX, fpcr) },
378 { HV_REG_FPSR, CPUMCTX_EXTRN_FPSR, RT_UOFFSETOF(CPUMCTX, fpsr) }
379#undef CPUM_GREG_EMIT_X0_X3
380#undef CPUM_GREG_EMIT_X4_X28
381};
382/** SIMD/FP registers. */
383static const struct
384{
385 hv_simd_fp_reg_t enmHvReg;
386 uint32_t offCpumCtx;
387} s_aCpumFpRegs[] =
388{
389#define CPUM_VREG_EMIT(a_Idx) { HV_SIMD_FP_REG_Q ## a_Idx, RT_UOFFSETOF(CPUMCTX, aVRegs[a_Idx].v) }
390 CPUM_VREG_EMIT(0),
391 CPUM_VREG_EMIT(1),
392 CPUM_VREG_EMIT(2),
393 CPUM_VREG_EMIT(3),
394 CPUM_VREG_EMIT(4),
395 CPUM_VREG_EMIT(5),
396 CPUM_VREG_EMIT(6),
397 CPUM_VREG_EMIT(7),
398 CPUM_VREG_EMIT(8),
399 CPUM_VREG_EMIT(9),
400 CPUM_VREG_EMIT(10),
401 CPUM_VREG_EMIT(11),
402 CPUM_VREG_EMIT(12),
403 CPUM_VREG_EMIT(13),
404 CPUM_VREG_EMIT(14),
405 CPUM_VREG_EMIT(15),
406 CPUM_VREG_EMIT(16),
407 CPUM_VREG_EMIT(17),
408 CPUM_VREG_EMIT(18),
409 CPUM_VREG_EMIT(19),
410 CPUM_VREG_EMIT(20),
411 CPUM_VREG_EMIT(21),
412 CPUM_VREG_EMIT(22),
413 CPUM_VREG_EMIT(23),
414 CPUM_VREG_EMIT(24),
415 CPUM_VREG_EMIT(25),
416 CPUM_VREG_EMIT(26),
417 CPUM_VREG_EMIT(27),
418 CPUM_VREG_EMIT(28),
419 CPUM_VREG_EMIT(29),
420 CPUM_VREG_EMIT(30),
421 CPUM_VREG_EMIT(31)
422#undef CPUM_VREG_EMIT
423};
424/** Debug system registers. */
425static const struct
426{
427 hv_sys_reg_t enmHvReg;
428 uint32_t offCpumCtx;
429} s_aCpumDbgRegs[] =
430{
431#define CPUM_DBGREG_EMIT(a_BorW, a_Idx) \
432 { HV_SYS_REG_DBG ## a_BorW ## CR ## a_Idx ## _EL1, RT_UOFFSETOF(CPUMCTX, a ## a_BorW ## p[a_Idx].Ctrl.u64) }, \
433 { HV_SYS_REG_DBG ## a_BorW ## VR ## a_Idx ## _EL1, RT_UOFFSETOF(CPUMCTX, a ## a_BorW ## p[a_Idx].Value.u64) }
434 /* Breakpoint registers. */
435 CPUM_DBGREG_EMIT(B, 0),
436 CPUM_DBGREG_EMIT(B, 1),
437 CPUM_DBGREG_EMIT(B, 2),
438 CPUM_DBGREG_EMIT(B, 3),
439 CPUM_DBGREG_EMIT(B, 4),
440 CPUM_DBGREG_EMIT(B, 5),
441 CPUM_DBGREG_EMIT(B, 6),
442 CPUM_DBGREG_EMIT(B, 7),
443 CPUM_DBGREG_EMIT(B, 8),
444 CPUM_DBGREG_EMIT(B, 9),
445 CPUM_DBGREG_EMIT(B, 10),
446 CPUM_DBGREG_EMIT(B, 11),
447 CPUM_DBGREG_EMIT(B, 12),
448 CPUM_DBGREG_EMIT(B, 13),
449 CPUM_DBGREG_EMIT(B, 14),
450 CPUM_DBGREG_EMIT(B, 15),
451 /* Watchpoint registers. */
452 CPUM_DBGREG_EMIT(W, 0),
453 CPUM_DBGREG_EMIT(W, 1),
454 CPUM_DBGREG_EMIT(W, 2),
455 CPUM_DBGREG_EMIT(W, 3),
456 CPUM_DBGREG_EMIT(W, 4),
457 CPUM_DBGREG_EMIT(W, 5),
458 CPUM_DBGREG_EMIT(W, 6),
459 CPUM_DBGREG_EMIT(W, 7),
460 CPUM_DBGREG_EMIT(W, 8),
461 CPUM_DBGREG_EMIT(W, 9),
462 CPUM_DBGREG_EMIT(W, 10),
463 CPUM_DBGREG_EMIT(W, 11),
464 CPUM_DBGREG_EMIT(W, 12),
465 CPUM_DBGREG_EMIT(W, 13),
466 CPUM_DBGREG_EMIT(W, 14),
467 CPUM_DBGREG_EMIT(W, 15),
468 { HV_SYS_REG_MDSCR_EL1, RT_UOFFSETOF(CPUMCTX, Mdscr.u64) }
469#undef CPUM_DBGREG_EMIT
470};
471/** PAuth key system registers. */
472static const struct
473{
474 hv_sys_reg_t enmHvReg;
475 uint32_t offCpumCtx;
476} s_aCpumPAuthKeyRegs[] =
477{
478 { HV_SYS_REG_APDAKEYLO_EL1, RT_UOFFSETOF(CPUMCTX, Apda.Low.u64) },
479 { HV_SYS_REG_APDAKEYHI_EL1, RT_UOFFSETOF(CPUMCTX, Apda.High.u64) },
480 { HV_SYS_REG_APDBKEYLO_EL1, RT_UOFFSETOF(CPUMCTX, Apdb.Low.u64) },
481 { HV_SYS_REG_APDBKEYHI_EL1, RT_UOFFSETOF(CPUMCTX, Apdb.High.u64) },
482 { HV_SYS_REG_APGAKEYLO_EL1, RT_UOFFSETOF(CPUMCTX, Apga.Low.u64) },
483 { HV_SYS_REG_APGAKEYHI_EL1, RT_UOFFSETOF(CPUMCTX, Apga.High.u64) },
484 { HV_SYS_REG_APIAKEYLO_EL1, RT_UOFFSETOF(CPUMCTX, Apia.Low.u64) },
485 { HV_SYS_REG_APIAKEYHI_EL1, RT_UOFFSETOF(CPUMCTX, Apia.High.u64) },
486 { HV_SYS_REG_APIBKEYLO_EL1, RT_UOFFSETOF(CPUMCTX, Apib.Low.u64) },
487 { HV_SYS_REG_APIBKEYHI_EL1, RT_UOFFSETOF(CPUMCTX, Apib.High.u64) }
488};
489/** System registers. */
490static const struct
491{
492 hv_sys_reg_t enmHvReg;
493 uint32_t fCpumExtrn;
494 uint32_t offCpumCtx;
495} s_aCpumSysRegs[] =
496{
497 { HV_SYS_REG_SP_EL0, CPUMCTX_EXTRN_SP, RT_UOFFSETOF(CPUMCTX, aSpReg[0].u64) },
498 { HV_SYS_REG_SP_EL1, CPUMCTX_EXTRN_SP, RT_UOFFSETOF(CPUMCTX, aSpReg[1].u64) },
499 { HV_SYS_REG_SPSR_EL1, CPUMCTX_EXTRN_SPSR, RT_UOFFSETOF(CPUMCTX, Spsr.u64) },
500 { HV_SYS_REG_ELR_EL1, CPUMCTX_EXTRN_ELR, RT_UOFFSETOF(CPUMCTX, Elr.u64) },
501 { HV_SYS_REG_SCTLR_EL1, CPUMCTX_EXTRN_SCTLR_TCR_TTBR, RT_UOFFSETOF(CPUMCTX, Sctlr.u64) },
502 { HV_SYS_REG_TCR_EL1, CPUMCTX_EXTRN_SCTLR_TCR_TTBR, RT_UOFFSETOF(CPUMCTX, Tcr.u64) },
503 { HV_SYS_REG_TTBR0_EL1, CPUMCTX_EXTRN_SCTLR_TCR_TTBR, RT_UOFFSETOF(CPUMCTX, Ttbr0.u64) },
504 { HV_SYS_REG_TTBR1_EL1, CPUMCTX_EXTRN_SCTLR_TCR_TTBR, RT_UOFFSETOF(CPUMCTX, Ttbr1.u64) },
505 { HV_SYS_REG_VBAR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, VBar.u64) },
506 { HV_SYS_REG_AFSR0_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Afsr0.u64) },
507 { HV_SYS_REG_AFSR1_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Afsr1.u64) },
508 { HV_SYS_REG_AMAIR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Amair.u64) },
509 { HV_SYS_REG_CNTKCTL_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, CntKCtl.u64) },
510 { HV_SYS_REG_CONTEXTIDR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, ContextIdr.u64) },
511 { HV_SYS_REG_CPACR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Cpacr.u64) },
512 { HV_SYS_REG_CSSELR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Csselr.u64) },
513 { HV_SYS_REG_ESR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Esr.u64) },
514 { HV_SYS_REG_FAR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Far.u64) },
515 { HV_SYS_REG_MAIR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Mair.u64) },
516 { HV_SYS_REG_PAR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, Par.u64) },
517 { HV_SYS_REG_TPIDRRO_EL0, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, TpIdrRoEl0.u64) },
518 { HV_SYS_REG_TPIDR_EL0, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, aTpIdr[0].u64) },
519 { HV_SYS_REG_TPIDR_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, aTpIdr[1].u64) },
520 { HV_SYS_REG_MDCCINT_EL1, CPUMCTX_EXTRN_SYSREG_MISC, RT_UOFFSETOF(CPUMCTX, MDccInt.u64) }
521
522};
523/** EL2 support system registers. */
524static const struct
525{
526 uint16_t idSysReg;
527 uint32_t offCpumCtx;
528} s_aCpumEl2SysRegs[] =
529{
530 { ARMV8_AARCH64_SYSREG_CNTHCTL_EL2, RT_UOFFSETOF(CPUMCTX, CntHCtlEl2.u64) },
531 { ARMV8_AARCH64_SYSREG_CNTHP_CTL_EL2, RT_UOFFSETOF(CPUMCTX, CntHpCtlEl2.u64) },
532 { ARMV8_AARCH64_SYSREG_CNTHP_CVAL_EL2, RT_UOFFSETOF(CPUMCTX, CntHpCValEl2.u64) },
533 { ARMV8_AARCH64_SYSREG_CNTHP_TVAL_EL2, RT_UOFFSETOF(CPUMCTX, CntHpTValEl2.u64) },
534 { ARMV8_AARCH64_SYSREG_CNTVOFF_EL2, RT_UOFFSETOF(CPUMCTX, CntVOffEl2.u64) },
535 { ARMV8_AARCH64_SYSREG_CPTR_EL2, RT_UOFFSETOF(CPUMCTX, CptrEl2.u64) },
536 { ARMV8_AARCH64_SYSREG_ELR_EL2, RT_UOFFSETOF(CPUMCTX, ElrEl2.u64) },
537 { ARMV8_AARCH64_SYSREG_ESR_EL2, RT_UOFFSETOF(CPUMCTX, EsrEl2.u64) },
538 { ARMV8_AARCH64_SYSREG_FAR_EL2, RT_UOFFSETOF(CPUMCTX, FarEl2.u64) },
539 { ARMV8_AARCH64_SYSREG_HCR_EL2, RT_UOFFSETOF(CPUMCTX, HcrEl2.u64) },
540 { ARMV8_AARCH64_SYSREG_HPFAR_EL2, RT_UOFFSETOF(CPUMCTX, HpFarEl2.u64) },
541 { ARMV8_AARCH64_SYSREG_MAIR_EL2, RT_UOFFSETOF(CPUMCTX, MairEl2.u64) },
542 //{ ARMV8_AARCH64_SYSREG_MDCR_EL2, RT_UOFFSETOF(CPUMCTX, MdcrEl2.u64) },
543 { ARMV8_AARCH64_SYSREG_SCTLR_EL2, RT_UOFFSETOF(CPUMCTX, SctlrEl2.u64) },
544 { ARMV8_AARCH64_SYSREG_SPSR_EL2, RT_UOFFSETOF(CPUMCTX, SpsrEl2.u64) },
545 { ARMV8_AARCH64_SYSREG_SP_EL2, RT_UOFFSETOF(CPUMCTX, SpEl2.u64) },
546 { ARMV8_AARCH64_SYSREG_TCR_EL2, RT_UOFFSETOF(CPUMCTX, TcrEl2.u64) },
547 { ARMV8_AARCH64_SYSREG_TPIDR_EL2, RT_UOFFSETOF(CPUMCTX, TpidrEl2.u64) },
548 { ARMV8_AARCH64_SYSREG_TTBR0_EL2, RT_UOFFSETOF(CPUMCTX, Ttbr0El2.u64) },
549 { ARMV8_AARCH64_SYSREG_TTBR1_EL2, RT_UOFFSETOF(CPUMCTX, Ttbr1El2.u64) },
550 { ARMV8_AARCH64_SYSREG_VBAR_EL2, RT_UOFFSETOF(CPUMCTX, VBarEl2.u64) },
551 { ARMV8_AARCH64_SYSREG_VMPIDR_EL2, RT_UOFFSETOF(CPUMCTX, VMpidrEl2.u64) },
552 { ARMV8_AARCH64_SYSREG_VPIDR_EL2, RT_UOFFSETOF(CPUMCTX, VPidrEl2.u64) },
553 { ARMV8_AARCH64_SYSREG_VTCR_EL2, RT_UOFFSETOF(CPUMCTX, VTcrEl2.u64) },
554 { ARMV8_AARCH64_SYSREG_VTTBR_EL2, RT_UOFFSETOF(CPUMCTX, VTtbrEl2.u64) }
555};
556/** ID registers. */
557static const struct
558{
559 hv_feature_reg_t enmHvReg;
560 uint32_t offIdStruct;
561} s_aIdRegs[] =
562{
563 { HV_FEATURE_REG_ID_AA64DFR0_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Dfr0El1) },
564 { HV_FEATURE_REG_ID_AA64DFR1_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Dfr1El1) },
565 { HV_FEATURE_REG_ID_AA64ISAR0_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Isar0El1) },
566 { HV_FEATURE_REG_ID_AA64ISAR1_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Isar1El1) },
567 { HV_FEATURE_REG_ID_AA64MMFR0_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Mmfr0El1) },
568 { HV_FEATURE_REG_ID_AA64MMFR1_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Mmfr1El1) },
569 { HV_FEATURE_REG_ID_AA64MMFR2_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Mmfr2El1) },
570 { HV_FEATURE_REG_ID_AA64PFR0_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Pfr0El1) },
571 { HV_FEATURE_REG_ID_AA64PFR1_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegIdAa64Pfr1El1) },
572 { HV_FEATURE_REG_CLIDR_EL1, RT_UOFFSETOF(CPUMIDREGS, u64RegClidrEl1) },
573 { HV_FEATURE_REG_CTR_EL0, RT_UOFFSETOF(CPUMIDREGS, u64RegCtrEl0) },
574 { HV_FEATURE_REG_DCZID_EL0, RT_UOFFSETOF(CPUMIDREGS, u64RegDczidEl0) }
575};
576
577
578/*********************************************************************************************************************************
579* Internal Functions *
580*********************************************************************************************************************************/
581
582
583/**
584 * Converts a HV return code to a VBox status code.
585 *
586 * @returns VBox status code.
587 * @param hrc The HV return code to convert.
588 */
589DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
590{
591 if (hrc == HV_SUCCESS)
592 return VINF_SUCCESS;
593
594 switch (hrc)
595 {
596 case HV_ERROR: return VERR_INVALID_STATE;
597 case HV_BUSY: return VERR_RESOURCE_BUSY;
598 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
599 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
600 case HV_NO_DEVICE: return VERR_NOT_FOUND;
601 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
602 }
603
604 return VERR_IPE_UNEXPECTED_STATUS;
605}
606
607
608/**
609 * Returns a human readable string of the given exception class.
610 *
611 * @returns Pointer to the string matching the given EC.
612 * @param u32Ec The exception class to return the string for.
613 */
614static const char *nemR3DarwinEsrEl2EcStringify(uint32_t u32Ec)
615{
616 switch (u32Ec)
617 {
618#define ARMV8_EC_CASE(a_Ec) case a_Ec: return #a_Ec
619 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_UNKNOWN);
620 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_TRAPPED_WFX);
621 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_MCR_MRC_COPROC_15);
622 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_MCRR_MRRC_COPROC15);
623 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_MCR_MRC_COPROC_14);
624 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_LDC_STC);
625 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_SME_SVE_NEON);
626 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_VMRS);
627 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_PA_INSN);
628 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_LS64_EXCEPTION);
629 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_MRRC_COPROC14);
630 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_BTI_BRANCH_TARGET_EXCEPTION);
631 ARMV8_EC_CASE(ARMV8_ESR_EL2_ILLEGAL_EXECUTION_STATE);
632 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_SVC_INSN);
633 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_HVC_INSN);
634 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_SMC_INSN);
635 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH64_SVC_INSN);
636 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH64_HVC_INSN);
637 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH64_SMC_INSN);
638 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH64_TRAPPED_SYS_INSN);
639 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_SVE_TRAPPED);
640 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_PAUTH_NV_TRAPPED_ERET_ERETAA_ERETAB);
641 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_TME_TSTART_INSN_EXCEPTION);
642 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_FPAC_PA_INSN_FAILURE_EXCEPTION);
643 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_SME_TRAPPED_SME_ACCESS);
644 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_RME_GRANULE_PROT_CHECK_EXCEPTION);
645 ARMV8_EC_CASE(ARMV8_ESR_EL2_INSN_ABORT_FROM_LOWER_EL);
646 ARMV8_EC_CASE(ARMV8_ESR_EL2_INSN_ABORT_FROM_EL2);
647 ARMV8_EC_CASE(ARMV8_ESR_EL2_PC_ALIGNMENT_EXCEPTION);
648 ARMV8_EC_CASE(ARMV8_ESR_EL2_DATA_ABORT_FROM_LOWER_EL);
649 ARMV8_EC_CASE(ARMV8_ESR_EL2_DATA_ABORT_FROM_EL2);
650 ARMV8_EC_CASE(ARMV8_ESR_EL2_SP_ALIGNMENT_EXCEPTION);
651 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_MOPS_EXCEPTION);
652 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_TRAPPED_FP_EXCEPTION);
653 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH64_TRAPPED_FP_EXCEPTION);
654 ARMV8_EC_CASE(ARMV8_ESR_EL2_SERROR_INTERRUPT);
655 ARMV8_EC_CASE(ARMV8_ESR_EL2_BKPT_EXCEPTION_FROM_LOWER_EL);
656 ARMV8_EC_CASE(ARMV8_ESR_EL2_BKPT_EXCEPTION_FROM_EL2);
657 ARMV8_EC_CASE(ARMV8_ESR_EL2_SS_EXCEPTION_FROM_LOWER_EL);
658 ARMV8_EC_CASE(ARMV8_ESR_EL2_SS_EXCEPTION_FROM_EL2);
659 ARMV8_EC_CASE(ARMV8_ESR_EL2_WATCHPOINT_EXCEPTION_FROM_LOWER_EL);
660 ARMV8_EC_CASE(ARMV8_ESR_EL2_WATCHPOINT_EXCEPTION_FROM_EL2);
661 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_BKPT_INSN);
662 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH32_VEC_CATCH_EXCEPTION);
663 ARMV8_EC_CASE(ARMV8_ESR_EL2_EC_AARCH64_BRK_INSN);
664#undef ARMV8_EC_CASE
665 default:
666 break;
667 }
668
669 return "<INVALID>";
670}
671
672
673/**
674 * Resolves a NEM page state from the given protection flags.
675 *
676 * @returns NEM page state.
677 * @param fPageProt The page protection flags.
678 */
679DECLINLINE(uint8_t) nemR3DarwinPageStateFromProt(uint32_t fPageProt)
680{
681 switch (fPageProt)
682 {
683 case NEM_PAGE_PROT_NONE:
684 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
685 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE:
686 return NEM_DARWIN_PAGE_STATE_RX;
687 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE:
688 return NEM_DARWIN_PAGE_STATE_RW;
689 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE:
690 return NEM_DARWIN_PAGE_STATE_RWX;
691 default:
692 break;
693 }
694
695 AssertLogRelMsgFailed(("Invalid combination of page protection flags %#x, can't map to page state!\n", fPageProt));
696 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
697}
698
699
700/**
701 * Unmaps the given guest physical address range (page aligned).
702 *
703 * @returns VBox status code.
704 * @param pVM The cross context VM structure.
705 * @param GCPhys The guest physical address to start unmapping at.
706 * @param cb The size of the range to unmap in bytes.
707 * @param pu2State Where to store the new state of the unmappd page, optional.
708 */
709DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint8_t *pu2State)
710{
711 if (*pu2State <= NEM_DARWIN_PAGE_STATE_UNMAPPED)
712 {
713 Log5(("nemR3DarwinUnmap: %RGp == unmapped\n", GCPhys));
714 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
715 return VINF_SUCCESS;
716 }
717
718 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
719 hv_return_t hrc = hv_vm_unmap(GCPhys, cb);
720 if (RT_LIKELY(hrc == HV_SUCCESS))
721 {
722 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
723 if (pu2State)
724 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
725 Log5(("nemR3DarwinUnmap: %RGp => unmapped\n", GCPhys));
726 return VINF_SUCCESS;
727 }
728
729 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
730 LogRel(("nemR3DarwinUnmap(%RGp): failed! hrc=%#x\n",
731 GCPhys, hrc));
732 return VERR_NEM_IPE_6;
733}
734
735
736/**
737 * Maps a given guest physical address range backed by the given memory with the given
738 * protection flags.
739 *
740 * @returns VBox status code.
741 * @param pVM The cross context VM structure.
742 * @param GCPhys The guest physical address to start mapping.
743 * @param pvRam The R3 pointer of the memory to back the range with.
744 * @param cb The size of the range, page aligned.
745 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
746 * @param pu2State Where to store the state for the new page, optional.
747 */
748DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, const void *pvRam, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
749{
750 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
751
752 Assert(fPageProt != NEM_PAGE_PROT_NONE);
753 RT_NOREF(pVM);
754
755 hv_memory_flags_t fHvMemProt = 0;
756 if (fPageProt & NEM_PAGE_PROT_READ)
757 fHvMemProt |= HV_MEMORY_READ;
758 if (fPageProt & NEM_PAGE_PROT_WRITE)
759 fHvMemProt |= HV_MEMORY_WRITE;
760 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
761 fHvMemProt |= HV_MEMORY_EXEC;
762
763 hv_return_t hrc = hv_vm_map((void *)pvRam, GCPhys, cb, fHvMemProt);
764 if (hrc == HV_SUCCESS)
765 {
766 if (pu2State)
767 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
768 return VINF_SUCCESS;
769 }
770
771 return nemR3DarwinHvSts2Rc(hrc);
772}
773
774
775/**
776 * Changes the protection flags for the given guest physical address range.
777 *
778 * @returns VBox status code.
779 * @param GCPhys The guest physical address to start mapping.
780 * @param cb The size of the range, page aligned.
781 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
782 * @param pu2State Where to store the state for the new page, optional.
783 */
784DECLINLINE(int) nemR3DarwinProtect(RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
785{
786 hv_memory_flags_t fHvMemProt = 0;
787 if (fPageProt & NEM_PAGE_PROT_READ)
788 fHvMemProt |= HV_MEMORY_READ;
789 if (fPageProt & NEM_PAGE_PROT_WRITE)
790 fHvMemProt |= HV_MEMORY_WRITE;
791 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
792 fHvMemProt |= HV_MEMORY_EXEC;
793
794 hv_return_t hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
795 if (hrc == HV_SUCCESS)
796 {
797 if (pu2State)
798 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
799 return VINF_SUCCESS;
800 }
801
802 LogRel(("nemR3DarwinProtect(%RGp,%zu,%#x): failed! hrc=%#x\n",
803 GCPhys, cb, fPageProt, hrc));
804 return nemR3DarwinHvSts2Rc(hrc);
805}
806
807
808#ifdef LOG_ENABLED
809/**
810 * Logs the current CPU state.
811 */
812static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
813{
814 if (LogIs3Enabled())
815 {
816 char szRegs[4096];
817 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
818 "x0=%016VR{x0} x1=%016VR{x1} x2=%016VR{x2} x3=%016VR{x3}\n"
819 "x4=%016VR{x4} x5=%016VR{x5} x6=%016VR{x6} x7=%016VR{x7}\n"
820 "x8=%016VR{x8} x9=%016VR{x9} x10=%016VR{x10} x11=%016VR{x11}\n"
821 "x12=%016VR{x12} x13=%016VR{x13} x14=%016VR{x14} x15=%016VR{x15}\n"
822 "x16=%016VR{x16} x17=%016VR{x17} x18=%016VR{x18} x19=%016VR{x19}\n"
823 "x20=%016VR{x20} x21=%016VR{x21} x22=%016VR{x22} x23=%016VR{x23}\n"
824 "x24=%016VR{x24} x25=%016VR{x25} x26=%016VR{x26} x27=%016VR{x27}\n"
825 "x28=%016VR{x28} x29=%016VR{x29} x30=%016VR{x30}\n"
826 "pc=%016VR{pc} pstate=%016VR{pstate}\n"
827 "sp_el0=%016VR{sp_el0} sp_el1=%016VR{sp_el1} elr_el1=%016VR{elr_el1}\n"
828 "sctlr_el1=%016VR{sctlr_el1} tcr_el1=%016VR{tcr_el1}\n"
829 "ttbr0_el1=%016VR{ttbr0_el1} ttbr1_el1=%016VR{ttbr1_el1}\n"
830 "vbar_el1=%016VR{vbar_el1}\n"
831 );
832 char szInstr[256]; RT_ZERO(szInstr);
833#if 0
834 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
835 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
836 szInstr, sizeof(szInstr), NULL);
837#endif
838 Log3(("%s%s\n", szRegs, szInstr));
839
840 if (pVM->nem.s.fEl2Enabled)
841 {
842 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
843 "sp_el2=%016VR{sp_el2} elr_el2=%016VR{elr_el2}\n"
844 "spsr_el2=%016VR{spsr_el2} tpidr_el2=%016VR{tpidr_el2}\n"
845 "sctlr_el2=%016VR{sctlr_el2} tcr_el2=%016VR{tcr_el2}\n"
846 "ttbr0_el2=%016VR{ttbr0_el2} ttbr1_el2=%016VR{ttbr1_el2}\n"
847 "esr_el2=%016VR{esr_el2} far_el2=%016VR{far_el2}\n"
848 "hcr_el2=%016VR{hcr_el2} tcr_el2=%016VR{tcr_el2}\n"
849 "vbar_el2=%016VR{vbar_el2} cptr_el2=%016VR{cptr_el2}\n"
850 );
851 }
852 Log3(("%s%s\n", szRegs));
853 }
854}
855#endif /* LOG_ENABLED */
856
857
858static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
859{
860 RT_NOREF(pVM);
861
862 hv_return_t hrc = hv_vcpu_get_sys_reg(pVCpu->nem.s.hVCpu, HV_SYS_REG_CNTV_CTL_EL0, &pVCpu->cpum.GstCtx.CntvCtlEl0);
863 if (hrc == HV_SUCCESS)
864 hrc = hv_vcpu_get_sys_reg(pVCpu->nem.s.hVCpu, HV_SYS_REG_CNTV_CVAL_EL0, &pVCpu->cpum.GstCtx.CntvCValEl0);
865
866 if ( hrc == HV_SUCCESS
867 && (fWhat & (CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_PC | CPUMCTX_EXTRN_FPCR | CPUMCTX_EXTRN_FPSR)))
868 {
869 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumRegs); i++)
870 {
871 if (s_aCpumRegs[i].fCpumExtrn & fWhat)
872 {
873 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumRegs[i].offCpumCtx);
874 hrc |= hv_vcpu_get_reg(pVCpu->nem.s.hVCpu, s_aCpumRegs[i].enmHvReg, pu64);
875 }
876 }
877 }
878
879 if ( hrc == HV_SUCCESS
880 && (fWhat & CPUMCTX_EXTRN_V0_V31))
881 {
882 /* SIMD/FP registers. */
883 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumFpRegs); i++)
884 {
885 hv_simd_fp_uchar16_t *pu128 = (hv_simd_fp_uchar16_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumFpRegs[i].offCpumCtx);
886 hrc |= hv_vcpu_get_simd_fp_reg(pVCpu->nem.s.hVCpu, s_aCpumFpRegs[i].enmHvReg, pu128);
887 }
888 }
889
890 if ( hrc == HV_SUCCESS
891 && (fWhat & CPUMCTX_EXTRN_SYSREG_DEBUG))
892 {
893 /* Debug registers. */
894 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumDbgRegs); i++)
895 {
896 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumDbgRegs[i].offCpumCtx);
897 hrc |= hv_vcpu_get_sys_reg(pVCpu->nem.s.hVCpu, s_aCpumDbgRegs[i].enmHvReg, pu64);
898 }
899 }
900
901 if ( hrc == HV_SUCCESS
902 && (fWhat & CPUMCTX_EXTRN_SYSREG_PAUTH_KEYS))
903 {
904 /* Debug registers. */
905 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumPAuthKeyRegs); i++)
906 {
907 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumPAuthKeyRegs[i].offCpumCtx);
908 hrc |= hv_vcpu_get_sys_reg(pVCpu->nem.s.hVCpu, s_aCpumPAuthKeyRegs[i].enmHvReg, pu64);
909 }
910 }
911
912 if ( hrc == HV_SUCCESS
913 && (fWhat & (CPUMCTX_EXTRN_SPSR | CPUMCTX_EXTRN_ELR | CPUMCTX_EXTRN_SP | CPUMCTX_EXTRN_SCTLR_TCR_TTBR | CPUMCTX_EXTRN_SYSREG_MISC)))
914 {
915 /* System registers. */
916 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumSysRegs); i++)
917 {
918 if (s_aCpumSysRegs[i].fCpumExtrn & fWhat)
919 {
920 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumSysRegs[i].offCpumCtx);
921 hrc |= hv_vcpu_get_sys_reg(pVCpu->nem.s.hVCpu, s_aCpumSysRegs[i].enmHvReg, pu64);
922 }
923 }
924 }
925
926 if ( hrc == HV_SUCCESS
927 && (fWhat & CPUMCTX_EXTRN_SYSREG_EL2)
928 && pVM->nem.s.fEl2Enabled)
929 {
930 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumEl2SysRegs); i++)
931 {
932 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumEl2SysRegs[i].offCpumCtx);
933 hrc |= hv_vcpu_get_sys_reg(pVCpu->nem.s.hVCpu, (hv_sys_reg_t)s_aCpumEl2SysRegs[i].idSysReg, pu64);
934 }
935 }
936
937 if ( hrc == HV_SUCCESS
938 && (fWhat & CPUMCTX_EXTRN_PSTATE))
939 {
940 uint64_t u64Tmp;
941 hrc |= hv_vcpu_get_reg(pVCpu->nem.s.hVCpu, HV_REG_CPSR, &u64Tmp);
942 if (hrc == HV_SUCCESS)
943 pVCpu->cpum.GstCtx.fPState = (uint32_t)u64Tmp;
944 }
945
946 /* Almost done, just update extern flags. */
947 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
948 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
949 pVCpu->cpum.GstCtx.fExtrn = 0;
950
951 return nemR3DarwinHvSts2Rc(hrc);
952}
953
954
955/**
956 * Exports the guest state to HV for execution.
957 *
958 * @returns VBox status code.
959 * @param pVM The cross context VM structure.
960 * @param pVCpu The cross context virtual CPU structure of the
961 * calling EMT.
962 */
963static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu)
964{
965 RT_NOREF(pVM);
966 hv_return_t hrc = HV_SUCCESS;
967
968 if ( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_PC | CPUMCTX_EXTRN_FPCR | CPUMCTX_EXTRN_FPSR))
969 != (CPUMCTX_EXTRN_GPRS_MASK | CPUMCTX_EXTRN_PC | CPUMCTX_EXTRN_FPCR | CPUMCTX_EXTRN_FPSR))
970 {
971 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumRegs); i++)
972 {
973 if (!(s_aCpumRegs[i].fCpumExtrn & pVCpu->cpum.GstCtx.fExtrn))
974 {
975 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumRegs[i].offCpumCtx);
976 hrc |= hv_vcpu_set_reg(pVCpu->nem.s.hVCpu, s_aCpumRegs[i].enmHvReg, *pu64);
977 }
978 }
979 }
980
981 if ( hrc == HV_SUCCESS
982 && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_V0_V31))
983 {
984 /* SIMD/FP registers. */
985 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumFpRegs); i++)
986 {
987 hv_simd_fp_uchar16_t *pu128 = (hv_simd_fp_uchar16_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumFpRegs[i].offCpumCtx);
988 hrc |= hv_vcpu_set_simd_fp_reg(pVCpu->nem.s.hVCpu, s_aCpumFpRegs[i].enmHvReg, *pu128);
989 }
990 }
991
992 if ( hrc == HV_SUCCESS
993 && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_SYSREG_DEBUG))
994 {
995 /* Debug registers. */
996 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumDbgRegs); i++)
997 {
998 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumDbgRegs[i].offCpumCtx);
999 hrc |= hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, s_aCpumDbgRegs[i].enmHvReg, *pu64);
1000 }
1001 }
1002
1003 if ( hrc == HV_SUCCESS
1004 && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_SYSREG_PAUTH_KEYS))
1005 {
1006 /* Debug registers. */
1007 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumPAuthKeyRegs); i++)
1008 {
1009 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumPAuthKeyRegs[i].offCpumCtx);
1010 hrc |= hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, s_aCpumPAuthKeyRegs[i].enmHvReg, *pu64);
1011 }
1012 }
1013
1014 if ( hrc == HV_SUCCESS
1015 && (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_SPSR | CPUMCTX_EXTRN_ELR | CPUMCTX_EXTRN_SP | CPUMCTX_EXTRN_SCTLR_TCR_TTBR | CPUMCTX_EXTRN_SYSREG_MISC))
1016 != (CPUMCTX_EXTRN_SPSR | CPUMCTX_EXTRN_ELR | CPUMCTX_EXTRN_SP | CPUMCTX_EXTRN_SCTLR_TCR_TTBR | CPUMCTX_EXTRN_SYSREG_MISC))
1017 {
1018 /* System registers. */
1019 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumSysRegs); i++)
1020 {
1021 if (!(s_aCpumSysRegs[i].fCpumExtrn & pVCpu->cpum.GstCtx.fExtrn))
1022 {
1023 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumSysRegs[i].offCpumCtx);
1024 hrc |= hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, s_aCpumSysRegs[i].enmHvReg, *pu64);
1025 }
1026 }
1027 }
1028
1029 if ( hrc == HV_SUCCESS
1030 && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_SYSREG_EL2)
1031 && pVM->nem.s.fEl2Enabled)
1032 {
1033 for (uint32_t i = 0; i < RT_ELEMENTS(s_aCpumEl2SysRegs); i++)
1034 {
1035 uint64_t *pu64 = (uint64_t *)((uint8_t *)&pVCpu->cpum.GstCtx + s_aCpumEl2SysRegs[i].offCpumCtx);
1036 hrc |= hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, (hv_sys_reg_t)s_aCpumEl2SysRegs[i].idSysReg, *pu64);
1037 Assert(hrc == HV_SUCCESS);
1038 }
1039 }
1040
1041 if ( hrc == HV_SUCCESS
1042 && !(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_PSTATE))
1043 hrc = hv_vcpu_set_reg(pVCpu->nem.s.hVCpu, HV_REG_CPSR, pVCpu->cpum.GstCtx.fPState);
1044
1045 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1046 return nemR3DarwinHvSts2Rc(hrc);
1047}
1048
1049
1050/**
1051 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
1052 *
1053 * @returns VBox status code.
1054 * @param pErrInfo Where to always return error info.
1055 */
1056static int nemR3DarwinLoadHv(PRTERRINFO pErrInfo)
1057{
1058 RTLDRMOD hMod = NIL_RTLDRMOD;
1059 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
1060
1061 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
1062 if (RT_SUCCESS(rc))
1063 {
1064 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
1065 {
1066 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
1067 if (RT_SUCCESS(rc2))
1068 {
1069 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
1070 g_aImports[i].pszName));
1071 }
1072 else
1073 {
1074 *g_aImports[i].ppfn = NULL;
1075
1076 LogRel(("NEM: info: Failed to import Hypervisor!%s: %Rrc\n",
1077 g_aImports[i].pszName, rc2));
1078 }
1079 }
1080 if (RT_SUCCESS(rc))
1081 {
1082 Assert(!RTErrInfoIsSet(pErrInfo));
1083 }
1084
1085 RTLdrClose(hMod);
1086 }
1087 else
1088 {
1089 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
1090 rc = VERR_NEM_INIT_FAILED;
1091 }
1092
1093 return rc;
1094}
1095
1096
1097/**
1098 * Dumps some GIC information to the release log.
1099 */
1100static void nemR3DarwinDumpGicInfo(void)
1101{
1102 size_t val = 0;
1103 hv_return_t hrc = hv_gic_get_redistributor_size(&val);
1104 LogRel(("GICNem: hv_gic_get_redistributor_size() -> hrc=%#x / size=%zu\n", hrc, val));
1105 hrc = hv_gic_get_distributor_size(&val);
1106 LogRel(("GICNem: hv_gic_get_distributor_size() -> hrc=%#x / size=%zu\n", hrc, val));
1107 hrc = hv_gic_get_distributor_base_alignment(&val);
1108 LogRel(("GICNem: hv_gic_get_distributor_base_alignment() -> hrc=%#x / size=%zu\n", hrc, val));
1109 hrc = hv_gic_get_redistributor_base_alignment(&val);
1110 LogRel(("GICNem: hv_gic_get_redistributor_base_alignment() -> hrc=%#x / size=%zu\n", hrc, val));
1111 hrc = hv_gic_get_msi_region_base_alignment(&val);
1112 LogRel(("GICNem: hv_gic_get_msi_region_base_alignment() -> hrc=%#x / size=%zu\n", hrc, val));
1113 hrc = hv_gic_get_msi_region_size(&val);
1114 LogRel(("GICNem: hv_gic_get_msi_region_size() -> hrc=%#x / size=%zu\n", hrc, val));
1115 uint32_t u32SpiIntIdBase = 0;
1116 uint32_t cSpiIntIds = 0;
1117 hrc = hv_gic_get_spi_interrupt_range(&u32SpiIntIdBase, &cSpiIntIds);
1118 LogRel(("GICNem: hv_gic_get_spi_interrupt_range() -> hrc=%#x / SpiIntIdBase=%u, cSpiIntIds=%u\n", hrc, u32SpiIntIdBase, cSpiIntIds));
1119
1120 uint32_t u32IntId = 0;
1121 hrc = hv_gic_get_intid(HV_GIC_INT_EL1_PHYSICAL_TIMER, &u32IntId);
1122 LogRel(("GICNem: hv_gic_get_intid(HV_GIC_INT_EL1_PHYSICAL_TIMER) -> hrc=%#x / IntId=%u\n", hrc, u32IntId));
1123 hrc = hv_gic_get_intid(HV_GIC_INT_EL1_VIRTUAL_TIMER, &u32IntId);
1124 LogRel(("GICNem: hv_gic_get_intid(HV_GIC_INT_EL1_VIRTUAL_TIMER) -> hrc=%#x / IntId=%u\n", hrc, u32IntId));
1125 hrc = hv_gic_get_intid(HV_GIC_INT_EL2_PHYSICAL_TIMER, &u32IntId);
1126 LogRel(("GICNem: hv_gic_get_intid(HV_GIC_INT_EL2_PHYSICAL_TIMER) -> hrc=%#x / IntId=%u\n", hrc, u32IntId));
1127 hrc = hv_gic_get_intid(HV_GIC_INT_MAINTENANCE, &u32IntId);
1128 LogRel(("GICNem: hv_gic_get_intid(HV_GIC_INT_MAINTENANCE) -> hrc=%#x / IntId=%u\n", hrc, u32IntId));
1129 hrc = hv_gic_get_intid(HV_GIC_INT_PERFORMANCE_MONITOR, &u32IntId);
1130 LogRel(("GICNem: hv_gic_get_intid(HV_GIC_INT_PERFORMANCE_MONITOR) -> hrc=%#x / IntId=%u\n", hrc, u32IntId));
1131}
1132
1133
1134/**
1135 * Sets the given SPI inside the in-kernel KVM GIC.
1136 *
1137 * @returns VBox status code.
1138 * @param pVM The VM instance.
1139 * @param uIntId The SPI ID to update.
1140 * @param fAsserted Flag whether the interrupt is asserted (true) or not (false).
1141 */
1142VMMR3_INT_DECL(int) GICR3NemSpiSet(PVMCC pVM, uint32_t uIntId, bool fAsserted)
1143{
1144 RT_NOREF(pVM);
1145 Assert(hv_gic_set_spi);
1146
1147 hv_return_t hrc = hv_gic_set_spi(uIntId + GIC_INTID_RANGE_SPI_START, fAsserted);
1148 return nemR3DarwinHvSts2Rc(hrc);
1149}
1150
1151
1152/**
1153 * Sets the given PPI inside the in-kernel KVM GIC.
1154 *
1155 * @returns VBox status code.
1156 * @param pVCpu The vCPU for whih the PPI state is updated.
1157 * @param uIntId The PPI ID to update.
1158 * @param fAsserted Flag whether the interrupt is asserted (true) or not (false).
1159 */
1160VMMR3_INT_DECL(int) GICR3NemPpiSet(PVMCPUCC pVCpu, uint32_t uIntId, bool fAsserted)
1161{
1162 RT_NOREF(pVCpu, uIntId, fAsserted);
1163
1164 /* Should never be called as the PPIs are handled entirely in Hypervisor.framework/AppleHV. */
1165 AssertFailed();
1166 return VERR_NEM_IPE_9;
1167}
1168
1169
1170static int nemR3DarwinGicCreate(PVM pVM)
1171{
1172 nemR3DarwinDumpGicInfo();
1173
1174 //PCFGMNODE pGicDev = CFGMR3GetChild(CFGMR3GetRoot(pVM), "Devices/gic/0");
1175 PCFGMNODE pGicCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "Devices/gic-nem/0/Config");
1176
1177 hv_gic_config_t hGicCfg = hv_gic_config_create();
1178
1179 /*
1180 * Query the MMIO ranges.
1181 */
1182 RTGCPHYS GCPhysMmioBaseDist = 0;
1183 int rc = CFGMR3QueryU64(pGicCfg, "DistributorMmioBase", &GCPhysMmioBaseDist);
1184 if (RT_FAILURE(rc))
1185 return VMSetError(pVM, rc, RT_SRC_POS,
1186 "Configuration error: Failed to get the \"DistributorMmioBase\" value\n");
1187
1188 RTGCPHYS GCPhysMmioBaseReDist = 0;
1189 rc = CFGMR3QueryU64(pGicCfg, "RedistributorMmioBase", &GCPhysMmioBaseReDist);
1190 if (RT_FAILURE(rc))
1191 return VMSetError(pVM, rc, RT_SRC_POS,
1192 "Configuration error: Failed to get the \"RedistributorMmioBase\" value\n");
1193
1194 hv_return_t hrc = hv_gic_config_set_distributor_base(hGicCfg, GCPhysMmioBaseDist);
1195 if (hrc != HV_SUCCESS)
1196 return nemR3DarwinHvSts2Rc(hrc);
1197
1198 hrc = hv_gic_config_set_redistributor_base(hGicCfg, GCPhysMmioBaseReDist);
1199 if (hrc != HV_SUCCESS)
1200 return nemR3DarwinHvSts2Rc(hrc);
1201
1202 hrc = hv_gic_create(hGicCfg);
1203 os_release(hGicCfg);
1204 if (hrc != HV_SUCCESS)
1205 return nemR3DarwinHvSts2Rc(hrc);
1206
1207 /* Make sure the device is not instantiated as Hypervisor.framework provides it. */
1208 //CFGMR3RemoveNode(pGicDev);
1209 return rc;
1210}
1211
1212
1213/**
1214 * Try initialize the native API.
1215 *
1216 * This may only do part of the job, more can be done in
1217 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
1218 *
1219 * @returns VBox status code.
1220 * @param pVM The cross context VM structure.
1221 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
1222 * the latter we'll fail if we cannot initialize.
1223 * @param fForced Whether the HMForced flag is set and we should
1224 * fail if we cannot initialize.
1225 */
1226int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
1227{
1228 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
1229
1230 /*
1231 * Some state init.
1232 */
1233 PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");
1234 RT_NOREF(pCfgNem);
1235
1236 /*
1237 * Error state.
1238 * The error message will be non-empty on failure and 'rc' will be set too.
1239 */
1240 RTERRINFOSTATIC ErrInfo;
1241 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
1242
1243 /* Resolve optional imports */
1244 int rc = nemR3DarwinLoadHv(pErrInfo);
1245 if (RT_FAILURE(rc))
1246 return rc;
1247
1248 /*
1249 * Need to enable nested virt here if supported and reset the CFGM value to false
1250 * if not supported. This ASSUMES that NEM is initialized before CPUM.
1251 */
1252 PCFGMNODE pCfgCpum = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/");
1253 hv_vm_config_t hVmCfg = NULL;
1254
1255 if ( hv_vm_config_create
1256 && hv_vm_config_get_el2_supported)
1257 {
1258 hVmCfg = hv_vm_config_create();
1259
1260 bool fHvEl2Supported = false;
1261 hv_return_t hrc = hv_vm_config_get_el2_supported(&fHvEl2Supported);
1262 if ( hrc == HV_SUCCESS
1263 && fHvEl2Supported)
1264 {
1265 /** @cfgm{/CPUM/NestedHWVirt, bool, false}
1266 * Whether to expose the hardware virtualization (EL2/VHE) feature to the guest.
1267 * The default is false. Only supported on M3 and later and macOS 15.0+ (Sonoma).
1268 */
1269 bool fNestedHWVirt = false;
1270 rc = CFGMR3QueryBoolDef(pCfgCpum, "NestedHWVirt", &fNestedHWVirt, false);
1271 AssertLogRelRCReturn(rc, rc);
1272 if (fNestedHWVirt)
1273 {
1274 hrc = hv_vm_config_set_el2_enabled(hVmCfg, fNestedHWVirt);
1275 if (hrc != HV_SUCCESS)
1276 return VMSetError(pVM, VERR_CPUM_INVALID_HWVIRT_CONFIG, RT_SRC_POS,
1277 "Cannot enable nested virtualization (hrc=%#x)!\n", hrc);
1278 else
1279 {
1280 pVM->nem.s.fEl2Enabled = true;
1281 LogRel(("NEM: Enabled nested virtualization (EL2) support\n"));
1282 }
1283 }
1284 }
1285 else
1286 {
1287 /* Ensure nested virt is not set. */
1288 rc = CFGMR3RemoveValue(pCfgCpum, "NestedHWVirt");
1289
1290 LogRel(("NEM: The host doesn't supported nested virtualization! (hrc=%#x fHvEl2Supported=%RTbool)\n",
1291 hrc, fHvEl2Supported));
1292 }
1293 }
1294 else
1295 {
1296 /* Ensure nested virt is not set. */
1297 rc = CFGMR3RemoveValue(pCfgCpum, "NestedHWVirt");
1298 LogRel(("NEM: Hypervisor.framework doesn't supported nested virtualization!\n"));
1299 }
1300
1301 hv_return_t hrc = hv_vm_create(hVmCfg);
1302 os_release(hVmCfg);
1303 if (hrc == HV_SUCCESS)
1304 {
1305 pVM->nem.s.fCreatedVm = true;
1306 pVM->nem.s.u64CntFrqHz = ASMReadCntFrqEl0();
1307
1308 /* Will be initialized in NEMHCResumeCpuTickOnAll() before executing guest code. */
1309 pVM->nem.s.u64VTimerOff = 0;
1310
1311 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
1312 Log(("NEM: Marked active!\n"));
1313 PGMR3EnableNemMode(pVM);
1314 }
1315 else
1316 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
1317 "hv_vm_create() failed: %#x", hrc);
1318
1319 /*
1320 * We only fail if in forced mode, otherwise just log the complaint and return.
1321 */
1322 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
1323 if ( (fForced || !fFallback)
1324 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
1325 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
1326
1327 if (RTErrInfoIsSet(pErrInfo))
1328 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
1329 return VINF_SUCCESS;
1330}
1331
1332
1333/**
1334 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
1335 *
1336 * @returns VBox status code
1337 * @param pVM The VM handle.
1338 * @param pVCpu The vCPU handle.
1339 * @param idCpu ID of the CPU to create.
1340 */
1341static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
1342{
1343 if (idCpu == 0)
1344 {
1345 Assert(pVM->nem.s.hVCpuCfg == NULL);
1346
1347 /* Create a new vCPU config and query the ID registers. */
1348 pVM->nem.s.hVCpuCfg = hv_vcpu_config_create();
1349 if (!pVM->nem.s.hVCpuCfg)
1350 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1351 "Call to hv_vcpu_config_create failed on vCPU %u", idCpu);
1352
1353 /* Query ID registers and hand them to CPUM. */
1354 CPUMIDREGS IdRegs; RT_ZERO(IdRegs);
1355 for (uint32_t i = 0; i < RT_ELEMENTS(s_aIdRegs); i++)
1356 {
1357 uint64_t *pu64 = (uint64_t *)((uint8_t *)&IdRegs + s_aIdRegs[i].offIdStruct);
1358 hv_return_t hrc = hv_vcpu_config_get_feature_reg(pVM->nem.s.hVCpuCfg, s_aIdRegs[i].enmHvReg, pu64);
1359 if (hrc != HV_SUCCESS)
1360 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1361 "Call to hv_vcpu_get_feature_reg(, %#x, ) failed: %#x (%Rrc)", hrc, nemR3DarwinHvSts2Rc(hrc));
1362 }
1363
1364 int rc = CPUMR3PopulateFeaturesByIdRegisters(pVM, &IdRegs);
1365 if (RT_FAILURE(rc))
1366 return rc;
1367 }
1368
1369 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpu, &pVCpu->nem.s.pHvExit, pVM->nem.s.hVCpuCfg);
1370 if (hrc != HV_SUCCESS)
1371 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1372 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
1373
1374 hrc = hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, HV_SYS_REG_MPIDR_EL1, idCpu);
1375 if (hrc != HV_SUCCESS)
1376 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1377 "Setting MPIDR_EL1 failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
1378
1379 return VINF_SUCCESS;
1380}
1381
1382
1383/**
1384 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
1385 *
1386 * @returns VBox status code.
1387 * @param pVM The VM handle.
1388 * @param pVCpu The vCPU handle.
1389 */
1390static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVM pVM, PVMCPU pVCpu)
1391{
1392 hv_return_t hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpu);
1393 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
1394
1395 if (pVCpu->idCpu == 0)
1396 {
1397 os_release(pVM->nem.s.hVCpuCfg);
1398 pVM->nem.s.hVCpuCfg = NULL;
1399 }
1400 return VINF_SUCCESS;
1401}
1402
1403
1404/**
1405 * This is called after CPUMR3Init is done.
1406 *
1407 * @returns VBox status code.
1408 * @param pVM The VM handle..
1409 */
1410int nemR3NativeInitAfterCPUM(PVM pVM)
1411{
1412 /*
1413 * Validate sanity.
1414 */
1415 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
1416 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
1417
1418 /* Need to create the GIC here before any vCPU is created according to the Apple docs. */
1419 if (hv_gic_create)
1420 {
1421 int rc = nemR3DarwinGicCreate(pVM);
1422 if (RT_FAILURE(rc))
1423 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Creating the GIC failed: %Rrc", rc);
1424 }
1425
1426 /*
1427 * Setup the EMTs.
1428 */
1429 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1430 {
1431 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1432
1433 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
1434 if (RT_FAILURE(rc))
1435 {
1436 /* Rollback. */
1437 while (idCpu--)
1438 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 2, pVM, pVCpu);
1439
1440 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
1441 }
1442 }
1443
1444 pVM->nem.s.fCreatedEmts = true;
1445 return VINF_SUCCESS;
1446}
1447
1448
1449int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1450{
1451 RT_NOREF(pVM, enmWhat);
1452 return VINF_SUCCESS;
1453}
1454
1455
1456int nemR3NativeTerm(PVM pVM)
1457{
1458 /*
1459 * Delete the VM.
1460 */
1461
1462 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
1463 {
1464 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1465
1466 /*
1467 * Apple's documentation states that the vCPU should be destroyed
1468 * on the thread running the vCPU but as all the other EMTs are gone
1469 * at this point, destroying the VM would hang.
1470 *
1471 * We seem to be at luck here though as destroying apparently works
1472 * from EMT(0) as well.
1473 */
1474 hv_return_t hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpu);
1475 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
1476 }
1477
1478 pVM->nem.s.fCreatedEmts = false;
1479 if (pVM->nem.s.fCreatedVm)
1480 {
1481 hv_return_t hrc = hv_vm_destroy();
1482 if (hrc != HV_SUCCESS)
1483 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
1484
1485 pVM->nem.s.fCreatedVm = false;
1486 }
1487 return VINF_SUCCESS;
1488}
1489
1490
1491/**
1492 * VM reset notification.
1493 *
1494 * @param pVM The cross context VM structure.
1495 */
1496void nemR3NativeReset(PVM pVM)
1497{
1498 RT_NOREF(pVM);
1499}
1500
1501
1502/**
1503 * Reset CPU due to INIT IPI or hot (un)plugging.
1504 *
1505 * @param pVCpu The cross context virtual CPU structure of the CPU being
1506 * reset.
1507 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
1508 */
1509void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
1510{
1511 RT_NOREF(pVCpu, fInitIpi);
1512}
1513
1514
1515/**
1516 * Returns the byte size from the given access SAS value.
1517 *
1518 * @returns Number of bytes to transfer.
1519 * @param uSas The SAS value to convert.
1520 */
1521DECLINLINE(size_t) nemR3DarwinGetByteCountFromSas(uint8_t uSas)
1522{
1523 switch (uSas)
1524 {
1525 case ARMV8_EC_ISS_DATA_ABRT_SAS_BYTE: return sizeof(uint8_t);
1526 case ARMV8_EC_ISS_DATA_ABRT_SAS_HALFWORD: return sizeof(uint16_t);
1527 case ARMV8_EC_ISS_DATA_ABRT_SAS_WORD: return sizeof(uint32_t);
1528 case ARMV8_EC_ISS_DATA_ABRT_SAS_DWORD: return sizeof(uint64_t);
1529 default:
1530 AssertReleaseFailed();
1531 }
1532
1533 return 0;
1534}
1535
1536
1537/**
1538 * Sets the given general purpose register to the given value.
1539 *
1540 * @param pVCpu The cross context virtual CPU structure of the
1541 * calling EMT.
1542 * @param uReg The register index.
1543 * @param f64BitReg Flag whether to operate on a 64-bit or 32-bit register.
1544 * @param fSignExtend Flag whether to sign extend the value.
1545 * @param u64Val The value.
1546 */
1547DECLINLINE(void) nemR3DarwinSetGReg(PVMCPU pVCpu, uint8_t uReg, bool f64BitReg, bool fSignExtend, uint64_t u64Val)
1548{
1549 AssertReturnVoid(uReg < 31);
1550
1551 if (f64BitReg)
1552 pVCpu->cpum.GstCtx.aGRegs[uReg].x = fSignExtend ? (int64_t)u64Val : u64Val;
1553 else
1554 pVCpu->cpum.GstCtx.aGRegs[uReg].w = fSignExtend ? (int32_t)u64Val : u64Val; /** @todo Does this clear the upper half on real hardware? */
1555
1556 /* Mark the register as not extern anymore. */
1557 switch (uReg)
1558 {
1559 case 0:
1560 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X0;
1561 break;
1562 case 1:
1563 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X1;
1564 break;
1565 case 2:
1566 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X2;
1567 break;
1568 case 3:
1569 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X3;
1570 break;
1571 default:
1572 AssertRelease(!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_X4_X28));
1573 /** @todo We need to import all missing registers in order to clear this flag (or just set it in HV from here). */
1574 }
1575}
1576
1577
1578/**
1579 * Gets the given general purpose register and returns the value.
1580 *
1581 * @returns Value from the given register.
1582 * @param pVCpu The cross context virtual CPU structure of the
1583 * calling EMT.
1584 * @param uReg The register index.
1585 */
1586DECLINLINE(uint64_t) nemR3DarwinGetGReg(PVMCPU pVCpu, uint8_t uReg)
1587{
1588 AssertReturn(uReg <= ARMV8_AARCH64_REG_ZR, 0);
1589
1590 if (uReg == ARMV8_AARCH64_REG_ZR)
1591 return 0;
1592
1593 /** @todo Import the register if extern. */
1594 AssertRelease(!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_GPRS_MASK));
1595
1596 return pVCpu->cpum.GstCtx.aGRegs[uReg].x;
1597}
1598
1599
1600/**
1601 * Works on the data abort exception (which will be a MMIO access most of the time).
1602 *
1603 * @returns VBox strict status code.
1604 * @param pVM The cross context VM structure.
1605 * @param pVCpu The cross context virtual CPU structure of the
1606 * calling EMT.
1607 * @param uIss The instruction specific syndrome value.
1608 * @param fInsn32Bit Flag whether the exception was caused by a 32-bit or 16-bit instruction.
1609 * @param GCPtrDataAbrt The virtual GC address causing the data abort.
1610 * @param GCPhysDataAbrt The physical GC address which caused the data abort.
1611 */
1612static VBOXSTRICTRC nemR3DarwinHandleExitExceptionDataAbort(PVM pVM, PVMCPU pVCpu, uint32_t uIss, bool fInsn32Bit,
1613 RTGCPTR GCPtrDataAbrt, RTGCPHYS GCPhysDataAbrt)
1614{
1615 bool fIsv = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_ISV);
1616 bool fL2Fault = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_S1PTW);
1617 bool fWrite = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_WNR);
1618 bool f64BitReg = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_SF);
1619 bool fSignExtend = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_SSE);
1620 uint8_t uReg = ARMV8_EC_ISS_DATA_ABRT_SRT_GET(uIss);
1621 uint8_t uAcc = ARMV8_EC_ISS_DATA_ABRT_SAS_GET(uIss);
1622 size_t cbAcc = nemR3DarwinGetByteCountFromSas(uAcc);
1623 LogFlowFunc(("fIsv=%RTbool fL2Fault=%RTbool fWrite=%RTbool f64BitReg=%RTbool fSignExtend=%RTbool uReg=%u uAcc=%u GCPtrDataAbrt=%RGv GCPhysDataAbrt=%RGp\n",
1624 fIsv, fL2Fault, fWrite, f64BitReg, fSignExtend, uReg, uAcc, GCPtrDataAbrt, GCPhysDataAbrt));
1625
1626 RT_NOREF(fL2Fault, GCPtrDataAbrt);
1627
1628 if (fWrite)
1629 {
1630 /*
1631 * Check whether this is one of the dirty tracked regions, mark it as dirty
1632 * and enable write support for this region again.
1633 *
1634 * This is required for proper VRAM tracking or the display might not get updated
1635 * and it is impossible to use the PGM generic facility as it operates on guest page sizes
1636 * but setting protection flags with Hypervisor.framework works only host page sized regions, so
1637 * we have to cook our own. Additionally the VRAM region is marked as prefetchable (write-back)
1638 * which doesn't produce a valid instruction syndrome requiring restarting the instruction after enabling
1639 * write access again (due to a missing interpreter right now).
1640 */
1641 for (uint32_t idSlot = 0; idSlot < RT_ELEMENTS(pVM->nem.s.aMmio2DirtyTracking); idSlot++)
1642 {
1643 PNEMHVMMIO2REGION pMmio2Region = &pVM->nem.s.aMmio2DirtyTracking[idSlot];
1644
1645 if ( GCPhysDataAbrt >= pMmio2Region->GCPhysStart
1646 && GCPhysDataAbrt <= pMmio2Region->GCPhysLast)
1647 {
1648 pMmio2Region->fDirty = true;
1649
1650 uint8_t u2State;
1651 int rc = nemR3DarwinProtect(pMmio2Region->GCPhysStart, pMmio2Region->GCPhysLast - pMmio2Region->GCPhysStart + 1,
1652 NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE | NEM_PAGE_PROT_WRITE, &u2State);
1653
1654 /* Restart the instruction if there is no instruction syndrome available. */
1655 if (RT_FAILURE(rc) || !fIsv)
1656 return rc;
1657 }
1658 }
1659 }
1660
1661 AssertReturn(fIsv, VERR_NOT_SUPPORTED); /** @todo Implement using IEM when this should occur. */
1662
1663 EMHistoryAddExit(pVCpu,
1664 fWrite
1665 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
1666 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
1667 pVCpu->cpum.GstCtx.Pc.u64, ASMReadTSC());
1668
1669 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1670 uint64_t u64Val = 0;
1671 if (fWrite)
1672 {
1673 u64Val = nemR3DarwinGetGReg(pVCpu, uReg);
1674 rcStrict = PGMPhysWrite(pVM, GCPhysDataAbrt, &u64Val, cbAcc, PGMACCESSORIGIN_HM);
1675 Log4(("MmioExit/%u: %08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n",
1676 pVCpu->idCpu, pVCpu->cpum.GstCtx.Pc.u64, GCPhysDataAbrt, cbAcc, cbAcc,
1677 &u64Val, VBOXSTRICTRC_VAL(rcStrict) ));
1678 }
1679 else
1680 {
1681 rcStrict = PGMPhysRead(pVM, GCPhysDataAbrt, &u64Val, cbAcc, PGMACCESSORIGIN_HM);
1682 Log4(("MmioExit/%u: %08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n",
1683 pVCpu->idCpu, pVCpu->cpum.GstCtx.Pc.u64, GCPhysDataAbrt, cbAcc, cbAcc,
1684 &u64Val, VBOXSTRICTRC_VAL(rcStrict) ));
1685 if (rcStrict == VINF_SUCCESS)
1686 nemR3DarwinSetGReg(pVCpu, uReg, f64BitReg, fSignExtend, u64Val);
1687 }
1688
1689 if (rcStrict == VINF_SUCCESS)
1690 pVCpu->cpum.GstCtx.Pc.u64 += fInsn32Bit ? sizeof(uint32_t) : sizeof(uint16_t);
1691
1692 return rcStrict;
1693}
1694
1695
1696/**
1697 * Works on the trapped MRS, MSR and system instruction exception.
1698 *
1699 * @returns VBox strict status code.
1700 * @param pVM The cross context VM structure.
1701 * @param pVCpu The cross context virtual CPU structure of the
1702 * calling EMT.
1703 * @param uIss The instruction specific syndrome value.
1704 * @param fInsn32Bit Flag whether the exception was caused by a 32-bit or 16-bit instruction.
1705 */
1706static VBOXSTRICTRC nemR3DarwinHandleExitExceptionTrappedSysInsn(PVM pVM, PVMCPU pVCpu, uint32_t uIss, bool fInsn32Bit)
1707{
1708 bool fRead = ARMV8_EC_ISS_AARCH64_TRAPPED_SYS_INSN_DIRECTION_IS_READ(uIss);
1709 uint8_t uCRm = ARMV8_EC_ISS_AARCH64_TRAPPED_SYS_INSN_CRM_GET(uIss);
1710 uint8_t uReg = ARMV8_EC_ISS_AARCH64_TRAPPED_SYS_INSN_RT_GET(uIss);
1711 uint8_t uCRn = ARMV8_EC_ISS_AARCH64_TRAPPED_SYS_INSN_CRN_GET(uIss);
1712 uint8_t uOp1 = ARMV8_EC_ISS_AARCH64_TRAPPED_SYS_INSN_OP1_GET(uIss);
1713 uint8_t uOp2 = ARMV8_EC_ISS_AARCH64_TRAPPED_SYS_INSN_OP2_GET(uIss);
1714 uint8_t uOp0 = ARMV8_EC_ISS_AARCH64_TRAPPED_SYS_INSN_OP0_GET(uIss);
1715 uint16_t idSysReg = ARMV8_AARCH64_SYSREG_ID_CREATE(uOp0, uOp1, uCRn, uCRm, uOp2);
1716 LogFlowFunc(("fRead=%RTbool uCRm=%u uReg=%u uCRn=%u uOp1=%u uOp2=%u uOp0=%u idSysReg=%#x\n",
1717 fRead, uCRm, uReg, uCRn, uOp1, uOp2, uOp0, idSysReg));
1718
1719 /** @todo EMEXITTYPE_MSR_READ/EMEXITTYPE_MSR_WRITE are misnomers. */
1720 EMHistoryAddExit(pVCpu,
1721 fRead
1722 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ)
1723 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE),
1724 pVCpu->cpum.GstCtx.Pc.u64, ASMReadTSC());
1725
1726 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1727 uint64_t u64Val = 0;
1728 if (fRead)
1729 {
1730 RT_NOREF(pVM);
1731 rcStrict = CPUMQueryGuestSysReg(pVCpu, idSysReg, &u64Val);
1732 Log4(("SysInsnExit/%u: %08RX64: READ %u:%u:%u:%u:%u -> %#RX64 rcStrict=%Rrc\n",
1733 pVCpu->idCpu, pVCpu->cpum.GstCtx.Pc.u64, uOp0, uOp1, uCRn, uCRm, uOp2, u64Val,
1734 VBOXSTRICTRC_VAL(rcStrict) ));
1735 if (rcStrict == VINF_SUCCESS)
1736 nemR3DarwinSetGReg(pVCpu, uReg, true /*f64BitReg*/, false /*fSignExtend*/, u64Val);
1737 }
1738 else
1739 {
1740 u64Val = nemR3DarwinGetGReg(pVCpu, uReg);
1741 rcStrict = CPUMSetGuestSysReg(pVCpu, idSysReg, u64Val);
1742 Log4(("SysInsnExit/%u: %08RX64: WRITE %u:%u:%u:%u:%u %#RX64 -> rcStrict=%Rrc\n",
1743 pVCpu->idCpu, pVCpu->cpum.GstCtx.Pc.u64, uOp0, uOp1, uCRn, uCRm, uOp2, u64Val,
1744 VBOXSTRICTRC_VAL(rcStrict) ));
1745 }
1746
1747 if (rcStrict == VINF_SUCCESS)
1748 pVCpu->cpum.GstCtx.Pc.u64 += fInsn32Bit ? sizeof(uint32_t) : sizeof(uint16_t);
1749
1750 return rcStrict;
1751}
1752
1753
1754/**
1755 * Works on the trapped HVC instruction exception.
1756 *
1757 * @returns VBox strict status code.
1758 * @param pVM The cross context VM structure.
1759 * @param pVCpu The cross context virtual CPU structure of the
1760 * calling EMT.
1761 * @param uIss The instruction specific syndrome value.
1762 * @param fAdvancePc Flag whether to advance the guest program counter.
1763 */
1764static VBOXSTRICTRC nemR3DarwinHandleExitExceptionTrappedHvcInsn(PVM pVM, PVMCPU pVCpu, uint32_t uIss, bool fAdvancePc = false)
1765{
1766 uint16_t u16Imm = ARMV8_EC_ISS_AARCH64_TRAPPED_HVC_INSN_IMM_GET(uIss);
1767 LogFlowFunc(("u16Imm=%#RX16\n", u16Imm));
1768
1769#if 0 /** @todo For later */
1770 EMHistoryAddExit(pVCpu,
1771 fRead
1772 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ)
1773 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE),
1774 pVCpu->cpum.GstCtx.Pc.u64, ASMReadTSC());
1775#endif
1776
1777 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1778 if (u16Imm == 0)
1779 {
1780 /** @todo Raise exception to EL1 if PSCI not configured. */
1781 /** @todo Need a generic mechanism here to pass this to, GIM maybe?. */
1782 uint32_t uFunId = pVCpu->cpum.GstCtx.aGRegs[ARMV8_AARCH64_REG_X0].w;
1783 bool fHvc64 = RT_BOOL(uFunId & ARM_SMCCC_FUNC_ID_64BIT); RT_NOREF(fHvc64);
1784 uint32_t uEntity = ARM_SMCCC_FUNC_ID_ENTITY_GET(uFunId);
1785 uint32_t uFunNum = ARM_SMCCC_FUNC_ID_NUM_GET(uFunId);
1786 if (uEntity == ARM_SMCCC_FUNC_ID_ENTITY_STD_SEC_SERVICE)
1787 {
1788 switch (uFunNum)
1789 {
1790 case ARM_PSCI_FUNC_ID_PSCI_VERSION:
1791 nemR3DarwinSetGReg(pVCpu, ARMV8_AARCH64_REG_X0, false /*f64BitReg*/, false /*fSignExtend*/, ARM_PSCI_FUNC_ID_PSCI_VERSION_SET(1, 2));
1792 break;
1793 case ARM_PSCI_FUNC_ID_SYSTEM_OFF:
1794 rcStrict = VMR3PowerOff(pVM->pUVM);
1795 break;
1796 case ARM_PSCI_FUNC_ID_SYSTEM_RESET:
1797 case ARM_PSCI_FUNC_ID_SYSTEM_RESET2:
1798 {
1799 bool fHaltOnReset;
1800 int rc = CFGMR3QueryBool(CFGMR3GetChild(CFGMR3GetRoot(pVM), "PDM"), "HaltOnReset", &fHaltOnReset);
1801 if (RT_SUCCESS(rc) && fHaltOnReset)
1802 {
1803 Log(("nemR3DarwinHandleExitExceptionTrappedHvcInsn: Halt On Reset!\n"));
1804 rc = VINF_EM_HALT;
1805 }
1806 else
1807 {
1808 /** @todo pVM->pdm.s.fResetFlags = fFlags; */
1809 VM_FF_SET(pVM, VM_FF_RESET);
1810 rc = VINF_EM_RESET;
1811 }
1812 break;
1813 }
1814 case ARM_PSCI_FUNC_ID_CPU_ON:
1815 {
1816 uint64_t u64TgtCpu = nemR3DarwinGetGReg(pVCpu, ARMV8_AARCH64_REG_X1);
1817 RTGCPHYS GCPhysExecAddr = nemR3DarwinGetGReg(pVCpu, ARMV8_AARCH64_REG_X2);
1818 uint64_t u64CtxId = nemR3DarwinGetGReg(pVCpu, ARMV8_AARCH64_REG_X3);
1819 VMMR3CpuOn(pVM, u64TgtCpu & 0xff, GCPhysExecAddr, u64CtxId);
1820 nemR3DarwinSetGReg(pVCpu, ARMV8_AARCH64_REG_X0, true /*f64BitReg*/, false /*fSignExtend*/, ARM_PSCI_STS_SUCCESS);
1821 break;
1822 }
1823 case ARM_PSCI_FUNC_ID_PSCI_FEATURES:
1824 {
1825 uint32_t u32FunNum = (uint32_t)nemR3DarwinGetGReg(pVCpu, ARMV8_AARCH64_REG_X1);
1826 switch (u32FunNum)
1827 {
1828 case ARM_PSCI_FUNC_ID_PSCI_VERSION:
1829 case ARM_PSCI_FUNC_ID_SYSTEM_OFF:
1830 case ARM_PSCI_FUNC_ID_SYSTEM_RESET:
1831 case ARM_PSCI_FUNC_ID_SYSTEM_RESET2:
1832 case ARM_PSCI_FUNC_ID_CPU_ON:
1833 case ARM_PSCI_FUNC_ID_MIGRATE_INFO_TYPE:
1834 nemR3DarwinSetGReg(pVCpu, ARMV8_AARCH64_REG_X0,
1835 false /*f64BitReg*/, false /*fSignExtend*/,
1836 (uint64_t)ARM_PSCI_STS_SUCCESS);
1837 break;
1838 default:
1839 nemR3DarwinSetGReg(pVCpu, ARMV8_AARCH64_REG_X0,
1840 false /*f64BitReg*/, false /*fSignExtend*/,
1841 (uint64_t)ARM_PSCI_STS_NOT_SUPPORTED);
1842 }
1843 break;
1844 }
1845 case ARM_PSCI_FUNC_ID_MIGRATE_INFO_TYPE:
1846 nemR3DarwinSetGReg(pVCpu, ARMV8_AARCH64_REG_X0, false /*f64BitReg*/, false /*fSignExtend*/, ARM_PSCI_MIGRATE_INFO_TYPE_TOS_NOT_PRESENT);
1847 break;
1848 default:
1849 nemR3DarwinSetGReg(pVCpu, ARMV8_AARCH64_REG_X0, false /*f64BitReg*/, false /*fSignExtend*/, (uint64_t)ARM_PSCI_STS_NOT_SUPPORTED);
1850 }
1851 }
1852 else
1853 nemR3DarwinSetGReg(pVCpu, ARMV8_AARCH64_REG_X0, false /*f64BitReg*/, false /*fSignExtend*/, (uint64_t)ARM_PSCI_STS_NOT_SUPPORTED);
1854 }
1855 /** @todo What to do if immediate is != 0? */
1856
1857 if ( rcStrict == VINF_SUCCESS
1858 && fAdvancePc)
1859 pVCpu->cpum.GstCtx.Pc.u64 += sizeof(uint32_t);
1860
1861 return rcStrict;
1862}
1863
1864
1865/**
1866 * Handles an exception VM exit.
1867 *
1868 * @returns VBox strict status code.
1869 * @param pVM The cross context VM structure.
1870 * @param pVCpu The cross context virtual CPU structure of the
1871 * calling EMT.
1872 * @param pExit Pointer to the exit information.
1873 */
1874static VBOXSTRICTRC nemR3DarwinHandleExitException(PVM pVM, PVMCPU pVCpu, const hv_vcpu_exit_t *pExit)
1875{
1876 uint32_t uEc = ARMV8_ESR_EL2_EC_GET(pExit->exception.syndrome);
1877 uint32_t uIss = ARMV8_ESR_EL2_ISS_GET(pExit->exception.syndrome);
1878 bool fInsn32Bit = ARMV8_ESR_EL2_IL_IS_32BIT(pExit->exception.syndrome);
1879
1880 LogFlowFunc(("pVM=%p pVCpu=%p{.idCpu=%u} uEc=%u{%s} uIss=%#RX32 fInsn32Bit=%RTbool\n",
1881 pVM, pVCpu, pVCpu->idCpu, uEc, nemR3DarwinEsrEl2EcStringify(uEc), uIss, fInsn32Bit));
1882
1883 switch (uEc)
1884 {
1885 case ARMV8_ESR_EL2_DATA_ABORT_FROM_LOWER_EL:
1886 return nemR3DarwinHandleExitExceptionDataAbort(pVM, pVCpu, uIss, fInsn32Bit, pExit->exception.virtual_address,
1887 pExit->exception.physical_address);
1888 case ARMV8_ESR_EL2_EC_AARCH64_TRAPPED_SYS_INSN:
1889 return nemR3DarwinHandleExitExceptionTrappedSysInsn(pVM, pVCpu, uIss, fInsn32Bit);
1890 case ARMV8_ESR_EL2_EC_AARCH64_HVC_INSN:
1891 return nemR3DarwinHandleExitExceptionTrappedHvcInsn(pVM, pVCpu, uIss);
1892 case ARMV8_ESR_EL2_EC_AARCH64_SMC_INSN:
1893 return nemR3DarwinHandleExitExceptionTrappedHvcInsn(pVM, pVCpu, uIss, true);
1894 case ARMV8_ESR_EL2_EC_TRAPPED_WFX:
1895 {
1896 /* No need to halt if there is an interrupt pending already. */
1897 if (VMCPU_FF_IS_ANY_SET(pVCpu, (VMCPU_FF_INTERRUPT_IRQ | VMCPU_FF_INTERRUPT_FIQ)))
1898 return VINF_SUCCESS;
1899
1900 /* Set the vTimer expiration in order to get out of the halt at the right point in time. */
1901 if ( (pVCpu->cpum.GstCtx.CntvCtlEl0 & ARMV8_CNTV_CTL_EL0_AARCH64_ENABLE)
1902 && !(pVCpu->cpum.GstCtx.CntvCtlEl0 & ARMV8_CNTV_CTL_EL0_AARCH64_IMASK))
1903 {
1904 uint64_t cTicksVTimer = mach_absolute_time() - pVM->nem.s.u64VTimerOff;
1905
1906 /* Check whether it expired and start executing guest code. */
1907 if (cTicksVTimer >= pVCpu->cpum.GstCtx.CntvCValEl0)
1908 return VINF_SUCCESS;
1909
1910 uint64_t cTicksVTimerToExpire = pVCpu->cpum.GstCtx.CntvCValEl0 - cTicksVTimer;
1911 uint64_t cNanoSecsVTimerToExpire = ASMMultU64ByU32DivByU32(cTicksVTimerToExpire, RT_NS_1SEC, (uint32_t)pVM->nem.s.u64CntFrqHz);
1912
1913 /*
1914 * Our halt method doesn't work with sub millisecond granularity at the moment causing a huge slowdown
1915 * + scheduling overhead which would increase the wakeup latency.
1916 * So only halt when the threshold is exceeded (needs more experimentation but 5ms turned out to be a good compromise
1917 * between CPU load when the guest is idle and performance).
1918 */
1919 if (cNanoSecsVTimerToExpire < 2 * RT_NS_1MS)
1920 return VINF_SUCCESS;
1921
1922 LogFlowFunc(("Set vTimer activation to cNanoSecsVTimerToExpire=%#RX64 (CntvCValEl0=%#RX64, u64VTimerOff=%#RX64 cTicksVTimer=%#RX64 u64CntFrqHz=%#RX64)\n",
1923 cNanoSecsVTimerToExpire, pVCpu->cpum.GstCtx.CntvCValEl0, pVM->nem.s.u64VTimerOff, cTicksVTimer, pVM->nem.s.u64CntFrqHz));
1924 TMCpuSetVTimerNextActivation(pVCpu, cNanoSecsVTimerToExpire);
1925 }
1926 else
1927 TMCpuSetVTimerNextActivation(pVCpu, UINT64_MAX);
1928
1929 return VINF_EM_HALT;
1930 }
1931 case ARMV8_ESR_EL2_EC_UNKNOWN:
1932 default:
1933 LogRel(("NEM/Darwin: Unknown Exception Class in syndrome: uEc=%u{%s} uIss=%#RX32 fInsn32Bit=%RTbool\n",
1934 uEc, nemR3DarwinEsrEl2EcStringify(uEc), uIss, fInsn32Bit));
1935 AssertReleaseFailed();
1936 return VERR_NOT_IMPLEMENTED;
1937 }
1938
1939 return VINF_SUCCESS;
1940}
1941
1942
1943/**
1944 * Handles an exit from hv_vcpu_run().
1945 *
1946 * @returns VBox strict status code.
1947 * @param pVM The cross context VM structure.
1948 * @param pVCpu The cross context virtual CPU structure of the
1949 * calling EMT.
1950 */
1951static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu)
1952{
1953 int rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
1954 if (RT_FAILURE(rc))
1955 return rc;
1956
1957#ifdef LOG_ENABLED
1958 if (LogIs3Enabled())
1959 nemR3DarwinLogState(pVM, pVCpu);
1960#endif
1961
1962 hv_vcpu_exit_t *pExit = pVCpu->nem.s.pHvExit;
1963 switch (pExit->reason)
1964 {
1965 case HV_EXIT_REASON_CANCELED:
1966 return VINF_EM_RAW_INTERRUPT;
1967 case HV_EXIT_REASON_EXCEPTION:
1968 return nemR3DarwinHandleExitException(pVM, pVCpu, pExit);
1969 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1970 {
1971 LogFlowFunc(("vTimer got activated\n"));
1972 TMCpuSetVTimerNextActivation(pVCpu, UINT64_MAX);
1973 pVCpu->nem.s.fVTimerActivated = true;
1974 return GICPpiSet(pVCpu, pVM->nem.s.u32GicPpiVTimer, true /*fAsserted*/);
1975 }
1976 default:
1977 AssertReleaseFailed();
1978 break;
1979 }
1980
1981 return VERR_INVALID_STATE;
1982}
1983
1984
1985/**
1986 * Runs the guest once until an exit occurs.
1987 *
1988 * @returns HV status code.
1989 * @param pVM The cross context VM structure.
1990 * @param pVCpu The cross context virtual CPU structure.
1991 */
1992static hv_return_t nemR3DarwinRunGuest(PVM pVM, PVMCPU pVCpu)
1993{
1994 TMNotifyStartOfExecution(pVM, pVCpu);
1995
1996 hv_return_t hrc = hv_vcpu_run(pVCpu->nem.s.hVCpu);
1997
1998 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
1999
2000 return hrc;
2001}
2002
2003
2004/**
2005 * Prepares the VM to run the guest.
2006 *
2007 * @returns Strict VBox status code.
2008 * @param pVM The cross context VM structure.
2009 * @param pVCpu The cross context virtual CPU structure.
2010 * @param fSingleStepping Flag whether we run in single stepping mode.
2011 */
2012static VBOXSTRICTRC nemR3DarwinPreRunGuest(PVM pVM, PVMCPU pVCpu, bool fSingleStepping)
2013{
2014#ifdef LOG_ENABLED
2015 bool fIrq = false;
2016 bool fFiq = false;
2017
2018 if (LogIs3Enabled())
2019 nemR3DarwinLogState(pVM, pVCpu);
2020#endif
2021
2022 /** @todo */ RT_NOREF(fSingleStepping);
2023 int rc = nemR3DarwinExportGuestState(pVM, pVCpu);
2024 AssertRCReturn(rc, rc);
2025
2026 /* Check whether the vTimer interrupt was handled by the guest and we can unmask the vTimer. */
2027 if (pVCpu->nem.s.fVTimerActivated)
2028 {
2029 /* Read the CNTV_CTL_EL0 register. */
2030 uint64_t u64CntvCtl = 0;
2031
2032 hv_return_t hrc = hv_vcpu_get_sys_reg(pVCpu->nem.s.hVCpu, HV_SYS_REG_CNTV_CTL_EL0, &u64CntvCtl);
2033 AssertRCReturn(hrc == HV_SUCCESS, VERR_NEM_IPE_9);
2034
2035 if ( (u64CntvCtl & (ARMV8_CNTV_CTL_EL0_AARCH64_ENABLE | ARMV8_CNTV_CTL_EL0_AARCH64_IMASK | ARMV8_CNTV_CTL_EL0_AARCH64_ISTATUS))
2036 != (ARMV8_CNTV_CTL_EL0_AARCH64_ENABLE | ARMV8_CNTV_CTL_EL0_AARCH64_ISTATUS))
2037 {
2038 /* Clear the interrupt. */
2039 GICPpiSet(pVCpu, pVM->nem.s.u32GicPpiVTimer, false /*fAsserted*/);
2040
2041 pVCpu->nem.s.fVTimerActivated = false;
2042 hrc = hv_vcpu_set_vtimer_mask(pVCpu->nem.s.hVCpu, false /*vtimer_is_masked*/);
2043 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_IPE_9);
2044 }
2045 }
2046
2047 /* Set the pending interrupt state. */
2048 hv_return_t hrc = HV_SUCCESS;
2049 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_IRQ))
2050 {
2051 hrc = hv_vcpu_set_pending_interrupt(pVCpu->nem.s.hVCpu, HV_INTERRUPT_TYPE_IRQ, true);
2052 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_IPE_9);
2053#ifdef LOG_ENABLED
2054 fIrq = true;
2055#endif
2056 }
2057 else
2058 {
2059 hrc = hv_vcpu_set_pending_interrupt(pVCpu->nem.s.hVCpu, HV_INTERRUPT_TYPE_IRQ, false);
2060 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_IPE_9);
2061 }
2062
2063 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_FIQ))
2064 {
2065 hrc = hv_vcpu_set_pending_interrupt(pVCpu->nem.s.hVCpu, HV_INTERRUPT_TYPE_FIQ, true);
2066 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_IPE_9);
2067#ifdef LOG_ENABLED
2068 fFiq = true;
2069#endif
2070 }
2071 else
2072 {
2073 hrc = hv_vcpu_set_pending_interrupt(pVCpu->nem.s.hVCpu, HV_INTERRUPT_TYPE_FIQ, false);
2074 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_IPE_9);
2075 }
2076
2077 LogFlowFunc(("Running vCPU [%s,%s]\n", fIrq ? "I" : "nI", fFiq ? "F" : "nF"));
2078 pVCpu->nem.s.fEventPending = false;
2079 return VINF_SUCCESS;
2080}
2081
2082
2083/**
2084 * The normal runloop (no debugging features enabled).
2085 *
2086 * @returns Strict VBox status code.
2087 * @param pVM The cross context VM structure.
2088 * @param pVCpu The cross context virtual CPU structure.
2089 */
2090static VBOXSTRICTRC nemR3DarwinRunGuestNormal(PVM pVM, PVMCPU pVCpu)
2091{
2092 /*
2093 * The run loop.
2094 *
2095 * Current approach to state updating to use the sledgehammer and sync
2096 * everything every time. This will be optimized later.
2097 */
2098
2099 /* Update the vTimer offset after resuming if instructed. */
2100 if (pVCpu->nem.s.fVTimerOffUpdate)
2101 {
2102 hv_return_t hrc = hv_vcpu_set_vtimer_offset(pVCpu->nem.s.hVCpu, pVM->nem.s.u64VTimerOff);
2103 if (hrc != HV_SUCCESS)
2104 return nemR3DarwinHvSts2Rc(hrc);
2105
2106 pVCpu->nem.s.fVTimerOffUpdate = false;
2107
2108 hrc = hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, HV_SYS_REG_CNTV_CTL_EL0, pVCpu->cpum.GstCtx.CntvCtlEl0);
2109 if (hrc == HV_SUCCESS)
2110 hrc = hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, HV_SYS_REG_CNTV_CVAL_EL0, pVCpu->cpum.GstCtx.CntvCValEl0);
2111 if (hrc != HV_SUCCESS)
2112 return nemR3DarwinHvSts2Rc(hrc);
2113 }
2114
2115 /*
2116 * Poll timers and run for a bit.
2117 */
2118 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2119 * the whole polling job when timers have changed... */
2120 uint64_t offDeltaIgnored;
2121 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2122 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2123 for (unsigned iLoop = 0;; iLoop++)
2124 {
2125 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, false /* fSingleStepping */);
2126 if (rcStrict != VINF_SUCCESS)
2127 break;
2128
2129 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu);
2130 if (hrc == HV_SUCCESS)
2131 {
2132 /*
2133 * Deal with the message.
2134 */
2135 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu);
2136 if (rcStrict == VINF_SUCCESS)
2137 { /* hopefully likely */ }
2138 else
2139 {
2140 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2141 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2142 break;
2143 }
2144 }
2145 else
2146 {
2147 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x \n",
2148 pVCpu->idCpu, hrc), VERR_NEM_IPE_0);
2149 }
2150 } /* the run loop */
2151
2152 return rcStrict;
2153}
2154
2155
2156VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2157{
2158#ifdef LOG_ENABLED
2159 if (LogIs3Enabled())
2160 nemR3DarwinLogState(pVM, pVCpu);
2161#endif
2162
2163 AssertReturn(NEMR3CanExecuteGuest(pVM, pVCpu), VERR_NEM_IPE_9);
2164
2165 if (RT_UNLIKELY(!pVCpu->nem.s.fIdRegsSynced))
2166 {
2167 /*
2168 * Sync the guest ID registers which are per VM once (they are readonly and stay constant during VM lifetime).
2169 * Need to do it here and not during the init because loading a saved state might change the ID registers from what
2170 * done in the call to CPUMR3PopulateFeaturesByIdRegisters().
2171 */
2172 static const struct
2173 {
2174 const char *pszIdReg;
2175 hv_sys_reg_t enmHvReg;
2176 uint32_t offIdStruct;
2177 } s_aSysIdRegs[] =
2178 {
2179#define ID_SYS_REG_CREATE(a_IdReg, a_CpumIdReg) { #a_IdReg, HV_SYS_REG_##a_IdReg, RT_UOFFSETOF(CPUMIDREGS, a_CpumIdReg) }
2180 ID_SYS_REG_CREATE(ID_AA64DFR0_EL1, u64RegIdAa64Dfr0El1),
2181 ID_SYS_REG_CREATE(ID_AA64DFR1_EL1, u64RegIdAa64Dfr1El1),
2182 ID_SYS_REG_CREATE(ID_AA64ISAR0_EL1, u64RegIdAa64Isar0El1),
2183 ID_SYS_REG_CREATE(ID_AA64ISAR1_EL1, u64RegIdAa64Isar1El1),
2184 ID_SYS_REG_CREATE(ID_AA64MMFR0_EL1, u64RegIdAa64Mmfr0El1),
2185 ID_SYS_REG_CREATE(ID_AA64MMFR1_EL1, u64RegIdAa64Mmfr1El1),
2186 ID_SYS_REG_CREATE(ID_AA64MMFR2_EL1, u64RegIdAa64Mmfr2El1),
2187 ID_SYS_REG_CREATE(ID_AA64PFR0_EL1, u64RegIdAa64Pfr0El1),
2188 ID_SYS_REG_CREATE(ID_AA64PFR1_EL1, u64RegIdAa64Pfr1El1),
2189#undef ID_SYS_REG_CREATE
2190 };
2191
2192 PCCPUMIDREGS pIdRegsGst = NULL;
2193 int rc = CPUMR3QueryGuestIdRegs(pVM, &pIdRegsGst);
2194 AssertRCReturn(rc, rc);
2195
2196 for (uint32_t i = 0; i < RT_ELEMENTS(s_aSysIdRegs); i++)
2197 {
2198 uint64_t *pu64 = (uint64_t *)((uint8_t *)pIdRegsGst + s_aSysIdRegs[i].offIdStruct);
2199 hv_return_t hrc = hv_vcpu_set_sys_reg(pVCpu->nem.s.hVCpu, s_aSysIdRegs[i].enmHvReg, *pu64);
2200 if (hrc != HV_SUCCESS)
2201 return VMSetError(pVM, VERR_NEM_SET_REGISTERS_FAILED, RT_SRC_POS,
2202 "Setting %s failed on vCPU %u: %#x (%Rrc)", s_aSysIdRegs[i].pszIdReg, pVCpu->idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
2203 }
2204
2205 pVCpu->nem.s.fIdRegsSynced = true;
2206 }
2207
2208 /*
2209 * Try switch to NEM runloop state.
2210 */
2211 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2212 { /* likely */ }
2213 else
2214 {
2215 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2216 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2217 return VINF_SUCCESS;
2218 }
2219
2220 VBOXSTRICTRC rcStrict;
2221#if 0
2222 if ( !pVCpu->nem.s.fUseDebugLoop
2223 && !nemR3DarwinAnyExpensiveProbesEnabled()
2224 && !DBGFIsStepping(pVCpu)
2225 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
2226#endif
2227 rcStrict = nemR3DarwinRunGuestNormal(pVM, pVCpu);
2228#if 0
2229 else
2230 rcStrict = nemR3DarwinRunGuestDebug(pVM, pVCpu);
2231#endif
2232
2233 if (rcStrict == VINF_EM_RAW_TO_R3)
2234 rcStrict = VINF_SUCCESS;
2235
2236 /*
2237 * Convert any pending HM events back to TRPM due to premature exits.
2238 *
2239 * This is because execution may continue from IEM and we would need to inject
2240 * the event from there (hence place it back in TRPM).
2241 */
2242 if (pVCpu->nem.s.fEventPending)
2243 {
2244 /** @todo */
2245 }
2246
2247
2248 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2249 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2250
2251 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
2252 {
2253 /* Try anticipate what we might need. */
2254 uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
2255 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2256 || RT_FAILURE(rcStrict))
2257 fImport = CPUMCTX_EXTRN_ALL;
2258 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_IRQ | VMCPU_FF_INTERRUPT_FIQ
2259 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2260 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2261
2262 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2263 {
2264 /* Only import what is external currently. */
2265 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
2266 if (RT_SUCCESS(rc2))
2267 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2268 else if (RT_SUCCESS(rcStrict))
2269 rcStrict = rc2;
2270 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
2271 pVCpu->cpum.GstCtx.fExtrn = 0;
2272 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2273 }
2274 else
2275 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2276 }
2277 else
2278 {
2279 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2280 pVCpu->cpum.GstCtx.fExtrn = 0;
2281 }
2282
2283 return rcStrict;
2284}
2285
2286
2287VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
2288{
2289 RT_NOREF(pVM, pVCpu);
2290 return true; /** @todo Are there any cases where we have to emulate? */
2291}
2292
2293
2294bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
2295{
2296 VMCPU_ASSERT_EMT(pVCpu);
2297 bool fOld = pVCpu->nem.s.fSingleInstruction;
2298 pVCpu->nem.s.fSingleInstruction = fEnable;
2299 pVCpu->nem.s.fUseDebugLoop = fEnable || pVM->nem.s.fUseDebugLoop;
2300 return fOld;
2301}
2302
2303
2304void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
2305{
2306 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
2307
2308 RT_NOREF(pVM, fFlags);
2309
2310 hv_return_t hrc = hv_vcpus_exit(&pVCpu->nem.s.hVCpu, 1);
2311 if (hrc != HV_SUCCESS)
2312 LogRel(("NEM: hv_vcpus_exit(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpu, hrc));
2313}
2314
2315
2316DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
2317{
2318 RT_NOREF(pVM, fUseDebugLoop);
2319 //AssertReleaseFailed();
2320 return false;
2321}
2322
2323
2324DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
2325{
2326 RT_NOREF(pVM, pVCpu, fUseDebugLoop);
2327 return fUseDebugLoop;
2328}
2329
2330
2331VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
2332 uint8_t *pu2State, uint32_t *puNemRange)
2333{
2334 RT_NOREF(pVM, puNemRange);
2335
2336 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
2337#if defined(VBOX_WITH_PGM_NEM_MODE)
2338 if (pvR3)
2339 {
2340 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
2341 if (RT_FAILURE(rc))
2342 {
2343 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
2344 return VERR_NEM_MAP_PAGES_FAILED;
2345 }
2346 }
2347 return VINF_SUCCESS;
2348#else
2349 RT_NOREF(pVM, GCPhys, cb, pvR3);
2350 return VERR_NEM_MAP_PAGES_FAILED;
2351#endif
2352}
2353
2354
2355VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
2356{
2357 RT_NOREF(pVM);
2358 return true;
2359}
2360
2361
2362VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
2363 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
2364{
2365 RT_NOREF(pvRam);
2366
2367 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
2368 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
2369
2370#if defined(VBOX_WITH_PGM_NEM_MODE)
2371 /*
2372 * Unmap the RAM we're replacing.
2373 */
2374 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
2375 {
2376 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
2377 if (RT_SUCCESS(rc))
2378 { /* likely */ }
2379 else if (pvMmio2)
2380 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
2381 GCPhys, cb, fFlags, rc));
2382 else
2383 {
2384 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
2385 GCPhys, cb, fFlags, rc));
2386 return VERR_NEM_UNMAP_PAGES_FAILED;
2387 }
2388 }
2389
2390 /*
2391 * Map MMIO2 if any.
2392 */
2393 if (pvMmio2)
2394 {
2395 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
2396
2397 /* We need to set up our own dirty tracking due to Hypervisor.framework only working on host page sized aligned regions. */
2398 uint32_t fProt = NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE;
2399 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES)
2400 {
2401 /* Find a slot for dirty tracking. */
2402 PNEMHVMMIO2REGION pMmio2Region = NULL;
2403 uint32_t idSlot;
2404 for (idSlot = 0; idSlot < RT_ELEMENTS(pVM->nem.s.aMmio2DirtyTracking); idSlot++)
2405 {
2406 if ( pVM->nem.s.aMmio2DirtyTracking[idSlot].GCPhysStart == 0
2407 && pVM->nem.s.aMmio2DirtyTracking[idSlot].GCPhysLast == 0)
2408 {
2409 pMmio2Region = &pVM->nem.s.aMmio2DirtyTracking[idSlot];
2410 break;
2411 }
2412 }
2413
2414 if (!pMmio2Region)
2415 {
2416 LogRel(("NEMR3NotifyPhysMmioExMapEarly: Out of dirty tracking structures -> VERR_NEM_MAP_PAGES_FAILED\n"));
2417 return VERR_NEM_MAP_PAGES_FAILED;
2418 }
2419
2420 pMmio2Region->GCPhysStart = GCPhys;
2421 pMmio2Region->GCPhysLast = GCPhys + cb - 1;
2422 pMmio2Region->fDirty = false;
2423 *puNemRange = idSlot;
2424 }
2425 else
2426 fProt |= NEM_PAGE_PROT_WRITE;
2427
2428 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, fProt, pu2State);
2429 if (RT_FAILURE(rc))
2430 {
2431 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
2432 GCPhys, cb, fFlags, pvMmio2, rc));
2433 return VERR_NEM_MAP_PAGES_FAILED;
2434 }
2435 }
2436 else
2437 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
2438
2439#else
2440 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
2441 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
2442#endif
2443 return VINF_SUCCESS;
2444}
2445
2446
2447VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
2448 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
2449{
2450 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
2451 return VINF_SUCCESS;
2452}
2453
2454
2455VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
2456 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
2457{
2458 RT_NOREF(pVM, puNemRange);
2459
2460 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
2461 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
2462
2463 int rc = VINF_SUCCESS;
2464#if defined(VBOX_WITH_PGM_NEM_MODE)
2465 /*
2466 * Unmap the MMIO2 pages.
2467 */
2468 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
2469 * we may have more stuff to unmap even in case of pure MMIO... */
2470 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
2471 {
2472 rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
2473 if (RT_FAILURE(rc))
2474 {
2475 LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
2476 GCPhys, cb, fFlags, rc));
2477 rc = VERR_NEM_UNMAP_PAGES_FAILED;
2478 }
2479
2480 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES)
2481 {
2482 /* Reset tracking structure. */
2483 uint32_t idSlot = *puNemRange;
2484 *puNemRange = UINT32_MAX;
2485
2486 Assert(idSlot < RT_ELEMENTS(pVM->nem.s.aMmio2DirtyTracking));
2487 pVM->nem.s.aMmio2DirtyTracking[idSlot].GCPhysStart = 0;
2488 pVM->nem.s.aMmio2DirtyTracking[idSlot].GCPhysLast = 0;
2489 pVM->nem.s.aMmio2DirtyTracking[idSlot].fDirty = false;
2490 }
2491 }
2492
2493 /* Ensure the page is masked as unmapped if relevant. */
2494 Assert(!pu2State || *pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED);
2495
2496 /*
2497 * Restore the RAM we replaced.
2498 */
2499 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
2500 {
2501 AssertPtr(pvRam);
2502 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
2503 if (RT_SUCCESS(rc))
2504 { /* likely */ }
2505 else
2506 {
2507 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
2508 rc = VERR_NEM_MAP_PAGES_FAILED;
2509 }
2510 }
2511
2512 RT_NOREF(pvMmio2);
2513#else
2514 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
2515 if (pu2State)
2516 *pu2State = UINT8_MAX;
2517 rc = VERR_NEM_UNMAP_PAGES_FAILED;
2518#endif
2519 return rc;
2520}
2521
2522
2523VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
2524 void *pvBitmap, size_t cbBitmap)
2525{
2526 LogFlowFunc(("NEMR3PhysMmio2QueryAndResetDirtyBitmap: %RGp LB %RGp UnemRange=%u\n", GCPhys, cb, uNemRange));
2527 Assert(uNemRange < RT_ELEMENTS(pVM->nem.s.aMmio2DirtyTracking));
2528
2529 /* Keep it simple for now and mark everything as dirty if it is. */
2530 int rc = VINF_SUCCESS;
2531 if (pVM->nem.s.aMmio2DirtyTracking[uNemRange].fDirty)
2532 {
2533 ASMBitSetRange(pvBitmap, 0, cbBitmap * 8);
2534
2535 pVM->nem.s.aMmio2DirtyTracking[uNemRange].fDirty = false;
2536 /* Restore as RX only. */
2537 uint8_t u2State;
2538 rc = nemR3DarwinProtect(GCPhys, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE, &u2State);
2539 }
2540 else
2541 ASMBitClearRange(pvBitmap, 0, cbBitmap * 8);
2542
2543 return rc;
2544}
2545
2546
2547VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
2548 uint8_t *pu2State, uint32_t *puNemRange)
2549{
2550 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
2551
2552 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
2553 *pu2State = UINT8_MAX;
2554 *puNemRange = 0;
2555 return VINF_SUCCESS;
2556}
2557
2558
2559VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
2560 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
2561{
2562 Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
2563 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
2564 *pu2State = UINT8_MAX;
2565
2566#if defined(VBOX_WITH_PGM_NEM_MODE)
2567 /*
2568 * (Re-)map readonly.
2569 */
2570 AssertPtrReturn(pvPages, VERR_INVALID_POINTER);
2571
2572 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
2573 AssertRC(rc);
2574
2575 rc = nemR3DarwinMap(pVM, GCPhys, pvPages, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE, pu2State);
2576 if (RT_FAILURE(rc))
2577 {
2578 LogRel(("nemR3NativeNotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x rc=%Rrc\n",
2579 GCPhys, cb, pvPages, fFlags, rc));
2580 return VERR_NEM_MAP_PAGES_FAILED;
2581 }
2582 RT_NOREF(fFlags, puNemRange);
2583 return VINF_SUCCESS;
2584#else
2585 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
2586 return VERR_NEM_MAP_PAGES_FAILED;
2587#endif
2588}
2589
2590
2591VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
2592 RTR3PTR pvMemR3, uint8_t *pu2State)
2593{
2594 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
2595 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
2596
2597 *pu2State = UINT8_MAX;
2598#if defined(VBOX_WITH_PGM_NEM_MODE)
2599 if (pvMemR3)
2600 {
2601 /* Unregister what was there before. */
2602 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
2603 AssertRC(rc);
2604
2605 rc = nemR3DarwinMap(pVM, GCPhys, pvMemR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
2606 AssertLogRelMsgRC(rc, ("NEMHCNotifyHandlerPhysicalDeregister: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
2607 pvMemR3, GCPhys, cb, rc));
2608 }
2609 RT_NOREF(enmKind);
2610#else
2611 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
2612 AssertFailed();
2613#endif
2614}
2615
2616
2617VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
2618{
2619 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
2620 RT_NOREF(pVCpu, fEnabled);
2621}
2622
2623
2624void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
2625{
2626 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
2627 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
2628}
2629
2630
2631void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
2632 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
2633{
2634 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
2635 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
2636 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
2637}
2638
2639
2640int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
2641 PGMPAGETYPE enmType, uint8_t *pu2State)
2642{
2643 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
2644 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
2645 RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State);
2646
2647 AssertFailed();
2648 return VINF_SUCCESS;
2649}
2650
2651
2652VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
2653 PGMPAGETYPE enmType, uint8_t *pu2State)
2654{
2655 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
2656 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
2657 RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State);
2658}
2659
2660
2661VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
2662 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
2663{
2664 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
2665 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
2666 RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
2667
2668 AssertFailed();
2669}
2670
2671
2672/**
2673 * Interface for importing state on demand (used by IEM).
2674 *
2675 * @returns VBox status code.
2676 * @param pVCpu The cross context CPU structure.
2677 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
2678 */
2679VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
2680{
2681 LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
2682 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
2683
2684 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
2685}
2686
2687
2688/**
2689 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
2690 *
2691 * @returns VBox status code.
2692 * @param pVCpu The cross context CPU structure.
2693 * @param pcTicks Where to return the CPU tick count.
2694 * @param puAux Where to return the TSC_AUX register value.
2695 */
2696VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
2697{
2698 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
2699 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
2700
2701 if (puAux)
2702 *puAux = 0;
2703 *pcTicks = mach_absolute_time() - pVCpu->pVMR3->nem.s.u64VTimerOff; /* This is the host timer minus the offset. */
2704 return VINF_SUCCESS;
2705}
2706
2707
2708/**
2709 * Resumes CPU clock (TSC) on all virtual CPUs.
2710 *
2711 * This is called by TM when the VM is started, restored, resumed or similar.
2712 *
2713 * @returns VBox status code.
2714 * @param pVM The cross context VM structure.
2715 * @param pVCpu The cross context CPU structure of the calling EMT.
2716 * @param uPausedTscValue The TSC value at the time of pausing.
2717 */
2718VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
2719{
2720 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVM, pVCpu, uPausedTscValue));
2721 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
2722 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
2723
2724 /*
2725 * Calculate the new offset, first get the new TSC value with the old vTimer offset and then adjust the
2726 * the new offset to let the guest not notice the pause.
2727 */
2728 uint64_t u64TscNew = mach_absolute_time() - pVCpu->pVMR3->nem.s.u64VTimerOff;
2729 Assert(u64TscNew >= uPausedTscValue);
2730 LogFlowFunc(("u64VTimerOffOld=%#RX64 u64TscNew=%#RX64 u64VTimerValuePaused=%#RX64 -> u64VTimerOff=%#RX64\n",
2731 pVM->nem.s.u64VTimerOff, u64TscNew, uPausedTscValue,
2732 pVM->nem.s.u64VTimerOff + (u64TscNew - uPausedTscValue)));
2733
2734 pVM->nem.s.u64VTimerOff += u64TscNew - uPausedTscValue;
2735
2736 /*
2737 * Set the flag to update the vTimer offset when the vCPU resumes for the first time
2738 * (needs to be done on the actual EMT).
2739 */
2740 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2741 {
2742 PVMCPUCC pVCpuDst = pVM->apCpusR3[idCpu];
2743 pVCpuDst->nem.s.fVTimerOffUpdate = true;
2744 }
2745
2746 return VINF_SUCCESS;
2747}
2748
2749
2750/**
2751 * Returns features supported by the NEM backend.
2752 *
2753 * @returns Flags of features supported by the native NEM backend.
2754 * @param pVM The cross context VM structure.
2755 */
2756VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
2757{
2758 RT_NOREF(pVM);
2759 /*
2760 * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
2761 * and unrestricted guest execution support so we can safely return these flags here always.
2762 */
2763 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
2764}
2765
2766
2767/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
2768 *
2769 * @todo Add notes as the implementation progresses...
2770 */
2771
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette