VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp@ 100762

Last change on this file since 100762 was 99739, checked in by vboxsync, 20 months ago

*: doxygen corrections (mostly about removing @returns from functions returning void).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 181.1 KB
Line 
1/* $Id: NEMR3Native-darwin.cpp 99739 2023-05-11 01:01:08Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2020-2023 Oracle and/or its affiliates.
12 *
13 * This file is part of VirtualBox base platform packages, as
14 * available from https://www.virtualbox.org.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation, in version 3 of the
19 * License.
20 *
21 * This program is distributed in the hope that it will be useful, but
22 * WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 * General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, see <https://www.gnu.org/licenses>.
28 *
29 * SPDX-License-Identifier: GPL-3.0-only
30 */
31
32
33/*********************************************************************************************************************************
34* Header Files *
35*********************************************************************************************************************************/
36#define LOG_GROUP LOG_GROUP_NEM
37#define VMCPU_INCL_CPUM_GST_CTX
38#define CPUM_WITH_NONCONST_HOST_FEATURES /* required for initializing parts of the g_CpumHostFeatures structure here. */
39#include <VBox/vmm/nem.h>
40#include <VBox/vmm/iem.h>
41#include <VBox/vmm/em.h>
42#include <VBox/vmm/apic.h>
43#include <VBox/vmm/pdm.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/hm_vmx.h>
46#include <VBox/vmm/dbgftrace.h>
47#include <VBox/vmm/gcm.h>
48#include "VMXInternal.h"
49#include "NEMInternal.h"
50#include <VBox/vmm/vmcc.h>
51#include "dtrace/VBoxVMM.h"
52
53#include <iprt/asm.h>
54#include <iprt/ldr.h>
55#include <iprt/mem.h>
56#include <iprt/path.h>
57#include <iprt/string.h>
58#include <iprt/system.h>
59#include <iprt/utf16.h>
60
61#include <mach/mach_time.h>
62#include <mach/kern_return.h>
63
64
65/*********************************************************************************************************************************
66* Defined Constants And Macros *
67*********************************************************************************************************************************/
68/* No nested hwvirt (for now). */
69#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
70# undef VBOX_WITH_NESTED_HWVIRT_VMX
71#endif
72
73
74/** @name HV return codes.
75 * @{ */
76/** Operation was successful. */
77#define HV_SUCCESS 0
78/** An error occurred during operation. */
79#define HV_ERROR 0xfae94001
80/** The operation could not be completed right now, try again. */
81#define HV_BUSY 0xfae94002
82/** One of the parameters passed wis invalid. */
83#define HV_BAD_ARGUMENT 0xfae94003
84/** Not enough resources left to fulfill the operation. */
85#define HV_NO_RESOURCES 0xfae94005
86/** The device could not be found. */
87#define HV_NO_DEVICE 0xfae94006
88/** The operation is not supportd on this platform with this configuration. */
89#define HV_UNSUPPORTED 0xfae94007
90/** @} */
91
92
93/** @name HV memory protection flags.
94 * @{ */
95/** Memory is readable. */
96#define HV_MEMORY_READ RT_BIT_64(0)
97/** Memory is writeable. */
98#define HV_MEMORY_WRITE RT_BIT_64(1)
99/** Memory is executable. */
100#define HV_MEMORY_EXEC RT_BIT_64(2)
101/** @} */
102
103
104/** @name HV shadow VMCS protection flags.
105 * @{ */
106/** Shadow VMCS field is not accessible. */
107#define HV_SHADOW_VMCS_NONE 0
108/** Shadow VMCS fild is readable. */
109#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
110/** Shadow VMCS field is writeable. */
111#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
112/** @} */
113
114
115/** Default VM creation flags. */
116#define HV_VM_DEFAULT 0
117/** Default guest address space creation flags. */
118#define HV_VM_SPACE_DEFAULT 0
119/** Default vCPU creation flags. */
120#define HV_VCPU_DEFAULT 0
121
122#define HV_DEADLINE_FOREVER UINT64_MAX
123
124
125/*********************************************************************************************************************************
126* Structures and Typedefs *
127*********************************************************************************************************************************/
128
129/** HV return code type. */
130typedef uint32_t hv_return_t;
131/** HV capability bitmask. */
132typedef uint64_t hv_capability_t;
133/** Option bitmask type when creating a VM. */
134typedef uint64_t hv_vm_options_t;
135/** Option bitmask when creating a vCPU. */
136typedef uint64_t hv_vcpu_options_t;
137/** HV memory protection flags type. */
138typedef uint64_t hv_memory_flags_t;
139/** Shadow VMCS protection flags. */
140typedef uint64_t hv_shadow_flags_t;
141/** Guest physical address type. */
142typedef uint64_t hv_gpaddr_t;
143
144
145/**
146 * VMX Capability enumeration.
147 */
148typedef enum
149{
150 HV_VMX_CAP_PINBASED = 0,
151 HV_VMX_CAP_PROCBASED,
152 HV_VMX_CAP_PROCBASED2,
153 HV_VMX_CAP_ENTRY,
154 HV_VMX_CAP_EXIT,
155 HV_VMX_CAP_BASIC, /* Since 11.0 */
156 HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
157 HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
158 HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
159 HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
160 HV_VMX_CAP_MISC, /* Since 11.0 */
161 HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
162 HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
163 HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
164 HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
165 HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
166 HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
167 HV_VMX_CAP_PREEMPTION_TIMER = 32
168} hv_vmx_capability_t;
169
170
171/**
172 * MSR information.
173 */
174typedef enum
175{
176 HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES = 0,
177 HV_VMX_INFO_MSR_IA32_PERF_CAPABILITIES,
178 HV_VMX_VALID_MSR_IA32_PERFEVNTSEL,
179 HV_VMX_VALID_MSR_IA32_FIXED_CTR_CTRL,
180 HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_CTRL,
181 HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_STATUS,
182 HV_VMX_VALID_MSR_IA32_DEBUGCTL,
183 HV_VMX_VALID_MSR_IA32_SPEC_CTRL,
184 HV_VMX_NEED_MSR_IA32_SPEC_CTRL
185} hv_vmx_msr_info_t;
186
187
188/**
189 * HV x86 register enumeration.
190 */
191typedef enum
192{
193 HV_X86_RIP = 0,
194 HV_X86_RFLAGS,
195 HV_X86_RAX,
196 HV_X86_RCX,
197 HV_X86_RDX,
198 HV_X86_RBX,
199 HV_X86_RSI,
200 HV_X86_RDI,
201 HV_X86_RSP,
202 HV_X86_RBP,
203 HV_X86_R8,
204 HV_X86_R9,
205 HV_X86_R10,
206 HV_X86_R11,
207 HV_X86_R12,
208 HV_X86_R13,
209 HV_X86_R14,
210 HV_X86_R15,
211 HV_X86_CS,
212 HV_X86_SS,
213 HV_X86_DS,
214 HV_X86_ES,
215 HV_X86_FS,
216 HV_X86_GS,
217 HV_X86_IDT_BASE,
218 HV_X86_IDT_LIMIT,
219 HV_X86_GDT_BASE,
220 HV_X86_GDT_LIMIT,
221 HV_X86_LDTR,
222 HV_X86_LDT_BASE,
223 HV_X86_LDT_LIMIT,
224 HV_X86_LDT_AR,
225 HV_X86_TR,
226 HV_X86_TSS_BASE,
227 HV_X86_TSS_LIMIT,
228 HV_X86_TSS_AR,
229 HV_X86_CR0,
230 HV_X86_CR1,
231 HV_X86_CR2,
232 HV_X86_CR3,
233 HV_X86_CR4,
234 HV_X86_DR0,
235 HV_X86_DR1,
236 HV_X86_DR2,
237 HV_X86_DR3,
238 HV_X86_DR4,
239 HV_X86_DR5,
240 HV_X86_DR6,
241 HV_X86_DR7,
242 HV_X86_TPR,
243 HV_X86_XCR0,
244 HV_X86_REGISTERS_MAX
245} hv_x86_reg_t;
246
247
248/** MSR permission flags type. */
249typedef uint32_t hv_msr_flags_t;
250/** MSR can't be accessed. */
251#define HV_MSR_NONE 0
252/** MSR is readable by the guest. */
253#define HV_MSR_READ RT_BIT(0)
254/** MSR is writeable by the guest. */
255#define HV_MSR_WRITE RT_BIT(1)
256
257
258typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
259typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
260typedef hv_return_t FN_HV_VM_DESTROY(void);
261typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
262typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
263typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
264typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
265typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
266typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
267typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
268typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
269typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
270
271typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
272typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
273typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
274typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
275typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
276typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
277typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
278typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
279typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
280typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
281typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
282typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
283typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
284typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
285typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
286typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
287
288typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
289typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
290
291typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
292typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
293typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
294
295typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
296typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
297
298/* Since 11.0 */
299typedef hv_return_t FN_HV_VMX_GET_MSR_INFO(hv_vmx_msr_info_t field, uint64_t *value);
300typedef hv_return_t FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *allowed_0, uint64_t *allowed_1);
301typedef hv_return_t FN_HV_VCPU_ENABLE_MANAGED_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
302typedef hv_return_t FN_HV_VCPU_SET_MSR_ACCESS(hv_vcpuid_t vcpu, uint32_t msr, hv_msr_flags_t flags);
303
304
305/*********************************************************************************************************************************
306* Global Variables *
307*********************************************************************************************************************************/
308static void nemR3DarwinVmcsDump(PVMCPU pVCpu);
309
310/** NEM_DARWIN_PAGE_STATE_XXX names. */
311NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
312/** MSRs. */
313static SUPHWVIRTMSRS g_HmMsrs;
314/** VMX: Set if swapping EFER is supported. */
315static bool g_fHmVmxSupportsVmcsEfer = false;
316/** @name APIs imported from Hypervisor.framework.
317 * @{ */
318static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
319static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
320static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
321static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
322static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
323static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
324static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
325static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
326static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
327static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
328static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
329static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
330
331static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
332static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
333static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
334static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
335static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
336static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
337static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
338static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
339static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
340static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
341static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
342static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
343static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
344static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
345static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
346static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
347
348static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
349static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
350static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
351static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
352static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
353static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
354static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
355
356static FN_HV_VMX_GET_MSR_INFO *g_pfnHvVmxGetMsrInfo = NULL; /* Since 11.0 */
357static FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS *g_pfnHvVmxVCpuGetCapWriteVmcs = NULL; /* Since 11.0 */
358static FN_HV_VCPU_ENABLE_MANAGED_MSR *g_pfnHvVCpuEnableManagedMsr = NULL; /* Since 11.0 */
359static FN_HV_VCPU_SET_MSR_ACCESS *g_pfnHvVCpuSetMsrAccess = NULL; /* Since 11.0 */
360/** @} */
361
362
363/**
364 * Import instructions.
365 */
366static const struct
367{
368 bool fOptional; /**< Set if import is optional. */
369 void **ppfn; /**< The function pointer variable. */
370 const char *pszName; /**< The function name. */
371} g_aImports[] =
372{
373#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
374 NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
375 NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
376 NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
377 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
378 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
379 NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
380 NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
381 NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
382 NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
383 NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
384 NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
385 NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
386
387 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
388 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
389 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
390 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
391 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
392 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
393 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
394 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
395 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
396 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
397 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
398 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
399 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
400 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
401 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
402 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
403 NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
404 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
405 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
406 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
407 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
408 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
409 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
410 NEM_DARWIN_IMPORT(true, g_pfnHvVmxGetMsrInfo, hv_vmx_get_msr_info),
411 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuGetCapWriteVmcs, hv_vmx_vcpu_get_cap_write_vmcs),
412 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuEnableManagedMsr, hv_vcpu_enable_managed_msr),
413 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetMsrAccess, hv_vcpu_set_msr_access)
414#undef NEM_DARWIN_IMPORT
415};
416
417
418/*
419 * Let the preprocessor alias the APIs to import variables for better autocompletion.
420 */
421#ifndef IN_SLICKEDIT
422# define hv_capability g_pfnHvCapability
423# define hv_vm_create g_pfnHvVmCreate
424# define hv_vm_destroy g_pfnHvVmDestroy
425# define hv_vm_space_create g_pfnHvVmSpaceCreate
426# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
427# define hv_vm_map g_pfnHvVmMap
428# define hv_vm_unmap g_pfnHvVmUnmap
429# define hv_vm_protect g_pfnHvVmProtect
430# define hv_vm_map_space g_pfnHvVmMapSpace
431# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
432# define hv_vm_protect_space g_pfnHvVmProtectSpace
433# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
434
435# define hv_vcpu_create g_pfnHvVCpuCreate
436# define hv_vcpu_destroy g_pfnHvVCpuDestroy
437# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
438# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
439# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
440# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
441# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
442# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
443# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
444# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
445# define hv_vcpu_flush g_pfnHvVCpuFlush
446# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
447# define hv_vcpu_run g_pfnHvVCpuRun
448# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
449# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
450# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
451
452# define hv_vmx_read_capability g_pfnHvVmxReadCapability
453# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
454# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
455# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
456# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
457# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
458# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
459
460# define hv_vmx_get_msr_info g_pfnHvVmxGetMsrInfo
461# define hv_vmx_vcpu_get_cap_write_vmcs g_pfnHvVmxVCpuGetCapWriteVmcs
462# define hv_vcpu_enable_managed_msr g_pfnHvVCpuEnableManagedMsr
463# define hv_vcpu_set_msr_access g_pfnHvVCpuSetMsrAccess
464#endif
465
466static const struct
467{
468 uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
469 const char *pszVmcsField; /**< The VMCS field name. */
470 bool f64Bit;
471} g_aVmcsFieldsCap[] =
472{
473#define NEM_DARWIN_VMCS64_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
474#define NEM_DARWIN_VMCS32_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
475
476 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PIN_EXEC),
477 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC),
478 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
479 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXIT),
480 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_ENTRY),
481 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC2),
482 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_GAP),
483 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_WINDOW),
484 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
485 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_GUEST_DEBUGCTL_FULL)
486#undef NEM_DARWIN_VMCS64_FIELD_CAP
487#undef NEM_DARWIN_VMCS32_FIELD_CAP
488};
489
490
491/*********************************************************************************************************************************
492* Internal Functions *
493*********************************************************************************************************************************/
494DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
495
496
497/**
498 * Converts a HV return code to a VBox status code.
499 *
500 * @returns VBox status code.
501 * @param hrc The HV return code to convert.
502 */
503DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
504{
505 if (hrc == HV_SUCCESS)
506 return VINF_SUCCESS;
507
508 switch (hrc)
509 {
510 case HV_ERROR: return VERR_INVALID_STATE;
511 case HV_BUSY: return VERR_RESOURCE_BUSY;
512 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
513 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
514 case HV_NO_DEVICE: return VERR_NOT_FOUND;
515 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
516 }
517
518 return VERR_IPE_UNEXPECTED_STATUS;
519}
520
521
522/**
523 * Unmaps the given guest physical address range (page aligned).
524 *
525 * @returns VBox status code.
526 * @param pVM The cross context VM structure.
527 * @param GCPhys The guest physical address to start unmapping at.
528 * @param cb The size of the range to unmap in bytes.
529 * @param pu2State Where to store the new state of the unmappd page, optional.
530 */
531DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint8_t *pu2State)
532{
533 if (*pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED)
534 {
535 Log5(("nemR3DarwinUnmap: %RGp == unmapped\n", GCPhys));
536 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
537 return VINF_SUCCESS;
538 }
539
540 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
541 hv_return_t hrc;
542 if (pVM->nem.s.fCreatedAsid)
543 hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, cb);
544 else
545 hrc = hv_vm_unmap(GCPhys, cb);
546 if (RT_LIKELY(hrc == HV_SUCCESS))
547 {
548 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
549 if (pu2State)
550 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
551 Log5(("nemR3DarwinUnmap: %RGp => unmapped\n", GCPhys));
552 return VINF_SUCCESS;
553 }
554
555 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
556 LogRel(("nemR3DarwinUnmap(%RGp): failed! hrc=%#x\n",
557 GCPhys, hrc));
558 return VERR_NEM_IPE_6;
559}
560
561
562/**
563 * Resolves a NEM page state from the given protection flags.
564 *
565 * @returns NEM page state.
566 * @param fPageProt The page protection flags.
567 */
568DECLINLINE(uint8_t) nemR3DarwinPageStateFromProt(uint32_t fPageProt)
569{
570 switch (fPageProt)
571 {
572 case NEM_PAGE_PROT_NONE:
573 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
574 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE:
575 return NEM_DARWIN_PAGE_STATE_RX;
576 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE:
577 return NEM_DARWIN_PAGE_STATE_RW;
578 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE:
579 return NEM_DARWIN_PAGE_STATE_RWX;
580 default:
581 break;
582 }
583
584 AssertLogRelMsgFailed(("Invalid combination of page protection flags %#x, can't map to page state!\n", fPageProt));
585 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
586}
587
588
589/**
590 * Maps a given guest physical address range backed by the given memory with the given
591 * protection flags.
592 *
593 * @returns VBox status code.
594 * @param pVM The cross context VM structure.
595 * @param GCPhys The guest physical address to start mapping.
596 * @param pvRam The R3 pointer of the memory to back the range with.
597 * @param cb The size of the range, page aligned.
598 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
599 * @param pu2State Where to store the state for the new page, optional.
600 */
601DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, const void *pvRam, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
602{
603 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
604
605 Assert(fPageProt != NEM_PAGE_PROT_NONE);
606
607 hv_memory_flags_t fHvMemProt = 0;
608 if (fPageProt & NEM_PAGE_PROT_READ)
609 fHvMemProt |= HV_MEMORY_READ;
610 if (fPageProt & NEM_PAGE_PROT_WRITE)
611 fHvMemProt |= HV_MEMORY_WRITE;
612 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
613 fHvMemProt |= HV_MEMORY_EXEC;
614
615 hv_return_t hrc;
616 if (pVM->nem.s.fCreatedAsid)
617 hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
618 else
619 hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
620 if (hrc == HV_SUCCESS)
621 {
622 if (pu2State)
623 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
624 return VINF_SUCCESS;
625 }
626
627 return nemR3DarwinHvSts2Rc(hrc);
628}
629
630
631/**
632 * Changes the protection flags for the given guest physical address range.
633 *
634 * @returns VBox status code.
635 * @param pVM The cross context VM structure.
636 * @param GCPhys The guest physical address to start mapping.
637 * @param cb The size of the range, page aligned.
638 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
639 * @param pu2State Where to store the state for the new page, optional.
640 */
641DECLINLINE(int) nemR3DarwinProtect(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
642{
643 hv_memory_flags_t fHvMemProt = 0;
644 if (fPageProt & NEM_PAGE_PROT_READ)
645 fHvMemProt |= HV_MEMORY_READ;
646 if (fPageProt & NEM_PAGE_PROT_WRITE)
647 fHvMemProt |= HV_MEMORY_WRITE;
648 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
649 fHvMemProt |= HV_MEMORY_EXEC;
650
651 hv_return_t hrc;
652 if (pVM->nem.s.fCreatedAsid)
653 hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
654 else
655 hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
656 if (hrc == HV_SUCCESS)
657 {
658 if (pu2State)
659 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
660 return VINF_SUCCESS;
661 }
662
663 return nemR3DarwinHvSts2Rc(hrc);
664}
665
666
667DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
668{
669 PGMPAGEMAPLOCK Lock;
670 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
671 if (RT_SUCCESS(rc))
672 PGMPhysReleasePageMappingLock(pVM, &Lock);
673 return rc;
674}
675
676
677DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
678{
679 PGMPAGEMAPLOCK Lock;
680 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
681 if (RT_SUCCESS(rc))
682 PGMPhysReleasePageMappingLock(pVM, &Lock);
683 return rc;
684}
685
686
687#ifdef LOG_ENABLED
688/**
689 * Logs the current CPU state.
690 */
691static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
692{
693 if (LogIs3Enabled())
694 {
695#if 0
696 char szRegs[4096];
697 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
698 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
699 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
700 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
701 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
702 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
703 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
704 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
705 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
706 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
707 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
708 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
709 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
710 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
711 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
712 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
713 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
714 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
715 " efer=%016VR{efer}\n"
716 " pat=%016VR{pat}\n"
717 " sf_mask=%016VR{sf_mask}\n"
718 "krnl_gs_base=%016VR{krnl_gs_base}\n"
719 " lstar=%016VR{lstar}\n"
720 " star=%016VR{star} cstar=%016VR{cstar}\n"
721 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
722 );
723
724 char szInstr[256];
725 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
726 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
727 szInstr, sizeof(szInstr), NULL);
728 Log3(("%s%s\n", szRegs, szInstr));
729#else
730 RT_NOREF(pVM, pVCpu);
731#endif
732 }
733}
734#endif /* LOG_ENABLED */
735
736
737DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
738{
739 uint64_t u64Data;
740 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
741 if (RT_LIKELY(hrc == HV_SUCCESS))
742 {
743 *pData = (uint16_t)u64Data;
744 return VINF_SUCCESS;
745 }
746
747 return nemR3DarwinHvSts2Rc(hrc);
748}
749
750
751DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
752{
753 uint64_t u64Data;
754 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
755 if (RT_LIKELY(hrc == HV_SUCCESS))
756 {
757 *pData = (uint32_t)u64Data;
758 return VINF_SUCCESS;
759 }
760
761 return nemR3DarwinHvSts2Rc(hrc);
762}
763
764
765DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
766{
767 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
768 if (RT_LIKELY(hrc == HV_SUCCESS))
769 return VINF_SUCCESS;
770
771 return nemR3DarwinHvSts2Rc(hrc);
772}
773
774
775DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
776{
777 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
778 if (RT_LIKELY(hrc == HV_SUCCESS))
779 return VINF_SUCCESS;
780
781 return nemR3DarwinHvSts2Rc(hrc);
782}
783
784
785DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
786{
787 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
788 if (RT_LIKELY(hrc == HV_SUCCESS))
789 return VINF_SUCCESS;
790
791 return nemR3DarwinHvSts2Rc(hrc);
792}
793
794
795DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
796{
797 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
798 if (RT_LIKELY(hrc == HV_SUCCESS))
799 return VINF_SUCCESS;
800
801 return nemR3DarwinHvSts2Rc(hrc);
802}
803
804DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
805{
806 hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
807 if (RT_LIKELY(hrc == HV_SUCCESS))
808 return VINF_SUCCESS;
809
810 return nemR3DarwinHvSts2Rc(hrc);
811}
812
813#if 0 /*unused*/
814DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
815{
816 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
817 if (RT_LIKELY(hrc == HV_SUCCESS))
818 return VINF_SUCCESS;
819
820 return nemR3DarwinHvSts2Rc(hrc);
821}
822#endif
823
824static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
825{
826#define READ_GREG(a_GReg, a_Value) \
827 do \
828 { \
829 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
830 if (RT_LIKELY(hrc == HV_SUCCESS)) \
831 { /* likely */ } \
832 else \
833 return VERR_INTERNAL_ERROR; \
834 } while(0)
835#define READ_VMCS_FIELD(a_Field, a_Value) \
836 do \
837 { \
838 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
839 if (RT_LIKELY(hrc == HV_SUCCESS)) \
840 { /* likely */ } \
841 else \
842 return VERR_INTERNAL_ERROR; \
843 } while(0)
844#define READ_VMCS16_FIELD(a_Field, a_Value) \
845 do \
846 { \
847 uint64_t u64Data; \
848 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
849 if (RT_LIKELY(hrc == HV_SUCCESS)) \
850 { (a_Value) = (uint16_t)u64Data; } \
851 else \
852 return VERR_INTERNAL_ERROR; \
853 } while(0)
854#define READ_VMCS32_FIELD(a_Field, a_Value) \
855 do \
856 { \
857 uint64_t u64Data; \
858 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
859 if (RT_LIKELY(hrc == HV_SUCCESS)) \
860 { (a_Value) = (uint32_t)u64Data; } \
861 else \
862 return VERR_INTERNAL_ERROR; \
863 } while(0)
864#define READ_MSR(a_Msr, a_Value) \
865 do \
866 { \
867 hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
868 if (RT_LIKELY(hrc == HV_SUCCESS)) \
869 { /* likely */ } \
870 else \
871 AssertFailedReturn(VERR_INTERNAL_ERROR); \
872 } while(0)
873
874 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);
875
876 RT_NOREF(pVM);
877 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
878
879 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
880 vmxHCImportGuestIntrState(pVCpu, &pVCpu->nem.s.VmcsInfo);
881
882 /* GPRs */
883 hv_return_t hrc;
884 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
885 {
886 if (fWhat & CPUMCTX_EXTRN_RAX)
887 READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
888 if (fWhat & CPUMCTX_EXTRN_RCX)
889 READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
890 if (fWhat & CPUMCTX_EXTRN_RDX)
891 READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
892 if (fWhat & CPUMCTX_EXTRN_RBX)
893 READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
894 if (fWhat & CPUMCTX_EXTRN_RSP)
895 READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
896 if (fWhat & CPUMCTX_EXTRN_RBP)
897 READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
898 if (fWhat & CPUMCTX_EXTRN_RSI)
899 READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
900 if (fWhat & CPUMCTX_EXTRN_RDI)
901 READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
902 if (fWhat & CPUMCTX_EXTRN_R8_R15)
903 {
904 READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
905 READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
906 READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
907 READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
908 READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
909 READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
910 READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
911 READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
912 }
913 }
914
915 /* RIP & Flags */
916 if (fWhat & CPUMCTX_EXTRN_RIP)
917 READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
918 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
919 {
920 uint64_t fRFlagsTmp = 0;
921 READ_GREG(HV_X86_RFLAGS, fRFlagsTmp);
922 pVCpu->cpum.GstCtx.rflags.u = fRFlagsTmp;
923 }
924
925 /* Segments */
926#define READ_SEG(a_SReg, a_enmName) \
927 do { \
928 READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
929 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
930 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
931 READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
932 (a_SReg).ValidSel = (a_SReg).Sel; \
933 } while (0)
934 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
935 {
936 if (fWhat & CPUMCTX_EXTRN_ES)
937 READ_SEG(pVCpu->cpum.GstCtx.es, ES);
938 if (fWhat & CPUMCTX_EXTRN_CS)
939 READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
940 if (fWhat & CPUMCTX_EXTRN_SS)
941 READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
942 if (fWhat & CPUMCTX_EXTRN_DS)
943 READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
944 if (fWhat & CPUMCTX_EXTRN_FS)
945 READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
946 if (fWhat & CPUMCTX_EXTRN_GS)
947 READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
948 }
949
950 /* Descriptor tables and the task segment. */
951 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
952 {
953 if (fWhat & CPUMCTX_EXTRN_LDTR)
954 READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
955
956 if (fWhat & CPUMCTX_EXTRN_TR)
957 {
958 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
959 avoid to trigger sanity assertions around the code, always fix this. */
960 READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
961 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
962 {
963 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
964 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
965 break;
966 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
967 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
968 break;
969 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
970 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
971 break;
972 }
973 }
974 if (fWhat & CPUMCTX_EXTRN_IDTR)
975 {
976 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
977 READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
978 }
979 if (fWhat & CPUMCTX_EXTRN_GDTR)
980 {
981 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
982 READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
983 }
984 }
985
986 /* Control registers. */
987 bool fMaybeChangedMode = false;
988 bool fUpdateCr3 = false;
989 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
990 {
991 uint64_t u64CrTmp = 0;
992
993 if (fWhat & CPUMCTX_EXTRN_CR0)
994 {
995 READ_GREG(HV_X86_CR0, u64CrTmp);
996 if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
997 {
998 CPUMSetGuestCR0(pVCpu, u64CrTmp);
999 fMaybeChangedMode = true;
1000 }
1001 }
1002 if (fWhat & CPUMCTX_EXTRN_CR2)
1003 READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1004 if (fWhat & CPUMCTX_EXTRN_CR3)
1005 {
1006 READ_GREG(HV_X86_CR3, u64CrTmp);
1007 if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
1008 {
1009 CPUMSetGuestCR3(pVCpu, u64CrTmp);
1010 fUpdateCr3 = true;
1011 }
1012
1013 /*
1014 * If the guest is in PAE mode, sync back the PDPE's into the guest state.
1015 * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
1016 */
1017 if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx))
1018 {
1019 X86PDPE aPaePdpes[4];
1020 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE0_FULL, aPaePdpes[0].u);
1021 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE1_FULL, aPaePdpes[1].u);
1022 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE2_FULL, aPaePdpes[2].u);
1023 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE3_FULL, aPaePdpes[3].u);
1024 if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes)))
1025 {
1026 memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
1027 fUpdateCr3 = true;
1028 }
1029 }
1030 }
1031 if (fWhat & CPUMCTX_EXTRN_CR4)
1032 {
1033 READ_GREG(HV_X86_CR4, u64CrTmp);
1034 u64CrTmp &= ~VMX_V_CR4_FIXED0;
1035
1036 if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
1037 {
1038 CPUMSetGuestCR4(pVCpu, u64CrTmp);
1039 fMaybeChangedMode = true;
1040 }
1041 }
1042 }
1043
1044#if 0 /* Always done. */
1045 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1046 {
1047 uint64_t u64Cr8 = 0;
1048
1049 READ_GREG(HV_X86_TPR, u64Cr8);
1050 APICSetTpr(pVCpu, u64Cr8 << 4);
1051 }
1052#endif
1053
1054 if (fWhat & CPUMCTX_EXTRN_XCRx)
1055 READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1056
1057 /* Debug registers. */
1058 if (fWhat & CPUMCTX_EXTRN_DR7)
1059 {
1060 uint64_t u64Dr7;
1061 READ_GREG(HV_X86_DR7, u64Dr7);
1062 if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
1063 CPUMSetGuestDR7(pVCpu, u64Dr7);
1064 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
1065 }
1066 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1067 {
1068 uint64_t u64DrTmp;
1069
1070 READ_GREG(HV_X86_DR0, u64DrTmp);
1071 if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
1072 CPUMSetGuestDR0(pVCpu, u64DrTmp);
1073 READ_GREG(HV_X86_DR1, u64DrTmp);
1074 if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
1075 CPUMSetGuestDR1(pVCpu, u64DrTmp);
1076 READ_GREG(HV_X86_DR2, u64DrTmp);
1077 if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
1078 CPUMSetGuestDR2(pVCpu, u64DrTmp);
1079 READ_GREG(HV_X86_DR3, u64DrTmp);
1080 if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
1081 CPUMSetGuestDR3(pVCpu, u64DrTmp);
1082 }
1083 if (fWhat & CPUMCTX_EXTRN_DR6)
1084 {
1085 uint64_t u64Dr6;
1086 READ_GREG(HV_X86_DR6, u64Dr6);
1087 if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
1088 CPUMSetGuestDR6(pVCpu, u64Dr6);
1089 }
1090
1091 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1092 {
1093 hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1094 if (hrc == HV_SUCCESS)
1095 { /* likely */ }
1096 else
1097 {
1098 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1099 return nemR3DarwinHvSts2Rc(hrc);
1100 }
1101 }
1102
1103 /* MSRs */
1104 if (fWhat & CPUMCTX_EXTRN_EFER)
1105 {
1106 uint64_t u64Efer;
1107
1108 READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
1109 if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
1110 {
1111 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
1112 if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1113 PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
1114 pVCpu->cpum.GstCtx.msrEFER = u64Efer;
1115 fMaybeChangedMode = true;
1116 }
1117 }
1118
1119 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1120 READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1121 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1122 {
1123 uint64_t u64Tmp;
1124 READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
1125 pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
1126 READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
1127 pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
1128 READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
1129 pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
1130 }
1131 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1132 {
1133 READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1134 READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1135 READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1136 READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1137 }
1138 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1139 {
1140 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1141 READ_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1142 }
1143 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1144 {
1145 /* Last Branch Record. */
1146 if (pVM->nem.s.fLbr)
1147 {
1148 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1149 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1150 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1151 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1152 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1153 Assert(cLbrStack <= 32);
1154 for (uint32_t i = 0; i < cLbrStack; i++)
1155 {
1156 READ_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1157
1158 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1159 if (idToIpMsrStart != 0)
1160 READ_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1161 if (idInfoMsrStart != 0)
1162 READ_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1163 }
1164
1165 READ_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1166
1167 if (pVM->nem.s.idLerFromIpMsr)
1168 READ_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1169 if (pVM->nem.s.idLerToIpMsr)
1170 READ_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1171 }
1172 }
1173
1174 /* Almost done, just update extrn flags and maybe change PGM mode. */
1175 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1176 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1177 pVCpu->cpum.GstCtx.fExtrn = 0;
1178
1179#ifdef LOG_ENABLED
1180 nemR3DarwinLogState(pVM, pVCpu);
1181#endif
1182
1183 /* Typical. */
1184 if (!fMaybeChangedMode && !fUpdateCr3)
1185 {
1186 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1187 return VINF_SUCCESS;
1188 }
1189
1190 /*
1191 * Slow.
1192 */
1193 if (fMaybeChangedMode)
1194 {
1195 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1196 false /* fForce */);
1197 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1198 }
1199
1200 if (fUpdateCr3)
1201 {
1202 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1203 if (rc == VINF_SUCCESS)
1204 { /* likely */ }
1205 else
1206 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1207 }
1208
1209 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1210
1211 return VINF_SUCCESS;
1212#undef READ_GREG
1213#undef READ_VMCS_FIELD
1214#undef READ_VMCS32_FIELD
1215#undef READ_SEG
1216#undef READ_MSR
1217}
1218
1219
1220/**
1221 * State to pass between vmxHCExitEptViolation
1222 * and nemR3DarwinHandleMemoryAccessPageCheckerCallback.
1223 */
1224typedef struct NEMHCDARWINHMACPCCSTATE
1225{
1226 /** Input: Write access. */
1227 bool fWriteAccess;
1228 /** Output: Set if we did something. */
1229 bool fDidSomething;
1230 /** Output: Set it we should resume. */
1231 bool fCanResume;
1232} NEMHCDARWINHMACPCCSTATE;
1233
1234/**
1235 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1236 * Worker for vmxHCExitEptViolation; pvUser points to a
1237 * NEMHCDARWINHMACPCCSTATE structure. }
1238 */
1239static DECLCALLBACK(int)
1240nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1241{
1242 RT_NOREF(pVCpu);
1243
1244 NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
1245 pState->fDidSomething = false;
1246 pState->fCanResume = false;
1247
1248 uint8_t u2State = pInfo->u2NemState;
1249
1250 /*
1251 * Consolidate current page state with actual page protection and access type.
1252 * We don't really consider downgrades here, as they shouldn't happen.
1253 */
1254 switch (u2State)
1255 {
1256 case NEM_DARWIN_PAGE_STATE_UNMAPPED:
1257 {
1258 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1259 {
1260 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1261 return VINF_SUCCESS;
1262 }
1263
1264 /* Don't bother remapping it if it's a write request to a non-writable page. */
1265 if ( pState->fWriteAccess
1266 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1267 {
1268 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1269 return VINF_SUCCESS;
1270 }
1271
1272 int rc = VINF_SUCCESS;
1273 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1274 {
1275 void *pvPage;
1276 rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhys, &pvPage);
1277 if (RT_SUCCESS(rc))
1278 rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
1279 }
1280 else if (pInfo->fNemProt & NEM_PAGE_PROT_READ)
1281 {
1282 const void *pvPage;
1283 rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
1284 if (RT_SUCCESS(rc))
1285 rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
1286 }
1287 else /* Only EXECUTE doesn't work. */
1288 AssertReleaseFailed();
1289
1290 pInfo->u2NemState = u2State;
1291 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1292 GCPhys, g_apszPageStates[u2State], rc));
1293 pState->fDidSomething = true;
1294 pState->fCanResume = true;
1295 return rc;
1296 }
1297 case NEM_DARWIN_PAGE_STATE_RX:
1298 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1299 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1300 {
1301 pState->fCanResume = true;
1302 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1303 return VINF_SUCCESS;
1304 }
1305 break;
1306
1307 case NEM_DARWIN_PAGE_STATE_RW:
1308 case NEM_DARWIN_PAGE_STATE_RWX:
1309 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1310 {
1311 pState->fCanResume = true;
1312 if ( pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RW
1313 || pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RWX)
1314 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: Spurious EPT fault\n", GCPhys));
1315 return VINF_SUCCESS;
1316 }
1317 break;
1318
1319 default:
1320 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1321 }
1322
1323 /* Unmap and restart the instruction. */
1324 int rc = nemR3DarwinUnmap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE, &u2State);
1325 if (RT_SUCCESS(rc))
1326 {
1327 pInfo->u2NemState = u2State;
1328 pState->fDidSomething = true;
1329 pState->fCanResume = true;
1330 Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
1331 return VINF_SUCCESS;
1332 }
1333
1334 LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhys=%RGp %s rc=%Rrc\n",
1335 GCPhys, g_apszPageStates[u2State], rc));
1336 return VERR_NEM_UNMAP_PAGES_FAILED;
1337}
1338
1339
1340DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
1341{
1342 RT_NOREF(pVM);
1343 return true;
1344}
1345
1346
1347DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
1348{
1349 RT_NOREF(pVM);
1350 return true;
1351}
1352
1353
1354DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
1355{
1356 RT_NOREF(pVM);
1357 return false;
1358}
1359
1360
1361#if 0 /* unused */
1362DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
1363{
1364 RT_NOREF(pVM);
1365 return false;
1366}
1367#endif
1368
1369
1370/*
1371 * Instantiate the code we share with ring-0.
1372 */
1373#define IN_NEM_DARWIN
1374//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
1375//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
1376//#define HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
1377#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
1378#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
1379
1380#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
1381#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
1382#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
1383#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
1384
1385#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
1386#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
1387#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1388#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1389
1390#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
1391#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
1392#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1393#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1394
1395#include "../VMMAll/VMXAllTemplate.cpp.h"
1396
1397#undef VMX_VMCS_WRITE_16
1398#undef VMX_VMCS_WRITE_32
1399#undef VMX_VMCS_WRITE_64
1400#undef VMX_VMCS_WRITE_NW
1401
1402#undef VMX_VMCS_READ_16
1403#undef VMX_VMCS_READ_32
1404#undef VMX_VMCS_READ_64
1405#undef VMX_VMCS_READ_NW
1406
1407#undef VM_IS_VMX_PREEMPT_TIMER_USED
1408#undef VM_IS_VMX_NESTED_PAGING
1409#undef VM_IS_VMX_UNRESTRICTED_GUEST
1410#undef VCPU_2_VMXSTATS
1411#undef VCPU_2_VMXSTATE
1412
1413
1414/**
1415 * Exports the guest GP registers to HV for execution.
1416 *
1417 * @returns VBox status code.
1418 * @param pVCpu The cross context virtual CPU structure of the
1419 * calling EMT.
1420 */
1421static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
1422{
1423#define WRITE_GREG(a_GReg, a_Value) \
1424 do \
1425 { \
1426 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1427 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1428 { /* likely */ } \
1429 else \
1430 return VERR_INTERNAL_ERROR; \
1431 } while(0)
1432
1433 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
1434 if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
1435 {
1436 if (fCtxChanged & HM_CHANGED_GUEST_RAX)
1437 WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
1438 if (fCtxChanged & HM_CHANGED_GUEST_RCX)
1439 WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
1440 if (fCtxChanged & HM_CHANGED_GUEST_RDX)
1441 WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
1442 if (fCtxChanged & HM_CHANGED_GUEST_RBX)
1443 WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
1444 if (fCtxChanged & HM_CHANGED_GUEST_RSP)
1445 WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
1446 if (fCtxChanged & HM_CHANGED_GUEST_RBP)
1447 WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
1448 if (fCtxChanged & HM_CHANGED_GUEST_RSI)
1449 WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
1450 if (fCtxChanged & HM_CHANGED_GUEST_RDI)
1451 WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
1452 if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
1453 {
1454 WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
1455 WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
1456 WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
1457 WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
1458 WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
1459 WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
1460 WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
1461 WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
1462 }
1463
1464 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
1465 }
1466
1467 if (fCtxChanged & HM_CHANGED_GUEST_CR2)
1468 {
1469 WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1470 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
1471 }
1472
1473 return VINF_SUCCESS;
1474#undef WRITE_GREG
1475}
1476
1477
1478/**
1479 * Exports the guest debug registers into the guest-state applying any hypervisor
1480 * debug related states (hardware breakpoints from the debugger, etc.).
1481 *
1482 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
1483 *
1484 * @returns VBox status code.
1485 * @param pVCpu The cross context virtual CPU structure.
1486 * @param pVmxTransient The VMX-transient structure.
1487 */
1488static int nemR3DarwinExportDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1489{
1490 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1491
1492#ifdef VBOX_STRICT
1493 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
1494 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
1495 {
1496 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
1497 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
1498 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
1499 }
1500#endif
1501
1502 bool fSteppingDB = false;
1503 bool fInterceptMovDRx = false;
1504 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
1505 if (pVCpu->nem.s.fSingleInstruction)
1506 {
1507 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
1508 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
1509 {
1510 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
1511 Assert(fSteppingDB == false);
1512 }
1513 else
1514 {
1515 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_TF;
1516 pVCpu->nem.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
1517 pVCpu->nem.s.fClearTrapFlag = true;
1518 fSteppingDB = true;
1519 }
1520 }
1521
1522 uint64_t u64GuestDr7;
1523 if ( fSteppingDB
1524 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1525 {
1526 /*
1527 * Use the combined guest and host DRx values found in the hypervisor register set
1528 * because the hypervisor debugger has breakpoints active or someone is single stepping
1529 * on the host side without a monitor trap flag.
1530 *
1531 * Note! DBGF expects a clean DR6 state before executing guest code.
1532 */
1533 if (!CPUMIsHyperDebugStateActive(pVCpu))
1534 {
1535 /*
1536 * Make sure the hypervisor values are up to date.
1537 */
1538 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
1539
1540 CPUMR3NemActivateHyperDebugState(pVCpu);
1541
1542 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1543 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1544 }
1545
1546 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
1547 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
1548 pVCpu->nem.s.fUsingHyperDR7 = true;
1549 fInterceptMovDRx = true;
1550 }
1551 else
1552 {
1553 /*
1554 * If the guest has enabled debug registers, we need to load them prior to
1555 * executing guest code so they'll trigger at the right time.
1556 */
1557 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
1558 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1559 {
1560 if (!CPUMIsGuestDebugStateActive(pVCpu))
1561 {
1562 CPUMR3NemActivateGuestDebugState(pVCpu);
1563
1564 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1565 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1566 }
1567 Assert(!fInterceptMovDRx);
1568 }
1569 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1570 {
1571 /*
1572 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
1573 * must intercept #DB in order to maintain a correct DR6 guest value, and
1574 * because we need to intercept it to prevent nested #DBs from hanging the
1575 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
1576 */
1577 fInterceptMovDRx = true;
1578 }
1579
1580 /* Update DR7 with the actual guest value. */
1581 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
1582 pVCpu->nem.s.fUsingHyperDR7 = false;
1583 }
1584
1585 if (fInterceptMovDRx)
1586 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
1587 else
1588 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
1589
1590 /*
1591 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
1592 * monitor-trap flag and update our cache.
1593 */
1594 if (uProcCtls != pVmcsInfo->u32ProcCtls)
1595 {
1596 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
1597 AssertRC(rc);
1598 pVmcsInfo->u32ProcCtls = uProcCtls;
1599 }
1600
1601 /*
1602 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
1603 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
1604 *
1605 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
1606 */
1607 if (fSteppingDB)
1608 {
1609 Assert(pVCpu->nem.s.fSingleInstruction);
1610 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
1611
1612 uint32_t fIntrState = 0;
1613 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
1614 AssertRC(rc);
1615
1616 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
1617 {
1618 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
1619 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
1620 AssertRC(rc);
1621 }
1622 }
1623
1624 /*
1625 * Store status of the shared guest/host debug state at the time of VM-entry.
1626 */
1627 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
1628 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
1629
1630 return VINF_SUCCESS;
1631}
1632
1633
1634/**
1635 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
1636 *
1637 * @returns Bitmask of HM changed flags.
1638 * @param fCpumExtrn The CPUM extern bitmask.
1639 */
1640static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
1641{
1642 uint64_t fHmChanged = 0;
1643
1644 /* Invert to gt a mask of things which are kept in CPUM. */
1645 uint64_t fCpumIntern = ~fCpumExtrn;
1646
1647 if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
1648 {
1649 if (fCpumIntern & CPUMCTX_EXTRN_RAX)
1650 fHmChanged |= HM_CHANGED_GUEST_RAX;
1651 if (fCpumIntern & CPUMCTX_EXTRN_RCX)
1652 fHmChanged |= HM_CHANGED_GUEST_RCX;
1653 if (fCpumIntern & CPUMCTX_EXTRN_RDX)
1654 fHmChanged |= HM_CHANGED_GUEST_RDX;
1655 if (fCpumIntern & CPUMCTX_EXTRN_RBX)
1656 fHmChanged |= HM_CHANGED_GUEST_RBX;
1657 if (fCpumIntern & CPUMCTX_EXTRN_RSP)
1658 fHmChanged |= HM_CHANGED_GUEST_RSP;
1659 if (fCpumIntern & CPUMCTX_EXTRN_RBP)
1660 fHmChanged |= HM_CHANGED_GUEST_RBP;
1661 if (fCpumIntern & CPUMCTX_EXTRN_RSI)
1662 fHmChanged |= HM_CHANGED_GUEST_RSI;
1663 if (fCpumIntern & CPUMCTX_EXTRN_RDI)
1664 fHmChanged |= HM_CHANGED_GUEST_RDI;
1665 if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
1666 fHmChanged |= HM_CHANGED_GUEST_R8_R15;
1667 }
1668
1669 /* RIP & Flags */
1670 if (fCpumIntern & CPUMCTX_EXTRN_RIP)
1671 fHmChanged |= HM_CHANGED_GUEST_RIP;
1672 if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
1673 fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
1674
1675 /* Segments */
1676 if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
1677 {
1678 if (fCpumIntern & CPUMCTX_EXTRN_ES)
1679 fHmChanged |= HM_CHANGED_GUEST_ES;
1680 if (fCpumIntern & CPUMCTX_EXTRN_CS)
1681 fHmChanged |= HM_CHANGED_GUEST_CS;
1682 if (fCpumIntern & CPUMCTX_EXTRN_SS)
1683 fHmChanged |= HM_CHANGED_GUEST_SS;
1684 if (fCpumIntern & CPUMCTX_EXTRN_DS)
1685 fHmChanged |= HM_CHANGED_GUEST_DS;
1686 if (fCpumIntern & CPUMCTX_EXTRN_FS)
1687 fHmChanged |= HM_CHANGED_GUEST_FS;
1688 if (fCpumIntern & CPUMCTX_EXTRN_GS)
1689 fHmChanged |= HM_CHANGED_GUEST_GS;
1690 }
1691
1692 /* Descriptor tables & task segment. */
1693 if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
1694 {
1695 if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
1696 fHmChanged |= HM_CHANGED_GUEST_LDTR;
1697 if (fCpumIntern & CPUMCTX_EXTRN_TR)
1698 fHmChanged |= HM_CHANGED_GUEST_TR;
1699 if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
1700 fHmChanged |= HM_CHANGED_GUEST_IDTR;
1701 if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
1702 fHmChanged |= HM_CHANGED_GUEST_GDTR;
1703 }
1704
1705 /* Control registers. */
1706 if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
1707 {
1708 if (fCpumIntern & CPUMCTX_EXTRN_CR0)
1709 fHmChanged |= HM_CHANGED_GUEST_CR0;
1710 if (fCpumIntern & CPUMCTX_EXTRN_CR2)
1711 fHmChanged |= HM_CHANGED_GUEST_CR2;
1712 if (fCpumIntern & CPUMCTX_EXTRN_CR3)
1713 fHmChanged |= HM_CHANGED_GUEST_CR3;
1714 if (fCpumIntern & CPUMCTX_EXTRN_CR4)
1715 fHmChanged |= HM_CHANGED_GUEST_CR4;
1716 }
1717 if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
1718 fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
1719
1720 /* Debug registers. */
1721 if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
1722 fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
1723 if (fCpumIntern & CPUMCTX_EXTRN_DR6)
1724 fHmChanged |= HM_CHANGED_GUEST_DR6;
1725 if (fCpumIntern & CPUMCTX_EXTRN_DR7)
1726 fHmChanged |= HM_CHANGED_GUEST_DR7;
1727
1728 /* Floating point state. */
1729 if (fCpumIntern & CPUMCTX_EXTRN_X87)
1730 fHmChanged |= HM_CHANGED_GUEST_X87;
1731 if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
1732 fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
1733 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
1734 fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
1735 if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
1736 fHmChanged |= HM_CHANGED_GUEST_XCRx;
1737
1738 /* MSRs */
1739 if (fCpumIntern & CPUMCTX_EXTRN_EFER)
1740 fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
1741 if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1742 fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
1743 if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
1744 fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
1745 if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
1746 fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
1747 if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
1748 fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
1749 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
1750 fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
1751
1752 return fHmChanged;
1753}
1754
1755
1756/**
1757 * Exports the guest state to HV for execution.
1758 *
1759 * @returns VBox status code.
1760 * @param pVM The cross context VM structure.
1761 * @param pVCpu The cross context virtual CPU structure of the
1762 * calling EMT.
1763 * @param pVmxTransient The transient VMX structure.
1764 */
1765static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1766{
1767#define WRITE_GREG(a_GReg, a_Value) \
1768 do \
1769 { \
1770 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1771 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1772 { /* likely */ } \
1773 else \
1774 return VERR_INTERNAL_ERROR; \
1775 } while(0)
1776#define WRITE_VMCS_FIELD(a_Field, a_Value) \
1777 do \
1778 { \
1779 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
1780 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1781 { /* likely */ } \
1782 else \
1783 return VERR_INTERNAL_ERROR; \
1784 } while(0)
1785#define WRITE_MSR(a_Msr, a_Value) \
1786 do \
1787 { \
1788 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
1789 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1790 { /* likely */ } \
1791 else \
1792 AssertFailedReturn(VERR_INTERNAL_ERROR); \
1793 } while(0)
1794
1795 RT_NOREF(pVM);
1796
1797#ifdef LOG_ENABLED
1798 nemR3DarwinLogState(pVM, pVCpu);
1799#endif
1800
1801 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);
1802
1803 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
1804 if (!fWhat)
1805 return VINF_SUCCESS;
1806
1807 pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
1808
1809 int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
1810 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1811
1812 rc = nemR3DarwinExportGuestGprs(pVCpu);
1813 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1814
1815 rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
1816 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1817
1818 VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
1819 if (rcStrict == VINF_SUCCESS)
1820 { /* likely */ }
1821 else
1822 {
1823 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
1824 return VBOXSTRICTRC_VAL(rcStrict);
1825 }
1826
1827 rc = nemR3DarwinExportDebugState(pVCpu, pVmxTransient);
1828 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1829
1830 vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
1831 vmxHCExportGuestRip(pVCpu);
1832 //vmxHCExportGuestRsp(pVCpu);
1833 vmxHCExportGuestRflags(pVCpu, pVmxTransient);
1834
1835 rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
1836 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1837
1838 if (fWhat & CPUMCTX_EXTRN_XCRx)
1839 {
1840 WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1841 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
1842 }
1843
1844 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1845 {
1846 Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
1847 vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
1848
1849 rc = APICGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
1850 AssertRC(rc);
1851
1852 WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
1853 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
1854 }
1855
1856 /* Debug registers. */
1857 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1858 {
1859 WRITE_GREG(HV_X86_DR0, CPUMGetHyperDR0(pVCpu));
1860 WRITE_GREG(HV_X86_DR1, CPUMGetHyperDR1(pVCpu));
1861 WRITE_GREG(HV_X86_DR2, CPUMGetHyperDR2(pVCpu));
1862 WRITE_GREG(HV_X86_DR3, CPUMGetHyperDR3(pVCpu));
1863 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
1864 }
1865 if (fWhat & CPUMCTX_EXTRN_DR6)
1866 {
1867 WRITE_GREG(HV_X86_DR6, CPUMGetHyperDR6(pVCpu));
1868 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
1869 }
1870 if (fWhat & CPUMCTX_EXTRN_DR7)
1871 {
1872 WRITE_GREG(HV_X86_DR7, CPUMGetHyperDR7(pVCpu));
1873 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
1874 }
1875
1876 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1877 {
1878 hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1879 if (hrc == HV_SUCCESS)
1880 { /* likely */ }
1881 else
1882 return nemR3DarwinHvSts2Rc(hrc);
1883
1884 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
1885 }
1886
1887 /* MSRs */
1888 if (fWhat & CPUMCTX_EXTRN_EFER)
1889 {
1890 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
1891 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
1892 }
1893 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1894 {
1895 WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1896 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
1897 }
1898 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1899 {
1900 WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
1901 WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
1902 WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
1903 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
1904 }
1905 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1906 {
1907 WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1908 WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1909 WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1910 WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1911 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
1912 }
1913 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1914 {
1915 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1916
1917 WRITE_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1918 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
1919 }
1920 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1921 {
1922 /* Last Branch Record. */
1923 if (pVM->nem.s.fLbr)
1924 {
1925 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1926 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1927 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1928 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1929 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1930 Assert(cLbrStack <= 32);
1931 for (uint32_t i = 0; i < cLbrStack; i++)
1932 {
1933 WRITE_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1934
1935 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1936 if (idToIpMsrStart != 0)
1937 WRITE_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1938 if (idInfoMsrStart != 0)
1939 WRITE_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1940 }
1941
1942 WRITE_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1943 if (pVM->nem.s.idLerFromIpMsr)
1944 WRITE_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1945 if (pVM->nem.s.idLerToIpMsr)
1946 WRITE_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1947 }
1948
1949 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
1950 }
1951
1952 hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
1953 hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
1954
1955 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1956
1957 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
1958 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~( HM_CHANGED_GUEST_HWVIRT
1959 | HM_CHANGED_VMX_GUEST_AUTO_MSRS
1960 | HM_CHANGED_VMX_GUEST_LAZY_MSRS
1961 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
1962
1963 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
1964 return VINF_SUCCESS;
1965#undef WRITE_GREG
1966#undef WRITE_VMCS_FIELD
1967}
1968
1969
1970/**
1971 * Common worker for both nemR3DarwinHandleExit() and nemR3DarwinHandleExitDebug().
1972 *
1973 * @returns VBox strict status code.
1974 * @param pVM The cross context VM structure.
1975 * @param pVCpu The cross context virtual CPU structure of the
1976 * calling EMT.
1977 * @param pVmxTransient The transient VMX structure.
1978 */
1979DECLINLINE(int) nemR3DarwinHandleExitCommon(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1980{
1981 uint32_t uExitReason;
1982 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
1983 AssertRC(rc);
1984 pVmxTransient->fVmcsFieldsRead = 0;
1985 pVmxTransient->fIsNestedGuest = false;
1986 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
1987 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
1988
1989 if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
1990 AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
1991 pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
1992 VERR_NEM_IPE_0);
1993
1994 /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
1995 * when handling exits). */
1996 /*
1997 * Note! What is being fetched here must match the default value for the
1998 * a_fDonePostExit parameter of vmxHCImportGuestState exactly!
1999 */
2000 rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
2001 AssertRCReturn(rc, rc);
2002
2003 STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
2004 STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
2005 return VINF_SUCCESS;
2006}
2007
2008
2009/**
2010 * Handles an exit from hv_vcpu_run().
2011 *
2012 * @returns VBox strict status code.
2013 * @param pVM The cross context VM structure.
2014 * @param pVCpu The cross context virtual CPU structure of the
2015 * calling EMT.
2016 * @param pVmxTransient The transient VMX structure.
2017 */
2018static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
2019{
2020 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2021 AssertRCReturn(rc, rc);
2022
2023#ifndef HMVMX_USE_FUNCTION_TABLE
2024 return vmxHCHandleExit(pVCpu, pVmxTransient);
2025#else
2026 return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
2027#endif
2028}
2029
2030
2031/**
2032 * Handles an exit from hv_vcpu_run() - debug runloop variant.
2033 *
2034 * @returns VBox strict status code.
2035 * @param pVM The cross context VM structure.
2036 * @param pVCpu The cross context virtual CPU structure of the
2037 * calling EMT.
2038 * @param pVmxTransient The transient VMX structure.
2039 * @param pDbgState The debug state structure.
2040 */
2041static VBOXSTRICTRC nemR3DarwinHandleExitDebug(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
2042{
2043 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2044 AssertRCReturn(rc, rc);
2045
2046 return vmxHCRunDebugHandleExit(pVCpu, pVmxTransient, pDbgState);
2047}
2048
2049
2050/**
2051 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
2052 *
2053 * @returns VBox status code.
2054 * @param fForced Whether the HMForced flag is set and we should
2055 * fail if we cannot initialize.
2056 * @param pErrInfo Where to always return error info.
2057 */
2058static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
2059{
2060 RTLDRMOD hMod = NIL_RTLDRMOD;
2061 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
2062
2063 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
2064 if (RT_SUCCESS(rc))
2065 {
2066 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
2067 {
2068 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
2069 if (RT_SUCCESS(rc2))
2070 {
2071 if (g_aImports[i].fOptional)
2072 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
2073 g_aImports[i].pszName));
2074 }
2075 else
2076 {
2077 *g_aImports[i].ppfn = NULL;
2078
2079 LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
2080 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
2081 g_aImports[i].pszName, rc2));
2082 if (!g_aImports[i].fOptional)
2083 {
2084 if (RTErrInfoIsSet(pErrInfo))
2085 RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
2086 else
2087 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
2088 Assert(RT_FAILURE(rc));
2089 }
2090 }
2091 }
2092 if (RT_SUCCESS(rc))
2093 {
2094 Assert(!RTErrInfoIsSet(pErrInfo));
2095 }
2096
2097 RTLdrClose(hMod);
2098 }
2099 else
2100 {
2101 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
2102 rc = VERR_NEM_INIT_FAILED;
2103 }
2104
2105 return rc;
2106}
2107
2108
2109/**
2110 * Read and initialize the global capabilities supported by this CPU.
2111 *
2112 * @returns VBox status code.
2113 */
2114static int nemR3DarwinCapsInit(void)
2115{
2116 RT_ZERO(g_HmMsrs);
2117
2118 hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
2119 if (hrc == HV_SUCCESS)
2120 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
2121 if (hrc == HV_SUCCESS)
2122 hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
2123 if (hrc == HV_SUCCESS)
2124 hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
2125 if (hrc == HV_SUCCESS)
2126 {
2127 hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
2128 if (hrc == HV_SUCCESS)
2129 {
2130 if (hrc == HV_SUCCESS)
2131 hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
2132 if (hrc == HV_SUCCESS)
2133 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
2134 if (hrc == HV_SUCCESS)
2135 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
2136 if (hrc == HV_SUCCESS)
2137 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
2138 if (hrc == HV_SUCCESS)
2139 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
2140 if (hrc == HV_SUCCESS)
2141 hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
2142 if ( hrc == HV_SUCCESS
2143 && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
2144 {
2145 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
2146 if (hrc == HV_SUCCESS)
2147 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
2148 if (hrc == HV_SUCCESS)
2149 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
2150 if (hrc == HV_SUCCESS)
2151 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
2152 }
2153 }
2154 else
2155 {
2156 /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
2157 g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
2158 g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
2159 g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
2160 g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
2161 hrc = HV_SUCCESS;
2162 }
2163 }
2164
2165 if ( hrc == HV_SUCCESS
2166 && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2167 {
2168 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
2169
2170 if ( hrc == HV_SUCCESS
2171 && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
2172 {
2173 hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
2174 if (hrc != HV_SUCCESS)
2175 hrc = HV_SUCCESS; /* Probably just outdated OS. */
2176 }
2177
2178 g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
2179 }
2180
2181 if (hrc == HV_SUCCESS)
2182 {
2183 /*
2184 * Check for EFER swapping support.
2185 */
2186 g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2187 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2188 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
2189 }
2190
2191 /*
2192 * Get MSR_IA32_ARCH_CAPABILITIES and expand it into the host feature structure.
2193 * This is only available with 11.0+ (BigSur) as the required API is only available there,
2194 * we could in theory initialize this when creating the EMTs using hv_vcpu_read_msr() but
2195 * the required vCPU handle is created after CPUM was initialized which is too late.
2196 * Given that the majority of users is on 11.0 and later we don't care for now.
2197 */
2198 if ( hrc == HV_SUCCESS
2199 && hv_vmx_get_msr_info)
2200 {
2201 g_CpumHostFeatures.s.fArchRdclNo = 0;
2202 g_CpumHostFeatures.s.fArchIbrsAll = 0;
2203 g_CpumHostFeatures.s.fArchRsbOverride = 0;
2204 g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = 0;
2205 g_CpumHostFeatures.s.fArchMdsNo = 0;
2206 uint32_t const cStdRange = ASMCpuId_EAX(0);
2207 if ( RTX86IsValidStdRange(cStdRange)
2208 && cStdRange >= 7)
2209 {
2210 uint32_t const fStdFeaturesEdx = ASMCpuId_EDX(1);
2211 uint32_t fStdExtFeaturesEdx;
2212 ASMCpuIdExSlow(7, 0, 0, 0, NULL, NULL, NULL, &fStdExtFeaturesEdx);
2213 if ( (fStdExtFeaturesEdx & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
2214 && (fStdFeaturesEdx & X86_CPUID_FEATURE_EDX_MSR))
2215 {
2216 uint64_t fArchVal;
2217 hrc = hv_vmx_get_msr_info(HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES, &fArchVal);
2218 if (hrc == HV_SUCCESS)
2219 {
2220 g_CpumHostFeatures.s.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO);
2221 g_CpumHostFeatures.s.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL);
2222 g_CpumHostFeatures.s.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO);
2223 g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D);
2224 g_CpumHostFeatures.s.fArchMdsNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO);
2225 }
2226 }
2227 else
2228 g_CpumHostFeatures.s.fArchCap = 0;
2229 }
2230 }
2231
2232 return nemR3DarwinHvSts2Rc(hrc);
2233}
2234
2235
2236/**
2237 * Sets up the LBR MSR ranges based on the host CPU.
2238 *
2239 * @returns VBox status code.
2240 * @param pVM The cross context VM structure.
2241 *
2242 * @sa hmR0VmxSetupLbrMsrRange
2243 */
2244static int nemR3DarwinSetupLbrMsrRange(PVMCC pVM)
2245{
2246 Assert(pVM->nem.s.fLbr);
2247 uint32_t idLbrFromIpMsrFirst;
2248 uint32_t idLbrFromIpMsrLast;
2249 uint32_t idLbrToIpMsrFirst;
2250 uint32_t idLbrToIpMsrLast;
2251 uint32_t idLbrInfoMsrFirst;
2252 uint32_t idLbrInfoMsrLast;
2253 uint32_t idLbrTosMsr;
2254 uint32_t idLbrSelectMsr;
2255 uint32_t idLerFromIpMsr;
2256 uint32_t idLerToIpMsr;
2257
2258 /*
2259 * Determine the LBR MSRs supported for this host CPU family and model.
2260 *
2261 * See Intel spec. 17.4.8 "LBR Stack".
2262 * See Intel "Model-Specific Registers" spec.
2263 */
2264 uint32_t const uFamilyModel = (g_CpumHostFeatures.s.uFamily << 8)
2265 | g_CpumHostFeatures.s.uModel;
2266 switch (uFamilyModel)
2267 {
2268 case 0x0f01: case 0x0f02:
2269 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
2270 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
2271 idLbrToIpMsrFirst = 0x0;
2272 idLbrToIpMsrLast = 0x0;
2273 idLbrInfoMsrFirst = 0x0;
2274 idLbrInfoMsrLast = 0x0;
2275 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
2276 idLbrSelectMsr = 0x0;
2277 idLerFromIpMsr = 0x0;
2278 idLerToIpMsr = 0x0;
2279 break;
2280
2281 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
2282 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
2283 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
2284 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2285 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
2286 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2287 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
2288 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2289 idLbrInfoMsrLast = MSR_LASTBRANCH_31_INFO;
2290 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2291 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2292 idLerFromIpMsr = MSR_LER_FROM_IP;
2293 idLerToIpMsr = MSR_LER_TO_IP;
2294 break;
2295
2296 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
2297 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
2298 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
2299 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
2300 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2301 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
2302 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2303 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
2304 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2305 idLbrInfoMsrLast = MSR_LASTBRANCH_15_INFO;
2306 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2307 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2308 idLerFromIpMsr = MSR_LER_FROM_IP;
2309 idLerToIpMsr = MSR_LER_TO_IP;
2310 break;
2311
2312 case 0x0617: case 0x061d: case 0x060f:
2313 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
2314 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
2315 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
2316 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
2317 idLbrInfoMsrFirst = 0x0;
2318 idLbrInfoMsrLast = 0x0;
2319 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
2320 idLbrSelectMsr = 0x0;
2321 idLerFromIpMsr = 0x0;
2322 idLerToIpMsr = 0x0;
2323 break;
2324
2325 /* Atom and related microarchitectures we don't care about:
2326 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
2327 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
2328 case 0x0636: */
2329 /* All other CPUs: */
2330 default:
2331 {
2332 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
2333 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
2334 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2335 }
2336 }
2337
2338 /*
2339 * Validate.
2340 */
2341 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
2342 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
2343 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2344 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrToIpMsr));
2345 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2346 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrInfoMsr));
2347 if (cLbrStack > RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr))
2348 {
2349 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
2350 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
2351 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2352 }
2353 NOREF(pVCpu0);
2354
2355 /*
2356 * Update the LBR info. to the VM struct. for use later.
2357 */
2358 pVM->nem.s.idLbrTosMsr = idLbrTosMsr;
2359 pVM->nem.s.idLbrSelectMsr = idLbrSelectMsr;
2360
2361 pVM->nem.s.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
2362 pVM->nem.s.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
2363
2364 pVM->nem.s.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
2365 pVM->nem.s.idLbrToIpMsrLast = idLbrToIpMsrLast;
2366
2367 pVM->nem.s.idLbrInfoMsrFirst = idLbrInfoMsrFirst;
2368 pVM->nem.s.idLbrInfoMsrLast = idLbrInfoMsrLast;
2369
2370 pVM->nem.s.idLerFromIpMsr = idLerFromIpMsr;
2371 pVM->nem.s.idLerToIpMsr = idLerToIpMsr;
2372 return VINF_SUCCESS;
2373}
2374
2375
2376/**
2377 * Sets up pin-based VM-execution controls in the VMCS.
2378 *
2379 * @returns VBox status code.
2380 * @param pVCpu The cross context virtual CPU structure.
2381 * @param pVmcsInfo The VMCS info. object.
2382 */
2383static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2384{
2385 //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2386 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
2387 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2388
2389 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2390 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2391
2392#if 0 /** @todo Use preemption timer */
2393 /* Enable the VMX-preemption timer. */
2394 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
2395 {
2396 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2397 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2398 }
2399
2400 /* Enable posted-interrupt processing. */
2401 if (pVM->hm.s.fPostedIntrs)
2402 {
2403 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2404 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2405 fVal |= VMX_PIN_CTLS_POSTED_INT;
2406 }
2407#endif
2408
2409 if ((fVal & fZap) != fVal)
2410 {
2411 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2412 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
2413 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2414 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2415 }
2416
2417 /* Commit it to the VMCS and update our cache. */
2418 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2419 AssertRC(rc);
2420 pVmcsInfo->u32PinCtls = fVal;
2421
2422 return VINF_SUCCESS;
2423}
2424
2425
2426/**
2427 * Sets up secondary processor-based VM-execution controls in the VMCS.
2428 *
2429 * @returns VBox status code.
2430 * @param pVCpu The cross context virtual CPU structure.
2431 * @param pVmcsInfo The VMCS info. object.
2432 */
2433static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2434{
2435 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2436 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2437 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2438
2439 /* WBINVD causes a VM-exit. */
2440 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2441 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2442
2443 /* Enable the INVPCID instruction if we expose it to the guest and is supported
2444 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
2445 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
2446 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
2447 fVal |= VMX_PROC_CTLS2_INVPCID;
2448
2449#if 0 /** @todo */
2450 /* Enable VPID. */
2451 if (pVM->hmr0.s.vmx.fVpid)
2452 fVal |= VMX_PROC_CTLS2_VPID;
2453
2454 if (pVM->hm.s.fVirtApicRegs)
2455 {
2456 /* Enable APIC-register virtualization. */
2457 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2458 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2459
2460 /* Enable virtual-interrupt delivery. */
2461 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2462 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2463 }
2464
2465 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
2466 where the TPR shadow resides. */
2467 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2468 * done dynamically. */
2469 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2470 {
2471 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
2472 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
2473 }
2474#endif
2475
2476 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
2477 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
2478 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
2479 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
2480 fVal |= VMX_PROC_CTLS2_RDTSCP;
2481
2482 /* Enable Pause-Loop exiting. */
2483 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
2484 && pVM->nem.s.cPleGapTicks
2485 && pVM->nem.s.cPleWindowTicks)
2486 {
2487 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2488
2489 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_GAP, pVM->nem.s.cPleGapTicks); AssertRC(rc);
2490 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_WINDOW, pVM->nem.s.cPleWindowTicks); AssertRC(rc);
2491 }
2492
2493 if ((fVal & fZap) != fVal)
2494 {
2495 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2496 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
2497 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2498 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2499 }
2500
2501 /* Commit it to the VMCS and update our cache. */
2502 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2503 AssertRC(rc);
2504 pVmcsInfo->u32ProcCtls2 = fVal;
2505
2506 return VINF_SUCCESS;
2507}
2508
2509
2510/**
2511 * Enables native access for the given MSR.
2512 *
2513 * @returns VBox status code.
2514 * @param pVCpu The cross context virtual CPU structure.
2515 * @param idMsr The MSR to enable native access for.
2516 */
2517static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
2518{
2519 hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2520 if (hrc == HV_SUCCESS)
2521 return VINF_SUCCESS;
2522
2523 return nemR3DarwinHvSts2Rc(hrc);
2524}
2525
2526
2527/**
2528 * Sets the MSR to managed for the given vCPU allowing the guest to access it.
2529 *
2530 * @returns VBox status code.
2531 * @param pVCpu The cross context virtual CPU structure.
2532 * @param idMsr The MSR to enable managed access for.
2533 * @param fMsrPerm The MSR permissions flags.
2534 */
2535static int nemR3DarwinMsrSetManaged(PVMCPUCC pVCpu, uint32_t idMsr, hv_msr_flags_t fMsrPerm)
2536{
2537 Assert(hv_vcpu_enable_managed_msr);
2538
2539 hv_return_t hrc = hv_vcpu_enable_managed_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2540 if (hrc == HV_SUCCESS)
2541 {
2542 hrc = hv_vcpu_set_msr_access(pVCpu->nem.s.hVCpuId, idMsr, fMsrPerm);
2543 if (hrc == HV_SUCCESS)
2544 return VINF_SUCCESS;
2545 }
2546
2547 return nemR3DarwinHvSts2Rc(hrc);
2548}
2549
2550
2551/**
2552 * Sets up the MSR permissions which don't change through the lifetime of the VM.
2553 *
2554 * @returns VBox status code.
2555 * @param pVCpu The cross context virtual CPU structure.
2556 * @param pVmcsInfo The VMCS info. object.
2557 */
2558static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2559{
2560 RT_NOREF(pVmcsInfo);
2561
2562 /*
2563 * The guest can access the following MSRs (read, write) without causing
2564 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2565 */
2566 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2567 int rc;
2568 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
2569 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
2570 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
2571 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
2572 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
2573
2574 /*
2575 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2576 * associated with then. We never need to intercept access (writes need to be
2577 * executed without causing a VM-exit, reads will #GP fault anyway).
2578 *
2579 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2580 * read/write them. We swap the guest/host MSR value using the
2581 * auto-load/store MSR area.
2582 */
2583 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2584 {
2585 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
2586 AssertRCReturn(rc, rc);
2587 }
2588#if 0 /* Doesn't work. */
2589 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2590 {
2591 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
2592 AssertRCReturn(rc, rc);
2593 }
2594#endif
2595 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2596 {
2597 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
2598 AssertRCReturn(rc, rc);
2599 }
2600
2601 /*
2602 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2603 * required for 64-bit guests.
2604 */
2605 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
2606 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
2607 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
2608 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
2609
2610 /* Required for enabling the RDTSCP instruction. */
2611 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
2612
2613 /* Last Branch Record. */
2614 if (pVM->nem.s.fLbr)
2615 {
2616 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
2617 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
2618 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
2619 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2620 Assert(cLbrStack <= 32);
2621 for (uint32_t i = 0; i < cLbrStack; i++)
2622 {
2623 rc = nemR3DarwinMsrSetManaged(pVCpu, idFromIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2624 AssertRCReturn(rc, rc);
2625
2626 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
2627 if (idToIpMsrStart != 0)
2628 {
2629 rc = nemR3DarwinMsrSetManaged(pVCpu, idToIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2630 AssertRCReturn(rc, rc);
2631 }
2632
2633 if (idInfoMsrStart != 0)
2634 {
2635 rc = nemR3DarwinMsrSetManaged(pVCpu, idInfoMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2636 AssertRCReturn(rc, rc);
2637 }
2638 }
2639
2640 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrTosMsr, HV_MSR_READ | HV_MSR_WRITE);
2641 AssertRCReturn(rc, rc);
2642
2643 if (pVM->nem.s.idLerFromIpMsr)
2644 {
2645 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerFromIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2646 AssertRCReturn(rc, rc);
2647 }
2648
2649 if (pVM->nem.s.idLerToIpMsr)
2650 {
2651 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerToIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2652 AssertRCReturn(rc, rc);
2653 }
2654
2655 if (pVM->nem.s.idLbrSelectMsr)
2656 {
2657 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrSelectMsr, HV_MSR_READ | HV_MSR_WRITE);
2658 AssertRCReturn(rc, rc);
2659 }
2660 }
2661
2662 return VINF_SUCCESS;
2663}
2664
2665
2666/**
2667 * Sets up processor-based VM-execution controls in the VMCS.
2668 *
2669 * @returns VBox status code.
2670 * @param pVCpu The cross context virtual CPU structure.
2671 * @param pVmcsInfo The VMCS info. object.
2672 */
2673static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2674{
2675 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2676 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2677
2678 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2679// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2680 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2681 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2682 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2683 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2684 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2685
2686#ifdef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
2687 fVal |= VMX_PROC_CTLS_CR3_LOAD_EXIT
2688 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2689#endif
2690
2691 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2692 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2693 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2694 {
2695 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2696 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2697 }
2698
2699 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2700 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2701 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2702
2703 if ((fVal & fZap) != fVal)
2704 {
2705 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2706 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
2707 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2708 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2709 }
2710
2711 /* Commit it to the VMCS and update our cache. */
2712 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2713 AssertRC(rc);
2714 pVmcsInfo->u32ProcCtls = fVal;
2715
2716 /* Set up MSR permissions that don't change through the lifetime of the VM. */
2717 rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
2718 AssertRCReturn(rc, rc);
2719
2720 /*
2721 * Set up secondary processor-based VM-execution controls
2722 * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
2723 */
2724 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2725 return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
2726}
2727
2728
2729/**
2730 * Sets up miscellaneous (everything other than Pin, Processor and secondary
2731 * Processor-based VM-execution) control fields in the VMCS.
2732 *
2733 * @returns VBox status code.
2734 * @param pVCpu The cross context virtual CPU structure.
2735 * @param pVmcsInfo The VMCS info. object.
2736 */
2737static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2738{
2739 int rc = VINF_SUCCESS;
2740 //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
2741 if (RT_SUCCESS(rc))
2742 {
2743 uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
2744 uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
2745
2746 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
2747 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
2748
2749 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
2750 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
2751
2752 if (pVCpu->CTX_SUFF(pVM)->nem.s.fLbr)
2753 {
2754 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
2755 AssertRC(rc);
2756 }
2757 return VINF_SUCCESS;
2758 }
2759 else
2760 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
2761 return rc;
2762}
2763
2764
2765/**
2766 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2767 *
2768 * We shall setup those exception intercepts that don't change during the
2769 * lifetime of the VM here. The rest are done dynamically while loading the
2770 * guest state.
2771 *
2772 * @param pVCpu The cross context virtual CPU structure.
2773 * @param pVmcsInfo The VMCS info. object.
2774 */
2775static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2776{
2777 /*
2778 * The following exceptions are always intercepted:
2779 *
2780 * #AC - To prevent the guest from hanging the CPU and for dealing with
2781 * split-lock detecting host configs.
2782 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
2783 * recursive #DBs can cause a CPU hang.
2784 */
2785 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
2786 | RT_BIT(X86_XCPT_DB);
2787
2788 /* Commit it to the VMCS. */
2789 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2790 AssertRC(rc);
2791
2792 /* Update our cache of the exception bitmap. */
2793 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
2794}
2795
2796
2797/**
2798 * Initialize the VMCS information field for the given vCPU.
2799 *
2800 * @returns VBox status code.
2801 * @param pVCpu The cross context virtual CPU structure of the
2802 * calling EMT.
2803 */
2804static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
2805{
2806 int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2807 if (RT_SUCCESS(rc))
2808 {
2809 rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2810 if (RT_SUCCESS(rc))
2811 {
2812 rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2813 if (RT_SUCCESS(rc))
2814 {
2815 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
2816 if (RT_SUCCESS(rc))
2817 {
2818 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
2819 if (RT_SUCCESS(rc))
2820 {
2821 nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
2822 return VINF_SUCCESS;
2823 }
2824 LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
2825 }
2826 else
2827 LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
2828 }
2829 else
2830 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
2831 }
2832 else
2833 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
2834 }
2835 else
2836 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
2837
2838 return rc;
2839}
2840
2841
2842/**
2843 * Registers statistics for the given vCPU.
2844 *
2845 * @returns VBox status code.
2846 * @param pVM The cross context VM structure.
2847 * @param idCpu The CPU ID.
2848 * @param pNemCpu The NEM CPU structure.
2849 */
2850static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
2851{
2852#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
2853 int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
2854 AssertRC(rc); \
2855 } while (0)
2856#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
2857 NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
2858#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
2859
2860 PVMXSTATISTICS const pVmxStats = pNemCpu->pVmxStats;
2861
2862 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
2863 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
2864 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
2865 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
2866 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
2867 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
2868 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
2869 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
2870 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
2871 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
2872
2873 NEM_REG_COUNTER(&pVmxStats->StatExitAll, "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
2874
2875 NEM_REG_COUNTER(&pVmxStats->StatImportGuestStateFallback, "/NEM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
2876 NEM_REG_COUNTER(&pVmxStats->StatReadToTransientFallback, "/NEM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
2877
2878#ifdef VBOX_WITH_STATISTICS
2879 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
2880 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");
2881
2882 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
2883 {
2884 const char *pszExitName = HMGetVmxExitName(j);
2885 if (pszExitName)
2886 {
2887 int rc = STAMR3RegisterF(pVM, &pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
2888 STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
2889 AssertRCReturn(rc, rc);
2890 }
2891 }
2892#endif
2893
2894 return VINF_SUCCESS;
2895
2896#undef NEM_REG_COUNTER
2897#undef NEM_REG_PROFILE
2898#undef NEM_REG_STAT
2899}
2900
2901
2902/**
2903 * Displays the HM Last-Branch-Record info. for the guest.
2904 *
2905 * @param pVM The cross context VM structure.
2906 * @param pHlp The info helper functions.
2907 * @param pszArgs Arguments, ignored.
2908 */
2909static DECLCALLBACK(void) nemR3DarwinInfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2910{
2911 NOREF(pszArgs);
2912 PVMCPU pVCpu = VMMGetCpu(pVM);
2913 if (!pVCpu)
2914 pVCpu = pVM->apCpusR3[0];
2915
2916 Assert(pVM->nem.s.fLbr);
2917
2918 PCVMXVMCSINFOSHARED pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
2919 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2920
2921 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
2922 * 0xf should cover everything we support thus far. Fix if necessary
2923 * later. */
2924 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
2925 if (idxTopOfStack > cLbrStack)
2926 {
2927 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
2928 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
2929 return;
2930 }
2931
2932 /*
2933 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
2934 */
2935 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
2936 if (pVM->nem.s.idLerFromIpMsr)
2937 pHlp->pfnPrintf(pHlp, "LER: From IP=%#016RX64 - To IP=%#016RX64\n",
2938 pVmcsInfoShared->u64LerFromIpMsr, pVmcsInfoShared->u64LerToIpMsr);
2939 uint32_t idxCurrent = idxTopOfStack;
2940 Assert(idxTopOfStack < cLbrStack);
2941 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
2942 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
2943 for (;;)
2944 {
2945 if (pVM->nem.s.idLbrToIpMsrFirst)
2946 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64 (Info: %#016RX64)\n", idxCurrent,
2947 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent],
2948 pVmcsInfoShared->au64LbrToIpMsr[idxCurrent],
2949 pVmcsInfoShared->au64LbrInfoMsr[idxCurrent]);
2950 else
2951 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
2952
2953 idxCurrent = (idxCurrent - 1) % cLbrStack;
2954 if (idxCurrent == idxTopOfStack)
2955 break;
2956 }
2957}
2958
2959
2960/**
2961 * Try initialize the native API.
2962 *
2963 * This may only do part of the job, more can be done in
2964 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
2965 *
2966 * @returns VBox status code.
2967 * @param pVM The cross context VM structure.
2968 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
2969 * the latter we'll fail if we cannot initialize.
2970 * @param fForced Whether the HMForced flag is set and we should
2971 * fail if we cannot initialize.
2972 */
2973int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
2974{
2975 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
2976
2977 /*
2978 * Some state init.
2979 */
2980 PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");
2981
2982 /** @cfgm{/NEM/VmxPleGap, uint32_t, 0}
2983 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
2984 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
2985 * latest PAUSE instruction to be start of a new PAUSE loop.
2986 */
2987 int rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleGap", &pVM->nem.s.cPleGapTicks, 0);
2988 AssertRCReturn(rc, rc);
2989
2990 /** @cfgm{/NEM/VmxPleWindow, uint32_t, 0}
2991 * The pause-filter exiting window in TSC ticks. When the number of ticks
2992 * between the current PAUSE instruction and first PAUSE of a loop exceeds
2993 * VmxPleWindow, a VM-exit is triggered.
2994 *
2995 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
2996 */
2997 rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleWindow", &pVM->nem.s.cPleWindowTicks, 0);
2998 AssertRCReturn(rc, rc);
2999
3000 /** @cfgm{/NEM/VmxLbr, bool, false}
3001 * Whether to enable LBR for the guest. This is disabled by default as it's only
3002 * useful while debugging and enabling it causes a noticeable performance hit. */
3003 rc = CFGMR3QueryBoolDef(pCfgNem, "VmxLbr", &pVM->nem.s.fLbr, false);
3004 AssertRCReturn(rc, rc);
3005
3006 /*
3007 * Error state.
3008 * The error message will be non-empty on failure and 'rc' will be set too.
3009 */
3010 RTERRINFOSTATIC ErrInfo;
3011 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
3012 rc = nemR3DarwinLoadHv(fForced, pErrInfo);
3013 if (RT_SUCCESS(rc))
3014 {
3015 if ( !hv_vcpu_enable_managed_msr
3016 && pVM->nem.s.fLbr)
3017 {
3018 LogRel(("NEM: LBR recording is disabled because the Hypervisor API misses hv_vcpu_enable_managed_msr/hv_vcpu_set_msr_access functionality\n"));
3019 pVM->nem.s.fLbr = false;
3020 }
3021
3022 /*
3023 * While hv_vcpu_run_until() is available starting with Catalina (10.15) it sometimes returns
3024 * an error there for no obvious reasons and there is no indication as to why this happens
3025 * and Apple doesn't document anything. Starting with BigSur (11.0) it appears to work correctly
3026 * so pretend that hv_vcpu_run_until() doesn't exist on Catalina which can be determined by checking
3027 * whether another method is available which was introduced with BigSur.
3028 */
3029 if (!hv_vmx_get_msr_info) /* Not available means this runs on < 11.0 */
3030 hv_vcpu_run_until = NULL;
3031
3032 if (hv_vcpu_run_until)
3033 {
3034 struct mach_timebase_info TimeInfo;
3035
3036 if (mach_timebase_info(&TimeInfo) == KERN_SUCCESS)
3037 {
3038 pVM->nem.s.cMachTimePerNs = RT_MIN(1, (double)TimeInfo.denom / (double)TimeInfo.numer);
3039 LogRel(("NEM: cMachTimePerNs=%llu (TimeInfo.numer=%u TimeInfo.denom=%u)\n",
3040 pVM->nem.s.cMachTimePerNs, TimeInfo.numer, TimeInfo.denom));
3041 }
3042 else
3043 hv_vcpu_run_until = NULL; /* To avoid running forever (TM asserts when the guest runs for longer than 4 seconds). */
3044 }
3045
3046 hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
3047 if (hrc == HV_SUCCESS)
3048 {
3049 if (hv_vm_space_create)
3050 {
3051 hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
3052 if (hrc == HV_SUCCESS)
3053 {
3054 LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
3055 pVM->nem.s.fCreatedAsid = true;
3056 }
3057 else
3058 LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
3059 }
3060 pVM->nem.s.fCreatedVm = true;
3061
3062 /* Register release statistics */
3063 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3064 {
3065 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
3066 PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
3067 if (RT_LIKELY(pVmxStats))
3068 {
3069 pNemCpu->pVmxStats = pVmxStats;
3070 rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
3071 AssertRC(rc);
3072 }
3073 else
3074 {
3075 rc = VERR_NO_MEMORY;
3076 break;
3077 }
3078 }
3079
3080 if (RT_SUCCESS(rc))
3081 {
3082 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
3083 Log(("NEM: Marked active!\n"));
3084 PGMR3EnableNemMode(pVM);
3085 }
3086 }
3087 else
3088 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
3089 "hv_vm_create() failed: %#x", hrc);
3090 }
3091
3092 /*
3093 * We only fail if in forced mode, otherwise just log the complaint and return.
3094 */
3095 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
3096 if ( (fForced || !fFallback)
3097 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
3098 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
3099
3100 if (pVM->nem.s.fLbr)
3101 {
3102 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the NEM LBR info.", nemR3DarwinInfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
3103 AssertRCReturn(rc, rc);
3104 }
3105
3106 if (RTErrInfoIsSet(pErrInfo))
3107 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
3108 return VINF_SUCCESS;
3109}
3110
3111
3112/**
3113 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
3114 *
3115 * @returns VBox status code
3116 * @param pVM The VM handle.
3117 * @param pVCpu The vCPU handle.
3118 * @param idCpu ID of the CPU to create.
3119 */
3120static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
3121{
3122 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
3123 if (hrc != HV_SUCCESS)
3124 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
3125 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
3126
3127 if (idCpu == 0)
3128 {
3129 /* First call initializs the MSR structure holding the capabilities of the host CPU. */
3130 int rc = nemR3DarwinCapsInit();
3131 AssertRCReturn(rc, rc);
3132
3133 if (hv_vmx_vcpu_get_cap_write_vmcs)
3134 {
3135 /* Log the VMCS field write capabilities. */
3136 for (uint32_t i = 0; i < RT_ELEMENTS(g_aVmcsFieldsCap); i++)
3137 {
3138 uint64_t u64Allowed0 = 0;
3139 uint64_t u64Allowed1 = 0;
3140
3141 hrc = hv_vmx_vcpu_get_cap_write_vmcs(pVCpu->nem.s.hVCpuId, g_aVmcsFieldsCap[i].u32VmcsFieldId,
3142 &u64Allowed0, &u64Allowed1);
3143 if (hrc == HV_SUCCESS)
3144 {
3145 if (g_aVmcsFieldsCap[i].f64Bit)
3146 LogRel(("NEM: %s = (allowed_0=%#016RX64 allowed_1=%#016RX64)\n",
3147 g_aVmcsFieldsCap[i].pszVmcsField, u64Allowed0, u64Allowed1));
3148 else
3149 LogRel(("NEM: %s = (allowed_0=%#08RX32 allowed_1=%#08RX32)\n",
3150 g_aVmcsFieldsCap[i].pszVmcsField, (uint32_t)u64Allowed0, (uint32_t)u64Allowed1));
3151
3152 uint32_t cBits = g_aVmcsFieldsCap[i].f64Bit ? 64 : 32;
3153 for (uint32_t iBit = 0; iBit < cBits; iBit++)
3154 {
3155 bool fAllowed0 = RT_BOOL(u64Allowed0 & RT_BIT_64(iBit));
3156 bool fAllowed1 = RT_BOOL(u64Allowed1 & RT_BIT_64(iBit));
3157
3158 if (!fAllowed0 && !fAllowed1)
3159 LogRel(("NEM: Bit %02u = Must NOT be set\n", iBit));
3160 else if (!fAllowed0 && fAllowed1)
3161 LogRel(("NEM: Bit %02u = Can be set or not be set\n", iBit));
3162 else if (fAllowed0 && !fAllowed1)
3163 LogRel(("NEM: Bit %02u = UNDEFINED (AppleHV error)!\n", iBit));
3164 else if (fAllowed0 && fAllowed1)
3165 LogRel(("NEM: Bit %02u = MUST be set\n", iBit));
3166 else
3167 AssertFailed();
3168 }
3169 }
3170 else
3171 LogRel(("NEM: %s = failed to query (hrc=%d)\n", g_aVmcsFieldsCap[i].pszVmcsField, hrc));
3172 }
3173 }
3174 }
3175
3176 int rc = nemR3DarwinInitVmcs(pVCpu);
3177 AssertRCReturn(rc, rc);
3178
3179 if (pVM->nem.s.fCreatedAsid)
3180 {
3181 hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
3182 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
3183 }
3184
3185 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3186
3187 return VINF_SUCCESS;
3188}
3189
3190
3191/**
3192 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
3193 *
3194 * @returns VBox status code
3195 * @param pVCpu The vCPU handle.
3196 */
3197static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
3198{
3199 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3200 Assert(hrc == HV_SUCCESS);
3201
3202 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3203 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3204 return VINF_SUCCESS;
3205}
3206
3207
3208/**
3209 * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
3210 *
3211 * @returns VBox status code
3212 * @param pVM The VM handle.
3213 * @param pVCpu The vCPU handle.
3214 */
3215static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu)
3216{
3217 PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3218 uint32_t fVal = pVmcsInfo->u32ProcCtls;
3219
3220 /* Use TPR shadowing if supported by the CPU. */
3221 if ( PDMHasApic(pVM)
3222 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3223 {
3224 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3225 /* CR8 writes cause a VM-exit based on TPR threshold. */
3226 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3227 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3228 }
3229 else
3230 {
3231 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3232 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3233 }
3234
3235 /* Commit it to the VMCS and update our cache. */
3236 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3237 AssertRC(rc);
3238 pVmcsInfo->u32ProcCtls = fVal;
3239
3240 return VINF_SUCCESS;
3241}
3242
3243
3244/**
3245 * This is called after CPUMR3Init is done.
3246 *
3247 * @returns VBox status code.
3248 * @param pVM The VM handle..
3249 */
3250int nemR3NativeInitAfterCPUM(PVM pVM)
3251{
3252 /*
3253 * Validate sanity.
3254 */
3255 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
3256 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
3257
3258 if (pVM->nem.s.fLbr)
3259 {
3260 int rc = nemR3DarwinSetupLbrMsrRange(pVM);
3261 AssertRCReturn(rc, rc);
3262 }
3263
3264 /*
3265 * Setup the EMTs.
3266 */
3267 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3268 {
3269 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3270
3271 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
3272 if (RT_FAILURE(rc))
3273 {
3274 /* Rollback. */
3275 while (idCpu--)
3276 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
3277
3278 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
3279 }
3280 }
3281
3282 pVM->nem.s.fCreatedEmts = true;
3283 return VINF_SUCCESS;
3284}
3285
3286
3287int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3288{
3289 if (enmWhat == VMINITCOMPLETED_RING3)
3290 {
3291 /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
3292 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3293 {
3294 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3295
3296 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 2, pVM, pVCpu);
3297 if (RT_FAILURE(rc))
3298 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Setting up TPR shadowing failed: %Rrc", rc);
3299 }
3300 }
3301 return VINF_SUCCESS;
3302}
3303
3304
3305int nemR3NativeTerm(PVM pVM)
3306{
3307 /*
3308 * Delete the VM.
3309 */
3310
3311 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
3312 {
3313 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3314
3315 /*
3316 * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
3317 * API reference so I wouldn't have to decompile the kext to find this out but we are talking
3318 * about Apple here unfortunately, API documentation is not their strong suit...
3319 * Would have been of course even better to just automatically drop the address space reference when the vCPU
3320 * gets destroyed.
3321 */
3322 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3323 Assert(hrc == HV_SUCCESS);
3324
3325 /*
3326 * Apple's documentation states that the vCPU should be destroyed
3327 * on the thread running the vCPU but as all the other EMTs are gone
3328 * at this point, destroying the VM would hang.
3329 *
3330 * We seem to be at luck here though as destroying apparently works
3331 * from EMT(0) as well.
3332 */
3333 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3334 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3335
3336 if (pVCpu->nem.s.pVmxStats)
3337 {
3338 RTMemFree(pVCpu->nem.s.pVmxStats);
3339 pVCpu->nem.s.pVmxStats = NULL;
3340 }
3341 }
3342
3343 pVM->nem.s.fCreatedEmts = false;
3344
3345 if (pVM->nem.s.fCreatedAsid)
3346 {
3347 hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
3348 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3349 pVM->nem.s.fCreatedAsid = false;
3350 }
3351
3352 if (pVM->nem.s.fCreatedVm)
3353 {
3354 hv_return_t hrc = hv_vm_destroy();
3355 if (hrc != HV_SUCCESS)
3356 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
3357
3358 pVM->nem.s.fCreatedVm = false;
3359 }
3360 return VINF_SUCCESS;
3361}
3362
3363
3364/**
3365 * VM reset notification.
3366 *
3367 * @param pVM The cross context VM structure.
3368 */
3369void nemR3NativeReset(PVM pVM)
3370{
3371 RT_NOREF(pVM);
3372}
3373
3374
3375/**
3376 * Reset CPU due to INIT IPI or hot (un)plugging.
3377 *
3378 * @param pVCpu The cross context virtual CPU structure of the CPU being
3379 * reset.
3380 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
3381 */
3382void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
3383{
3384 RT_NOREF(fInitIpi);
3385 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3386}
3387
3388
3389/**
3390 * Dumps the VMCS in response to a faild hv_vcpu_run{_until}() call.
3391 *
3392 * @param pVCpu The cross context virtual CPU structure.
3393 */
3394static void nemR3DarwinVmcsDump(PVMCPU pVCpu)
3395{
3396 static const struct
3397 {
3398 uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
3399 const char *pszVmcsField; /**< The VMCS field name. */
3400 bool f64Bit;
3401 } s_aVmcsFieldsDump[] =
3402 {
3403 #define NEM_DARWIN_VMCSNW_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
3404 #define NEM_DARWIN_VMCS64_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
3405 #define NEM_DARWIN_VMCS32_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
3406 #define NEM_DARWIN_VMCS16_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
3407 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_VPID),
3408 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR),
3409 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_EPTP_INDEX),
3410 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_ES_SEL),
3411 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_CS_SEL),
3412 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_SS_SEL),
3413 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_DS_SEL),
3414 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_FS_SEL),
3415 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_GS_SEL),
3416 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_LDTR_SEL),
3417 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_TR_SEL),
3418 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_INTR_STATUS),
3419 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_PML_INDEX),
3420 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_ES_SEL),
3421 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_CS_SEL),
3422 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_SS_SEL),
3423 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_DS_SEL),
3424 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_FS_SEL),
3425 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_GS_SEL),
3426 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_TR_SEL),
3427
3428 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL),
3429 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH),
3430 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL),
3431 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH),
3432 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_FULL),
3433 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_HIGH),
3434 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL),
3435 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH),
3436 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL),
3437 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH),
3438 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL),
3439 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH),
3440 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL),
3441 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH),
3442 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL),
3443 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH),
3444 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
3445 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_HIGH),
3446 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL),
3447 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH),
3448 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL),
3449 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH),
3450 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL),
3451 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH),
3452 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL),
3453 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH),
3454 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_FULL),
3455 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_HIGH),
3456 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL),
3457 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH),
3458 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL),
3459 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH),
3460 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL),
3461 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH),
3462 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL),
3463 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH),
3464 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_FULL),
3465 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_HIGH),
3466 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL),
3467 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH),
3468 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL),
3469 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH),
3470 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL),
3471 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH),
3472 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL),
3473 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH),
3474 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL),
3475 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH),
3476 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_FULL),
3477 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_HIGH),
3478 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL),
3479 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH),
3480 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_FULL),
3481 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_HIGH),
3482 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL),
3483 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH),
3484 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL),
3485 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH),
3486 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL),
3487 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH),
3488 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_FULL),
3489 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_HIGH),
3490 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_FULL),
3491 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_HIGH),
3492 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_FULL),
3493 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_HIGH),
3494 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL),
3495 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH),
3496 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_FULL),
3497 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_HIGH),
3498 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_FULL),
3499 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_HIGH),
3500 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_FULL),
3501 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_HIGH),
3502 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_FULL),
3503 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_HIGH),
3504 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_FULL),
3505 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_HIGH),
3506 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_FULL),
3507 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_HIGH),
3508 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_FULL),
3509 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_HIGH),
3510 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_FULL),
3511 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_HIGH),
3512 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_FULL),
3513 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_HIGH),
3514 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL),
3515 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH),
3516 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_FULL),
3517 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_HIGH),
3518
3519 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PIN_EXEC),
3520 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC),
3521 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
3522 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK),
3523 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH),
3524 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_CR3_TARGET_COUNT),
3525 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT),
3526 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT),
3527 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT),
3528 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY),
3529 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT),
3530 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO),
3531 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE),
3532 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH),
3533 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_TPR_THRESHOLD),
3534 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC2),
3535 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_GAP),
3536 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_WINDOW),
3537 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_VM_INSTR_ERROR),
3538 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_REASON),
3539 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO),
3540 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE),
3541 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_INFO),
3542 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE),
3543 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_LENGTH),
3544 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_INFO),
3545 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_LIMIT),
3546 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_LIMIT),
3547 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_LIMIT),
3548 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_LIMIT),
3549 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_LIMIT),
3550 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_LIMIT),
3551 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_LIMIT),
3552 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_LIMIT),
3553 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GDTR_LIMIT),
3554 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_IDTR_LIMIT),
3555 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS),
3556 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS),
3557 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS),
3558 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS),
3559 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS),
3560 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS),
3561 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS),
3562 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS),
3563 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_INT_STATE),
3564 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ACTIVITY_STATE),
3565 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SMBASE),
3566 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SYSENTER_CS),
3567 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_PREEMPT_TIMER_VALUE),
3568 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_HOST_SYSENTER_CS),
3569
3570 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_MASK),
3571 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_MASK),
3572 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_READ_SHADOW),
3573 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_READ_SHADOW),
3574 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL0),
3575 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL1),
3576 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL2),
3577 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL3),
3578 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_EXIT_QUALIFICATION),
3579 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RCX),
3580 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RSI),
3581 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RDI),
3582 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RIP),
3583 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_GUEST_LINEAR_ADDR),
3584 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR0),
3585 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR3),
3586 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR4),
3587 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_ES_BASE),
3588 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CS_BASE),
3589 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SS_BASE),
3590 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DS_BASE),
3591 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_FS_BASE),
3592 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GS_BASE),
3593 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_LDTR_BASE),
3594 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_TR_BASE),
3595 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GDTR_BASE),
3596 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_IDTR_BASE),
3597 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DR7),
3598 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RSP),
3599 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RIP),
3600 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RFLAGS),
3601 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS),
3602 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_ESP),
3603 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_EIP),
3604 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_S_CET),
3605 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SSP),
3606 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR),
3607 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR0),
3608 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR3),
3609 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR4),
3610 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_FS_BASE),
3611 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GS_BASE),
3612 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_TR_BASE),
3613 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GDTR_BASE),
3614 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_IDTR_BASE),
3615 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_ESP),
3616 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_EIP),
3617 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RSP),
3618 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RIP),
3619 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_S_CET),
3620 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SSP),
3621 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR)
3622 #undef NEM_DARWIN_VMCSNW_FIELD_DUMP
3623 #undef NEM_DARWIN_VMCS64_FIELD_DUMP
3624 #undef NEM_DARWIN_VMCS32_FIELD_DUMP
3625 #undef NEM_DARWIN_VMCS16_FIELD_DUMP
3626 };
3627
3628 for (uint32_t i = 0; i < RT_ELEMENTS(s_aVmcsFieldsDump); i++)
3629 {
3630 if (s_aVmcsFieldsDump[i].f64Bit)
3631 {
3632 uint64_t u64Val;
3633 int rc = nemR3DarwinReadVmcs64(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u64Val);
3634 if (RT_SUCCESS(rc))
3635 LogRel(("NEM/VMCS: %040s: 0x%016RX64\n", s_aVmcsFieldsDump[i].pszVmcsField, u64Val));
3636 else
3637 LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
3638 }
3639 else
3640 {
3641 uint32_t u32Val;
3642 int rc = nemR3DarwinReadVmcs32(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u32Val);
3643 if (RT_SUCCESS(rc))
3644 LogRel(("NEM/VMCS: %040s: 0x%08RX32\n", s_aVmcsFieldsDump[i].pszVmcsField, u32Val));
3645 else
3646 LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
3647 }
3648 }
3649}
3650
3651
3652/**
3653 * Runs the guest once until an exit occurs.
3654 *
3655 * @returns HV status code.
3656 * @param pVM The cross context VM structure.
3657 * @param pVCpu The cross context virtual CPU structure.
3658 * @param pVmxTransient The transient VMX execution structure.
3659 */
3660static hv_return_t nemR3DarwinRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
3661{
3662 TMNotifyStartOfExecution(pVM, pVCpu);
3663
3664 Assert(!pVCpu->nem.s.fCtxChanged);
3665 hv_return_t hrc;
3666 if (hv_vcpu_run_until) /** @todo Configur the deadline dynamically based on when the next timer triggers. */
3667 hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, mach_absolute_time() + 2 * RT_NS_1SEC_64 * pVM->nem.s.cMachTimePerNs);
3668 else
3669 hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
3670
3671 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
3672
3673 if (hrc != HV_SUCCESS)
3674 nemR3DarwinVmcsDump(pVCpu);
3675
3676 /*
3677 * Sync the TPR shadow with our APIC state.
3678 */
3679 if ( !pVmxTransient->fIsNestedGuest
3680 && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
3681 {
3682 uint64_t u64Tpr;
3683 hv_return_t hrc2 = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
3684 Assert(hrc2 == HV_SUCCESS); RT_NOREF(hrc2);
3685
3686 if (pVmxTransient->u8GuestTpr != (uint8_t)u64Tpr)
3687 {
3688 int rc = APICSetTpr(pVCpu, (uint8_t)u64Tpr);
3689 AssertRC(rc);
3690 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
3691 }
3692 }
3693
3694 return hrc;
3695}
3696
3697
3698/**
3699 * Prepares the VM to run the guest.
3700 *
3701 * @returns Strict VBox status code.
3702 * @param pVM The cross context VM structure.
3703 * @param pVCpu The cross context virtual CPU structure.
3704 * @param pVmxTransient The VMX transient state.
3705 * @param fSingleStepping Flag whether we run in single stepping mode.
3706 */
3707static VBOXSTRICTRC nemR3DarwinPreRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fSingleStepping)
3708{
3709 /*
3710 * Check and process force flag actions, some of which might require us to go back to ring-3.
3711 */
3712 VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
3713 if (rcStrict == VINF_SUCCESS)
3714 { /*likely */ }
3715 else
3716 return rcStrict;
3717
3718 /*
3719 * Do not execute in HV if the A20 isn't enabled.
3720 */
3721 if (PGMPhysIsA20Enabled(pVCpu))
3722 { /* likely */ }
3723 else
3724 {
3725 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
3726 return VINF_EM_RESCHEDULE_REM;
3727 }
3728
3729 /*
3730 * Evaluate events to be injected into the guest.
3731 *
3732 * Events in TRPM can be injected without inspecting the guest state.
3733 * If any new events (interrupts/NMI) are pending currently, we try to set up the
3734 * guest to cause a VM-exit the next time they are ready to receive the event.
3735 */
3736 if (TRPMHasTrap(pVCpu))
3737 vmxHCTrpmTrapToPendingEvent(pVCpu);
3738
3739 uint32_t fIntrState;
3740 rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, &fIntrState);
3741
3742 /*
3743 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
3744 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
3745 * also result in triple-faulting the VM.
3746 *
3747 * With nested-guests, the above does not apply since unrestricted guest execution is a
3748 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
3749 */
3750 rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
3751 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3752 { /* likely */ }
3753 else
3754 return rcStrict;
3755
3756 int rc = nemR3DarwinExportGuestState(pVM, pVCpu, pVmxTransient);
3757 AssertRCReturn(rc, rc);
3758
3759 LogFlowFunc(("Running vCPU\n"));
3760 pVCpu->nem.s.Event.fPending = false;
3761 return VINF_SUCCESS;
3762}
3763
3764
3765/**
3766 * The normal runloop (no debugging features enabled).
3767 *
3768 * @returns Strict VBox status code.
3769 * @param pVM The cross context VM structure.
3770 * @param pVCpu The cross context virtual CPU structure.
3771 */
3772static VBOXSTRICTRC nemR3DarwinRunGuestNormal(PVM pVM, PVMCPU pVCpu)
3773{
3774 /*
3775 * The run loop.
3776 *
3777 * Current approach to state updating to use the sledgehammer and sync
3778 * everything every time. This will be optimized later.
3779 */
3780 VMXTRANSIENT VmxTransient;
3781 RT_ZERO(VmxTransient);
3782 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3783
3784 /*
3785 * Poll timers and run for a bit.
3786 */
3787 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
3788 * the whole polling job when timers have changed... */
3789 uint64_t offDeltaIgnored;
3790 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
3791 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3792 for (unsigned iLoop = 0;; iLoop++)
3793 {
3794 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, false /* fSingleStepping */);
3795 if (rcStrict != VINF_SUCCESS)
3796 break;
3797
3798 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
3799 if (hrc == HV_SUCCESS)
3800 {
3801 /*
3802 * Deal with the message.
3803 */
3804 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
3805 if (rcStrict == VINF_SUCCESS)
3806 { /* hopefully likely */ }
3807 else
3808 {
3809 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
3810 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
3811 break;
3812 }
3813 }
3814 else
3815 {
3816 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
3817 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
3818 VERR_NEM_IPE_0);
3819 }
3820 } /* the run loop */
3821
3822 return rcStrict;
3823}
3824
3825
3826/**
3827 * Checks if any expensive dtrace probes are enabled and we should go to the
3828 * debug loop.
3829 *
3830 * @returns true if we should use debug loop, false if not.
3831 */
3832static bool nemR3DarwinAnyExpensiveProbesEnabled(void)
3833{
3834 /** @todo Check performance penalty when checking these over and over */
3835 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED() /* expensive too due to context */
3836 | VBOXVMM_XCPT_DE_ENABLED()
3837 | VBOXVMM_XCPT_DB_ENABLED()
3838 | VBOXVMM_XCPT_BP_ENABLED()
3839 | VBOXVMM_XCPT_OF_ENABLED()
3840 | VBOXVMM_XCPT_BR_ENABLED()
3841 | VBOXVMM_XCPT_UD_ENABLED()
3842 | VBOXVMM_XCPT_NM_ENABLED()
3843 | VBOXVMM_XCPT_DF_ENABLED()
3844 | VBOXVMM_XCPT_TS_ENABLED()
3845 | VBOXVMM_XCPT_NP_ENABLED()
3846 | VBOXVMM_XCPT_SS_ENABLED()
3847 | VBOXVMM_XCPT_GP_ENABLED()
3848 | VBOXVMM_XCPT_PF_ENABLED()
3849 | VBOXVMM_XCPT_MF_ENABLED()
3850 | VBOXVMM_XCPT_AC_ENABLED()
3851 | VBOXVMM_XCPT_XF_ENABLED()
3852 | VBOXVMM_XCPT_VE_ENABLED()
3853 | VBOXVMM_XCPT_SX_ENABLED()
3854 | VBOXVMM_INT_SOFTWARE_ENABLED()
3855 /* not available in R3 | VBOXVMM_INT_HARDWARE_ENABLED()*/
3856 ) != 0
3857 || ( VBOXVMM_INSTR_HALT_ENABLED()
3858 | VBOXVMM_INSTR_MWAIT_ENABLED()
3859 | VBOXVMM_INSTR_MONITOR_ENABLED()
3860 | VBOXVMM_INSTR_CPUID_ENABLED()
3861 | VBOXVMM_INSTR_INVD_ENABLED()
3862 | VBOXVMM_INSTR_WBINVD_ENABLED()
3863 | VBOXVMM_INSTR_INVLPG_ENABLED()
3864 | VBOXVMM_INSTR_RDTSC_ENABLED()
3865 | VBOXVMM_INSTR_RDTSCP_ENABLED()
3866 | VBOXVMM_INSTR_RDPMC_ENABLED()
3867 | VBOXVMM_INSTR_RDMSR_ENABLED()
3868 | VBOXVMM_INSTR_WRMSR_ENABLED()
3869 | VBOXVMM_INSTR_CRX_READ_ENABLED()
3870 | VBOXVMM_INSTR_CRX_WRITE_ENABLED()
3871 | VBOXVMM_INSTR_DRX_READ_ENABLED()
3872 | VBOXVMM_INSTR_DRX_WRITE_ENABLED()
3873 | VBOXVMM_INSTR_PAUSE_ENABLED()
3874 | VBOXVMM_INSTR_XSETBV_ENABLED()
3875 | VBOXVMM_INSTR_SIDT_ENABLED()
3876 | VBOXVMM_INSTR_LIDT_ENABLED()
3877 | VBOXVMM_INSTR_SGDT_ENABLED()
3878 | VBOXVMM_INSTR_LGDT_ENABLED()
3879 | VBOXVMM_INSTR_SLDT_ENABLED()
3880 | VBOXVMM_INSTR_LLDT_ENABLED()
3881 | VBOXVMM_INSTR_STR_ENABLED()
3882 | VBOXVMM_INSTR_LTR_ENABLED()
3883 | VBOXVMM_INSTR_GETSEC_ENABLED()
3884 | VBOXVMM_INSTR_RSM_ENABLED()
3885 | VBOXVMM_INSTR_RDRAND_ENABLED()
3886 | VBOXVMM_INSTR_RDSEED_ENABLED()
3887 | VBOXVMM_INSTR_XSAVES_ENABLED()
3888 | VBOXVMM_INSTR_XRSTORS_ENABLED()
3889 | VBOXVMM_INSTR_VMM_CALL_ENABLED()
3890 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED()
3891 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED()
3892 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED()
3893 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED()
3894 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED()
3895 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED()
3896 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED()
3897 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED()
3898 | VBOXVMM_INSTR_VMX_VMXON_ENABLED()
3899 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED()
3900 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED()
3901 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED()
3902 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED()
3903 ) != 0
3904 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED()
3905 | VBOXVMM_EXIT_HALT_ENABLED()
3906 | VBOXVMM_EXIT_MWAIT_ENABLED()
3907 | VBOXVMM_EXIT_MONITOR_ENABLED()
3908 | VBOXVMM_EXIT_CPUID_ENABLED()
3909 | VBOXVMM_EXIT_INVD_ENABLED()
3910 | VBOXVMM_EXIT_WBINVD_ENABLED()
3911 | VBOXVMM_EXIT_INVLPG_ENABLED()
3912 | VBOXVMM_EXIT_RDTSC_ENABLED()
3913 | VBOXVMM_EXIT_RDTSCP_ENABLED()
3914 | VBOXVMM_EXIT_RDPMC_ENABLED()
3915 | VBOXVMM_EXIT_RDMSR_ENABLED()
3916 | VBOXVMM_EXIT_WRMSR_ENABLED()
3917 | VBOXVMM_EXIT_CRX_READ_ENABLED()
3918 | VBOXVMM_EXIT_CRX_WRITE_ENABLED()
3919 | VBOXVMM_EXIT_DRX_READ_ENABLED()
3920 | VBOXVMM_EXIT_DRX_WRITE_ENABLED()
3921 | VBOXVMM_EXIT_PAUSE_ENABLED()
3922 | VBOXVMM_EXIT_XSETBV_ENABLED()
3923 | VBOXVMM_EXIT_SIDT_ENABLED()
3924 | VBOXVMM_EXIT_LIDT_ENABLED()
3925 | VBOXVMM_EXIT_SGDT_ENABLED()
3926 | VBOXVMM_EXIT_LGDT_ENABLED()
3927 | VBOXVMM_EXIT_SLDT_ENABLED()
3928 | VBOXVMM_EXIT_LLDT_ENABLED()
3929 | VBOXVMM_EXIT_STR_ENABLED()
3930 | VBOXVMM_EXIT_LTR_ENABLED()
3931 | VBOXVMM_EXIT_GETSEC_ENABLED()
3932 | VBOXVMM_EXIT_RSM_ENABLED()
3933 | VBOXVMM_EXIT_RDRAND_ENABLED()
3934 | VBOXVMM_EXIT_RDSEED_ENABLED()
3935 | VBOXVMM_EXIT_XSAVES_ENABLED()
3936 | VBOXVMM_EXIT_XRSTORS_ENABLED()
3937 | VBOXVMM_EXIT_VMM_CALL_ENABLED()
3938 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED()
3939 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED()
3940 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED()
3941 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED()
3942 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED()
3943 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED()
3944 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED()
3945 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED()
3946 | VBOXVMM_EXIT_VMX_VMXON_ENABLED()
3947 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED()
3948 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED()
3949 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED()
3950 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED()
3951 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED()
3952 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED()
3953 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED()
3954 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED()
3955 ) != 0;
3956}
3957
3958
3959/**
3960 * The debug runloop.
3961 *
3962 * @returns Strict VBox status code.
3963 * @param pVM The cross context VM structure.
3964 * @param pVCpu The cross context virtual CPU structure.
3965 */
3966static VBOXSTRICTRC nemR3DarwinRunGuestDebug(PVM pVM, PVMCPU pVCpu)
3967{
3968 /*
3969 * The run loop.
3970 *
3971 * Current approach to state updating to use the sledgehammer and sync
3972 * everything every time. This will be optimized later.
3973 */
3974 VMXTRANSIENT VmxTransient;
3975 RT_ZERO(VmxTransient);
3976 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3977
3978 bool const fSavedSingleInstruction = pVCpu->nem.s.fSingleInstruction;
3979 pVCpu->nem.s.fSingleInstruction = pVCpu->nem.s.fSingleInstruction || DBGFIsStepping(pVCpu);
3980 pVCpu->nem.s.fDebugWantRdTscExit = false;
3981 pVCpu->nem.s.fUsingDebugLoop = true;
3982
3983 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
3984 VMXRUNDBGSTATE DbgState;
3985 vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
3986 vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
3987
3988 /*
3989 * Poll timers and run for a bit.
3990 */
3991 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
3992 * the whole polling job when timers have changed... */
3993 uint64_t offDeltaIgnored;
3994 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
3995 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3996 for (unsigned iLoop = 0;; iLoop++)
3997 {
3998 bool fStepping = pVCpu->nem.s.fSingleInstruction;
3999
4000 /* Set up VM-execution controls the next two can respond to. */
4001 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
4002
4003 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, fStepping);
4004 if (rcStrict != VINF_SUCCESS)
4005 break;
4006
4007 /* Override any obnoxious code in the above call. */
4008 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
4009
4010 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
4011 if (hrc == HV_SUCCESS)
4012 {
4013 /*
4014 * Deal with the message.
4015 */
4016 rcStrict = nemR3DarwinHandleExitDebug(pVM, pVCpu, &VmxTransient, &DbgState);
4017 if (rcStrict == VINF_SUCCESS)
4018 { /* hopefully likely */ }
4019 else
4020 {
4021 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExitDebug -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4022 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4023 break;
4024 }
4025
4026 /*
4027 * Stepping: Did the RIP change, if so, consider it a single step.
4028 * Otherwise, make sure one of the TFs gets set.
4029 */
4030 if (fStepping)
4031 {
4032 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4033 AssertRC(rc);
4034 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
4035 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
4036 {
4037 rcStrict = VINF_EM_DBG_STEPPED;
4038 break;
4039 }
4040 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
4041 }
4042 }
4043 else
4044 {
4045 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
4046 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
4047 VERR_NEM_IPE_0);
4048 }
4049 } /* the run loop */
4050
4051 /*
4052 * Clear the X86_EFL_TF if necessary.
4053 */
4054 if (pVCpu->nem.s.fClearTrapFlag)
4055 {
4056 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
4057 AssertRC(rc);
4058 pVCpu->nem.s.fClearTrapFlag = false;
4059 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
4060 }
4061
4062 pVCpu->nem.s.fUsingDebugLoop = false;
4063 pVCpu->nem.s.fDebugWantRdTscExit = false;
4064 pVCpu->nem.s.fSingleInstruction = fSavedSingleInstruction;
4065
4066 /* Restore all controls applied by vmxHCPreRunGuestDebugStateApply above. */
4067 return vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
4068}
4069
4070
4071VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
4072{
4073 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u));
4074#ifdef LOG_ENABLED
4075 if (LogIs3Enabled())
4076 nemR3DarwinLogState(pVM, pVCpu);
4077#endif
4078
4079 AssertReturn(NEMR3CanExecuteGuest(pVM, pVCpu), VERR_NEM_IPE_9);
4080
4081 /*
4082 * Try switch to NEM runloop state.
4083 */
4084 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
4085 { /* likely */ }
4086 else
4087 {
4088 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4089 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
4090 return VINF_SUCCESS;
4091 }
4092
4093 VBOXSTRICTRC rcStrict;
4094 if ( !pVCpu->nem.s.fUseDebugLoop
4095 && !nemR3DarwinAnyExpensiveProbesEnabled()
4096 && !DBGFIsStepping(pVCpu)
4097 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
4098 rcStrict = nemR3DarwinRunGuestNormal(pVM, pVCpu);
4099 else
4100 rcStrict = nemR3DarwinRunGuestDebug(pVM, pVCpu);
4101
4102 if (rcStrict == VINF_EM_RAW_TO_R3)
4103 rcStrict = VINF_SUCCESS;
4104
4105 /*
4106 * Convert any pending HM events back to TRPM due to premature exits.
4107 *
4108 * This is because execution may continue from IEM and we would need to inject
4109 * the event from there (hence place it back in TRPM).
4110 */
4111 if (pVCpu->nem.s.Event.fPending)
4112 {
4113 vmxHCPendingEventToTrpmTrap(pVCpu);
4114 Assert(!pVCpu->nem.s.Event.fPending);
4115
4116 /* Clear the events from the VMCS. */
4117 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
4118 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
4119 }
4120
4121
4122 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
4123 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4124
4125 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
4126 {
4127 /* Try anticipate what we might need. */
4128 uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
4129 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
4130 || RT_FAILURE(rcStrict))
4131 fImport = CPUMCTX_EXTRN_ALL;
4132 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
4133 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
4134 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
4135
4136 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
4137 {
4138 /* Only import what is external currently. */
4139 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
4140 if (RT_SUCCESS(rc2))
4141 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4142 else if (RT_SUCCESS(rcStrict))
4143 rcStrict = rc2;
4144 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
4145 {
4146 pVCpu->cpum.GstCtx.fExtrn = 0;
4147 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4148 }
4149 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
4150 }
4151 else
4152 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4153 }
4154 else
4155 {
4156 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4157 pVCpu->cpum.GstCtx.fExtrn = 0;
4158 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4159 }
4160
4161 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
4162 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
4163 return rcStrict;
4164}
4165
4166
4167VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
4168{
4169 NOREF(pVM);
4170 return PGMPhysIsA20Enabled(pVCpu);
4171}
4172
4173
4174bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
4175{
4176 VMCPU_ASSERT_EMT(pVCpu);
4177 bool fOld = pVCpu->nem.s.fSingleInstruction;
4178 pVCpu->nem.s.fSingleInstruction = fEnable;
4179 pVCpu->nem.s.fUseDebugLoop = fEnable || pVM->nem.s.fUseDebugLoop;
4180 return fOld;
4181}
4182
4183
4184void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
4185{
4186 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
4187
4188 RT_NOREF(pVM, fFlags);
4189
4190 hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
4191 if (hrc != HV_SUCCESS)
4192 LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
4193}
4194
4195
4196DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
4197{
4198 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
4199 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
4200 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
4201 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
4202
4203 return fUseDebugLoop;
4204}
4205
4206
4207DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
4208{
4209 RT_NOREF(pVM, pVCpu);
4210 return fUseDebugLoop;
4211}
4212
4213
4214VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
4215 uint8_t *pu2State, uint32_t *puNemRange)
4216{
4217 RT_NOREF(pVM, puNemRange);
4218
4219 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
4220#if defined(VBOX_WITH_PGM_NEM_MODE)
4221 if (pvR3)
4222 {
4223 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
4224 if (RT_FAILURE(rc))
4225 {
4226 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
4227 return VERR_NEM_MAP_PAGES_FAILED;
4228 }
4229 }
4230 return VINF_SUCCESS;
4231#else
4232 RT_NOREF(pVM, GCPhys, cb, pvR3);
4233 return VERR_NEM_MAP_PAGES_FAILED;
4234#endif
4235}
4236
4237
4238VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
4239{
4240 RT_NOREF(pVM);
4241 return false;
4242}
4243
4244
4245VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
4246 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
4247{
4248 RT_NOREF(pVM, puNemRange, pvRam, fFlags);
4249
4250 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
4251 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
4252
4253#if defined(VBOX_WITH_PGM_NEM_MODE)
4254 /*
4255 * Unmap the RAM we're replacing.
4256 */
4257 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
4258 {
4259 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4260 if (RT_SUCCESS(rc))
4261 { /* likely */ }
4262 else if (pvMmio2)
4263 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
4264 GCPhys, cb, fFlags, rc));
4265 else
4266 {
4267 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4268 GCPhys, cb, fFlags, rc));
4269 return VERR_NEM_UNMAP_PAGES_FAILED;
4270 }
4271 }
4272
4273 /*
4274 * Map MMIO2 if any.
4275 */
4276 if (pvMmio2)
4277 {
4278 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
4279 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE, pu2State);
4280 if (RT_FAILURE(rc))
4281 {
4282 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
4283 GCPhys, cb, fFlags, pvMmio2, rc));
4284 return VERR_NEM_MAP_PAGES_FAILED;
4285 }
4286 }
4287 else
4288 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
4289
4290#else
4291 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
4292 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
4293#endif
4294 return VINF_SUCCESS;
4295}
4296
4297
4298VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
4299 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
4300{
4301 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
4302 return VINF_SUCCESS;
4303}
4304
4305
4306VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
4307 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
4308{
4309 RT_NOREF(pVM, puNemRange);
4310
4311 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
4312 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
4313
4314 int rc = VINF_SUCCESS;
4315#if defined(VBOX_WITH_PGM_NEM_MODE)
4316 /*
4317 * Unmap the MMIO2 pages.
4318 */
4319 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
4320 * we may have more stuff to unmap even in case of pure MMIO... */
4321 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
4322 {
4323 rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4324 if (RT_FAILURE(rc))
4325 {
4326 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4327 GCPhys, cb, fFlags, rc));
4328 return VERR_NEM_UNMAP_PAGES_FAILED;
4329 }
4330 }
4331
4332 /* Ensure the page is masked as unmapped if relevant. */
4333 Assert(!pu2State || *pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED);
4334
4335 /*
4336 * Restore the RAM we replaced.
4337 */
4338 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
4339 {
4340 AssertPtr(pvRam);
4341 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
4342 if (RT_SUCCESS(rc))
4343 { /* likely */ }
4344 else
4345 {
4346 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
4347 rc = VERR_NEM_MAP_PAGES_FAILED;
4348 }
4349 }
4350
4351 RT_NOREF(pvMmio2);
4352#else
4353 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
4354 if (pu2State)
4355 *pu2State = UINT8_MAX;
4356 rc = VERR_NEM_UNMAP_PAGES_FAILED;
4357#endif
4358 return rc;
4359}
4360
4361
4362VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
4363 void *pvBitmap, size_t cbBitmap)
4364{
4365 RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
4366 AssertFailed();
4367 return VERR_NOT_IMPLEMENTED;
4368}
4369
4370
4371VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
4372 uint8_t *pu2State, uint32_t *puNemRange)
4373{
4374 RT_NOREF(pvPages);
4375
4376 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
4377 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
4378 if (fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE)
4379 {
4380 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4381 if (RT_FAILURE(rc))
4382 {
4383 LogRel(("NEMR3NotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4384 GCPhys, cb, fFlags, rc));
4385 return VERR_NEM_UNMAP_PAGES_FAILED;
4386 }
4387 }
4388
4389 *puNemRange = 0;
4390 return VINF_SUCCESS;
4391}
4392
4393
4394VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
4395 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
4396{
4397 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
4398 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
4399 *pu2State = UINT8_MAX;
4400 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
4401 return VINF_SUCCESS;
4402}
4403
4404
4405VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
4406 RTR3PTR pvMemR3, uint8_t *pu2State)
4407{
4408 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
4409 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
4410 *pu2State = UINT8_MAX;
4411 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
4412}
4413
4414
4415VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
4416{
4417 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
4418 RT_NOREF(pVCpu, fEnabled);
4419}
4420
4421
4422void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
4423{
4424 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
4425 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
4426}
4427
4428
4429void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
4430 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
4431{
4432 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
4433 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
4434 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
4435}
4436
4437
4438int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4439 PGMPAGETYPE enmType, uint8_t *pu2State)
4440{
4441 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4442 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4443 RT_NOREF(HCPhys, fPageProt, enmType);
4444
4445 return nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
4446}
4447
4448
4449VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
4450 PGMPAGETYPE enmType, uint8_t *pu2State)
4451{
4452 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp pvR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
4453 GCPhys, HCPhys, pvR3, fPageProt, enmType, *pu2State));
4454 RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
4455
4456 uint8_t u2StateOld = *pu2State;
4457 /* Can return early if this is an unmap request and the page is not mapped. */
4458 if ( fPageProt == NEM_PAGE_PROT_NONE
4459 && u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
4460 {
4461 Assert(!pvR3);
4462 return;
4463 }
4464
4465 int rc;
4466 if (u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
4467 {
4468 AssertPtr(pvR3);
4469 rc = nemR3DarwinMap(pVM, GCPhys, pvR3, X86_PAGE_SIZE, fPageProt, pu2State);
4470 }
4471 else
4472 rc = nemR3DarwinProtect(pVM, GCPhys, X86_PAGE_SIZE, fPageProt, pu2State);
4473 AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageProtChanged: nemR3DarwinMap/nemR3DarwinProtect(,%p,%RGp,%RGp,) u2StateOld=%u -> %Rrc\n",
4474 pvR3, GCPhys, X86_PAGE_SIZE, u2StateOld, rc));
4475}
4476
4477
4478VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
4479 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
4480{
4481 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4482 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
4483 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
4484
4485 int rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
4486 if (RT_SUCCESS(rc))
4487 {
4488 rc = nemR3DarwinMap(pVM, GCPhys, pvNewR3, X86_PAGE_SIZE, fPageProt, pu2State);
4489 AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageChanged: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
4490 pvNewR3, GCPhys, X86_PAGE_SIZE, rc));
4491 }
4492 else
4493 AssertReleaseFailed();
4494}
4495
4496
4497/**
4498 * Interface for importing state on demand (used by IEM).
4499 *
4500 * @returns VBox status code.
4501 * @param pVCpu The cross context CPU structure.
4502 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
4503 */
4504VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
4505{
4506 LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
4507 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
4508
4509 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
4510}
4511
4512
4513/**
4514 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
4515 *
4516 * @returns VBox status code.
4517 * @param pVCpu The cross context CPU structure.
4518 * @param pcTicks Where to return the CPU tick count.
4519 * @param puAux Where to return the TSC_AUX register value.
4520 */
4521VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
4522{
4523 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
4524 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
4525
4526 int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
4527 if ( RT_SUCCESS(rc)
4528 && puAux)
4529 {
4530 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
4531 {
4532 uint64_t u64Aux;
4533 rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
4534 if (RT_SUCCESS(rc))
4535 *puAux = (uint32_t)u64Aux;
4536 }
4537 else
4538 *puAux = CPUMGetGuestTscAux(pVCpu);
4539 }
4540
4541 return rc;
4542}
4543
4544
4545/**
4546 * Resumes CPU clock (TSC) on all virtual CPUs.
4547 *
4548 * This is called by TM when the VM is started, restored, resumed or similar.
4549 *
4550 * @returns VBox status code.
4551 * @param pVM The cross context VM structure.
4552 * @param pVCpu The cross context CPU structure of the calling EMT.
4553 * @param uPausedTscValue The TSC value at the time of pausing.
4554 */
4555VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
4556{
4557 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
4558 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
4559 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
4560
4561 hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
4562 if (RT_LIKELY(hrc == HV_SUCCESS))
4563 {
4564 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
4565 return VINF_SUCCESS;
4566 }
4567
4568 return nemR3DarwinHvSts2Rc(hrc);
4569}
4570
4571
4572/**
4573 * Returns features supported by the NEM backend.
4574 *
4575 * @returns Flags of features supported by the native NEM backend.
4576 * @param pVM The cross context VM structure.
4577 */
4578VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
4579{
4580 RT_NOREF(pVM);
4581 /*
4582 * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
4583 * and unrestricted guest execution support so we can safely return these flags here always.
4584 */
4585 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
4586}
4587
4588
4589/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
4590 *
4591 * @todo Add notes as the implementation progresses...
4592 */
4593
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette