VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp@ 92424

Last change on this file since 92424 was 92376, checked in by vboxsync, 3 years ago

VMM/NEMR3Native-darwin: Make use of the ASID feature if available on the platform, some smaller cleanups, bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 121.2 KB
Line 
1/* $Id: NEMR3Native-darwin.cpp 92376 2021-11-11 15:09:59Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2020 Oracle Corporation
12 *
13 * This file is part of VirtualBox Open Source Edition (OSE), as
14 * available from http://www.virtualbox.org. This file is free software;
15 * you can redistribute it and/or modify it under the terms of the GNU
16 * General Public License (GPL) as published by the Free Software
17 * Foundation, in version 2 as it comes in the "COPYING" file of the
18 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
19 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
20 */
21
22
23/*********************************************************************************************************************************
24* Header Files *
25*********************************************************************************************************************************/
26#define LOG_GROUP LOG_GROUP_NEM
27#define VMCPU_INCL_CPUM_GST_CTX
28#include <VBox/vmm/nem.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/em.h>
31#include <VBox/vmm/apic.h>
32#include <VBox/vmm/pdm.h>
33#include <VBox/vmm/hm.h>
34#include <VBox/vmm/hm_vmx.h>
35#include <VBox/vmm/dbgftrace.h>
36#include "VMXInternal.h"
37#include "NEMInternal.h"
38#include <VBox/vmm/vmcc.h>
39#include "dtrace/VBoxVMM.h"
40
41#include <iprt/asm.h>
42#include <iprt/ldr.h>
43#include <iprt/mem.h>
44#include <iprt/path.h>
45#include <iprt/string.h>
46#include <iprt/system.h>
47#include <iprt/utf16.h>
48
49
50/*********************************************************************************************************************************
51* Defined Constants And Macros *
52*********************************************************************************************************************************/
53/* No nested hwvirt (for now). */
54#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
55# undef VBOX_WITH_NESTED_HWVIRT_VMX
56#endif
57
58
59/** @name HV return codes.
60 * @{ */
61/** Operation was successful. */
62#define HV_SUCCESS 0
63/** An error occurred during operation. */
64#define HV_ERROR 0xfae94001
65/** The operation could not be completed right now, try again. */
66#define HV_BUSY 0xfae94002
67/** One of the parameters passed wis invalid. */
68#define HV_BAD_ARGUMENT 0xfae94003
69/** Not enough resources left to fulfill the operation. */
70#define HV_NO_RESOURCES 0xfae94005
71/** The device could not be found. */
72#define HV_NO_DEVICE 0xfae94006
73/** The operation is not supportd on this platform with this configuration. */
74#define HV_UNSUPPORTED 0xfae94007
75/** @} */
76
77
78/** @name HV memory protection flags.
79 * @{ */
80/** Memory is readable. */
81#define HV_MEMORY_READ RT_BIT_64(0)
82/** Memory is writeable. */
83#define HV_MEMORY_WRITE RT_BIT_64(1)
84/** Memory is executable. */
85#define HV_MEMORY_EXEC RT_BIT_64(2)
86/** @} */
87
88
89/** @name HV shadow VMCS protection flags.
90 * @{ */
91/** Shadow VMCS field is not accessible. */
92#define HV_SHADOW_VMCS_NONE 0
93/** Shadow VMCS fild is readable. */
94#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
95/** Shadow VMCS field is writeable. */
96#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
97/** @} */
98
99
100/** Default VM creation flags. */
101#define HV_VM_DEFAULT 0
102/** Default guest address space creation flags. */
103#define HV_VM_SPACE_DEFAULT 0
104/** Default vCPU creation flags. */
105#define HV_VCPU_DEFAULT 0
106
107#define HV_DEADLINE_FOREVER UINT64_MAX
108
109
110/*********************************************************************************************************************************
111* Structures and Typedefs *
112*********************************************************************************************************************************/
113
114/** HV return code type. */
115typedef uint32_t hv_return_t;
116/** HV capability bitmask. */
117typedef uint64_t hv_capability_t;
118/** Option bitmask type when creating a VM. */
119typedef uint64_t hv_vm_options_t;
120/** Option bitmask when creating a vCPU. */
121typedef uint64_t hv_vcpu_options_t;
122/** HV memory protection flags type. */
123typedef uint64_t hv_memory_flags_t;
124/** Shadow VMCS protection flags. */
125typedef uint64_t hv_shadow_flags_t;
126/** Guest physical address type. */
127typedef uint64_t hv_gpaddr_t;
128
129
130/**
131 * VMX Capability enumeration.
132 */
133typedef enum
134{
135 HV_VMX_CAP_PINBASED = 0,
136 HV_VMX_CAP_PROCBASED,
137 HV_VMX_CAP_PROCBASED2,
138 HV_VMX_CAP_ENTRY,
139 HV_VMX_CAP_EXIT,
140 HV_VMX_CAP_BASIC, /* Since 11.0 */
141 HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
142 HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
143 HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
144 HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
145 HV_VMX_CAP_MISC, /* Since 11.0 */
146 HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
147 HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
148 HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
149 HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
150 HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
151 HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
152 HV_VMX_CAP_PREEMPTION_TIMER = 32
153} hv_vmx_capability_t;
154
155
156/**
157 * HV x86 register enumeration.
158 */
159typedef enum
160{
161 HV_X86_RIP = 0,
162 HV_X86_RFLAGS,
163 HV_X86_RAX,
164 HV_X86_RCX,
165 HV_X86_RDX,
166 HV_X86_RBX,
167 HV_X86_RSI,
168 HV_X86_RDI,
169 HV_X86_RSP,
170 HV_X86_RBP,
171 HV_X86_R8,
172 HV_X86_R9,
173 HV_X86_R10,
174 HV_X86_R11,
175 HV_X86_R12,
176 HV_X86_R13,
177 HV_X86_R14,
178 HV_X86_R15,
179 HV_X86_CS,
180 HV_X86_SS,
181 HV_X86_DS,
182 HV_X86_ES,
183 HV_X86_FS,
184 HV_X86_GS,
185 HV_X86_IDT_BASE,
186 HV_X86_IDT_LIMIT,
187 HV_X86_GDT_BASE,
188 HV_X86_GDT_LIMIT,
189 HV_X86_LDTR,
190 HV_X86_LDT_BASE,
191 HV_X86_LDT_LIMIT,
192 HV_X86_LDT_AR,
193 HV_X86_TR,
194 HV_X86_TSS_BASE,
195 HV_X86_TSS_LIMIT,
196 HV_X86_TSS_AR,
197 HV_X86_CR0,
198 HV_X86_CR1,
199 HV_X86_CR2,
200 HV_X86_CR3,
201 HV_X86_CR4,
202 HV_X86_DR0,
203 HV_X86_DR1,
204 HV_X86_DR2,
205 HV_X86_DR3,
206 HV_X86_DR4,
207 HV_X86_DR5,
208 HV_X86_DR6,
209 HV_X86_DR7,
210 HV_X86_TPR,
211 HV_X86_XCR0,
212 HV_X86_REGISTERS_MAX
213} hv_x86_reg_t;
214
215
216typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
217typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
218typedef hv_return_t FN_HV_VM_DESTROY(void);
219typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
220typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
221typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
222typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
223typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
224typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
225typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
226typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
227typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
228
229typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
230typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
231typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
232typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
233typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
234typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
235typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
236typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
237typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
238typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
239typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
240typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
241typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
242typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
243typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
244typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
245
246typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
247typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
248
249typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
250typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
251typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
252
253typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
254typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
255
256
257/*********************************************************************************************************************************
258* Global Variables *
259*********************************************************************************************************************************/
260/** NEM_DARWIN_PAGE_STATE_XXX names. */
261NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
262/** MSRs. */
263static SUPHWVIRTMSRS g_HmMsrs;
264/** VMX: Set if swapping EFER is supported. */
265static bool g_fHmVmxSupportsVmcsEfer = false;
266/** @name APIs imported from Hypervisor.framework.
267 * @{ */
268static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
269static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
270static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
271static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
272static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
273static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
274static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
275static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
276static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
277static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
278static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
279static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
280
281static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
282static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
283static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
284static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
285static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
286static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
287static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
288static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
289static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
290static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
291static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
292static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
293static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
294static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
295static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
296static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
297
298static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
299static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
300static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
301static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
302static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
303static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
304static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
305/** @} */
306
307
308/**
309 * Import instructions.
310 */
311static const struct
312{
313 bool fOptional; /**< Set if import is optional. */
314 void **ppfn; /**< The function pointer variable. */
315 const char *pszName; /**< The function name. */
316} g_aImports[] =
317{
318#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
319 NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
320 NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
321 NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
322 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
323 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
324 NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
325 NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
326 NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
327 NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
328 NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
329 NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
330 NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
331
332 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
333 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
334 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
335 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
336 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
337 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
338 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
339 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
340 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
341 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
342 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
343 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
344 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
345 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
346 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
347 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
348 NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
349 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
350 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
351 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
352 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
353 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
354 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
355#undef NEM_DARWIN_IMPORT
356};
357
358
359/*
360 * Let the preprocessor alias the APIs to import variables for better autocompletion.
361 */
362#ifndef IN_SLICKEDIT
363# define hv_capability g_pfnHvCapability
364# define hv_vm_create g_pfnHvVmCreate
365# define hv_vm_destroy g_pfnHvVmDestroy
366# define hv_vm_space_create g_pfnHvVmSpaceCreate
367# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
368# define hv_vm_map g_pfnHvVmMap
369# define hv_vm_unmap g_pfnHvVmUnmap
370# define hv_vm_protect g_pfnHvVmProtect
371# define hv_vm_map_space g_pfnHvVmMapSpace
372# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
373# define hv_vm_protect_space g_pfnHvVmProtectSpace
374# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
375
376# define hv_vcpu_create g_pfnHvVCpuCreate
377# define hv_vcpu_destroy g_pfnHvVCpuDestroy
378# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
379# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
380# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
381# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
382# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
383# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
384# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
385# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
386# define hv_vcpu_flush g_pfnHvVCpuFlush
387# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
388# define hv_vcpu_run g_pfnHvVCpuRun
389# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
390# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
391# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
392
393# define hv_vmx_read_capability g_pfnHvVmxReadCapability
394# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
395# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
396# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
397# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
398# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
399# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
400#endif
401
402
403/*********************************************************************************************************************************
404* Internal Functions *
405*********************************************************************************************************************************/
406
407/**
408 * Converts a HV return code to a VBox status code.
409 *
410 * @returns VBox status code.
411 * @param hrc The HV return code to convert.
412 */
413DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
414{
415 if (hrc == HV_SUCCESS)
416 return VINF_SUCCESS;
417
418 switch (hrc)
419 {
420 case HV_ERROR: return VERR_INVALID_STATE;
421 case HV_BUSY: return VERR_RESOURCE_BUSY;
422 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
423 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
424 case HV_NO_DEVICE: return VERR_NOT_FOUND;
425 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
426 }
427
428 return VERR_IPE_UNEXPECTED_STATUS;
429}
430
431
432/**
433 * Unmaps the given guest physical address range (page aligned).
434 *
435 * @returns VBox status code.
436 * @param pVM The cross context VM structure.
437 * @param GCPhys The guest physical address to start unmapping at.
438 * @param cb The size of the range to unmap in bytes.
439 */
440DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb)
441{
442 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
443 hv_return_t hrc;
444 if (pVM->nem.s.fCreatedAsid)
445 hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys, cb);
446 else
447 hrc = hv_vm_unmap(GCPhys, cb);
448 return nemR3DarwinHvSts2Rc(hrc);
449}
450
451
452/**
453 * Maps a given guest physical address range backed by the given memory with the given
454 * protection flags.
455 *
456 * @returns VBox status code.
457 * @param pVM The cross context VM structure.
458 * @param GCPhys The guest physical address to start mapping.
459 * @param pvRam The R3 pointer of the memory to back the range with.
460 * @param cb The size of the range, page aligned.
461 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
462 */
463DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, void *pvRam, size_t cb, uint32_t fPageProt)
464{
465 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
466
467 hv_memory_flags_t fHvMemProt = 0;
468 if (fPageProt & NEM_PAGE_PROT_READ)
469 fHvMemProt |= HV_MEMORY_READ;
470 if (fPageProt & NEM_PAGE_PROT_WRITE)
471 fHvMemProt |= HV_MEMORY_WRITE;
472 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
473 fHvMemProt |= HV_MEMORY_EXEC;
474
475 hv_return_t hrc;
476 if (pVM->nem.s.fCreatedAsid)
477 hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
478 else
479 hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
480 return nemR3DarwinHvSts2Rc(hrc);
481}
482
483
484#if 0 /* unused */
485DECLINLINE(int) nemR3DarwinProtectPage(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt)
486{
487 hv_memory_flags_t fHvMemProt = 0;
488 if (fPageProt & NEM_PAGE_PROT_READ)
489 fHvMemProt |= HV_MEMORY_READ;
490 if (fPageProt & NEM_PAGE_PROT_WRITE)
491 fHvMemProt |= HV_MEMORY_WRITE;
492 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
493 fHvMemProt |= HV_MEMORY_EXEC;
494
495 if (pVM->nem.s.fCreatedAsid)
496 hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
497 else
498 hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
499
500 return nemR3DarwinHvSts2Rc(hrc);
501}
502#endif
503
504
505DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
506{
507 PGMPAGEMAPLOCK Lock;
508 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
509 if (RT_SUCCESS(rc))
510 PGMPhysReleasePageMappingLock(pVM, &Lock);
511 return rc;
512}
513
514
515DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
516{
517 PGMPAGEMAPLOCK Lock;
518 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
519 if (RT_SUCCESS(rc))
520 PGMPhysReleasePageMappingLock(pVM, &Lock);
521 return rc;
522}
523
524
525/**
526 * Worker that maps pages into Hyper-V.
527 *
528 * This is used by the PGM physical page notifications as well as the memory
529 * access VMEXIT handlers.
530 *
531 * @returns VBox status code.
532 * @param pVM The cross context VM structure.
533 * @param pVCpu The cross context virtual CPU structure of the
534 * calling EMT.
535 * @param GCPhysSrc The source page address.
536 * @param GCPhysDst The hyper-V destination page. This may differ from
537 * GCPhysSrc when A20 is disabled.
538 * @param fPageProt NEM_PAGE_PROT_XXX.
539 * @param pu2State Our page state (input/output).
540 * @param fBackingChanged Set if the page backing is being changed.
541 * @thread EMT(pVCpu)
542 */
543NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
544 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
545{
546 /*
547 * Looks like we need to unmap a page before we can change the backing
548 * or even modify the protection. This is going to be *REALLY* efficient.
549 * PGM lends us two bits to keep track of the state here.
550 */
551 RT_NOREF(pVCpu);
552 uint8_t const u2OldState = *pu2State;
553 uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_DARWIN_PAGE_STATE_WRITABLE
554 : fPageProt & NEM_PAGE_PROT_READ ? NEM_DARWIN_PAGE_STATE_READABLE : NEM_DARWIN_PAGE_STATE_UNMAPPED;
555 if ( fBackingChanged
556 || u2NewState != u2OldState)
557 {
558 if (u2OldState > NEM_DARWIN_PAGE_STATE_UNMAPPED)
559 {
560 int rc = nemR3DarwinUnmap(pVM, GCPhysDst, X86_PAGE_SIZE);
561 if (RT_SUCCESS(rc))
562 {
563 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
564 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
565 if (u2NewState == NEM_DARWIN_PAGE_STATE_UNMAPPED)
566 {
567 Log5(("NEM GPA unmapped/set: %RGp (was %s)\n", GCPhysDst, g_apszPageStates[u2OldState]));
568 return VINF_SUCCESS;
569 }
570 }
571 else
572 {
573 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
574 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
575 return VERR_NEM_INIT_FAILED;
576 }
577 }
578 }
579
580 /*
581 * Writeable mapping?
582 */
583 if (fPageProt & NEM_PAGE_PROT_WRITE)
584 {
585 void *pvPage;
586 int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
587 if (RT_SUCCESS(rc))
588 {
589 rc = nemR3DarwinMap(pVM, GCPhysDst, pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
590 if (RT_SUCCESS(rc))
591 {
592 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
593 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
594 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
595 return VINF_SUCCESS;
596 }
597 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
598 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst));
599 return VERR_NEM_INIT_FAILED;
600 }
601 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
602 return rc;
603 }
604
605 if (fPageProt & NEM_PAGE_PROT_READ)
606 {
607 const void *pvPage;
608 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
609 if (RT_SUCCESS(rc))
610 {
611 rc = nemR3DarwinMap(pVM, GCPhysDst, (void *)pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
612 if (RT_SUCCESS(rc))
613 {
614 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
615 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
616 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
617 return VINF_SUCCESS;
618 }
619 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
620 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
621 return VERR_NEM_INIT_FAILED;
622 }
623 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
624 return rc;
625 }
626
627 /* We already unmapped it above. */
628 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
629 return VINF_SUCCESS;
630}
631
632
633#ifdef LOG_ENABLED
634/**
635 * Logs the current CPU state.
636 */
637static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
638{
639 if (LogIs3Enabled())
640 {
641#if 0
642 char szRegs[4096];
643 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
644 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
645 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
646 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
647 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
648 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
649 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
650 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
651 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
652 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
653 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
654 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
655 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
656 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
657 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
658 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
659 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
660 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
661 " efer=%016VR{efer}\n"
662 " pat=%016VR{pat}\n"
663 " sf_mask=%016VR{sf_mask}\n"
664 "krnl_gs_base=%016VR{krnl_gs_base}\n"
665 " lstar=%016VR{lstar}\n"
666 " star=%016VR{star} cstar=%016VR{cstar}\n"
667 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
668 );
669
670 char szInstr[256];
671 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
672 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
673 szInstr, sizeof(szInstr), NULL);
674 Log3(("%s%s\n", szRegs, szInstr));
675#else
676 RT_NOREF(pVM, pVCpu);
677#endif
678 }
679}
680#endif /* LOG_ENABLED */
681
682
683DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
684{
685 uint64_t u64Data;
686 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
687 if (RT_LIKELY(hrc == HV_SUCCESS))
688 {
689 *pData = (uint16_t)u64Data;
690 return VINF_SUCCESS;
691 }
692
693 return nemR3DarwinHvSts2Rc(hrc);
694}
695
696
697DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
698{
699 uint64_t u64Data;
700 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
701 if (RT_LIKELY(hrc == HV_SUCCESS))
702 {
703 *pData = (uint32_t)u64Data;
704 return VINF_SUCCESS;
705 }
706
707 return nemR3DarwinHvSts2Rc(hrc);
708}
709
710
711DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
712{
713 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
714 if (RT_LIKELY(hrc == HV_SUCCESS))
715 return VINF_SUCCESS;
716
717 return nemR3DarwinHvSts2Rc(hrc);
718}
719
720
721DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
722{
723 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
724 if (RT_LIKELY(hrc == HV_SUCCESS))
725 return VINF_SUCCESS;
726
727 return nemR3DarwinHvSts2Rc(hrc);
728}
729
730
731DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
732{
733 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
734 if (RT_LIKELY(hrc == HV_SUCCESS))
735 return VINF_SUCCESS;
736
737 return nemR3DarwinHvSts2Rc(hrc);
738}
739
740
741DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
742{
743 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
744 if (RT_LIKELY(hrc == HV_SUCCESS))
745 return VINF_SUCCESS;
746
747 return nemR3DarwinHvSts2Rc(hrc);
748}
749
750DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
751{
752 hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
753 if (RT_LIKELY(hrc == HV_SUCCESS))
754 return VINF_SUCCESS;
755
756 return nemR3DarwinHvSts2Rc(hrc);
757}
758
759#if 0 /*unused*/
760DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
761{
762 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
763 if (RT_LIKELY(hrc == HV_SUCCESS))
764 return VINF_SUCCESS;
765
766 return nemR3DarwinHvSts2Rc(hrc);
767}
768#endif
769
770static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
771{
772#define READ_GREG(a_GReg, a_Value) \
773 do \
774 { \
775 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
776 if (RT_LIKELY(hrc == HV_SUCCESS)) \
777 { /* likely */ } \
778 else \
779 return VERR_INTERNAL_ERROR; \
780 } while(0)
781#define READ_VMCS_FIELD(a_Field, a_Value) \
782 do \
783 { \
784 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
785 if (RT_LIKELY(hrc == HV_SUCCESS)) \
786 { /* likely */ } \
787 else \
788 return VERR_INTERNAL_ERROR; \
789 } while(0)
790#define READ_VMCS16_FIELD(a_Field, a_Value) \
791 do \
792 { \
793 uint64_t u64Data; \
794 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
795 if (RT_LIKELY(hrc == HV_SUCCESS)) \
796 { (a_Value) = (uint16_t)u64Data; } \
797 else \
798 return VERR_INTERNAL_ERROR; \
799 } while(0)
800#define READ_VMCS32_FIELD(a_Field, a_Value) \
801 do \
802 { \
803 uint64_t u64Data; \
804 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
805 if (RT_LIKELY(hrc == HV_SUCCESS)) \
806 { (a_Value) = (uint32_t)u64Data; } \
807 else \
808 return VERR_INTERNAL_ERROR; \
809 } while(0)
810#define READ_MSR(a_Msr, a_Value) \
811 do \
812 { \
813 hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
814 if (RT_LIKELY(hrc == HV_SUCCESS)) \
815 { /* likely */ } \
816 else \
817 AssertFailedReturn(VERR_INTERNAL_ERROR); \
818 } while(0)
819
820 RT_NOREF(pVM);
821 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
822
823 /* GPRs */
824 hv_return_t hrc;
825 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
826 {
827 if (fWhat & CPUMCTX_EXTRN_RAX)
828 READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
829 if (fWhat & CPUMCTX_EXTRN_RCX)
830 READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
831 if (fWhat & CPUMCTX_EXTRN_RDX)
832 READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
833 if (fWhat & CPUMCTX_EXTRN_RBX)
834 READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
835 if (fWhat & CPUMCTX_EXTRN_RSP)
836 READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
837 if (fWhat & CPUMCTX_EXTRN_RBP)
838 READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
839 if (fWhat & CPUMCTX_EXTRN_RSI)
840 READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
841 if (fWhat & CPUMCTX_EXTRN_RDI)
842 READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
843 if (fWhat & CPUMCTX_EXTRN_R8_R15)
844 {
845 READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
846 READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
847 READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
848 READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
849 READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
850 READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
851 READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
852 READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
853 }
854 }
855
856 /* RIP & Flags */
857 if (fWhat & CPUMCTX_EXTRN_RIP)
858 READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
859 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
860 READ_GREG(HV_X86_RFLAGS, pVCpu->cpum.GstCtx.rflags.u);
861
862 /* Segments */
863#define READ_SEG(a_SReg, a_enmName) \
864 do { \
865 READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
866 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
867 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
868 READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
869 (a_SReg).ValidSel = (a_SReg).Sel; \
870 } while (0)
871 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
872 {
873 if (fWhat & CPUMCTX_EXTRN_ES)
874 READ_SEG(pVCpu->cpum.GstCtx.es, ES);
875 if (fWhat & CPUMCTX_EXTRN_CS)
876 READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
877 if (fWhat & CPUMCTX_EXTRN_SS)
878 READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
879 if (fWhat & CPUMCTX_EXTRN_DS)
880 READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
881 if (fWhat & CPUMCTX_EXTRN_FS)
882 READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
883 if (fWhat & CPUMCTX_EXTRN_GS)
884 READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
885 }
886
887 /* Descriptor tables and the task segment. */
888 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
889 {
890 if (fWhat & CPUMCTX_EXTRN_LDTR)
891 READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
892
893 if (fWhat & CPUMCTX_EXTRN_TR)
894 {
895 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
896 avoid to trigger sanity assertions around the code, always fix this. */
897 READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
898 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
899 {
900 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
901 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
902 break;
903 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
904 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
905 break;
906 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
907 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
908 break;
909 }
910 }
911 if (fWhat & CPUMCTX_EXTRN_IDTR)
912 {
913 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
914 READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
915 }
916 if (fWhat & CPUMCTX_EXTRN_GDTR)
917 {
918 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
919 READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
920 }
921 }
922
923 /* Control registers. */
924 bool fMaybeChangedMode = false;
925 bool fUpdateCr3 = false;
926 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
927 {
928 uint64_t u64CrTmp = 0;
929
930 if (fWhat & CPUMCTX_EXTRN_CR0)
931 {
932 READ_GREG(HV_X86_CR0, u64CrTmp);
933 if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
934 {
935 CPUMSetGuestCR0(pVCpu, u64CrTmp);
936 fMaybeChangedMode = true;
937 }
938 }
939 if (fWhat & CPUMCTX_EXTRN_CR2)
940 READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
941 if (fWhat & CPUMCTX_EXTRN_CR3)
942 {
943 READ_GREG(HV_X86_CR3, u64CrTmp);
944 if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
945 {
946 CPUMSetGuestCR3(pVCpu, u64CrTmp);
947 fUpdateCr3 = true;
948 }
949 }
950 if (fWhat & CPUMCTX_EXTRN_CR4)
951 {
952 READ_GREG(HV_X86_CR4, u64CrTmp);
953 u64CrTmp &= ~VMX_V_CR4_FIXED0;
954
955 if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
956 {
957 CPUMSetGuestCR4(pVCpu, u64CrTmp);
958 fMaybeChangedMode = true;
959 }
960 }
961 }
962 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
963 {
964 uint64_t u64Cr8 = 0;
965
966 READ_GREG(HV_X86_TPR, u64Cr8);
967 APICSetTpr(pVCpu, u64Cr8);
968 }
969
970 /* Debug registers. */
971 if (fWhat & CPUMCTX_EXTRN_DR7)
972 {
973 uint64_t u64Dr7;
974 READ_GREG(HV_X86_DR7, u64Dr7);
975 if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
976 CPUMSetGuestDR7(pVCpu, u64Dr7);
977 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
978 }
979 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
980 {
981 uint64_t u64DrTmp;
982
983 READ_GREG(HV_X86_DR0, u64DrTmp);
984 if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
985 CPUMSetGuestDR0(pVCpu, u64DrTmp);
986 READ_GREG(HV_X86_DR1, u64DrTmp);
987 if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
988 CPUMSetGuestDR1(pVCpu, u64DrTmp);
989 READ_GREG(HV_X86_DR3, u64DrTmp);
990 if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
991 CPUMSetGuestDR2(pVCpu, u64DrTmp);
992 READ_GREG(HV_X86_DR3, u64DrTmp);
993 if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
994 CPUMSetGuestDR3(pVCpu, u64DrTmp);
995 }
996 if (fWhat & CPUMCTX_EXTRN_DR6)
997 {
998 uint64_t u64Dr6;
999 READ_GREG(HV_X86_DR7, u64Dr6);
1000 if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
1001 CPUMSetGuestDR6(pVCpu, u64Dr6);
1002 }
1003
1004 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1005 {
1006 hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1007 if (hrc == HV_SUCCESS)
1008 { /* likely */ }
1009 else
1010 return nemR3DarwinHvSts2Rc(hrc);
1011 }
1012
1013 /* MSRs */
1014 if (fWhat & CPUMCTX_EXTRN_EFER)
1015 {
1016 uint64_t u64Efer;
1017
1018 READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
1019 if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
1020 {
1021 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
1022 if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1023 PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
1024 pVCpu->cpum.GstCtx.msrEFER = u64Efer;
1025 fMaybeChangedMode = true;
1026 }
1027 }
1028
1029 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1030 READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1031 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1032 {
1033 uint64_t u64Tmp;
1034 READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
1035 pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
1036 READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
1037 pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
1038 READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
1039 pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
1040 }
1041 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1042 {
1043 READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1044 READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1045 READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1046 READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1047 }
1048#if 0
1049 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1050 {
1051 Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
1052 const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
1053 if (aValues[iReg].Reg64 != uOldBase)
1054 {
1055 Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
1056 pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
1057 int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
1058 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
1059 }
1060 iReg++;
1061
1062 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
1063#if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
1064 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
1065#endif
1066 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1067 GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
1068 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
1069 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
1070 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
1071 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
1072 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
1073 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
1074 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
1075 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
1076 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
1077 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
1078 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
1079 GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
1080 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
1081 }
1082#endif
1083
1084 /* Almost done, just update extrn flags and maybe change PGM mode. */
1085 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1086 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1087 pVCpu->cpum.GstCtx.fExtrn = 0;
1088
1089 /* Typical. */
1090 if (!fMaybeChangedMode && !fUpdateCr3)
1091 return VINF_SUCCESS;
1092
1093 /*
1094 * Slow.
1095 */
1096 if (fMaybeChangedMode)
1097 {
1098 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
1099 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1100 }
1101
1102 if (fUpdateCr3)
1103 {
1104 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3, false /*fPdpesMapped*/);
1105 if (rc == VINF_SUCCESS)
1106 { /* likely */ }
1107 else
1108 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1109 }
1110
1111 return VINF_SUCCESS;
1112#undef READ_GREG
1113#undef READ_VMCS_FIELD
1114#undef READ_VMCS32_FIELD
1115#undef READ_SEG
1116#undef READ_MSR
1117}
1118
1119
1120/**
1121 * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
1122 * and nemHCWinHandleMemoryAccessPageCheckerCallback.
1123 */
1124typedef struct NEMHCDARWINHMACPCCSTATE
1125{
1126 /** Input: Write access. */
1127 bool fWriteAccess;
1128 /** Output: Set if we did something. */
1129 bool fDidSomething;
1130 /** Output: Set it we should resume. */
1131 bool fCanResume;
1132} NEMHCDARWINHMACPCCSTATE;
1133
1134/**
1135 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1136 * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
1137 * NEMHCDARWINHMACPCCSTATE structure. }
1138 */
1139static DECLCALLBACK(int)
1140nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1141{
1142 NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
1143 pState->fDidSomething = false;
1144 pState->fCanResume = false;
1145
1146 uint8_t u2State = pInfo->u2NemState;
1147
1148 /*
1149 * Consolidate current page state with actual page protection and access type.
1150 * We don't really consider downgrades here, as they shouldn't happen.
1151 */
1152 int rc;
1153 switch (u2State)
1154 {
1155 case NEM_DARWIN_PAGE_STATE_UNMAPPED:
1156 case NEM_DARWIN_PAGE_STATE_NOT_SET:
1157 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1158 {
1159 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1160 return VINF_SUCCESS;
1161 }
1162
1163 /* Don't bother remapping it if it's a write request to a non-writable page. */
1164 if ( pState->fWriteAccess
1165 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1166 {
1167 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1168 return VINF_SUCCESS;
1169 }
1170
1171 /* Map the page. */
1172 rc = nemHCNativeSetPhysPage(pVM,
1173 pVCpu,
1174 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1175 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1176 pInfo->fNemProt,
1177 &u2State,
1178 true /*fBackingState*/);
1179 pInfo->u2NemState = u2State;
1180 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1181 GCPhys, g_apszPageStates[u2State], rc));
1182 pState->fDidSomething = true;
1183 pState->fCanResume = true;
1184 return rc;
1185
1186 case NEM_DARWIN_PAGE_STATE_READABLE:
1187 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1188 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1189 {
1190 pState->fCanResume = true;
1191 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1192 return VINF_SUCCESS;
1193 }
1194 break;
1195
1196 case NEM_DARWIN_PAGE_STATE_WRITABLE:
1197 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1198 {
1199 /* We get spurious EPT exit violations when everything is fine (#3a case) but can resume without issues here... */
1200 pState->fCanResume = true;
1201 if (pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_WRITABLE)
1202 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
1203 else
1204 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
1205 GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
1206 return VINF_SUCCESS;
1207 }
1208
1209 break;
1210
1211 default:
1212 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1213 }
1214
1215 /*
1216 * Unmap and restart the instruction.
1217 * If this fails, which it does every so often, just unmap everything for now.
1218 */
1219 rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE);
1220 if (RT_SUCCESS(rc))
1221 {
1222 pState->fDidSomething = true;
1223 pState->fCanResume = true;
1224 pInfo->u2NemState = NEM_DARWIN_PAGE_STATE_UNMAPPED;
1225 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
1226 Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
1227 return VINF_SUCCESS;
1228 }
1229 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
1230 LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s rc=%Rrc\n",
1231 GCPhys, g_apszPageStates[u2State], rc));
1232 return VERR_NEM_UNMAP_PAGES_FAILED;
1233}
1234
1235
1236DECL_FORCE_INLINE(bool) vmxHCShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
1237{
1238 RT_NOREF(pVCpu, pVmxTransient);
1239 return true;
1240}
1241
1242
1243DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
1244{
1245 RT_NOREF(pVM);
1246 return true;
1247}
1248
1249
1250DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
1251{
1252 RT_NOREF(pVM);
1253 return true;
1254}
1255
1256
1257DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
1258{
1259 RT_NOREF(pVM);
1260 return false;
1261}
1262
1263
1264DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
1265{
1266 RT_NOREF(pVM);
1267 return false;
1268}
1269
1270
1271/*
1272 * Instantiate the code we share with ring-0.
1273 */
1274#define IN_NEM_DARWIN
1275//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
1276#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
1277#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
1278#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
1279
1280#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
1281#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
1282#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
1283#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
1284
1285#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
1286#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
1287#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1288#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1289
1290#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
1291#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
1292#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1293#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1294
1295#include "../VMMAll/VMXAllTemplate.cpp.h"
1296
1297#undef VMX_VMCS_WRITE_16
1298#undef VMX_VMCS_WRITE_32
1299#undef VMX_VMCS_WRITE_64
1300#undef VMX_VMCS_WRITE_NW
1301
1302#undef VMX_VMCS_READ_16
1303#undef VMX_VMCS_READ_32
1304#undef VMX_VMCS_READ_64
1305#undef VMX_VMCS_READ_NW
1306
1307#undef VM_IS_VMX_PREEMPT_TIMER_USED
1308#undef VM_IS_VMX_NESTED_PAGING
1309#undef VM_IS_VMX_UNRESTRICTED_GUEST
1310#undef VCPU_2_VMXSTATS
1311#undef VCPU_2_VMXSTATE
1312
1313
1314/**
1315 * Exports the guest GP registers to HV for execution.
1316 *
1317 * @returns VBox status code.
1318 * @param pVCpu The cross context virtual CPU structure of the
1319 * calling EMT.
1320 */
1321static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
1322{
1323#define WRITE_GREG(a_GReg, a_Value) \
1324 do \
1325 { \
1326 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1327 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1328 { /* likely */ } \
1329 else \
1330 return VERR_INTERNAL_ERROR; \
1331 } while(0)
1332
1333 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
1334 if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
1335 {
1336 if (fCtxChanged & HM_CHANGED_GUEST_RAX)
1337 WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
1338 if (fCtxChanged & HM_CHANGED_GUEST_RCX)
1339 WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
1340 if (fCtxChanged & HM_CHANGED_GUEST_RDX)
1341 WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
1342 if (fCtxChanged & HM_CHANGED_GUEST_RBX)
1343 WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
1344 if (fCtxChanged & HM_CHANGED_GUEST_RSP)
1345 WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
1346 if (fCtxChanged & HM_CHANGED_GUEST_RBP)
1347 WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
1348 if (fCtxChanged & HM_CHANGED_GUEST_RSI)
1349 WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
1350 if (fCtxChanged & HM_CHANGED_GUEST_RDI)
1351 WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
1352 if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
1353 {
1354 WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
1355 WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
1356 WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
1357 WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
1358 WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
1359 WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
1360 WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
1361 WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
1362 }
1363
1364 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
1365 }
1366
1367 if (fCtxChanged & HM_CHANGED_GUEST_CR2)
1368 {
1369 WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1370 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
1371 }
1372
1373 return VINF_SUCCESS;
1374#undef WRITE_GREG
1375}
1376
1377
1378/**
1379 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
1380 *
1381 * @returns Bitmask of HM changed flags.
1382 * @param fCpumExtrn The CPUM extern bitmask.
1383 */
1384static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
1385{
1386 uint64_t fHmChanged = 0;
1387
1388 /* Invert to gt a mask of things which are kept in CPUM. */
1389 uint64_t fCpumIntern = ~fCpumExtrn;
1390
1391 if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
1392 {
1393 if (fCpumIntern & CPUMCTX_EXTRN_RAX)
1394 fHmChanged |= HM_CHANGED_GUEST_RAX;
1395 if (fCpumIntern & CPUMCTX_EXTRN_RCX)
1396 fHmChanged |= HM_CHANGED_GUEST_RCX;
1397 if (fCpumIntern & CPUMCTX_EXTRN_RDX)
1398 fHmChanged |= HM_CHANGED_GUEST_RDX;
1399 if (fCpumIntern & CPUMCTX_EXTRN_RBX)
1400 fHmChanged |= HM_CHANGED_GUEST_RBX;
1401 if (fCpumIntern & CPUMCTX_EXTRN_RSP)
1402 fHmChanged |= HM_CHANGED_GUEST_RSP;
1403 if (fCpumIntern & CPUMCTX_EXTRN_RBP)
1404 fHmChanged |= HM_CHANGED_GUEST_RBP;
1405 if (fCpumIntern & CPUMCTX_EXTRN_RSI)
1406 fHmChanged |= HM_CHANGED_GUEST_RSI;
1407 if (fCpumIntern & CPUMCTX_EXTRN_RDI)
1408 fHmChanged |= HM_CHANGED_GUEST_RDI;
1409 if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
1410 fHmChanged |= HM_CHANGED_GUEST_R8_R15;
1411 }
1412
1413 /* RIP & Flags */
1414 if (fCpumIntern & CPUMCTX_EXTRN_RIP)
1415 fHmChanged |= HM_CHANGED_GUEST_RIP;
1416 if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
1417 fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
1418
1419 /* Segments */
1420 if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
1421 {
1422 if (fCpumIntern & CPUMCTX_EXTRN_ES)
1423 fHmChanged |= HM_CHANGED_GUEST_ES;
1424 if (fCpumIntern & CPUMCTX_EXTRN_CS)
1425 fHmChanged |= HM_CHANGED_GUEST_CS;
1426 if (fCpumIntern & CPUMCTX_EXTRN_SS)
1427 fHmChanged |= HM_CHANGED_GUEST_SS;
1428 if (fCpumIntern & CPUMCTX_EXTRN_DS)
1429 fHmChanged |= HM_CHANGED_GUEST_DS;
1430 if (fCpumIntern & CPUMCTX_EXTRN_FS)
1431 fHmChanged |= HM_CHANGED_GUEST_FS;
1432 if (fCpumIntern & CPUMCTX_EXTRN_GS)
1433 fHmChanged |= HM_CHANGED_GUEST_GS;
1434 }
1435
1436 /* Descriptor tables & task segment. */
1437 if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
1438 {
1439 if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
1440 fHmChanged |= HM_CHANGED_GUEST_LDTR;
1441 if (fCpumIntern & CPUMCTX_EXTRN_TR)
1442 fHmChanged |= HM_CHANGED_GUEST_TR;
1443 if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
1444 fHmChanged |= HM_CHANGED_GUEST_IDTR;
1445 if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
1446 fHmChanged |= HM_CHANGED_GUEST_GDTR;
1447 }
1448
1449 /* Control registers. */
1450 if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
1451 {
1452 if (fCpumIntern & CPUMCTX_EXTRN_CR0)
1453 fHmChanged |= HM_CHANGED_GUEST_CR0;
1454 if (fCpumIntern & CPUMCTX_EXTRN_CR2)
1455 fHmChanged |= HM_CHANGED_GUEST_CR2;
1456 if (fCpumIntern & CPUMCTX_EXTRN_CR3)
1457 fHmChanged |= HM_CHANGED_GUEST_CR3;
1458 if (fCpumIntern & CPUMCTX_EXTRN_CR4)
1459 fHmChanged |= HM_CHANGED_GUEST_CR4;
1460 }
1461 if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
1462 fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
1463
1464 /* Debug registers. */
1465 if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
1466 fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
1467 if (fCpumIntern & CPUMCTX_EXTRN_DR6)
1468 fHmChanged |= HM_CHANGED_GUEST_DR6;
1469 if (fCpumIntern & CPUMCTX_EXTRN_DR7)
1470 fHmChanged |= HM_CHANGED_GUEST_DR7;
1471
1472 /* Floating point state. */
1473 if (fCpumIntern & CPUMCTX_EXTRN_X87)
1474 fHmChanged |= HM_CHANGED_GUEST_X87;
1475 if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
1476 fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
1477 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
1478 fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
1479 if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
1480 fHmChanged |= HM_CHANGED_GUEST_XCRx;
1481
1482 /* MSRs */
1483 if (fCpumIntern & CPUMCTX_EXTRN_EFER)
1484 fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
1485 if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1486 fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
1487 if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
1488 fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
1489 if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
1490 fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
1491 if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
1492 fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
1493 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
1494 fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
1495
1496 return fHmChanged;
1497}
1498
1499
1500/**
1501 * Exports the guest state to HV for execution.
1502 *
1503 * @returns VBox status code.
1504 * @param pVM The cross context VM structure.
1505 * @param pVCpu The cross context virtual CPU structure of the
1506 * calling EMT.
1507 * @param pVmxTransient The transient VMX structure.
1508 */
1509static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1510{
1511#define WRITE_GREG(a_GReg, a_Value) \
1512 do \
1513 { \
1514 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1515 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1516 { /* likely */ } \
1517 else \
1518 return VERR_INTERNAL_ERROR; \
1519 } while(0)
1520#define WRITE_VMCS_FIELD(a_Field, a_Value) \
1521 do \
1522 { \
1523 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
1524 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1525 { /* likely */ } \
1526 else \
1527 return VERR_INTERNAL_ERROR; \
1528 } while(0)
1529#define WRITE_MSR(a_Msr, a_Value) \
1530 do \
1531 { \
1532 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
1533 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1534 { /* likely */ } \
1535 else \
1536 AssertFailedReturn(VERR_INTERNAL_ERROR); \
1537 } while(0)
1538
1539 RT_NOREF(pVM);
1540
1541 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
1542 if (!fWhat)
1543 return VINF_SUCCESS;
1544
1545 pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
1546
1547 int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
1548 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1549
1550 rc = nemR3DarwinExportGuestGprs(pVCpu);
1551 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1552
1553 rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
1554 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1555
1556 VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
1557 if (rcStrict == VINF_SUCCESS)
1558 { /* likely */ }
1559 else
1560 {
1561 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
1562 return VBOXSTRICTRC_VAL(rcStrict);
1563 }
1564
1565 vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
1566 vmxHCExportGuestRip(pVCpu);
1567 //vmxHCExportGuestRsp(pVCpu);
1568 vmxHCExportGuestRflags(pVCpu, pVmxTransient);
1569
1570 rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
1571 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1572
1573 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1574 WRITE_GREG(HV_X86_TPR, CPUMGetGuestCR8(pVCpu));
1575
1576 /* Debug registers. */
1577 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1578 {
1579 WRITE_GREG(HV_X86_DR0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
1580 WRITE_GREG(HV_X86_DR1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
1581 WRITE_GREG(HV_X86_DR2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
1582 WRITE_GREG(HV_X86_DR3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
1583 }
1584 if (fWhat & CPUMCTX_EXTRN_DR6)
1585 WRITE_GREG(HV_X86_DR6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
1586 if (fWhat & CPUMCTX_EXTRN_DR7)
1587 WRITE_GREG(HV_X86_DR7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
1588
1589 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1590 {
1591 hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1592 if (hrc == HV_SUCCESS)
1593 { /* likely */ }
1594 else
1595 return nemR3DarwinHvSts2Rc(hrc);
1596 }
1597
1598 /* MSRs */
1599 if (fWhat & CPUMCTX_EXTRN_EFER)
1600 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
1601 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1602 WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1603 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1604 {
1605 WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
1606 WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
1607 WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
1608 }
1609 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1610 {
1611 WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1612 WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1613 WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1614 WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1615 }
1616 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1617 {
1618 hv_return_t hrc = hv_vmx_vcpu_set_apic_address(pVCpu->nem.s.hVCpuId, APICGetBaseMsrNoCheck(pVCpu) & PAGE_BASE_GC_MASK);
1619 if (RT_UNLIKELY(hrc != HV_SUCCESS))
1620 return nemR3DarwinHvSts2Rc(hrc);
1621
1622#if 0
1623 ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
1624#if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
1625 ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
1626#endif
1627 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1628 ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
1629 ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
1630 ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
1631 ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
1632 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
1633 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
1634 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
1635 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
1636 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
1637 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
1638 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
1639 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
1640 ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
1641#if 0 /** @todo these registers aren't available? Might explain something.. .*/
1642 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM);
1643 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
1644 {
1645 ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
1646 ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
1647 }
1648#endif
1649#endif
1650 }
1651
1652 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0 /*MSR_IA32_DEBUGCTL_LBR*/);
1653
1654#if 0 /** @todo */
1655 WRITE_GREG(HV_X86_TSS_BASE, );
1656 WRITE_GREG(HV_X86_TSS_LIMIT, );
1657 WRITE_GREG(HV_X86_TSS_AR, );
1658 WRITE_GREG(HV_X86_XCR0, );
1659#endif
1660
1661 hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
1662 hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
1663
1664 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1665
1666 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
1667 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
1668 | HM_CHANGED_GUEST_CR2
1669 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
1670 | HM_CHANGED_GUEST_X87
1671 | HM_CHANGED_GUEST_SSE_AVX
1672 | HM_CHANGED_GUEST_OTHER_XSAVE
1673 | HM_CHANGED_GUEST_XCRx
1674 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
1675 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
1676 | HM_CHANGED_GUEST_TSC_AUX
1677 | HM_CHANGED_GUEST_OTHER_MSRS
1678 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
1679
1680 return VINF_SUCCESS;
1681#undef WRITE_GREG
1682#undef WRITE_VMCS_FIELD
1683}
1684
1685
1686/**
1687 * Handles an exit from hv_vcpu_run().
1688 *
1689 * @returns VBox strict status code.
1690 * @param pVM The cross context VM structure.
1691 * @param pVCpu The cross context virtual CPU structure of the
1692 * calling EMT.
1693 * @param pVmxTransient The transient VMX structure.
1694 */
1695static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1696{
1697 uint32_t uExitReason;
1698 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
1699 AssertRC(rc);
1700 pVmxTransient->fVmcsFieldsRead = 0;
1701 pVmxTransient->fIsNestedGuest = false;
1702 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
1703 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
1704
1705 if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
1706 AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
1707 pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
1708 VERR_NEM_IPE_0);
1709
1710 /** @todo Only copy the state on demand (requires changing to adhere to fCtxChanged from th VMX code
1711 * flags instead of the fExtrn one living in CPUM.
1712 */
1713 rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, UINT64_MAX);
1714 AssertRCReturn(rc, rc);
1715
1716#ifndef HMVMX_USE_FUNCTION_TABLE
1717 return vmxHCHandleExit(pVCpu, pVmxTransient);
1718#else
1719 return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
1720#endif
1721}
1722
1723
1724/**
1725 * Worker for nemR3NativeInit that loads the Hypervisor.framwork shared library.
1726 *
1727 * @returns VBox status code.
1728 * @param fForced Whether the HMForced flag is set and we should
1729 * fail if we cannot initialize.
1730 * @param pErrInfo Where to always return error info.
1731 */
1732static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
1733{
1734 RTLDRMOD hMod = NIL_RTLDRMOD;
1735 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
1736
1737 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
1738 if (RT_SUCCESS(rc))
1739 {
1740 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
1741 {
1742 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
1743 if (RT_SUCCESS(rc2))
1744 {
1745 if (g_aImports[i].fOptional)
1746 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
1747 g_aImports[i].pszName));
1748 }
1749 else
1750 {
1751 *g_aImports[i].ppfn = NULL;
1752
1753 LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
1754 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
1755 g_aImports[i].pszName, rc2));
1756 if (!g_aImports[i].fOptional)
1757 {
1758 if (RTErrInfoIsSet(pErrInfo))
1759 RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
1760 else
1761 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
1762 Assert(RT_FAILURE(rc));
1763 }
1764 }
1765 }
1766 if (RT_SUCCESS(rc))
1767 {
1768 Assert(!RTErrInfoIsSet(pErrInfo));
1769 }
1770
1771 RTLdrClose(hMod);
1772 }
1773 else
1774 {
1775 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
1776 rc = VERR_NEM_INIT_FAILED;
1777 }
1778
1779 return rc;
1780}
1781
1782
1783/**
1784 * Read and initialize the global capabilities supported by this CPU.
1785 *
1786 * @returns VBox status code.
1787 */
1788static int nemR3DarwinCapsInit(void)
1789{
1790 RT_ZERO(g_HmMsrs);
1791
1792 hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
1793 if (hrc == HV_SUCCESS)
1794 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
1795 if (hrc == HV_SUCCESS)
1796 hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
1797 if (hrc == HV_SUCCESS)
1798 hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
1799 if (hrc == HV_SUCCESS)
1800 {
1801 hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
1802 if (hrc == HV_SUCCESS)
1803 {
1804 if (hrc == HV_SUCCESS)
1805 hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
1806 if (hrc == HV_SUCCESS)
1807 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
1808 if (hrc == HV_SUCCESS)
1809 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
1810 if (hrc == HV_SUCCESS)
1811 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
1812 if (hrc == HV_SUCCESS)
1813 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
1814 if (hrc == HV_SUCCESS)
1815 hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
1816 if ( hrc == HV_SUCCESS
1817 && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1818 {
1819 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
1820 if (hrc == HV_SUCCESS)
1821 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
1822 if (hrc == HV_SUCCESS)
1823 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
1824 if (hrc == HV_SUCCESS)
1825 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
1826 }
1827 }
1828 else
1829 {
1830 /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
1831 g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
1832 g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
1833 g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
1834 g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
1835 hrc = HV_SUCCESS;
1836 }
1837 }
1838
1839 if ( hrc == HV_SUCCESS
1840 && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1841 {
1842 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
1843
1844 if ( hrc == HV_SUCCESS
1845 && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
1846 {
1847 hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
1848 if (hrc != HV_SUCCESS)
1849 hrc = HV_SUCCESS; /* Probably just outdated OS. */
1850 }
1851
1852 g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
1853 }
1854
1855 if (hrc == HV_SUCCESS)
1856 {
1857 /*
1858 * Check for EFER swapping support.
1859 */
1860 g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
1861 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1862 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1863 }
1864
1865 return nemR3DarwinHvSts2Rc(hrc);
1866}
1867
1868
1869/**
1870 * Sets up pin-based VM-execution controls in the VMCS.
1871 *
1872 * @returns VBox status code.
1873 * @param pVCpu The cross context virtual CPU structure.
1874 * @param pVmcsInfo The VMCS info. object.
1875 */
1876static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
1877{
1878 //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1879 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
1880 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
1881
1882 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
1883 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
1884
1885#if 0 /** @todo Use preemption timer */
1886 /* Enable the VMX-preemption timer. */
1887 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
1888 {
1889 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
1890 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
1891 }
1892
1893 /* Enable posted-interrupt processing. */
1894 if (pVM->hm.s.fPostedIntrs)
1895 {
1896 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
1897 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
1898 fVal |= VMX_PIN_CTLS_POSTED_INT;
1899 }
1900#endif
1901
1902 if ((fVal & fZap) != fVal)
1903 {
1904 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
1905 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
1906 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
1907 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1908 }
1909
1910 /* Commit it to the VMCS and update our cache. */
1911 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
1912 AssertRC(rc);
1913 pVmcsInfo->u32PinCtls = fVal;
1914
1915 return VINF_SUCCESS;
1916}
1917
1918
1919/**
1920 * Sets up secondary processor-based VM-execution controls in the VMCS.
1921 *
1922 * @returns VBox status code.
1923 * @param pVCpu The cross context virtual CPU structure.
1924 * @param pVmcsInfo The VMCS info. object.
1925 */
1926static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
1927{
1928 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1929 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
1930 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
1931
1932 /* WBINVD causes a VM-exit. */
1933 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
1934 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
1935
1936 /* Enable the INVPCID instruction if we expose it to the guest and is supported
1937 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
1938 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
1939 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
1940 fVal |= VMX_PROC_CTLS2_INVPCID;
1941
1942#if 0 /** @todo */
1943 /* Enable VPID. */
1944 if (pVM->hmr0.s.vmx.fVpid)
1945 fVal |= VMX_PROC_CTLS2_VPID;
1946
1947 if (pVM->hm.s.fVirtApicRegs)
1948 {
1949 /* Enable APIC-register virtualization. */
1950 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
1951 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
1952
1953 /* Enable virtual-interrupt delivery. */
1954 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
1955 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
1956 }
1957
1958 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
1959 where the TPR shadow resides. */
1960 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
1961 * done dynamically. */
1962 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
1963 {
1964 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
1965 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
1966 }
1967#endif
1968
1969 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
1970 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
1971 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
1972 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
1973 fVal |= VMX_PROC_CTLS2_RDTSCP;
1974
1975#if 0
1976 /* Enable Pause-Loop exiting. */
1977 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
1978 && pVM->hm.s.vmx.cPleGapTicks
1979 && pVM->hm.s.vmx.cPleWindowTicks)
1980 {
1981 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
1982
1983 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
1984 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
1985 }
1986#endif
1987
1988 if ((fVal & fZap) != fVal)
1989 {
1990 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
1991 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
1992 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
1993 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1994 }
1995
1996 /* Commit it to the VMCS and update our cache. */
1997 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
1998 AssertRC(rc);
1999 pVmcsInfo->u32ProcCtls2 = fVal;
2000
2001 return VINF_SUCCESS;
2002}
2003
2004
2005/**
2006 * Enables native access for the given MSR.
2007 *
2008 * @returns VBox status code.
2009 * @param pVCpu The cross context virtual CPU structure.
2010 * @param idMsr The MSR to enable native access for.
2011 */
2012static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
2013{
2014 hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2015 if (hrc == HV_SUCCESS)
2016 return VINF_SUCCESS;
2017
2018 return nemR3DarwinHvSts2Rc(hrc);
2019}
2020
2021
2022/**
2023 * Sets up the MSR permissions which don't change through the lifetime of the VM.
2024 *
2025 * @returns VBox status code.
2026 * @param pVCpu The cross context virtual CPU structure.
2027 * @param pVmcsInfo The VMCS info. object.
2028 */
2029static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2030{
2031 RT_NOREF(pVmcsInfo);
2032
2033 /*
2034 * The guest can access the following MSRs (read, write) without causing
2035 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2036 */
2037 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2038 int rc;
2039 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
2040 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
2041 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
2042 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
2043 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
2044
2045 /*
2046 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2047 * associated with then. We never need to intercept access (writes need to be
2048 * executed without causing a VM-exit, reads will #GP fault anyway).
2049 *
2050 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2051 * read/write them. We swap the guest/host MSR value using the
2052 * auto-load/store MSR area.
2053 */
2054 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2055 {
2056 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
2057 AssertRCReturn(rc, rc);
2058 }
2059#if 0 /* Doesn't work. */
2060 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2061 {
2062 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
2063 AssertRCReturn(rc, rc);
2064 }
2065#endif
2066 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2067 {
2068 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
2069 AssertRCReturn(rc, rc);
2070 }
2071
2072 /*
2073 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2074 * required for 64-bit guests.
2075 */
2076 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
2077 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
2078 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
2079 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
2080
2081 /* Required for enabling the RDTSCP instruction. */
2082 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
2083
2084 return VINF_SUCCESS;
2085}
2086
2087
2088/**
2089 * Sets up processor-based VM-execution controls in the VMCS.
2090 *
2091 * @returns VBox status code.
2092 * @param pVCpu The cross context virtual CPU structure.
2093 * @param pVmcsInfo The VMCS info. object.
2094 */
2095static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2096{
2097 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2098 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2099 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2100
2101 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2102// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2103 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2104 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2105 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2106 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2107 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2108
2109 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2110 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2111 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2112 {
2113 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2114 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2115 }
2116
2117 /* Use TPR shadowing if supported by the CPU. */
2118 if ( PDMHasApic(pVM)
2119 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
2120 {
2121 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2122 /* CR8 writes cause a VM-exit based on TPR threshold. */
2123 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2124 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2125 }
2126 else
2127 {
2128 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2129 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2130 }
2131
2132 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2133 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2134 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2135
2136 if ((fVal & fZap) != fVal)
2137 {
2138 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2139 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
2140 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2141 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2142 }
2143
2144 /* Commit it to the VMCS and update our cache. */
2145 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2146 AssertRC(rc);
2147 pVmcsInfo->u32ProcCtls = fVal;
2148
2149 /* Set up MSR permissions that don't change through the lifetime of the VM. */
2150 rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
2151 AssertRCReturn(rc, rc);
2152
2153 /*
2154 * Set up secondary processor-based VM-execution controls
2155 * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
2156 */
2157 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2158 return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
2159}
2160
2161
2162/**
2163 * Sets up miscellaneous (everything other than Pin, Processor and secondary
2164 * Processor-based VM-execution) control fields in the VMCS.
2165 *
2166 * @returns VBox status code.
2167 * @param pVCpu The cross context virtual CPU structure.
2168 * @param pVmcsInfo The VMCS info. object.
2169 */
2170static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2171{
2172 int rc = VINF_SUCCESS;
2173 //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
2174 if (RT_SUCCESS(rc))
2175 {
2176 uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
2177 uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
2178
2179 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
2180 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
2181
2182 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
2183 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
2184
2185#if 0 /** @todo */
2186 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fLbr)
2187 {
2188 rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
2189 AssertRC(rc);
2190 }
2191#endif
2192 return VINF_SUCCESS;
2193 }
2194 else
2195 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
2196 return rc;
2197}
2198
2199
2200/**
2201 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2202 *
2203 * We shall setup those exception intercepts that don't change during the
2204 * lifetime of the VM here. The rest are done dynamically while loading the
2205 * guest state.
2206 *
2207 * @param pVCpu The cross context virtual CPU structure.
2208 * @param pVmcsInfo The VMCS info. object.
2209 */
2210static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2211{
2212 /*
2213 * The following exceptions are always intercepted:
2214 *
2215 * #AC - To prevent the guest from hanging the CPU and for dealing with
2216 * split-lock detecting host configs.
2217 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
2218 * recursive #DBs can cause a CPU hang.
2219 */
2220 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
2221 | RT_BIT(X86_XCPT_DB);
2222
2223 /* Commit it to the VMCS. */
2224 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2225 AssertRC(rc);
2226
2227 /* Update our cache of the exception bitmap. */
2228 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
2229}
2230
2231
2232/**
2233 * Initialize the VMCS information field for the given vCPU.
2234 *
2235 * @returns VBox status code.
2236 * @param pVCpu The cross context virtual CPU structure of the
2237 * calling EMT.
2238 */
2239static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
2240{
2241 int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2242 if (RT_SUCCESS(rc))
2243 {
2244 rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2245 if (RT_SUCCESS(rc))
2246 {
2247 rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2248 if (RT_SUCCESS(rc))
2249 {
2250 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
2251 if (RT_SUCCESS(rc))
2252 {
2253 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
2254 if (RT_SUCCESS(rc))
2255 {
2256 nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
2257 return VINF_SUCCESS;
2258 }
2259 else
2260 LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
2261 }
2262 else
2263 LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
2264 }
2265 else
2266 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
2267 }
2268 else
2269 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
2270 }
2271 else
2272 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
2273
2274 return rc;
2275}
2276
2277
2278/**
2279 * Try initialize the native API.
2280 *
2281 * This may only do part of the job, more can be done in
2282 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
2283 *
2284 * @returns VBox status code.
2285 * @param pVM The cross context VM structure.
2286 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
2287 * the latter we'll fail if we cannot initialize.
2288 * @param fForced Whether the HMForced flag is set and we should
2289 * fail if we cannot initialize.
2290 */
2291int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
2292{
2293 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
2294
2295 /*
2296 * Some state init.
2297 */
2298
2299 /*
2300 * Error state.
2301 * The error message will be non-empty on failure and 'rc' will be set too.
2302 */
2303 RTERRINFOSTATIC ErrInfo;
2304 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
2305 int rc = nemR3DarwinLoadHv(fForced, pErrInfo);
2306 if (RT_SUCCESS(rc))
2307 {
2308 hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
2309 if (hrc == HV_SUCCESS)
2310 {
2311 if (hv_vm_space_create)
2312 {
2313 hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
2314 if (hrc == HV_SUCCESS)
2315 {
2316 LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
2317 pVM->nem.s.fCreatedAsid = true;
2318 }
2319 else
2320 LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
2321 }
2322 pVM->nem.s.fCreatedVm = true;
2323
2324 /* Register release statistics */
2325 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2326 {
2327 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
2328 PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
2329 if (RT_LIKELY(pVmxStats))
2330 pNemCpu->pVmxStats = pVmxStats;
2331 else
2332 {
2333 rc = VERR_NO_MEMORY;
2334 break;
2335 }
2336 }
2337
2338 if (RT_SUCCESS(rc))
2339 {
2340 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
2341 Log(("NEM: Marked active!\n"));
2342 PGMR3EnableNemMode(pVM);
2343 }
2344 }
2345 else
2346 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
2347 "hv_vm_create() failed: %#x", hrc);
2348 }
2349
2350 /*
2351 * We only fail if in forced mode, otherwise just log the complaint and return.
2352 */
2353 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
2354 if ( (fForced || !fFallback)
2355 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
2356 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
2357
2358 if (RTErrInfoIsSet(pErrInfo))
2359 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
2360 return VINF_SUCCESS;
2361}
2362
2363
2364/**
2365 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
2366 *
2367 * @returns VBox status code
2368 * @param pVM The VM handle.
2369 * @param pVCpu The vCPU handle.
2370 * @param idCpu ID of the CPU to create.
2371 */
2372static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
2373{
2374 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
2375 if (hrc != HV_SUCCESS)
2376 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
2377 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
2378
2379 if (idCpu == 0)
2380 {
2381 /* First call initializs the MSR structure holding the capabilities of the host CPU. */
2382 int rc = nemR3DarwinCapsInit();
2383 AssertRCReturn(rc, rc);
2384 }
2385
2386 int rc = nemR3DarwinInitVmcs(pVCpu);
2387 AssertRCReturn(rc, rc);
2388
2389 if (pVM->nem.s.fCreatedAsid)
2390 {
2391 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
2392 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
2393 }
2394
2395 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2396
2397 return VINF_SUCCESS;
2398}
2399
2400
2401/**
2402 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
2403 *
2404 * @returns VBox status code
2405 * @param pVCpu The vCPU handle.
2406 */
2407static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
2408{
2409 hv_return_t hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
2410 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
2411 return VINF_SUCCESS;
2412}
2413
2414
2415/**
2416 * This is called after CPUMR3Init is done.
2417 *
2418 * @returns VBox status code.
2419 * @param pVM The VM handle..
2420 */
2421int nemR3NativeInitAfterCPUM(PVM pVM)
2422{
2423 /*
2424 * Validate sanity.
2425 */
2426 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
2427 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
2428
2429 /*
2430 * Setup the EMTs.
2431 */
2432 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2433 {
2434 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2435
2436 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
2437 if (RT_FAILURE(rc))
2438 {
2439 /* Rollback. */
2440 while (idCpu--)
2441 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
2442
2443 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
2444 }
2445 }
2446
2447 pVM->nem.s.fCreatedEmts = true;
2448 return VINF_SUCCESS;
2449}
2450
2451
2452int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2453{
2454 NOREF(pVM); NOREF(enmWhat);
2455 return VINF_SUCCESS;
2456}
2457
2458
2459int nemR3NativeTerm(PVM pVM)
2460{
2461 /*
2462 * Delete the VM.
2463 */
2464
2465 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
2466 {
2467 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2468
2469 /*
2470 * Apple's documentation states that the vCPU should be destroyed
2471 * on the thread running the vCPU but as all the other EMTs are gone
2472 * at this point, destroying the VM would hang.
2473 *
2474 * We seem to be at luck here though as destroying apparently works
2475 * from EMT(0) as well.
2476 */
2477 hv_return_t hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
2478 Assert(hrc == HV_SUCCESS);
2479
2480 if (pVCpu->nem.s.pVmxStats)
2481 {
2482 RTMemFree(pVCpu->nem.s.pVmxStats);
2483 pVCpu->nem.s.pVmxStats = NULL;
2484 }
2485 }
2486
2487 pVM->nem.s.fCreatedEmts = false;
2488
2489 if (pVM->nem.s.fCreatedAsid)
2490 {
2491 hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
2492 Assert(hrc == HV_SUCCESS);
2493 pVM->nem.s.fCreatedAsid = false;
2494 }
2495
2496 if (pVM->nem.s.fCreatedVm)
2497 {
2498 hv_return_t hrc = hv_vm_destroy();
2499 if (hrc != HV_SUCCESS)
2500 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
2501
2502 pVM->nem.s.fCreatedVm = false;
2503 }
2504 return VINF_SUCCESS;
2505}
2506
2507
2508/**
2509 * VM reset notification.
2510 *
2511 * @param pVM The cross context VM structure.
2512 */
2513void nemR3NativeReset(PVM pVM)
2514{
2515 RT_NOREF(pVM);
2516}
2517
2518
2519/**
2520 * Reset CPU due to INIT IPI or hot (un)plugging.
2521 *
2522 * @param pVCpu The cross context virtual CPU structure of the CPU being
2523 * reset.
2524 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
2525 */
2526void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
2527{
2528 RT_NOREF(fInitIpi);
2529 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2530}
2531
2532
2533VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2534{
2535 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
2536#ifdef LOG_ENABLED
2537 if (LogIs3Enabled())
2538 nemR3DarwinLogState(pVM, pVCpu);
2539#endif
2540
2541 /*
2542 * Try switch to NEM runloop state.
2543 */
2544 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2545 { /* likely */ }
2546 else
2547 {
2548 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2549 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2550 return VINF_SUCCESS;
2551 }
2552
2553 /*
2554 * The run loop.
2555 *
2556 * Current approach to state updating to use the sledgehammer and sync
2557 * everything every time. This will be optimized later.
2558 */
2559
2560 VMXTRANSIENT VmxTransient;
2561 RT_ZERO(VmxTransient);
2562 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
2563
2564 const bool fSingleStepping = DBGFIsStepping(pVCpu);
2565 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2566 for (unsigned iLoop = 0;; iLoop++)
2567 {
2568 /*
2569 * Check and process force flag actions, some of which might require us to go back to ring-3.
2570 */
2571 rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
2572 if (rcStrict == VINF_SUCCESS)
2573 { /*likely */ }
2574 else
2575 break;
2576
2577 /*
2578 * Evaluate events to be injected into the guest.
2579 *
2580 * Events in TRPM can be injected without inspecting the guest state.
2581 * If any new events (interrupts/NMI) are pending currently, we try to set up the
2582 * guest to cause a VM-exit the next time they are ready to receive the event.
2583 */
2584 if (TRPMHasTrap(pVCpu))
2585 vmxHCTrpmTrapToPendingEvent(pVCpu);
2586
2587 uint32_t fIntrState;
2588 rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, &fIntrState);
2589
2590 /*
2591 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
2592 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
2593 * also result in triple-faulting the VM.
2594 *
2595 * With nested-guests, the above does not apply since unrestricted guest execution is a
2596 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
2597 */
2598 rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
2599 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2600 { /* likely */ }
2601 else
2602 {
2603 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fSingleStepping),
2604 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
2605 break;
2606 }
2607
2608 int rc = nemR3DarwinExportGuestState(pVM, pVCpu, &VmxTransient);
2609 AssertRCReturn(rc, rc);
2610
2611 /*
2612 * Poll timers and run for a bit.
2613 */
2614 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2615 * the whole polling job when timers have changed... */
2616 uint64_t offDeltaIgnored;
2617 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2618 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2619 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2620 {
2621 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
2622 {
2623 LogFlowFunc(("Running vCPU\n"));
2624 pVCpu->nem.s.Event.fPending = false;
2625
2626 hv_return_t hrc;
2627 if (hv_vcpu_run_until)
2628 hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, HV_DEADLINE_FOREVER);
2629 else
2630 hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
2631
2632 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
2633 if (hrc == HV_SUCCESS)
2634 {
2635 /*
2636 * Deal with the message.
2637 */
2638 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
2639 if (rcStrict == VINF_SUCCESS)
2640 { /* hopefully likely */ }
2641 else
2642 {
2643 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2644 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2645 break;
2646 }
2647 }
2648 else
2649 {
2650 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
2651 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
2652 VERR_NEM_IPE_0);
2653 }
2654
2655 /*
2656 * If no relevant FFs are pending, loop.
2657 */
2658 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2659 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2660 continue;
2661
2662 /** @todo Try handle pending flags, not just return to EM loops. Take care
2663 * not to set important RCs here unless we've handled a message. */
2664 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
2665 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
2666 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
2667 }
2668 else
2669 {
2670 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
2671 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
2672 }
2673 }
2674 else
2675 {
2676 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
2677 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
2678 }
2679 break;
2680 } /* the run loop */
2681
2682
2683 /*
2684 * Convert any pending HM events back to TRPM due to premature exits.
2685 *
2686 * This is because execution may continue from IEM and we would need to inject
2687 * the event from there (hence place it back in TRPM).
2688 */
2689 if (pVCpu->nem.s.Event.fPending)
2690 {
2691 vmxHCPendingEventToTrpmTrap(pVCpu);
2692 Assert(!pVCpu->nem.s.Event.fPending);
2693
2694 /* Clear the events from the VMCS. */
2695 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
2696 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
2697 }
2698
2699
2700 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2701 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2702
2703 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
2704 {
2705 /* Try anticipate what we might need. */
2706 uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK;
2707 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2708 || RT_FAILURE(rcStrict))
2709 fImport = CPUMCTX_EXTRN_ALL;
2710 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
2711 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2712 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2713
2714 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2715 {
2716 /* Only import what is external currently. */
2717 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
2718 if (RT_SUCCESS(rc2))
2719 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2720 else if (RT_SUCCESS(rcStrict))
2721 rcStrict = rc2;
2722 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
2723 {
2724 pVCpu->cpum.GstCtx.fExtrn = 0;
2725 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2726 }
2727 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2728 }
2729 else
2730 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2731 }
2732 else
2733 {
2734 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2735 pVCpu->cpum.GstCtx.fExtrn = 0;
2736 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2737 }
2738
2739 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
2740 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2741 return rcStrict;
2742}
2743
2744
2745VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
2746{
2747 NOREF(pVM);
2748 return PGMPhysIsA20Enabled(pVCpu);
2749}
2750
2751
2752bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
2753{
2754 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
2755 return false;
2756}
2757
2758
2759/**
2760 * Forced flag notification call from VMEmt.h.
2761 *
2762 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
2763 *
2764 * @param pVM The cross context VM structure.
2765 * @param pVCpu The cross context virtual CPU structure of the CPU
2766 * to be notified.
2767 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
2768 */
2769void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
2770{
2771 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
2772
2773 hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
2774 if (hrc != HV_SUCCESS)
2775 LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
2776}
2777
2778
2779VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
2780 uint8_t *pu2State, uint32_t *puNemRange)
2781{
2782 RT_NOREF(pVM, puNemRange);
2783
2784 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
2785#if defined(VBOX_WITH_PGM_NEM_MODE)
2786 if (pvR3)
2787 {
2788 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
2789 if (RT_SUCCESS(rc))
2790 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
2791 else
2792 {
2793 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
2794 return VERR_NEM_MAP_PAGES_FAILED;
2795 }
2796 }
2797 return VINF_SUCCESS;
2798#else
2799 RT_NOREF(pVM, GCPhys, cb, pvR3);
2800 return VERR_NEM_MAP_PAGES_FAILED;
2801#endif
2802}
2803
2804
2805VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
2806{
2807 RT_NOREF(pVM);
2808 return false;
2809}
2810
2811
2812VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
2813 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
2814{
2815 RT_NOREF(pVM, puNemRange);
2816
2817 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
2818 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
2819
2820#if defined(VBOX_WITH_PGM_NEM_MODE)
2821 /*
2822 * Unmap the RAM we're replacing.
2823 */
2824 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
2825 {
2826 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
2827 if (RT_SUCCESS(rc))
2828 { /* likely */ }
2829 else if (pvMmio2)
2830 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
2831 GCPhys, cb, fFlags, rc));
2832 else
2833 {
2834 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
2835 GCPhys, cb, fFlags, rc));
2836 return VERR_NEM_UNMAP_PAGES_FAILED;
2837 }
2838 }
2839
2840 /*
2841 * Map MMIO2 if any.
2842 */
2843 if (pvMmio2)
2844 {
2845 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
2846 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
2847 if (RT_SUCCESS(rc))
2848 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
2849 else
2850 {
2851 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
2852 GCPhys, cb, fFlags, pvMmio2, rc));
2853 return VERR_NEM_MAP_PAGES_FAILED;
2854 }
2855 }
2856 else
2857 {
2858 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
2859 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
2860 }
2861
2862#else
2863 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
2864 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
2865#endif
2866 return VINF_SUCCESS;
2867}
2868
2869
2870VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
2871 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
2872{
2873 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
2874 return VINF_SUCCESS;
2875}
2876
2877
2878VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
2879 void *pvMmio2, uint8_t *pu2State)
2880{
2881 RT_NOREF(pVM);
2882
2883 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p\n",
2884 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State));
2885
2886 int rc = VINF_SUCCESS;
2887#if defined(VBOX_WITH_PGM_NEM_MODE)
2888 /*
2889 * Unmap the MMIO2 pages.
2890 */
2891 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
2892 * we may have more stuff to unmap even in case of pure MMIO... */
2893 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
2894 {
2895 rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
2896 if (RT_FAILURE(rc))
2897 {
2898 LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
2899 GCPhys, cb, fFlags, rc));
2900 rc = VERR_NEM_UNMAP_PAGES_FAILED;
2901 }
2902 }
2903
2904 /*
2905 * Restore the RAM we replaced.
2906 */
2907 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
2908 {
2909 AssertPtr(pvRam);
2910 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
2911 if (RT_SUCCESS(rc))
2912 { /* likely */ }
2913 else
2914 {
2915 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
2916 rc = VERR_NEM_MAP_PAGES_FAILED;
2917 }
2918 if (pu2State)
2919 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
2920 }
2921 /* Mark the pages as unmapped if relevant. */
2922 else if (pu2State)
2923 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
2924
2925 RT_NOREF(pvMmio2);
2926#else
2927 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
2928 if (pu2State)
2929 *pu2State = UINT8_MAX;
2930 rc = VERR_NEM_UNMAP_PAGES_FAILED;
2931#endif
2932 return rc;
2933}
2934
2935
2936VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
2937 void *pvBitmap, size_t cbBitmap)
2938{
2939 RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
2940 AssertFailed();
2941 return VERR_NOT_IMPLEMENTED;
2942}
2943
2944
2945VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
2946 uint8_t *pu2State)
2947{
2948 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags);
2949
2950 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
2951 *pu2State = UINT8_MAX;
2952 return VINF_SUCCESS;
2953}
2954
2955
2956VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
2957 uint32_t fFlags, uint8_t *pu2State)
2958{
2959 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p\n",
2960 GCPhys, cb, pvPages, fFlags, pu2State));
2961 *pu2State = UINT8_MAX;
2962
2963#if defined(VBOX_WITH_PGM_NEM_MODE)
2964 /*
2965 * (Re-)map readonly.
2966 */
2967 AssertPtrReturn(pvPages, VERR_INVALID_POINTER);
2968 int rc = nemR3DarwinMap(pVM, GCPhys, pvPages, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
2969 if (RT_SUCCESS(rc))
2970 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
2971 else
2972 {
2973 LogRel(("nemR3NativeNotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x rc=%Rrc\n",
2974 GCPhys, cb, pvPages, fFlags, rc));
2975 return VERR_NEM_MAP_PAGES_FAILED;
2976 }
2977 RT_NOREF(pVM, fFlags);
2978 return VINF_SUCCESS;
2979#else
2980 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags);
2981 return VERR_NEM_MAP_PAGES_FAILED;
2982#endif
2983}
2984
2985
2986VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
2987 RTR3PTR pvMemR3, uint8_t *pu2State)
2988{
2989 RT_NOREF(pVM);
2990
2991 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
2992 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
2993
2994 *pu2State = UINT8_MAX;
2995#if defined(VBOX_WITH_PGM_NEM_MODE)
2996 if (pvMemR3)
2997 {
2998 int rc = nemR3DarwinMap(pVM, GCPhys, pvMemR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
2999 if (RT_SUCCESS(rc))
3000 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3001 else
3002 AssertLogRelMsgFailed(("NEMHCNotifyHandlerPhysicalDeregister: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
3003 pvMemR3, GCPhys, cb, rc));
3004 }
3005 RT_NOREF(enmKind);
3006#else
3007 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
3008 AssertFailed();
3009#endif
3010}
3011
3012
3013static int nemHCJustUnmapPage(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
3014{
3015 if (*pu2State <= NEM_DARWIN_PAGE_STATE_UNMAPPED)
3016 {
3017 Log5(("nemHCJustUnmapPage: %RGp == unmapped\n", GCPhysDst));
3018 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3019 return VINF_SUCCESS;
3020 }
3021
3022 int rc = nemR3DarwinUnmap(pVM, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
3023 if (RT_SUCCESS(rc))
3024 {
3025 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
3026 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3027 Log5(("nemHCJustUnmapPage: %RGp => unmapped\n", GCPhysDst));
3028 return VINF_SUCCESS;
3029 }
3030 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
3031 LogRel(("nemHCJustUnmapPage(%RGp): failed! rc=%Rrc\n",
3032 GCPhysDst, rc));
3033 return VERR_NEM_IPE_6;
3034}
3035
3036
3037/**
3038 * Called when the A20 state changes.
3039 *
3040 * @param pVCpu The CPU the A20 state changed on.
3041 * @param fEnabled Whether it was enabled (true) or disabled.
3042 */
3043VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
3044{
3045 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
3046 RT_NOREF(pVCpu, fEnabled);
3047}
3048
3049
3050void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
3051{
3052 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
3053 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
3054}
3055
3056
3057void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
3058 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
3059{
3060 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
3061 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
3062 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
3063}
3064
3065
3066int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
3067 PGMPAGETYPE enmType, uint8_t *pu2State)
3068{
3069 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3070 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3071 RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
3072
3073 return nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3074}
3075
3076
3077VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
3078 PGMPAGETYPE enmType, uint8_t *pu2State)
3079{
3080 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3081 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3082 RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
3083
3084 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3085}
3086
3087
3088VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
3089 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
3090{
3091 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3092 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
3093 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
3094
3095 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3096}
3097
3098
3099/**
3100 * Interface for importing state on demand (used by IEM).
3101 *
3102 * @returns VBox status code.
3103 * @param pVCpu The cross context CPU structure.
3104 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3105 */
3106VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
3107{
3108 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
3109
3110 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
3111}
3112
3113
3114/**
3115 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
3116 *
3117 * @returns VBox status code.
3118 * @param pVCpu The cross context CPU structure.
3119 * @param pcTicks Where to return the CPU tick count.
3120 * @param puAux Where to return the TSC_AUX register value.
3121 */
3122VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
3123{
3124 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
3125 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
3126
3127 int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
3128 if ( RT_SUCCESS(rc)
3129 && puAux)
3130 {
3131 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
3132 {
3133 /** @todo Why the heck is puAux a uint32_t?. */
3134 uint64_t u64Aux;
3135 rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
3136 if (RT_SUCCESS(rc))
3137 *puAux = (uint32_t)u64Aux;
3138 }
3139 else
3140 *puAux = CPUMGetGuestTscAux(pVCpu);
3141 }
3142
3143 return rc;
3144}
3145
3146
3147/**
3148 * Resumes CPU clock (TSC) on all virtual CPUs.
3149 *
3150 * This is called by TM when the VM is started, restored, resumed or similar.
3151 *
3152 * @returns VBox status code.
3153 * @param pVM The cross context VM structure.
3154 * @param pVCpu The cross context CPU structure of the calling EMT.
3155 * @param uPausedTscValue The TSC value at the time of pausing.
3156 */
3157VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
3158{
3159 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
3160 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
3161 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
3162
3163 hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
3164 if (RT_LIKELY(hrc == HV_SUCCESS))
3165 return VINF_SUCCESS;
3166
3167 return nemR3DarwinHvSts2Rc(hrc);
3168}
3169
3170
3171/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
3172 *
3173 * @todo Add notes as the implementation progresses...
3174 */
3175
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette