VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp@ 92780

Last change on this file since 92780 was 92626, checked in by vboxsync, 3 years ago

VMM: Nested VMX: bugref:10092 Adjust PGM APIs and translate nested-guest CR3 prior to mapping them when switching mode and other places.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 129.1 KB
Line 
1/* $Id: NEMR3Native-darwin.cpp 92626 2021-11-29 12:32:58Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2020 Oracle Corporation
12 *
13 * This file is part of VirtualBox Open Source Edition (OSE), as
14 * available from http://www.virtualbox.org. This file is free software;
15 * you can redistribute it and/or modify it under the terms of the GNU
16 * General Public License (GPL) as published by the Free Software
17 * Foundation, in version 2 as it comes in the "COPYING" file of the
18 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
19 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
20 */
21
22
23/*********************************************************************************************************************************
24* Header Files *
25*********************************************************************************************************************************/
26#define LOG_GROUP LOG_GROUP_NEM
27#define VMCPU_INCL_CPUM_GST_CTX
28#include <VBox/vmm/nem.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/em.h>
31#include <VBox/vmm/apic.h>
32#include <VBox/vmm/pdm.h>
33#include <VBox/vmm/hm.h>
34#include <VBox/vmm/hm_vmx.h>
35#include <VBox/vmm/dbgftrace.h>
36#include "VMXInternal.h"
37#include "NEMInternal.h"
38#include <VBox/vmm/vmcc.h>
39#include "dtrace/VBoxVMM.h"
40
41#include <iprt/asm.h>
42#include <iprt/ldr.h>
43#include <iprt/mem.h>
44#include <iprt/path.h>
45#include <iprt/string.h>
46#include <iprt/system.h>
47#include <iprt/utf16.h>
48
49
50/*********************************************************************************************************************************
51* Defined Constants And Macros *
52*********************************************************************************************************************************/
53/* No nested hwvirt (for now). */
54#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
55# undef VBOX_WITH_NESTED_HWVIRT_VMX
56#endif
57
58
59/** @name HV return codes.
60 * @{ */
61/** Operation was successful. */
62#define HV_SUCCESS 0
63/** An error occurred during operation. */
64#define HV_ERROR 0xfae94001
65/** The operation could not be completed right now, try again. */
66#define HV_BUSY 0xfae94002
67/** One of the parameters passed wis invalid. */
68#define HV_BAD_ARGUMENT 0xfae94003
69/** Not enough resources left to fulfill the operation. */
70#define HV_NO_RESOURCES 0xfae94005
71/** The device could not be found. */
72#define HV_NO_DEVICE 0xfae94006
73/** The operation is not supportd on this platform with this configuration. */
74#define HV_UNSUPPORTED 0xfae94007
75/** @} */
76
77
78/** @name HV memory protection flags.
79 * @{ */
80/** Memory is readable. */
81#define HV_MEMORY_READ RT_BIT_64(0)
82/** Memory is writeable. */
83#define HV_MEMORY_WRITE RT_BIT_64(1)
84/** Memory is executable. */
85#define HV_MEMORY_EXEC RT_BIT_64(2)
86/** @} */
87
88
89/** @name HV shadow VMCS protection flags.
90 * @{ */
91/** Shadow VMCS field is not accessible. */
92#define HV_SHADOW_VMCS_NONE 0
93/** Shadow VMCS fild is readable. */
94#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
95/** Shadow VMCS field is writeable. */
96#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
97/** @} */
98
99
100/** Default VM creation flags. */
101#define HV_VM_DEFAULT 0
102/** Default guest address space creation flags. */
103#define HV_VM_SPACE_DEFAULT 0
104/** Default vCPU creation flags. */
105#define HV_VCPU_DEFAULT 0
106
107#define HV_DEADLINE_FOREVER UINT64_MAX
108
109
110/*********************************************************************************************************************************
111* Structures and Typedefs *
112*********************************************************************************************************************************/
113
114/** HV return code type. */
115typedef uint32_t hv_return_t;
116/** HV capability bitmask. */
117typedef uint64_t hv_capability_t;
118/** Option bitmask type when creating a VM. */
119typedef uint64_t hv_vm_options_t;
120/** Option bitmask when creating a vCPU. */
121typedef uint64_t hv_vcpu_options_t;
122/** HV memory protection flags type. */
123typedef uint64_t hv_memory_flags_t;
124/** Shadow VMCS protection flags. */
125typedef uint64_t hv_shadow_flags_t;
126/** Guest physical address type. */
127typedef uint64_t hv_gpaddr_t;
128
129
130/**
131 * VMX Capability enumeration.
132 */
133typedef enum
134{
135 HV_VMX_CAP_PINBASED = 0,
136 HV_VMX_CAP_PROCBASED,
137 HV_VMX_CAP_PROCBASED2,
138 HV_VMX_CAP_ENTRY,
139 HV_VMX_CAP_EXIT,
140 HV_VMX_CAP_BASIC, /* Since 11.0 */
141 HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
142 HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
143 HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
144 HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
145 HV_VMX_CAP_MISC, /* Since 11.0 */
146 HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
147 HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
148 HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
149 HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
150 HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
151 HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
152 HV_VMX_CAP_PREEMPTION_TIMER = 32
153} hv_vmx_capability_t;
154
155
156/**
157 * HV x86 register enumeration.
158 */
159typedef enum
160{
161 HV_X86_RIP = 0,
162 HV_X86_RFLAGS,
163 HV_X86_RAX,
164 HV_X86_RCX,
165 HV_X86_RDX,
166 HV_X86_RBX,
167 HV_X86_RSI,
168 HV_X86_RDI,
169 HV_X86_RSP,
170 HV_X86_RBP,
171 HV_X86_R8,
172 HV_X86_R9,
173 HV_X86_R10,
174 HV_X86_R11,
175 HV_X86_R12,
176 HV_X86_R13,
177 HV_X86_R14,
178 HV_X86_R15,
179 HV_X86_CS,
180 HV_X86_SS,
181 HV_X86_DS,
182 HV_X86_ES,
183 HV_X86_FS,
184 HV_X86_GS,
185 HV_X86_IDT_BASE,
186 HV_X86_IDT_LIMIT,
187 HV_X86_GDT_BASE,
188 HV_X86_GDT_LIMIT,
189 HV_X86_LDTR,
190 HV_X86_LDT_BASE,
191 HV_X86_LDT_LIMIT,
192 HV_X86_LDT_AR,
193 HV_X86_TR,
194 HV_X86_TSS_BASE,
195 HV_X86_TSS_LIMIT,
196 HV_X86_TSS_AR,
197 HV_X86_CR0,
198 HV_X86_CR1,
199 HV_X86_CR2,
200 HV_X86_CR3,
201 HV_X86_CR4,
202 HV_X86_DR0,
203 HV_X86_DR1,
204 HV_X86_DR2,
205 HV_X86_DR3,
206 HV_X86_DR4,
207 HV_X86_DR5,
208 HV_X86_DR6,
209 HV_X86_DR7,
210 HV_X86_TPR,
211 HV_X86_XCR0,
212 HV_X86_REGISTERS_MAX
213} hv_x86_reg_t;
214
215
216typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
217typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
218typedef hv_return_t FN_HV_VM_DESTROY(void);
219typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
220typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
221typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
222typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
223typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
224typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
225typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
226typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
227typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
228
229typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
230typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
231typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
232typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
233typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
234typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
235typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
236typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
237typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
238typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
239typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
240typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
241typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
242typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
243typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
244typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
245
246typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
247typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
248
249typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
250typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
251typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
252
253typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
254typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
255
256
257/*********************************************************************************************************************************
258* Global Variables *
259*********************************************************************************************************************************/
260/** NEM_DARWIN_PAGE_STATE_XXX names. */
261NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
262/** MSRs. */
263static SUPHWVIRTMSRS g_HmMsrs;
264/** VMX: Set if swapping EFER is supported. */
265static bool g_fHmVmxSupportsVmcsEfer = false;
266/** @name APIs imported from Hypervisor.framework.
267 * @{ */
268static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
269static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
270static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
271static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
272static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
273static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
274static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
275static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
276static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
277static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
278static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
279static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
280
281static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
282static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
283static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
284static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
285static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
286static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
287static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
288static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
289static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
290static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
291static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
292static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
293static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
294static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
295static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
296static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
297
298static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
299static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
300static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
301static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
302static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
303static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
304static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
305/** @} */
306
307
308/**
309 * Import instructions.
310 */
311static const struct
312{
313 bool fOptional; /**< Set if import is optional. */
314 void **ppfn; /**< The function pointer variable. */
315 const char *pszName; /**< The function name. */
316} g_aImports[] =
317{
318#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
319 NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
320 NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
321 NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
322 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
323 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
324 NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
325 NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
326 NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
327 NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
328 NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
329 NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
330 NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
331
332 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
333 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
334 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
335 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
336 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
337 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
338 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
339 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
340 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
341 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
342 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
343 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
344 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
345 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
346 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
347 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
348 NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
349 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
350 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
351 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
352 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
353 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
354 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
355#undef NEM_DARWIN_IMPORT
356};
357
358
359/*
360 * Let the preprocessor alias the APIs to import variables for better autocompletion.
361 */
362#ifndef IN_SLICKEDIT
363# define hv_capability g_pfnHvCapability
364# define hv_vm_create g_pfnHvVmCreate
365# define hv_vm_destroy g_pfnHvVmDestroy
366# define hv_vm_space_create g_pfnHvVmSpaceCreate
367# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
368# define hv_vm_map g_pfnHvVmMap
369# define hv_vm_unmap g_pfnHvVmUnmap
370# define hv_vm_protect g_pfnHvVmProtect
371# define hv_vm_map_space g_pfnHvVmMapSpace
372# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
373# define hv_vm_protect_space g_pfnHvVmProtectSpace
374# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
375
376# define hv_vcpu_create g_pfnHvVCpuCreate
377# define hv_vcpu_destroy g_pfnHvVCpuDestroy
378# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
379# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
380# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
381# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
382# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
383# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
384# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
385# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
386# define hv_vcpu_flush g_pfnHvVCpuFlush
387# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
388# define hv_vcpu_run g_pfnHvVCpuRun
389# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
390# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
391# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
392
393# define hv_vmx_read_capability g_pfnHvVmxReadCapability
394# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
395# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
396# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
397# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
398# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
399# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
400#endif
401
402
403/*********************************************************************************************************************************
404* Internal Functions *
405*********************************************************************************************************************************/
406static void vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
407
408/**
409 * Converts a HV return code to a VBox status code.
410 *
411 * @returns VBox status code.
412 * @param hrc The HV return code to convert.
413 */
414DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
415{
416 if (hrc == HV_SUCCESS)
417 return VINF_SUCCESS;
418
419 switch (hrc)
420 {
421 case HV_ERROR: return VERR_INVALID_STATE;
422 case HV_BUSY: return VERR_RESOURCE_BUSY;
423 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
424 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
425 case HV_NO_DEVICE: return VERR_NOT_FOUND;
426 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
427 }
428
429 return VERR_IPE_UNEXPECTED_STATUS;
430}
431
432
433/**
434 * Unmaps the given guest physical address range (page aligned).
435 *
436 * @returns VBox status code.
437 * @param pVM The cross context VM structure.
438 * @param GCPhys The guest physical address to start unmapping at.
439 * @param cb The size of the range to unmap in bytes.
440 */
441DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb)
442{
443 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
444 hv_return_t hrc;
445 if (pVM->nem.s.fCreatedAsid)
446 hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys, cb);
447 else
448 hrc = hv_vm_unmap(GCPhys, cb);
449 return nemR3DarwinHvSts2Rc(hrc);
450}
451
452
453/**
454 * Maps a given guest physical address range backed by the given memory with the given
455 * protection flags.
456 *
457 * @returns VBox status code.
458 * @param pVM The cross context VM structure.
459 * @param GCPhys The guest physical address to start mapping.
460 * @param pvRam The R3 pointer of the memory to back the range with.
461 * @param cb The size of the range, page aligned.
462 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
463 */
464DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, void *pvRam, size_t cb, uint32_t fPageProt)
465{
466 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
467
468 hv_memory_flags_t fHvMemProt = 0;
469 if (fPageProt & NEM_PAGE_PROT_READ)
470 fHvMemProt |= HV_MEMORY_READ;
471 if (fPageProt & NEM_PAGE_PROT_WRITE)
472 fHvMemProt |= HV_MEMORY_WRITE;
473 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
474 fHvMemProt |= HV_MEMORY_EXEC;
475
476 hv_return_t hrc;
477 if (pVM->nem.s.fCreatedAsid)
478 hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
479 else
480 hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
481 return nemR3DarwinHvSts2Rc(hrc);
482}
483
484
485#if 0 /* unused */
486DECLINLINE(int) nemR3DarwinProtectPage(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt)
487{
488 hv_memory_flags_t fHvMemProt = 0;
489 if (fPageProt & NEM_PAGE_PROT_READ)
490 fHvMemProt |= HV_MEMORY_READ;
491 if (fPageProt & NEM_PAGE_PROT_WRITE)
492 fHvMemProt |= HV_MEMORY_WRITE;
493 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
494 fHvMemProt |= HV_MEMORY_EXEC;
495
496 if (pVM->nem.s.fCreatedAsid)
497 hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
498 else
499 hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
500
501 return nemR3DarwinHvSts2Rc(hrc);
502}
503#endif
504
505
506DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
507{
508 PGMPAGEMAPLOCK Lock;
509 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
510 if (RT_SUCCESS(rc))
511 PGMPhysReleasePageMappingLock(pVM, &Lock);
512 return rc;
513}
514
515
516DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
517{
518 PGMPAGEMAPLOCK Lock;
519 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
520 if (RT_SUCCESS(rc))
521 PGMPhysReleasePageMappingLock(pVM, &Lock);
522 return rc;
523}
524
525
526/**
527 * Worker that maps pages into Hyper-V.
528 *
529 * This is used by the PGM physical page notifications as well as the memory
530 * access VMEXIT handlers.
531 *
532 * @returns VBox status code.
533 * @param pVM The cross context VM structure.
534 * @param pVCpu The cross context virtual CPU structure of the
535 * calling EMT.
536 * @param GCPhysSrc The source page address.
537 * @param GCPhysDst The hyper-V destination page. This may differ from
538 * GCPhysSrc when A20 is disabled.
539 * @param fPageProt NEM_PAGE_PROT_XXX.
540 * @param pu2State Our page state (input/output).
541 * @param fBackingChanged Set if the page backing is being changed.
542 * @thread EMT(pVCpu)
543 */
544NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
545 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
546{
547 /*
548 * Looks like we need to unmap a page before we can change the backing
549 * or even modify the protection. This is going to be *REALLY* efficient.
550 * PGM lends us two bits to keep track of the state here.
551 */
552 RT_NOREF(pVCpu);
553 uint8_t const u2OldState = *pu2State;
554 uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_DARWIN_PAGE_STATE_WRITABLE
555 : fPageProt & NEM_PAGE_PROT_READ ? NEM_DARWIN_PAGE_STATE_READABLE : NEM_DARWIN_PAGE_STATE_UNMAPPED;
556 if ( fBackingChanged
557 || u2NewState != u2OldState)
558 {
559 if (u2OldState > NEM_DARWIN_PAGE_STATE_UNMAPPED)
560 {
561 int rc = nemR3DarwinUnmap(pVM, GCPhysDst, X86_PAGE_SIZE);
562 if (RT_SUCCESS(rc))
563 {
564 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
565 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
566 if (u2NewState == NEM_DARWIN_PAGE_STATE_UNMAPPED)
567 {
568 Log5(("NEM GPA unmapped/set: %RGp (was %s)\n", GCPhysDst, g_apszPageStates[u2OldState]));
569 return VINF_SUCCESS;
570 }
571 }
572 else
573 {
574 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
575 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
576 return VERR_NEM_INIT_FAILED;
577 }
578 }
579 }
580
581 /*
582 * Writeable mapping?
583 */
584 if (fPageProt & NEM_PAGE_PROT_WRITE)
585 {
586 void *pvPage;
587 int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
588 if (RT_SUCCESS(rc))
589 {
590 rc = nemR3DarwinMap(pVM, GCPhysDst, pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
591 if (RT_SUCCESS(rc))
592 {
593 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
594 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
595 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
596 return VINF_SUCCESS;
597 }
598 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
599 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst));
600 return VERR_NEM_INIT_FAILED;
601 }
602 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
603 return rc;
604 }
605
606 if (fPageProt & NEM_PAGE_PROT_READ)
607 {
608 const void *pvPage;
609 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
610 if (RT_SUCCESS(rc))
611 {
612 rc = nemR3DarwinMap(pVM, GCPhysDst, (void *)pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
613 if (RT_SUCCESS(rc))
614 {
615 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
616 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
617 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
618 return VINF_SUCCESS;
619 }
620 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
621 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
622 return VERR_NEM_INIT_FAILED;
623 }
624 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
625 return rc;
626 }
627
628 /* We already unmapped it above. */
629 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
630 return VINF_SUCCESS;
631}
632
633
634#ifdef LOG_ENABLED
635/**
636 * Logs the current CPU state.
637 */
638static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
639{
640 if (LogIs3Enabled())
641 {
642#if 0
643 char szRegs[4096];
644 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
645 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
646 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
647 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
648 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
649 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
650 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
651 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
652 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
653 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
654 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
655 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
656 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
657 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
658 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
659 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
660 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
661 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
662 " efer=%016VR{efer}\n"
663 " pat=%016VR{pat}\n"
664 " sf_mask=%016VR{sf_mask}\n"
665 "krnl_gs_base=%016VR{krnl_gs_base}\n"
666 " lstar=%016VR{lstar}\n"
667 " star=%016VR{star} cstar=%016VR{cstar}\n"
668 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
669 );
670
671 char szInstr[256];
672 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
673 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
674 szInstr, sizeof(szInstr), NULL);
675 Log3(("%s%s\n", szRegs, szInstr));
676#else
677 RT_NOREF(pVM, pVCpu);
678#endif
679 }
680}
681#endif /* LOG_ENABLED */
682
683
684DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
685{
686 uint64_t u64Data;
687 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
688 if (RT_LIKELY(hrc == HV_SUCCESS))
689 {
690 *pData = (uint16_t)u64Data;
691 return VINF_SUCCESS;
692 }
693
694 return nemR3DarwinHvSts2Rc(hrc);
695}
696
697
698DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
699{
700 uint64_t u64Data;
701 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
702 if (RT_LIKELY(hrc == HV_SUCCESS))
703 {
704 *pData = (uint32_t)u64Data;
705 return VINF_SUCCESS;
706 }
707
708 return nemR3DarwinHvSts2Rc(hrc);
709}
710
711
712DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
713{
714 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
715 if (RT_LIKELY(hrc == HV_SUCCESS))
716 return VINF_SUCCESS;
717
718 return nemR3DarwinHvSts2Rc(hrc);
719}
720
721
722DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
723{
724 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
725 if (RT_LIKELY(hrc == HV_SUCCESS))
726 return VINF_SUCCESS;
727
728 return nemR3DarwinHvSts2Rc(hrc);
729}
730
731
732DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
733{
734 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
735 if (RT_LIKELY(hrc == HV_SUCCESS))
736 return VINF_SUCCESS;
737
738 return nemR3DarwinHvSts2Rc(hrc);
739}
740
741
742DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
743{
744 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
745 if (RT_LIKELY(hrc == HV_SUCCESS))
746 return VINF_SUCCESS;
747
748 return nemR3DarwinHvSts2Rc(hrc);
749}
750
751DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
752{
753 hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
754 if (RT_LIKELY(hrc == HV_SUCCESS))
755 return VINF_SUCCESS;
756
757 return nemR3DarwinHvSts2Rc(hrc);
758}
759
760#if 0 /*unused*/
761DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
762{
763 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
764 if (RT_LIKELY(hrc == HV_SUCCESS))
765 return VINF_SUCCESS;
766
767 return nemR3DarwinHvSts2Rc(hrc);
768}
769#endif
770
771static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
772{
773#define READ_GREG(a_GReg, a_Value) \
774 do \
775 { \
776 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
777 if (RT_LIKELY(hrc == HV_SUCCESS)) \
778 { /* likely */ } \
779 else \
780 return VERR_INTERNAL_ERROR; \
781 } while(0)
782#define READ_VMCS_FIELD(a_Field, a_Value) \
783 do \
784 { \
785 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
786 if (RT_LIKELY(hrc == HV_SUCCESS)) \
787 { /* likely */ } \
788 else \
789 return VERR_INTERNAL_ERROR; \
790 } while(0)
791#define READ_VMCS16_FIELD(a_Field, a_Value) \
792 do \
793 { \
794 uint64_t u64Data; \
795 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
796 if (RT_LIKELY(hrc == HV_SUCCESS)) \
797 { (a_Value) = (uint16_t)u64Data; } \
798 else \
799 return VERR_INTERNAL_ERROR; \
800 } while(0)
801#define READ_VMCS32_FIELD(a_Field, a_Value) \
802 do \
803 { \
804 uint64_t u64Data; \
805 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
806 if (RT_LIKELY(hrc == HV_SUCCESS)) \
807 { (a_Value) = (uint32_t)u64Data; } \
808 else \
809 return VERR_INTERNAL_ERROR; \
810 } while(0)
811#define READ_MSR(a_Msr, a_Value) \
812 do \
813 { \
814 hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
815 if (RT_LIKELY(hrc == HV_SUCCESS)) \
816 { /* likely */ } \
817 else \
818 AssertFailedReturn(VERR_INTERNAL_ERROR); \
819 } while(0)
820
821 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);
822
823 RT_NOREF(pVM);
824 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
825
826 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
827 vmxHCImportGuestIntrState(pVCpu, &pVCpu->nem.s.VmcsInfo);
828
829 /* GPRs */
830 hv_return_t hrc;
831 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
832 {
833 if (fWhat & CPUMCTX_EXTRN_RAX)
834 READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
835 if (fWhat & CPUMCTX_EXTRN_RCX)
836 READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
837 if (fWhat & CPUMCTX_EXTRN_RDX)
838 READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
839 if (fWhat & CPUMCTX_EXTRN_RBX)
840 READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
841 if (fWhat & CPUMCTX_EXTRN_RSP)
842 READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
843 if (fWhat & CPUMCTX_EXTRN_RBP)
844 READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
845 if (fWhat & CPUMCTX_EXTRN_RSI)
846 READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
847 if (fWhat & CPUMCTX_EXTRN_RDI)
848 READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
849 if (fWhat & CPUMCTX_EXTRN_R8_R15)
850 {
851 READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
852 READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
853 READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
854 READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
855 READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
856 READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
857 READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
858 READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
859 }
860 }
861
862 /* RIP & Flags */
863 if (fWhat & CPUMCTX_EXTRN_RIP)
864 READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
865 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
866 READ_GREG(HV_X86_RFLAGS, pVCpu->cpum.GstCtx.rflags.u);
867
868 /* Segments */
869#define READ_SEG(a_SReg, a_enmName) \
870 do { \
871 READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
872 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
873 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
874 READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
875 (a_SReg).ValidSel = (a_SReg).Sel; \
876 } while (0)
877 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
878 {
879 if (fWhat & CPUMCTX_EXTRN_ES)
880 READ_SEG(pVCpu->cpum.GstCtx.es, ES);
881 if (fWhat & CPUMCTX_EXTRN_CS)
882 READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
883 if (fWhat & CPUMCTX_EXTRN_SS)
884 READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
885 if (fWhat & CPUMCTX_EXTRN_DS)
886 READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
887 if (fWhat & CPUMCTX_EXTRN_FS)
888 READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
889 if (fWhat & CPUMCTX_EXTRN_GS)
890 READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
891 }
892
893 /* Descriptor tables and the task segment. */
894 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
895 {
896 if (fWhat & CPUMCTX_EXTRN_LDTR)
897 READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
898
899 if (fWhat & CPUMCTX_EXTRN_TR)
900 {
901 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
902 avoid to trigger sanity assertions around the code, always fix this. */
903 READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
904 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
905 {
906 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
907 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
908 break;
909 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
910 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
911 break;
912 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
913 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
914 break;
915 }
916 }
917 if (fWhat & CPUMCTX_EXTRN_IDTR)
918 {
919 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
920 READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
921 }
922 if (fWhat & CPUMCTX_EXTRN_GDTR)
923 {
924 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
925 READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
926 }
927 }
928
929 /* Control registers. */
930 bool fMaybeChangedMode = false;
931 bool fUpdateCr3 = false;
932 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
933 {
934 uint64_t u64CrTmp = 0;
935
936 if (fWhat & CPUMCTX_EXTRN_CR0)
937 {
938 READ_GREG(HV_X86_CR0, u64CrTmp);
939 if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
940 {
941 CPUMSetGuestCR0(pVCpu, u64CrTmp);
942 fMaybeChangedMode = true;
943 }
944 }
945 if (fWhat & CPUMCTX_EXTRN_CR2)
946 READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
947 if (fWhat & CPUMCTX_EXTRN_CR3)
948 {
949 READ_GREG(HV_X86_CR3, u64CrTmp);
950 if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
951 {
952 CPUMSetGuestCR3(pVCpu, u64CrTmp);
953 fUpdateCr3 = true;
954 }
955 }
956 if (fWhat & CPUMCTX_EXTRN_CR4)
957 {
958 READ_GREG(HV_X86_CR4, u64CrTmp);
959 u64CrTmp &= ~VMX_V_CR4_FIXED0;
960
961 if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
962 {
963 CPUMSetGuestCR4(pVCpu, u64CrTmp);
964 fMaybeChangedMode = true;
965 }
966 }
967 }
968
969#if 0 /* Always done. */
970 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
971 {
972 uint64_t u64Cr8 = 0;
973
974 READ_GREG(HV_X86_TPR, u64Cr8);
975 APICSetTpr(pVCpu, u64Cr8 << 4);
976 }
977#endif
978
979 if (fWhat & CPUMCTX_EXTRN_XCRx)
980 READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
981
982 /* Debug registers. */
983 if (fWhat & CPUMCTX_EXTRN_DR7)
984 {
985 uint64_t u64Dr7;
986 READ_GREG(HV_X86_DR7, u64Dr7);
987 if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
988 CPUMSetGuestDR7(pVCpu, u64Dr7);
989 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
990 }
991 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
992 {
993 uint64_t u64DrTmp;
994
995 READ_GREG(HV_X86_DR0, u64DrTmp);
996 if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
997 CPUMSetGuestDR0(pVCpu, u64DrTmp);
998 READ_GREG(HV_X86_DR1, u64DrTmp);
999 if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
1000 CPUMSetGuestDR1(pVCpu, u64DrTmp);
1001 READ_GREG(HV_X86_DR2, u64DrTmp);
1002 if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
1003 CPUMSetGuestDR2(pVCpu, u64DrTmp);
1004 READ_GREG(HV_X86_DR3, u64DrTmp);
1005 if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
1006 CPUMSetGuestDR3(pVCpu, u64DrTmp);
1007 }
1008 if (fWhat & CPUMCTX_EXTRN_DR6)
1009 {
1010 uint64_t u64Dr6;
1011 READ_GREG(HV_X86_DR6, u64Dr6);
1012 if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
1013 CPUMSetGuestDR6(pVCpu, u64Dr6);
1014 }
1015
1016 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1017 {
1018 hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1019 if (hrc == HV_SUCCESS)
1020 { /* likely */ }
1021 else
1022 {
1023 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1024 return nemR3DarwinHvSts2Rc(hrc);
1025 }
1026 }
1027
1028 /* MSRs */
1029 if (fWhat & CPUMCTX_EXTRN_EFER)
1030 {
1031 uint64_t u64Efer;
1032
1033 READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
1034 if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
1035 {
1036 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
1037 if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1038 PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
1039 pVCpu->cpum.GstCtx.msrEFER = u64Efer;
1040 fMaybeChangedMode = true;
1041 }
1042 }
1043
1044 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1045 READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1046 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1047 {
1048 uint64_t u64Tmp;
1049 READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
1050 pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
1051 READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
1052 pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
1053 READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
1054 pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
1055 }
1056 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1057 {
1058 READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1059 READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1060 READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1061 READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1062 }
1063#if 0
1064 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1065 {
1066 Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
1067 const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
1068 if (aValues[iReg].Reg64 != uOldBase)
1069 {
1070 Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
1071 pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
1072 int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
1073 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
1074 }
1075 iReg++;
1076
1077 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
1078#if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
1079 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
1080#endif
1081 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1082 GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
1083 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
1084 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
1085 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
1086 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
1087 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
1088 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
1089 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
1090 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
1091 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
1092 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
1093 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
1094 GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
1095 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
1096 }
1097#endif
1098
1099 /* Almost done, just update extrn flags and maybe change PGM mode. */
1100 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1101 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1102 pVCpu->cpum.GstCtx.fExtrn = 0;
1103
1104#ifdef LOG_ENABLED
1105 nemR3DarwinLogState(pVM, pVCpu);
1106#endif
1107
1108 /* Typical. */
1109 if (!fMaybeChangedMode && !fUpdateCr3)
1110 {
1111 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1112 return VINF_SUCCESS;
1113 }
1114
1115 /*
1116 * Slow.
1117 */
1118 if (fMaybeChangedMode)
1119 {
1120 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1121 false /* fForce */);
1122 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1123 }
1124
1125 if (fUpdateCr3)
1126 {
1127 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1128 if (rc == VINF_SUCCESS)
1129 { /* likely */ }
1130 else
1131 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1132 }
1133
1134 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1135
1136 return VINF_SUCCESS;
1137#undef READ_GREG
1138#undef READ_VMCS_FIELD
1139#undef READ_VMCS32_FIELD
1140#undef READ_SEG
1141#undef READ_MSR
1142}
1143
1144
1145/**
1146 * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
1147 * and nemHCWinHandleMemoryAccessPageCheckerCallback.
1148 */
1149typedef struct NEMHCDARWINHMACPCCSTATE
1150{
1151 /** Input: Write access. */
1152 bool fWriteAccess;
1153 /** Output: Set if we did something. */
1154 bool fDidSomething;
1155 /** Output: Set it we should resume. */
1156 bool fCanResume;
1157} NEMHCDARWINHMACPCCSTATE;
1158
1159/**
1160 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1161 * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
1162 * NEMHCDARWINHMACPCCSTATE structure. }
1163 */
1164static DECLCALLBACK(int)
1165nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1166{
1167 NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
1168 pState->fDidSomething = false;
1169 pState->fCanResume = false;
1170
1171 uint8_t u2State = pInfo->u2NemState;
1172
1173 /*
1174 * Consolidate current page state with actual page protection and access type.
1175 * We don't really consider downgrades here, as they shouldn't happen.
1176 */
1177 int rc;
1178 switch (u2State)
1179 {
1180 case NEM_DARWIN_PAGE_STATE_UNMAPPED:
1181 case NEM_DARWIN_PAGE_STATE_NOT_SET:
1182 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1183 {
1184 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1185 return VINF_SUCCESS;
1186 }
1187
1188 /* Don't bother remapping it if it's a write request to a non-writable page. */
1189 if ( pState->fWriteAccess
1190 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1191 {
1192 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1193 return VINF_SUCCESS;
1194 }
1195
1196 /* Map the page. */
1197 rc = nemHCNativeSetPhysPage(pVM,
1198 pVCpu,
1199 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1200 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1201 pInfo->fNemProt,
1202 &u2State,
1203 true /*fBackingState*/);
1204 pInfo->u2NemState = u2State;
1205 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1206 GCPhys, g_apszPageStates[u2State], rc));
1207 pState->fDidSomething = true;
1208 pState->fCanResume = true;
1209 return rc;
1210
1211 case NEM_DARWIN_PAGE_STATE_READABLE:
1212 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1213 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1214 {
1215 pState->fCanResume = true;
1216 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1217 return VINF_SUCCESS;
1218 }
1219 break;
1220
1221 case NEM_DARWIN_PAGE_STATE_WRITABLE:
1222 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1223 {
1224 /* We get spurious EPT exit violations when everything is fine (#3a case) but can resume without issues here... */
1225 pState->fCanResume = true;
1226 if (pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_WRITABLE)
1227 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
1228 else
1229 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
1230 GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
1231 return VINF_SUCCESS;
1232 }
1233
1234 break;
1235
1236 default:
1237 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1238 }
1239
1240 /*
1241 * Unmap and restart the instruction.
1242 * If this fails, which it does every so often, just unmap everything for now.
1243 */
1244 rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE);
1245 if (RT_SUCCESS(rc))
1246 {
1247 pState->fDidSomething = true;
1248 pState->fCanResume = true;
1249 pInfo->u2NemState = NEM_DARWIN_PAGE_STATE_UNMAPPED;
1250 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
1251 Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
1252 return VINF_SUCCESS;
1253 }
1254 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
1255 LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s rc=%Rrc\n",
1256 GCPhys, g_apszPageStates[u2State], rc));
1257 return VERR_NEM_UNMAP_PAGES_FAILED;
1258}
1259
1260
1261DECL_FORCE_INLINE(bool) vmxHCShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
1262{
1263 RT_NOREF(pVCpu, pVmxTransient);
1264 return true;
1265}
1266
1267
1268DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
1269{
1270 RT_NOREF(pVM);
1271 return true;
1272}
1273
1274
1275DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
1276{
1277 RT_NOREF(pVM);
1278 return true;
1279}
1280
1281
1282DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
1283{
1284 RT_NOREF(pVM);
1285 return false;
1286}
1287
1288
1289#if 0 /* unused */
1290DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
1291{
1292 RT_NOREF(pVM);
1293 return false;
1294}
1295#endif
1296
1297
1298/*
1299 * Instantiate the code we share with ring-0.
1300 */
1301#define IN_NEM_DARWIN
1302//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
1303//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
1304#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
1305#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
1306
1307#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
1308#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
1309#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
1310#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
1311
1312#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
1313#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
1314#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1315#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1316
1317#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
1318#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
1319#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1320#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1321
1322#include "../VMMAll/VMXAllTemplate.cpp.h"
1323
1324#undef VMX_VMCS_WRITE_16
1325#undef VMX_VMCS_WRITE_32
1326#undef VMX_VMCS_WRITE_64
1327#undef VMX_VMCS_WRITE_NW
1328
1329#undef VMX_VMCS_READ_16
1330#undef VMX_VMCS_READ_32
1331#undef VMX_VMCS_READ_64
1332#undef VMX_VMCS_READ_NW
1333
1334#undef VM_IS_VMX_PREEMPT_TIMER_USED
1335#undef VM_IS_VMX_NESTED_PAGING
1336#undef VM_IS_VMX_UNRESTRICTED_GUEST
1337#undef VCPU_2_VMXSTATS
1338#undef VCPU_2_VMXSTATE
1339
1340
1341/**
1342 * Exports the guest GP registers to HV for execution.
1343 *
1344 * @returns VBox status code.
1345 * @param pVCpu The cross context virtual CPU structure of the
1346 * calling EMT.
1347 */
1348static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
1349{
1350#define WRITE_GREG(a_GReg, a_Value) \
1351 do \
1352 { \
1353 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1354 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1355 { /* likely */ } \
1356 else \
1357 return VERR_INTERNAL_ERROR; \
1358 } while(0)
1359
1360 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
1361 if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
1362 {
1363 if (fCtxChanged & HM_CHANGED_GUEST_RAX)
1364 WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
1365 if (fCtxChanged & HM_CHANGED_GUEST_RCX)
1366 WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
1367 if (fCtxChanged & HM_CHANGED_GUEST_RDX)
1368 WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
1369 if (fCtxChanged & HM_CHANGED_GUEST_RBX)
1370 WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
1371 if (fCtxChanged & HM_CHANGED_GUEST_RSP)
1372 WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
1373 if (fCtxChanged & HM_CHANGED_GUEST_RBP)
1374 WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
1375 if (fCtxChanged & HM_CHANGED_GUEST_RSI)
1376 WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
1377 if (fCtxChanged & HM_CHANGED_GUEST_RDI)
1378 WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
1379 if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
1380 {
1381 WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
1382 WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
1383 WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
1384 WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
1385 WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
1386 WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
1387 WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
1388 WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
1389 }
1390
1391 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
1392 }
1393
1394 if (fCtxChanged & HM_CHANGED_GUEST_CR2)
1395 {
1396 WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1397 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
1398 }
1399
1400 return VINF_SUCCESS;
1401#undef WRITE_GREG
1402}
1403
1404
1405/**
1406 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
1407 *
1408 * @returns Bitmask of HM changed flags.
1409 * @param fCpumExtrn The CPUM extern bitmask.
1410 */
1411static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
1412{
1413 uint64_t fHmChanged = 0;
1414
1415 /* Invert to gt a mask of things which are kept in CPUM. */
1416 uint64_t fCpumIntern = ~fCpumExtrn;
1417
1418 if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
1419 {
1420 if (fCpumIntern & CPUMCTX_EXTRN_RAX)
1421 fHmChanged |= HM_CHANGED_GUEST_RAX;
1422 if (fCpumIntern & CPUMCTX_EXTRN_RCX)
1423 fHmChanged |= HM_CHANGED_GUEST_RCX;
1424 if (fCpumIntern & CPUMCTX_EXTRN_RDX)
1425 fHmChanged |= HM_CHANGED_GUEST_RDX;
1426 if (fCpumIntern & CPUMCTX_EXTRN_RBX)
1427 fHmChanged |= HM_CHANGED_GUEST_RBX;
1428 if (fCpumIntern & CPUMCTX_EXTRN_RSP)
1429 fHmChanged |= HM_CHANGED_GUEST_RSP;
1430 if (fCpumIntern & CPUMCTX_EXTRN_RBP)
1431 fHmChanged |= HM_CHANGED_GUEST_RBP;
1432 if (fCpumIntern & CPUMCTX_EXTRN_RSI)
1433 fHmChanged |= HM_CHANGED_GUEST_RSI;
1434 if (fCpumIntern & CPUMCTX_EXTRN_RDI)
1435 fHmChanged |= HM_CHANGED_GUEST_RDI;
1436 if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
1437 fHmChanged |= HM_CHANGED_GUEST_R8_R15;
1438 }
1439
1440 /* RIP & Flags */
1441 if (fCpumIntern & CPUMCTX_EXTRN_RIP)
1442 fHmChanged |= HM_CHANGED_GUEST_RIP;
1443 if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
1444 fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
1445
1446 /* Segments */
1447 if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
1448 {
1449 if (fCpumIntern & CPUMCTX_EXTRN_ES)
1450 fHmChanged |= HM_CHANGED_GUEST_ES;
1451 if (fCpumIntern & CPUMCTX_EXTRN_CS)
1452 fHmChanged |= HM_CHANGED_GUEST_CS;
1453 if (fCpumIntern & CPUMCTX_EXTRN_SS)
1454 fHmChanged |= HM_CHANGED_GUEST_SS;
1455 if (fCpumIntern & CPUMCTX_EXTRN_DS)
1456 fHmChanged |= HM_CHANGED_GUEST_DS;
1457 if (fCpumIntern & CPUMCTX_EXTRN_FS)
1458 fHmChanged |= HM_CHANGED_GUEST_FS;
1459 if (fCpumIntern & CPUMCTX_EXTRN_GS)
1460 fHmChanged |= HM_CHANGED_GUEST_GS;
1461 }
1462
1463 /* Descriptor tables & task segment. */
1464 if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
1465 {
1466 if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
1467 fHmChanged |= HM_CHANGED_GUEST_LDTR;
1468 if (fCpumIntern & CPUMCTX_EXTRN_TR)
1469 fHmChanged |= HM_CHANGED_GUEST_TR;
1470 if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
1471 fHmChanged |= HM_CHANGED_GUEST_IDTR;
1472 if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
1473 fHmChanged |= HM_CHANGED_GUEST_GDTR;
1474 }
1475
1476 /* Control registers. */
1477 if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
1478 {
1479 if (fCpumIntern & CPUMCTX_EXTRN_CR0)
1480 fHmChanged |= HM_CHANGED_GUEST_CR0;
1481 if (fCpumIntern & CPUMCTX_EXTRN_CR2)
1482 fHmChanged |= HM_CHANGED_GUEST_CR2;
1483 if (fCpumIntern & CPUMCTX_EXTRN_CR3)
1484 fHmChanged |= HM_CHANGED_GUEST_CR3;
1485 if (fCpumIntern & CPUMCTX_EXTRN_CR4)
1486 fHmChanged |= HM_CHANGED_GUEST_CR4;
1487 }
1488 if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
1489 fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
1490
1491 /* Debug registers. */
1492 if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
1493 fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
1494 if (fCpumIntern & CPUMCTX_EXTRN_DR6)
1495 fHmChanged |= HM_CHANGED_GUEST_DR6;
1496 if (fCpumIntern & CPUMCTX_EXTRN_DR7)
1497 fHmChanged |= HM_CHANGED_GUEST_DR7;
1498
1499 /* Floating point state. */
1500 if (fCpumIntern & CPUMCTX_EXTRN_X87)
1501 fHmChanged |= HM_CHANGED_GUEST_X87;
1502 if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
1503 fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
1504 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
1505 fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
1506 if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
1507 fHmChanged |= HM_CHANGED_GUEST_XCRx;
1508
1509 /* MSRs */
1510 if (fCpumIntern & CPUMCTX_EXTRN_EFER)
1511 fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
1512 if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1513 fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
1514 if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
1515 fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
1516 if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
1517 fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
1518 if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
1519 fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
1520 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
1521 fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
1522
1523 return fHmChanged;
1524}
1525
1526
1527/**
1528 * Exports the guest state to HV for execution.
1529 *
1530 * @returns VBox status code.
1531 * @param pVM The cross context VM structure.
1532 * @param pVCpu The cross context virtual CPU structure of the
1533 * calling EMT.
1534 * @param pVmxTransient The transient VMX structure.
1535 */
1536static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1537{
1538#define WRITE_GREG(a_GReg, a_Value) \
1539 do \
1540 { \
1541 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1542 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1543 { /* likely */ } \
1544 else \
1545 return VERR_INTERNAL_ERROR; \
1546 } while(0)
1547#define WRITE_VMCS_FIELD(a_Field, a_Value) \
1548 do \
1549 { \
1550 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
1551 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1552 { /* likely */ } \
1553 else \
1554 return VERR_INTERNAL_ERROR; \
1555 } while(0)
1556#define WRITE_MSR(a_Msr, a_Value) \
1557 do \
1558 { \
1559 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
1560 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1561 { /* likely */ } \
1562 else \
1563 AssertFailedReturn(VERR_INTERNAL_ERROR); \
1564 } while(0)
1565
1566 RT_NOREF(pVM);
1567
1568#ifdef LOG_ENABLED
1569 nemR3DarwinLogState(pVM, pVCpu);
1570#endif
1571
1572 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);
1573
1574 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
1575 if (!fWhat)
1576 return VINF_SUCCESS;
1577
1578 pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
1579
1580 int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
1581 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1582
1583 rc = nemR3DarwinExportGuestGprs(pVCpu);
1584 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1585
1586 rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
1587 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1588
1589 VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
1590 if (rcStrict == VINF_SUCCESS)
1591 { /* likely */ }
1592 else
1593 {
1594 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
1595 return VBOXSTRICTRC_VAL(rcStrict);
1596 }
1597
1598 vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
1599 vmxHCExportGuestRip(pVCpu);
1600 //vmxHCExportGuestRsp(pVCpu);
1601 vmxHCExportGuestRflags(pVCpu, pVmxTransient);
1602
1603 rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
1604 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1605
1606 if (fWhat & CPUMCTX_EXTRN_XCRx)
1607 {
1608 WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1609 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
1610 }
1611
1612 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1613 {
1614 Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
1615 vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
1616
1617 rc = APICGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
1618 AssertRC(rc);
1619
1620 WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
1621 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
1622 }
1623
1624 /* Debug registers. */
1625 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1626 {
1627 WRITE_GREG(HV_X86_DR0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
1628 WRITE_GREG(HV_X86_DR1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
1629 WRITE_GREG(HV_X86_DR2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
1630 WRITE_GREG(HV_X86_DR3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
1631 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
1632 }
1633 if (fWhat & CPUMCTX_EXTRN_DR6)
1634 {
1635 WRITE_GREG(HV_X86_DR6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
1636 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
1637 }
1638 if (fWhat & CPUMCTX_EXTRN_DR7)
1639 {
1640 WRITE_GREG(HV_X86_DR7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
1641 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
1642 }
1643
1644 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1645 {
1646 hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1647 if (hrc == HV_SUCCESS)
1648 { /* likely */ }
1649 else
1650 return nemR3DarwinHvSts2Rc(hrc);
1651
1652 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
1653 }
1654
1655 /* MSRs */
1656 if (fWhat & CPUMCTX_EXTRN_EFER)
1657 {
1658 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
1659 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
1660 }
1661 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1662 {
1663 WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1664 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
1665 }
1666 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1667 {
1668 WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
1669 WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
1670 WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
1671 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
1672 }
1673 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1674 {
1675 WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1676 WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1677 WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1678 WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1679 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
1680 }
1681 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1682 {
1683#if 0
1684 hv_return_t hrc = hv_vmx_vcpu_set_apic_address(pVCpu->nem.s.hVCpuId, APICGetBaseMsrNoCheck(pVCpu) & PAGE_BASE_GC_MASK);
1685 if (RT_UNLIKELY(hrc != HV_SUCCESS))
1686 return nemR3DarwinHvSts2Rc(hrc);
1687#endif
1688
1689 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
1690
1691#if 0
1692 ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
1693#if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
1694 ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
1695#endif
1696 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1697 ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
1698 ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
1699 ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
1700 ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
1701 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
1702 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
1703 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
1704 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
1705 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
1706 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
1707 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
1708 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
1709 ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
1710#if 0 /** @todo these registers aren't available? Might explain something.. .*/
1711 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM);
1712 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
1713 {
1714 ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
1715 ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
1716 }
1717#endif
1718#endif
1719 }
1720
1721 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0 /*MSR_IA32_DEBUGCTL_LBR*/);
1722
1723 hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
1724 hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
1725
1726 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1727
1728 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
1729 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(
1730 HM_CHANGED_GUEST_TSC_AUX
1731 | HM_CHANGED_GUEST_HWVIRT
1732 | HM_CHANGED_VMX_GUEST_AUTO_MSRS
1733 | HM_CHANGED_VMX_GUEST_LAZY_MSRS
1734 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
1735
1736 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
1737 return VINF_SUCCESS;
1738#undef WRITE_GREG
1739#undef WRITE_VMCS_FIELD
1740}
1741
1742
1743/**
1744 * Handles an exit from hv_vcpu_run().
1745 *
1746 * @returns VBox strict status code.
1747 * @param pVM The cross context VM structure.
1748 * @param pVCpu The cross context virtual CPU structure of the
1749 * calling EMT.
1750 * @param pVmxTransient The transient VMX structure.
1751 */
1752static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1753{
1754 uint32_t uExitReason;
1755 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
1756 AssertRC(rc);
1757 pVmxTransient->fVmcsFieldsRead = 0;
1758 pVmxTransient->fIsNestedGuest = false;
1759 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
1760 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
1761
1762 if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
1763 AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
1764 pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
1765 VERR_NEM_IPE_0);
1766
1767 /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
1768 * when handling exits). */
1769 rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
1770 AssertRCReturn(rc, rc);
1771
1772 STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
1773 STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
1774
1775#ifndef HMVMX_USE_FUNCTION_TABLE
1776 return vmxHCHandleExit(pVCpu, pVmxTransient);
1777#else
1778 return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
1779#endif
1780}
1781
1782
1783/**
1784 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
1785 *
1786 * @returns VBox status code.
1787 * @param fForced Whether the HMForced flag is set and we should
1788 * fail if we cannot initialize.
1789 * @param pErrInfo Where to always return error info.
1790 */
1791static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
1792{
1793 RTLDRMOD hMod = NIL_RTLDRMOD;
1794 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
1795
1796 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
1797 if (RT_SUCCESS(rc))
1798 {
1799 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
1800 {
1801 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
1802 if (RT_SUCCESS(rc2))
1803 {
1804 if (g_aImports[i].fOptional)
1805 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
1806 g_aImports[i].pszName));
1807 }
1808 else
1809 {
1810 *g_aImports[i].ppfn = NULL;
1811
1812 LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
1813 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
1814 g_aImports[i].pszName, rc2));
1815 if (!g_aImports[i].fOptional)
1816 {
1817 if (RTErrInfoIsSet(pErrInfo))
1818 RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
1819 else
1820 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
1821 Assert(RT_FAILURE(rc));
1822 }
1823 }
1824 }
1825 if (RT_SUCCESS(rc))
1826 {
1827 Assert(!RTErrInfoIsSet(pErrInfo));
1828 }
1829
1830 RTLdrClose(hMod);
1831 }
1832 else
1833 {
1834 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
1835 rc = VERR_NEM_INIT_FAILED;
1836 }
1837
1838 return rc;
1839}
1840
1841
1842/**
1843 * Read and initialize the global capabilities supported by this CPU.
1844 *
1845 * @returns VBox status code.
1846 */
1847static int nemR3DarwinCapsInit(void)
1848{
1849 RT_ZERO(g_HmMsrs);
1850
1851 hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
1852 if (hrc == HV_SUCCESS)
1853 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
1854 if (hrc == HV_SUCCESS)
1855 hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
1856 if (hrc == HV_SUCCESS)
1857 hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
1858 if (hrc == HV_SUCCESS)
1859 {
1860 hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
1861 if (hrc == HV_SUCCESS)
1862 {
1863 if (hrc == HV_SUCCESS)
1864 hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
1865 if (hrc == HV_SUCCESS)
1866 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
1867 if (hrc == HV_SUCCESS)
1868 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
1869 if (hrc == HV_SUCCESS)
1870 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
1871 if (hrc == HV_SUCCESS)
1872 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
1873 if (hrc == HV_SUCCESS)
1874 hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
1875 if ( hrc == HV_SUCCESS
1876 && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1877 {
1878 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
1879 if (hrc == HV_SUCCESS)
1880 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
1881 if (hrc == HV_SUCCESS)
1882 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
1883 if (hrc == HV_SUCCESS)
1884 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
1885 }
1886 }
1887 else
1888 {
1889 /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
1890 g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
1891 g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
1892 g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
1893 g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
1894 hrc = HV_SUCCESS;
1895 }
1896 }
1897
1898 if ( hrc == HV_SUCCESS
1899 && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1900 {
1901 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
1902
1903 if ( hrc == HV_SUCCESS
1904 && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
1905 {
1906 hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
1907 if (hrc != HV_SUCCESS)
1908 hrc = HV_SUCCESS; /* Probably just outdated OS. */
1909 }
1910
1911 g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
1912 }
1913
1914 if (hrc == HV_SUCCESS)
1915 {
1916 /*
1917 * Check for EFER swapping support.
1918 */
1919 g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
1920 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1921 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1922 }
1923
1924 return nemR3DarwinHvSts2Rc(hrc);
1925}
1926
1927
1928/**
1929 * Sets up pin-based VM-execution controls in the VMCS.
1930 *
1931 * @returns VBox status code.
1932 * @param pVCpu The cross context virtual CPU structure.
1933 * @param pVmcsInfo The VMCS info. object.
1934 */
1935static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
1936{
1937 //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1938 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
1939 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
1940
1941 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
1942 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
1943
1944#if 0 /** @todo Use preemption timer */
1945 /* Enable the VMX-preemption timer. */
1946 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
1947 {
1948 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
1949 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
1950 }
1951
1952 /* Enable posted-interrupt processing. */
1953 if (pVM->hm.s.fPostedIntrs)
1954 {
1955 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
1956 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
1957 fVal |= VMX_PIN_CTLS_POSTED_INT;
1958 }
1959#endif
1960
1961 if ((fVal & fZap) != fVal)
1962 {
1963 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
1964 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
1965 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
1966 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1967 }
1968
1969 /* Commit it to the VMCS and update our cache. */
1970 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
1971 AssertRC(rc);
1972 pVmcsInfo->u32PinCtls = fVal;
1973
1974 return VINF_SUCCESS;
1975}
1976
1977
1978/**
1979 * Sets up secondary processor-based VM-execution controls in the VMCS.
1980 *
1981 * @returns VBox status code.
1982 * @param pVCpu The cross context virtual CPU structure.
1983 * @param pVmcsInfo The VMCS info. object.
1984 */
1985static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
1986{
1987 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1988 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
1989 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
1990
1991 /* WBINVD causes a VM-exit. */
1992 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
1993 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
1994
1995 /* Enable the INVPCID instruction if we expose it to the guest and is supported
1996 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
1997 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
1998 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
1999 fVal |= VMX_PROC_CTLS2_INVPCID;
2000
2001#if 0 /** @todo */
2002 /* Enable VPID. */
2003 if (pVM->hmr0.s.vmx.fVpid)
2004 fVal |= VMX_PROC_CTLS2_VPID;
2005
2006 if (pVM->hm.s.fVirtApicRegs)
2007 {
2008 /* Enable APIC-register virtualization. */
2009 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2010 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2011
2012 /* Enable virtual-interrupt delivery. */
2013 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2014 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2015 }
2016
2017 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
2018 where the TPR shadow resides. */
2019 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2020 * done dynamically. */
2021 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2022 {
2023 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
2024 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
2025 }
2026#endif
2027
2028 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
2029 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
2030 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
2031 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
2032 fVal |= VMX_PROC_CTLS2_RDTSCP;
2033
2034#if 0
2035 /* Enable Pause-Loop exiting. */
2036 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
2037 && pVM->hm.s.vmx.cPleGapTicks
2038 && pVM->hm.s.vmx.cPleWindowTicks)
2039 {
2040 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2041
2042 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
2043 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
2044 }
2045#endif
2046
2047 if ((fVal & fZap) != fVal)
2048 {
2049 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2050 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
2051 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2052 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2053 }
2054
2055 /* Commit it to the VMCS and update our cache. */
2056 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2057 AssertRC(rc);
2058 pVmcsInfo->u32ProcCtls2 = fVal;
2059
2060 return VINF_SUCCESS;
2061}
2062
2063
2064/**
2065 * Enables native access for the given MSR.
2066 *
2067 * @returns VBox status code.
2068 * @param pVCpu The cross context virtual CPU structure.
2069 * @param idMsr The MSR to enable native access for.
2070 */
2071static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
2072{
2073 hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2074 if (hrc == HV_SUCCESS)
2075 return VINF_SUCCESS;
2076
2077 return nemR3DarwinHvSts2Rc(hrc);
2078}
2079
2080
2081/**
2082 * Sets up the MSR permissions which don't change through the lifetime of the VM.
2083 *
2084 * @returns VBox status code.
2085 * @param pVCpu The cross context virtual CPU structure.
2086 * @param pVmcsInfo The VMCS info. object.
2087 */
2088static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2089{
2090 RT_NOREF(pVmcsInfo);
2091
2092 /*
2093 * The guest can access the following MSRs (read, write) without causing
2094 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2095 */
2096 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2097 int rc;
2098 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
2099 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
2100 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
2101 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
2102 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
2103
2104 /*
2105 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2106 * associated with then. We never need to intercept access (writes need to be
2107 * executed without causing a VM-exit, reads will #GP fault anyway).
2108 *
2109 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2110 * read/write them. We swap the guest/host MSR value using the
2111 * auto-load/store MSR area.
2112 */
2113 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2114 {
2115 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
2116 AssertRCReturn(rc, rc);
2117 }
2118#if 0 /* Doesn't work. */
2119 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2120 {
2121 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
2122 AssertRCReturn(rc, rc);
2123 }
2124#endif
2125 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2126 {
2127 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
2128 AssertRCReturn(rc, rc);
2129 }
2130
2131 /*
2132 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2133 * required for 64-bit guests.
2134 */
2135 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
2136 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
2137 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
2138 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
2139
2140 /* Required for enabling the RDTSCP instruction. */
2141 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
2142
2143 return VINF_SUCCESS;
2144}
2145
2146
2147/**
2148 * Sets up processor-based VM-execution controls in the VMCS.
2149 *
2150 * @returns VBox status code.
2151 * @param pVCpu The cross context virtual CPU structure.
2152 * @param pVmcsInfo The VMCS info. object.
2153 */
2154static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2155{
2156 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2157 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2158
2159 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2160// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2161 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2162 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2163 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2164 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2165 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2166
2167 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2168 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2169 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2170 {
2171 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2172 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2173 }
2174
2175 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2176 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2177 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2178
2179 if ((fVal & fZap) != fVal)
2180 {
2181 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2182 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
2183 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2184 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2185 }
2186
2187 /* Commit it to the VMCS and update our cache. */
2188 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2189 AssertRC(rc);
2190 pVmcsInfo->u32ProcCtls = fVal;
2191
2192 /* Set up MSR permissions that don't change through the lifetime of the VM. */
2193 rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
2194 AssertRCReturn(rc, rc);
2195
2196 /*
2197 * Set up secondary processor-based VM-execution controls
2198 * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
2199 */
2200 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2201 return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
2202}
2203
2204
2205/**
2206 * Sets up miscellaneous (everything other than Pin, Processor and secondary
2207 * Processor-based VM-execution) control fields in the VMCS.
2208 *
2209 * @returns VBox status code.
2210 * @param pVCpu The cross context virtual CPU structure.
2211 * @param pVmcsInfo The VMCS info. object.
2212 */
2213static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2214{
2215 int rc = VINF_SUCCESS;
2216 //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
2217 if (RT_SUCCESS(rc))
2218 {
2219 uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
2220 uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
2221
2222 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
2223 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
2224
2225 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
2226 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
2227
2228#if 0 /** @todo */
2229 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fLbr)
2230 {
2231 rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
2232 AssertRC(rc);
2233 }
2234#endif
2235 return VINF_SUCCESS;
2236 }
2237 else
2238 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
2239 return rc;
2240}
2241
2242
2243/**
2244 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2245 *
2246 * We shall setup those exception intercepts that don't change during the
2247 * lifetime of the VM here. The rest are done dynamically while loading the
2248 * guest state.
2249 *
2250 * @param pVCpu The cross context virtual CPU structure.
2251 * @param pVmcsInfo The VMCS info. object.
2252 */
2253static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2254{
2255 /*
2256 * The following exceptions are always intercepted:
2257 *
2258 * #AC - To prevent the guest from hanging the CPU and for dealing with
2259 * split-lock detecting host configs.
2260 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
2261 * recursive #DBs can cause a CPU hang.
2262 */
2263 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
2264 | RT_BIT(X86_XCPT_DB);
2265
2266 /* Commit it to the VMCS. */
2267 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2268 AssertRC(rc);
2269
2270 /* Update our cache of the exception bitmap. */
2271 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
2272}
2273
2274
2275/**
2276 * Initialize the VMCS information field for the given vCPU.
2277 *
2278 * @returns VBox status code.
2279 * @param pVCpu The cross context virtual CPU structure of the
2280 * calling EMT.
2281 */
2282static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
2283{
2284 int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2285 if (RT_SUCCESS(rc))
2286 {
2287 rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2288 if (RT_SUCCESS(rc))
2289 {
2290 rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2291 if (RT_SUCCESS(rc))
2292 {
2293 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
2294 if (RT_SUCCESS(rc))
2295 {
2296 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
2297 if (RT_SUCCESS(rc))
2298 {
2299 nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
2300 return VINF_SUCCESS;
2301 }
2302 else
2303 LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
2304 }
2305 else
2306 LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
2307 }
2308 else
2309 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
2310 }
2311 else
2312 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
2313 }
2314 else
2315 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
2316
2317 return rc;
2318}
2319
2320
2321/**
2322 * Registers statistics for the given vCPU.
2323 *
2324 * @returns VBox status code.
2325 * @param pVM The cross context VM structure.
2326 * @param idCpu The CPU ID.
2327 * @param pNemCpu The NEM CPU structure.
2328 */
2329static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
2330{
2331#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
2332 int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
2333 AssertRC(rc); \
2334 } while (0)
2335#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
2336 NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
2337#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
2338
2339 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR0Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
2340 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR2Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
2341 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR3Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
2342 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR4Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
2343 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR8Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
2344 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
2345 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
2346 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
2347 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
2348 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
2349
2350 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitAll, "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
2351
2352#ifdef VBOX_WITH_STATISTICS
2353 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
2354 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");
2355
2356 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
2357 {
2358 const char *pszExitName = HMGetVmxExitName(j);
2359 if (pszExitName)
2360 {
2361 int rc = STAMR3RegisterF(pVM, &pNemCpu->pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
2362 STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
2363 AssertRCReturn(rc, rc);
2364 }
2365 }
2366#endif
2367
2368 return VINF_SUCCESS;
2369
2370#undef NEM_REG_COUNTER
2371#undef NEM_REG_PROFILE
2372#undef NEM_REG_STAT
2373}
2374
2375
2376/**
2377 * Try initialize the native API.
2378 *
2379 * This may only do part of the job, more can be done in
2380 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
2381 *
2382 * @returns VBox status code.
2383 * @param pVM The cross context VM structure.
2384 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
2385 * the latter we'll fail if we cannot initialize.
2386 * @param fForced Whether the HMForced flag is set and we should
2387 * fail if we cannot initialize.
2388 */
2389int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
2390{
2391 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
2392
2393 /*
2394 * Some state init.
2395 */
2396
2397 /*
2398 * Error state.
2399 * The error message will be non-empty on failure and 'rc' will be set too.
2400 */
2401 RTERRINFOSTATIC ErrInfo;
2402 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
2403 int rc = nemR3DarwinLoadHv(fForced, pErrInfo);
2404 if (RT_SUCCESS(rc))
2405 {
2406 hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
2407 if (hrc == HV_SUCCESS)
2408 {
2409 if (hv_vm_space_create)
2410 {
2411 hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
2412 if (hrc == HV_SUCCESS)
2413 {
2414 LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
2415 pVM->nem.s.fCreatedAsid = true;
2416 }
2417 else
2418 LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
2419 }
2420 pVM->nem.s.fCreatedVm = true;
2421
2422 /* Register release statistics */
2423 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2424 {
2425 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
2426 PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
2427 if (RT_LIKELY(pVmxStats))
2428 {
2429 pNemCpu->pVmxStats = pVmxStats;
2430 rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
2431 AssertRC(rc);
2432 }
2433 else
2434 {
2435 rc = VERR_NO_MEMORY;
2436 break;
2437 }
2438 }
2439
2440 if (RT_SUCCESS(rc))
2441 {
2442 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
2443 Log(("NEM: Marked active!\n"));
2444 PGMR3EnableNemMode(pVM);
2445 }
2446 }
2447 else
2448 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
2449 "hv_vm_create() failed: %#x", hrc);
2450 }
2451
2452 /*
2453 * We only fail if in forced mode, otherwise just log the complaint and return.
2454 */
2455 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
2456 if ( (fForced || !fFallback)
2457 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
2458 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
2459
2460 if (RTErrInfoIsSet(pErrInfo))
2461 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
2462 return VINF_SUCCESS;
2463}
2464
2465
2466/**
2467 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
2468 *
2469 * @returns VBox status code
2470 * @param pVM The VM handle.
2471 * @param pVCpu The vCPU handle.
2472 * @param idCpu ID of the CPU to create.
2473 */
2474static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
2475{
2476 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
2477 if (hrc != HV_SUCCESS)
2478 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
2479 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
2480
2481 if (idCpu == 0)
2482 {
2483 /* First call initializs the MSR structure holding the capabilities of the host CPU. */
2484 int rc = nemR3DarwinCapsInit();
2485 AssertRCReturn(rc, rc);
2486 }
2487
2488 int rc = nemR3DarwinInitVmcs(pVCpu);
2489 AssertRCReturn(rc, rc);
2490
2491 if (pVM->nem.s.fCreatedAsid)
2492 {
2493 hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
2494 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
2495 }
2496
2497 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2498
2499 return VINF_SUCCESS;
2500}
2501
2502
2503/**
2504 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
2505 *
2506 * @returns VBox status code
2507 * @param pVCpu The vCPU handle.
2508 */
2509static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
2510{
2511 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
2512 Assert(hrc == HV_SUCCESS);
2513
2514 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
2515 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
2516 return VINF_SUCCESS;
2517}
2518
2519
2520/**
2521 * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
2522 *
2523 * @returns VBox status code
2524 * @param pVM The VM handle.
2525 * @param pVCpu The vCPU handle.
2526 */
2527static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu)
2528{
2529 PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
2530 uint32_t fVal = pVmcsInfo->u32ProcCtls;
2531
2532 /* Use TPR shadowing if supported by the CPU. */
2533 if ( PDMHasApic(pVM)
2534 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
2535 {
2536 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2537 /* CR8 writes cause a VM-exit based on TPR threshold. */
2538 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2539 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2540 }
2541 else
2542 {
2543 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2544 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2545 }
2546
2547 /* Commit it to the VMCS and update our cache. */
2548 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2549 AssertRC(rc);
2550 pVmcsInfo->u32ProcCtls = fVal;
2551
2552 return VINF_SUCCESS;
2553}
2554
2555
2556/**
2557 * This is called after CPUMR3Init is done.
2558 *
2559 * @returns VBox status code.
2560 * @param pVM The VM handle..
2561 */
2562int nemR3NativeInitAfterCPUM(PVM pVM)
2563{
2564 /*
2565 * Validate sanity.
2566 */
2567 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
2568 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
2569
2570 /*
2571 * Setup the EMTs.
2572 */
2573 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2574 {
2575 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2576
2577 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
2578 if (RT_FAILURE(rc))
2579 {
2580 /* Rollback. */
2581 while (idCpu--)
2582 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
2583
2584 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
2585 }
2586 }
2587
2588 pVM->nem.s.fCreatedEmts = true;
2589 return VINF_SUCCESS;
2590}
2591
2592
2593int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2594{
2595 if (enmWhat == VMINITCOMPLETED_RING3)
2596 {
2597 /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
2598 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2599 {
2600 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2601
2602 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 2, pVM, pVCpu);
2603 if (RT_FAILURE(rc))
2604 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Setting up TPR shadowing failed: %Rrc", rc);
2605 }
2606 }
2607 return VINF_SUCCESS;
2608}
2609
2610
2611int nemR3NativeTerm(PVM pVM)
2612{
2613 /*
2614 * Delete the VM.
2615 */
2616
2617 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
2618 {
2619 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2620
2621 /*
2622 * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
2623 * API reference so I wouldn't have to decompile the kext to find this out but we are talking
2624 * about Apple here unfortunately, API documentation is not their strong suit...
2625 * Would have been of course even better to just automatically drop the address space reference when the vCPU
2626 * gets destroyed.
2627 */
2628 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
2629 Assert(hrc == HV_SUCCESS);
2630
2631 /*
2632 * Apple's documentation states that the vCPU should be destroyed
2633 * on the thread running the vCPU but as all the other EMTs are gone
2634 * at this point, destroying the VM would hang.
2635 *
2636 * We seem to be at luck here though as destroying apparently works
2637 * from EMT(0) as well.
2638 */
2639 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
2640 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
2641
2642 if (pVCpu->nem.s.pVmxStats)
2643 {
2644 RTMemFree(pVCpu->nem.s.pVmxStats);
2645 pVCpu->nem.s.pVmxStats = NULL;
2646 }
2647 }
2648
2649 pVM->nem.s.fCreatedEmts = false;
2650
2651 if (pVM->nem.s.fCreatedAsid)
2652 {
2653 hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
2654 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
2655 pVM->nem.s.fCreatedAsid = false;
2656 }
2657
2658 if (pVM->nem.s.fCreatedVm)
2659 {
2660 hv_return_t hrc = hv_vm_destroy();
2661 if (hrc != HV_SUCCESS)
2662 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
2663
2664 pVM->nem.s.fCreatedVm = false;
2665 }
2666 return VINF_SUCCESS;
2667}
2668
2669
2670/**
2671 * VM reset notification.
2672 *
2673 * @param pVM The cross context VM structure.
2674 */
2675void nemR3NativeReset(PVM pVM)
2676{
2677 RT_NOREF(pVM);
2678}
2679
2680
2681/**
2682 * Reset CPU due to INIT IPI or hot (un)plugging.
2683 *
2684 * @param pVCpu The cross context virtual CPU structure of the CPU being
2685 * reset.
2686 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
2687 */
2688void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
2689{
2690 RT_NOREF(fInitIpi);
2691 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2692}
2693
2694
2695VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2696{
2697 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
2698#ifdef LOG_ENABLED
2699 if (LogIs3Enabled())
2700 nemR3DarwinLogState(pVM, pVCpu);
2701#endif
2702
2703 /*
2704 * Try switch to NEM runloop state.
2705 */
2706 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2707 { /* likely */ }
2708 else
2709 {
2710 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2711 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2712 return VINF_SUCCESS;
2713 }
2714
2715 /*
2716 * The run loop.
2717 *
2718 * Current approach to state updating to use the sledgehammer and sync
2719 * everything every time. This will be optimized later.
2720 */
2721
2722 VMXTRANSIENT VmxTransient;
2723 RT_ZERO(VmxTransient);
2724 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
2725
2726 const bool fSingleStepping = DBGFIsStepping(pVCpu);
2727 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2728 for (unsigned iLoop = 0;; iLoop++)
2729 {
2730 /*
2731 * Check and process force flag actions, some of which might require us to go back to ring-3.
2732 */
2733 rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
2734 if (rcStrict == VINF_SUCCESS)
2735 { /*likely */ }
2736 else
2737 break;
2738
2739 /*
2740 * Evaluate events to be injected into the guest.
2741 *
2742 * Events in TRPM can be injected without inspecting the guest state.
2743 * If any new events (interrupts/NMI) are pending currently, we try to set up the
2744 * guest to cause a VM-exit the next time they are ready to receive the event.
2745 */
2746 if (TRPMHasTrap(pVCpu))
2747 vmxHCTrpmTrapToPendingEvent(pVCpu);
2748
2749 uint32_t fIntrState;
2750 rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, &fIntrState);
2751
2752 /*
2753 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
2754 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
2755 * also result in triple-faulting the VM.
2756 *
2757 * With nested-guests, the above does not apply since unrestricted guest execution is a
2758 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
2759 */
2760 rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
2761 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2762 { /* likely */ }
2763 else
2764 {
2765 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fSingleStepping),
2766 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
2767 break;
2768 }
2769
2770 int rc = nemR3DarwinExportGuestState(pVM, pVCpu, &VmxTransient);
2771 AssertRCReturn(rc, rc);
2772
2773 /*
2774 * Poll timers and run for a bit.
2775 */
2776 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2777 * the whole polling job when timers have changed... */
2778 uint64_t offDeltaIgnored;
2779 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2780 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2781 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2782 {
2783 LogFlowFunc(("Running vCPU\n"));
2784 pVCpu->nem.s.Event.fPending = false;
2785
2786 TMNotifyStartOfExecution(pVM, pVCpu);
2787
2788 Assert(!pVCpu->nem.s.fCtxChanged);
2789 hv_return_t hrc;
2790 if (hv_vcpu_run_until)
2791 hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, HV_DEADLINE_FOREVER);
2792 else
2793 hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
2794
2795 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
2796
2797 /*
2798 * Sync the TPR shadow with our APIC state.
2799 */
2800 if ( !VmxTransient.fIsNestedGuest
2801 && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
2802 {
2803 uint64_t u64Tpr;
2804 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
2805 Assert(hrc == HV_SUCCESS);
2806
2807 if (VmxTransient.u8GuestTpr != (uint8_t)u64Tpr)
2808 {
2809 rc = APICSetTpr(pVCpu, (uint8_t)u64Tpr);
2810 AssertRC(rc);
2811 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
2812 }
2813 }
2814
2815 if (hrc == HV_SUCCESS)
2816 {
2817 /*
2818 * Deal with the message.
2819 */
2820 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
2821 if (rcStrict == VINF_SUCCESS)
2822 { /* hopefully likely */ }
2823 else
2824 {
2825 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2826 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2827 break;
2828 }
2829 //Assert(!pVCpu->cpum.GstCtx.fExtrn);
2830 }
2831 else
2832 {
2833 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
2834 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
2835 VERR_NEM_IPE_0);
2836 }
2837
2838 /*
2839 * If no relevant FFs are pending, loop.
2840 */
2841 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2842 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2843 continue;
2844
2845 /** @todo Try handle pending flags, not just return to EM loops. Take care
2846 * not to set important RCs here unless we've handled a message. */
2847 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
2848 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
2849 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
2850 }
2851 else
2852 {
2853 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
2854 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
2855 }
2856 break;
2857 } /* the run loop */
2858
2859
2860 /*
2861 * Convert any pending HM events back to TRPM due to premature exits.
2862 *
2863 * This is because execution may continue from IEM and we would need to inject
2864 * the event from there (hence place it back in TRPM).
2865 */
2866 if (pVCpu->nem.s.Event.fPending)
2867 {
2868 vmxHCPendingEventToTrpmTrap(pVCpu);
2869 Assert(!pVCpu->nem.s.Event.fPending);
2870
2871 /* Clear the events from the VMCS. */
2872 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
2873 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
2874 }
2875
2876
2877 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2878 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2879
2880 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
2881 {
2882 /* Try anticipate what we might need. */
2883 uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
2884 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2885 || RT_FAILURE(rcStrict))
2886 fImport = CPUMCTX_EXTRN_ALL;
2887 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
2888 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2889 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2890
2891 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2892 {
2893 /* Only import what is external currently. */
2894 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
2895 if (RT_SUCCESS(rc2))
2896 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2897 else if (RT_SUCCESS(rcStrict))
2898 rcStrict = rc2;
2899 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
2900 {
2901 pVCpu->cpum.GstCtx.fExtrn = 0;
2902 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2903 }
2904 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2905 }
2906 else
2907 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2908 }
2909 else
2910 {
2911 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2912 pVCpu->cpum.GstCtx.fExtrn = 0;
2913 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2914 }
2915
2916 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
2917 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2918 return rcStrict;
2919}
2920
2921
2922VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
2923{
2924 NOREF(pVM);
2925 return PGMPhysIsA20Enabled(pVCpu);
2926}
2927
2928
2929bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
2930{
2931 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
2932 return false;
2933}
2934
2935
2936/**
2937 * Forced flag notification call from VMEmt.h.
2938 *
2939 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
2940 *
2941 * @param pVM The cross context VM structure.
2942 * @param pVCpu The cross context virtual CPU structure of the CPU
2943 * to be notified.
2944 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
2945 */
2946void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
2947{
2948 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
2949
2950 RT_NOREF(pVM, fFlags);
2951
2952 hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
2953 if (hrc != HV_SUCCESS)
2954 LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
2955}
2956
2957
2958VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
2959 uint8_t *pu2State, uint32_t *puNemRange)
2960{
2961 RT_NOREF(pVM, puNemRange);
2962
2963 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
2964#if defined(VBOX_WITH_PGM_NEM_MODE)
2965 if (pvR3)
2966 {
2967 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
2968 if (RT_SUCCESS(rc))
2969 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
2970 else
2971 {
2972 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
2973 return VERR_NEM_MAP_PAGES_FAILED;
2974 }
2975 }
2976 return VINF_SUCCESS;
2977#else
2978 RT_NOREF(pVM, GCPhys, cb, pvR3);
2979 return VERR_NEM_MAP_PAGES_FAILED;
2980#endif
2981}
2982
2983
2984VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
2985{
2986 RT_NOREF(pVM);
2987 return false;
2988}
2989
2990
2991VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
2992 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
2993{
2994 RT_NOREF(pVM, puNemRange, pvRam, fFlags);
2995
2996 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
2997 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
2998
2999#if defined(VBOX_WITH_PGM_NEM_MODE)
3000 /*
3001 * Unmap the RAM we're replacing.
3002 */
3003 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
3004 {
3005 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
3006 if (RT_SUCCESS(rc))
3007 { /* likely */ }
3008 else if (pvMmio2)
3009 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
3010 GCPhys, cb, fFlags, rc));
3011 else
3012 {
3013 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
3014 GCPhys, cb, fFlags, rc));
3015 return VERR_NEM_UNMAP_PAGES_FAILED;
3016 }
3017 }
3018
3019 /*
3020 * Map MMIO2 if any.
3021 */
3022 if (pvMmio2)
3023 {
3024 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
3025 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3026 if (RT_SUCCESS(rc))
3027 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3028 else
3029 {
3030 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
3031 GCPhys, cb, fFlags, pvMmio2, rc));
3032 return VERR_NEM_MAP_PAGES_FAILED;
3033 }
3034 }
3035 else
3036 {
3037 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
3038 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3039 }
3040
3041#else
3042 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
3043 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
3044#endif
3045 return VINF_SUCCESS;
3046}
3047
3048
3049VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
3050 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
3051{
3052 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
3053 return VINF_SUCCESS;
3054}
3055
3056
3057VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
3058 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
3059{
3060 RT_NOREF(pVM, puNemRange);
3061
3062 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
3063 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
3064
3065 int rc = VINF_SUCCESS;
3066#if defined(VBOX_WITH_PGM_NEM_MODE)
3067 /*
3068 * Unmap the MMIO2 pages.
3069 */
3070 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
3071 * we may have more stuff to unmap even in case of pure MMIO... */
3072 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
3073 {
3074 rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
3075 if (RT_FAILURE(rc))
3076 {
3077 LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
3078 GCPhys, cb, fFlags, rc));
3079 rc = VERR_NEM_UNMAP_PAGES_FAILED;
3080 }
3081 }
3082
3083 /*
3084 * Restore the RAM we replaced.
3085 */
3086 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
3087 {
3088 AssertPtr(pvRam);
3089 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3090 if (RT_SUCCESS(rc))
3091 { /* likely */ }
3092 else
3093 {
3094 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
3095 rc = VERR_NEM_MAP_PAGES_FAILED;
3096 }
3097 if (pu2State)
3098 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3099 }
3100 /* Mark the pages as unmapped if relevant. */
3101 else if (pu2State)
3102 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3103
3104 RT_NOREF(pvMmio2);
3105#else
3106 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
3107 if (pu2State)
3108 *pu2State = UINT8_MAX;
3109 rc = VERR_NEM_UNMAP_PAGES_FAILED;
3110#endif
3111 return rc;
3112}
3113
3114
3115VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
3116 void *pvBitmap, size_t cbBitmap)
3117{
3118 RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
3119 AssertFailed();
3120 return VERR_NOT_IMPLEMENTED;
3121}
3122
3123
3124VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
3125 uint8_t *pu2State, uint32_t *puNemRange)
3126{
3127 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
3128
3129 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
3130 *pu2State = UINT8_MAX;
3131 *puNemRange = 0;
3132 return VINF_SUCCESS;
3133}
3134
3135
3136VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
3137 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
3138{
3139 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
3140 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
3141 *pu2State = UINT8_MAX;
3142
3143#if defined(VBOX_WITH_PGM_NEM_MODE)
3144 /*
3145 * (Re-)map readonly.
3146 */
3147 AssertPtrReturn(pvPages, VERR_INVALID_POINTER);
3148 int rc = nemR3DarwinMap(pVM, GCPhys, pvPages, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
3149 if (RT_SUCCESS(rc))
3150 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
3151 else
3152 {
3153 LogRel(("nemR3NativeNotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x rc=%Rrc\n",
3154 GCPhys, cb, pvPages, fFlags, rc));
3155 return VERR_NEM_MAP_PAGES_FAILED;
3156 }
3157 RT_NOREF(pVM, fFlags, puNemRange);
3158 return VINF_SUCCESS;
3159#else
3160 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
3161 return VERR_NEM_MAP_PAGES_FAILED;
3162#endif
3163}
3164
3165
3166VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
3167 RTR3PTR pvMemR3, uint8_t *pu2State)
3168{
3169 RT_NOREF(pVM);
3170
3171 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
3172 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
3173
3174 *pu2State = UINT8_MAX;
3175#if defined(VBOX_WITH_PGM_NEM_MODE)
3176 if (pvMemR3)
3177 {
3178 int rc = nemR3DarwinMap(pVM, GCPhys, pvMemR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3179 if (RT_SUCCESS(rc))
3180 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3181 else
3182 AssertLogRelMsgFailed(("NEMHCNotifyHandlerPhysicalDeregister: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
3183 pvMemR3, GCPhys, cb, rc));
3184 }
3185 RT_NOREF(enmKind);
3186#else
3187 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
3188 AssertFailed();
3189#endif
3190}
3191
3192
3193static int nemHCJustUnmapPage(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
3194{
3195 if (*pu2State <= NEM_DARWIN_PAGE_STATE_UNMAPPED)
3196 {
3197 Log5(("nemHCJustUnmapPage: %RGp == unmapped\n", GCPhysDst));
3198 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3199 return VINF_SUCCESS;
3200 }
3201
3202 int rc = nemR3DarwinUnmap(pVM, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
3203 if (RT_SUCCESS(rc))
3204 {
3205 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
3206 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3207 Log5(("nemHCJustUnmapPage: %RGp => unmapped\n", GCPhysDst));
3208 return VINF_SUCCESS;
3209 }
3210 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
3211 LogRel(("nemHCJustUnmapPage(%RGp): failed! rc=%Rrc\n",
3212 GCPhysDst, rc));
3213 return VERR_NEM_IPE_6;
3214}
3215
3216
3217/**
3218 * Called when the A20 state changes.
3219 *
3220 * @param pVCpu The CPU the A20 state changed on.
3221 * @param fEnabled Whether it was enabled (true) or disabled.
3222 */
3223VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
3224{
3225 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
3226 RT_NOREF(pVCpu, fEnabled);
3227}
3228
3229
3230void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
3231{
3232 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
3233 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
3234}
3235
3236
3237void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
3238 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
3239{
3240 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
3241 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
3242 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
3243}
3244
3245
3246int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
3247 PGMPAGETYPE enmType, uint8_t *pu2State)
3248{
3249 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3250 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3251 RT_NOREF(HCPhys, fPageProt, enmType);
3252
3253 return nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3254}
3255
3256
3257VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
3258 PGMPAGETYPE enmType, uint8_t *pu2State)
3259{
3260 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3261 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3262 RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
3263
3264 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3265}
3266
3267
3268VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
3269 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
3270{
3271 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3272 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
3273 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
3274
3275 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3276}
3277
3278
3279/**
3280 * Interface for importing state on demand (used by IEM).
3281 *
3282 * @returns VBox status code.
3283 * @param pVCpu The cross context CPU structure.
3284 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3285 */
3286VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
3287{
3288 LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
3289 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
3290
3291 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
3292}
3293
3294
3295/**
3296 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
3297 *
3298 * @returns VBox status code.
3299 * @param pVCpu The cross context CPU structure.
3300 * @param pcTicks Where to return the CPU tick count.
3301 * @param puAux Where to return the TSC_AUX register value.
3302 */
3303VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
3304{
3305 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
3306 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
3307
3308 int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
3309 if ( RT_SUCCESS(rc)
3310 && puAux)
3311 {
3312 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
3313 {
3314 /** @todo Why the heck is puAux a uint32_t?. */
3315 uint64_t u64Aux;
3316 rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
3317 if (RT_SUCCESS(rc))
3318 *puAux = (uint32_t)u64Aux;
3319 }
3320 else
3321 *puAux = CPUMGetGuestTscAux(pVCpu);
3322 }
3323
3324 return rc;
3325}
3326
3327
3328/**
3329 * Resumes CPU clock (TSC) on all virtual CPUs.
3330 *
3331 * This is called by TM when the VM is started, restored, resumed or similar.
3332 *
3333 * @returns VBox status code.
3334 * @param pVM The cross context VM structure.
3335 * @param pVCpu The cross context CPU structure of the calling EMT.
3336 * @param uPausedTscValue The TSC value at the time of pausing.
3337 */
3338VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
3339{
3340 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
3341 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
3342 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
3343
3344 hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
3345 if (RT_LIKELY(hrc == HV_SUCCESS))
3346 {
3347 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
3348 return VINF_SUCCESS;
3349 }
3350
3351 return nemR3DarwinHvSts2Rc(hrc);
3352}
3353
3354
3355/**
3356 * Returns features supported by the NEM backend.
3357 *
3358 * @returns Flags of features supported by the native NEM backend.
3359 * @param pVM The cross context VM structure.
3360 */
3361VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
3362{
3363 RT_NOREF(pVM);
3364 /*
3365 * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
3366 * and unrestricted guest execution support so we can safely return these flags here always.
3367 */
3368 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
3369}
3370
3371
3372/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
3373 *
3374 * @todo Add notes as the implementation progresses...
3375 */
3376
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette