VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp@ 97134

Last change on this file since 97134 was 97125, checked in by vboxsync, 2 years ago

Revert r154066, bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 164.0 KB
Line 
1/* $Id: NEMR3Native-darwin.cpp 97125 2022-10-13 08:52:20Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2020-2022 Oracle and/or its affiliates.
12 *
13 * This file is part of VirtualBox base platform packages, as
14 * available from https://www.virtualbox.org.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation, in version 3 of the
19 * License.
20 *
21 * This program is distributed in the hope that it will be useful, but
22 * WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 * General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, see <https://www.gnu.org/licenses>.
28 *
29 * SPDX-License-Identifier: GPL-3.0-only
30 */
31
32
33/*********************************************************************************************************************************
34* Header Files *
35*********************************************************************************************************************************/
36#define LOG_GROUP LOG_GROUP_NEM
37#define VMCPU_INCL_CPUM_GST_CTX
38#include <VBox/vmm/nem.h>
39#include <VBox/vmm/iem.h>
40#include <VBox/vmm/em.h>
41#include <VBox/vmm/apic.h>
42#include <VBox/vmm/pdm.h>
43#include <VBox/vmm/hm.h>
44#include <VBox/vmm/hm_vmx.h>
45#include <VBox/vmm/dbgftrace.h>
46#include <VBox/vmm/gcm.h>
47#include "VMXInternal.h"
48#include "NEMInternal.h"
49#include <VBox/vmm/vmcc.h>
50#include "dtrace/VBoxVMM.h"
51
52#include <iprt/asm.h>
53#include <iprt/ldr.h>
54#include <iprt/mem.h>
55#include <iprt/path.h>
56#include <iprt/string.h>
57#include <iprt/system.h>
58#include <iprt/utf16.h>
59
60#include <mach/mach_time.h>
61#include <mach/kern_return.h>
62
63
64/*********************************************************************************************************************************
65* Defined Constants And Macros *
66*********************************************************************************************************************************/
67/* No nested hwvirt (for now). */
68#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
69# undef VBOX_WITH_NESTED_HWVIRT_VMX
70#endif
71
72
73/** @name HV return codes.
74 * @{ */
75/** Operation was successful. */
76#define HV_SUCCESS 0
77/** An error occurred during operation. */
78#define HV_ERROR 0xfae94001
79/** The operation could not be completed right now, try again. */
80#define HV_BUSY 0xfae94002
81/** One of the parameters passed wis invalid. */
82#define HV_BAD_ARGUMENT 0xfae94003
83/** Not enough resources left to fulfill the operation. */
84#define HV_NO_RESOURCES 0xfae94005
85/** The device could not be found. */
86#define HV_NO_DEVICE 0xfae94006
87/** The operation is not supportd on this platform with this configuration. */
88#define HV_UNSUPPORTED 0xfae94007
89/** @} */
90
91
92/** @name HV memory protection flags.
93 * @{ */
94/** Memory is readable. */
95#define HV_MEMORY_READ RT_BIT_64(0)
96/** Memory is writeable. */
97#define HV_MEMORY_WRITE RT_BIT_64(1)
98/** Memory is executable. */
99#define HV_MEMORY_EXEC RT_BIT_64(2)
100/** @} */
101
102
103/** @name HV shadow VMCS protection flags.
104 * @{ */
105/** Shadow VMCS field is not accessible. */
106#define HV_SHADOW_VMCS_NONE 0
107/** Shadow VMCS fild is readable. */
108#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
109/** Shadow VMCS field is writeable. */
110#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
111/** @} */
112
113
114/** Default VM creation flags. */
115#define HV_VM_DEFAULT 0
116/** Default guest address space creation flags. */
117#define HV_VM_SPACE_DEFAULT 0
118/** Default vCPU creation flags. */
119#define HV_VCPU_DEFAULT 0
120
121#define HV_DEADLINE_FOREVER UINT64_MAX
122
123
124/*********************************************************************************************************************************
125* Structures and Typedefs *
126*********************************************************************************************************************************/
127
128/** HV return code type. */
129typedef uint32_t hv_return_t;
130/** HV capability bitmask. */
131typedef uint64_t hv_capability_t;
132/** Option bitmask type when creating a VM. */
133typedef uint64_t hv_vm_options_t;
134/** Option bitmask when creating a vCPU. */
135typedef uint64_t hv_vcpu_options_t;
136/** HV memory protection flags type. */
137typedef uint64_t hv_memory_flags_t;
138/** Shadow VMCS protection flags. */
139typedef uint64_t hv_shadow_flags_t;
140/** Guest physical address type. */
141typedef uint64_t hv_gpaddr_t;
142
143
144/**
145 * VMX Capability enumeration.
146 */
147typedef enum
148{
149 HV_VMX_CAP_PINBASED = 0,
150 HV_VMX_CAP_PROCBASED,
151 HV_VMX_CAP_PROCBASED2,
152 HV_VMX_CAP_ENTRY,
153 HV_VMX_CAP_EXIT,
154 HV_VMX_CAP_BASIC, /* Since 11.0 */
155 HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
156 HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
157 HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
158 HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
159 HV_VMX_CAP_MISC, /* Since 11.0 */
160 HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
161 HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
162 HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
163 HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
164 HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
165 HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
166 HV_VMX_CAP_PREEMPTION_TIMER = 32
167} hv_vmx_capability_t;
168
169
170/**
171 * HV x86 register enumeration.
172 */
173typedef enum
174{
175 HV_X86_RIP = 0,
176 HV_X86_RFLAGS,
177 HV_X86_RAX,
178 HV_X86_RCX,
179 HV_X86_RDX,
180 HV_X86_RBX,
181 HV_X86_RSI,
182 HV_X86_RDI,
183 HV_X86_RSP,
184 HV_X86_RBP,
185 HV_X86_R8,
186 HV_X86_R9,
187 HV_X86_R10,
188 HV_X86_R11,
189 HV_X86_R12,
190 HV_X86_R13,
191 HV_X86_R14,
192 HV_X86_R15,
193 HV_X86_CS,
194 HV_X86_SS,
195 HV_X86_DS,
196 HV_X86_ES,
197 HV_X86_FS,
198 HV_X86_GS,
199 HV_X86_IDT_BASE,
200 HV_X86_IDT_LIMIT,
201 HV_X86_GDT_BASE,
202 HV_X86_GDT_LIMIT,
203 HV_X86_LDTR,
204 HV_X86_LDT_BASE,
205 HV_X86_LDT_LIMIT,
206 HV_X86_LDT_AR,
207 HV_X86_TR,
208 HV_X86_TSS_BASE,
209 HV_X86_TSS_LIMIT,
210 HV_X86_TSS_AR,
211 HV_X86_CR0,
212 HV_X86_CR1,
213 HV_X86_CR2,
214 HV_X86_CR3,
215 HV_X86_CR4,
216 HV_X86_DR0,
217 HV_X86_DR1,
218 HV_X86_DR2,
219 HV_X86_DR3,
220 HV_X86_DR4,
221 HV_X86_DR5,
222 HV_X86_DR6,
223 HV_X86_DR7,
224 HV_X86_TPR,
225 HV_X86_XCR0,
226 HV_X86_REGISTERS_MAX
227} hv_x86_reg_t;
228
229
230/** MSR permission flags type. */
231typedef uint32_t hv_msr_flags_t;
232/** MSR can't be accessed. */
233#define HV_MSR_NONE 0
234/** MSR is readable by the guest. */
235#define HV_MSR_READ RT_BIT(0)
236/** MSR is writeable by the guest. */
237#define HV_MSR_WRITE RT_BIT(1)
238
239
240typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
241typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
242typedef hv_return_t FN_HV_VM_DESTROY(void);
243typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
244typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
245typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
246typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
247typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
248typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
249typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
250typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
251typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
252
253typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
254typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
255typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
256typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
257typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
258typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
259typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
260typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
261typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
262typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
263typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
264typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
265typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
266typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
267typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
268typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
269
270typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
271typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
272
273typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
274typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
275typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
276
277typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
278typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
279
280/* Since 11.0 */
281typedef hv_return_t FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *allowed_0, uint64_t *allowed_1);
282typedef hv_return_t FN_HV_VCPU_ENABLE_MANAGED_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
283typedef hv_return_t FN_HV_VCPU_SET_MSR_ACCESS(hv_vcpuid_t vcpu, uint32_t msr, hv_msr_flags_t flags);
284
285
286/*********************************************************************************************************************************
287* Global Variables *
288*********************************************************************************************************************************/
289/** NEM_DARWIN_PAGE_STATE_XXX names. */
290NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
291/** MSRs. */
292static SUPHWVIRTMSRS g_HmMsrs;
293/** VMX: Set if swapping EFER is supported. */
294static bool g_fHmVmxSupportsVmcsEfer = false;
295/** @name APIs imported from Hypervisor.framework.
296 * @{ */
297static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
298static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
299static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
300static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
301static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
302static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
303static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
304static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
305static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
306static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
307static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
308static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
309
310static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
311static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
312static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
313static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
314static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
315static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
316static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
317static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
318static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
319static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
320static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
321static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
322static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
323static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
324static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
325static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
326
327static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
328static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
329static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
330static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
331static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
332static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
333static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
334
335static FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS *g_pfnHvVmxVCpuGetCapWriteVmcs = NULL; /* Since 11.0 */
336static FN_HV_VCPU_ENABLE_MANAGED_MSR *g_pfnHvVCpuEnableManagedMsr = NULL; /* Since 11.0 */
337static FN_HV_VCPU_SET_MSR_ACCESS *g_pfnHvVCpuSetMsrAccess = NULL; /* Since 11.0 */
338/** @} */
339
340
341/**
342 * Import instructions.
343 */
344static const struct
345{
346 bool fOptional; /**< Set if import is optional. */
347 void **ppfn; /**< The function pointer variable. */
348 const char *pszName; /**< The function name. */
349} g_aImports[] =
350{
351#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
352 NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
353 NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
354 NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
355 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
356 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
357 NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
358 NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
359 NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
360 NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
361 NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
362 NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
363 NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
364
365 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
366 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
367 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
368 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
369 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
370 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
371 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
372 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
373 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
374 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
375 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
376 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
377 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
378 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
379 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
380 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
381 NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
382 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
383 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
384 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
385 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
386 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
387 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
388 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuGetCapWriteVmcs, hv_vmx_vcpu_get_cap_write_vmcs),
389 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuEnableManagedMsr, hv_vcpu_enable_managed_msr),
390 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetMsrAccess, hv_vcpu_set_msr_access)
391#undef NEM_DARWIN_IMPORT
392};
393
394
395/*
396 * Let the preprocessor alias the APIs to import variables for better autocompletion.
397 */
398#ifndef IN_SLICKEDIT
399# define hv_capability g_pfnHvCapability
400# define hv_vm_create g_pfnHvVmCreate
401# define hv_vm_destroy g_pfnHvVmDestroy
402# define hv_vm_space_create g_pfnHvVmSpaceCreate
403# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
404# define hv_vm_map g_pfnHvVmMap
405# define hv_vm_unmap g_pfnHvVmUnmap
406# define hv_vm_protect g_pfnHvVmProtect
407# define hv_vm_map_space g_pfnHvVmMapSpace
408# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
409# define hv_vm_protect_space g_pfnHvVmProtectSpace
410# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
411
412# define hv_vcpu_create g_pfnHvVCpuCreate
413# define hv_vcpu_destroy g_pfnHvVCpuDestroy
414# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
415# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
416# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
417# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
418# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
419# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
420# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
421# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
422# define hv_vcpu_flush g_pfnHvVCpuFlush
423# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
424# define hv_vcpu_run g_pfnHvVCpuRun
425# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
426# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
427# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
428
429# define hv_vmx_read_capability g_pfnHvVmxReadCapability
430# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
431# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
432# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
433# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
434# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
435# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
436
437# define hv_vmx_vcpu_get_cap_write_vmcs g_pfnHvVmxVCpuGetCapWriteVmcs
438# define hv_vcpu_enable_managed_msr g_pfnHvVCpuEnableManagedMsr
439# define hv_vcpu_set_msr_access g_pfnHvVCpuSetMsrAccess
440#endif
441
442static const struct
443{
444 uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
445 const char *pszVmcsField; /**< The VMCS field name. */
446 bool f64Bit;
447} g_aVmcsFieldsCap[] =
448{
449#define NEM_DARWIN_VMCS64_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
450#define NEM_DARWIN_VMCS32_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
451
452 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PIN_EXEC),
453 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC),
454 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
455 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXIT),
456 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_ENTRY),
457 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC2),
458 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_GAP),
459 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_WINDOW),
460 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
461 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_GUEST_DEBUGCTL_FULL)
462#undef NEM_DARWIN_VMCS64_FIELD_CAP
463#undef NEM_DARWIN_VMCS32_FIELD_CAP
464};
465
466
467/*********************************************************************************************************************************
468* Internal Functions *
469*********************************************************************************************************************************/
470DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
471
472
473/**
474 * Converts a HV return code to a VBox status code.
475 *
476 * @returns VBox status code.
477 * @param hrc The HV return code to convert.
478 */
479DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
480{
481 if (hrc == HV_SUCCESS)
482 return VINF_SUCCESS;
483
484 switch (hrc)
485 {
486 case HV_ERROR: return VERR_INVALID_STATE;
487 case HV_BUSY: return VERR_RESOURCE_BUSY;
488 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
489 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
490 case HV_NO_DEVICE: return VERR_NOT_FOUND;
491 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
492 }
493
494 return VERR_IPE_UNEXPECTED_STATUS;
495}
496
497
498/**
499 * Unmaps the given guest physical address range (page aligned).
500 *
501 * @returns VBox status code.
502 * @param pVM The cross context VM structure.
503 * @param GCPhys The guest physical address to start unmapping at.
504 * @param cb The size of the range to unmap in bytes.
505 */
506DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb)
507{
508 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
509 hv_return_t hrc;
510 if (pVM->nem.s.fCreatedAsid)
511 hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys, cb);
512 else
513 hrc = hv_vm_unmap(GCPhys, cb);
514 return nemR3DarwinHvSts2Rc(hrc);
515}
516
517
518/**
519 * Maps a given guest physical address range backed by the given memory with the given
520 * protection flags.
521 *
522 * @returns VBox status code.
523 * @param pVM The cross context VM structure.
524 * @param GCPhys The guest physical address to start mapping.
525 * @param pvRam The R3 pointer of the memory to back the range with.
526 * @param cb The size of the range, page aligned.
527 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
528 */
529DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, void *pvRam, size_t cb, uint32_t fPageProt)
530{
531 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
532
533 hv_memory_flags_t fHvMemProt = 0;
534 if (fPageProt & NEM_PAGE_PROT_READ)
535 fHvMemProt |= HV_MEMORY_READ;
536 if (fPageProt & NEM_PAGE_PROT_WRITE)
537 fHvMemProt |= HV_MEMORY_WRITE;
538 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
539 fHvMemProt |= HV_MEMORY_EXEC;
540
541 hv_return_t hrc;
542 if (pVM->nem.s.fCreatedAsid)
543 hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
544 else
545 hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
546 return nemR3DarwinHvSts2Rc(hrc);
547}
548
549
550#if 0 /* unused */
551DECLINLINE(int) nemR3DarwinProtectPage(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt)
552{
553 hv_memory_flags_t fHvMemProt = 0;
554 if (fPageProt & NEM_PAGE_PROT_READ)
555 fHvMemProt |= HV_MEMORY_READ;
556 if (fPageProt & NEM_PAGE_PROT_WRITE)
557 fHvMemProt |= HV_MEMORY_WRITE;
558 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
559 fHvMemProt |= HV_MEMORY_EXEC;
560
561 if (pVM->nem.s.fCreatedAsid)
562 hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
563 else
564 hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
565
566 return nemR3DarwinHvSts2Rc(hrc);
567}
568#endif
569
570
571DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
572{
573 PGMPAGEMAPLOCK Lock;
574 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
575 if (RT_SUCCESS(rc))
576 PGMPhysReleasePageMappingLock(pVM, &Lock);
577 return rc;
578}
579
580
581DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
582{
583 PGMPAGEMAPLOCK Lock;
584 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
585 if (RT_SUCCESS(rc))
586 PGMPhysReleasePageMappingLock(pVM, &Lock);
587 return rc;
588}
589
590
591/**
592 * Worker that maps pages into Hyper-V.
593 *
594 * This is used by the PGM physical page notifications as well as the memory
595 * access VMEXIT handlers.
596 *
597 * @returns VBox status code.
598 * @param pVM The cross context VM structure.
599 * @param pVCpu The cross context virtual CPU structure of the
600 * calling EMT.
601 * @param GCPhysSrc The source page address.
602 * @param GCPhysDst The hyper-V destination page. This may differ from
603 * GCPhysSrc when A20 is disabled.
604 * @param fPageProt NEM_PAGE_PROT_XXX.
605 * @param pu2State Our page state (input/output).
606 * @param fBackingChanged Set if the page backing is being changed.
607 * @thread EMT(pVCpu)
608 */
609NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
610 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
611{
612 /*
613 * Looks like we need to unmap a page before we can change the backing
614 * or even modify the protection. This is going to be *REALLY* efficient.
615 * PGM lends us two bits to keep track of the state here.
616 */
617 RT_NOREF(pVCpu);
618 uint8_t const u2OldState = *pu2State;
619 uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_DARWIN_PAGE_STATE_WRITABLE
620 : fPageProt & NEM_PAGE_PROT_READ ? NEM_DARWIN_PAGE_STATE_READABLE : NEM_DARWIN_PAGE_STATE_UNMAPPED;
621 if ( fBackingChanged
622 || u2NewState != u2OldState)
623 {
624 if (u2OldState > NEM_DARWIN_PAGE_STATE_UNMAPPED)
625 {
626 int rc = nemR3DarwinUnmap(pVM, GCPhysDst, X86_PAGE_SIZE);
627 if (RT_SUCCESS(rc))
628 {
629 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
630 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
631 if (u2NewState == NEM_DARWIN_PAGE_STATE_UNMAPPED)
632 {
633 Log5(("NEM GPA unmapped/set: %RGp (was %s)\n", GCPhysDst, g_apszPageStates[u2OldState]));
634 return VINF_SUCCESS;
635 }
636 }
637 else
638 {
639 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
640 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
641 return VERR_NEM_INIT_FAILED;
642 }
643 }
644 }
645
646 /*
647 * Writeable mapping?
648 */
649 if (fPageProt & NEM_PAGE_PROT_WRITE)
650 {
651 void *pvPage;
652 int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
653 if (RT_SUCCESS(rc))
654 {
655 rc = nemR3DarwinMap(pVM, GCPhysDst, pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
656 if (RT_SUCCESS(rc))
657 {
658 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
659 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
660 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
661 return VINF_SUCCESS;
662 }
663 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
664 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst));
665 return VERR_NEM_INIT_FAILED;
666 }
667 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
668 return rc;
669 }
670
671 if (fPageProt & NEM_PAGE_PROT_READ)
672 {
673 const void *pvPage;
674 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
675 if (RT_SUCCESS(rc))
676 {
677 rc = nemR3DarwinMap(pVM, GCPhysDst, (void *)pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
678 if (RT_SUCCESS(rc))
679 {
680 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
681 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
682 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
683 return VINF_SUCCESS;
684 }
685 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
686 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
687 return VERR_NEM_INIT_FAILED;
688 }
689 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
690 return rc;
691 }
692
693 /* We already unmapped it above. */
694 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
695 return VINF_SUCCESS;
696}
697
698
699#ifdef LOG_ENABLED
700/**
701 * Logs the current CPU state.
702 */
703static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
704{
705 if (LogIs3Enabled())
706 {
707#if 0
708 char szRegs[4096];
709 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
710 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
711 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
712 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
713 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
714 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
715 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
716 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
717 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
718 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
719 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
720 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
721 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
722 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
723 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
724 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
725 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
726 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
727 " efer=%016VR{efer}\n"
728 " pat=%016VR{pat}\n"
729 " sf_mask=%016VR{sf_mask}\n"
730 "krnl_gs_base=%016VR{krnl_gs_base}\n"
731 " lstar=%016VR{lstar}\n"
732 " star=%016VR{star} cstar=%016VR{cstar}\n"
733 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
734 );
735
736 char szInstr[256];
737 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
738 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
739 szInstr, sizeof(szInstr), NULL);
740 Log3(("%s%s\n", szRegs, szInstr));
741#else
742 RT_NOREF(pVM, pVCpu);
743#endif
744 }
745}
746#endif /* LOG_ENABLED */
747
748
749DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
750{
751 uint64_t u64Data;
752 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
753 if (RT_LIKELY(hrc == HV_SUCCESS))
754 {
755 *pData = (uint16_t)u64Data;
756 return VINF_SUCCESS;
757 }
758
759 return nemR3DarwinHvSts2Rc(hrc);
760}
761
762
763DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
764{
765 uint64_t u64Data;
766 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
767 if (RT_LIKELY(hrc == HV_SUCCESS))
768 {
769 *pData = (uint32_t)u64Data;
770 return VINF_SUCCESS;
771 }
772
773 return nemR3DarwinHvSts2Rc(hrc);
774}
775
776
777DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
778{
779 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
780 if (RT_LIKELY(hrc == HV_SUCCESS))
781 return VINF_SUCCESS;
782
783 return nemR3DarwinHvSts2Rc(hrc);
784}
785
786
787DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
788{
789 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
790 if (RT_LIKELY(hrc == HV_SUCCESS))
791 return VINF_SUCCESS;
792
793 return nemR3DarwinHvSts2Rc(hrc);
794}
795
796
797DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
798{
799 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
800 if (RT_LIKELY(hrc == HV_SUCCESS))
801 return VINF_SUCCESS;
802
803 return nemR3DarwinHvSts2Rc(hrc);
804}
805
806
807DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
808{
809 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
810 if (RT_LIKELY(hrc == HV_SUCCESS))
811 return VINF_SUCCESS;
812
813 return nemR3DarwinHvSts2Rc(hrc);
814}
815
816DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
817{
818 hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
819 if (RT_LIKELY(hrc == HV_SUCCESS))
820 return VINF_SUCCESS;
821
822 return nemR3DarwinHvSts2Rc(hrc);
823}
824
825#if 0 /*unused*/
826DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
827{
828 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
829 if (RT_LIKELY(hrc == HV_SUCCESS))
830 return VINF_SUCCESS;
831
832 return nemR3DarwinHvSts2Rc(hrc);
833}
834#endif
835
836static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
837{
838#define READ_GREG(a_GReg, a_Value) \
839 do \
840 { \
841 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
842 if (RT_LIKELY(hrc == HV_SUCCESS)) \
843 { /* likely */ } \
844 else \
845 return VERR_INTERNAL_ERROR; \
846 } while(0)
847#define READ_VMCS_FIELD(a_Field, a_Value) \
848 do \
849 { \
850 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
851 if (RT_LIKELY(hrc == HV_SUCCESS)) \
852 { /* likely */ } \
853 else \
854 return VERR_INTERNAL_ERROR; \
855 } while(0)
856#define READ_VMCS16_FIELD(a_Field, a_Value) \
857 do \
858 { \
859 uint64_t u64Data; \
860 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
861 if (RT_LIKELY(hrc == HV_SUCCESS)) \
862 { (a_Value) = (uint16_t)u64Data; } \
863 else \
864 return VERR_INTERNAL_ERROR; \
865 } while(0)
866#define READ_VMCS32_FIELD(a_Field, a_Value) \
867 do \
868 { \
869 uint64_t u64Data; \
870 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
871 if (RT_LIKELY(hrc == HV_SUCCESS)) \
872 { (a_Value) = (uint32_t)u64Data; } \
873 else \
874 return VERR_INTERNAL_ERROR; \
875 } while(0)
876#define READ_MSR(a_Msr, a_Value) \
877 do \
878 { \
879 hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
880 if (RT_LIKELY(hrc == HV_SUCCESS)) \
881 { /* likely */ } \
882 else \
883 AssertFailedReturn(VERR_INTERNAL_ERROR); \
884 } while(0)
885
886 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);
887
888 RT_NOREF(pVM);
889 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
890
891 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
892 vmxHCImportGuestIntrState(pVCpu, &pVCpu->nem.s.VmcsInfo);
893
894 /* GPRs */
895 hv_return_t hrc;
896 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
897 {
898 if (fWhat & CPUMCTX_EXTRN_RAX)
899 READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
900 if (fWhat & CPUMCTX_EXTRN_RCX)
901 READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
902 if (fWhat & CPUMCTX_EXTRN_RDX)
903 READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
904 if (fWhat & CPUMCTX_EXTRN_RBX)
905 READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
906 if (fWhat & CPUMCTX_EXTRN_RSP)
907 READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
908 if (fWhat & CPUMCTX_EXTRN_RBP)
909 READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
910 if (fWhat & CPUMCTX_EXTRN_RSI)
911 READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
912 if (fWhat & CPUMCTX_EXTRN_RDI)
913 READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
914 if (fWhat & CPUMCTX_EXTRN_R8_R15)
915 {
916 READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
917 READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
918 READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
919 READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
920 READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
921 READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
922 READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
923 READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
924 }
925 }
926
927 /* RIP & Flags */
928 if (fWhat & CPUMCTX_EXTRN_RIP)
929 READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
930 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
931 READ_GREG(HV_X86_RFLAGS, pVCpu->cpum.GstCtx.rflags.u);
932
933 /* Segments */
934#define READ_SEG(a_SReg, a_enmName) \
935 do { \
936 READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
937 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
938 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
939 READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
940 (a_SReg).ValidSel = (a_SReg).Sel; \
941 } while (0)
942 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
943 {
944 if (fWhat & CPUMCTX_EXTRN_ES)
945 READ_SEG(pVCpu->cpum.GstCtx.es, ES);
946 if (fWhat & CPUMCTX_EXTRN_CS)
947 READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
948 if (fWhat & CPUMCTX_EXTRN_SS)
949 READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
950 if (fWhat & CPUMCTX_EXTRN_DS)
951 READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
952 if (fWhat & CPUMCTX_EXTRN_FS)
953 READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
954 if (fWhat & CPUMCTX_EXTRN_GS)
955 READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
956 }
957
958 /* Descriptor tables and the task segment. */
959 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
960 {
961 if (fWhat & CPUMCTX_EXTRN_LDTR)
962 READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
963
964 if (fWhat & CPUMCTX_EXTRN_TR)
965 {
966 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
967 avoid to trigger sanity assertions around the code, always fix this. */
968 READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
969 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
970 {
971 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
972 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
973 break;
974 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
975 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
976 break;
977 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
978 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
979 break;
980 }
981 }
982 if (fWhat & CPUMCTX_EXTRN_IDTR)
983 {
984 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
985 READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
986 }
987 if (fWhat & CPUMCTX_EXTRN_GDTR)
988 {
989 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
990 READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
991 }
992 }
993
994 /* Control registers. */
995 bool fMaybeChangedMode = false;
996 bool fUpdateCr3 = false;
997 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
998 {
999 uint64_t u64CrTmp = 0;
1000
1001 if (fWhat & CPUMCTX_EXTRN_CR0)
1002 {
1003 READ_GREG(HV_X86_CR0, u64CrTmp);
1004 if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
1005 {
1006 CPUMSetGuestCR0(pVCpu, u64CrTmp);
1007 fMaybeChangedMode = true;
1008 }
1009 }
1010 if (fWhat & CPUMCTX_EXTRN_CR2)
1011 READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1012 if (fWhat & CPUMCTX_EXTRN_CR3)
1013 {
1014 READ_GREG(HV_X86_CR3, u64CrTmp);
1015 if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
1016 {
1017 CPUMSetGuestCR3(pVCpu, u64CrTmp);
1018 fUpdateCr3 = true;
1019 }
1020
1021 /*
1022 * If the guest is in PAE mode, sync back the PDPE's into the guest state.
1023 * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
1024 */
1025 if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx))
1026 {
1027 X86PDPE aPaePdpes[4];
1028 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE0_FULL, aPaePdpes[0].u);
1029 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE1_FULL, aPaePdpes[1].u);
1030 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE2_FULL, aPaePdpes[2].u);
1031 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE3_FULL, aPaePdpes[3].u);
1032 if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes)))
1033 {
1034 memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
1035 fUpdateCr3 = true;
1036 }
1037 }
1038 }
1039 if (fWhat & CPUMCTX_EXTRN_CR4)
1040 {
1041 READ_GREG(HV_X86_CR4, u64CrTmp);
1042 u64CrTmp &= ~VMX_V_CR4_FIXED0;
1043
1044 if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
1045 {
1046 CPUMSetGuestCR4(pVCpu, u64CrTmp);
1047 fMaybeChangedMode = true;
1048 }
1049 }
1050 }
1051
1052#if 0 /* Always done. */
1053 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1054 {
1055 uint64_t u64Cr8 = 0;
1056
1057 READ_GREG(HV_X86_TPR, u64Cr8);
1058 APICSetTpr(pVCpu, u64Cr8 << 4);
1059 }
1060#endif
1061
1062 if (fWhat & CPUMCTX_EXTRN_XCRx)
1063 READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1064
1065 /* Debug registers. */
1066 if (fWhat & CPUMCTX_EXTRN_DR7)
1067 {
1068 uint64_t u64Dr7;
1069 READ_GREG(HV_X86_DR7, u64Dr7);
1070 if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
1071 CPUMSetGuestDR7(pVCpu, u64Dr7);
1072 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
1073 }
1074 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1075 {
1076 uint64_t u64DrTmp;
1077
1078 READ_GREG(HV_X86_DR0, u64DrTmp);
1079 if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
1080 CPUMSetGuestDR0(pVCpu, u64DrTmp);
1081 READ_GREG(HV_X86_DR1, u64DrTmp);
1082 if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
1083 CPUMSetGuestDR1(pVCpu, u64DrTmp);
1084 READ_GREG(HV_X86_DR2, u64DrTmp);
1085 if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
1086 CPUMSetGuestDR2(pVCpu, u64DrTmp);
1087 READ_GREG(HV_X86_DR3, u64DrTmp);
1088 if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
1089 CPUMSetGuestDR3(pVCpu, u64DrTmp);
1090 }
1091 if (fWhat & CPUMCTX_EXTRN_DR6)
1092 {
1093 uint64_t u64Dr6;
1094 READ_GREG(HV_X86_DR6, u64Dr6);
1095 if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
1096 CPUMSetGuestDR6(pVCpu, u64Dr6);
1097 }
1098
1099 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1100 {
1101 hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1102 if (hrc == HV_SUCCESS)
1103 { /* likely */ }
1104 else
1105 {
1106 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1107 return nemR3DarwinHvSts2Rc(hrc);
1108 }
1109 }
1110
1111 /* MSRs */
1112 if (fWhat & CPUMCTX_EXTRN_EFER)
1113 {
1114 uint64_t u64Efer;
1115
1116 READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
1117 if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
1118 {
1119 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
1120 if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1121 PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
1122 pVCpu->cpum.GstCtx.msrEFER = u64Efer;
1123 fMaybeChangedMode = true;
1124 }
1125 }
1126
1127 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1128 READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1129 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1130 {
1131 uint64_t u64Tmp;
1132 READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
1133 pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
1134 READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
1135 pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
1136 READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
1137 pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
1138 }
1139 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1140 {
1141 READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1142 READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1143 READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1144 READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1145 }
1146 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1147 {
1148 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1149 READ_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1150 }
1151 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1152 {
1153 /* Last Branch Record. */
1154 if (pVM->nem.s.fLbr)
1155 {
1156 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1157 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1158 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1159 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1160 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1161 Assert(cLbrStack <= 32);
1162 for (uint32_t i = 0; i < cLbrStack; i++)
1163 {
1164 READ_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1165
1166 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1167 if (idToIpMsrStart != 0)
1168 READ_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1169 if (idInfoMsrStart != 0)
1170 READ_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1171 }
1172
1173 READ_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1174
1175 if (pVM->nem.s.idLerFromIpMsr)
1176 READ_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1177 if (pVM->nem.s.idLerToIpMsr)
1178 READ_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1179 }
1180 }
1181
1182 /* Almost done, just update extrn flags and maybe change PGM mode. */
1183 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1184 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1185 pVCpu->cpum.GstCtx.fExtrn = 0;
1186
1187#ifdef LOG_ENABLED
1188 nemR3DarwinLogState(pVM, pVCpu);
1189#endif
1190
1191 /* Typical. */
1192 if (!fMaybeChangedMode && !fUpdateCr3)
1193 {
1194 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1195 return VINF_SUCCESS;
1196 }
1197
1198 /*
1199 * Slow.
1200 */
1201 if (fMaybeChangedMode)
1202 {
1203 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1204 false /* fForce */);
1205 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1206 }
1207
1208 if (fUpdateCr3)
1209 {
1210 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1211 if (rc == VINF_SUCCESS)
1212 { /* likely */ }
1213 else
1214 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1215 }
1216
1217 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1218
1219 return VINF_SUCCESS;
1220#undef READ_GREG
1221#undef READ_VMCS_FIELD
1222#undef READ_VMCS32_FIELD
1223#undef READ_SEG
1224#undef READ_MSR
1225}
1226
1227
1228/**
1229 * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
1230 * and nemHCWinHandleMemoryAccessPageCheckerCallback.
1231 */
1232typedef struct NEMHCDARWINHMACPCCSTATE
1233{
1234 /** Input: Write access. */
1235 bool fWriteAccess;
1236 /** Output: Set if we did something. */
1237 bool fDidSomething;
1238 /** Output: Set it we should resume. */
1239 bool fCanResume;
1240} NEMHCDARWINHMACPCCSTATE;
1241
1242/**
1243 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1244 * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
1245 * NEMHCDARWINHMACPCCSTATE structure. }
1246 */
1247static DECLCALLBACK(int)
1248nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1249{
1250 NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
1251 pState->fDidSomething = false;
1252 pState->fCanResume = false;
1253
1254 uint8_t u2State = pInfo->u2NemState;
1255
1256 /*
1257 * Consolidate current page state with actual page protection and access type.
1258 * We don't really consider downgrades here, as they shouldn't happen.
1259 */
1260 int rc;
1261 switch (u2State)
1262 {
1263 case NEM_DARWIN_PAGE_STATE_UNMAPPED:
1264 case NEM_DARWIN_PAGE_STATE_NOT_SET:
1265 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1266 {
1267 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1268 return VINF_SUCCESS;
1269 }
1270
1271 /* Don't bother remapping it if it's a write request to a non-writable page. */
1272 if ( pState->fWriteAccess
1273 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1274 {
1275 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1276 return VINF_SUCCESS;
1277 }
1278
1279 /* Map the page. */
1280 rc = nemHCNativeSetPhysPage(pVM,
1281 pVCpu,
1282 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1283 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1284 pInfo->fNemProt,
1285 &u2State,
1286 true /*fBackingState*/);
1287 pInfo->u2NemState = u2State;
1288 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1289 GCPhys, g_apszPageStates[u2State], rc));
1290 pState->fDidSomething = true;
1291 pState->fCanResume = true;
1292 return rc;
1293
1294 case NEM_DARWIN_PAGE_STATE_READABLE:
1295 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1296 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1297 {
1298 pState->fCanResume = true;
1299 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1300 return VINF_SUCCESS;
1301 }
1302 break;
1303
1304 case NEM_DARWIN_PAGE_STATE_WRITABLE:
1305 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1306 {
1307 /* We get spurious EPT exit violations when everything is fine (#3a case) but can resume without issues here... */
1308 pState->fCanResume = true;
1309 if (pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_WRITABLE)
1310 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
1311 else
1312 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
1313 GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
1314 return VINF_SUCCESS;
1315 }
1316
1317 break;
1318
1319 default:
1320 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1321 }
1322
1323 /*
1324 * Unmap and restart the instruction.
1325 * If this fails, which it does every so often, just unmap everything for now.
1326 */
1327 rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE);
1328 if (RT_SUCCESS(rc))
1329 {
1330 pState->fDidSomething = true;
1331 pState->fCanResume = true;
1332 pInfo->u2NemState = NEM_DARWIN_PAGE_STATE_UNMAPPED;
1333 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
1334 Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
1335 return VINF_SUCCESS;
1336 }
1337 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
1338 LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s rc=%Rrc\n",
1339 GCPhys, g_apszPageStates[u2State], rc));
1340 return VERR_NEM_UNMAP_PAGES_FAILED;
1341}
1342
1343
1344DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
1345{
1346 RT_NOREF(pVM);
1347 return true;
1348}
1349
1350
1351DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
1352{
1353 RT_NOREF(pVM);
1354 return true;
1355}
1356
1357
1358DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
1359{
1360 RT_NOREF(pVM);
1361 return false;
1362}
1363
1364
1365#if 0 /* unused */
1366DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
1367{
1368 RT_NOREF(pVM);
1369 return false;
1370}
1371#endif
1372
1373
1374/*
1375 * Instantiate the code we share with ring-0.
1376 */
1377#define IN_NEM_DARWIN
1378//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
1379//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
1380//#define HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
1381#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
1382#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
1383
1384#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
1385#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
1386#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
1387#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
1388
1389#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
1390#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
1391#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1392#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1393
1394#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
1395#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
1396#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1397#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1398
1399#include "../VMMAll/VMXAllTemplate.cpp.h"
1400
1401#undef VMX_VMCS_WRITE_16
1402#undef VMX_VMCS_WRITE_32
1403#undef VMX_VMCS_WRITE_64
1404#undef VMX_VMCS_WRITE_NW
1405
1406#undef VMX_VMCS_READ_16
1407#undef VMX_VMCS_READ_32
1408#undef VMX_VMCS_READ_64
1409#undef VMX_VMCS_READ_NW
1410
1411#undef VM_IS_VMX_PREEMPT_TIMER_USED
1412#undef VM_IS_VMX_NESTED_PAGING
1413#undef VM_IS_VMX_UNRESTRICTED_GUEST
1414#undef VCPU_2_VMXSTATS
1415#undef VCPU_2_VMXSTATE
1416
1417
1418/**
1419 * Exports the guest GP registers to HV for execution.
1420 *
1421 * @returns VBox status code.
1422 * @param pVCpu The cross context virtual CPU structure of the
1423 * calling EMT.
1424 */
1425static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
1426{
1427#define WRITE_GREG(a_GReg, a_Value) \
1428 do \
1429 { \
1430 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1431 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1432 { /* likely */ } \
1433 else \
1434 return VERR_INTERNAL_ERROR; \
1435 } while(0)
1436
1437 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
1438 if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
1439 {
1440 if (fCtxChanged & HM_CHANGED_GUEST_RAX)
1441 WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
1442 if (fCtxChanged & HM_CHANGED_GUEST_RCX)
1443 WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
1444 if (fCtxChanged & HM_CHANGED_GUEST_RDX)
1445 WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
1446 if (fCtxChanged & HM_CHANGED_GUEST_RBX)
1447 WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
1448 if (fCtxChanged & HM_CHANGED_GUEST_RSP)
1449 WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
1450 if (fCtxChanged & HM_CHANGED_GUEST_RBP)
1451 WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
1452 if (fCtxChanged & HM_CHANGED_GUEST_RSI)
1453 WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
1454 if (fCtxChanged & HM_CHANGED_GUEST_RDI)
1455 WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
1456 if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
1457 {
1458 WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
1459 WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
1460 WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
1461 WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
1462 WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
1463 WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
1464 WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
1465 WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
1466 }
1467
1468 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
1469 }
1470
1471 if (fCtxChanged & HM_CHANGED_GUEST_CR2)
1472 {
1473 WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1474 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
1475 }
1476
1477 return VINF_SUCCESS;
1478#undef WRITE_GREG
1479}
1480
1481
1482/**
1483 * Exports the guest debug registers into the guest-state applying any hypervisor
1484 * debug related states (hardware breakpoints from the debugger, etc.).
1485 *
1486 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
1487 *
1488 * @returns VBox status code.
1489 * @param pVCpu The cross context virtual CPU structure.
1490 * @param pVmxTransient The VMX-transient structure.
1491 */
1492static int nemR3DarwinExportDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1493{
1494 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1495
1496#ifdef VBOX_STRICT
1497 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
1498 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
1499 {
1500 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
1501 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
1502 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
1503 }
1504#endif
1505
1506 bool fSteppingDB = false;
1507 bool fInterceptMovDRx = false;
1508 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
1509 if (pVCpu->nem.s.fSingleInstruction)
1510 {
1511 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
1512 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
1513 {
1514 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
1515 Assert(fSteppingDB == false);
1516 }
1517 else
1518 {
1519 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
1520 pVCpu->nem.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
1521 pVCpu->nem.s.fClearTrapFlag = true;
1522 fSteppingDB = true;
1523 }
1524 }
1525
1526 uint64_t u64GuestDr7;
1527 if ( fSteppingDB
1528 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1529 {
1530 /*
1531 * Use the combined guest and host DRx values found in the hypervisor register set
1532 * because the hypervisor debugger has breakpoints active or someone is single stepping
1533 * on the host side without a monitor trap flag.
1534 *
1535 * Note! DBGF expects a clean DR6 state before executing guest code.
1536 */
1537 if (!CPUMIsHyperDebugStateActive(pVCpu))
1538 {
1539 /*
1540 * Make sure the hypervisor values are up to date.
1541 */
1542 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
1543
1544 CPUMR3NemActivateHyperDebugState(pVCpu);
1545
1546 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1547 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1548 }
1549
1550 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
1551 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
1552 pVCpu->nem.s.fUsingHyperDR7 = true;
1553 fInterceptMovDRx = true;
1554 }
1555 else
1556 {
1557 /*
1558 * If the guest has enabled debug registers, we need to load them prior to
1559 * executing guest code so they'll trigger at the right time.
1560 */
1561 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
1562 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1563 {
1564 if (!CPUMIsGuestDebugStateActive(pVCpu))
1565 {
1566 CPUMR3NemActivateGuestDebugState(pVCpu);
1567
1568 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1569 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1570 }
1571 Assert(!fInterceptMovDRx);
1572 }
1573 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1574 {
1575 /*
1576 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
1577 * must intercept #DB in order to maintain a correct DR6 guest value, and
1578 * because we need to intercept it to prevent nested #DBs from hanging the
1579 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
1580 */
1581 fInterceptMovDRx = true;
1582 }
1583
1584 /* Update DR7 with the actual guest value. */
1585 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
1586 pVCpu->nem.s.fUsingHyperDR7 = false;
1587 }
1588
1589 if (fInterceptMovDRx)
1590 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
1591 else
1592 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
1593
1594 /*
1595 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
1596 * monitor-trap flag and update our cache.
1597 */
1598 if (uProcCtls != pVmcsInfo->u32ProcCtls)
1599 {
1600 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
1601 AssertRC(rc);
1602 pVmcsInfo->u32ProcCtls = uProcCtls;
1603 }
1604
1605 /*
1606 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
1607 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
1608 *
1609 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
1610 */
1611 if (fSteppingDB)
1612 {
1613 Assert(pVCpu->nem.s.fSingleInstruction);
1614 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
1615
1616 uint32_t fIntrState = 0;
1617 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
1618 AssertRC(rc);
1619
1620 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
1621 {
1622 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
1623 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
1624 AssertRC(rc);
1625 }
1626 }
1627
1628 /*
1629 * Store status of the shared guest/host debug state at the time of VM-entry.
1630 */
1631 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
1632 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
1633
1634 return VINF_SUCCESS;
1635}
1636
1637
1638/**
1639 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
1640 *
1641 * @returns Bitmask of HM changed flags.
1642 * @param fCpumExtrn The CPUM extern bitmask.
1643 */
1644static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
1645{
1646 uint64_t fHmChanged = 0;
1647
1648 /* Invert to gt a mask of things which are kept in CPUM. */
1649 uint64_t fCpumIntern = ~fCpumExtrn;
1650
1651 if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
1652 {
1653 if (fCpumIntern & CPUMCTX_EXTRN_RAX)
1654 fHmChanged |= HM_CHANGED_GUEST_RAX;
1655 if (fCpumIntern & CPUMCTX_EXTRN_RCX)
1656 fHmChanged |= HM_CHANGED_GUEST_RCX;
1657 if (fCpumIntern & CPUMCTX_EXTRN_RDX)
1658 fHmChanged |= HM_CHANGED_GUEST_RDX;
1659 if (fCpumIntern & CPUMCTX_EXTRN_RBX)
1660 fHmChanged |= HM_CHANGED_GUEST_RBX;
1661 if (fCpumIntern & CPUMCTX_EXTRN_RSP)
1662 fHmChanged |= HM_CHANGED_GUEST_RSP;
1663 if (fCpumIntern & CPUMCTX_EXTRN_RBP)
1664 fHmChanged |= HM_CHANGED_GUEST_RBP;
1665 if (fCpumIntern & CPUMCTX_EXTRN_RSI)
1666 fHmChanged |= HM_CHANGED_GUEST_RSI;
1667 if (fCpumIntern & CPUMCTX_EXTRN_RDI)
1668 fHmChanged |= HM_CHANGED_GUEST_RDI;
1669 if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
1670 fHmChanged |= HM_CHANGED_GUEST_R8_R15;
1671 }
1672
1673 /* RIP & Flags */
1674 if (fCpumIntern & CPUMCTX_EXTRN_RIP)
1675 fHmChanged |= HM_CHANGED_GUEST_RIP;
1676 if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
1677 fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
1678
1679 /* Segments */
1680 if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
1681 {
1682 if (fCpumIntern & CPUMCTX_EXTRN_ES)
1683 fHmChanged |= HM_CHANGED_GUEST_ES;
1684 if (fCpumIntern & CPUMCTX_EXTRN_CS)
1685 fHmChanged |= HM_CHANGED_GUEST_CS;
1686 if (fCpumIntern & CPUMCTX_EXTRN_SS)
1687 fHmChanged |= HM_CHANGED_GUEST_SS;
1688 if (fCpumIntern & CPUMCTX_EXTRN_DS)
1689 fHmChanged |= HM_CHANGED_GUEST_DS;
1690 if (fCpumIntern & CPUMCTX_EXTRN_FS)
1691 fHmChanged |= HM_CHANGED_GUEST_FS;
1692 if (fCpumIntern & CPUMCTX_EXTRN_GS)
1693 fHmChanged |= HM_CHANGED_GUEST_GS;
1694 }
1695
1696 /* Descriptor tables & task segment. */
1697 if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
1698 {
1699 if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
1700 fHmChanged |= HM_CHANGED_GUEST_LDTR;
1701 if (fCpumIntern & CPUMCTX_EXTRN_TR)
1702 fHmChanged |= HM_CHANGED_GUEST_TR;
1703 if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
1704 fHmChanged |= HM_CHANGED_GUEST_IDTR;
1705 if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
1706 fHmChanged |= HM_CHANGED_GUEST_GDTR;
1707 }
1708
1709 /* Control registers. */
1710 if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
1711 {
1712 if (fCpumIntern & CPUMCTX_EXTRN_CR0)
1713 fHmChanged |= HM_CHANGED_GUEST_CR0;
1714 if (fCpumIntern & CPUMCTX_EXTRN_CR2)
1715 fHmChanged |= HM_CHANGED_GUEST_CR2;
1716 if (fCpumIntern & CPUMCTX_EXTRN_CR3)
1717 fHmChanged |= HM_CHANGED_GUEST_CR3;
1718 if (fCpumIntern & CPUMCTX_EXTRN_CR4)
1719 fHmChanged |= HM_CHANGED_GUEST_CR4;
1720 }
1721 if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
1722 fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
1723
1724 /* Debug registers. */
1725 if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
1726 fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
1727 if (fCpumIntern & CPUMCTX_EXTRN_DR6)
1728 fHmChanged |= HM_CHANGED_GUEST_DR6;
1729 if (fCpumIntern & CPUMCTX_EXTRN_DR7)
1730 fHmChanged |= HM_CHANGED_GUEST_DR7;
1731
1732 /* Floating point state. */
1733 if (fCpumIntern & CPUMCTX_EXTRN_X87)
1734 fHmChanged |= HM_CHANGED_GUEST_X87;
1735 if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
1736 fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
1737 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
1738 fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
1739 if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
1740 fHmChanged |= HM_CHANGED_GUEST_XCRx;
1741
1742 /* MSRs */
1743 if (fCpumIntern & CPUMCTX_EXTRN_EFER)
1744 fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
1745 if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1746 fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
1747 if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
1748 fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
1749 if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
1750 fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
1751 if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
1752 fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
1753 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
1754 fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
1755
1756 return fHmChanged;
1757}
1758
1759
1760/**
1761 * Exports the guest state to HV for execution.
1762 *
1763 * @returns VBox status code.
1764 * @param pVM The cross context VM structure.
1765 * @param pVCpu The cross context virtual CPU structure of the
1766 * calling EMT.
1767 * @param pVmxTransient The transient VMX structure.
1768 */
1769static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1770{
1771#define WRITE_GREG(a_GReg, a_Value) \
1772 do \
1773 { \
1774 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1775 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1776 { /* likely */ } \
1777 else \
1778 return VERR_INTERNAL_ERROR; \
1779 } while(0)
1780#define WRITE_VMCS_FIELD(a_Field, a_Value) \
1781 do \
1782 { \
1783 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
1784 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1785 { /* likely */ } \
1786 else \
1787 return VERR_INTERNAL_ERROR; \
1788 } while(0)
1789#define WRITE_MSR(a_Msr, a_Value) \
1790 do \
1791 { \
1792 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
1793 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1794 { /* likely */ } \
1795 else \
1796 AssertFailedReturn(VERR_INTERNAL_ERROR); \
1797 } while(0)
1798
1799 RT_NOREF(pVM);
1800
1801#ifdef LOG_ENABLED
1802 nemR3DarwinLogState(pVM, pVCpu);
1803#endif
1804
1805 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);
1806
1807 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
1808 if (!fWhat)
1809 return VINF_SUCCESS;
1810
1811 pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
1812
1813 int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
1814 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1815
1816 rc = nemR3DarwinExportGuestGprs(pVCpu);
1817 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1818
1819 rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
1820 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1821
1822 VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
1823 if (rcStrict == VINF_SUCCESS)
1824 { /* likely */ }
1825 else
1826 {
1827 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
1828 return VBOXSTRICTRC_VAL(rcStrict);
1829 }
1830
1831 rc = nemR3DarwinExportDebugState(pVCpu, pVmxTransient);
1832 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1833
1834 vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
1835 vmxHCExportGuestRip(pVCpu);
1836 //vmxHCExportGuestRsp(pVCpu);
1837 vmxHCExportGuestRflags(pVCpu, pVmxTransient);
1838
1839 rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
1840 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1841
1842 if (fWhat & CPUMCTX_EXTRN_XCRx)
1843 {
1844 WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1845 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
1846 }
1847
1848 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1849 {
1850 Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
1851 vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
1852
1853 rc = APICGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
1854 AssertRC(rc);
1855
1856 WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
1857 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
1858 }
1859
1860 /* Debug registers. */
1861 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1862 {
1863 WRITE_GREG(HV_X86_DR0, CPUMGetHyperDR0(pVCpu));
1864 WRITE_GREG(HV_X86_DR1, CPUMGetHyperDR1(pVCpu));
1865 WRITE_GREG(HV_X86_DR2, CPUMGetHyperDR2(pVCpu));
1866 WRITE_GREG(HV_X86_DR3, CPUMGetHyperDR3(pVCpu));
1867 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
1868 }
1869 if (fWhat & CPUMCTX_EXTRN_DR6)
1870 {
1871 WRITE_GREG(HV_X86_DR6, CPUMGetHyperDR6(pVCpu));
1872 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
1873 }
1874 if (fWhat & CPUMCTX_EXTRN_DR7)
1875 {
1876 WRITE_GREG(HV_X86_DR7, CPUMGetHyperDR7(pVCpu));
1877 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
1878 }
1879
1880 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1881 {
1882 hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1883 if (hrc == HV_SUCCESS)
1884 { /* likely */ }
1885 else
1886 return nemR3DarwinHvSts2Rc(hrc);
1887
1888 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
1889 }
1890
1891 /* MSRs */
1892 if (fWhat & CPUMCTX_EXTRN_EFER)
1893 {
1894 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
1895 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
1896 }
1897 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1898 {
1899 WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1900 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
1901 }
1902 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1903 {
1904 WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
1905 WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
1906 WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
1907 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
1908 }
1909 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1910 {
1911 WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1912 WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1913 WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1914 WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1915 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
1916 }
1917 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1918 {
1919 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1920
1921 WRITE_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1922 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
1923 }
1924 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1925 {
1926 /* Last Branch Record. */
1927 if (pVM->nem.s.fLbr)
1928 {
1929 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1930 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1931 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1932 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1933 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1934 Assert(cLbrStack <= 32);
1935 for (uint32_t i = 0; i < cLbrStack; i++)
1936 {
1937 WRITE_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1938
1939 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1940 if (idToIpMsrStart != 0)
1941 WRITE_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1942 if (idInfoMsrStart != 0)
1943 WRITE_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1944 }
1945
1946 WRITE_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1947 if (pVM->nem.s.idLerFromIpMsr)
1948 WRITE_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1949 if (pVM->nem.s.idLerToIpMsr)
1950 WRITE_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1951 }
1952
1953 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
1954 }
1955
1956 hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
1957 hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
1958
1959 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1960
1961 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
1962 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~( HM_CHANGED_GUEST_HWVIRT
1963 | HM_CHANGED_VMX_GUEST_AUTO_MSRS
1964 | HM_CHANGED_VMX_GUEST_LAZY_MSRS
1965 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
1966
1967 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
1968 return VINF_SUCCESS;
1969#undef WRITE_GREG
1970#undef WRITE_VMCS_FIELD
1971}
1972
1973
1974/**
1975 * Common worker for both nemR3DarwinHandleExit() and nemR3DarwinHandleExitDebug().
1976 *
1977 * @returns VBox strict status code.
1978 * @param pVM The cross context VM structure.
1979 * @param pVCpu The cross context virtual CPU structure of the
1980 * calling EMT.
1981 * @param pVmxTransient The transient VMX structure.
1982 */
1983DECLINLINE(int) nemR3DarwinHandleExitCommon(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1984{
1985 uint32_t uExitReason;
1986 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
1987 AssertRC(rc);
1988 pVmxTransient->fVmcsFieldsRead = 0;
1989 pVmxTransient->fIsNestedGuest = false;
1990 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
1991 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
1992
1993 if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
1994 AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
1995 pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
1996 VERR_NEM_IPE_0);
1997
1998 /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
1999 * when handling exits). */
2000 /*
2001 * Note! What is being fetched here must match the default value for the
2002 * a_fDonePostExit parameter of vmxHCImportGuestState exactly!
2003 */
2004 rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
2005 AssertRCReturn(rc, rc);
2006
2007 STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
2008 STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
2009 return VINF_SUCCESS;
2010}
2011
2012
2013/**
2014 * Handles an exit from hv_vcpu_run().
2015 *
2016 * @returns VBox strict status code.
2017 * @param pVM The cross context VM structure.
2018 * @param pVCpu The cross context virtual CPU structure of the
2019 * calling EMT.
2020 * @param pVmxTransient The transient VMX structure.
2021 */
2022static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
2023{
2024 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2025 AssertRCReturn(rc, rc);
2026
2027#ifndef HMVMX_USE_FUNCTION_TABLE
2028 return vmxHCHandleExit(pVCpu, pVmxTransient);
2029#else
2030 return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
2031#endif
2032}
2033
2034
2035/**
2036 * Handles an exit from hv_vcpu_run() - debug runloop variant.
2037 *
2038 * @returns VBox strict status code.
2039 * @param pVM The cross context VM structure.
2040 * @param pVCpu The cross context virtual CPU structure of the
2041 * calling EMT.
2042 * @param pVmxTransient The transient VMX structure.
2043 * @param pDbgState The debug state structure.
2044 */
2045static VBOXSTRICTRC nemR3DarwinHandleExitDebug(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
2046{
2047 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2048 AssertRCReturn(rc, rc);
2049
2050 return vmxHCRunDebugHandleExit(pVCpu, pVmxTransient, pDbgState);
2051}
2052
2053
2054/**
2055 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
2056 *
2057 * @returns VBox status code.
2058 * @param fForced Whether the HMForced flag is set and we should
2059 * fail if we cannot initialize.
2060 * @param pErrInfo Where to always return error info.
2061 */
2062static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
2063{
2064 RTLDRMOD hMod = NIL_RTLDRMOD;
2065 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
2066
2067 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
2068 if (RT_SUCCESS(rc))
2069 {
2070 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
2071 {
2072 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
2073 if (RT_SUCCESS(rc2))
2074 {
2075 if (g_aImports[i].fOptional)
2076 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
2077 g_aImports[i].pszName));
2078 }
2079 else
2080 {
2081 *g_aImports[i].ppfn = NULL;
2082
2083 LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
2084 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
2085 g_aImports[i].pszName, rc2));
2086 if (!g_aImports[i].fOptional)
2087 {
2088 if (RTErrInfoIsSet(pErrInfo))
2089 RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
2090 else
2091 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
2092 Assert(RT_FAILURE(rc));
2093 }
2094 }
2095 }
2096 if (RT_SUCCESS(rc))
2097 {
2098 Assert(!RTErrInfoIsSet(pErrInfo));
2099 }
2100
2101 RTLdrClose(hMod);
2102 }
2103 else
2104 {
2105 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
2106 rc = VERR_NEM_INIT_FAILED;
2107 }
2108
2109 return rc;
2110}
2111
2112
2113/**
2114 * Read and initialize the global capabilities supported by this CPU.
2115 *
2116 * @returns VBox status code.
2117 */
2118static int nemR3DarwinCapsInit(void)
2119{
2120 RT_ZERO(g_HmMsrs);
2121
2122 hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
2123 if (hrc == HV_SUCCESS)
2124 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
2125 if (hrc == HV_SUCCESS)
2126 hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
2127 if (hrc == HV_SUCCESS)
2128 hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
2129 if (hrc == HV_SUCCESS)
2130 {
2131 hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
2132 if (hrc == HV_SUCCESS)
2133 {
2134 if (hrc == HV_SUCCESS)
2135 hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
2136 if (hrc == HV_SUCCESS)
2137 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
2138 if (hrc == HV_SUCCESS)
2139 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
2140 if (hrc == HV_SUCCESS)
2141 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
2142 if (hrc == HV_SUCCESS)
2143 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
2144 if (hrc == HV_SUCCESS)
2145 hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
2146 if ( hrc == HV_SUCCESS
2147 && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
2148 {
2149 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
2150 if (hrc == HV_SUCCESS)
2151 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
2152 if (hrc == HV_SUCCESS)
2153 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
2154 if (hrc == HV_SUCCESS)
2155 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
2156 }
2157 }
2158 else
2159 {
2160 /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
2161 g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
2162 g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
2163 g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
2164 g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
2165 hrc = HV_SUCCESS;
2166 }
2167 }
2168
2169 if ( hrc == HV_SUCCESS
2170 && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2171 {
2172 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
2173
2174 if ( hrc == HV_SUCCESS
2175 && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
2176 {
2177 hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
2178 if (hrc != HV_SUCCESS)
2179 hrc = HV_SUCCESS; /* Probably just outdated OS. */
2180 }
2181
2182 g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
2183 }
2184
2185 if (hrc == HV_SUCCESS)
2186 {
2187 /*
2188 * Check for EFER swapping support.
2189 */
2190 g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2191 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2192 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
2193 }
2194
2195 return nemR3DarwinHvSts2Rc(hrc);
2196}
2197
2198
2199/**
2200 * Sets up the LBR MSR ranges based on the host CPU.
2201 *
2202 * @returns VBox status code.
2203 * @param pVM The cross context VM structure.
2204 *
2205 * @sa hmR0VmxSetupLbrMsrRange
2206 */
2207static int nemR3DarwinSetupLbrMsrRange(PVMCC pVM)
2208{
2209 Assert(pVM->nem.s.fLbr);
2210 uint32_t idLbrFromIpMsrFirst;
2211 uint32_t idLbrFromIpMsrLast;
2212 uint32_t idLbrToIpMsrFirst;
2213 uint32_t idLbrToIpMsrLast;
2214 uint32_t idLbrInfoMsrFirst;
2215 uint32_t idLbrInfoMsrLast;
2216 uint32_t idLbrTosMsr;
2217 uint32_t idLbrSelectMsr;
2218 uint32_t idLerFromIpMsr;
2219 uint32_t idLerToIpMsr;
2220
2221 /*
2222 * Determine the LBR MSRs supported for this host CPU family and model.
2223 *
2224 * See Intel spec. 17.4.8 "LBR Stack".
2225 * See Intel "Model-Specific Registers" spec.
2226 */
2227 uint32_t const uFamilyModel = (g_CpumHostFeatures.s.uFamily << 8)
2228 | g_CpumHostFeatures.s.uModel;
2229 switch (uFamilyModel)
2230 {
2231 case 0x0f01: case 0x0f02:
2232 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
2233 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
2234 idLbrToIpMsrFirst = 0x0;
2235 idLbrToIpMsrLast = 0x0;
2236 idLbrInfoMsrFirst = 0x0;
2237 idLbrInfoMsrLast = 0x0;
2238 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
2239 idLbrSelectMsr = 0x0;
2240 idLerFromIpMsr = 0x0;
2241 idLerToIpMsr = 0x0;
2242 break;
2243
2244 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
2245 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
2246 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
2247 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2248 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
2249 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2250 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
2251 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2252 idLbrInfoMsrLast = MSR_LASTBRANCH_31_INFO;
2253 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2254 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2255 idLerFromIpMsr = MSR_LER_FROM_IP;
2256 idLerToIpMsr = MSR_LER_TO_IP;
2257 break;
2258
2259 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
2260 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
2261 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
2262 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
2263 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2264 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
2265 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2266 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
2267 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2268 idLbrInfoMsrLast = MSR_LASTBRANCH_15_INFO;
2269 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2270 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2271 idLerFromIpMsr = MSR_LER_FROM_IP;
2272 idLerToIpMsr = MSR_LER_TO_IP;
2273 break;
2274
2275 case 0x0617: case 0x061d: case 0x060f:
2276 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
2277 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
2278 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
2279 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
2280 idLbrInfoMsrFirst = 0x0;
2281 idLbrInfoMsrLast = 0x0;
2282 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
2283 idLbrSelectMsr = 0x0;
2284 idLerFromIpMsr = 0x0;
2285 idLerToIpMsr = 0x0;
2286 break;
2287
2288 /* Atom and related microarchitectures we don't care about:
2289 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
2290 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
2291 case 0x0636: */
2292 /* All other CPUs: */
2293 default:
2294 {
2295 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
2296 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
2297 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2298 }
2299 }
2300
2301 /*
2302 * Validate.
2303 */
2304 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
2305 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
2306 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2307 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrToIpMsr));
2308 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2309 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrInfoMsr));
2310 if (cLbrStack > RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr))
2311 {
2312 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
2313 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
2314 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2315 }
2316 NOREF(pVCpu0);
2317
2318 /*
2319 * Update the LBR info. to the VM struct. for use later.
2320 */
2321 pVM->nem.s.idLbrTosMsr = idLbrTosMsr;
2322 pVM->nem.s.idLbrSelectMsr = idLbrSelectMsr;
2323
2324 pVM->nem.s.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
2325 pVM->nem.s.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
2326
2327 pVM->nem.s.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
2328 pVM->nem.s.idLbrToIpMsrLast = idLbrToIpMsrLast;
2329
2330 pVM->nem.s.idLbrInfoMsrFirst = idLbrInfoMsrFirst;
2331 pVM->nem.s.idLbrInfoMsrLast = idLbrInfoMsrLast;
2332
2333 pVM->nem.s.idLerFromIpMsr = idLerFromIpMsr;
2334 pVM->nem.s.idLerToIpMsr = idLerToIpMsr;
2335 return VINF_SUCCESS;
2336}
2337
2338
2339/**
2340 * Sets up pin-based VM-execution controls in the VMCS.
2341 *
2342 * @returns VBox status code.
2343 * @param pVCpu The cross context virtual CPU structure.
2344 * @param pVmcsInfo The VMCS info. object.
2345 */
2346static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2347{
2348 //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2349 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
2350 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2351
2352 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2353 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2354
2355#if 0 /** @todo Use preemption timer */
2356 /* Enable the VMX-preemption timer. */
2357 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
2358 {
2359 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2360 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2361 }
2362
2363 /* Enable posted-interrupt processing. */
2364 if (pVM->hm.s.fPostedIntrs)
2365 {
2366 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2367 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2368 fVal |= VMX_PIN_CTLS_POSTED_INT;
2369 }
2370#endif
2371
2372 if ((fVal & fZap) != fVal)
2373 {
2374 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2375 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
2376 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2377 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2378 }
2379
2380 /* Commit it to the VMCS and update our cache. */
2381 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2382 AssertRC(rc);
2383 pVmcsInfo->u32PinCtls = fVal;
2384
2385 return VINF_SUCCESS;
2386}
2387
2388
2389/**
2390 * Sets up secondary processor-based VM-execution controls in the VMCS.
2391 *
2392 * @returns VBox status code.
2393 * @param pVCpu The cross context virtual CPU structure.
2394 * @param pVmcsInfo The VMCS info. object.
2395 */
2396static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2397{
2398 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2399 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2400 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2401
2402 /* WBINVD causes a VM-exit. */
2403 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2404 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2405
2406 /* Enable the INVPCID instruction if we expose it to the guest and is supported
2407 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
2408 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
2409 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
2410 fVal |= VMX_PROC_CTLS2_INVPCID;
2411
2412#if 0 /** @todo */
2413 /* Enable VPID. */
2414 if (pVM->hmr0.s.vmx.fVpid)
2415 fVal |= VMX_PROC_CTLS2_VPID;
2416
2417 if (pVM->hm.s.fVirtApicRegs)
2418 {
2419 /* Enable APIC-register virtualization. */
2420 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2421 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2422
2423 /* Enable virtual-interrupt delivery. */
2424 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2425 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2426 }
2427
2428 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
2429 where the TPR shadow resides. */
2430 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2431 * done dynamically. */
2432 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2433 {
2434 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
2435 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
2436 }
2437#endif
2438
2439 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
2440 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
2441 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
2442 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
2443 fVal |= VMX_PROC_CTLS2_RDTSCP;
2444
2445 /* Enable Pause-Loop exiting. */
2446 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
2447 && pVM->nem.s.cPleGapTicks
2448 && pVM->nem.s.cPleWindowTicks)
2449 {
2450 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2451
2452 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_GAP, pVM->nem.s.cPleGapTicks); AssertRC(rc);
2453 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_WINDOW, pVM->nem.s.cPleWindowTicks); AssertRC(rc);
2454 }
2455
2456 if ((fVal & fZap) != fVal)
2457 {
2458 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2459 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
2460 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2461 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2462 }
2463
2464 /* Commit it to the VMCS and update our cache. */
2465 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2466 AssertRC(rc);
2467 pVmcsInfo->u32ProcCtls2 = fVal;
2468
2469 return VINF_SUCCESS;
2470}
2471
2472
2473/**
2474 * Enables native access for the given MSR.
2475 *
2476 * @returns VBox status code.
2477 * @param pVCpu The cross context virtual CPU structure.
2478 * @param idMsr The MSR to enable native access for.
2479 */
2480static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
2481{
2482 hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2483 if (hrc == HV_SUCCESS)
2484 return VINF_SUCCESS;
2485
2486 return nemR3DarwinHvSts2Rc(hrc);
2487}
2488
2489
2490/**
2491 * Sets the MSR to managed for the given vCPU allowing the guest to access it.
2492 *
2493 * @returns VBox status code.
2494 * @param pVCpu The cross context virtual CPU structure.
2495 * @param idMsr The MSR to enable managed access for.
2496 * @param fMsrPerm The MSR permissions flags.
2497 */
2498static int nemR3DarwinMsrSetManaged(PVMCPUCC pVCpu, uint32_t idMsr, hv_msr_flags_t fMsrPerm)
2499{
2500 Assert(hv_vcpu_enable_managed_msr);
2501
2502 hv_return_t hrc = hv_vcpu_enable_managed_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2503 if (hrc == HV_SUCCESS)
2504 {
2505 hrc = hv_vcpu_set_msr_access(pVCpu->nem.s.hVCpuId, idMsr, fMsrPerm);
2506 if (hrc == HV_SUCCESS)
2507 return VINF_SUCCESS;
2508 }
2509
2510 return nemR3DarwinHvSts2Rc(hrc);
2511}
2512
2513
2514/**
2515 * Sets up the MSR permissions which don't change through the lifetime of the VM.
2516 *
2517 * @returns VBox status code.
2518 * @param pVCpu The cross context virtual CPU structure.
2519 * @param pVmcsInfo The VMCS info. object.
2520 */
2521static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2522{
2523 RT_NOREF(pVmcsInfo);
2524
2525 /*
2526 * The guest can access the following MSRs (read, write) without causing
2527 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2528 */
2529 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2530 int rc;
2531 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
2532 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
2533 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
2534 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
2535 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
2536
2537 /*
2538 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2539 * associated with then. We never need to intercept access (writes need to be
2540 * executed without causing a VM-exit, reads will #GP fault anyway).
2541 *
2542 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2543 * read/write them. We swap the guest/host MSR value using the
2544 * auto-load/store MSR area.
2545 */
2546 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2547 {
2548 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
2549 AssertRCReturn(rc, rc);
2550 }
2551#if 0 /* Doesn't work. */
2552 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2553 {
2554 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
2555 AssertRCReturn(rc, rc);
2556 }
2557#endif
2558 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2559 {
2560 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
2561 AssertRCReturn(rc, rc);
2562 }
2563
2564 /*
2565 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2566 * required for 64-bit guests.
2567 */
2568 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
2569 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
2570 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
2571 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
2572
2573 /* Required for enabling the RDTSCP instruction. */
2574 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
2575
2576 /* Last Branch Record. */
2577 if (pVM->nem.s.fLbr)
2578 {
2579 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
2580 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
2581 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
2582 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2583 Assert(cLbrStack <= 32);
2584 for (uint32_t i = 0; i < cLbrStack; i++)
2585 {
2586 rc = nemR3DarwinMsrSetManaged(pVCpu, idFromIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2587 AssertRCReturn(rc, rc);
2588
2589 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
2590 if (idToIpMsrStart != 0)
2591 {
2592 rc = nemR3DarwinMsrSetManaged(pVCpu, idToIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2593 AssertRCReturn(rc, rc);
2594 }
2595
2596 if (idInfoMsrStart != 0)
2597 {
2598 rc = nemR3DarwinMsrSetManaged(pVCpu, idInfoMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2599 AssertRCReturn(rc, rc);
2600 }
2601 }
2602
2603 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrTosMsr, HV_MSR_READ | HV_MSR_WRITE);
2604 AssertRCReturn(rc, rc);
2605
2606 if (pVM->nem.s.idLerFromIpMsr)
2607 {
2608 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerFromIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2609 AssertRCReturn(rc, rc);
2610 }
2611
2612 if (pVM->nem.s.idLerToIpMsr)
2613 {
2614 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerToIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2615 AssertRCReturn(rc, rc);
2616 }
2617
2618 if (pVM->nem.s.idLbrSelectMsr)
2619 {
2620 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrSelectMsr, HV_MSR_READ | HV_MSR_WRITE);
2621 AssertRCReturn(rc, rc);
2622 }
2623 }
2624
2625 return VINF_SUCCESS;
2626}
2627
2628
2629/**
2630 * Sets up processor-based VM-execution controls in the VMCS.
2631 *
2632 * @returns VBox status code.
2633 * @param pVCpu The cross context virtual CPU structure.
2634 * @param pVmcsInfo The VMCS info. object.
2635 */
2636static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2637{
2638 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2639 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2640
2641 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2642// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2643 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2644 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2645 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2646 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2647 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2648
2649#ifdef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
2650 fVal |= VMX_PROC_CTLS_CR3_LOAD_EXIT
2651 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2652#endif
2653
2654 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2655 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2656 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2657 {
2658 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2659 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2660 }
2661
2662 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2663 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2664 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2665
2666 if ((fVal & fZap) != fVal)
2667 {
2668 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2669 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
2670 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2671 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2672 }
2673
2674 /* Commit it to the VMCS and update our cache. */
2675 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2676 AssertRC(rc);
2677 pVmcsInfo->u32ProcCtls = fVal;
2678
2679 /* Set up MSR permissions that don't change through the lifetime of the VM. */
2680 rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
2681 AssertRCReturn(rc, rc);
2682
2683 /*
2684 * Set up secondary processor-based VM-execution controls
2685 * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
2686 */
2687 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2688 return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
2689}
2690
2691
2692/**
2693 * Sets up miscellaneous (everything other than Pin, Processor and secondary
2694 * Processor-based VM-execution) control fields in the VMCS.
2695 *
2696 * @returns VBox status code.
2697 * @param pVCpu The cross context virtual CPU structure.
2698 * @param pVmcsInfo The VMCS info. object.
2699 */
2700static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2701{
2702 int rc = VINF_SUCCESS;
2703 //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
2704 if (RT_SUCCESS(rc))
2705 {
2706 uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
2707 uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
2708
2709 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
2710 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
2711
2712 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
2713 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
2714
2715 if (pVCpu->CTX_SUFF(pVM)->nem.s.fLbr)
2716 {
2717 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
2718 AssertRC(rc);
2719 }
2720 return VINF_SUCCESS;
2721 }
2722 else
2723 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
2724 return rc;
2725}
2726
2727
2728/**
2729 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2730 *
2731 * We shall setup those exception intercepts that don't change during the
2732 * lifetime of the VM here. The rest are done dynamically while loading the
2733 * guest state.
2734 *
2735 * @param pVCpu The cross context virtual CPU structure.
2736 * @param pVmcsInfo The VMCS info. object.
2737 */
2738static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2739{
2740 /*
2741 * The following exceptions are always intercepted:
2742 *
2743 * #AC - To prevent the guest from hanging the CPU and for dealing with
2744 * split-lock detecting host configs.
2745 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
2746 * recursive #DBs can cause a CPU hang.
2747 */
2748 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
2749 | RT_BIT(X86_XCPT_DB);
2750
2751 /* Commit it to the VMCS. */
2752 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2753 AssertRC(rc);
2754
2755 /* Update our cache of the exception bitmap. */
2756 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
2757}
2758
2759
2760/**
2761 * Initialize the VMCS information field for the given vCPU.
2762 *
2763 * @returns VBox status code.
2764 * @param pVCpu The cross context virtual CPU structure of the
2765 * calling EMT.
2766 */
2767static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
2768{
2769 int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2770 if (RT_SUCCESS(rc))
2771 {
2772 rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2773 if (RT_SUCCESS(rc))
2774 {
2775 rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2776 if (RT_SUCCESS(rc))
2777 {
2778 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
2779 if (RT_SUCCESS(rc))
2780 {
2781 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
2782 if (RT_SUCCESS(rc))
2783 {
2784 nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
2785 return VINF_SUCCESS;
2786 }
2787 else
2788 LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
2789 }
2790 else
2791 LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
2792 }
2793 else
2794 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
2795 }
2796 else
2797 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
2798 }
2799 else
2800 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
2801
2802 return rc;
2803}
2804
2805
2806/**
2807 * Registers statistics for the given vCPU.
2808 *
2809 * @returns VBox status code.
2810 * @param pVM The cross context VM structure.
2811 * @param idCpu The CPU ID.
2812 * @param pNemCpu The NEM CPU structure.
2813 */
2814static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
2815{
2816#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
2817 int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
2818 AssertRC(rc); \
2819 } while (0)
2820#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
2821 NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
2822#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
2823
2824 PVMXSTATISTICS const pVmxStats = pNemCpu->pVmxStats;
2825
2826 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
2827 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
2828 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
2829 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
2830 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
2831 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
2832 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
2833 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
2834 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
2835 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
2836
2837 NEM_REG_COUNTER(&pVmxStats->StatExitAll, "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
2838
2839 NEM_REG_COUNTER(&pVmxStats->StatImportGuestStateFallback, "/NEM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
2840 NEM_REG_COUNTER(&pVmxStats->StatReadToTransientFallback, "/NEM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
2841
2842#ifdef VBOX_WITH_STATISTICS
2843 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
2844 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");
2845
2846 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
2847 {
2848 const char *pszExitName = HMGetVmxExitName(j);
2849 if (pszExitName)
2850 {
2851 int rc = STAMR3RegisterF(pVM, &pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
2852 STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
2853 AssertRCReturn(rc, rc);
2854 }
2855 }
2856#endif
2857
2858 return VINF_SUCCESS;
2859
2860#undef NEM_REG_COUNTER
2861#undef NEM_REG_PROFILE
2862#undef NEM_REG_STAT
2863}
2864
2865
2866/**
2867 * Displays the HM Last-Branch-Record info. for the guest.
2868 *
2869 * @param pVM The cross context VM structure.
2870 * @param pHlp The info helper functions.
2871 * @param pszArgs Arguments, ignored.
2872 */
2873static DECLCALLBACK(void) nemR3DarwinInfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2874{
2875 NOREF(pszArgs);
2876 PVMCPU pVCpu = VMMGetCpu(pVM);
2877 if (!pVCpu)
2878 pVCpu = pVM->apCpusR3[0];
2879
2880 Assert(pVM->nem.s.fLbr);
2881
2882 PCVMXVMCSINFOSHARED pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
2883 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2884
2885 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
2886 * 0xf should cover everything we support thus far. Fix if necessary
2887 * later. */
2888 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
2889 if (idxTopOfStack > cLbrStack)
2890 {
2891 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
2892 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
2893 return;
2894 }
2895
2896 /*
2897 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
2898 */
2899 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
2900 if (pVM->nem.s.idLerFromIpMsr)
2901 pHlp->pfnPrintf(pHlp, "LER: From IP=%#016RX64 - To IP=%#016RX64\n",
2902 pVmcsInfoShared->u64LerFromIpMsr, pVmcsInfoShared->u64LerToIpMsr);
2903 uint32_t idxCurrent = idxTopOfStack;
2904 Assert(idxTopOfStack < cLbrStack);
2905 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
2906 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
2907 for (;;)
2908 {
2909 if (pVM->nem.s.idLbrToIpMsrFirst)
2910 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64 (Info: %#016RX64)\n", idxCurrent,
2911 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent],
2912 pVmcsInfoShared->au64LbrToIpMsr[idxCurrent],
2913 pVmcsInfoShared->au64LbrInfoMsr[idxCurrent]);
2914 else
2915 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
2916
2917 idxCurrent = (idxCurrent - 1) % cLbrStack;
2918 if (idxCurrent == idxTopOfStack)
2919 break;
2920 }
2921}
2922
2923
2924/**
2925 * Try initialize the native API.
2926 *
2927 * This may only do part of the job, more can be done in
2928 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
2929 *
2930 * @returns VBox status code.
2931 * @param pVM The cross context VM structure.
2932 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
2933 * the latter we'll fail if we cannot initialize.
2934 * @param fForced Whether the HMForced flag is set and we should
2935 * fail if we cannot initialize.
2936 */
2937int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
2938{
2939 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
2940
2941 /*
2942 * Some state init.
2943 */
2944 PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");
2945
2946 /** @cfgm{/NEM/VmxPleGap, uint32_t, 0}
2947 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
2948 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
2949 * latest PAUSE instruction to be start of a new PAUSE loop.
2950 */
2951 int rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleGap", &pVM->nem.s.cPleGapTicks, 0);
2952 AssertRCReturn(rc, rc);
2953
2954 /** @cfgm{/NEM/VmxPleWindow, uint32_t, 0}
2955 * The pause-filter exiting window in TSC ticks. When the number of ticks
2956 * between the current PAUSE instruction and first PAUSE of a loop exceeds
2957 * VmxPleWindow, a VM-exit is triggered.
2958 *
2959 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
2960 */
2961 rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleWindow", &pVM->nem.s.cPleWindowTicks, 0);
2962 AssertRCReturn(rc, rc);
2963
2964 /** @cfgm{/NEM/VmxLbr, bool, false}
2965 * Whether to enable LBR for the guest. This is disabled by default as it's only
2966 * useful while debugging and enabling it causes a noticeable performance hit. */
2967 rc = CFGMR3QueryBoolDef(pCfgNem, "VmxLbr", &pVM->nem.s.fLbr, false);
2968 AssertRCReturn(rc, rc);
2969
2970 /*
2971 * Error state.
2972 * The error message will be non-empty on failure and 'rc' will be set too.
2973 */
2974 RTERRINFOSTATIC ErrInfo;
2975 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
2976 rc = nemR3DarwinLoadHv(fForced, pErrInfo);
2977 if (RT_SUCCESS(rc))
2978 {
2979 if ( !hv_vcpu_enable_managed_msr
2980 && pVM->nem.s.fLbr)
2981 {
2982 LogRel(("NEM: LBR recording is disabled because the Hypervisor API misses hv_vcpu_enable_managed_msr/hv_vcpu_set_msr_access functionality\n"));
2983 pVM->nem.s.fLbr = false;
2984 }
2985
2986 if (hv_vcpu_run_until)
2987 {
2988 struct mach_timebase_info TimeInfo;
2989
2990 if (mach_timebase_info(&TimeInfo) == KERN_SUCCESS)
2991 {
2992 pVM->nem.s.cMachTimePerNs = RT_MIN(1, (double)TimeInfo.denom / (double)TimeInfo.numer);
2993 LogRel(("NEM: cMachTimePerNs=%llu (TimeInfo.numer=%u TimeInfo.denom=%u)\n",
2994 pVM->nem.s.cMachTimePerNs, TimeInfo.numer, TimeInfo.denom));
2995 }
2996 else
2997 hv_vcpu_run_until = NULL; /* To avoid running forever (TM asserts when the guest runs for longer than 4 seconds). */
2998 }
2999
3000 hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
3001 if (hrc == HV_SUCCESS)
3002 {
3003 if (hv_vm_space_create)
3004 {
3005 hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
3006 if (hrc == HV_SUCCESS)
3007 {
3008 LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
3009 pVM->nem.s.fCreatedAsid = true;
3010 }
3011 else
3012 LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
3013 }
3014 pVM->nem.s.fCreatedVm = true;
3015
3016 /* Register release statistics */
3017 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3018 {
3019 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
3020 PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
3021 if (RT_LIKELY(pVmxStats))
3022 {
3023 pNemCpu->pVmxStats = pVmxStats;
3024 rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
3025 AssertRC(rc);
3026 }
3027 else
3028 {
3029 rc = VERR_NO_MEMORY;
3030 break;
3031 }
3032 }
3033
3034 if (RT_SUCCESS(rc))
3035 {
3036 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
3037 Log(("NEM: Marked active!\n"));
3038 PGMR3EnableNemMode(pVM);
3039 }
3040 }
3041 else
3042 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
3043 "hv_vm_create() failed: %#x", hrc);
3044 }
3045
3046 /*
3047 * We only fail if in forced mode, otherwise just log the complaint and return.
3048 */
3049 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
3050 if ( (fForced || !fFallback)
3051 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
3052 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
3053
3054 if (pVM->nem.s.fLbr)
3055 {
3056 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the NEM LBR info.", nemR3DarwinInfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
3057 AssertRCReturn(rc, rc);
3058 }
3059
3060 if (RTErrInfoIsSet(pErrInfo))
3061 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
3062 return VINF_SUCCESS;
3063}
3064
3065
3066/**
3067 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
3068 *
3069 * @returns VBox status code
3070 * @param pVM The VM handle.
3071 * @param pVCpu The vCPU handle.
3072 * @param idCpu ID of the CPU to create.
3073 */
3074static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
3075{
3076 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
3077 if (hrc != HV_SUCCESS)
3078 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
3079 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
3080
3081 if (idCpu == 0)
3082 {
3083 /* First call initializs the MSR structure holding the capabilities of the host CPU. */
3084 int rc = nemR3DarwinCapsInit();
3085 AssertRCReturn(rc, rc);
3086
3087 if (hv_vmx_vcpu_get_cap_write_vmcs)
3088 {
3089 /* Log the VMCS field write capabilities. */
3090 for (uint32_t i = 0; i < RT_ELEMENTS(g_aVmcsFieldsCap); i++)
3091 {
3092 uint64_t u64Allowed0 = 0;
3093 uint64_t u64Allowed1 = 0;
3094
3095 hrc = hv_vmx_vcpu_get_cap_write_vmcs(pVCpu->nem.s.hVCpuId, g_aVmcsFieldsCap[i].u32VmcsFieldId,
3096 &u64Allowed0, &u64Allowed1);
3097 if (hrc == HV_SUCCESS)
3098 {
3099 if (g_aVmcsFieldsCap[i].f64Bit)
3100 LogRel(("NEM: %s = (allowed_0=%#016RX64 allowed_1=%#016RX64)\n",
3101 g_aVmcsFieldsCap[i].pszVmcsField, u64Allowed0, u64Allowed1));
3102 else
3103 LogRel(("NEM: %s = (allowed_0=%#08RX32 allowed_1=%#08RX32)\n",
3104 g_aVmcsFieldsCap[i].pszVmcsField, (uint32_t)u64Allowed0, (uint32_t)u64Allowed1));
3105
3106 uint32_t cBits = g_aVmcsFieldsCap[i].f64Bit ? 64 : 32;
3107 for (uint32_t iBit = 0; iBit < cBits; iBit++)
3108 {
3109 bool fAllowed0 = RT_BOOL(u64Allowed0 & RT_BIT_64(iBit));
3110 bool fAllowed1 = RT_BOOL(u64Allowed1 & RT_BIT_64(iBit));
3111
3112 if (!fAllowed0 && !fAllowed1)
3113 LogRel(("NEM: Bit %02u = Must NOT be set\n", iBit));
3114 else if (!fAllowed0 && fAllowed1)
3115 LogRel(("NEM: Bit %02u = Can be set or not be set\n", iBit));
3116 else if (fAllowed0 && !fAllowed1)
3117 LogRel(("NEM: Bit %02u = UNDEFINED (AppleHV error)!\n", iBit));
3118 else if (fAllowed0 && fAllowed1)
3119 LogRel(("NEM: Bit %02u = MUST be set\n", iBit));
3120 else
3121 AssertFailed();
3122 }
3123 }
3124 else
3125 LogRel(("NEM: %s = failed to query (hrc=%d)\n", g_aVmcsFieldsCap[i].pszVmcsField, hrc));
3126 }
3127 }
3128 }
3129
3130 int rc = nemR3DarwinInitVmcs(pVCpu);
3131 AssertRCReturn(rc, rc);
3132
3133 if (pVM->nem.s.fCreatedAsid)
3134 {
3135 hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
3136 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
3137 }
3138
3139 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3140
3141 return VINF_SUCCESS;
3142}
3143
3144
3145/**
3146 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
3147 *
3148 * @returns VBox status code
3149 * @param pVCpu The vCPU handle.
3150 */
3151static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
3152{
3153 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3154 Assert(hrc == HV_SUCCESS);
3155
3156 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3157 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3158 return VINF_SUCCESS;
3159}
3160
3161
3162/**
3163 * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
3164 *
3165 * @returns VBox status code
3166 * @param pVM The VM handle.
3167 * @param pVCpu The vCPU handle.
3168 */
3169static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu)
3170{
3171 PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3172 uint32_t fVal = pVmcsInfo->u32ProcCtls;
3173
3174 /* Use TPR shadowing if supported by the CPU. */
3175 if ( PDMHasApic(pVM)
3176 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3177 {
3178 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3179 /* CR8 writes cause a VM-exit based on TPR threshold. */
3180 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3181 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3182 }
3183 else
3184 {
3185 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3186 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3187 }
3188
3189 /* Commit it to the VMCS and update our cache. */
3190 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3191 AssertRC(rc);
3192 pVmcsInfo->u32ProcCtls = fVal;
3193
3194 return VINF_SUCCESS;
3195}
3196
3197
3198/**
3199 * This is called after CPUMR3Init is done.
3200 *
3201 * @returns VBox status code.
3202 * @param pVM The VM handle..
3203 */
3204int nemR3NativeInitAfterCPUM(PVM pVM)
3205{
3206 /*
3207 * Validate sanity.
3208 */
3209 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
3210 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
3211
3212 if (pVM->nem.s.fLbr)
3213 {
3214 int rc = nemR3DarwinSetupLbrMsrRange(pVM);
3215 AssertRCReturn(rc, rc);
3216 }
3217
3218 /*
3219 * Setup the EMTs.
3220 */
3221 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3222 {
3223 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3224
3225 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
3226 if (RT_FAILURE(rc))
3227 {
3228 /* Rollback. */
3229 while (idCpu--)
3230 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
3231
3232 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
3233 }
3234 }
3235
3236 pVM->nem.s.fCreatedEmts = true;
3237 return VINF_SUCCESS;
3238}
3239
3240
3241int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3242{
3243 if (enmWhat == VMINITCOMPLETED_RING3)
3244 {
3245 /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
3246 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3247 {
3248 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3249
3250 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 2, pVM, pVCpu);
3251 if (RT_FAILURE(rc))
3252 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Setting up TPR shadowing failed: %Rrc", rc);
3253 }
3254 }
3255 return VINF_SUCCESS;
3256}
3257
3258
3259int nemR3NativeTerm(PVM pVM)
3260{
3261 /*
3262 * Delete the VM.
3263 */
3264
3265 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
3266 {
3267 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3268
3269 /*
3270 * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
3271 * API reference so I wouldn't have to decompile the kext to find this out but we are talking
3272 * about Apple here unfortunately, API documentation is not their strong suit...
3273 * Would have been of course even better to just automatically drop the address space reference when the vCPU
3274 * gets destroyed.
3275 */
3276 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3277 Assert(hrc == HV_SUCCESS);
3278
3279 /*
3280 * Apple's documentation states that the vCPU should be destroyed
3281 * on the thread running the vCPU but as all the other EMTs are gone
3282 * at this point, destroying the VM would hang.
3283 *
3284 * We seem to be at luck here though as destroying apparently works
3285 * from EMT(0) as well.
3286 */
3287 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3288 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3289
3290 if (pVCpu->nem.s.pVmxStats)
3291 {
3292 RTMemFree(pVCpu->nem.s.pVmxStats);
3293 pVCpu->nem.s.pVmxStats = NULL;
3294 }
3295 }
3296
3297 pVM->nem.s.fCreatedEmts = false;
3298
3299 if (pVM->nem.s.fCreatedAsid)
3300 {
3301 hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
3302 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3303 pVM->nem.s.fCreatedAsid = false;
3304 }
3305
3306 if (pVM->nem.s.fCreatedVm)
3307 {
3308 hv_return_t hrc = hv_vm_destroy();
3309 if (hrc != HV_SUCCESS)
3310 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
3311
3312 pVM->nem.s.fCreatedVm = false;
3313 }
3314 return VINF_SUCCESS;
3315}
3316
3317
3318/**
3319 * VM reset notification.
3320 *
3321 * @param pVM The cross context VM structure.
3322 */
3323void nemR3NativeReset(PVM pVM)
3324{
3325 RT_NOREF(pVM);
3326}
3327
3328
3329/**
3330 * Reset CPU due to INIT IPI or hot (un)plugging.
3331 *
3332 * @param pVCpu The cross context virtual CPU structure of the CPU being
3333 * reset.
3334 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
3335 */
3336void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
3337{
3338 RT_NOREF(fInitIpi);
3339 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3340}
3341
3342
3343/**
3344 * Runs the guest once until an exit occurs.
3345 *
3346 * @returns HV status code.
3347 * @param pVM The cross context VM structure.
3348 * @param pVCpu The cross context virtual CPU structure.
3349 * @param pVmxTransient The transient VMX execution structure.
3350 */
3351static hv_return_t nemR3DarwinRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
3352{
3353 TMNotifyStartOfExecution(pVM, pVCpu);
3354
3355 Assert(!pVCpu->nem.s.fCtxChanged);
3356 hv_return_t hrc;
3357 if (hv_vcpu_run_until) /** @todo Configur the deadline dynamically based on when the next timer triggers. */
3358 hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, mach_absolute_time() + 2 * RT_NS_1SEC_64 * pVM->nem.s.cMachTimePerNs);
3359 else
3360 hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
3361
3362 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
3363
3364 /*
3365 * Sync the TPR shadow with our APIC state.
3366 */
3367 if ( !pVmxTransient->fIsNestedGuest
3368 && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
3369 {
3370 uint64_t u64Tpr;
3371 hv_return_t hrc2 = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
3372 Assert(hrc2 == HV_SUCCESS); RT_NOREF(hrc2);
3373
3374 if (pVmxTransient->u8GuestTpr != (uint8_t)u64Tpr)
3375 {
3376 int rc = APICSetTpr(pVCpu, (uint8_t)u64Tpr);
3377 AssertRC(rc);
3378 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
3379 }
3380 }
3381
3382 return hrc;
3383}
3384
3385
3386/**
3387 * Prepares the VM to run the guest.
3388 *
3389 * @returns Strict VBox status code.
3390 * @param pVM The cross context VM structure.
3391 * @param pVCpu The cross context virtual CPU structure.
3392 * @param pVmxTransient The VMX transient state.
3393 * @param fSingleStepping Flag whether we run in single stepping mode.
3394 */
3395static VBOXSTRICTRC nemR3DarwinPreRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fSingleStepping)
3396{
3397 /*
3398 * Check and process force flag actions, some of which might require us to go back to ring-3.
3399 */
3400 VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
3401 if (rcStrict == VINF_SUCCESS)
3402 { /*likely */ }
3403 else
3404 return rcStrict;
3405
3406 /*
3407 * Do not execute in HV if the A20 isn't enabled.
3408 */
3409 if (PGMPhysIsA20Enabled(pVCpu))
3410 { /* likely */ }
3411 else
3412 {
3413 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
3414 return VINF_EM_RESCHEDULE_REM;
3415 }
3416
3417 /*
3418 * Evaluate events to be injected into the guest.
3419 *
3420 * Events in TRPM can be injected without inspecting the guest state.
3421 * If any new events (interrupts/NMI) are pending currently, we try to set up the
3422 * guest to cause a VM-exit the next time they are ready to receive the event.
3423 */
3424 if (TRPMHasTrap(pVCpu))
3425 vmxHCTrpmTrapToPendingEvent(pVCpu);
3426
3427 uint32_t fIntrState;
3428 rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, &fIntrState);
3429
3430 /*
3431 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
3432 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
3433 * also result in triple-faulting the VM.
3434 *
3435 * With nested-guests, the above does not apply since unrestricted guest execution is a
3436 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
3437 */
3438 rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
3439 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3440 { /* likely */ }
3441 else
3442 return rcStrict;
3443
3444 int rc = nemR3DarwinExportGuestState(pVM, pVCpu, pVmxTransient);
3445 AssertRCReturn(rc, rc);
3446
3447 LogFlowFunc(("Running vCPU\n"));
3448 pVCpu->nem.s.Event.fPending = false;
3449 return VINF_SUCCESS;
3450}
3451
3452
3453/**
3454 * The normal runloop (no debugging features enabled).
3455 *
3456 * @returns Strict VBox status code.
3457 * @param pVM The cross context VM structure.
3458 * @param pVCpu The cross context virtual CPU structure.
3459 */
3460static VBOXSTRICTRC nemR3DarwinRunGuestNormal(PVM pVM, PVMCPU pVCpu)
3461{
3462 /*
3463 * The run loop.
3464 *
3465 * Current approach to state updating to use the sledgehammer and sync
3466 * everything every time. This will be optimized later.
3467 */
3468 VMXTRANSIENT VmxTransient;
3469 RT_ZERO(VmxTransient);
3470 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3471
3472 /*
3473 * Poll timers and run for a bit.
3474 */
3475 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
3476 * the whole polling job when timers have changed... */
3477 uint64_t offDeltaIgnored;
3478 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
3479 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3480 for (unsigned iLoop = 0;; iLoop++)
3481 {
3482 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, false /* fSingleStepping */);
3483 if (rcStrict != VINF_SUCCESS)
3484 break;
3485
3486 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
3487 if (hrc == HV_SUCCESS)
3488 {
3489 /*
3490 * Deal with the message.
3491 */
3492 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
3493 if (rcStrict == VINF_SUCCESS)
3494 { /* hopefully likely */ }
3495 else
3496 {
3497 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
3498 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
3499 break;
3500 }
3501 }
3502 else
3503 {
3504 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
3505 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
3506 VERR_NEM_IPE_0);
3507 }
3508 } /* the run loop */
3509
3510 return rcStrict;
3511}
3512
3513
3514/**
3515 * Checks if any expensive dtrace probes are enabled and we should go to the
3516 * debug loop.
3517 *
3518 * @returns true if we should use debug loop, false if not.
3519 */
3520static bool nemR3DarwinAnyExpensiveProbesEnabled(void)
3521{
3522 /** @todo Check performance penalty when checking these over and over */
3523 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED() /* expensive too due to context */
3524 | VBOXVMM_XCPT_DE_ENABLED()
3525 | VBOXVMM_XCPT_DB_ENABLED()
3526 | VBOXVMM_XCPT_BP_ENABLED()
3527 | VBOXVMM_XCPT_OF_ENABLED()
3528 | VBOXVMM_XCPT_BR_ENABLED()
3529 | VBOXVMM_XCPT_UD_ENABLED()
3530 | VBOXVMM_XCPT_NM_ENABLED()
3531 | VBOXVMM_XCPT_DF_ENABLED()
3532 | VBOXVMM_XCPT_TS_ENABLED()
3533 | VBOXVMM_XCPT_NP_ENABLED()
3534 | VBOXVMM_XCPT_SS_ENABLED()
3535 | VBOXVMM_XCPT_GP_ENABLED()
3536 | VBOXVMM_XCPT_PF_ENABLED()
3537 | VBOXVMM_XCPT_MF_ENABLED()
3538 | VBOXVMM_XCPT_AC_ENABLED()
3539 | VBOXVMM_XCPT_XF_ENABLED()
3540 | VBOXVMM_XCPT_VE_ENABLED()
3541 | VBOXVMM_XCPT_SX_ENABLED()
3542 | VBOXVMM_INT_SOFTWARE_ENABLED()
3543 /* not available in R3 | VBOXVMM_INT_HARDWARE_ENABLED()*/
3544 ) != 0
3545 || ( VBOXVMM_INSTR_HALT_ENABLED()
3546 | VBOXVMM_INSTR_MWAIT_ENABLED()
3547 | VBOXVMM_INSTR_MONITOR_ENABLED()
3548 | VBOXVMM_INSTR_CPUID_ENABLED()
3549 | VBOXVMM_INSTR_INVD_ENABLED()
3550 | VBOXVMM_INSTR_WBINVD_ENABLED()
3551 | VBOXVMM_INSTR_INVLPG_ENABLED()
3552 | VBOXVMM_INSTR_RDTSC_ENABLED()
3553 | VBOXVMM_INSTR_RDTSCP_ENABLED()
3554 | VBOXVMM_INSTR_RDPMC_ENABLED()
3555 | VBOXVMM_INSTR_RDMSR_ENABLED()
3556 | VBOXVMM_INSTR_WRMSR_ENABLED()
3557 | VBOXVMM_INSTR_CRX_READ_ENABLED()
3558 | VBOXVMM_INSTR_CRX_WRITE_ENABLED()
3559 | VBOXVMM_INSTR_DRX_READ_ENABLED()
3560 | VBOXVMM_INSTR_DRX_WRITE_ENABLED()
3561 | VBOXVMM_INSTR_PAUSE_ENABLED()
3562 | VBOXVMM_INSTR_XSETBV_ENABLED()
3563 | VBOXVMM_INSTR_SIDT_ENABLED()
3564 | VBOXVMM_INSTR_LIDT_ENABLED()
3565 | VBOXVMM_INSTR_SGDT_ENABLED()
3566 | VBOXVMM_INSTR_LGDT_ENABLED()
3567 | VBOXVMM_INSTR_SLDT_ENABLED()
3568 | VBOXVMM_INSTR_LLDT_ENABLED()
3569 | VBOXVMM_INSTR_STR_ENABLED()
3570 | VBOXVMM_INSTR_LTR_ENABLED()
3571 | VBOXVMM_INSTR_GETSEC_ENABLED()
3572 | VBOXVMM_INSTR_RSM_ENABLED()
3573 | VBOXVMM_INSTR_RDRAND_ENABLED()
3574 | VBOXVMM_INSTR_RDSEED_ENABLED()
3575 | VBOXVMM_INSTR_XSAVES_ENABLED()
3576 | VBOXVMM_INSTR_XRSTORS_ENABLED()
3577 | VBOXVMM_INSTR_VMM_CALL_ENABLED()
3578 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED()
3579 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED()
3580 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED()
3581 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED()
3582 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED()
3583 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED()
3584 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED()
3585 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED()
3586 | VBOXVMM_INSTR_VMX_VMXON_ENABLED()
3587 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED()
3588 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED()
3589 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED()
3590 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED()
3591 ) != 0
3592 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED()
3593 | VBOXVMM_EXIT_HALT_ENABLED()
3594 | VBOXVMM_EXIT_MWAIT_ENABLED()
3595 | VBOXVMM_EXIT_MONITOR_ENABLED()
3596 | VBOXVMM_EXIT_CPUID_ENABLED()
3597 | VBOXVMM_EXIT_INVD_ENABLED()
3598 | VBOXVMM_EXIT_WBINVD_ENABLED()
3599 | VBOXVMM_EXIT_INVLPG_ENABLED()
3600 | VBOXVMM_EXIT_RDTSC_ENABLED()
3601 | VBOXVMM_EXIT_RDTSCP_ENABLED()
3602 | VBOXVMM_EXIT_RDPMC_ENABLED()
3603 | VBOXVMM_EXIT_RDMSR_ENABLED()
3604 | VBOXVMM_EXIT_WRMSR_ENABLED()
3605 | VBOXVMM_EXIT_CRX_READ_ENABLED()
3606 | VBOXVMM_EXIT_CRX_WRITE_ENABLED()
3607 | VBOXVMM_EXIT_DRX_READ_ENABLED()
3608 | VBOXVMM_EXIT_DRX_WRITE_ENABLED()
3609 | VBOXVMM_EXIT_PAUSE_ENABLED()
3610 | VBOXVMM_EXIT_XSETBV_ENABLED()
3611 | VBOXVMM_EXIT_SIDT_ENABLED()
3612 | VBOXVMM_EXIT_LIDT_ENABLED()
3613 | VBOXVMM_EXIT_SGDT_ENABLED()
3614 | VBOXVMM_EXIT_LGDT_ENABLED()
3615 | VBOXVMM_EXIT_SLDT_ENABLED()
3616 | VBOXVMM_EXIT_LLDT_ENABLED()
3617 | VBOXVMM_EXIT_STR_ENABLED()
3618 | VBOXVMM_EXIT_LTR_ENABLED()
3619 | VBOXVMM_EXIT_GETSEC_ENABLED()
3620 | VBOXVMM_EXIT_RSM_ENABLED()
3621 | VBOXVMM_EXIT_RDRAND_ENABLED()
3622 | VBOXVMM_EXIT_RDSEED_ENABLED()
3623 | VBOXVMM_EXIT_XSAVES_ENABLED()
3624 | VBOXVMM_EXIT_XRSTORS_ENABLED()
3625 | VBOXVMM_EXIT_VMM_CALL_ENABLED()
3626 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED()
3627 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED()
3628 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED()
3629 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED()
3630 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED()
3631 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED()
3632 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED()
3633 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED()
3634 | VBOXVMM_EXIT_VMX_VMXON_ENABLED()
3635 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED()
3636 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED()
3637 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED()
3638 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED()
3639 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED()
3640 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED()
3641 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED()
3642 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED()
3643 ) != 0;
3644}
3645
3646
3647/**
3648 * The debug runloop.
3649 *
3650 * @returns Strict VBox status code.
3651 * @param pVM The cross context VM structure.
3652 * @param pVCpu The cross context virtual CPU structure.
3653 */
3654static VBOXSTRICTRC nemR3DarwinRunGuestDebug(PVM pVM, PVMCPU pVCpu)
3655{
3656 /*
3657 * The run loop.
3658 *
3659 * Current approach to state updating to use the sledgehammer and sync
3660 * everything every time. This will be optimized later.
3661 */
3662 VMXTRANSIENT VmxTransient;
3663 RT_ZERO(VmxTransient);
3664 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3665
3666 bool const fSavedSingleInstruction = pVCpu->nem.s.fSingleInstruction;
3667 pVCpu->nem.s.fSingleInstruction = pVCpu->nem.s.fSingleInstruction || DBGFIsStepping(pVCpu);
3668 pVCpu->nem.s.fDebugWantRdTscExit = false;
3669 pVCpu->nem.s.fUsingDebugLoop = true;
3670
3671 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
3672 VMXRUNDBGSTATE DbgState;
3673 vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
3674 vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
3675
3676 /*
3677 * Poll timers and run for a bit.
3678 */
3679 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
3680 * the whole polling job when timers have changed... */
3681 uint64_t offDeltaIgnored;
3682 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
3683 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3684 for (unsigned iLoop = 0;; iLoop++)
3685 {
3686 bool fStepping = pVCpu->nem.s.fSingleInstruction;
3687
3688 /* Set up VM-execution controls the next two can respond to. */
3689 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
3690
3691 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, fStepping);
3692 if (rcStrict != VINF_SUCCESS)
3693 break;
3694
3695 /* Override any obnoxious code in the above call. */
3696 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
3697
3698 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
3699 if (hrc == HV_SUCCESS)
3700 {
3701 /*
3702 * Deal with the message.
3703 */
3704 rcStrict = nemR3DarwinHandleExitDebug(pVM, pVCpu, &VmxTransient, &DbgState);
3705 if (rcStrict == VINF_SUCCESS)
3706 { /* hopefully likely */ }
3707 else
3708 {
3709 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExitDebug -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
3710 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
3711 break;
3712 }
3713
3714 /*
3715 * Stepping: Did the RIP change, if so, consider it a single step.
3716 * Otherwise, make sure one of the TFs gets set.
3717 */
3718 if (fStepping)
3719 {
3720 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
3721 AssertRC(rc);
3722 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
3723 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
3724 {
3725 rcStrict = VINF_EM_DBG_STEPPED;
3726 break;
3727 }
3728 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
3729 }
3730 }
3731 else
3732 {
3733 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
3734 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
3735 VERR_NEM_IPE_0);
3736 }
3737 } /* the run loop */
3738
3739 /*
3740 * Clear the X86_EFL_TF if necessary.
3741 */
3742 if (pVCpu->nem.s.fClearTrapFlag)
3743 {
3744 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
3745 AssertRC(rc);
3746 pVCpu->nem.s.fClearTrapFlag = false;
3747 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
3748 }
3749
3750 pVCpu->nem.s.fUsingDebugLoop = false;
3751 pVCpu->nem.s.fDebugWantRdTscExit = false;
3752 pVCpu->nem.s.fSingleInstruction = fSavedSingleInstruction;
3753
3754 /* Restore all controls applied by vmxHCPreRunGuestDebugStateApply above. */
3755 return vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
3756}
3757
3758
3759VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
3760{
3761 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
3762#ifdef LOG_ENABLED
3763 if (LogIs3Enabled())
3764 nemR3DarwinLogState(pVM, pVCpu);
3765#endif
3766
3767 AssertReturn(NEMR3CanExecuteGuest(pVM, pVCpu), VERR_NEM_IPE_9);
3768
3769 /*
3770 * Try switch to NEM runloop state.
3771 */
3772 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
3773 { /* likely */ }
3774 else
3775 {
3776 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
3777 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
3778 return VINF_SUCCESS;
3779 }
3780
3781 VBOXSTRICTRC rcStrict;
3782 if ( !pVCpu->nem.s.fUseDebugLoop
3783 && !nemR3DarwinAnyExpensiveProbesEnabled()
3784 && !DBGFIsStepping(pVCpu)
3785 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
3786 rcStrict = nemR3DarwinRunGuestNormal(pVM, pVCpu);
3787 else
3788 rcStrict = nemR3DarwinRunGuestDebug(pVM, pVCpu);
3789
3790 if (rcStrict == VINF_EM_RAW_TO_R3)
3791 rcStrict = VINF_SUCCESS;
3792
3793 /*
3794 * Convert any pending HM events back to TRPM due to premature exits.
3795 *
3796 * This is because execution may continue from IEM and we would need to inject
3797 * the event from there (hence place it back in TRPM).
3798 */
3799 if (pVCpu->nem.s.Event.fPending)
3800 {
3801 vmxHCPendingEventToTrpmTrap(pVCpu);
3802 Assert(!pVCpu->nem.s.Event.fPending);
3803
3804 /* Clear the events from the VMCS. */
3805 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
3806 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
3807 }
3808
3809
3810 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
3811 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
3812
3813 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
3814 {
3815 /* Try anticipate what we might need. */
3816 uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
3817 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
3818 || RT_FAILURE(rcStrict))
3819 fImport = CPUMCTX_EXTRN_ALL;
3820 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
3821 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
3822 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
3823
3824 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
3825 {
3826 /* Only import what is external currently. */
3827 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
3828 if (RT_SUCCESS(rc2))
3829 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
3830 else if (RT_SUCCESS(rcStrict))
3831 rcStrict = rc2;
3832 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
3833 {
3834 pVCpu->cpum.GstCtx.fExtrn = 0;
3835 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3836 }
3837 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
3838 }
3839 else
3840 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
3841 }
3842 else
3843 {
3844 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
3845 pVCpu->cpum.GstCtx.fExtrn = 0;
3846 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3847 }
3848
3849 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
3850 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
3851 return rcStrict;
3852}
3853
3854
3855VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
3856{
3857 NOREF(pVM);
3858 return PGMPhysIsA20Enabled(pVCpu);
3859}
3860
3861
3862bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
3863{
3864 VMCPU_ASSERT_EMT(pVCpu);
3865 bool fOld = pVCpu->nem.s.fSingleInstruction;
3866 pVCpu->nem.s.fSingleInstruction = fEnable;
3867 pVCpu->nem.s.fUseDebugLoop = fEnable || pVM->nem.s.fUseDebugLoop;
3868 return fOld;
3869}
3870
3871
3872void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
3873{
3874 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
3875
3876 RT_NOREF(pVM, fFlags);
3877
3878 hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
3879 if (hrc != HV_SUCCESS)
3880 LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
3881}
3882
3883
3884DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
3885{
3886 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
3887 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
3888 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
3889 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
3890
3891 return fUseDebugLoop;
3892}
3893
3894
3895DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
3896{
3897 RT_NOREF(pVM, pVCpu);
3898 return fUseDebugLoop;
3899}
3900
3901
3902VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
3903 uint8_t *pu2State, uint32_t *puNemRange)
3904{
3905 RT_NOREF(pVM, puNemRange);
3906
3907 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
3908#if defined(VBOX_WITH_PGM_NEM_MODE)
3909 if (pvR3)
3910 {
3911 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3912 if (RT_SUCCESS(rc))
3913 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3914 else
3915 {
3916 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
3917 return VERR_NEM_MAP_PAGES_FAILED;
3918 }
3919 }
3920 return VINF_SUCCESS;
3921#else
3922 RT_NOREF(pVM, GCPhys, cb, pvR3);
3923 return VERR_NEM_MAP_PAGES_FAILED;
3924#endif
3925}
3926
3927
3928VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
3929{
3930 RT_NOREF(pVM);
3931 return false;
3932}
3933
3934
3935VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
3936 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
3937{
3938 RT_NOREF(pVM, puNemRange, pvRam, fFlags);
3939
3940 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
3941 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
3942
3943#if defined(VBOX_WITH_PGM_NEM_MODE)
3944 /*
3945 * Unmap the RAM we're replacing.
3946 */
3947 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
3948 {
3949 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
3950 if (RT_SUCCESS(rc))
3951 { /* likely */ }
3952 else if (pvMmio2)
3953 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
3954 GCPhys, cb, fFlags, rc));
3955 else
3956 {
3957 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
3958 GCPhys, cb, fFlags, rc));
3959 return VERR_NEM_UNMAP_PAGES_FAILED;
3960 }
3961 }
3962
3963 /*
3964 * Map MMIO2 if any.
3965 */
3966 if (pvMmio2)
3967 {
3968 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
3969 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3970 if (RT_SUCCESS(rc))
3971 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3972 else
3973 {
3974 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
3975 GCPhys, cb, fFlags, pvMmio2, rc));
3976 return VERR_NEM_MAP_PAGES_FAILED;
3977 }
3978 }
3979 else
3980 {
3981 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
3982 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3983 }
3984
3985#else
3986 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
3987 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
3988#endif
3989 return VINF_SUCCESS;
3990}
3991
3992
3993VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
3994 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
3995{
3996 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
3997 return VINF_SUCCESS;
3998}
3999
4000
4001VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
4002 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
4003{
4004 RT_NOREF(pVM, puNemRange);
4005
4006 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
4007 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
4008
4009 int rc = VINF_SUCCESS;
4010#if defined(VBOX_WITH_PGM_NEM_MODE)
4011 /*
4012 * Unmap the MMIO2 pages.
4013 */
4014 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
4015 * we may have more stuff to unmap even in case of pure MMIO... */
4016 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
4017 {
4018 rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
4019 if (RT_FAILURE(rc))
4020 {
4021 LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4022 GCPhys, cb, fFlags, rc));
4023 rc = VERR_NEM_UNMAP_PAGES_FAILED;
4024 }
4025 }
4026
4027 /*
4028 * Restore the RAM we replaced.
4029 */
4030 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
4031 {
4032 AssertPtr(pvRam);
4033 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
4034 if (RT_SUCCESS(rc))
4035 { /* likely */ }
4036 else
4037 {
4038 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
4039 rc = VERR_NEM_MAP_PAGES_FAILED;
4040 }
4041 if (pu2State)
4042 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
4043 }
4044 /* Mark the pages as unmapped if relevant. */
4045 else if (pu2State)
4046 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
4047
4048 RT_NOREF(pvMmio2);
4049#else
4050 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
4051 if (pu2State)
4052 *pu2State = UINT8_MAX;
4053 rc = VERR_NEM_UNMAP_PAGES_FAILED;
4054#endif
4055 return rc;
4056}
4057
4058
4059VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
4060 void *pvBitmap, size_t cbBitmap)
4061{
4062 RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
4063 AssertFailed();
4064 return VERR_NOT_IMPLEMENTED;
4065}
4066
4067
4068VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
4069 uint8_t *pu2State, uint32_t *puNemRange)
4070{
4071 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
4072
4073 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
4074 *pu2State = UINT8_MAX;
4075 *puNemRange = 0;
4076 return VINF_SUCCESS;
4077}
4078
4079
4080VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
4081 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
4082{
4083 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
4084 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
4085 *pu2State = UINT8_MAX;
4086
4087#if defined(VBOX_WITH_PGM_NEM_MODE)
4088 /*
4089 * (Re-)map readonly.
4090 */
4091 AssertPtrReturn(pvPages, VERR_INVALID_POINTER);
4092 int rc = nemR3DarwinMap(pVM, GCPhys, pvPages, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
4093 if (RT_SUCCESS(rc))
4094 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
4095 else
4096 {
4097 LogRel(("nemR3NativeNotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x rc=%Rrc\n",
4098 GCPhys, cb, pvPages, fFlags, rc));
4099 return VERR_NEM_MAP_PAGES_FAILED;
4100 }
4101 RT_NOREF(pVM, fFlags, puNemRange);
4102 return VINF_SUCCESS;
4103#else
4104 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
4105 return VERR_NEM_MAP_PAGES_FAILED;
4106#endif
4107}
4108
4109
4110VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
4111 RTR3PTR pvMemR3, uint8_t *pu2State)
4112{
4113 RT_NOREF(pVM);
4114
4115 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
4116 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
4117
4118 *pu2State = UINT8_MAX;
4119#if defined(VBOX_WITH_PGM_NEM_MODE)
4120 if (pvMemR3)
4121 {
4122 int rc = nemR3DarwinMap(pVM, GCPhys, pvMemR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
4123 if (RT_SUCCESS(rc))
4124 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
4125 else
4126 AssertLogRelMsgFailed(("NEMHCNotifyHandlerPhysicalDeregister: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
4127 pvMemR3, GCPhys, cb, rc));
4128 }
4129 RT_NOREF(enmKind);
4130#else
4131 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
4132 AssertFailed();
4133#endif
4134}
4135
4136
4137static int nemHCJustUnmapPage(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
4138{
4139 if (*pu2State <= NEM_DARWIN_PAGE_STATE_UNMAPPED)
4140 {
4141 Log5(("nemHCJustUnmapPage: %RGp == unmapped\n", GCPhysDst));
4142 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
4143 return VINF_SUCCESS;
4144 }
4145
4146 int rc = nemR3DarwinUnmap(pVM, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
4147 if (RT_SUCCESS(rc))
4148 {
4149 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
4150 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
4151 Log5(("nemHCJustUnmapPage: %RGp => unmapped\n", GCPhysDst));
4152 return VINF_SUCCESS;
4153 }
4154 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
4155 LogRel(("nemHCJustUnmapPage(%RGp): failed! rc=%Rrc\n",
4156 GCPhysDst, rc));
4157 return VERR_NEM_IPE_6;
4158}
4159
4160
4161VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
4162{
4163 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
4164 RT_NOREF(pVCpu, fEnabled);
4165}
4166
4167
4168void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
4169{
4170 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
4171 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
4172}
4173
4174
4175void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
4176 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
4177{
4178 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
4179 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
4180 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
4181}
4182
4183
4184int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4185 PGMPAGETYPE enmType, uint8_t *pu2State)
4186{
4187 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4188 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4189 RT_NOREF(HCPhys, fPageProt, enmType);
4190
4191 return nemHCJustUnmapPage(pVM, GCPhys, pu2State);
4192}
4193
4194
4195VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
4196 PGMPAGETYPE enmType, uint8_t *pu2State)
4197{
4198 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4199 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4200 RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
4201
4202 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
4203}
4204
4205
4206VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
4207 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
4208{
4209 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4210 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
4211 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
4212
4213 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
4214}
4215
4216
4217/**
4218 * Interface for importing state on demand (used by IEM).
4219 *
4220 * @returns VBox status code.
4221 * @param pVCpu The cross context CPU structure.
4222 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
4223 */
4224VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
4225{
4226 LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
4227 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
4228
4229 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
4230}
4231
4232
4233/**
4234 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
4235 *
4236 * @returns VBox status code.
4237 * @param pVCpu The cross context CPU structure.
4238 * @param pcTicks Where to return the CPU tick count.
4239 * @param puAux Where to return the TSC_AUX register value.
4240 */
4241VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
4242{
4243 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
4244 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
4245
4246 int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
4247 if ( RT_SUCCESS(rc)
4248 && puAux)
4249 {
4250 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
4251 {
4252 uint64_t u64Aux;
4253 rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
4254 if (RT_SUCCESS(rc))
4255 *puAux = (uint32_t)u64Aux;
4256 }
4257 else
4258 *puAux = CPUMGetGuestTscAux(pVCpu);
4259 }
4260
4261 return rc;
4262}
4263
4264
4265/**
4266 * Resumes CPU clock (TSC) on all virtual CPUs.
4267 *
4268 * This is called by TM when the VM is started, restored, resumed or similar.
4269 *
4270 * @returns VBox status code.
4271 * @param pVM The cross context VM structure.
4272 * @param pVCpu The cross context CPU structure of the calling EMT.
4273 * @param uPausedTscValue The TSC value at the time of pausing.
4274 */
4275VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
4276{
4277 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
4278 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
4279 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
4280
4281 hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
4282 if (RT_LIKELY(hrc == HV_SUCCESS))
4283 {
4284 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
4285 return VINF_SUCCESS;
4286 }
4287
4288 return nemR3DarwinHvSts2Rc(hrc);
4289}
4290
4291
4292/**
4293 * Returns features supported by the NEM backend.
4294 *
4295 * @returns Flags of features supported by the native NEM backend.
4296 * @param pVM The cross context VM structure.
4297 */
4298VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
4299{
4300 RT_NOREF(pVM);
4301 /*
4302 * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
4303 * and unrestricted guest execution support so we can safely return these flags here always.
4304 */
4305 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
4306}
4307
4308
4309/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
4310 *
4311 * @todo Add notes as the implementation progresses...
4312 */
4313
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette