/* $Id: NEMR3Native-linux.cpp 96407 2022-08-22 17:43:14Z vboxsync $ */ /** @file * NEM - Native execution manager, native ring-3 Linux backend. */ /* * Copyright (C) 2021-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_NEM #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #include #include #include #include "NEMInternal.h" #include #include #include #include #include #include #include #include #include #include #include /* * Supply stuff missing from the kvm.h on the build box. */ #ifndef KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON /* since 5.4 */ # define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4 #endif /** * Worker for nemR3NativeInit that gets the hypervisor capabilities. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pErrInfo Where to always return error info. */ static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo) { AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order")); /* * Capabilities. */ static const struct { const char *pszName; int iCap; uint32_t offNem : 24; uint32_t cbNem : 3; uint32_t fReqNonZero : 1; uint32_t uReserved : 4; } s_aCaps[] = { #define CAP_ENTRY__L(a_Define) { #a_Define, a_Define, UINT32_C(0x00ffffff), 0, 0, 0 } #define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 } #define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 } #define CAP_ENTRY__U(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 } #define CAP_ENTRY_ML(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 } CAP_ENTRY__L(KVM_CAP_IRQCHIP), /* 0 */ CAP_ENTRY_ML(KVM_CAP_HLT), CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL), CAP_ENTRY_ML(KVM_CAP_USER_MEMORY), CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR), CAP_ENTRY__U(5), CAP_ENTRY__L(KVM_CAP_VAPIC), CAP_ENTRY__L(KVM_CAP_EXT_CPUID), CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE), CAP_ENTRY__L(KVM_CAP_NR_VCPUS), CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots), /* 10 */ CAP_ENTRY__L(KVM_CAP_PIT), CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY), CAP_ENTRY__L(KVM_CAP_PV_MMU), CAP_ENTRY__L(KVM_CAP_MP_STATE), CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO), CAP_ENTRY__L(KVM_CAP_SYNC_MMU), CAP_ENTRY__U(17), CAP_ENTRY__L(KVM_CAP_IOMMU), CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */ CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */ CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS), /* 21 */ CAP_ENTRY__L(KVM_CAP_USER_NMI), #ifdef __KVM_HAVE_GUEST_DEBUG CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG), #endif #ifdef __KVM_HAVE_PIT CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL), #endif CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING), CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS), CAP_ENTRY__U(27), CAP_ENTRY__U(28), CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ), CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS), /* 30 */ #ifdef __KVM_HAVE_MCE CAP_ENTRY__L(KVM_CAP_MCE), #endif CAP_ENTRY__L(KVM_CAP_IRQFD), #ifdef __KVM_HAVE_PIT CAP_ENTRY__L(KVM_CAP_PIT2), #endif CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID), #ifdef __KVM_HAVE_PIT_STATE2 CAP_ENTRY__L(KVM_CAP_PIT_STATE2), #endif CAP_ENTRY__L(KVM_CAP_IOEVENTFD), CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR), #ifdef __KVM_HAVE_XEN_HVM CAP_ENTRY__L(KVM_CAP_XEN_HVM), #endif CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK), CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA), /* 40 */ #ifdef __KVM_HAVE_VCPU_EVENTS CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS), #else CAP_ENTRY_MU(41), #endif CAP_ENTRY__L(KVM_CAP_S390_PSW), CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE), CAP_ENTRY__L(KVM_CAP_HYPERV), CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC), CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN), CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT), CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES), CAP_ENTRY__L(KVM_CAP_INTR_SHADOW), #ifdef __KVM_HAVE_DEBUGREGS CAP_ENTRY__L(KVM_CAP_DEBUGREGS), /* 50 */ #endif CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep), CAP_ENTRY__L(KVM_CAP_PPC_OSI), CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ), CAP_ENTRY__L(KVM_CAP_ENABLE_CAP), #ifdef __KVM_HAVE_XSAVE CAP_ENTRY_ML(KVM_CAP_XSAVE), #else CAP_ENTRY_MU(55), #endif #ifdef __KVM_HAVE_XCRS CAP_ENTRY_ML(KVM_CAP_XCRS), #else CAP_ENTRY_MU(56), #endif CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO), CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL), CAP_ENTRY__L(KVM_CAP_ASYNC_PF), CAP_ENTRY__L(KVM_CAP_TSC_CONTROL), /* 60 */ CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ), CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS), CAP_ENTRY__L(KVM_CAP_SPAPR_TCE), CAP_ENTRY__L(KVM_CAP_PPC_SMT), CAP_ENTRY__L(KVM_CAP_PPC_RMA), CAP_ENTRY__L(KVM_CAP_MAX_VCPUS), CAP_ENTRY__L(KVM_CAP_PPC_HIOR), CAP_ENTRY__L(KVM_CAP_PPC_PAPR), CAP_ENTRY__L(KVM_CAP_SW_TLB), CAP_ENTRY__L(KVM_CAP_ONE_REG), /* 70 */ CAP_ENTRY__L(KVM_CAP_S390_GMAP), CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER), CAP_ENTRY__L(KVM_CAP_S390_UCONTROL), CAP_ENTRY__L(KVM_CAP_SYNC_REGS), CAP_ENTRY__L(KVM_CAP_PCI_2_3), CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL), CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI), CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO), CAP_ENTRY__L(KVM_CAP_S390_COW), CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB), /* 80 */ CAP_ENTRY__L(KVM_CAP_READONLY_MEM), CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE), CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG), CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD), CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT), CAP_ENTRY__L(KVM_CAP_PPC_EPR), CAP_ENTRY__L(KVM_CAP_ARM_PSCI), CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR), CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL), CAP_ENTRY__L(KVM_CAP_IRQ_MPIC), /* 90 */ CAP_ENTRY__L(KVM_CAP_PPC_RTAS), CAP_ENTRY__L(KVM_CAP_IRQ_XICS), CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT), CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE), CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID), CAP_ENTRY__L(KVM_CAP_HYPERV_TIME), CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED), CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM), CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP), CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH), /* 100 */ CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES), CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2), CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL), CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL), CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM), CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP), CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS), CAP_ENTRY__L(KVM_CAP_S390_MEM_OP), CAP_ENTRY__L(KVM_CAP_S390_USER_STSI), CAP_ENTRY__L(KVM_CAP_S390_SKEYS), /* 110 */ CAP_ENTRY__L(KVM_CAP_MIPS_FPU), CAP_ENTRY__L(KVM_CAP_MIPS_MSA), CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ), CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE), CAP_ENTRY__L(KVM_CAP_PPC_HWRNG), CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS), CAP_ENTRY__L(KVM_CAP_X86_SMM), CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE), CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS), CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS), /* 120 */ CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP), CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH), CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC), CAP_ENTRY__L(KVM_CAP_S390_RI), CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64), CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3), CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES), CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID), CAP_ENTRY__L(KVM_CAP_X2APIC_API), CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0), /* 130 */ CAP_ENTRY__L(KVM_CAP_MSI_DEVID), CAP_ENTRY__L(KVM_CAP_PPC_HTM), CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT), CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX), CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3), CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT), CAP_ENTRY__L(KVM_CAP_MIPS_VZ), CAP_ENTRY__L(KVM_CAP_MIPS_TE), CAP_ENTRY__L(KVM_CAP_MIPS_64BIT), CAP_ENTRY__L(KVM_CAP_S390_GS), /* 140 */ CAP_ENTRY__L(KVM_CAP_S390_AIS), CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO), CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS), CAP_ENTRY__L(KVM_CAP_ARM_USER_IRQ), CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION), CAP_ENTRY__L(KVM_CAP_PPC_FWNMI), CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE), CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2), CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX), CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION), /* 150 */ CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR), CAP_ENTRY__L(KVM_CAP_S390_BPB), CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES), CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD), CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH), CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M), CAP_ENTRY__L(KVM_CAP_NESTED_STATE), CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR), CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO), CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV), /* 160 */ CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI), CAP_ENTRY__L(KVM_CAP_COALESCED_PIO), CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS), CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD), CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE), CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT), CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID), CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2), CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE), CAP_ENTRY__L(KVM_CAP_ARM_SVE), /* 170 */ CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS), CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC), CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER), CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2), CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH), CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP), CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER), CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT), CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS), CAP_ENTRY__L(KVM_CAP_S390_PROTECTED), /* 180 */ CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST), CAP_ENTRY__L(KVM_CAP_HALT_POLL), CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT), CAP_ENTRY__L(KVM_CAP_LAST_CPU), CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR), CAP_ENTRY__L(KVM_CAP_S390_DIAG318), CAP_ENTRY__L(KVM_CAP_STEAL_TIME), CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR), /* (since 5.10) */ CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER), CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID), /* 190 */ CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID), CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING), CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT), CAP_ENTRY__L(KVM_CAP_PPC_DAWR1), CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2), CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE), CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM), CAP_ENTRY__L(KVM_CAP_PTP_KVM), CAP_ENTRY__U(199), CAP_ENTRY__U(200), CAP_ENTRY__U(201), CAP_ENTRY__U(202), CAP_ENTRY__U(203), CAP_ENTRY__U(204), CAP_ENTRY__U(205), CAP_ENTRY__U(206), CAP_ENTRY__U(207), CAP_ENTRY__U(208), CAP_ENTRY__U(209), CAP_ENTRY__U(210), CAP_ENTRY__U(211), CAP_ENTRY__U(212), CAP_ENTRY__U(213), CAP_ENTRY__U(214), CAP_ENTRY__U(215), CAP_ENTRY__U(216), }; LogRel(("NEM: KVM capabilities (system):\n")); int rcRet = VINF_SUCCESS; for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++) { int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap); if (rc >= 10) LogRel(("NEM: %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc)); else if (rc >= 0) LogRel(("NEM: %36s: %d\n", s_aCaps[i].pszName, rc)); else LogRel(("NEM: %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno)); switch (s_aCaps[i].cbNem) { case 0: break; case 1: { uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem]; AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0); *puValue = (uint8_t)rc; AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc)); break; } case 2: { uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem]; AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0); *puValue = (uint16_t)rc; AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc)); break; } case 4: { uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem]; AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0); *puValue = (uint32_t)rc; AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc)); break; } default: rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s", i, s_aCaps[i].pszName, s_aCaps[i].cbNem); AssertFailedReturn(rcRet); } /* * Is a require non-zero entry zero or failing? */ if (s_aCaps[i].fReqNonZero && rc <= 0) rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "Required capability '%s' is missing!", s_aCaps[i].pszName); } /* * Get per VCpu KVM_RUN MMAP area size. */ int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL); if ((unsigned)rc < _64M) { pVM->nem.s.cbVCpuMmap = (uint32_t)rc; LogRel(("NEM: %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc)); } else if (rc < 0) rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno); else rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc); /* * Init the slot ID bitmap. */ ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0); /* don't use slot 0 */ if (pVM->nem.s.cMaxMemSlots < _32K) ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K); ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1); /* don't use the last slot */ return rcRet; } /** * Does the early setup of a KVM VM. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pErrInfo Where to always return error info. */ static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo) { AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order")); /* * Enable user space MSRs and let us check everything KVM cannot handle. * We will set up filtering later when ring-3 init has completed. */ struct kvm_enable_cap CapEn = { KVM_CAP_X86_USER_SPACE_MSR, 0, { KVM_MSR_EXIT_REASON_FILTER | KVM_MSR_EXIT_REASON_UNKNOWN | KVM_MSR_EXIT_REASON_INVAL, 0, 0, 0} }; int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_ENABLE_CAP, &CapEn); if (rcLnx == -1) return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed to enable KVM_CAP_X86_USER_SPACE_MSR failed: %u", errno); /* * Create the VCpus. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; /* Create it. */ pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu); if (pVCpu->nem.s.fdVCpu < 0) return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno); /* Map the KVM_RUN area. */ pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED, pVCpu->nem.s.fdVCpu, 0 /*offset*/); if ((void *)pVCpu->nem.s.pRun == MAP_FAILED) return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "mmap failed for VCpu #%u: %d", idCpu, errno); /* We want all x86 registers and events on each exit. */ pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS; } return VINF_SUCCESS; } /** @callback_method_impl{FNVMMEMTRENDEZVOUS} */ static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser) { RT_NOREF(pVM, pvUser); int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/); AssertLogRelRC(rc); return VINF_SUCCESS; } /** * Try initialize the native API. * * This may only do part of the job, more can be done in * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted(). * * @returns VBox status code. * @param pVM The cross context VM structure. * @param fFallback Whether we're in fallback mode or use-NEM mode. In * the latter we'll fail if we cannot initialize. * @param fForced Whether the HMForced flag is set and we should * fail if we cannot initialize. */ int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced) { RT_NOREF(pVM, fFallback, fForced); /* * Some state init. */ pVM->nem.s.fdKvm = -1; pVM->nem.s.fdVm = -1; for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s; pNemCpu->fdVCpu = -1; } /* * Error state. * The error message will be non-empty on failure and 'rc' will be set too. */ RTERRINFOSTATIC ErrInfo; PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo); /* * Open kvm subsystem so we can issue system ioctls. */ int rc; int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC); if (fdKvm >= 0) { pVM->nem.s.fdKvm = fdKvm; /* * Create an empty VM since it is recommended we check capabilities on * the VM rather than the system descriptor. */ int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */); if (fdVm >= 0) { pVM->nem.s.fdVm = fdVm; /* * Check capabilities. */ rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo); if (RT_SUCCESS(rc)) { /* * Set up the VM (more on this later). */ rc = nemR3LnxInitSetupVm(pVM, pErrInfo); if (RT_SUCCESS(rc)) { /* * Set ourselves as the execution engine and make config adjustments. */ VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API); Log(("NEM: Marked active!\n")); PGMR3EnableNemMode(pVM); /* * Register release statistics */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s; STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn1Loop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-01-loop", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn2Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-02-loops", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn3Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-03-loops", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn4PlusLoops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-04-to-7-loops", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits", "/NEM/CPU%u/Exit", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO", "/NEM/CPU%u/Exit/Io", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO", "/NEM/CPU%u/Exit/Mmio", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitSetTpr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_SET_TRP", "/NEM/CPU%u/Exit/SetTpr", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitTprAccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_TPR_ACCESS", "/NEM/CPU%u/Exit/TprAccess", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitRdMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_RDMSR", "/NEM/CPU%u/Exit/RdMsr", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitWrMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_WRMSR", "/NEM/CPU%u/Exit/WrMsr", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitIrqWindowOpen, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IRQ_WINDOWS_OPEN", "/NEM/CPU%u/Exit/IrqWindowOpen", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HLT", "/NEM/CPU%u/Exit/Hlt", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR", "/NEM/CPU%u/Exit/Intr", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL", "/NEM/CPU%u/Exit/Hypercall", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG", "/NEM/CPU%u/Exit/Debug", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK", "/NEM/CPU%u/Exit/BusLock", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu); } /* * Success. */ return VINF_SUCCESS; } /* * Bail out. */ } close(fdVm); pVM->nem.s.fdVm = -1; } else rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno); close(fdKvm); pVM->nem.s.fdKvm = -1; } else if (errno == EACCES) rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing."); else if (errno == ENOENT) rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)"); else rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno); /* * We only fail if in forced mode, otherwise just log the complaint and return. */ Assert(RTErrInfoIsSet(pErrInfo)); if ( (fForced || !fFallback) && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API) return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg); LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg)); return VINF_SUCCESS; } /** * This is called after CPUMR3Init is done. * * @returns VBox status code. * @param pVM The VM handle.. */ int nemR3NativeInitAfterCPUM(PVM pVM) { /* * Validate sanity. */ AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER); AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER); AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER); /** @todo */ return VINF_SUCCESS; } /** * Update the CPUID leaves for a VCPU. * * The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo * everything when there really just are single bit changes. That said, it * looks like KVM update the XCR/XSAVE related stuff as well as the APIC enabled * bit(s), so it should suffice if we do this at startup, I hope. */ static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu) { uint32_t cLeaves = 0; PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves); struct kvm_cpuid2 *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2])); pReq->nent = cLeaves; pReq->padding = 0; for (uint32_t i = 0; i < cLeaves; i++) { CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, -1 /*f64BitMode*/, &pReq->entries[i].eax, &pReq->entries[i].ebx, &pReq->entries[i].ecx, &pReq->entries[i].edx); pReq->entries[i].function = paLeaves[i].uLeaf; pReq->entries[i].index = paLeaves[i].uSubLeaf; pReq->entries[i].flags = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX; pReq->entries[i].padding[0] = 0; pReq->entries[i].padding[1] = 0; pReq->entries[i].padding[2] = 0; } int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq); AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno)); return VINF_SUCCESS; } int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) { /* * Make RTThreadPoke work again (disabled for avoiding unnecessary * critical section issues in ring-0). */ if (enmWhat == VMINITCOMPLETED_RING3) VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL); /* * Configure CPUIDs after ring-3 init has been done. */ if (enmWhat == VMINITCOMPLETED_RING3) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]); AssertRCReturn(rc, rc); } } /* * Configure MSRs after ring-3 init is done. * * We only need to tell KVM which MSRs it can handle, as we already * requested KVM_MSR_EXIT_REASON_FILTER, KVM_MSR_EXIT_REASON_UNKNOWN * and KVM_MSR_EXIT_REASON_INVAL in nemR3LnxInitSetupVm, and here we * will use KVM_MSR_FILTER_DEFAULT_DENY. So, all MSRs w/o a 1 in the * bitmaps should be deferred to ring-3. */ if (enmWhat == VMINITCOMPLETED_RING3) { struct kvm_msr_filter MsrFilters = {0}; /* Structure with a couple of implicit paddings on 64-bit systems. */ MsrFilters.flags = KVM_MSR_FILTER_DEFAULT_DENY; unsigned iRange = 0; #define MSR_RANGE_BEGIN(a_uBase, a_uEnd, a_fFlags) \ AssertCompile(0x3000 <= KVM_MSR_FILTER_MAX_BITMAP_SIZE * 8); \ uint64_t RT_CONCAT(bm, a_uBase)[0x3000 / 64] = {0}; \ do { \ uint64_t * const pbm = RT_CONCAT(bm, a_uBase); \ uint32_t const uBase = UINT32_C(a_uBase); \ uint32_t const cMsrs = UINT32_C(a_uEnd) - UINT32_C(a_uBase); \ MsrFilters.ranges[iRange].base = UINT32_C(a_uBase); \ MsrFilters.ranges[iRange].nmsrs = cMsrs; \ MsrFilters.ranges[iRange].flags = (a_fFlags); \ MsrFilters.ranges[iRange].bitmap = (uint8_t *)&RT_CONCAT(bm, a_uBase)[0] #define MSR_RANGE_ADD(a_Msr) \ do { Assert((uint32_t)(a_Msr) - uBase < cMsrs); ASMBitSet(pbm, (uint32_t)(a_Msr) - uBase); } while (0) #define MSR_RANGE_END(a_cMinMsrs) \ /* optimize the range size before closing: */ \ uint32_t cBitmap = cMsrs / 64; \ while (cBitmap > ((a_cMinMsrs) + 63 / 64) && pbm[cBitmap - 1] == 0) \ cBitmap -= 1; \ MsrFilters.ranges[iRange].nmsrs = cBitmap * 64; \ iRange++; \ } while (0) /* 1st Intel range: 0000_0000 to 0000_3000. */ MSR_RANGE_BEGIN(0x00000000, 0x00003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE); MSR_RANGE_ADD(MSR_IA32_TSC); MSR_RANGE_ADD(MSR_IA32_SYSENTER_CS); MSR_RANGE_ADD(MSR_IA32_SYSENTER_ESP); MSR_RANGE_ADD(MSR_IA32_SYSENTER_EIP); MSR_RANGE_ADD(MSR_IA32_CR_PAT); /** @todo more? */ MSR_RANGE_END(64); /* 1st AMD range: c000_0000 to c000_3000 */ MSR_RANGE_BEGIN(0xc0000000, 0xc0003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE); MSR_RANGE_ADD(MSR_K6_EFER); MSR_RANGE_ADD(MSR_K6_STAR); MSR_RANGE_ADD(MSR_K8_GS_BASE); MSR_RANGE_ADD(MSR_K8_KERNEL_GS_BASE); MSR_RANGE_ADD(MSR_K8_LSTAR); MSR_RANGE_ADD(MSR_K8_CSTAR); MSR_RANGE_ADD(MSR_K8_SF_MASK); MSR_RANGE_ADD(MSR_K8_TSC_AUX); /** @todo add more? */ MSR_RANGE_END(64); /** @todo Specify other ranges too? Like hyper-V and KVM to make sure we get * the MSR requests instead of KVM. */ int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_X86_SET_MSR_FILTER, &MsrFilters); if (rcLnx == -1) return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Failed to enable KVM_X86_SET_MSR_FILTER failed: %u", errno); } return VINF_SUCCESS; } int nemR3NativeTerm(PVM pVM) { /* * Per-cpu data */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; if (pVCpu->nem.s.fdVCpu != -1) { close(pVCpu->nem.s.fdVCpu); pVCpu->nem.s.fdVCpu = -1; } if (pVCpu->nem.s.pRun) { munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap); pVCpu->nem.s.pRun = NULL; } } /* * Global data. */ if (pVM->nem.s.fdVm != -1) { close(pVM->nem.s.fdVm); pVM->nem.s.fdVm = -1; } if (pVM->nem.s.fdKvm != -1) { close(pVM->nem.s.fdKvm); pVM->nem.s.fdKvm = -1; } return VINF_SUCCESS; } /** * VM reset notification. * * @param pVM The cross context VM structure. */ void nemR3NativeReset(PVM pVM) { RT_NOREF(pVM); } /** * Reset CPU due to INIT IPI or hot (un)plugging. * * @param pVCpu The cross context virtual CPU structure of the CPU being * reset. * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case. */ void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi) { RT_NOREF(pVCpu, fInitIpi); } /********************************************************************************************************************************* * Memory management * *********************************************************************************************************************************/ /** * Allocates a memory slot ID. * * @returns Slot ID on success, UINT16_MAX on failure. */ static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM) { /* Use the hint first. */ uint16_t idHint = pVM->nem.s.idPrevSlot; if (idHint < _32K - 1) { int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint); Assert(idx < _32K); if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx)) return pVM->nem.s.idPrevSlot = (uint16_t)idx; } /* * Search the whole map from the start. */ int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K); Assert(idx < _32K); if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx)) return pVM->nem.s.idPrevSlot = (uint16_t)idx; Assert(idx < 0 /*shouldn't trigger unless there is a race */); return UINT16_MAX; /* caller is expected to assert. */ } /** * Frees a memory slot ID */ static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot) { if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot))) { /*likely*/ } else AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot)); } VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3, uint8_t *pu2State, uint32_t *puNemRange) { uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM); AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED); Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n", GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot)); struct kvm_userspace_memory_region Region; Region.slot = idSlot; Region.flags = 0; Region.guest_phys_addr = GCPhys; Region.memory_size = cb; Region.userspace_addr = (uintptr_t)pvR3; int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); if (rc == 0) { *pu2State = 0; *puNemRange = idSlot; return VINF_SUCCESS; } LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno)); nemR3LnxMemSlotIdFree(pVM, idSlot); return VERR_NEM_MAP_PAGES_FAILED; } VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM) { RT_NOREF(pVM); return true; } VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n", GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX)); RT_NOREF(pvRam); if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) { /** @todo implement splitting and whatnot of ranges if we want to be 100% * conforming (just modify RAM registrations in MM.cpp to test). */ AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2), VERR_NEM_MAP_PAGES_FAILED); } /* * Register MMIO2. */ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2) { AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED); AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED); uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM); AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED); struct kvm_userspace_memory_region Region; Region.slot = idSlot; Region.flags = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0; Region.guest_phys_addr = GCPhys; Region.memory_size = cb; Region.userspace_addr = (uintptr_t)pvMmio2; int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); if (rc == 0) { *pu2State = 0; *puNemRange = idSlot; Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n", GCPhys, cb, fFlags, pvMmio2, idSlot)); return VINF_SUCCESS; } nemR3LnxMemSlotIdFree(pVM, idSlot); AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc), VERR_NEM_MAP_PAGES_FAILED); } /* MMIO, don't care. */ *pu2State = 0; *puNemRange = UINT32_MAX; return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam, void *pvMmio2, uint32_t *puNemRange) { RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange); return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n", GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange)); RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State); if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) { /** @todo implement splitting and whatnot of ranges if we want to be 100% * conforming (just modify RAM registrations in MM.cpp to test). */ AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2), VERR_NEM_UNMAP_PAGES_FAILED); } if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2) { uint32_t const idSlot = *puNemRange; AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4); AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4); struct kvm_userspace_memory_region Region; Region.slot = idSlot; Region.flags = 0; Region.guest_phys_addr = GCPhys; Region.memory_size = 0; /* this deregisters it. */ Region.userspace_addr = (uintptr_t)pvMmio2; int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); if (rc == 0) { if (pu2State) *pu2State = 0; *puNemRange = UINT32_MAX; nemR3LnxMemSlotIdFree(pVM, idSlot); return VINF_SUCCESS; } AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc), VERR_NEM_UNMAP_PAGES_FAILED); } if (pu2State) *pu2State = UINT8_MAX; return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange, void *pvBitmap, size_t cbBitmap) { AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4); AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4); RT_NOREF(GCPhys, cbBitmap); struct kvm_dirty_log DirtyLog; DirtyLog.slot = uNemRange; DirtyLog.padding1 = 0; DirtyLog.dirty_bitmap = pvBitmap; int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog); AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc), VERR_NEM_QUERY_DIRTY_BITMAP_FAILED); return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags)); *pu2State = UINT8_MAX; /* Don't support puttint ROM where there is already RAM. For now just shuffle the registrations till it works... */ AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags), VERR_NEM_MAP_PAGES_FAILED); /** @todo figure out how to do shadow ROMs. */ /* * We only allocate a slot number here in case we need to use it to * fend of physical handler fun. */ uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM); AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED); *pu2State = 0; *puNemRange = idSlot; Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n", GCPhys, cb, fFlags, pvPages, idSlot)); RT_NOREF(GCPhys, cb, fFlags, pvPages); return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n", GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange)); AssertPtrReturn(pvPages, VERR_NEM_IPE_5); uint32_t const idSlot = *puNemRange; AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4); AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4); *pu2State = UINT8_MAX; /* * Do the actual setting of the user pages here now that we've * got a valid pvPages (typically isn't available during the early * notification, unless we're replacing RAM). */ struct kvm_userspace_memory_region Region; Region.slot = idSlot; Region.flags = 0; Region.guest_phys_addr = GCPhys; Region.memory_size = cb; Region.userspace_addr = (uintptr_t)pvPages; int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region); if (rc == 0) { *pu2State = 0; Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n", GCPhys, cb, fFlags, pvPages, idSlot)); return VINF_SUCCESS; } AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, fFlags, pvPages, idSlot, errno, rc), VERR_NEM_MAP_PAGES_FAILED); } VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled) { Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled)); Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM))); RT_NOREF(pVCpu, fEnabled); } VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb, RTR3PTR pvMemR3, uint8_t *pu2State) { Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n", GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State)); *pu2State = UINT8_MAX; RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3); } void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb) { Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind)); RT_NOREF(pVM, enmKind, GCPhys, cb); } void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM) { Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n", GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM)); RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM); } int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhys, fPageProt, enmType, *pu2State)); RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State); return VINF_SUCCESS; } VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhys, fPageProt, enmType, *pu2State)); Assert(VM_IS_NEM_ENABLED(pVM)); RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State); } VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew, RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State)); Assert(VM_IS_NEM_ENABLED(pVM)); RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State); } /********************************************************************************************************************************* * CPU State * *********************************************************************************************************************************/ /** * Worker that imports selected state from KVM. */ static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun) { fWhat &= pVCpu->cpum.GstCtx.fExtrn; if (!fWhat) return VINF_SUCCESS; /* * Stuff that goes into kvm_run::s.regs.regs: */ if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK)) { if (fWhat & CPUMCTX_EXTRN_RIP) pCtx->rip = pRun->s.regs.regs.rip; if (fWhat & CPUMCTX_EXTRN_RFLAGS) pCtx->rflags.u = pRun->s.regs.regs.rflags; if (fWhat & CPUMCTX_EXTRN_RAX) pCtx->rax = pRun->s.regs.regs.rax; if (fWhat & CPUMCTX_EXTRN_RCX) pCtx->rcx = pRun->s.regs.regs.rcx; if (fWhat & CPUMCTX_EXTRN_RDX) pCtx->rdx = pRun->s.regs.regs.rdx; if (fWhat & CPUMCTX_EXTRN_RBX) pCtx->rbx = pRun->s.regs.regs.rbx; if (fWhat & CPUMCTX_EXTRN_RSP) pCtx->rsp = pRun->s.regs.regs.rsp; if (fWhat & CPUMCTX_EXTRN_RBP) pCtx->rbp = pRun->s.regs.regs.rbp; if (fWhat & CPUMCTX_EXTRN_RSI) pCtx->rsi = pRun->s.regs.regs.rsi; if (fWhat & CPUMCTX_EXTRN_RDI) pCtx->rdi = pRun->s.regs.regs.rdi; if (fWhat & CPUMCTX_EXTRN_R8_R15) { pCtx->r8 = pRun->s.regs.regs.r8; pCtx->r9 = pRun->s.regs.regs.r9; pCtx->r10 = pRun->s.regs.regs.r10; pCtx->r11 = pRun->s.regs.regs.r11; pCtx->r12 = pRun->s.regs.regs.r12; pCtx->r13 = pRun->s.regs.regs.r13; pCtx->r14 = pRun->s.regs.regs.r14; pCtx->r15 = pRun->s.regs.regs.r15; } } /* * Stuff that goes into kvm_run::s.regs.sregs. * * Note! The apic_base can be ignored because we gets all MSR writes to it * and VBox always keeps the correct value. */ bool fMaybeChangedMode = false; bool fUpdateCr3 = false; if (fWhat & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR)) { /** @todo what about Attr.n.u4LimitHigh? */ #define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \ (a_CtxSeg).u64Base = (a_KvmSeg).base; \ (a_CtxSeg).u32Limit = (a_KvmSeg).limit; \ (a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \ (a_CtxSeg).Attr.n.u4Type = (a_KvmSeg).type; \ (a_CtxSeg).Attr.n.u1DescType = (a_KvmSeg).s; \ (a_CtxSeg).Attr.n.u2Dpl = (a_KvmSeg).dpl; \ (a_CtxSeg).Attr.n.u1Present = (a_KvmSeg).present; \ (a_CtxSeg).Attr.n.u1Available = (a_KvmSeg).avl; \ (a_CtxSeg).Attr.n.u1Long = (a_KvmSeg).l; \ (a_CtxSeg).Attr.n.u1DefBig = (a_KvmSeg).db; \ (a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \ (a_CtxSeg).Attr.n.u1Unusable = (a_KvmSeg).unusable; \ (a_CtxSeg).fFlags = CPUMSELREG_FLAGS_VALID; \ CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \ } while (0) if (fWhat & CPUMCTX_EXTRN_SREG_MASK) { if (fWhat & CPUMCTX_EXTRN_ES) NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es); if (fWhat & CPUMCTX_EXTRN_CS) NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs); if (fWhat & CPUMCTX_EXTRN_SS) NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss); if (fWhat & CPUMCTX_EXTRN_DS) NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds); if (fWhat & CPUMCTX_EXTRN_FS) NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs); if (fWhat & CPUMCTX_EXTRN_GS) NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs); } if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) { if (fWhat & CPUMCTX_EXTRN_GDTR) { pCtx->gdtr.pGdt = pRun->s.regs.sregs.gdt.base; pCtx->gdtr.cbGdt = pRun->s.regs.sregs.gdt.limit; } if (fWhat & CPUMCTX_EXTRN_IDTR) { pCtx->idtr.pIdt = pRun->s.regs.sregs.idt.base; pCtx->idtr.cbIdt = pRun->s.regs.sregs.idt.limit; } if (fWhat & CPUMCTX_EXTRN_LDTR) NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt); if (fWhat & CPUMCTX_EXTRN_TR) NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr); } if (fWhat & CPUMCTX_EXTRN_CR_MASK) { if (fWhat & CPUMCTX_EXTRN_CR0) { if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0) { CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0); fMaybeChangedMode = true; } } if (fWhat & CPUMCTX_EXTRN_CR2) pCtx->cr2 = pRun->s.regs.sregs.cr2; if (fWhat & CPUMCTX_EXTRN_CR3) { if (pCtx->cr3 != pRun->s.regs.sregs.cr3) { CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3); fUpdateCr3 = true; } } if (fWhat & CPUMCTX_EXTRN_CR4) { if (pCtx->cr4 != pRun->s.regs.sregs.cr4) { CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4); fMaybeChangedMode = true; } } } if (fWhat & CPUMCTX_EXTRN_APIC_TPR) APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4); if (fWhat & CPUMCTX_EXTRN_EFER) { if (pCtx->msrEFER != pRun->s.regs.sregs.efer) { Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer)); if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE) PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE)); pCtx->msrEFER = pRun->s.regs.sregs.efer; fMaybeChangedMode = true; } } #undef NEM_LNX_IMPORT_SEG } /* * Debug registers. */ if (fWhat & CPUMCTX_EXTRN_DR_MASK) { struct kvm_debugregs DbgRegs = {{0}}; int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs); AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); if (fWhat & CPUMCTX_EXTRN_DR0_DR3) { pCtx->dr[0] = DbgRegs.db[0]; pCtx->dr[1] = DbgRegs.db[1]; pCtx->dr[2] = DbgRegs.db[2]; pCtx->dr[3] = DbgRegs.db[3]; } if (fWhat & CPUMCTX_EXTRN_DR6) pCtx->dr[6] = DbgRegs.dr6; if (fWhat & CPUMCTX_EXTRN_DR7) pCtx->dr[7] = DbgRegs.dr7; } /* * FPU, SSE, AVX, ++. */ if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx)) { if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)) { fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */ AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave)); int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState); AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); } if (fWhat & CPUMCTX_EXTRN_XCRx) { struct kvm_xcrs Xcrs = { /*.nr_xcrs = */ 2, /*.flags = */ 0, /*.xcrs= */ { { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] }, { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] }, } }; int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs); AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); pCtx->aXcr[0] = Xcrs.xcrs[0].value; pCtx->aXcr[1] = Xcrs.xcrs[1].value; } } /* * MSRs. */ if (fWhat & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) { union { struct kvm_msrs Core; uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32]; } uBuf; uint64_t *pauDsts[32]; uint32_t iMsr = 0; PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); #define ADD_MSR(a_Msr, a_uValue) do { \ Assert(iMsr < 32); \ uBuf.Core.entries[iMsr].index = (a_Msr); \ uBuf.Core.entries[iMsr].reserved = 0; \ uBuf.Core.entries[iMsr].data = UINT64_MAX; \ pauDsts[iMsr] = &(a_uValue); \ iMsr += 1; \ } while (0) if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE); if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) { ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR); ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR); ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR); ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK); } if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) { ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs); ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip); ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp); } if (fWhat & CPUMCTX_EXTRN_TSC_AUX) ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux); if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) { ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT); /** @todo What do we _have_ to add here? * We also have: Mttr*, MiscEnable, FeatureControl. */ } uBuf.Core.pad = 0; uBuf.Core.nmsrs = iMsr; int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf); AssertMsgReturn(rc == (int)iMsr, ("rc=%d iMsr=%d (->%#x) errno=%d\n", rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno), VERR_NEM_IPE_3); while (iMsr-- > 0) *pauDsts[iMsr] = uBuf.Core.entries[iMsr].data; #undef ADD_MSR } /* * Interruptibility state and pending interrupts. */ if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) { fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */ struct kvm_vcpu_events KvmEvents = {0}; int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents); AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3); if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP) pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip; if (KvmEvents.interrupt.shadow) EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip); else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); if (KvmEvents.nmi.masked) VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS); if (KvmEvents.interrupt.injected) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt); TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT); } Assert(KvmEvents.nmi.injected == 0); Assert(KvmEvents.nmi.pending == 0); } /* * Update the external mask. */ pCtx->fExtrn &= ~fWhat; pVCpu->cpum.GstCtx.fExtrn &= ~fWhat; if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) pVCpu->cpum.GstCtx.fExtrn = 0; /* * We sometimes need to update PGM on the guest status. */ if (!fMaybeChangedMode && !fUpdateCr3) { /* likely */ } else { /* * Make sure we got all the state PGM might need. */ Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3, pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) )); if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER)) { if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0) { if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0) { CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0); fMaybeChangedMode = true; } } if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3) { if (pCtx->cr3 != pRun->s.regs.sregs.cr3) { CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3); fUpdateCr3 = true; } } if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4) { if (pCtx->cr4 != pRun->s.regs.sregs.cr4) { CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4); fMaybeChangedMode = true; } } if (fWhat & CPUMCTX_EXTRN_EFER) { if (pCtx->msrEFER != pRun->s.regs.sregs.efer) { Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer)); if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE) PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE)); pCtx->msrEFER = pRun->s.regs.sregs.efer; fMaybeChangedMode = true; } } pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER); if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) pVCpu->cpum.GstCtx.fExtrn = 0; } /* * Notify PGM about the changes. */ if (fMaybeChangedMode) { int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER, false /*fForce*/); AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1); } if (fUpdateCr3) { int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3); if (rc == VINF_SUCCESS) { /* likely */ } else AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2); } } return VINF_SUCCESS; } /** * Interface for importing state on demand (used by IEM). * * @returns VBox status code. * @param pVCpu The cross context CPU structure. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. */ VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand); return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun); } /** * Exports state to KVM. */ static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun) { uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL; Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL); /* * Stuff that goes into kvm_run::s.regs.regs: */ if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK)) { if (fExtrn & CPUMCTX_EXTRN_RIP) pRun->s.regs.regs.rip = pCtx->rip; if (fExtrn & CPUMCTX_EXTRN_RFLAGS) pRun->s.regs.regs.rflags = pCtx->rflags.u; if (fExtrn & CPUMCTX_EXTRN_RAX) pRun->s.regs.regs.rax = pCtx->rax; if (fExtrn & CPUMCTX_EXTRN_RCX) pRun->s.regs.regs.rcx = pCtx->rcx; if (fExtrn & CPUMCTX_EXTRN_RDX) pRun->s.regs.regs.rdx = pCtx->rdx; if (fExtrn & CPUMCTX_EXTRN_RBX) pRun->s.regs.regs.rbx = pCtx->rbx; if (fExtrn & CPUMCTX_EXTRN_RSP) pRun->s.regs.regs.rsp = pCtx->rsp; if (fExtrn & CPUMCTX_EXTRN_RBP) pRun->s.regs.regs.rbp = pCtx->rbp; if (fExtrn & CPUMCTX_EXTRN_RSI) pRun->s.regs.regs.rsi = pCtx->rsi; if (fExtrn & CPUMCTX_EXTRN_RDI) pRun->s.regs.regs.rdi = pCtx->rdi; if (fExtrn & CPUMCTX_EXTRN_R8_R15) { pRun->s.regs.regs.r8 = pCtx->r8; pRun->s.regs.regs.r9 = pCtx->r9; pRun->s.regs.regs.r10 = pCtx->r10; pRun->s.regs.regs.r11 = pCtx->r11; pRun->s.regs.regs.r12 = pCtx->r12; pRun->s.regs.regs.r13 = pCtx->r13; pRun->s.regs.regs.r14 = pCtx->r14; pRun->s.regs.regs.r15 = pCtx->r15; } pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS; } /* * Stuff that goes into kvm_run::s.regs.sregs: * * The APIC base register updating is a little suboptimal... But at least * VBox always has the right base register value, so it's one directional. */ uint64_t const uApicBase = APICGetBaseMsrNoCheck(pVCpu); if ( (fExtrn & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR)) || uApicBase != pVCpu->nem.s.uKvmApicBase) { if ((pVCpu->nem.s.uKvmApicBase ^ uApicBase) & MSR_IA32_APICBASE_EN) Log(("NEM/%u: APICBASE_EN changed %#010RX64 -> %#010RX64\n", pVCpu->idCpu, pVCpu->nem.s.uKvmApicBase, uApicBase)); pRun->s.regs.sregs.apic_base = uApicBase; pVCpu->nem.s.uKvmApicBase = uApicBase; if (fExtrn & CPUMCTX_EXTRN_APIC_TPR) pRun->s.regs.sregs.cr8 = CPUMGetGuestCR8(pVCpu); #define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \ (a_KvmSeg).base = (a_CtxSeg).u64Base; \ (a_KvmSeg).limit = (a_CtxSeg).u32Limit; \ (a_KvmSeg).selector = (a_CtxSeg).Sel; \ (a_KvmSeg).type = (a_CtxSeg).Attr.n.u4Type; \ (a_KvmSeg).s = (a_CtxSeg).Attr.n.u1DescType; \ (a_KvmSeg).dpl = (a_CtxSeg).Attr.n.u2Dpl; \ (a_KvmSeg).present = (a_CtxSeg).Attr.n.u1Present; \ (a_KvmSeg).avl = (a_CtxSeg).Attr.n.u1Available; \ (a_KvmSeg).l = (a_CtxSeg).Attr.n.u1Long; \ (a_KvmSeg).db = (a_CtxSeg).Attr.n.u1DefBig; \ (a_KvmSeg).g = (a_CtxSeg).Attr.n.u1Granularity; \ (a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \ (a_KvmSeg).padding = 0; \ } while (0) if (fExtrn & CPUMCTX_EXTRN_SREG_MASK) { if (fExtrn & CPUMCTX_EXTRN_ES) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es); if (fExtrn & CPUMCTX_EXTRN_CS) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs); if (fExtrn & CPUMCTX_EXTRN_SS) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss); if (fExtrn & CPUMCTX_EXTRN_DS) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds); if (fExtrn & CPUMCTX_EXTRN_FS) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs); if (fExtrn & CPUMCTX_EXTRN_GS) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs); } if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK) { if (fExtrn & CPUMCTX_EXTRN_GDTR) { pRun->s.regs.sregs.gdt.base = pCtx->gdtr.pGdt; pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt; pRun->s.regs.sregs.gdt.padding[0] = 0; pRun->s.regs.sregs.gdt.padding[1] = 0; pRun->s.regs.sregs.gdt.padding[2] = 0; } if (fExtrn & CPUMCTX_EXTRN_IDTR) { pRun->s.regs.sregs.idt.base = pCtx->idtr.pIdt; pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt; pRun->s.regs.sregs.idt.padding[0] = 0; pRun->s.regs.sregs.idt.padding[1] = 0; pRun->s.regs.sregs.idt.padding[2] = 0; } if (fExtrn & CPUMCTX_EXTRN_LDTR) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr); if (fExtrn & CPUMCTX_EXTRN_TR) NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr); } if (fExtrn & CPUMCTX_EXTRN_CR_MASK) { if (fExtrn & CPUMCTX_EXTRN_CR0) pRun->s.regs.sregs.cr0 = pCtx->cr0; if (fExtrn & CPUMCTX_EXTRN_CR2) pRun->s.regs.sregs.cr2 = pCtx->cr2; if (fExtrn & CPUMCTX_EXTRN_CR3) pRun->s.regs.sregs.cr3 = pCtx->cr3; if (fExtrn & CPUMCTX_EXTRN_CR4) pRun->s.regs.sregs.cr4 = pCtx->cr4; } if (fExtrn & CPUMCTX_EXTRN_EFER) pRun->s.regs.sregs.efer = pCtx->msrEFER; RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */ pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS; } /* * Debug registers. */ if (fExtrn & CPUMCTX_EXTRN_DR_MASK) { struct kvm_debugregs DbgRegs = {{0}}; if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK) { /* Partial debug state, we must get DbgRegs first so we can merge: */ int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs); AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); } if (fExtrn & CPUMCTX_EXTRN_DR0_DR3) { DbgRegs.db[0] = pCtx->dr[0]; DbgRegs.db[1] = pCtx->dr[1]; DbgRegs.db[2] = pCtx->dr[2]; DbgRegs.db[3] = pCtx->dr[3]; } if (fExtrn & CPUMCTX_EXTRN_DR6) DbgRegs.dr6 = pCtx->dr[6]; if (fExtrn & CPUMCTX_EXTRN_DR7) DbgRegs.dr7 = pCtx->dr[7]; int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs); AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); } /* * FPU, SSE, AVX, ++. */ if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx)) { if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)) { /** @todo could IEM just grab state partial control in some situations? */ Assert( (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)) == (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */ AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave)); int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState); AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); } if (fExtrn & CPUMCTX_EXTRN_XCRx) { struct kvm_xcrs Xcrs = { /*.nr_xcrs = */ 2, /*.flags = */ 0, /*.xcrs= */ { { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] }, { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] }, } }; int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs); AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3); } } /* * MSRs. */ if (fExtrn & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) { union { struct kvm_msrs Core; uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32]; } uBuf; uint32_t iMsr = 0; PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); #define ADD_MSR(a_Msr, a_uValue) do { \ Assert(iMsr < 32); \ uBuf.Core.entries[iMsr].index = (a_Msr); \ uBuf.Core.entries[iMsr].reserved = 0; \ uBuf.Core.entries[iMsr].data = (a_uValue); \ iMsr += 1; \ } while (0) if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE) ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE); if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS) { ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR); ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR); ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR); ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK); } if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS) { ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs); ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip); ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp); } if (fExtrn & CPUMCTX_EXTRN_TSC_AUX) ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux); if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS) { ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT); /** @todo What do we _have_ to add here? * We also have: Mttr*, MiscEnable, FeatureControl. */ } uBuf.Core.pad = 0; uBuf.Core.nmsrs = iMsr; int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf); AssertMsgReturn(rc == (int)iMsr, ("rc=%d iMsr=%d (->%#x) errno=%d\n", rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno), VERR_NEM_IPE_3); } /* * Interruptibility state. * * Note! This I/O control function sets most fields passed in, so when * raising an interrupt, NMI, SMI or exception, this must be done * by the code doing the rasing or we'll overwrite it here. */ if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) { Assert( (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)); struct kvm_vcpu_events KvmEvents = {0}; KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW; if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) { if (pRun->s.regs.regs.rip == EMGetInhibitInterruptsPC(pVCpu)) KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI; else VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); } /* No flag - this is updated unconditionally. */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) KvmEvents.nmi.masked = 1; if (TRPMHasTrap(pVCpu)) { TRPMEVENT enmType = TRPM_32BIT_HACK; uint8_t bTrapNo = 0; TRPMQueryTrap(pVCpu, &bTrapNo, &enmType); Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType)); if ( enmType == TRPM_HARDWARE_INT || enmType == TRPM_SOFTWARE_INT) { KvmEvents.interrupt.soft = enmType == TRPM_SOFTWARE_INT; KvmEvents.interrupt.nr = bTrapNo; KvmEvents.interrupt.injected = 1; STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt); TRPMResetTrap(pVCpu); } else AssertFailed(); } int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents); AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3); } /* * KVM now owns all the state. */ pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL; RT_NOREF(pVM); return VINF_SUCCESS; } /** * Query the CPU tick counter and optionally the TSC_AUX MSR value. * * @returns VBox status code. * @param pVCpu The cross context CPU structure. * @param pcTicks Where to return the CPU tick count. * @param puAux Where to return the TSC_AUX register value. */ VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick); // KVM_GET_CLOCK? RT_NOREF(pVCpu, pcTicks, puAux); return VINF_SUCCESS; } /** * Resumes CPU clock (TSC) on all virtual CPUs. * * This is called by TM when the VM is started, restored, resumed or similar. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context CPU structure of the calling EMT. * @param uPausedTscValue The TSC value at the time of pausing. */ VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue) { // KVM_SET_CLOCK? RT_NOREF(pVM, pVCpu, uPausedTscValue); return VINF_SUCCESS; } VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM) { RT_NOREF(pVM); return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR; } /********************************************************************************************************************************* * Execution * *********************************************************************************************************************************/ VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu) { /* * Only execute when the A20 gate is enabled as I cannot immediately * spot any A20 support in KVM. */ RT_NOREF(pVM); Assert(VM_IS_NEM_ENABLED(pVM)); return PGMPhysIsA20Enabled(pVCpu); } bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable) { NOREF(pVM); NOREF(pVCpu); NOREF(fEnable); return false; } void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags) { int rc = RTThreadPoke(pVCpu->hThread); LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc)); AssertRC(rc); RT_NOREF(pVM, fFlags); } DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop) { RT_NOREF(pVM, fUseDebugLoop); return false; } DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop) { RT_NOREF(pVM, pVCpu, fUseDebugLoop); return false; } /** * Deals with pending interrupt FFs prior to executing guest code. */ static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun) { RT_NOREF_PV(pVM); /* * Do not doing anything if TRPM has something pending already as we can * only inject one event per KVM_RUN call. This can only happend if we * can directly from the loop in EM, so the inhibit bits must be internal. */ if (!TRPMHasTrap(pVCpu)) { /* semi likely */ } else { Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))); Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n")); return VINF_SUCCESS; } /* * First update APIC. We ASSUME this won't need TPR/CR8. */ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC)) { APICUpdatePendingInterrupts(pVCpu); if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) return VINF_SUCCESS; } /* * We don't currently implement SMIs. */ AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0); /* * In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states * are tied together with interrupt and NMI delivery, so we must get and * synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags. * If we don't we may lose the interrupt/NMI we marked pending here when the * state is exported again before execution. */ struct kvm_vcpu_events KvmEvents = {0}; int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents); AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)) pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip; KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW; if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT)) { if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) KvmEvents.interrupt.shadow = 0; else if (EMGetInhibitInterruptsPC(pVCpu) == pRun->s.regs.regs.rip) KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI; else { VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); KvmEvents.interrupt.shadow = 0; } } else if (KvmEvents.interrupt.shadow) EMSetInhibitInterruptsPC(pVCpu, pRun->s.regs.regs.rip); else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI)) KvmEvents.nmi.masked = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS) ? 1 : 0; else if (KvmEvents.nmi.masked) VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS); /* KVM will own the INT + NMI inhibit state soon: */ pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK) | CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* * NMI? Try deliver it first. */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) { #if 0 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL); AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); #else KvmEvents.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; KvmEvents.nmi.pending = 1; #endif VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI); Log8(("Queuing NMI on %u\n", pVCpu->idCpu)); } /* * APIC or PIC interrupt? */ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)) { if (pRun->s.regs.regs.rflags & X86_EFL_IF) { if (KvmEvents.interrupt.shadow == 0) { /* * If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will * work correctly. */ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR) APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4); uint8_t bInterrupt; int rc = PDMGetInterrupt(pVCpu, &bInterrupt); if (RT_SUCCESS(rc)) { Assert(KvmEvents.interrupt.injected == false); #if 0 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt); AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); #else KvmEvents.interrupt.nr = bInterrupt; KvmEvents.interrupt.soft = false; KvmEvents.interrupt.injected = true; #endif Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags)); } else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */ Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */ else Log8(("PDMGetInterrupt failed -> %Rrc\n", rc)); } else { pRun->request_interrupt_window = 1; Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu)); } } else { pRun->request_interrupt_window = 1; Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu)); } } /* * Now, update the state. */ /** @todo skip when possible... */ rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents); AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5); return VINF_SUCCESS; } /** * Handles KVM_EXIT_INTERNAL_ERROR. */ static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun) { Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0])); /* * Deal with each suberror, returning if we don't want IEM to handle it. */ switch (pRun->internal.suberror) { case KVM_INTERNAL_ERROR_EMULATION: { EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_EMULATION), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation); break; } case KVM_INTERNAL_ERROR_SIMUL_EX: case KVM_INTERNAL_ERROR_DELIVERY_EV: case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: default: { EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_FATAL), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal); const char *pszName; switch (pRun->internal.suberror) { case KVM_INTERNAL_ERROR_EMULATION: pszName = "KVM_INTERNAL_ERROR_EMULATION"; break; case KVM_INTERNAL_ERROR_SIMUL_EX: pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break; case KVM_INTERNAL_ERROR_DELIVERY_EV: pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break; case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break; default: pszName = "unknown"; break; } LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0])); return VERR_NEM_IPE_0; } } /* * Execute instruction in IEM and try get on with it. */ Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n", pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip)); VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI, &pVCpu->cpum.GstCtx, pRun); if (RT_SUCCESS(rcStrict)) rcStrict = IEMExecOne(pVCpu); return rcStrict; } /** * Handles KVM_EXIT_IO. */ static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun) { /* * Input validation. */ Assert(pRun->io.count > 0); Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4); Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT); Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap); Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap); /* * We cannot easily act on the exit history here, because the I/O port * exit is stateful and the instruction will be completed in the next * KVM_RUN call. There seems no way to avoid this. */ EMHistoryAddExit(pVCpu, pRun->io.count == 1 ? ( pRun->io.direction == KVM_EXIT_IO_IN ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE)) : ( pRun->io.direction == KVM_EXIT_IO_IN ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); /* * Do the requested job. */ VBOXSTRICTRC rcStrict; RTPTRUNION uPtrData; uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset; if (pRun->io.count == 1) { if (pRun->io.direction == KVM_EXIT_IO_IN) { uint32_t uValue = 0; rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size); Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) )); if (IOM_SUCCESS(rcStrict)) { if (pRun->io.size == 4) *uPtrData.pu32 = uValue; else if (pRun->io.size == 2) *uPtrData.pu16 = (uint16_t)uValue; else *uPtrData.pu8 = (uint8_t)uValue; } } else { uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32 : pRun->io.size == 2 ? *uPtrData.pu16 : *uPtrData.pu8; rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size); Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) )); } } else { uint32_t cTransfers = pRun->io.count; if (pRun->io.direction == KVM_EXIT_IO_IN) { rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size); Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers )); } else { rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size); Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers )); } Assert(cTransfers == 0); } return rcStrict; } /** * Handles KVM_EXIT_MMIO. */ static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun) { /* * Input validation. */ Assert(pRun->mmio.len <= sizeof(pRun->mmio.data)); Assert(pRun->mmio.is_write <= 1); /* * We cannot easily act on the exit history here, because the MMIO port * exit is stateful and the instruction will be completed in the next * KVM_RUN call. There seems no way to circumvent this. */ EMHistoryAddExit(pVCpu, pRun->mmio.is_write ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); /* * Do the requested job. */ VBOXSTRICTRC rcStrict; if (pRun->mmio.is_write) { rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM); Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) )); } else { rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM); Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) )); } return rcStrict; } /** * Handles KVM_EXIT_RDMSR */ static VBOXSTRICTRC nemHCLnxHandleExitRdMsr(PVMCPUCC pVCpu, struct kvm_run *pRun) { /* * Input validation. */ Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER); /* * We cannot easily act on the exit history here, because the MSR exit is * stateful and the instruction will be completed in the next KVM_RUN call. * There seems no way to circumvent this. */ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); /* * Do the requested job. */ uint64_t uValue = 0; VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRun->msr.index, &uValue); pRun->msr.data = uValue; if (rcStrict != VERR_CPUM_RAISE_GP_0) { Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason=%#x) -> %#RX64 rcStrict=%Rrc\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue, VBOXSTRICTRC_VAL(rcStrict) )); pRun->msr.error = 0; } else { Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason%#x)-> %#RX64 rcStrict=#GP!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue)); pRun->msr.error = 1; rcStrict = VINF_SUCCESS; } return rcStrict; } /** * Handles KVM_EXIT_WRMSR */ static VBOXSTRICTRC nemHCLnxHandleExitWrMsr(PVMCPUCC pVCpu, struct kvm_run *pRun) { /* * Input validation. */ Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER); /* * We cannot easily act on the exit history here, because the MSR exit is * stateful and the instruction will be completed in the next KVM_RUN call. * There seems no way to circumvent this. */ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); /* * Do the requested job. */ VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRun->msr.index, pRun->msr.data); if (rcStrict != VERR_CPUM_RAISE_GP_0) { Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason=%#x) -> rcStrict=%Rrc\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason, VBOXSTRICTRC_VAL(rcStrict) )); pRun->msr.error = 0; } else { Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason%#x)-> rcStrict=#GP!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason)); pRun->msr.error = 1; rcStrict = VINF_SUCCESS; } return rcStrict; } static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun, bool *pfStatefulExit) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal); switch (pRun->exit_reason) { case KVM_EXIT_EXCEPTION: AssertFailed(); break; case KVM_EXIT_IO: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo); *pfStatefulExit = true; return nemHCLnxHandleExitIo(pVM, pVCpu, pRun); case KVM_EXIT_MMIO: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio); *pfStatefulExit = true; return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun); case KVM_EXIT_IRQ_WINDOW_OPEN: EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen); Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window)); pRun->request_interrupt_window = 0; return VINF_SUCCESS; case KVM_EXIT_SET_TPR: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr); AssertFailed(); break; case KVM_EXIT_TPR_ACCESS: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess); AssertFailed(); break; case KVM_EXIT_X86_RDMSR: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr); *pfStatefulExit = true; return nemHCLnxHandleExitRdMsr(pVCpu, pRun); case KVM_EXIT_X86_WRMSR: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr); *pfStatefulExit = true; return nemHCLnxHandleExitWrMsr(pVCpu, pRun); case KVM_EXIT_HLT: EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt); Log5(("Halt/%u\n", pVCpu->idCpu)); return VINF_EM_HALT; case KVM_EXIT_INTR: /* EINTR */ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERRUPTED), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr); Log5(("Intr/%u\n", pVCpu->idCpu)); return VINF_SUCCESS; case KVM_EXIT_HYPERCALL: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall); AssertFailed(); break; case KVM_EXIT_DEBUG: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug); AssertFailed(); break; case KVM_EXIT_SYSTEM_EVENT: AssertFailed(); break; case KVM_EXIT_IOAPIC_EOI: AssertFailed(); break; case KVM_EXIT_HYPERV: AssertFailed(); break; case KVM_EXIT_DIRTY_RING_FULL: AssertFailed(); break; case KVM_EXIT_AP_RESET_HOLD: AssertFailed(); break; case KVM_EXIT_X86_BUS_LOCK: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock); AssertFailed(); break; case KVM_EXIT_SHUTDOWN: AssertFailed(); break; case KVM_EXIT_FAIL_ENTRY: LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n", pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu)); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_FAILED_ENTRY), pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC()); return VERR_NEM_IPE_1; case KVM_EXIT_INTERNAL_ERROR: /* we're counting sub-reasons inside the function. */ return nemR3LnxHandleInternalError(pVCpu, pRun); /* * Foreign and unknowns. */ case KVM_EXIT_NMI: AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_EPR: AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_WATCHDOG: AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_ARM_NISV: AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_S390_STSI: AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_S390_TSCH: AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_OSI: AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_PAPR_HCALL: AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_S390_UCONTROL: AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_DCR: AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_S390_SIEIC: AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_S390_RESET: AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_UNKNOWN: AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); case KVM_EXIT_XEN: AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); default: AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1); } RT_NOREF(pVM, pVCpu, pRun); return VERR_NOT_IMPLEMENTED; } VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu) { /* * Try switch to NEM runloop state. */ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED)) { /* likely */ } else { VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu)); return VINF_SUCCESS; } /* * The run loop. */ struct kvm_run * const pRun = pVCpu->nem.s.pRun; const bool fSingleStepping = DBGFIsStepping(pVCpu); VBOXSTRICTRC rcStrict = VINF_SUCCESS; bool fStatefulExit = false; /* For MMIO and IO exits. */ for (unsigned iLoop = 0;; iLoop++) { /* * Pending interrupts or such? Need to check and deal with this prior * to the state syncing. */ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) { /* Try inject interrupt. */ rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun); if (rcStrict == VINF_SUCCESS) { /* likely */ } else { LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); break; } } /* * Do not execute in KVM if the A20 isn't enabled. */ if (PGMPhysIsA20Enabled(pVCpu)) { /* likely */ } else { rcStrict = VINF_EM_RESCHEDULE_REM; LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu)); break; } /* * Ensure KVM has the whole state. */ if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL) { int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun); AssertRCReturn(rc2, rc2); } /* * Poll timers and run for a bit. * * With the VID approach (ring-0 or ring-3) we can specify a timeout here, * so we take the time of the next timer event and uses that as a deadline. * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine. */ /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing * the whole polling job when timers have changed... */ uint64_t offDeltaIgnored; uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt); if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC) && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) { if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM)) { LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, !!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags, pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0)); TMNotifyStartOfExecution(pVM, pVCpu); int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL); VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT); TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC()); #ifdef LOG_ENABLED if (LogIsFlowEnabled()) { struct kvm_mp_state MpState = {UINT32_MAX}; ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState); LogFlow(("NEM/%u: Exit @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag, pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason, pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state)); } #endif fStatefulExit = false; if (RT_LIKELY(rcLnx == 0 || errno == EINTR)) { /* * Deal with the exit. */ rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit); if (rcStrict == VINF_SUCCESS) { /* hopefully likely */ } else { LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); break; } } else { int rc2 = RTErrConvertFromErrno(errno); AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2); } /* * If no relevant FFs are pending, loop. */ if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK) && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) ) { /* likely */ } else { /** @todo Try handle pending flags, not just return to EM loops. Take care * not to set important RCs here unless we've handled an exit. */ LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n", pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions)); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost); break; } } else { LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel); break; } } else { LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu)); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre); break; } } /* the run loop */ /* * If the last exit was stateful, commit the state we provided before * returning to the EM loop so we have a consistent state and can safely * be rescheduled and whatnot. This may require us to make multiple runs * for larger MMIO and I/O operations. Sigh^3. * * Note! There is no 'ing way to reset the kernel side completion callback * for these stateful i/o exits. Very annoying interface. */ /** @todo check how this works with string I/O and string MMIO. */ if (fStatefulExit && RT_SUCCESS(rcStrict)) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn); uint32_t const uOrgExit = pRun->exit_reason; for (uint32_t i = 0; ; i++) { pRun->immediate_exit = 1; int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL); Log(("NEM/%u: Flushed stateful exit -> %d/%d exit_reason=%d\n", pVCpu->idCpu, rcLnx, errno, pRun->exit_reason)); if (rcLnx == -1 && errno == EINTR) { switch (i) { case 0: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn1Loop); break; case 1: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn2Loops); break; case 2: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn3Loops); break; default: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn4PlusLoops); break; } break; } AssertLogRelMsgBreakStmt(rcLnx == 0 && pRun->exit_reason == uOrgExit, ("rcLnx=%d errno=%d exit_reason=%d uOrgExit=%d\n", rcLnx, errno, pRun->exit_reason, uOrgExit), rcStrict = VERR_NEM_IPE_6); VBOXSTRICTRC rcStrict2 = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit); if (rcStrict2 == VINF_SUCCESS || rcStrict2 == rcStrict) { /* likely */ } else if (RT_FAILURE(rcStrict2)) { rcStrict = rcStrict2; break; } else { AssertLogRelMsgBreakStmt(rcStrict == VINF_SUCCESS, ("rcStrict=%Rrc rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2)), rcStrict = VERR_NEM_IPE_7); rcStrict = rcStrict2; } } pRun->immediate_exit = 0; } /* * If the CPU is running, make sure to stop it before we try sync back the * state and return to EM. We don't sync back the whole state if we can help it. */ if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM)) VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) { /* Try anticipate what we might need. */ uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */ | IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/; if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST) || RT_FAILURE(rcStrict)) fImport = CPUMCTX_EXTRN_ALL; # ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */ else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE) fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS; else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ) fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS; # endif else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI)) fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK; if (pVCpu->cpum.GstCtx.fExtrn & fImport) { int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun); if (RT_SUCCESS(rc2)) pVCpu->cpum.GstCtx.fExtrn &= ~fImport; else if (RT_SUCCESS(rcStrict)) rcStrict = rc2; if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) pVCpu->cpum.GstCtx.fExtrn = 0; STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn); } else STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); } else { pVCpu->cpum.GstCtx.fExtrn = 0; STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); } LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) )); return rcStrict; } /** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux. * * This is using KVM. * */