VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp@ 93661

Last change on this file since 93661 was 93115, checked in by vboxsync, 3 years ago

scm --update-copyright-year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 117.1 KB
Line 
1/* $Id: NEMR3Native-linux.cpp 93115 2022-01-01 11:31:46Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 Linux backend.
4 */
5
6/*
7 * Copyright (C) 2021-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_NEM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <VBox/vmm/nem.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/em.h>
27#include <VBox/vmm/apic.h>
28#include <VBox/vmm/pdm.h>
29#include <VBox/vmm/trpm.h>
30#include "NEMInternal.h"
31#include <VBox/vmm/vmcc.h>
32
33#include <iprt/alloca.h>
34#include <iprt/string.h>
35#include <iprt/system.h>
36#include <iprt/x86.h>
37
38#include <errno.h>
39#include <unistd.h>
40#include <sys/ioctl.h>
41#include <sys/fcntl.h>
42#include <sys/mman.h>
43#include <linux/kvm.h>
44
45/*
46 * Supply stuff missing from the kvm.h on the build box.
47 */
48#ifndef KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON /* since 5.4 */
49# define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4
50#endif
51
52
53
54/**
55 * Worker for nemR3NativeInit that gets the hypervisor capabilities.
56 *
57 * @returns VBox status code.
58 * @param pVM The cross context VM structure.
59 * @param pErrInfo Where to always return error info.
60 */
61static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
62{
63 AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
64
65 /*
66 * Capabilities.
67 */
68 static const struct
69 {
70 const char *pszName;
71 int iCap;
72 uint32_t offNem : 24;
73 uint32_t cbNem : 3;
74 uint32_t fReqNonZero : 1;
75 uint32_t uReserved : 4;
76 } s_aCaps[] =
77 {
78#define CAP_ENTRY__L(a_Define) { #a_Define, a_Define, UINT32_C(0x00ffffff), 0, 0, 0 }
79#define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 }
80#define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 }
81#define CAP_ENTRY__U(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 }
82#define CAP_ENTRY_ML(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 }
83
84 CAP_ENTRY__L(KVM_CAP_IRQCHIP), /* 0 */
85 CAP_ENTRY_ML(KVM_CAP_HLT),
86 CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL),
87 CAP_ENTRY_ML(KVM_CAP_USER_MEMORY),
88 CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR),
89 CAP_ENTRY__U(5),
90 CAP_ENTRY__L(KVM_CAP_VAPIC),
91 CAP_ENTRY__L(KVM_CAP_EXT_CPUID),
92 CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE),
93 CAP_ENTRY__L(KVM_CAP_NR_VCPUS),
94 CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots), /* 10 */
95 CAP_ENTRY__L(KVM_CAP_PIT),
96 CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY),
97 CAP_ENTRY__L(KVM_CAP_PV_MMU),
98 CAP_ENTRY__L(KVM_CAP_MP_STATE),
99 CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO),
100 CAP_ENTRY__L(KVM_CAP_SYNC_MMU),
101 CAP_ENTRY__U(17),
102 CAP_ENTRY__L(KVM_CAP_IOMMU),
103 CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */
104 CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */
105 CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS), /* 21 */
106 CAP_ENTRY__L(KVM_CAP_USER_NMI),
107#ifdef __KVM_HAVE_GUEST_DEBUG
108 CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG),
109#endif
110#ifdef __KVM_HAVE_PIT
111 CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL),
112#endif
113 CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING),
114 CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS),
115 CAP_ENTRY__U(27),
116 CAP_ENTRY__U(28),
117 CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ),
118 CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS), /* 30 */
119#ifdef __KVM_HAVE_MCE
120 CAP_ENTRY__L(KVM_CAP_MCE),
121#endif
122 CAP_ENTRY__L(KVM_CAP_IRQFD),
123#ifdef __KVM_HAVE_PIT
124 CAP_ENTRY__L(KVM_CAP_PIT2),
125#endif
126 CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID),
127#ifdef __KVM_HAVE_PIT_STATE2
128 CAP_ENTRY__L(KVM_CAP_PIT_STATE2),
129#endif
130 CAP_ENTRY__L(KVM_CAP_IOEVENTFD),
131 CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR),
132#ifdef __KVM_HAVE_XEN_HVM
133 CAP_ENTRY__L(KVM_CAP_XEN_HVM),
134#endif
135 CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK),
136 CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA), /* 40 */
137#ifdef __KVM_HAVE_VCPU_EVENTS
138 CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS),
139#else
140 CAP_ENTRY_MU(41),
141#endif
142 CAP_ENTRY__L(KVM_CAP_S390_PSW),
143 CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE),
144 CAP_ENTRY__L(KVM_CAP_HYPERV),
145 CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC),
146 CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN),
147 CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT),
148 CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES),
149 CAP_ENTRY__L(KVM_CAP_INTR_SHADOW),
150#ifdef __KVM_HAVE_DEBUGREGS
151 CAP_ENTRY__L(KVM_CAP_DEBUGREGS), /* 50 */
152#endif
153 CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep),
154 CAP_ENTRY__L(KVM_CAP_PPC_OSI),
155 CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ),
156 CAP_ENTRY__L(KVM_CAP_ENABLE_CAP),
157#ifdef __KVM_HAVE_XSAVE
158 CAP_ENTRY_ML(KVM_CAP_XSAVE),
159#else
160 CAP_ENTRY_MU(55),
161#endif
162#ifdef __KVM_HAVE_XCRS
163 CAP_ENTRY_ML(KVM_CAP_XCRS),
164#else
165 CAP_ENTRY_MU(56),
166#endif
167 CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO),
168 CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL),
169 CAP_ENTRY__L(KVM_CAP_ASYNC_PF),
170 CAP_ENTRY__L(KVM_CAP_TSC_CONTROL), /* 60 */
171 CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ),
172 CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS),
173 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE),
174 CAP_ENTRY__L(KVM_CAP_PPC_SMT),
175 CAP_ENTRY__L(KVM_CAP_PPC_RMA),
176 CAP_ENTRY__L(KVM_CAP_MAX_VCPUS),
177 CAP_ENTRY__L(KVM_CAP_PPC_HIOR),
178 CAP_ENTRY__L(KVM_CAP_PPC_PAPR),
179 CAP_ENTRY__L(KVM_CAP_SW_TLB),
180 CAP_ENTRY__L(KVM_CAP_ONE_REG), /* 70 */
181 CAP_ENTRY__L(KVM_CAP_S390_GMAP),
182 CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER),
183 CAP_ENTRY__L(KVM_CAP_S390_UCONTROL),
184 CAP_ENTRY__L(KVM_CAP_SYNC_REGS),
185 CAP_ENTRY__L(KVM_CAP_PCI_2_3),
186 CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL),
187 CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI),
188 CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO),
189 CAP_ENTRY__L(KVM_CAP_S390_COW),
190 CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB), /* 80 */
191 CAP_ENTRY__L(KVM_CAP_READONLY_MEM),
192 CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE),
193 CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG),
194 CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD),
195 CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT),
196 CAP_ENTRY__L(KVM_CAP_PPC_EPR),
197 CAP_ENTRY__L(KVM_CAP_ARM_PSCI),
198 CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR),
199 CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL),
200 CAP_ENTRY__L(KVM_CAP_IRQ_MPIC), /* 90 */
201 CAP_ENTRY__L(KVM_CAP_PPC_RTAS),
202 CAP_ENTRY__L(KVM_CAP_IRQ_XICS),
203 CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT),
204 CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE),
205 CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID),
206 CAP_ENTRY__L(KVM_CAP_HYPERV_TIME),
207 CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED),
208 CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM),
209 CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP),
210 CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH), /* 100 */
211 CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES),
212 CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2),
213 CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL),
214 CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL),
215 CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM),
216 CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP),
217 CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS),
218 CAP_ENTRY__L(KVM_CAP_S390_MEM_OP),
219 CAP_ENTRY__L(KVM_CAP_S390_USER_STSI),
220 CAP_ENTRY__L(KVM_CAP_S390_SKEYS), /* 110 */
221 CAP_ENTRY__L(KVM_CAP_MIPS_FPU),
222 CAP_ENTRY__L(KVM_CAP_MIPS_MSA),
223 CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ),
224 CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE),
225 CAP_ENTRY__L(KVM_CAP_PPC_HWRNG),
226 CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS),
227 CAP_ENTRY__L(KVM_CAP_X86_SMM),
228 CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE),
229 CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS),
230 CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS), /* 120 */
231 CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP),
232 CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH),
233 CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC),
234 CAP_ENTRY__L(KVM_CAP_S390_RI),
235 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64),
236 CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3),
237 CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES),
238 CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID),
239 CAP_ENTRY__L(KVM_CAP_X2APIC_API),
240 CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0), /* 130 */
241 CAP_ENTRY__L(KVM_CAP_MSI_DEVID),
242 CAP_ENTRY__L(KVM_CAP_PPC_HTM),
243 CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT),
244 CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX),
245 CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3),
246 CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT),
247 CAP_ENTRY__L(KVM_CAP_MIPS_VZ),
248 CAP_ENTRY__L(KVM_CAP_MIPS_TE),
249 CAP_ENTRY__L(KVM_CAP_MIPS_64BIT),
250 CAP_ENTRY__L(KVM_CAP_S390_GS), /* 140 */
251 CAP_ENTRY__L(KVM_CAP_S390_AIS),
252 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO),
253 CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS),
254 CAP_ENTRY__L(KVM_CAP_ARM_USER_IRQ),
255 CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION),
256 CAP_ENTRY__L(KVM_CAP_PPC_FWNMI),
257 CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE),
258 CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2),
259 CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX),
260 CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION), /* 150 */
261 CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR),
262 CAP_ENTRY__L(KVM_CAP_S390_BPB),
263 CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES),
264 CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD),
265 CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH),
266 CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M),
267 CAP_ENTRY__L(KVM_CAP_NESTED_STATE),
268 CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR),
269 CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO),
270 CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV), /* 160 */
271 CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI),
272 CAP_ENTRY__L(KVM_CAP_COALESCED_PIO),
273 CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS),
274 CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD),
275 CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE),
276 CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT),
277 CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID),
278 CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2),
279 CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE),
280 CAP_ENTRY__L(KVM_CAP_ARM_SVE), /* 170 */
281 CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS),
282 CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC),
283 CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER),
284 CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2),
285 CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH),
286 CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP),
287 CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER),
288 CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT),
289 CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS),
290 CAP_ENTRY__L(KVM_CAP_S390_PROTECTED), /* 180 */
291 CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST),
292 CAP_ENTRY__L(KVM_CAP_HALT_POLL),
293 CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT),
294 CAP_ENTRY__L(KVM_CAP_LAST_CPU),
295 CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR),
296 CAP_ENTRY__L(KVM_CAP_S390_DIAG318),
297 CAP_ENTRY__L(KVM_CAP_STEAL_TIME),
298 CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR), /* (since 5.10) */
299 CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER),
300 CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID), /* 190 */
301 CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID),
302 CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING),
303 CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT),
304 CAP_ENTRY__L(KVM_CAP_PPC_DAWR1),
305 CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2),
306 CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE),
307 CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM),
308 CAP_ENTRY__L(KVM_CAP_PTP_KVM),
309 CAP_ENTRY__U(199),
310 CAP_ENTRY__U(200),
311 CAP_ENTRY__U(201),
312 CAP_ENTRY__U(202),
313 CAP_ENTRY__U(203),
314 CAP_ENTRY__U(204),
315 CAP_ENTRY__U(205),
316 CAP_ENTRY__U(206),
317 CAP_ENTRY__U(207),
318 CAP_ENTRY__U(208),
319 CAP_ENTRY__U(209),
320 CAP_ENTRY__U(210),
321 CAP_ENTRY__U(211),
322 CAP_ENTRY__U(212),
323 CAP_ENTRY__U(213),
324 CAP_ENTRY__U(214),
325 CAP_ENTRY__U(215),
326 CAP_ENTRY__U(216),
327 };
328
329 LogRel(("NEM: KVM capabilities (system):\n"));
330 int rcRet = VINF_SUCCESS;
331 for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++)
332 {
333 int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
334 if (rc >= 10)
335 LogRel(("NEM: %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc));
336 else if (rc >= 0)
337 LogRel(("NEM: %36s: %d\n", s_aCaps[i].pszName, rc));
338 else
339 LogRel(("NEM: %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno));
340 switch (s_aCaps[i].cbNem)
341 {
342 case 0:
343 break;
344 case 1:
345 {
346 uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem];
347 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
348 *puValue = (uint8_t)rc;
349 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
350 break;
351 }
352 case 2:
353 {
354 uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem];
355 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
356 *puValue = (uint16_t)rc;
357 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
358 break;
359 }
360 case 4:
361 {
362 uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem];
363 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
364 *puValue = (uint32_t)rc;
365 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
366 break;
367 }
368 default:
369 rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s",
370 i, s_aCaps[i].pszName, s_aCaps[i].cbNem);
371 AssertFailedReturn(rcRet);
372 }
373
374 /*
375 * Is a require non-zero entry zero or failing?
376 */
377 if (s_aCaps[i].fReqNonZero && rc <= 0)
378 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE,
379 "Required capability '%s' is missing!", s_aCaps[i].pszName);
380 }
381
382 /*
383 * Get per VCpu KVM_RUN MMAP area size.
384 */
385 int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL);
386 if ((unsigned)rc < _64M)
387 {
388 pVM->nem.s.cbVCpuMmap = (uint32_t)rc;
389 LogRel(("NEM: %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc));
390 }
391 else if (rc < 0)
392 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno);
393 else
394 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc);
395
396 /*
397 * Init the slot ID bitmap.
398 */
399 ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0); /* don't use slot 0 */
400 if (pVM->nem.s.cMaxMemSlots < _32K)
401 ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K);
402 ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1); /* don't use the last slot */
403
404 return rcRet;
405}
406
407
408/**
409 * Does the early setup of a KVM VM.
410 *
411 * @returns VBox status code.
412 * @param pVM The cross context VM structure.
413 * @param pErrInfo Where to always return error info.
414 */
415static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo)
416{
417 AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
418
419 /*
420 * Enable user space MSRs and let us check everything KVM cannot handle.
421 * We will set up filtering later when ring-3 init has completed.
422 */
423 struct kvm_enable_cap CapEn =
424 {
425 KVM_CAP_X86_USER_SPACE_MSR, 0,
426 { KVM_MSR_EXIT_REASON_FILTER | KVM_MSR_EXIT_REASON_UNKNOWN | KVM_MSR_EXIT_REASON_INVAL, 0, 0, 0}
427 };
428 int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_ENABLE_CAP, &CapEn);
429 if (rcLnx == -1)
430 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed to enable KVM_CAP_X86_USER_SPACE_MSR failed: %u", errno);
431
432 /*
433 * Create the VCpus.
434 */
435 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
436 {
437 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
438
439 /* Create it. */
440 pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu);
441 if (pVCpu->nem.s.fdVCpu < 0)
442 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno);
443
444 /* Map the KVM_RUN area. */
445 pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED,
446 pVCpu->nem.s.fdVCpu, 0 /*offset*/);
447 if ((void *)pVCpu->nem.s.pRun == MAP_FAILED)
448 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "mmap failed for VCpu #%u: %d", idCpu, errno);
449
450 /* We want all x86 registers and events on each exit. */
451 pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS;
452 }
453 return VINF_SUCCESS;
454}
455
456
457/** @callback_method_impl{FNVMMEMTRENDEZVOUS} */
458static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser)
459{
460 RT_NOREF(pVM, pvUser);
461 int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/);
462 AssertLogRelRC(rc);
463 return VINF_SUCCESS;
464}
465
466
467/**
468 * Try initialize the native API.
469 *
470 * This may only do part of the job, more can be done in
471 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
472 *
473 * @returns VBox status code.
474 * @param pVM The cross context VM structure.
475 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
476 * the latter we'll fail if we cannot initialize.
477 * @param fForced Whether the HMForced flag is set and we should
478 * fail if we cannot initialize.
479 */
480int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
481{
482 RT_NOREF(pVM, fFallback, fForced);
483 /*
484 * Some state init.
485 */
486 pVM->nem.s.fdKvm = -1;
487 pVM->nem.s.fdVm = -1;
488 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
489 {
490 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
491 pNemCpu->fdVCpu = -1;
492 }
493
494 /*
495 * Error state.
496 * The error message will be non-empty on failure and 'rc' will be set too.
497 */
498 RTERRINFOSTATIC ErrInfo;
499 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
500
501 /*
502 * Open kvm subsystem so we can issue system ioctls.
503 */
504 int rc;
505 int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
506 if (fdKvm >= 0)
507 {
508 pVM->nem.s.fdKvm = fdKvm;
509
510 /*
511 * Create an empty VM since it is recommended we check capabilities on
512 * the VM rather than the system descriptor.
513 */
514 int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */);
515 if (fdVm >= 0)
516 {
517 pVM->nem.s.fdVm = fdVm;
518
519 /*
520 * Check capabilities.
521 */
522 rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
523 if (RT_SUCCESS(rc))
524 {
525 /*
526 * Set up the VM (more on this later).
527 */
528 rc = nemR3LnxInitSetupVm(pVM, pErrInfo);
529 if (RT_SUCCESS(rc))
530 {
531 /*
532 * Set ourselves as the execution engine and make config adjustments.
533 */
534 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
535 Log(("NEM: Marked active!\n"));
536 PGMR3EnableNemMode(pVM);
537
538 /*
539 * Register release statistics
540 */
541 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
542 {
543 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
544 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu);
545 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu);
546 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu);
547 STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu);
548 STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu);
549 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn", idCpu);
550 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn1Loop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-01-loop", idCpu);
551 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn2Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-02-loops", idCpu);
552 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn3Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-03-loops", idCpu);
553 STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn4PlusLoops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-04-to-7-loops", idCpu);
554 STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu);
555 STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits", "/NEM/CPU%u/Exit", idCpu);
556 STAMR3RegisterF(pVM, &pNemCpu->StatExitIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO", "/NEM/CPU%u/Exit/Io", idCpu);
557 STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO", "/NEM/CPU%u/Exit/Mmio", idCpu);
558 STAMR3RegisterF(pVM, &pNemCpu->StatExitSetTpr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_SET_TRP", "/NEM/CPU%u/Exit/SetTpr", idCpu);
559 STAMR3RegisterF(pVM, &pNemCpu->StatExitTprAccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_TPR_ACCESS", "/NEM/CPU%u/Exit/TprAccess", idCpu);
560 STAMR3RegisterF(pVM, &pNemCpu->StatExitRdMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_RDMSR", "/NEM/CPU%u/Exit/RdMsr", idCpu);
561 STAMR3RegisterF(pVM, &pNemCpu->StatExitWrMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_WRMSR", "/NEM/CPU%u/Exit/WrMsr", idCpu);
562 STAMR3RegisterF(pVM, &pNemCpu->StatExitIrqWindowOpen, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IRQ_WINDOWS_OPEN", "/NEM/CPU%u/Exit/IrqWindowOpen", idCpu);
563 STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HLT", "/NEM/CPU%u/Exit/Hlt", idCpu);
564 STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR", "/NEM/CPU%u/Exit/Intr", idCpu);
565 STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL", "/NEM/CPU%u/Exit/Hypercall", idCpu);
566 STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG", "/NEM/CPU%u/Exit/Debug", idCpu);
567 STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK", "/NEM/CPU%u/Exit/BusLock", idCpu);
568 STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu);
569 STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu);
570 }
571
572 /*
573 * Success.
574 */
575 return VINF_SUCCESS;
576 }
577
578 /*
579 * Bail out.
580 */
581 }
582 close(fdVm);
583 pVM->nem.s.fdVm = -1;
584 }
585 else
586 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
587 close(fdKvm);
588 pVM->nem.s.fdKvm = -1;
589 }
590 else if (errno == EACCES)
591 rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing.");
592 else if (errno == ENOENT)
593 rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)");
594 else
595 rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno);
596
597 /*
598 * We only fail if in forced mode, otherwise just log the complaint and return.
599 */
600 Assert(RTErrInfoIsSet(pErrInfo));
601 if ( (fForced || !fFallback)
602 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
603 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
604 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
605 return VINF_SUCCESS;
606}
607
608
609/**
610 * This is called after CPUMR3Init is done.
611 *
612 * @returns VBox status code.
613 * @param pVM The VM handle..
614 */
615int nemR3NativeInitAfterCPUM(PVM pVM)
616{
617 /*
618 * Validate sanity.
619 */
620 AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER);
621 AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER);
622 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
623
624 /** @todo */
625
626 return VINF_SUCCESS;
627}
628
629
630/**
631 * Update the CPUID leaves for a VCPU.
632 *
633 * The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo
634 * everything when there really just are single bit changes. That said, it
635 * looks like KVM update the XCR/XSAVE related stuff as well as the APIC enabled
636 * bit(s), so it should suffice if we do this at startup, I hope.
637 */
638static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu)
639{
640 uint32_t cLeaves = 0;
641 PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves);
642 struct kvm_cpuid2 *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2]));
643
644 pReq->nent = cLeaves;
645 pReq->padding = 0;
646
647 for (uint32_t i = 0; i < cLeaves; i++)
648 {
649 CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf,
650 &pReq->entries[i].eax,
651 &pReq->entries[i].ebx,
652 &pReq->entries[i].ecx,
653 &pReq->entries[i].edx);
654 pReq->entries[i].function = paLeaves[i].uLeaf;
655 pReq->entries[i].index = paLeaves[i].uSubLeaf;
656 pReq->entries[i].flags = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
657 pReq->entries[i].padding[0] = 0;
658 pReq->entries[i].padding[1] = 0;
659 pReq->entries[i].padding[2] = 0;
660 }
661
662 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq);
663 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno));
664
665 return VINF_SUCCESS;
666}
667
668
669int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
670{
671 /*
672 * Make RTThreadPoke work again (disabled for avoiding unnecessary
673 * critical section issues in ring-0).
674 */
675 if (enmWhat == VMINITCOMPLETED_RING3)
676 VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL);
677
678 /*
679 * Configure CPUIDs after ring-3 init has been done.
680 */
681 if (enmWhat == VMINITCOMPLETED_RING3)
682 {
683 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
684 {
685 int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]);
686 AssertRCReturn(rc, rc);
687 }
688 }
689
690 /*
691 * Configure MSRs after ring-3 init is done.
692 *
693 * We only need to tell KVM which MSRs it can handle, as we already
694 * requested KVM_MSR_EXIT_REASON_FILTER, KVM_MSR_EXIT_REASON_UNKNOWN
695 * and KVM_MSR_EXIT_REASON_INVAL in nemR3LnxInitSetupVm, and here we
696 * will use KVM_MSR_FILTER_DEFAULT_DENY. So, all MSRs w/o a 1 in the
697 * bitmaps should be deferred to ring-3.
698 */
699 if (enmWhat == VMINITCOMPLETED_RING3)
700 {
701 struct kvm_msr_filter MsrFilters = {0}; /* Structure with a couple of implicit paddings on 64-bit systems. */
702 MsrFilters.flags = KVM_MSR_FILTER_DEFAULT_DENY;
703
704 unsigned iRange = 0;
705#define MSR_RANGE_BEGIN(a_uBase, a_uEnd, a_fFlags) \
706 AssertCompile(0x3000 <= KVM_MSR_FILTER_MAX_BITMAP_SIZE * 8); \
707 uint64_t RT_CONCAT(bm, a_uBase)[0x3000 / 64] = {0}; \
708 do { \
709 uint64_t * const pbm = RT_CONCAT(bm, a_uBase); \
710 uint32_t const uBase = UINT32_C(a_uBase); \
711 uint32_t const cMsrs = UINT32_C(a_uEnd) - UINT32_C(a_uBase); \
712 MsrFilters.ranges[iRange].base = UINT32_C(a_uBase); \
713 MsrFilters.ranges[iRange].nmsrs = cMsrs; \
714 MsrFilters.ranges[iRange].flags = (a_fFlags); \
715 MsrFilters.ranges[iRange].bitmap = (uint8_t *)&RT_CONCAT(bm, a_uBase)[0]
716#define MSR_RANGE_ADD(a_Msr) \
717 do { Assert((uint32_t)(a_Msr) - uBase < cMsrs); ASMBitSet(pbm, (uint32_t)(a_Msr) - uBase); } while (0)
718#define MSR_RANGE_END(a_cMinMsrs) \
719 /* optimize the range size before closing: */ \
720 uint32_t cBitmap = cMsrs / 64; \
721 while (cBitmap > ((a_cMinMsrs) + 63 / 64) && pbm[cBitmap - 1] == 0) \
722 cBitmap -= 1; \
723 MsrFilters.ranges[iRange].nmsrs = cBitmap * 64; \
724 iRange++; \
725 } while (0)
726
727 /* 1st Intel range: 0000_0000 to 0000_3000. */
728 MSR_RANGE_BEGIN(0x00000000, 0x00003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
729 MSR_RANGE_ADD(MSR_IA32_TSC);
730 MSR_RANGE_ADD(MSR_IA32_SYSENTER_CS);
731 MSR_RANGE_ADD(MSR_IA32_SYSENTER_ESP);
732 MSR_RANGE_ADD(MSR_IA32_SYSENTER_EIP);
733 MSR_RANGE_ADD(MSR_IA32_CR_PAT);
734 /** @todo more? */
735 MSR_RANGE_END(64);
736
737 /* 1st AMD range: c000_0000 to c000_3000 */
738 MSR_RANGE_BEGIN(0xc0000000, 0xc0003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
739 MSR_RANGE_ADD(MSR_K6_EFER);
740 MSR_RANGE_ADD(MSR_K6_STAR);
741 MSR_RANGE_ADD(MSR_K8_GS_BASE);
742 MSR_RANGE_ADD(MSR_K8_KERNEL_GS_BASE);
743 MSR_RANGE_ADD(MSR_K8_LSTAR);
744 MSR_RANGE_ADD(MSR_K8_CSTAR);
745 MSR_RANGE_ADD(MSR_K8_SF_MASK);
746 MSR_RANGE_ADD(MSR_K8_TSC_AUX);
747 /** @todo add more? */
748 MSR_RANGE_END(64);
749
750 /** @todo Specify other ranges too? Like hyper-V and KVM to make sure we get
751 * the MSR requests instead of KVM. */
752
753 int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_X86_SET_MSR_FILTER, &MsrFilters);
754 if (rcLnx == -1)
755 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
756 "Failed to enable KVM_X86_SET_MSR_FILTER failed: %u", errno);
757 }
758
759 return VINF_SUCCESS;
760}
761
762
763int nemR3NativeTerm(PVM pVM)
764{
765 /*
766 * Per-cpu data
767 */
768 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
769 {
770 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
771
772 if (pVCpu->nem.s.fdVCpu != -1)
773 {
774 close(pVCpu->nem.s.fdVCpu);
775 pVCpu->nem.s.fdVCpu = -1;
776 }
777 if (pVCpu->nem.s.pRun)
778 {
779 munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap);
780 pVCpu->nem.s.pRun = NULL;
781 }
782 }
783
784 /*
785 * Global data.
786 */
787 if (pVM->nem.s.fdVm != -1)
788 {
789 close(pVM->nem.s.fdVm);
790 pVM->nem.s.fdVm = -1;
791 }
792
793 if (pVM->nem.s.fdKvm != -1)
794 {
795 close(pVM->nem.s.fdKvm);
796 pVM->nem.s.fdKvm = -1;
797 }
798 return VINF_SUCCESS;
799}
800
801
802/**
803 * VM reset notification.
804 *
805 * @param pVM The cross context VM structure.
806 */
807void nemR3NativeReset(PVM pVM)
808{
809 RT_NOREF(pVM);
810}
811
812
813/**
814 * Reset CPU due to INIT IPI or hot (un)plugging.
815 *
816 * @param pVCpu The cross context virtual CPU structure of the CPU being
817 * reset.
818 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
819 */
820void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
821{
822 RT_NOREF(pVCpu, fInitIpi);
823}
824
825
826/*********************************************************************************************************************************
827* Memory management *
828*********************************************************************************************************************************/
829
830
831/**
832 * Allocates a memory slot ID.
833 *
834 * @returns Slot ID on success, UINT16_MAX on failure.
835 */
836static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM)
837{
838 /* Use the hint first. */
839 uint16_t idHint = pVM->nem.s.idPrevSlot;
840 if (idHint < _32K - 1)
841 {
842 int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint);
843 Assert(idx < _32K);
844 if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
845 return pVM->nem.s.idPrevSlot = (uint16_t)idx;
846 }
847
848 /*
849 * Search the whole map from the start.
850 */
851 int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K);
852 Assert(idx < _32K);
853 if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
854 return pVM->nem.s.idPrevSlot = (uint16_t)idx;
855
856 Assert(idx < 0 /*shouldn't trigger unless there is a race */);
857 return UINT16_MAX; /* caller is expected to assert. */
858}
859
860
861/**
862 * Frees a memory slot ID
863 */
864static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot)
865{
866 if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot)))
867 { /*likely*/ }
868 else
869 AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot));
870}
871
872
873
874VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
875 uint8_t *pu2State, uint32_t *puNemRange)
876{
877 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
878 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
879
880 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n",
881 GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot));
882
883 struct kvm_userspace_memory_region Region;
884 Region.slot = idSlot;
885 Region.flags = 0;
886 Region.guest_phys_addr = GCPhys;
887 Region.memory_size = cb;
888 Region.userspace_addr = (uintptr_t)pvR3;
889
890 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
891 if (rc == 0)
892 {
893 *pu2State = 0;
894 *puNemRange = idSlot;
895 return VINF_SUCCESS;
896 }
897
898 LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno));
899 nemR3LnxMemSlotIdFree(pVM, idSlot);
900 return VERR_NEM_MAP_PAGES_FAILED;
901}
902
903
904VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
905{
906 RT_NOREF(pVM);
907 return true;
908}
909
910
911VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
912 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
913{
914 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n",
915 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX));
916 RT_NOREF(pvRam);
917
918 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
919 {
920 /** @todo implement splitting and whatnot of ranges if we want to be 100%
921 * conforming (just modify RAM registrations in MM.cpp to test). */
922 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
923 VERR_NEM_MAP_PAGES_FAILED);
924 }
925
926 /*
927 * Register MMIO2.
928 */
929 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
930 {
931 AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED);
932 AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED);
933
934 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
935 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
936
937 struct kvm_userspace_memory_region Region;
938 Region.slot = idSlot;
939 Region.flags = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0;
940 Region.guest_phys_addr = GCPhys;
941 Region.memory_size = cb;
942 Region.userspace_addr = (uintptr_t)pvMmio2;
943
944 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
945 if (rc == 0)
946 {
947 *pu2State = 0;
948 *puNemRange = idSlot;
949 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n",
950 GCPhys, cb, fFlags, pvMmio2, idSlot));
951 return VINF_SUCCESS;
952 }
953
954 nemR3LnxMemSlotIdFree(pVM, idSlot);
955 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
956 GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
957 VERR_NEM_MAP_PAGES_FAILED);
958 }
959
960 /* MMIO, don't care. */
961 *pu2State = 0;
962 *puNemRange = UINT32_MAX;
963 return VINF_SUCCESS;
964}
965
966
967VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
968 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
969{
970 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
971 return VINF_SUCCESS;
972}
973
974
975VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
976 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
977{
978 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n",
979 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
980 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
981
982 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
983 {
984 /** @todo implement splitting and whatnot of ranges if we want to be 100%
985 * conforming (just modify RAM registrations in MM.cpp to test). */
986 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
987 VERR_NEM_UNMAP_PAGES_FAILED);
988 }
989
990 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
991 {
992 uint32_t const idSlot = *puNemRange;
993 AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
994 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
995
996 struct kvm_userspace_memory_region Region;
997 Region.slot = idSlot;
998 Region.flags = 0;
999 Region.guest_phys_addr = GCPhys;
1000 Region.memory_size = 0; /* this deregisters it. */
1001 Region.userspace_addr = (uintptr_t)pvMmio2;
1002
1003 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
1004 if (rc == 0)
1005 {
1006 if (pu2State)
1007 *pu2State = 0;
1008 *puNemRange = UINT32_MAX;
1009 nemR3LnxMemSlotIdFree(pVM, idSlot);
1010 return VINF_SUCCESS;
1011 }
1012
1013 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
1014 GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
1015 VERR_NEM_UNMAP_PAGES_FAILED);
1016 }
1017
1018 if (pu2State)
1019 *pu2State = UINT8_MAX;
1020 return VINF_SUCCESS;
1021}
1022
1023
1024VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
1025 void *pvBitmap, size_t cbBitmap)
1026{
1027 AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4);
1028 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4);
1029
1030 RT_NOREF(GCPhys, cbBitmap);
1031
1032 struct kvm_dirty_log DirtyLog;
1033 DirtyLog.slot = uNemRange;
1034 DirtyLog.padding1 = 0;
1035 DirtyLog.dirty_bitmap = pvBitmap;
1036
1037 int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog);
1038 AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc),
1039 VERR_NEM_QUERY_DIRTY_BITMAP_FAILED);
1040
1041 return VINF_SUCCESS;
1042}
1043
1044
1045VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
1046 uint8_t *pu2State, uint32_t *puNemRange)
1047{
1048 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
1049 *pu2State = UINT8_MAX;
1050
1051 /* Don't support puttint ROM where there is already RAM. For
1052 now just shuffle the registrations till it works... */
1053 AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags),
1054 VERR_NEM_MAP_PAGES_FAILED);
1055
1056 /** @todo figure out how to do shadow ROMs. */
1057
1058 /*
1059 * We only allocate a slot number here in case we need to use it to
1060 * fend of physical handler fun.
1061 */
1062 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
1063 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
1064
1065 *pu2State = 0;
1066 *puNemRange = idSlot;
1067 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
1068 GCPhys, cb, fFlags, pvPages, idSlot));
1069 RT_NOREF(GCPhys, cb, fFlags, pvPages);
1070 return VINF_SUCCESS;
1071}
1072
1073
1074VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
1075 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
1076{
1077 Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
1078 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
1079
1080 AssertPtrReturn(pvPages, VERR_NEM_IPE_5);
1081
1082 uint32_t const idSlot = *puNemRange;
1083 AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
1084 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
1085
1086 *pu2State = UINT8_MAX;
1087
1088 /*
1089 * Do the actual setting of the user pages here now that we've
1090 * got a valid pvPages (typically isn't available during the early
1091 * notification, unless we're replacing RAM).
1092 */
1093 struct kvm_userspace_memory_region Region;
1094 Region.slot = idSlot;
1095 Region.flags = 0;
1096 Region.guest_phys_addr = GCPhys;
1097 Region.memory_size = cb;
1098 Region.userspace_addr = (uintptr_t)pvPages;
1099
1100 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
1101 if (rc == 0)
1102 {
1103 *pu2State = 0;
1104 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
1105 GCPhys, cb, fFlags, pvPages, idSlot));
1106 return VINF_SUCCESS;
1107 }
1108 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n",
1109 GCPhys, cb, fFlags, pvPages, idSlot, errno, rc),
1110 VERR_NEM_MAP_PAGES_FAILED);
1111}
1112
1113
1114/**
1115 * Called when the A20 state changes.
1116 *
1117 * @param pVCpu The CPU the A20 state changed on.
1118 * @param fEnabled Whether it was enabled (true) or disabled.
1119 */
1120VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
1121{
1122 Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
1123 Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)));
1124 RT_NOREF(pVCpu, fEnabled);
1125}
1126
1127
1128VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
1129 RTR3PTR pvMemR3, uint8_t *pu2State)
1130{
1131 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
1132 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
1133
1134 *pu2State = UINT8_MAX;
1135 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
1136}
1137
1138
1139void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
1140{
1141 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
1142 RT_NOREF(pVM, enmKind, GCPhys, cb);
1143}
1144
1145
1146void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
1147 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
1148{
1149 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
1150 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
1151 RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM);
1152}
1153
1154
1155int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
1156 PGMPAGETYPE enmType, uint8_t *pu2State)
1157{
1158 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
1159 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
1160 RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State);
1161 return VINF_SUCCESS;
1162}
1163
1164
1165VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
1166 PGMPAGETYPE enmType, uint8_t *pu2State)
1167{
1168 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
1169 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
1170 Assert(VM_IS_NEM_ENABLED(pVM));
1171 RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State);
1172
1173}
1174
1175
1176VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
1177 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
1178{
1179 Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
1180 GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State));
1181 Assert(VM_IS_NEM_ENABLED(pVM));
1182 RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
1183}
1184
1185
1186/*********************************************************************************************************************************
1187* CPU State *
1188*********************************************************************************************************************************/
1189
1190/**
1191 * Worker that imports selected state from KVM.
1192 */
1193static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun)
1194{
1195 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
1196 if (!fWhat)
1197 return VINF_SUCCESS;
1198
1199 /*
1200 * Stuff that goes into kvm_run::s.regs.regs:
1201 */
1202 if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
1203 {
1204 if (fWhat & CPUMCTX_EXTRN_RIP)
1205 pCtx->rip = pRun->s.regs.regs.rip;
1206 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
1207 pCtx->rflags.u = pRun->s.regs.regs.rflags;
1208
1209 if (fWhat & CPUMCTX_EXTRN_RAX)
1210 pCtx->rax = pRun->s.regs.regs.rax;
1211 if (fWhat & CPUMCTX_EXTRN_RCX)
1212 pCtx->rcx = pRun->s.regs.regs.rcx;
1213 if (fWhat & CPUMCTX_EXTRN_RDX)
1214 pCtx->rdx = pRun->s.regs.regs.rdx;
1215 if (fWhat & CPUMCTX_EXTRN_RBX)
1216 pCtx->rbx = pRun->s.regs.regs.rbx;
1217 if (fWhat & CPUMCTX_EXTRN_RSP)
1218 pCtx->rsp = pRun->s.regs.regs.rsp;
1219 if (fWhat & CPUMCTX_EXTRN_RBP)
1220 pCtx->rbp = pRun->s.regs.regs.rbp;
1221 if (fWhat & CPUMCTX_EXTRN_RSI)
1222 pCtx->rsi = pRun->s.regs.regs.rsi;
1223 if (fWhat & CPUMCTX_EXTRN_RDI)
1224 pCtx->rdi = pRun->s.regs.regs.rdi;
1225 if (fWhat & CPUMCTX_EXTRN_R8_R15)
1226 {
1227 pCtx->r8 = pRun->s.regs.regs.r8;
1228 pCtx->r9 = pRun->s.regs.regs.r9;
1229 pCtx->r10 = pRun->s.regs.regs.r10;
1230 pCtx->r11 = pRun->s.regs.regs.r11;
1231 pCtx->r12 = pRun->s.regs.regs.r12;
1232 pCtx->r13 = pRun->s.regs.regs.r13;
1233 pCtx->r14 = pRun->s.regs.regs.r14;
1234 pCtx->r15 = pRun->s.regs.regs.r15;
1235 }
1236 }
1237
1238 /*
1239 * Stuff that goes into kvm_run::s.regs.sregs.
1240 *
1241 * Note! The apic_base can be ignored because we gets all MSR writes to it
1242 * and VBox always keeps the correct value.
1243 */
1244 bool fMaybeChangedMode = false;
1245 bool fUpdateCr3 = false;
1246 if (fWhat & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
1247 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
1248 {
1249 /** @todo what about Attr.n.u4LimitHigh? */
1250#define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \
1251 (a_CtxSeg).u64Base = (a_KvmSeg).base; \
1252 (a_CtxSeg).u32Limit = (a_KvmSeg).limit; \
1253 (a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \
1254 (a_CtxSeg).Attr.n.u4Type = (a_KvmSeg).type; \
1255 (a_CtxSeg).Attr.n.u1DescType = (a_KvmSeg).s; \
1256 (a_CtxSeg).Attr.n.u2Dpl = (a_KvmSeg).dpl; \
1257 (a_CtxSeg).Attr.n.u1Present = (a_KvmSeg).present; \
1258 (a_CtxSeg).Attr.n.u1Available = (a_KvmSeg).avl; \
1259 (a_CtxSeg).Attr.n.u1Long = (a_KvmSeg).l; \
1260 (a_CtxSeg).Attr.n.u1DefBig = (a_KvmSeg).db; \
1261 (a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \
1262 (a_CtxSeg).Attr.n.u1Unusable = (a_KvmSeg).unusable; \
1263 (a_CtxSeg).fFlags = CPUMSELREG_FLAGS_VALID; \
1264 CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \
1265 } while (0)
1266
1267 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
1268 {
1269 if (fWhat & CPUMCTX_EXTRN_ES)
1270 NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es);
1271 if (fWhat & CPUMCTX_EXTRN_CS)
1272 NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs);
1273 if (fWhat & CPUMCTX_EXTRN_SS)
1274 NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss);
1275 if (fWhat & CPUMCTX_EXTRN_DS)
1276 NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds);
1277 if (fWhat & CPUMCTX_EXTRN_FS)
1278 NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs);
1279 if (fWhat & CPUMCTX_EXTRN_GS)
1280 NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs);
1281 }
1282 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
1283 {
1284 if (fWhat & CPUMCTX_EXTRN_GDTR)
1285 {
1286 pCtx->gdtr.pGdt = pRun->s.regs.sregs.gdt.base;
1287 pCtx->gdtr.cbGdt = pRun->s.regs.sregs.gdt.limit;
1288 }
1289 if (fWhat & CPUMCTX_EXTRN_IDTR)
1290 {
1291 pCtx->idtr.pIdt = pRun->s.regs.sregs.idt.base;
1292 pCtx->idtr.cbIdt = pRun->s.regs.sregs.idt.limit;
1293 }
1294 if (fWhat & CPUMCTX_EXTRN_LDTR)
1295 NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt);
1296 if (fWhat & CPUMCTX_EXTRN_TR)
1297 NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr);
1298 }
1299 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
1300 {
1301 if (fWhat & CPUMCTX_EXTRN_CR0)
1302 {
1303 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
1304 {
1305 CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
1306 fMaybeChangedMode = true;
1307 }
1308 }
1309 if (fWhat & CPUMCTX_EXTRN_CR2)
1310 pCtx->cr2 = pRun->s.regs.sregs.cr2;
1311 if (fWhat & CPUMCTX_EXTRN_CR3)
1312 {
1313 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
1314 {
1315 CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
1316 fUpdateCr3 = true;
1317 }
1318 }
1319 if (fWhat & CPUMCTX_EXTRN_CR4)
1320 {
1321 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
1322 {
1323 CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
1324 fMaybeChangedMode = true;
1325 }
1326 }
1327 }
1328 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1329 APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4);
1330 if (fWhat & CPUMCTX_EXTRN_EFER)
1331 {
1332 if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
1333 {
1334 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
1335 if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1336 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
1337 pCtx->msrEFER = pRun->s.regs.sregs.efer;
1338 fMaybeChangedMode = true;
1339 }
1340 }
1341#undef NEM_LNX_IMPORT_SEG
1342 }
1343
1344 /*
1345 * Debug registers.
1346 */
1347 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
1348 {
1349 struct kvm_debugregs DbgRegs = {{0}};
1350 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
1351 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1352
1353 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1354 {
1355 pCtx->dr[0] = DbgRegs.db[0];
1356 pCtx->dr[1] = DbgRegs.db[1];
1357 pCtx->dr[2] = DbgRegs.db[2];
1358 pCtx->dr[3] = DbgRegs.db[3];
1359 }
1360 if (fWhat & CPUMCTX_EXTRN_DR6)
1361 pCtx->dr[6] = DbgRegs.dr6;
1362 if (fWhat & CPUMCTX_EXTRN_DR7)
1363 pCtx->dr[7] = DbgRegs.dr7;
1364 }
1365
1366 /*
1367 * FPU, SSE, AVX, ++.
1368 */
1369 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
1370 {
1371 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1372 {
1373 fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */
1374
1375 AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
1376 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState);
1377 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1378 }
1379
1380 if (fWhat & CPUMCTX_EXTRN_XCRx)
1381 {
1382 struct kvm_xcrs Xcrs =
1383 { /*.nr_xcrs = */ 2,
1384 /*.flags = */ 0,
1385 /*.xcrs= */ {
1386 { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
1387 { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
1388 }
1389 };
1390
1391 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs);
1392 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1393
1394 pCtx->aXcr[0] = Xcrs.xcrs[0].value;
1395 pCtx->aXcr[1] = Xcrs.xcrs[1].value;
1396 }
1397 }
1398
1399 /*
1400 * MSRs.
1401 */
1402 if (fWhat & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
1403 | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
1404 {
1405 union
1406 {
1407 struct kvm_msrs Core;
1408 uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
1409 } uBuf;
1410 uint64_t *pauDsts[32];
1411 uint32_t iMsr = 0;
1412 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1413
1414#define ADD_MSR(a_Msr, a_uValue) do { \
1415 Assert(iMsr < 32); \
1416 uBuf.Core.entries[iMsr].index = (a_Msr); \
1417 uBuf.Core.entries[iMsr].reserved = 0; \
1418 uBuf.Core.entries[iMsr].data = UINT64_MAX; \
1419 pauDsts[iMsr] = &(a_uValue); \
1420 iMsr += 1; \
1421 } while (0)
1422
1423 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1424 ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1425 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1426 {
1427 ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
1428 ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
1429 ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
1430 ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1431 }
1432 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1433 {
1434 ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
1435 ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
1436 ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
1437 }
1438 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1439 ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1440 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1441 {
1442 ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
1443 /** @todo What do we _have_ to add here?
1444 * We also have: Mttr*, MiscEnable, FeatureControl. */
1445 }
1446
1447 uBuf.Core.pad = 0;
1448 uBuf.Core.nmsrs = iMsr;
1449 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf);
1450 AssertMsgReturn(rc == (int)iMsr,
1451 ("rc=%d iMsr=%d (->%#x) errno=%d\n",
1452 rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
1453 VERR_NEM_IPE_3);
1454
1455 while (iMsr-- > 0)
1456 *pauDsts[iMsr] = uBuf.Core.entries[iMsr].data;
1457#undef ADD_MSR
1458 }
1459
1460 /*
1461 * Interruptibility state and pending interrupts.
1462 */
1463 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1464 {
1465 fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */
1466
1467 struct kvm_vcpu_events KvmEvents = {0};
1468 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
1469 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
1470
1471 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)
1472 pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip;
1473
1474 if (KvmEvents.interrupt.shadow)
1475 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
1476 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1477 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1478
1479 if (KvmEvents.nmi.masked)
1480 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
1481 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1482 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
1483
1484 if (KvmEvents.interrupt.injected)
1485 {
1486 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt);
1487 TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT);
1488 }
1489
1490 Assert(KvmEvents.nmi.injected == 0);
1491 Assert(KvmEvents.nmi.pending == 0);
1492 }
1493
1494 /*
1495 * Update the external mask.
1496 */
1497 pCtx->fExtrn &= ~fWhat;
1498 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1499 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1500 pVCpu->cpum.GstCtx.fExtrn = 0;
1501
1502 /*
1503 * We sometimes need to update PGM on the guest status.
1504 */
1505 if (!fMaybeChangedMode && !fUpdateCr3)
1506 { /* likely */ }
1507 else
1508 {
1509 /*
1510 * Make sure we got all the state PGM might need.
1511 */
1512 Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3,
1513 pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) ));
1514 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER))
1515 {
1516 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0)
1517 {
1518 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
1519 {
1520 CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
1521 fMaybeChangedMode = true;
1522 }
1523 }
1524 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3)
1525 {
1526 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
1527 {
1528 CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
1529 fUpdateCr3 = true;
1530 }
1531 }
1532 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4)
1533 {
1534 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
1535 {
1536 CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
1537 fMaybeChangedMode = true;
1538 }
1539 }
1540 if (fWhat & CPUMCTX_EXTRN_EFER)
1541 {
1542 if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
1543 {
1544 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
1545 if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1546 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
1547 pCtx->msrEFER = pRun->s.regs.sregs.efer;
1548 fMaybeChangedMode = true;
1549 }
1550 }
1551
1552 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER);
1553 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1554 pVCpu->cpum.GstCtx.fExtrn = 0;
1555 }
1556
1557 /*
1558 * Notify PGM about the changes.
1559 */
1560 if (fMaybeChangedMode)
1561 {
1562 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4,
1563 pVCpu->cpum.GstCtx.msrEFER, false /*fForce*/);
1564 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1565 }
1566
1567 if (fUpdateCr3)
1568 {
1569 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1570 if (rc == VINF_SUCCESS)
1571 { /* likely */ }
1572 else
1573 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1574 }
1575 }
1576
1577 return VINF_SUCCESS;
1578}
1579
1580
1581/**
1582 * Interface for importing state on demand (used by IEM).
1583 *
1584 * @returns VBox status code.
1585 * @param pVCpu The cross context CPU structure.
1586 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1587 */
1588VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
1589{
1590 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
1591 return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun);
1592}
1593
1594
1595/**
1596 * Exports state to KVM.
1597 */
1598static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun)
1599{
1600 uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL;
1601 Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL);
1602
1603 /*
1604 * Stuff that goes into kvm_run::s.regs.regs:
1605 */
1606 if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
1607 {
1608 if (fExtrn & CPUMCTX_EXTRN_RIP)
1609 pRun->s.regs.regs.rip = pCtx->rip;
1610 if (fExtrn & CPUMCTX_EXTRN_RFLAGS)
1611 pRun->s.regs.regs.rflags = pCtx->rflags.u;
1612
1613 if (fExtrn & CPUMCTX_EXTRN_RAX)
1614 pRun->s.regs.regs.rax = pCtx->rax;
1615 if (fExtrn & CPUMCTX_EXTRN_RCX)
1616 pRun->s.regs.regs.rcx = pCtx->rcx;
1617 if (fExtrn & CPUMCTX_EXTRN_RDX)
1618 pRun->s.regs.regs.rdx = pCtx->rdx;
1619 if (fExtrn & CPUMCTX_EXTRN_RBX)
1620 pRun->s.regs.regs.rbx = pCtx->rbx;
1621 if (fExtrn & CPUMCTX_EXTRN_RSP)
1622 pRun->s.regs.regs.rsp = pCtx->rsp;
1623 if (fExtrn & CPUMCTX_EXTRN_RBP)
1624 pRun->s.regs.regs.rbp = pCtx->rbp;
1625 if (fExtrn & CPUMCTX_EXTRN_RSI)
1626 pRun->s.regs.regs.rsi = pCtx->rsi;
1627 if (fExtrn & CPUMCTX_EXTRN_RDI)
1628 pRun->s.regs.regs.rdi = pCtx->rdi;
1629 if (fExtrn & CPUMCTX_EXTRN_R8_R15)
1630 {
1631 pRun->s.regs.regs.r8 = pCtx->r8;
1632 pRun->s.regs.regs.r9 = pCtx->r9;
1633 pRun->s.regs.regs.r10 = pCtx->r10;
1634 pRun->s.regs.regs.r11 = pCtx->r11;
1635 pRun->s.regs.regs.r12 = pCtx->r12;
1636 pRun->s.regs.regs.r13 = pCtx->r13;
1637 pRun->s.regs.regs.r14 = pCtx->r14;
1638 pRun->s.regs.regs.r15 = pCtx->r15;
1639 }
1640 pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS;
1641 }
1642
1643 /*
1644 * Stuff that goes into kvm_run::s.regs.sregs:
1645 *
1646 * The APIC base register updating is a little suboptimal... But at least
1647 * VBox always has the right base register value, so it's one directional.
1648 */
1649 uint64_t const uApicBase = APICGetBaseMsrNoCheck(pVCpu);
1650 if ( (fExtrn & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
1651 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
1652 || uApicBase != pVCpu->nem.s.uKvmApicBase)
1653 {
1654 if ((pVCpu->nem.s.uKvmApicBase ^ uApicBase) & MSR_IA32_APICBASE_EN)
1655 Log(("NEM/%u: APICBASE_EN changed %#010RX64 -> %#010RX64\n", pVCpu->idCpu, pVCpu->nem.s.uKvmApicBase, uApicBase));
1656 pRun->s.regs.sregs.apic_base = uApicBase;
1657 pVCpu->nem.s.uKvmApicBase = uApicBase;
1658
1659 if (fExtrn & CPUMCTX_EXTRN_APIC_TPR)
1660 pRun->s.regs.sregs.cr8 = CPUMGetGuestCR8(pVCpu);
1661
1662#define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \
1663 (a_KvmSeg).base = (a_CtxSeg).u64Base; \
1664 (a_KvmSeg).limit = (a_CtxSeg).u32Limit; \
1665 (a_KvmSeg).selector = (a_CtxSeg).Sel; \
1666 (a_KvmSeg).type = (a_CtxSeg).Attr.n.u4Type; \
1667 (a_KvmSeg).s = (a_CtxSeg).Attr.n.u1DescType; \
1668 (a_KvmSeg).dpl = (a_CtxSeg).Attr.n.u2Dpl; \
1669 (a_KvmSeg).present = (a_CtxSeg).Attr.n.u1Present; \
1670 (a_KvmSeg).avl = (a_CtxSeg).Attr.n.u1Available; \
1671 (a_KvmSeg).l = (a_CtxSeg).Attr.n.u1Long; \
1672 (a_KvmSeg).db = (a_CtxSeg).Attr.n.u1DefBig; \
1673 (a_KvmSeg).g = (a_CtxSeg).Attr.n.u1Granularity; \
1674 (a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \
1675 (a_KvmSeg).padding = 0; \
1676 } while (0)
1677
1678 if (fExtrn & CPUMCTX_EXTRN_SREG_MASK)
1679 {
1680 if (fExtrn & CPUMCTX_EXTRN_ES)
1681 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es);
1682 if (fExtrn & CPUMCTX_EXTRN_CS)
1683 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs);
1684 if (fExtrn & CPUMCTX_EXTRN_SS)
1685 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss);
1686 if (fExtrn & CPUMCTX_EXTRN_DS)
1687 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds);
1688 if (fExtrn & CPUMCTX_EXTRN_FS)
1689 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs);
1690 if (fExtrn & CPUMCTX_EXTRN_GS)
1691 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs);
1692 }
1693 if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK)
1694 {
1695 if (fExtrn & CPUMCTX_EXTRN_GDTR)
1696 {
1697 pRun->s.regs.sregs.gdt.base = pCtx->gdtr.pGdt;
1698 pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt;
1699 pRun->s.regs.sregs.gdt.padding[0] = 0;
1700 pRun->s.regs.sregs.gdt.padding[1] = 0;
1701 pRun->s.regs.sregs.gdt.padding[2] = 0;
1702 }
1703 if (fExtrn & CPUMCTX_EXTRN_IDTR)
1704 {
1705 pRun->s.regs.sregs.idt.base = pCtx->idtr.pIdt;
1706 pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt;
1707 pRun->s.regs.sregs.idt.padding[0] = 0;
1708 pRun->s.regs.sregs.idt.padding[1] = 0;
1709 pRun->s.regs.sregs.idt.padding[2] = 0;
1710 }
1711 if (fExtrn & CPUMCTX_EXTRN_LDTR)
1712 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr);
1713 if (fExtrn & CPUMCTX_EXTRN_TR)
1714 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr);
1715 }
1716 if (fExtrn & CPUMCTX_EXTRN_CR_MASK)
1717 {
1718 if (fExtrn & CPUMCTX_EXTRN_CR0)
1719 pRun->s.regs.sregs.cr0 = pCtx->cr0;
1720 if (fExtrn & CPUMCTX_EXTRN_CR2)
1721 pRun->s.regs.sregs.cr2 = pCtx->cr2;
1722 if (fExtrn & CPUMCTX_EXTRN_CR3)
1723 pRun->s.regs.sregs.cr3 = pCtx->cr3;
1724 if (fExtrn & CPUMCTX_EXTRN_CR4)
1725 pRun->s.regs.sregs.cr4 = pCtx->cr4;
1726 }
1727 if (fExtrn & CPUMCTX_EXTRN_EFER)
1728 pRun->s.regs.sregs.efer = pCtx->msrEFER;
1729
1730 RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */
1731
1732 pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS;
1733 }
1734
1735 /*
1736 * Debug registers.
1737 */
1738 if (fExtrn & CPUMCTX_EXTRN_DR_MASK)
1739 {
1740 struct kvm_debugregs DbgRegs = {{0}};
1741
1742 if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK)
1743 {
1744 /* Partial debug state, we must get DbgRegs first so we can merge: */
1745 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
1746 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1747 }
1748
1749 if (fExtrn & CPUMCTX_EXTRN_DR0_DR3)
1750 {
1751 DbgRegs.db[0] = pCtx->dr[0];
1752 DbgRegs.db[1] = pCtx->dr[1];
1753 DbgRegs.db[2] = pCtx->dr[2];
1754 DbgRegs.db[3] = pCtx->dr[3];
1755 }
1756 if (fExtrn & CPUMCTX_EXTRN_DR6)
1757 DbgRegs.dr6 = pCtx->dr[6];
1758 if (fExtrn & CPUMCTX_EXTRN_DR7)
1759 DbgRegs.dr7 = pCtx->dr[7];
1760
1761 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs);
1762 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1763 }
1764
1765 /*
1766 * FPU, SSE, AVX, ++.
1767 */
1768 if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
1769 {
1770 if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1771 {
1772 /** @todo could IEM just grab state partial control in some situations? */
1773 Assert( (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1774 == (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */
1775
1776 AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
1777 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState);
1778 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1779 }
1780
1781 if (fExtrn & CPUMCTX_EXTRN_XCRx)
1782 {
1783 struct kvm_xcrs Xcrs =
1784 { /*.nr_xcrs = */ 2,
1785 /*.flags = */ 0,
1786 /*.xcrs= */ {
1787 { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
1788 { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
1789 }
1790 };
1791
1792 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs);
1793 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1794 }
1795 }
1796
1797 /*
1798 * MSRs.
1799 */
1800 if (fExtrn & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
1801 | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
1802 {
1803 union
1804 {
1805 struct kvm_msrs Core;
1806 uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
1807 } uBuf;
1808 uint32_t iMsr = 0;
1809 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1810
1811#define ADD_MSR(a_Msr, a_uValue) do { \
1812 Assert(iMsr < 32); \
1813 uBuf.Core.entries[iMsr].index = (a_Msr); \
1814 uBuf.Core.entries[iMsr].reserved = 0; \
1815 uBuf.Core.entries[iMsr].data = (a_uValue); \
1816 iMsr += 1; \
1817 } while (0)
1818
1819 if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1820 ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1821 if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS)
1822 {
1823 ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
1824 ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
1825 ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
1826 ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1827 }
1828 if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS)
1829 {
1830 ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
1831 ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
1832 ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
1833 }
1834 if (fExtrn & CPUMCTX_EXTRN_TSC_AUX)
1835 ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1836 if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS)
1837 {
1838 ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
1839 /** @todo What do we _have_ to add here?
1840 * We also have: Mttr*, MiscEnable, FeatureControl. */
1841 }
1842
1843 uBuf.Core.pad = 0;
1844 uBuf.Core.nmsrs = iMsr;
1845 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf);
1846 AssertMsgReturn(rc == (int)iMsr,
1847 ("rc=%d iMsr=%d (->%#x) errno=%d\n",
1848 rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
1849 VERR_NEM_IPE_3);
1850 }
1851
1852 /*
1853 * Interruptibility state.
1854 *
1855 * Note! This I/O control function sets most fields passed in, so when
1856 * raising an interrupt, NMI, SMI or exception, this must be done
1857 * by the code doing the rasing or we'll overwrite it here.
1858 */
1859 if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1860 {
1861 Assert( (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1862 == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI));
1863
1864 struct kvm_vcpu_events KvmEvents = {0};
1865
1866 KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW;
1867 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1868 {
1869 if (pRun->s.regs.regs.rip == EMGetInhibitInterruptsPC(pVCpu))
1870 KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI;
1871 else
1872 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1873 }
1874
1875 /* No flag - this is updated unconditionally. */
1876 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1877 KvmEvents.nmi.masked = 1;
1878
1879 if (TRPMHasTrap(pVCpu))
1880 {
1881 TRPMEVENT enmType = TRPM_32BIT_HACK;
1882 uint8_t bTrapNo = 0;
1883 TRPMQueryTrap(pVCpu, &bTrapNo, &enmType);
1884 Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType));
1885 if ( enmType == TRPM_HARDWARE_INT
1886 || enmType == TRPM_SOFTWARE_INT)
1887 {
1888 KvmEvents.interrupt.soft = enmType == TRPM_SOFTWARE_INT;
1889 KvmEvents.interrupt.nr = bTrapNo;
1890 KvmEvents.interrupt.injected = 1;
1891 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt);
1892 TRPMResetTrap(pVCpu);
1893 }
1894 else
1895 AssertFailed();
1896 }
1897
1898 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
1899 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
1900 }
1901
1902 /*
1903 * KVM now owns all the state.
1904 */
1905 pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL;
1906
1907 RT_NOREF(pVM);
1908 return VINF_SUCCESS;
1909}
1910
1911
1912/**
1913 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
1914 *
1915 * @returns VBox status code.
1916 * @param pVCpu The cross context CPU structure.
1917 * @param pcTicks Where to return the CPU tick count.
1918 * @param puAux Where to return the TSC_AUX register value.
1919 */
1920VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
1921{
1922 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
1923 // KVM_GET_CLOCK?
1924 RT_NOREF(pVCpu, pcTicks, puAux);
1925 return VINF_SUCCESS;
1926}
1927
1928
1929/**
1930 * Resumes CPU clock (TSC) on all virtual CPUs.
1931 *
1932 * This is called by TM when the VM is started, restored, resumed or similar.
1933 *
1934 * @returns VBox status code.
1935 * @param pVM The cross context VM structure.
1936 * @param pVCpu The cross context CPU structure of the calling EMT.
1937 * @param uPausedTscValue The TSC value at the time of pausing.
1938 */
1939VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
1940{
1941 // KVM_SET_CLOCK?
1942 RT_NOREF(pVM, pVCpu, uPausedTscValue);
1943 return VINF_SUCCESS;
1944}
1945
1946
1947VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
1948{
1949 RT_NOREF(pVM);
1950 return NEM_FEAT_F_NESTED_PAGING
1951 | NEM_FEAT_F_FULL_GST_EXEC
1952 | NEM_FEAT_F_XSAVE_XRSTOR;
1953}
1954
1955
1956
1957/*********************************************************************************************************************************
1958* Execution *
1959*********************************************************************************************************************************/
1960
1961
1962VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
1963{
1964 /*
1965 * Only execute when the A20 gate is enabled as I cannot immediately
1966 * spot any A20 support in KVM.
1967 */
1968 RT_NOREF(pVM);
1969 Assert(VM_IS_NEM_ENABLED(pVM));
1970 return PGMPhysIsA20Enabled(pVCpu);
1971}
1972
1973
1974bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
1975{
1976 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
1977 return false;
1978}
1979
1980
1981/**
1982 * Forced flag notification call from VMEmt.cpp.
1983 *
1984 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
1985 *
1986 * @param pVM The cross context VM structure.
1987 * @param pVCpu The cross context virtual CPU structure of the CPU
1988 * to be notified.
1989 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
1990 */
1991void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
1992{
1993 int rc = RTThreadPoke(pVCpu->hThread);
1994 LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc));
1995 AssertRC(rc);
1996 RT_NOREF(pVM, fFlags);
1997}
1998
1999
2000/**
2001 * Deals with pending interrupt FFs prior to executing guest code.
2002 */
2003static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun)
2004{
2005 RT_NOREF_PV(pVM);
2006
2007 /*
2008 * Do not doing anything if TRPM has something pending already as we can
2009 * only inject one event per KVM_RUN call. This can only happend if we
2010 * can directly from the loop in EM, so the inhibit bits must be internal.
2011 */
2012 if (!TRPMHasTrap(pVCpu))
2013 { /* semi likely */ }
2014 else
2015 {
2016 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)));
2017 Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n"));
2018 return VINF_SUCCESS;
2019 }
2020
2021 /*
2022 * First update APIC. We ASSUME this won't need TPR/CR8.
2023 */
2024 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
2025 {
2026 APICUpdatePendingInterrupts(pVCpu);
2027 if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
2028 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2029 return VINF_SUCCESS;
2030 }
2031
2032 /*
2033 * We don't currently implement SMIs.
2034 */
2035 AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
2036
2037 /*
2038 * In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states
2039 * are tied together with interrupt and NMI delivery, so we must get and
2040 * synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags.
2041 * If we don't we may lose the interrupt/NMI we marked pending here when the
2042 * state is exported again before execution.
2043 */
2044 struct kvm_vcpu_events KvmEvents = {0};
2045 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
2046 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2047
2048 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP))
2049 pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip;
2050
2051 KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW;
2052 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT))
2053 {
2054 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2055 KvmEvents.interrupt.shadow = 0;
2056 else if (EMGetInhibitInterruptsPC(pVCpu) == pRun->s.regs.regs.rip)
2057 KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI;
2058 else
2059 {
2060 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2061 KvmEvents.interrupt.shadow = 0;
2062 }
2063 }
2064 else if (KvmEvents.interrupt.shadow)
2065 EMSetInhibitInterruptsPC(pVCpu, pRun->s.regs.regs.rip);
2066 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2067 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2068
2069 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI))
2070 KvmEvents.nmi.masked = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS) ? 1 : 0;
2071 else if (KvmEvents.nmi.masked)
2072 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
2073 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
2074 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
2075
2076 /* KVM will own the INT + NMI inhibit state soon: */
2077 pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK)
2078 | CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
2079
2080 /*
2081 * NMI? Try deliver it first.
2082 */
2083 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
2084 {
2085#if 0
2086 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL);
2087 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2088#else
2089 KvmEvents.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2090 KvmEvents.nmi.pending = 1;
2091#endif
2092 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2093 Log8(("Queuing NMI on %u\n", pVCpu->idCpu));
2094 }
2095
2096 /*
2097 * APIC or PIC interrupt?
2098 */
2099 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2100 {
2101 if (pRun->s.regs.regs.rflags & X86_EFL_IF)
2102 {
2103 if (KvmEvents.interrupt.shadow == 0)
2104 {
2105 /*
2106 * If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will
2107 * work correctly.
2108 */
2109 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR)
2110 APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4);
2111
2112 uint8_t bInterrupt;
2113 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
2114 if (RT_SUCCESS(rc))
2115 {
2116 Assert(KvmEvents.interrupt.injected == false);
2117#if 0
2118 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt);
2119 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2120#else
2121 KvmEvents.interrupt.nr = bInterrupt;
2122 KvmEvents.interrupt.soft = false;
2123 KvmEvents.interrupt.injected = true;
2124#endif
2125 Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu,
2126 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags));
2127 }
2128 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */
2129 Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */
2130 else
2131 Log8(("PDMGetInterrupt failed -> %Rrc\n", rc));
2132 }
2133 else
2134 {
2135 pRun->request_interrupt_window = 1;
2136 Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu));
2137 }
2138 }
2139 else
2140 {
2141 pRun->request_interrupt_window = 1;
2142 Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu));
2143 }
2144 }
2145
2146 /*
2147 * Now, update the state.
2148 */
2149 /** @todo skip when possible... */
2150 rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
2151 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2152
2153 return VINF_SUCCESS;
2154}
2155
2156
2157/**
2158 * Handles KVM_EXIT_INTERNAL_ERROR.
2159 */
2160static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun)
2161{
2162 Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror,
2163 pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
2164
2165 /*
2166 * Deal with each suberror, returning if we don't want IEM to handle it.
2167 */
2168 switch (pRun->internal.suberror)
2169 {
2170 case KVM_INTERNAL_ERROR_EMULATION:
2171 {
2172 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_EMULATION),
2173 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2174 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation);
2175 break;
2176 }
2177
2178 case KVM_INTERNAL_ERROR_SIMUL_EX:
2179 case KVM_INTERNAL_ERROR_DELIVERY_EV:
2180 case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON:
2181 default:
2182 {
2183 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_FATAL),
2184 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2185 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal);
2186 const char *pszName;
2187 switch (pRun->internal.suberror)
2188 {
2189 case KVM_INTERNAL_ERROR_EMULATION: pszName = "KVM_INTERNAL_ERROR_EMULATION"; break;
2190 case KVM_INTERNAL_ERROR_SIMUL_EX: pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break;
2191 case KVM_INTERNAL_ERROR_DELIVERY_EV: pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break;
2192 case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break;
2193 default: pszName = "unknown"; break;
2194 }
2195 LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName,
2196 pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
2197 return VERR_NEM_IPE_0;
2198 }
2199 }
2200
2201 /*
2202 * Execute instruction in IEM and try get on with it.
2203 */
2204 Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n",
2205 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip));
2206 VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu,
2207 IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT
2208 | CPUMCTX_EXTRN_INHIBIT_NMI,
2209 &pVCpu->cpum.GstCtx, pRun);
2210 if (RT_SUCCESS(rcStrict))
2211 rcStrict = IEMExecOne(pVCpu);
2212 return rcStrict;
2213}
2214
2215
2216/**
2217 * Handles KVM_EXIT_IO.
2218 */
2219static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
2220{
2221 /*
2222 * Input validation.
2223 */
2224 Assert(pRun->io.count > 0);
2225 Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4);
2226 Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT);
2227 Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap);
2228 Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap);
2229
2230 /*
2231 * We cannot easily act on the exit history here, because the I/O port
2232 * exit is stateful and the instruction will be completed in the next
2233 * KVM_RUN call. There seems no way to avoid this.
2234 */
2235 EMHistoryAddExit(pVCpu,
2236 pRun->io.count == 1
2237 ? ( pRun->io.direction == KVM_EXIT_IO_IN
2238 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ)
2239 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE))
2240 : ( pRun->io.direction == KVM_EXIT_IO_IN
2241 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)
2242 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)),
2243 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2244
2245 /*
2246 * Do the requested job.
2247 */
2248 VBOXSTRICTRC rcStrict;
2249 RTPTRUNION uPtrData;
2250 uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset;
2251 if (pRun->io.count == 1)
2252 {
2253 if (pRun->io.direction == KVM_EXIT_IO_IN)
2254 {
2255 uint32_t uValue = 0;
2256 rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size);
2257 Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
2258 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2259 pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2260 if (IOM_SUCCESS(rcStrict))
2261 {
2262 if (pRun->io.size == 4)
2263 *uPtrData.pu32 = uValue;
2264 else if (pRun->io.size == 2)
2265 *uPtrData.pu16 = (uint16_t)uValue;
2266 else
2267 *uPtrData.pu8 = (uint8_t)uValue;
2268 }
2269 }
2270 else
2271 {
2272 uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32
2273 : pRun->io.size == 2 ? *uPtrData.pu16
2274 : *uPtrData.pu8;
2275 rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size);
2276 Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
2277 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2278 pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) ));
2279 }
2280 }
2281 else
2282 {
2283 uint32_t cTransfers = pRun->io.count;
2284 if (pRun->io.direction == KVM_EXIT_IO_IN)
2285 {
2286 rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
2287 Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
2288 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2289 pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
2290 }
2291 else
2292 {
2293 rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
2294 Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
2295 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2296 pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
2297 }
2298 Assert(cTransfers == 0);
2299 }
2300 return rcStrict;
2301}
2302
2303
2304/**
2305 * Handles KVM_EXIT_MMIO.
2306 */
2307static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
2308{
2309 /*
2310 * Input validation.
2311 */
2312 Assert(pRun->mmio.len <= sizeof(pRun->mmio.data));
2313 Assert(pRun->mmio.is_write <= 1);
2314
2315 /*
2316 * We cannot easily act on the exit history here, because the MMIO port
2317 * exit is stateful and the instruction will be completed in the next
2318 * KVM_RUN call. There seems no way to circumvent this.
2319 */
2320 EMHistoryAddExit(pVCpu,
2321 pRun->mmio.is_write
2322 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
2323 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
2324 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2325
2326 /*
2327 * Do the requested job.
2328 */
2329 VBOXSTRICTRC rcStrict;
2330 if (pRun->mmio.is_write)
2331 {
2332 rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
2333 Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n",
2334 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2335 pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
2336 }
2337 else
2338 {
2339 rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
2340 Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n",
2341 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2342 pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
2343 }
2344 return rcStrict;
2345}
2346
2347
2348/**
2349 * Handles KVM_EXIT_RDMSR
2350 */
2351static VBOXSTRICTRC nemHCLnxHandleExitRdMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
2352{
2353 /*
2354 * Input validation.
2355 */
2356 Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
2357 || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
2358 || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
2359
2360 /*
2361 * We cannot easily act on the exit history here, because the MSR exit is
2362 * stateful and the instruction will be completed in the next KVM_RUN call.
2363 * There seems no way to circumvent this.
2364 */
2365 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
2366 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2367
2368 /*
2369 * Do the requested job.
2370 */
2371 uint64_t uValue = 0;
2372 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRun->msr.index, &uValue);
2373 pRun->msr.data = uValue;
2374 if (rcStrict != VERR_CPUM_RAISE_GP_0)
2375 {
2376 Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason=%#x) -> %#RX64 rcStrict=%Rrc\n", pVCpu->idCpu,
2377 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2378 pRun->msr.error = 0;
2379 }
2380 else
2381 {
2382 Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason%#x)-> %#RX64 rcStrict=#GP!\n", pVCpu->idCpu,
2383 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue));
2384 pRun->msr.error = 1;
2385 rcStrict = VINF_SUCCESS;
2386 }
2387 return rcStrict;
2388}
2389
2390
2391/**
2392 * Handles KVM_EXIT_WRMSR
2393 */
2394static VBOXSTRICTRC nemHCLnxHandleExitWrMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
2395{
2396 /*
2397 * Input validation.
2398 */
2399 Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
2400 || pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
2401 || pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
2402
2403 /*
2404 * We cannot easily act on the exit history here, because the MSR exit is
2405 * stateful and the instruction will be completed in the next KVM_RUN call.
2406 * There seems no way to circumvent this.
2407 */
2408 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE),
2409 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2410
2411 /*
2412 * Do the requested job.
2413 */
2414 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRun->msr.index, pRun->msr.data);
2415 if (rcStrict != VERR_CPUM_RAISE_GP_0)
2416 {
2417 Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason=%#x) -> rcStrict=%Rrc\n", pVCpu->idCpu,
2418 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason, VBOXSTRICTRC_VAL(rcStrict) ));
2419 pRun->msr.error = 0;
2420 }
2421 else
2422 {
2423 Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason%#x)-> rcStrict=#GP!\n", pVCpu->idCpu,
2424 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason));
2425 pRun->msr.error = 1;
2426 rcStrict = VINF_SUCCESS;
2427 }
2428 return rcStrict;
2429}
2430
2431
2432
2433static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun, bool *pfStatefulExit)
2434{
2435 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal);
2436 switch (pRun->exit_reason)
2437 {
2438 case KVM_EXIT_EXCEPTION:
2439 AssertFailed();
2440 break;
2441
2442 case KVM_EXIT_IO:
2443 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo);
2444 *pfStatefulExit = true;
2445 return nemHCLnxHandleExitIo(pVM, pVCpu, pRun);
2446
2447 case KVM_EXIT_MMIO:
2448 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio);
2449 *pfStatefulExit = true;
2450 return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun);
2451
2452 case KVM_EXIT_IRQ_WINDOW_OPEN:
2453 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
2454 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2455 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen);
2456 Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window));
2457 pRun->request_interrupt_window = 0;
2458 return VINF_SUCCESS;
2459
2460 case KVM_EXIT_SET_TPR:
2461 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr);
2462 AssertFailed();
2463 break;
2464
2465 case KVM_EXIT_TPR_ACCESS:
2466 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess);
2467 AssertFailed();
2468 break;
2469
2470 case KVM_EXIT_X86_RDMSR:
2471 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr);
2472 *pfStatefulExit = true;
2473 return nemHCLnxHandleExitRdMsr(pVCpu, pRun);
2474
2475 case KVM_EXIT_X86_WRMSR:
2476 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr);
2477 *pfStatefulExit = true;
2478 return nemHCLnxHandleExitWrMsr(pVCpu, pRun);
2479
2480 case KVM_EXIT_HLT:
2481 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
2482 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2483 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
2484 Log5(("Halt/%u\n", pVCpu->idCpu));
2485 return VINF_EM_HALT;
2486
2487 case KVM_EXIT_INTR: /* EINTR */
2488 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERRUPTED),
2489 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2490 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr);
2491 Log5(("Intr/%u\n", pVCpu->idCpu));
2492 return VINF_SUCCESS;
2493
2494 case KVM_EXIT_HYPERCALL:
2495 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall);
2496 AssertFailed();
2497 break;
2498
2499 case KVM_EXIT_DEBUG:
2500 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug);
2501 AssertFailed();
2502 break;
2503
2504 case KVM_EXIT_SYSTEM_EVENT:
2505 AssertFailed();
2506 break;
2507 case KVM_EXIT_IOAPIC_EOI:
2508 AssertFailed();
2509 break;
2510 case KVM_EXIT_HYPERV:
2511 AssertFailed();
2512 break;
2513
2514 case KVM_EXIT_DIRTY_RING_FULL:
2515 AssertFailed();
2516 break;
2517 case KVM_EXIT_AP_RESET_HOLD:
2518 AssertFailed();
2519 break;
2520 case KVM_EXIT_X86_BUS_LOCK:
2521 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock);
2522 AssertFailed();
2523 break;
2524
2525
2526 case KVM_EXIT_SHUTDOWN:
2527 AssertFailed();
2528 break;
2529
2530 case KVM_EXIT_FAIL_ENTRY:
2531 LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n",
2532 pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu));
2533 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_FAILED_ENTRY),
2534 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2535 return VERR_NEM_IPE_1;
2536
2537 case KVM_EXIT_INTERNAL_ERROR:
2538 /* we're counting sub-reasons inside the function. */
2539 return nemR3LnxHandleInternalError(pVCpu, pRun);
2540
2541 /*
2542 * Foreign and unknowns.
2543 */
2544 case KVM_EXIT_NMI:
2545 AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2546 case KVM_EXIT_EPR:
2547 AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2548 case KVM_EXIT_WATCHDOG:
2549 AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2550 case KVM_EXIT_ARM_NISV:
2551 AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2552 case KVM_EXIT_S390_STSI:
2553 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2554 case KVM_EXIT_S390_TSCH:
2555 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2556 case KVM_EXIT_OSI:
2557 AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2558 case KVM_EXIT_PAPR_HCALL:
2559 AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2560 case KVM_EXIT_S390_UCONTROL:
2561 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2562 case KVM_EXIT_DCR:
2563 AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2564 case KVM_EXIT_S390_SIEIC:
2565 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2566 case KVM_EXIT_S390_RESET:
2567 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2568 case KVM_EXIT_UNKNOWN:
2569 AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2570 case KVM_EXIT_XEN:
2571 AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2572 default:
2573 AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2574 }
2575
2576 RT_NOREF(pVM, pVCpu, pRun);
2577 return VERR_NOT_IMPLEMENTED;
2578}
2579
2580
2581VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2582{
2583 /*
2584 * Try switch to NEM runloop state.
2585 */
2586 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2587 { /* likely */ }
2588 else
2589 {
2590 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2591 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2592 return VINF_SUCCESS;
2593 }
2594
2595 /*
2596 * The run loop.
2597 */
2598 struct kvm_run * const pRun = pVCpu->nem.s.pRun;
2599 const bool fSingleStepping = DBGFIsStepping(pVCpu);
2600 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2601 bool fStatefulExit = false; /* For MMIO and IO exits. */
2602 for (unsigned iLoop = 0;; iLoop++)
2603 {
2604 /*
2605 * Pending interrupts or such? Need to check and deal with this prior
2606 * to the state syncing.
2607 */
2608 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
2609 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2610 {
2611 /* Try inject interrupt. */
2612 rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun);
2613 if (rcStrict == VINF_SUCCESS)
2614 { /* likely */ }
2615 else
2616 {
2617 LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2618 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2619 break;
2620 }
2621 }
2622
2623 /*
2624 * Do not execute in KVM if the A20 isn't enabled.
2625 */
2626 if (PGMPhysIsA20Enabled(pVCpu))
2627 { /* likely */ }
2628 else
2629 {
2630 rcStrict = VINF_EM_RESCHEDULE_REM;
2631 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
2632 break;
2633 }
2634
2635 /*
2636 * Ensure KVM has the whole state.
2637 */
2638 if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL)
2639 {
2640 int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun);
2641 AssertRCReturn(rc2, rc2);
2642 }
2643
2644 /*
2645 * Poll timers and run for a bit.
2646 *
2647 * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
2648 * so we take the time of the next timer event and uses that as a deadline.
2649 * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
2650 */
2651 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2652 * the whole polling job when timers have changed... */
2653 uint64_t offDeltaIgnored;
2654 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2655 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2656 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2657 {
2658 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
2659 {
2660 LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n",
2661 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2662 !!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags,
2663 pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0));
2664 TMNotifyStartOfExecution(pVM, pVCpu);
2665
2666 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
2667
2668 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
2669 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
2670
2671#ifdef LOG_ENABLED
2672 if (LogIsFlowEnabled())
2673 {
2674 struct kvm_mp_state MpState = {UINT32_MAX};
2675 ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState);
2676 LogFlow(("NEM/%u: Exit @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu,
2677 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag,
2678 pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason,
2679 pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state));
2680 }
2681#endif
2682 fStatefulExit = false;
2683 if (RT_LIKELY(rcLnx == 0 || errno == EINTR))
2684 {
2685 /*
2686 * Deal with the exit.
2687 */
2688 rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
2689 if (rcStrict == VINF_SUCCESS)
2690 { /* hopefully likely */ }
2691 else
2692 {
2693 LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2694 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2695 break;
2696 }
2697 }
2698 else
2699 {
2700 int rc2 = RTErrConvertFromErrno(errno);
2701 AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2);
2702 }
2703
2704 /*
2705 * If no relevant FFs are pending, loop.
2706 */
2707 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2708 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2709 { /* likely */ }
2710 else
2711 {
2712
2713 /** @todo Try handle pending flags, not just return to EM loops. Take care
2714 * not to set important RCs here unless we've handled an exit. */
2715 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
2716 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
2717 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
2718 break;
2719 }
2720 }
2721 else
2722 {
2723 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
2724 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
2725 break;
2726 }
2727 }
2728 else
2729 {
2730 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
2731 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
2732 break;
2733 }
2734 } /* the run loop */
2735
2736
2737 /*
2738 * If the last exit was stateful, commit the state we provided before
2739 * returning to the EM loop so we have a consistent state and can safely
2740 * be rescheduled and whatnot. This may require us to make multiple runs
2741 * for larger MMIO and I/O operations. Sigh^3.
2742 *
2743 * Note! There is no 'ing way to reset the kernel side completion callback
2744 * for these stateful i/o exits. Very annoying interface.
2745 */
2746 /** @todo check how this works with string I/O and string MMIO. */
2747 if (fStatefulExit && RT_SUCCESS(rcStrict))
2748 {
2749 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn);
2750 uint32_t const uOrgExit = pRun->exit_reason;
2751 for (uint32_t i = 0; ; i++)
2752 {
2753 pRun->immediate_exit = 1;
2754 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
2755 Log(("NEM/%u: Flushed stateful exit -> %d/%d exit_reason=%d\n", pVCpu->idCpu, rcLnx, errno, pRun->exit_reason));
2756 if (rcLnx == -1 && errno == EINTR)
2757 {
2758 switch (i)
2759 {
2760 case 0: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn1Loop); break;
2761 case 1: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn2Loops); break;
2762 case 2: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn3Loops); break;
2763 default: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn4PlusLoops); break;
2764 }
2765 break;
2766 }
2767 AssertLogRelMsgBreakStmt(rcLnx == 0 && pRun->exit_reason == uOrgExit,
2768 ("rcLnx=%d errno=%d exit_reason=%d uOrgExit=%d\n", rcLnx, errno, pRun->exit_reason, uOrgExit),
2769 rcStrict = VERR_NEM_IPE_6);
2770 VBOXSTRICTRC rcStrict2 = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
2771 if (rcStrict2 == VINF_SUCCESS || rcStrict2 == rcStrict)
2772 { /* likely */ }
2773 else if (RT_FAILURE(rcStrict2))
2774 {
2775 rcStrict = rcStrict2;
2776 break;
2777 }
2778 else
2779 {
2780 AssertLogRelMsgBreakStmt(rcStrict == VINF_SUCCESS,
2781 ("rcStrict=%Rrc rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2)),
2782 rcStrict = VERR_NEM_IPE_7);
2783 rcStrict = rcStrict2;
2784 }
2785 }
2786 pRun->immediate_exit = 0;
2787 }
2788
2789 /*
2790 * If the CPU is running, make sure to stop it before we try sync back the
2791 * state and return to EM. We don't sync back the whole state if we can help it.
2792 */
2793 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2794 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2795
2796 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)
2797 {
2798 /* Try anticipate what we might need. */
2799 uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */
2800 | IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/;
2801 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2802 || RT_FAILURE(rcStrict))
2803 fImport = CPUMCTX_EXTRN_ALL;
2804# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
2805 else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
2806 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
2807 fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
2808 else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
2809 fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
2810# endif
2811 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
2812 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2813 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2814
2815 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2816 {
2817 int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun);
2818 if (RT_SUCCESS(rc2))
2819 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2820 else if (RT_SUCCESS(rcStrict))
2821 rcStrict = rc2;
2822 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
2823 pVCpu->cpum.GstCtx.fExtrn = 0;
2824 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2825 }
2826 else
2827 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2828 }
2829 else
2830 {
2831 pVCpu->cpum.GstCtx.fExtrn = 0;
2832 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2833 }
2834
2835 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
2836 pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2837 return rcStrict;
2838}
2839
2840
2841/** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux.
2842 *
2843 * This is using KVM.
2844 *
2845 */
2846
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette