VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-win.cpp@ 71612

Last change on this file since 71612 was 71297, checked in by vboxsync, 7 years ago

NEM: Some more 17115 fixes and noted down an issue (possibly not at all new). bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 118.0 KB
Line 
1/* $Id: NEMR3Native-win.cpp 71297 2018-03-10 06:02:02Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 Windows backend.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 * Log group 6: Ring-0 memory management
9 * Log group 12: API intercepts.
10 */
11
12/*
13 * Copyright (C) 2018 Oracle Corporation
14 *
15 * This file is part of VirtualBox Open Source Edition (OSE), as
16 * available from http://www.virtualbox.org. This file is free software;
17 * you can redistribute it and/or modify it under the terms of the GNU
18 * General Public License (GPL) as published by the Free Software
19 * Foundation, in version 2 as it comes in the "COPYING" file of the
20 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
21 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
22 */
23
24
25/*********************************************************************************************************************************
26* Header Files *
27*********************************************************************************************************************************/
28#define LOG_GROUP LOG_GROUP_NEM
29#include <iprt/nt/nt-and-windows.h>
30#include <iprt/nt/hyperv.h>
31#include <iprt/nt/vid.h>
32#include <WinHvPlatform.h>
33
34#ifndef _WIN32_WINNT_WIN10
35# error "Missing _WIN32_WINNT_WIN10"
36#endif
37#ifndef _WIN32_WINNT_WIN10_RS1 /* Missing define, causing trouble for us. */
38# define _WIN32_WINNT_WIN10_RS1 (_WIN32_WINNT_WIN10 + 1)
39#endif
40#include <sysinfoapi.h>
41#include <debugapi.h>
42#include <errhandlingapi.h>
43#include <fileapi.h>
44#include <winerror.h> /* no api header for this. */
45
46#include <VBox/vmm/nem.h>
47#include <VBox/vmm/iem.h>
48#include <VBox/vmm/em.h>
49#include <VBox/vmm/apic.h>
50#include "NEMInternal.h"
51#include <VBox/vmm/vm.h>
52
53#include <iprt/ldr.h>
54#include <iprt/path.h>
55#include <iprt/string.h>
56#include <iprt/system.h>
57
58
59/*********************************************************************************************************************************
60* Defined Constants And Macros *
61*********************************************************************************************************************************/
62#ifdef LOG_ENABLED
63# define NEM_WIN_INTERCEPT_NT_IO_CTLS
64#endif
65
66/** VID I/O control detection: Fake partition handle input. */
67#define NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE ((HANDLE)(uintptr_t)38479125)
68/** VID I/O control detection: Fake partition ID return. */
69#define NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID UINT64_C(0xfa1e000042424242)
70/** VID I/O control detection: Fake CPU index input. */
71#define NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX UINT32_C(42)
72/** VID I/O control detection: Fake timeout input. */
73#define NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT UINT32_C(0x00080286)
74
75
76/*********************************************************************************************************************************
77* Structures and Typedefs *
78*********************************************************************************************************************************/
79#ifndef NEM_WIN_USE_17110_PLUS_WDK
80typedef HRESULT (WINAPI *PFNWHVGETCAPABILITY_17110)(WHV_CAPABILITY_CODE, void *, uint32_t, uint32_t *);
81typedef HRESULT (WINAPI *PFNWHVSETPARTITIONPROPERTY_17110)(WHV_PARTITION_HANDLE, WHV_PARTITION_PROPERTY_CODE, void *, uint32_t);
82#endif
83
84
85/*********************************************************************************************************************************
86* Global Variables *
87*********************************************************************************************************************************/
88/** @name APIs imported from WinHvPlatform.dll
89 * @{ */
90static decltype(WHvGetCapability) * g_pfnWHvGetCapability;
91static decltype(WHvCreatePartition) * g_pfnWHvCreatePartition;
92static decltype(WHvSetupPartition) * g_pfnWHvSetupPartition;
93static decltype(WHvDeletePartition) * g_pfnWHvDeletePartition;
94static decltype(WHvGetPartitionProperty) * g_pfnWHvGetPartitionProperty;
95static decltype(WHvSetPartitionProperty) * g_pfnWHvSetPartitionProperty;
96static decltype(WHvMapGpaRange) * g_pfnWHvMapGpaRange;
97static decltype(WHvUnmapGpaRange) * g_pfnWHvUnmapGpaRange;
98static decltype(WHvTranslateGva) * g_pfnWHvTranslateGva;
99#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
100static decltype(WHvCreateVirtualProcessor) * g_pfnWHvCreateVirtualProcessor;
101static decltype(WHvDeleteVirtualProcessor) * g_pfnWHvDeleteVirtualProcessor;
102static decltype(WHvRunVirtualProcessor) * g_pfnWHvRunVirtualProcessor;
103static decltype(WHvCancelRunVirtualProcessor) * g_pfnWHvCancelRunVirtualProcessor;
104static decltype(WHvGetVirtualProcessorRegisters) * g_pfnWHvGetVirtualProcessorRegisters;
105static decltype(WHvSetVirtualProcessorRegisters) * g_pfnWHvSetVirtualProcessorRegisters;
106#endif
107/** @} */
108
109/** @name APIs imported from Vid.dll
110 * @{ */
111static decltype(VidGetHvPartitionId) *g_pfnVidGetHvPartitionId;
112static decltype(VidStartVirtualProcessor) *g_pfnVidStartVirtualProcessor;
113static decltype(VidStopVirtualProcessor) *g_pfnVidStopVirtualProcessor;
114static decltype(VidMessageSlotMap) *g_pfnVidMessageSlotMap;
115static decltype(VidMessageSlotHandleAndGetNext) *g_pfnVidMessageSlotHandleAndGetNext;
116#ifdef LOG_ENABLED
117static decltype(VidGetVirtualProcessorState) *g_pfnVidGetVirtualProcessorState;
118static decltype(VidSetVirtualProcessorState) *g_pfnVidSetVirtualProcessorState;
119static decltype(VidGetVirtualProcessorRunningStatus) *g_pfnVidGetVirtualProcessorRunningStatus;
120#endif
121/** @} */
122
123/** The Windows build number. */
124static uint32_t g_uBuildNo = 17110;
125
126
127
128/**
129 * Import instructions.
130 */
131static const struct
132{
133 uint8_t idxDll; /**< 0 for WinHvPlatform.dll, 1 for vid.dll. */
134 bool fOptional; /**< Set if import is optional. */
135 PFNRT *ppfn; /**< The function pointer variable. */
136 const char *pszName; /**< The function name. */
137} g_aImports[] =
138{
139#define NEM_WIN_IMPORT(a_idxDll, a_fOptional, a_Name) { (a_idxDll), (a_fOptional), (PFNRT *)&RT_CONCAT(g_pfn,a_Name), #a_Name }
140 NEM_WIN_IMPORT(0, false, WHvGetCapability),
141 NEM_WIN_IMPORT(0, false, WHvCreatePartition),
142 NEM_WIN_IMPORT(0, false, WHvSetupPartition),
143 NEM_WIN_IMPORT(0, false, WHvDeletePartition),
144 NEM_WIN_IMPORT(0, false, WHvGetPartitionProperty),
145 NEM_WIN_IMPORT(0, false, WHvSetPartitionProperty),
146 NEM_WIN_IMPORT(0, false, WHvMapGpaRange),
147 NEM_WIN_IMPORT(0, false, WHvUnmapGpaRange),
148 NEM_WIN_IMPORT(0, false, WHvTranslateGva),
149#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
150 NEM_WIN_IMPORT(0, false, WHvCreateVirtualProcessor),
151 NEM_WIN_IMPORT(0, false, WHvDeleteVirtualProcessor),
152 NEM_WIN_IMPORT(0, false, WHvRunVirtualProcessor),
153 NEM_WIN_IMPORT(0, false, WHvCancelRunVirtualProcessor),
154 NEM_WIN_IMPORT(0, false, WHvGetVirtualProcessorRegisters),
155 NEM_WIN_IMPORT(0, false, WHvSetVirtualProcessorRegisters),
156#endif
157 NEM_WIN_IMPORT(1, false, VidGetHvPartitionId),
158 NEM_WIN_IMPORT(1, false, VidMessageSlotMap),
159 NEM_WIN_IMPORT(1, false, VidMessageSlotHandleAndGetNext),
160 NEM_WIN_IMPORT(1, false, VidStartVirtualProcessor),
161 NEM_WIN_IMPORT(1, false, VidStopVirtualProcessor),
162#ifdef LOG_ENABLED
163 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorState),
164 NEM_WIN_IMPORT(1, false, VidSetVirtualProcessorState),
165 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorRunningStatus),
166#endif
167#undef NEM_WIN_IMPORT
168};
169
170
171/** The real NtDeviceIoControlFile API in NTDLL. */
172static decltype(NtDeviceIoControlFile) *g_pfnNtDeviceIoControlFile;
173/** Pointer to the NtDeviceIoControlFile import table entry. */
174static decltype(NtDeviceIoControlFile) **g_ppfnVidNtDeviceIoControlFile;
175/** Info about the VidGetHvPartitionId I/O control interface. */
176static NEMWINIOCTL g_IoCtlGetHvPartitionId;
177/** Info about the VidStartVirtualProcessor I/O control interface. */
178static NEMWINIOCTL g_IoCtlStartVirtualProcessor;
179/** Info about the VidStopVirtualProcessor I/O control interface. */
180static NEMWINIOCTL g_IoCtlStopVirtualProcessor;
181/** Info about the VidMessageSlotHandleAndGetNext I/O control interface. */
182static NEMWINIOCTL g_IoCtlMessageSlotHandleAndGetNext;
183#ifdef LOG_ENABLED
184/** Info about the VidMessageSlotMap I/O control interface - for logging. */
185static NEMWINIOCTL g_IoCtlMessageSlotMap;
186/* Info about the VidGetVirtualProcessorState I/O control interface - for logging. */
187static NEMWINIOCTL g_IoCtlGetVirtualProcessorState;
188/* Info about the VidSetVirtualProcessorState I/O control interface - for logging. */
189static NEMWINIOCTL g_IoCtlSetVirtualProcessorState;
190/** Pointer to what nemR3WinIoctlDetector_ForLogging should fill in. */
191static NEMWINIOCTL *g_pIoCtlDetectForLogging;
192#endif
193
194#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
195/** Mapping slot for CPU #0.
196 * @{ */
197static VID_MESSAGE_MAPPING_HEADER *g_pMsgSlotMapping = NULL;
198static const HV_MESSAGE_HEADER *g_pHvMsgHdr;
199static const HV_X64_INTERCEPT_MESSAGE_HEADER *g_pX64MsgHdr;
200/** @} */
201#endif
202
203
204/*
205 * Let the preprocessor alias the APIs to import variables for better autocompletion.
206 */
207#ifndef IN_SLICKEDIT
208# define WHvGetCapability g_pfnWHvGetCapability
209# define WHvCreatePartition g_pfnWHvCreatePartition
210# define WHvSetupPartition g_pfnWHvSetupPartition
211# define WHvDeletePartition g_pfnWHvDeletePartition
212# define WHvGetPartitionProperty g_pfnWHvGetPartitionProperty
213# define WHvSetPartitionProperty g_pfnWHvSetPartitionProperty
214# define WHvMapGpaRange g_pfnWHvMapGpaRange
215# define WHvUnmapGpaRange g_pfnWHvUnmapGpaRange
216# define WHvTranslateGva g_pfnWHvTranslateGva
217# define WHvCreateVirtualProcessor g_pfnWHvCreateVirtualProcessor
218# define WHvDeleteVirtualProcessor g_pfnWHvDeleteVirtualProcessor
219# define WHvRunVirtualProcessor g_pfnWHvRunVirtualProcessor
220# define WHvGetRunExitContextSize g_pfnWHvGetRunExitContextSize
221# define WHvCancelRunVirtualProcessor g_pfnWHvCancelRunVirtualProcessor
222# define WHvGetVirtualProcessorRegisters g_pfnWHvGetVirtualProcessorRegisters
223# define WHvSetVirtualProcessorRegisters g_pfnWHvSetVirtualProcessorRegisters
224
225# define VidMessageSlotHandleAndGetNext g_pfnVidMessageSlotHandleAndGetNext
226# define VidStartVirtualProcessor g_pfnVidStartVirtualProcessor
227# define VidStopVirtualProcessor g_pfnVidStopVirtualProcessor
228
229#endif
230
231/** WHV_MEMORY_ACCESS_TYPE names */
232static const char * const g_apszWHvMemAccesstypes[4] = { "read", "write", "exec", "!undefined!" };
233
234
235/*********************************************************************************************************************************
236* Internal Functions *
237*********************************************************************************************************************************/
238
239/*
240 * Instantate the code we share with ring-0.
241 */
242#include "../VMMAll/NEMAllNativeTemplate-win.cpp.h"
243
244
245
246#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
247/**
248 * Wrapper that logs the call from VID.DLL.
249 *
250 * This is very handy for figuring out why an API call fails.
251 */
252static NTSTATUS WINAPI
253nemR3WinLogWrapper_NtDeviceIoControlFile(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
254 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
255 PVOID pvOutput, ULONG cbOutput)
256{
257
258 char szFunction[32];
259 const char *pszFunction;
260 if (uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction)
261 pszFunction = "VidMessageSlotHandleAndGetNext";
262 else if (uFunction == g_IoCtlStartVirtualProcessor.uFunction)
263 pszFunction = "VidStartVirtualProcessor";
264 else if (uFunction == g_IoCtlStopVirtualProcessor.uFunction)
265 pszFunction = "VidStopVirtualProcessor";
266 else if (uFunction == g_IoCtlMessageSlotMap.uFunction)
267 pszFunction = "VidMessageSlotMap";
268 else if (uFunction == g_IoCtlGetVirtualProcessorState.uFunction)
269 pszFunction = "VidGetVirtualProcessorState";
270 else if (uFunction == g_IoCtlSetVirtualProcessorState.uFunction)
271 pszFunction = "VidSetVirtualProcessorState";
272 else
273 {
274 RTStrPrintf(szFunction, sizeof(szFunction), "%#x", uFunction);
275 pszFunction = szFunction;
276 }
277
278 if (cbInput > 0 && pvInput)
279 Log12(("VID!NtDeviceIoControlFile: %s/input: %.*Rhxs\n", pszFunction, RT_MIN(cbInput, 32), pvInput));
280 NTSTATUS rcNt = g_pfnNtDeviceIoControlFile(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, uFunction,
281 pvInput, cbInput, pvOutput, cbOutput);
282 if (!hEvt && !pfnApcCallback && !pvApcCtx)
283 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
284 hFile, pIos, pIos->Status, pIos->Information, pszFunction, pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
285 else
286 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx hEvt=%#zx Apc=%p/%p pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
287 hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pIos->Status, pIos->Information, pszFunction,
288 pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
289 if (cbOutput > 0 && pvOutput)
290 {
291 Log12(("VID!NtDeviceIoControlFile: %s/output: %.*Rhxs\n", pszFunction, RT_MIN(cbOutput, 32), pvOutput));
292 if (uFunction == 0x2210cc && g_pMsgSlotMapping == NULL && cbOutput >= sizeof(void *))
293 {
294 g_pMsgSlotMapping = *(VID_MESSAGE_MAPPING_HEADER **)pvOutput;
295 g_pHvMsgHdr = (const HV_MESSAGE_HEADER *)(g_pMsgSlotMapping + 1);
296 g_pX64MsgHdr = (const HV_X64_INTERCEPT_MESSAGE_HEADER *)(g_pHvMsgHdr + 1);
297 Log12(("VID!NtDeviceIoControlFile: Message slot mapping: %p\n", g_pMsgSlotMapping));
298 }
299 }
300 if ( g_pMsgSlotMapping
301 && ( uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction
302 || uFunction == g_IoCtlStopVirtualProcessor.uFunction
303 || uFunction == g_IoCtlMessageSlotMap.uFunction
304 ))
305 Log12(("VID!NtDeviceIoControlFile: enmVidMsgType=%#x cb=%#x msg=%#x payload=%u cs:rip=%04x:%08RX64 (%s)\n",
306 g_pMsgSlotMapping->enmVidMsgType, g_pMsgSlotMapping->cbMessage,
307 g_pHvMsgHdr->MessageType, g_pHvMsgHdr->PayloadSize,
308 g_pX64MsgHdr->CsSegment.Selector, g_pX64MsgHdr->Rip, pszFunction));
309
310 return rcNt;
311}
312#endif /* NEM_WIN_INTERCEPT_NT_IO_CTLS */
313
314
315/**
316 * Patches the call table of VID.DLL so we can intercept NtDeviceIoControlFile.
317 *
318 * This is for used to figure out the I/O control codes and in logging builds
319 * for logging API calls that WinHvPlatform.dll does.
320 *
321 * @returns VBox status code.
322 * @param hLdrModVid The VID module handle.
323 * @param pErrInfo Where to return additional error information.
324 */
325static int nemR3WinInitVidIntercepts(RTLDRMOD hLdrModVid, PRTERRINFO pErrInfo)
326{
327 /*
328 * Locate the real API.
329 */
330 g_pfnNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) *)RTLdrGetSystemSymbol("NTDLL.DLL", "NtDeviceIoControlFile");
331 AssertReturn(g_pfnNtDeviceIoControlFile != NULL,
332 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to resolve NtDeviceIoControlFile from NTDLL.DLL"));
333
334 /*
335 * Locate the PE header and get what we need from it.
336 */
337 uint8_t const *pbImage = (uint8_t const *)RTLdrGetNativeHandle(hLdrModVid);
338 IMAGE_DOS_HEADER const *pMzHdr = (IMAGE_DOS_HEADER const *)pbImage;
339 AssertReturn(pMzHdr->e_magic == IMAGE_DOS_SIGNATURE,
340 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL mapping doesn't start with MZ signature: %#x", pMzHdr->e_magic));
341 IMAGE_NT_HEADERS const *pNtHdrs = (IMAGE_NT_HEADERS const *)&pbImage[pMzHdr->e_lfanew];
342 AssertReturn(pNtHdrs->Signature == IMAGE_NT_SIGNATURE,
343 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL has invalid PE signaturre: %#x @%#x",
344 pNtHdrs->Signature, pMzHdr->e_lfanew));
345
346 uint32_t const cbImage = pNtHdrs->OptionalHeader.SizeOfImage;
347 IMAGE_DATA_DIRECTORY const ImportDir = pNtHdrs->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
348
349 /*
350 * Walk the import descriptor table looking for NTDLL.DLL.
351 */
352 AssertReturn( ImportDir.Size > 0
353 && ImportDir.Size < cbImage,
354 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory size: %#x", ImportDir.Size));
355 AssertReturn( ImportDir.VirtualAddress > 0
356 && ImportDir.VirtualAddress <= cbImage - ImportDir.Size,
357 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory RVA: %#x", ImportDir.VirtualAddress));
358
359 for (PIMAGE_IMPORT_DESCRIPTOR pImps = (PIMAGE_IMPORT_DESCRIPTOR)&pbImage[ImportDir.VirtualAddress];
360 pImps->Name != 0 && pImps->FirstThunk != 0;
361 pImps++)
362 {
363 AssertReturn(pImps->Name < cbImage,
364 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory entry name: %#x", pImps->Name));
365 const char *pszModName = (const char *)&pbImage[pImps->Name];
366 if (RTStrICmpAscii(pszModName, "ntdll.dll"))
367 continue;
368 AssertReturn(pImps->FirstThunk < cbImage,
369 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
370 AssertReturn(pImps->OriginalFirstThunk < cbImage,
371 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
372
373 /*
374 * Walk the thunks table(s) looking for NtDeviceIoControlFile.
375 */
376 PIMAGE_THUNK_DATA pFirstThunk = (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]; /* update this. */
377 PIMAGE_THUNK_DATA pThunk = pImps->OriginalFirstThunk == 0 /* read from this. */
378 ? (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]
379 : (PIMAGE_THUNK_DATA)&pbImage[pImps->OriginalFirstThunk];
380 while (pThunk->u1.Ordinal != 0)
381 {
382 if (!(pThunk->u1.Ordinal & IMAGE_ORDINAL_FLAG32))
383 {
384 AssertReturn(pThunk->u1.Ordinal > 0 && pThunk->u1.Ordinal < cbImage,
385 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
386
387 const char *pszSymbol = (const char *)&pbImage[(uintptr_t)pThunk->u1.AddressOfData + 2];
388 if (strcmp(pszSymbol, "NtDeviceIoControlFile") == 0)
389 {
390 DWORD fOldProt = PAGE_READONLY;
391 VirtualProtect(&pFirstThunk->u1.Function, sizeof(uintptr_t), PAGE_EXECUTE_READWRITE, &fOldProt);
392 g_ppfnVidNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) **)&pFirstThunk->u1.Function;
393 /* Don't restore the protection here, so we modify the NtDeviceIoControlFile pointer later. */
394 }
395 }
396
397 pThunk++;
398 pFirstThunk++;
399 }
400 }
401
402 if (*g_ppfnVidNtDeviceIoControlFile)
403 {
404#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
405 *g_ppfnVidNtDeviceIoControlFile = nemR3WinLogWrapper_NtDeviceIoControlFile;
406#endif
407 return VINF_SUCCESS;
408 }
409 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to patch NtDeviceIoControlFile import in VID.DLL!");
410}
411
412
413/**
414 * Worker for nemR3NativeInit that probes and load the native API.
415 *
416 * @returns VBox status code.
417 * @param fForced Whether the HMForced flag is set and we should
418 * fail if we cannot initialize.
419 * @param pErrInfo Where to always return error info.
420 */
421static int nemR3WinInitProbeAndLoad(bool fForced, PRTERRINFO pErrInfo)
422{
423 /*
424 * Check that the DLL files we need are present, but without loading them.
425 * We'd like to avoid loading them unnecessarily.
426 */
427 WCHAR wszPath[MAX_PATH + 64];
428 UINT cwcPath = GetSystemDirectoryW(wszPath, MAX_PATH);
429 if (cwcPath >= MAX_PATH || cwcPath < 2)
430 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "GetSystemDirectoryW failed (%#x / %u)", cwcPath, GetLastError());
431
432 if (wszPath[cwcPath - 1] != '\\' || wszPath[cwcPath - 1] != '/')
433 wszPath[cwcPath++] = '\\';
434 RTUtf16CopyAscii(&wszPath[cwcPath], RT_ELEMENTS(wszPath) - cwcPath, "WinHvPlatform.dll");
435 if (GetFileAttributesW(wszPath) == INVALID_FILE_ATTRIBUTES)
436 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "The native API dll was not found (%ls)", wszPath);
437
438 /*
439 * Check that we're in a VM and that the hypervisor identifies itself as Hyper-V.
440 */
441 if (!ASMHasCpuId())
442 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID support");
443 if (!ASMIsValidStdRange(ASMCpuId_EAX(0)))
444 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID leaf #1");
445 if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_HVP))
446 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Not in a hypervisor partition (HVP=0)");
447
448 uint32_t cMaxHyperLeaf = 0;
449 uint32_t uEbx = 0;
450 uint32_t uEcx = 0;
451 uint32_t uEdx = 0;
452 ASMCpuIdExSlow(0x40000000, 0, 0, 0, &cMaxHyperLeaf, &uEbx, &uEcx, &uEdx);
453 if (!ASMIsValidHypervisorRange(cMaxHyperLeaf))
454 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Invalid hypervisor CPUID range (%#x %#x %#x %#x)",
455 cMaxHyperLeaf, uEbx, uEcx, uEdx);
456 if ( uEbx != UINT32_C(0x7263694d) /* Micr */
457 || uEcx != UINT32_C(0x666f736f) /* osof */
458 || uEdx != UINT32_C(0x76482074) /* t Hv */)
459 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
460 "Not Hyper-V CPUID signature: %#x %#x %#x (expected %#x %#x %#x)",
461 uEbx, uEcx, uEdx, UINT32_C(0x7263694d), UINT32_C(0x666f736f), UINT32_C(0x76482074));
462 if (cMaxHyperLeaf < UINT32_C(0x40000005))
463 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Too narrow hypervisor CPUID range (%#x)", cMaxHyperLeaf);
464
465 /** @todo would be great if we could recognize a root partition from the
466 * CPUID info, but I currently don't dare do that. */
467
468 /*
469 * Now try load the DLLs and resolve the APIs.
470 */
471 static const char * const s_apszDllNames[2] = { "WinHvPlatform.dll", "vid.dll" };
472 RTLDRMOD ahMods[2] = { NIL_RTLDRMOD, NIL_RTLDRMOD };
473 int rc = VINF_SUCCESS;
474 for (unsigned i = 0; i < RT_ELEMENTS(s_apszDllNames); i++)
475 {
476 int rc2 = RTLdrLoadSystem(s_apszDllNames[i], true /*fNoUnload*/, &ahMods[i]);
477 if (RT_FAILURE(rc2))
478 {
479 if (!RTErrInfoIsSet(pErrInfo))
480 RTErrInfoSetF(pErrInfo, rc2, "Failed to load API DLL: %s: %Rrc", s_apszDllNames[i], rc2);
481 else
482 RTErrInfoAddF(pErrInfo, rc2, "; %s: %Rrc", s_apszDllNames[i], rc2);
483 ahMods[i] = NIL_RTLDRMOD;
484 rc = VERR_NEM_INIT_FAILED;
485 }
486 }
487 if (RT_SUCCESS(rc))
488 rc = nemR3WinInitVidIntercepts(ahMods[1], pErrInfo);
489 if (RT_SUCCESS(rc))
490 {
491 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
492 {
493 int rc2 = RTLdrGetSymbol(ahMods[g_aImports[i].idxDll], g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
494 if (RT_FAILURE(rc2))
495 {
496 *g_aImports[i].ppfn = NULL;
497
498 LogRel(("NEM: %s: Failed to import %s!%s: %Rrc",
499 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
500 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName, rc2));
501 if (!g_aImports[i].fOptional)
502 {
503 if (RTErrInfoIsSet(pErrInfo))
504 RTErrInfoAddF(pErrInfo, rc2, ", %s!%s",
505 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
506 else
507 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: %s!%s",
508 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
509 Assert(RT_FAILURE(rc));
510 }
511 }
512 }
513 if (RT_SUCCESS(rc))
514 {
515 Assert(!RTErrInfoIsSet(pErrInfo));
516 }
517 }
518
519 for (unsigned i = 0; i < RT_ELEMENTS(ahMods); i++)
520 RTLdrClose(ahMods[i]);
521 return rc;
522}
523
524
525/**
526 * Wrapper for different WHvGetCapability signatures.
527 */
528DECLINLINE(HRESULT) WHvGetCapabilityWrapper(WHV_CAPABILITY_CODE enmCap, WHV_CAPABILITY *pOutput, uint32_t cbOutput)
529{
530#ifdef NEM_WIN_USE_17110_PLUS_WDK
531 return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput, NULL);
532#else
533 if (g_uBuildNo >= 17110)
534 {
535 PFNWHVGETCAPABILITY_17110 pfnNewVersion = (PFNWHVGETCAPABILITY_17110)g_pfnWHvGetCapability;
536 return pfnNewVersion(enmCap, &pOutput->HypervisorPresent, cbOutput - RT_OFFSETOF(WHV_CAPABILITY, HypervisorPresent), NULL);
537 }
538 return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput);
539#endif
540}
541
542
543/**
544 * Worker for nemR3NativeInit that gets the hypervisor capabilities.
545 *
546 * @returns VBox status code.
547 * @param pVM The cross context VM structure.
548 * @param pErrInfo Where to always return error info.
549 */
550static int nemR3WinInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
551{
552#define NEM_LOG_REL_CAP_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %-38s= " a_szFmt "\n", a_szField, a_Value))
553#define NEM_LOG_REL_CAP_SUB_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %36s: " a_szFmt "\n", a_szField, a_Value))
554#define NEM_LOG_REL_CAP_SUB(a_szField, a_Value) NEM_LOG_REL_CAP_SUB_EX(a_szField, "%d", a_Value)
555
556 /*
557 * Is the hypervisor present with the desired capability?
558 *
559 * In build 17083 this translates into:
560 * - CPUID[0x00000001].HVP is set
561 * - CPUID[0x40000000] == "Microsoft Hv"
562 * - CPUID[0x40000001].eax == "Hv#1"
563 * - CPUID[0x40000003].ebx[12] is set.
564 * - VidGetExoPartitionProperty(INVALID_HANDLE_VALUE, 0x60000, &Ignored) returns
565 * a non-zero value.
566 */
567 /**
568 * @todo Someone at Microsoft please explain weird API design:
569 * 1. Pointless CapabilityCode duplication int the output;
570 * 2. No output size.
571 */
572 WHV_CAPABILITY Caps;
573 RT_ZERO(Caps);
574 SetLastError(0);
575 HRESULT hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeHypervisorPresent, &Caps, sizeof(Caps));
576 DWORD rcWin = GetLastError();
577 if (FAILED(hrc))
578 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
579 "WHvGetCapability/WHvCapabilityCodeHypervisorPresent failed: %Rhrc (Last=%#x/%u)",
580 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
581 if (!Caps.HypervisorPresent)
582 {
583 if (!RTPathExists(RTPATH_NT_PASSTHRU_PREFIX "Device\\VidExo"))
584 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
585 "WHvCapabilityCodeHypervisorPresent is FALSE! Make sure you have enabled the 'Windows Hypervisor Platform' feature.");
586 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "WHvCapabilityCodeHypervisorPresent is FALSE! (%u)", rcWin);
587 }
588 LogRel(("NEM: WHvCapabilityCodeHypervisorPresent is TRUE, so this might work...\n"));
589
590
591 /*
592 * Check what extended VM exits are supported.
593 */
594 RT_ZERO(Caps);
595 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExtendedVmExits, &Caps, sizeof(Caps));
596 if (FAILED(hrc))
597 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
598 "WHvGetCapability/WHvCapabilityCodeExtendedVmExits failed: %Rhrc (Last=%#x/%u)",
599 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
600 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeExtendedVmExits", "%'#018RX64", Caps.ExtendedVmExits.AsUINT64);
601 pVM->nem.s.fExtendedMsrExit = RT_BOOL(Caps.ExtendedVmExits.X64MsrExit);
602 pVM->nem.s.fExtendedCpuIdExit = RT_BOOL(Caps.ExtendedVmExits.X64CpuidExit);
603 pVM->nem.s.fExtendedXcptExit = RT_BOOL(Caps.ExtendedVmExits.ExceptionExit);
604 NEM_LOG_REL_CAP_SUB("fExtendedMsrExit", pVM->nem.s.fExtendedMsrExit);
605 NEM_LOG_REL_CAP_SUB("fExtendedCpuIdExit", pVM->nem.s.fExtendedCpuIdExit);
606 NEM_LOG_REL_CAP_SUB("fExtendedXcptExit", pVM->nem.s.fExtendedXcptExit);
607 if (Caps.ExtendedVmExits.AsUINT64 & ~(uint64_t)7)
608 LogRel(("NEM: Warning! Unknown VM exit definitions: %#RX64\n", Caps.ExtendedVmExits.AsUINT64));
609 /** @todo RECHECK: WHV_EXTENDED_VM_EXITS typedef. */
610
611 /*
612 * Check features in case they end up defining any.
613 */
614 RT_ZERO(Caps);
615 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeFeatures, &Caps, sizeof(Caps));
616 if (FAILED(hrc))
617 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
618 "WHvGetCapability/WHvCapabilityCodeFeatures failed: %Rhrc (Last=%#x/%u)",
619 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
620 if (Caps.Features.AsUINT64 & ~(uint64_t)0)
621 LogRel(("NEM: Warning! Unknown feature definitions: %#RX64\n", Caps.Features.AsUINT64));
622 /** @todo RECHECK: WHV_CAPABILITY_FEATURES typedef. */
623
624 /*
625 * Check that the CPU vendor is supported.
626 */
627 RT_ZERO(Caps);
628 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorVendor, &Caps, sizeof(Caps));
629 if (FAILED(hrc))
630 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
631 "WHvGetCapability/WHvCapabilityCodeProcessorVendor failed: %Rhrc (Last=%#x/%u)",
632 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
633 switch (Caps.ProcessorVendor)
634 {
635 /** @todo RECHECK: WHV_PROCESSOR_VENDOR typedef. */
636 case WHvProcessorVendorIntel:
637 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - Intel", Caps.ProcessorVendor);
638 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_INTEL;
639 break;
640 case WHvProcessorVendorAmd:
641 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - AMD", Caps.ProcessorVendor);
642 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_AMD;
643 break;
644 default:
645 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d", Caps.ProcessorVendor);
646 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unknown processor vendor: %d", Caps.ProcessorVendor);
647 }
648
649 /*
650 * CPU features, guessing these are virtual CPU features?
651 */
652 RT_ZERO(Caps);
653 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorFeatures, &Caps, sizeof(Caps));
654 if (FAILED(hrc))
655 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
656 "WHvGetCapability/WHvCapabilityCodeProcessorFeatures failed: %Rhrc (Last=%#x/%u)",
657 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
658 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorFeatures", "%'#018RX64", Caps.ProcessorFeatures.AsUINT64);
659#define NEM_LOG_REL_CPU_FEATURE(a_Field) NEM_LOG_REL_CAP_SUB(#a_Field, Caps.ProcessorFeatures.a_Field)
660 NEM_LOG_REL_CPU_FEATURE(Sse3Support);
661 NEM_LOG_REL_CPU_FEATURE(LahfSahfSupport);
662 NEM_LOG_REL_CPU_FEATURE(Ssse3Support);
663 NEM_LOG_REL_CPU_FEATURE(Sse4_1Support);
664 NEM_LOG_REL_CPU_FEATURE(Sse4_2Support);
665 NEM_LOG_REL_CPU_FEATURE(Sse4aSupport);
666 NEM_LOG_REL_CPU_FEATURE(XopSupport);
667 NEM_LOG_REL_CPU_FEATURE(PopCntSupport);
668 NEM_LOG_REL_CPU_FEATURE(Cmpxchg16bSupport);
669 NEM_LOG_REL_CPU_FEATURE(Altmovcr8Support);
670 NEM_LOG_REL_CPU_FEATURE(LzcntSupport);
671 NEM_LOG_REL_CPU_FEATURE(MisAlignSseSupport);
672 NEM_LOG_REL_CPU_FEATURE(MmxExtSupport);
673 NEM_LOG_REL_CPU_FEATURE(Amd3DNowSupport);
674 NEM_LOG_REL_CPU_FEATURE(ExtendedAmd3DNowSupport);
675 NEM_LOG_REL_CPU_FEATURE(Page1GbSupport);
676 NEM_LOG_REL_CPU_FEATURE(AesSupport);
677 NEM_LOG_REL_CPU_FEATURE(PclmulqdqSupport);
678 NEM_LOG_REL_CPU_FEATURE(PcidSupport);
679 NEM_LOG_REL_CPU_FEATURE(Fma4Support);
680 NEM_LOG_REL_CPU_FEATURE(F16CSupport);
681 NEM_LOG_REL_CPU_FEATURE(RdRandSupport);
682 NEM_LOG_REL_CPU_FEATURE(RdWrFsGsSupport);
683 NEM_LOG_REL_CPU_FEATURE(SmepSupport);
684 NEM_LOG_REL_CPU_FEATURE(EnhancedFastStringSupport);
685 NEM_LOG_REL_CPU_FEATURE(Bmi1Support);
686 NEM_LOG_REL_CPU_FEATURE(Bmi2Support);
687 /* two reserved bits here, see below */
688 NEM_LOG_REL_CPU_FEATURE(MovbeSupport);
689 NEM_LOG_REL_CPU_FEATURE(Npiep1Support);
690 NEM_LOG_REL_CPU_FEATURE(DepX87FPUSaveSupport);
691 NEM_LOG_REL_CPU_FEATURE(RdSeedSupport);
692 NEM_LOG_REL_CPU_FEATURE(AdxSupport);
693 NEM_LOG_REL_CPU_FEATURE(IntelPrefetchSupport);
694 NEM_LOG_REL_CPU_FEATURE(SmapSupport);
695 NEM_LOG_REL_CPU_FEATURE(HleSupport);
696 NEM_LOG_REL_CPU_FEATURE(RtmSupport);
697 NEM_LOG_REL_CPU_FEATURE(RdtscpSupport);
698 NEM_LOG_REL_CPU_FEATURE(ClflushoptSupport);
699 NEM_LOG_REL_CPU_FEATURE(ClwbSupport);
700 NEM_LOG_REL_CPU_FEATURE(ShaSupport);
701 NEM_LOG_REL_CPU_FEATURE(X87PointersSavedSupport);
702#undef NEM_LOG_REL_CPU_FEATURE
703 if (Caps.ProcessorFeatures.AsUINT64 & (~(RT_BIT_64(43) - 1) | RT_BIT_64(27) | RT_BIT_64(28)))
704 LogRel(("NEM: Warning! Unknown CPU features: %#RX64\n", Caps.ProcessorFeatures.AsUINT64));
705 pVM->nem.s.uCpuFeatures.u64 = Caps.ProcessorFeatures.AsUINT64;
706 /** @todo RECHECK: WHV_PROCESSOR_FEATURES typedef. */
707
708 /*
709 * The cache line flush size.
710 */
711 RT_ZERO(Caps);
712 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorClFlushSize, &Caps, sizeof(Caps));
713 if (FAILED(hrc))
714 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
715 "WHvGetCapability/WHvCapabilityCodeProcessorClFlushSize failed: %Rhrc (Last=%#x/%u)",
716 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
717 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorClFlushSize", "2^%u", Caps.ProcessorClFlushSize);
718 if (Caps.ProcessorClFlushSize < 8 && Caps.ProcessorClFlushSize > 9)
719 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unsupported cache line flush size: %u", Caps.ProcessorClFlushSize);
720 pVM->nem.s.cCacheLineFlushShift = Caps.ProcessorClFlushSize;
721
722 /*
723 * See if they've added more properties that we're not aware of.
724 */
725 /** @todo RECHECK: WHV_CAPABILITY_CODE typedef. */
726 if (!IsDebuggerPresent()) /* Too noisy when in debugger, so skip. */
727 {
728 static const struct
729 {
730 uint32_t iMin, iMax; } s_aUnknowns[] =
731 {
732 { 0x0003, 0x000f },
733 { 0x1003, 0x100f },
734 { 0x2000, 0x200f },
735 { 0x3000, 0x300f },
736 { 0x4000, 0x400f },
737 };
738 for (uint32_t j = 0; j < RT_ELEMENTS(s_aUnknowns); j++)
739 for (uint32_t i = s_aUnknowns[j].iMin; i <= s_aUnknowns[j].iMax; i++)
740 {
741 RT_ZERO(Caps);
742 hrc = WHvGetCapabilityWrapper((WHV_CAPABILITY_CODE)i, &Caps, sizeof(Caps));
743 if (SUCCEEDED(hrc))
744 LogRel(("NEM: Warning! Unknown capability %#x returning: %.*Rhxs\n", i, sizeof(Caps), &Caps));
745 }
746 }
747
748#undef NEM_LOG_REL_CAP_EX
749#undef NEM_LOG_REL_CAP_SUB_EX
750#undef NEM_LOG_REL_CAP_SUB
751 return VINF_SUCCESS;
752}
753
754
755/**
756 * Used to fill in g_IoCtlGetHvPartitionId.
757 */
758static NTSTATUS WINAPI
759nemR3WinIoctlDetector_GetHvPartitionId(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
760 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
761 PVOID pvOutput, ULONG cbOutput)
762{
763 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
764 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
765 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
766 AssertLogRelMsgReturn(cbInput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
767 RT_NOREF(pvInput);
768
769 AssertLogRelMsgReturn(RT_VALID_PTR(pvOutput), ("pvOutput=%p\n", pvOutput), STATUS_INVALID_PARAMETER_9);
770 AssertLogRelMsgReturn(cbOutput == sizeof(HV_PARTITION_ID), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
771 *(HV_PARTITION_ID *)pvOutput = NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID;
772
773 g_IoCtlGetHvPartitionId.cbInput = cbInput;
774 g_IoCtlGetHvPartitionId.cbOutput = cbOutput;
775 g_IoCtlGetHvPartitionId.uFunction = uFunction;
776
777 return STATUS_SUCCESS;
778}
779
780
781/**
782 * Used to fill in g_IoCtlStartVirtualProcessor.
783 */
784static NTSTATUS WINAPI
785nemR3WinIoctlDetector_StartVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
786 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
787 PVOID pvOutput, ULONG cbOutput)
788{
789 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
790 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
791 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
792 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
793 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
794 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
795 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
796 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
797 RT_NOREF(pvOutput);
798
799 g_IoCtlStartVirtualProcessor.cbInput = cbInput;
800 g_IoCtlStartVirtualProcessor.cbOutput = cbOutput;
801 g_IoCtlStartVirtualProcessor.uFunction = uFunction;
802
803 return STATUS_SUCCESS;
804}
805
806
807/**
808 * Used to fill in g_IoCtlStartVirtualProcessor.
809 */
810static NTSTATUS WINAPI
811nemR3WinIoctlDetector_StopVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
812 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
813 PVOID pvOutput, ULONG cbOutput)
814{
815 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
816 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
817 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
818 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
819 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
820 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
821 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
822 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
823 RT_NOREF(pvOutput);
824
825 g_IoCtlStopVirtualProcessor.cbInput = cbInput;
826 g_IoCtlStopVirtualProcessor.cbOutput = cbOutput;
827 g_IoCtlStopVirtualProcessor.uFunction = uFunction;
828
829 return STATUS_SUCCESS;
830}
831
832
833/**
834 * Used to fill in g_IoCtlMessageSlotHandleAndGetNext
835 */
836static NTSTATUS WINAPI
837nemR3WinIoctlDetector_MessageSlotHandleAndGetNext(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
838 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
839 PVOID pvOutput, ULONG cbOutput)
840{
841 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
842 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
843 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
844
845 AssertLogRelMsgReturn(cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT), ("cbInput=%#x\n", cbInput),
846 STATUS_INVALID_PARAMETER_8);
847 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
848 PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT pVidIn = (PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT)pvInput;
849 AssertLogRelMsgReturn( pVidIn->iCpu == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX
850 && pVidIn->fFlags == VID_MSHAGN_F_HANDLE_MESSAGE
851 && pVidIn->cMillies == NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT,
852 ("iCpu=%u fFlags=%#x cMillies=%#x\n", pVidIn->iCpu, pVidIn->fFlags, pVidIn->cMillies),
853 STATUS_INVALID_PARAMETER_9);
854 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
855 RT_NOREF(pvOutput);
856
857 g_IoCtlMessageSlotHandleAndGetNext.cbInput = cbInput;
858 g_IoCtlMessageSlotHandleAndGetNext.cbOutput = cbOutput;
859 g_IoCtlMessageSlotHandleAndGetNext.uFunction = uFunction;
860
861 return STATUS_SUCCESS;
862}
863
864
865#ifdef LOG_ENABLED
866/**
867 * Used to fill in what g_pIoCtlDetectForLogging points to.
868 */
869static NTSTATUS WINAPI nemR3WinIoctlDetector_ForLogging(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
870 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
871 PVOID pvOutput, ULONG cbOutput)
872{
873 RT_NOREF(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pvInput, pvOutput);
874
875 g_pIoCtlDetectForLogging->cbInput = cbInput;
876 g_pIoCtlDetectForLogging->cbOutput = cbOutput;
877 g_pIoCtlDetectForLogging->uFunction = uFunction;
878
879 return STATUS_SUCCESS;
880}
881#endif
882
883
884/**
885 * Worker for nemR3NativeInit that detect I/O control function numbers for VID.
886 *
887 * We use the function numbers directly in ring-0 and to name functions when
888 * logging NtDeviceIoControlFile calls.
889 *
890 * @note We could alternatively do this by disassembling the respective
891 * functions, but hooking NtDeviceIoControlFile and making fake calls
892 * more easily provides the desired information.
893 *
894 * @returns VBox status code.
895 * @param pVM The cross context VM structure. Will set I/O
896 * control info members.
897 * @param pErrInfo Where to always return error info.
898 */
899static int nemR3WinInitDiscoverIoControlProperties(PVM pVM, PRTERRINFO pErrInfo)
900{
901 /*
902 * Probe the I/O control information for select VID APIs so we can use
903 * them directly from ring-0 and better log them.
904 *
905 */
906 decltype(NtDeviceIoControlFile) * const pfnOrg = *g_ppfnVidNtDeviceIoControlFile;
907
908 /* VidGetHvPartitionId */
909 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_GetHvPartitionId;
910 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
911 BOOL fRet = g_pfnVidGetHvPartitionId(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &idHvPartition);
912 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
913 AssertReturn(fRet && idHvPartition == NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID && g_IoCtlGetHvPartitionId.uFunction != 0,
914 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
915 "Problem figuring out VidGetHvPartitionId: fRet=%u idHvPartition=%#x dwErr=%u",
916 fRet, idHvPartition, GetLastError()) );
917 LogRel(("NEM: VidGetHvPartitionId -> fun:%#x in:%#x out:%#x\n",
918 g_IoCtlGetHvPartitionId.uFunction, g_IoCtlGetHvPartitionId.cbInput, g_IoCtlGetHvPartitionId.cbOutput));
919
920 /* VidStartVirtualProcessor */
921 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StartVirtualProcessor;
922 fRet = g_pfnVidStartVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
923 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
924 AssertReturn(fRet && g_IoCtlStartVirtualProcessor.uFunction != 0,
925 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
926 "Problem figuring out VidStartVirtualProcessor: fRet=%u dwErr=%u",
927 fRet, GetLastError()) );
928 LogRel(("NEM: VidStartVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStartVirtualProcessor.uFunction,
929 g_IoCtlStartVirtualProcessor.cbInput, g_IoCtlStartVirtualProcessor.cbOutput));
930
931 /* VidStopVirtualProcessor */
932 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StopVirtualProcessor;
933 fRet = g_pfnVidStopVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
934 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
935 AssertReturn(fRet && g_IoCtlStopVirtualProcessor.uFunction != 0,
936 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
937 "Problem figuring out VidStopVirtualProcessor: fRet=%u dwErr=%u",
938 fRet, GetLastError()) );
939 LogRel(("NEM: VidStopVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStopVirtualProcessor.uFunction,
940 g_IoCtlStopVirtualProcessor.cbInput, g_IoCtlStopVirtualProcessor.cbOutput));
941
942 /* VidMessageSlotHandleAndGetNext */
943 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_MessageSlotHandleAndGetNext;
944 fRet = g_pfnVidMessageSlotHandleAndGetNext(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE,
945 NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX, VID_MSHAGN_F_HANDLE_MESSAGE,
946 NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT);
947 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
948 AssertReturn(fRet && g_IoCtlMessageSlotHandleAndGetNext.uFunction != 0,
949 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
950 "Problem figuring out VidMessageSlotHandleAndGetNext: fRet=%u dwErr=%u",
951 fRet, GetLastError()) );
952 LogRel(("NEM: VidMessageSlotHandleAndGetNext -> fun:%#x in:%#x out:%#x\n",
953 g_IoCtlMessageSlotHandleAndGetNext.uFunction, g_IoCtlMessageSlotHandleAndGetNext.cbInput,
954 g_IoCtlMessageSlotHandleAndGetNext.cbOutput));
955
956#ifdef LOG_ENABLED
957 /* The following are only for logging: */
958 union
959 {
960 VID_MAPPED_MESSAGE_SLOT MapSlot;
961 HV_REGISTER_NAME Name;
962 HV_REGISTER_VALUE Value;
963 } uBuf;
964
965 /* VidMessageSlotMap */
966 g_pIoCtlDetectForLogging = &g_IoCtlMessageSlotMap;
967 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
968 fRet = g_pfnVidMessageSlotMap(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &uBuf.MapSlot, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
969 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
970 Assert(fRet);
971 LogRel(("NEM: VidMessageSlotMap -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
972 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
973
974 /* VidGetVirtualProcessorState */
975 uBuf.Name = HvRegisterExplicitSuspend;
976 g_pIoCtlDetectForLogging = &g_IoCtlGetVirtualProcessorState;
977 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
978 fRet = g_pfnVidGetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
979 &uBuf.Name, 1, &uBuf.Value);
980 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
981 Assert(fRet);
982 LogRel(("NEM: VidGetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
983 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
984
985 /* VidSetVirtualProcessorState */
986 uBuf.Name = HvRegisterExplicitSuspend;
987 g_pIoCtlDetectForLogging = &g_IoCtlSetVirtualProcessorState;
988 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
989 fRet = g_pfnVidSetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
990 &uBuf.Name, 1, &uBuf.Value);
991 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
992 Assert(fRet);
993 LogRel(("NEM: VidSetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
994 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
995
996 g_pIoCtlDetectForLogging = NULL;
997#endif
998
999 /* Done. */
1000 pVM->nem.s.IoCtlGetHvPartitionId = g_IoCtlGetHvPartitionId;
1001 pVM->nem.s.IoCtlStartVirtualProcessor = g_IoCtlStartVirtualProcessor;
1002 pVM->nem.s.IoCtlStopVirtualProcessor = g_IoCtlStopVirtualProcessor;
1003 pVM->nem.s.IoCtlMessageSlotHandleAndGetNext = g_IoCtlMessageSlotHandleAndGetNext;
1004 return VINF_SUCCESS;
1005}
1006
1007
1008/**
1009 * Wrapper for different WHvSetPartitionProperty signatures.
1010 */
1011DECLINLINE(HRESULT) WHvSetPartitionPropertyWrapper(WHV_PARTITION_HANDLE hPartition, WHV_PARTITION_PROPERTY_CODE enmProp,
1012 WHV_PARTITION_PROPERTY *pInput, uint32_t cbInput)
1013{
1014#ifdef NEM_WIN_USE_17110_PLUS_WDK
1015 return g_pfnWHvSetPartitionProperty(hPartition, enmProp, pInput, cbInput, NULL);
1016#else
1017 pInput->PropertyCode = enmProp;
1018 if (g_uBuildNo >= 17110)
1019 {
1020 PFNWHVSETPARTITIONPROPERTY_17110 pfnNewVersion = (PFNWHVSETPARTITIONPROPERTY_17110)g_pfnWHvSetPartitionProperty;
1021 return pfnNewVersion(hPartition, enmProp, &pInput->ExtendedVmExits,
1022 cbInput - RT_UOFFSETOF(WHV_PARTITION_PROPERTY, ExtendedVmExits));
1023 }
1024 return g_pfnWHvSetPartitionProperty(hPartition, pInput, cbInput);
1025#endif
1026}
1027
1028
1029/**
1030 * Creates and sets up a Hyper-V (exo) partition.
1031 *
1032 * @returns VBox status code.
1033 * @param pVM The cross context VM structure.
1034 * @param pErrInfo Where to always return error info.
1035 */
1036static int nemR3WinInitCreatePartition(PVM pVM, PRTERRINFO pErrInfo)
1037{
1038 AssertReturn(!pVM->nem.s.hPartition, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1039 AssertReturn(!pVM->nem.s.hPartitionDevice, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1040
1041 /*
1042 * Create the partition.
1043 */
1044 WHV_PARTITION_HANDLE hPartition;
1045 HRESULT hrc = WHvCreatePartition(&hPartition);
1046 if (FAILED(hrc))
1047 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "WHvCreatePartition failed with %Rhrc (Last=%#x/%u)",
1048 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1049
1050 int rc;
1051
1052 /*
1053 * Set partition properties, most importantly the CPU count.
1054 */
1055 /**
1056 * @todo Someone at Microsoft please explain another weird API:
1057 * - Why this API doesn't take the WHV_PARTITION_PROPERTY_CODE value as an
1058 * argument rather than as part of the struct. That is so weird if you've
1059 * used any other NT or windows API, including WHvGetCapability().
1060 * - Why use PVOID when WHV_PARTITION_PROPERTY is what's expected. We
1061 * technically only need 9 bytes for setting/getting
1062 * WHVPartitionPropertyCodeProcessorClFlushSize, but the API insists on 16. */
1063 WHV_PARTITION_PROPERTY Property;
1064 RT_ZERO(Property);
1065 Property.ProcessorCount = pVM->cCpus;
1066 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorCount, &Property, sizeof(Property));
1067 if (SUCCEEDED(hrc))
1068 {
1069 RT_ZERO(Property);
1070#if 0
1071 Property.ExtendedVmExits.X64CpuidExit = pVM->nem.s.fExtendedCpuIdExit;
1072 Property.ExtendedVmExits.X64MsrExit = pVM->nem.s.fExtendedMsrExit;
1073 Property.ExtendedVmExits.ExceptionExit = pVM->nem.s.fExtendedXcptExit;
1074#endif
1075 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeExtendedVmExits, &Property, sizeof(Property));
1076 if (SUCCEEDED(hrc))
1077 {
1078 /*
1079 * We'll continue setup in nemR3NativeInitAfterCPUM.
1080 */
1081 pVM->nem.s.fCreatedEmts = false;
1082 pVM->nem.s.hPartition = hPartition;
1083 LogRel(("NEM: Created partition %p.\n", hPartition));
1084 return VINF_SUCCESS;
1085 }
1086
1087 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1088 "Failed setting WHvPartitionPropertyCodeExtendedVmExits to %'#RX64: %Rhrc",
1089 Property.ExtendedVmExits.AsUINT64, hrc);
1090 }
1091 else
1092 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1093 "Failed setting WHvPartitionPropertyCodeProcessorCount to %u: %Rhrc (Last=%#x/%u)",
1094 pVM->cCpus, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1095 WHvDeletePartition(hPartition);
1096
1097 Assert(!pVM->nem.s.hPartitionDevice);
1098 Assert(!pVM->nem.s.hPartition);
1099 return rc;
1100}
1101
1102
1103/**
1104 * Try initialize the native API.
1105 *
1106 * This may only do part of the job, more can be done in
1107 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
1108 *
1109 * @returns VBox status code.
1110 * @param pVM The cross context VM structure.
1111 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
1112 * the latter we'll fail if we cannot initialize.
1113 * @param fForced Whether the HMForced flag is set and we should
1114 * fail if we cannot initialize.
1115 */
1116int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
1117{
1118 g_uBuildNo = RTSystemGetNtBuildNo();
1119
1120 /*
1121 * Error state.
1122 * The error message will be non-empty on failure and 'rc' will be set too.
1123 */
1124 RTERRINFOSTATIC ErrInfo;
1125 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
1126 int rc = nemR3WinInitProbeAndLoad(fForced, pErrInfo);
1127 if (RT_SUCCESS(rc))
1128 {
1129 /*
1130 * Check the capabilties of the hypervisor, starting with whether it's present.
1131 */
1132 rc = nemR3WinInitCheckCapabilities(pVM, pErrInfo);
1133 if (RT_SUCCESS(rc))
1134 {
1135 /*
1136 * Discover the VID I/O control function numbers we need.
1137 */
1138 rc = nemR3WinInitDiscoverIoControlProperties(pVM, pErrInfo);
1139 if (RT_SUCCESS(rc))
1140 {
1141 /*
1142 * Check out our ring-0 capabilities.
1143 */
1144 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_NEM_INIT_VM, 0, NULL);
1145 if (RT_SUCCESS(rc))
1146 {
1147 /*
1148 * Create and initialize a partition.
1149 */
1150 rc = nemR3WinInitCreatePartition(pVM, pErrInfo);
1151 if (RT_SUCCESS(rc))
1152 {
1153 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
1154 Log(("NEM: Marked active!\n"));
1155
1156 /* Register release statistics */
1157 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1158 {
1159 PNEMCPU pNemCpu = &pVM->aCpus[iCpu].nem.s;
1160 STAMR3RegisterF(pVM, &pNemCpu->StatExitPortIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of port I/O exits", "/NEM/CPU%u/ExitPortIo", iCpu);
1161 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemUnmapped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unmapped memory exits", "/NEM/CPU%u/ExitMemUnmapped", iCpu);
1162 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemIntercept, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of intercepted memory exits", "/NEM/CPU%u/ExitMemIntercept", iCpu);
1163 STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitHalt", iCpu);
1164 STAMR3RegisterF(pVM, &pNemCpu->StatGetMsgTimeout, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of get message timeouts/alerts", "/NEM/CPU%u/GetMsgTimeout", iCpu);
1165 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuSuccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of successful CPU stops", "/NEM/CPU%u/StopCpuSuccess", iCpu);
1166 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPending, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stops", "/NEM/CPU%u/StopCpuPending", iCpu);
1167 STAMR3RegisterF(pVM, &pNemCpu->StatCancelChangedState, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel changed state", "/NEM/CPU%u/CancelChangedState", iCpu);
1168 STAMR3RegisterF(pVM, &pNemCpu->StatCancelAlertedThread, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel alerted EMT", "/NEM/CPU%u/CancelAlertedEMT", iCpu);
1169 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPre, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pre execution FF breaks", "/NEM/CPU%u/BreakOnFFPre", iCpu);
1170 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPost, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of post execution FF breaks", "/NEM/CPU%u/BreakOnFFPost", iCpu);
1171 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnCancel, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel execution breaks", "/NEM/CPU%u/BreakOnCancel", iCpu);
1172 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnStatus, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of status code breaks", "/NEM/CPU%u/BreakOnStatus", iCpu);
1173 }
1174 }
1175 }
1176 }
1177 }
1178 }
1179
1180 /*
1181 * We only fail if in forced mode, otherwise just log the complaint and return.
1182 */
1183 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
1184 if ( (fForced || !fFallback)
1185 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
1186 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
1187
1188 if (RTErrInfoIsSet(pErrInfo))
1189 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
1190 return VINF_SUCCESS;
1191}
1192
1193
1194/**
1195 * This is called after CPUMR3Init is done.
1196 *
1197 * @returns VBox status code.
1198 * @param pVM The VM handle..
1199 */
1200int nemR3NativeInitAfterCPUM(PVM pVM)
1201{
1202 /*
1203 * Validate sanity.
1204 */
1205 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1206 AssertReturn(hPartition != NULL, VERR_WRONG_ORDER);
1207 AssertReturn(!pVM->nem.s.hPartitionDevice, VERR_WRONG_ORDER);
1208 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
1209 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
1210
1211 /*
1212 * Continue setting up the partition now that we've got most of the CPUID feature stuff.
1213 */
1214 WHV_PARTITION_PROPERTY Property;
1215 HRESULT hrc;
1216
1217#if 0
1218 /* Not sure if we really need to set the vendor.
1219 Update: Apparently we don't. WHvPartitionPropertyCodeProcessorVendor was removed in 17110. */
1220 RT_ZERO(Property);
1221 Property.ProcessorVendor = pVM->nem.s.enmCpuVendor == CPUMCPUVENDOR_AMD ? WHvProcessorVendorAmd
1222 : WHvProcessorVendorIntel;
1223 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorVendor, &Property, sizeof(Property));
1224 if (FAILED(hrc))
1225 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1226 "Failed to set WHvPartitionPropertyCodeProcessorVendor to %u: %Rhrc (Last=%#x/%u)",
1227 Property.ProcessorVendor, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1228#endif
1229
1230 /* Not sure if we really need to set the cache line flush size. */
1231 RT_ZERO(Property);
1232 Property.ProcessorClFlushSize = pVM->nem.s.cCacheLineFlushShift;
1233 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorClFlushSize, &Property, sizeof(Property));
1234 if (FAILED(hrc))
1235 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1236 "Failed to set WHvPartitionPropertyCodeProcessorClFlushSize to %u: %Rhrc (Last=%#x/%u)",
1237 pVM->nem.s.cCacheLineFlushShift, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1238
1239 /*
1240 * Sync CPU features with CPUM.
1241 */
1242 /** @todo sync CPU features with CPUM. */
1243
1244 /* Set the partition property. */
1245 RT_ZERO(Property);
1246 Property.ProcessorFeatures.AsUINT64 = pVM->nem.s.uCpuFeatures.u64;
1247 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorFeatures, &Property, sizeof(Property));
1248 if (FAILED(hrc))
1249 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1250 "Failed to set WHvPartitionPropertyCodeProcessorFeatures to %'#RX64: %Rhrc (Last=%#x/%u)",
1251 pVM->nem.s.uCpuFeatures.u64, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1252
1253 /*
1254 * Set up the partition and create EMTs.
1255 *
1256 * Seems like this is where the partition is actually instantiated and we get
1257 * a handle to it.
1258 */
1259 hrc = WHvSetupPartition(hPartition);
1260 if (FAILED(hrc))
1261 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1262 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)",
1263 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1264
1265 /* Get the handle. */
1266 HANDLE hPartitionDevice;
1267 __try
1268 {
1269 hPartitionDevice = ((HANDLE *)hPartition)[1];
1270 }
1271 __except(EXCEPTION_EXECUTE_HANDLER)
1272 {
1273 hrc = GetExceptionCode();
1274 hPartitionDevice = NULL;
1275 }
1276 if ( hPartitionDevice == NULL
1277 || hPartitionDevice == (HANDLE)(intptr_t)-1)
1278 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1279 "Failed to get device handle for partition %p: %Rhrc", hPartition, hrc);
1280
1281 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
1282 if (!g_pfnVidGetHvPartitionId(hPartitionDevice, &idHvPartition))
1283 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1284 "Failed to get device handle and/or partition ID for %p (hPartitionDevice=%p, Last=%#x/%u)",
1285 hPartition, hPartitionDevice, RTNtLastStatusValue(), RTNtLastErrorValue());
1286 pVM->nem.s.hPartitionDevice = hPartitionDevice;
1287 pVM->nem.s.idHvPartition = idHvPartition;
1288
1289 /*
1290 * Setup the EMTs.
1291 */
1292 VMCPUID iCpu;
1293 for (iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1294 {
1295 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1296
1297 pVCpu->nem.s.hNativeThreadHandle = (RTR3PTR)RTThreadGetNativeHandle(VMR3GetThreadHandle(pVCpu->pUVCpu));
1298 Assert((HANDLE)pVCpu->nem.s.hNativeThreadHandle != INVALID_HANDLE_VALUE);
1299
1300#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
1301 VID_MAPPED_MESSAGE_SLOT MappedMsgSlot = { NULL, UINT32_MAX, UINT32_MAX };
1302 if (g_pfnVidMessageSlotMap(hPartitionDevice, &MappedMsgSlot, iCpu))
1303 {
1304 AssertLogRelMsg(MappedMsgSlot.iCpu == iCpu && MappedMsgSlot.uParentAdvisory == UINT32_MAX,
1305 ("%#x %#x (iCpu=%#x)\n", MappedMsgSlot.iCpu, MappedMsgSlot.uParentAdvisory, iCpu));
1306 pVCpu->nem.s.pvMsgSlotMapping = MappedMsgSlot.pMsgBlock;
1307 }
1308 else
1309 {
1310 NTSTATUS const rcNtLast = RTNtLastStatusValue();
1311 DWORD const dwErrLast = RTNtLastErrorValue();
1312 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1313 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
1314 }
1315#else
1316 hrc = WHvCreateVirtualProcessor(hPartition, iCpu, 0 /*fFlags*/);
1317 if (FAILED(hrc))
1318 {
1319 NTSTATUS const rcNtLast = RTNtLastStatusValue();
1320 DWORD const dwErrLast = RTNtLastErrorValue();
1321 while (iCpu-- > 0)
1322 {
1323 HRESULT hrc2 = WHvDeleteVirtualProcessor(hPartition, iCpu);
1324 AssertLogRelMsg(SUCCEEDED(hrc2), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1325 hPartition, iCpu, hrc2, RTNtLastStatusValue(),
1326 RTNtLastErrorValue()));
1327 }
1328 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1329 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
1330 }
1331#endif /* !NEM_WIN_USE_OUR_OWN_RUN_API */
1332 }
1333 pVM->nem.s.fCreatedEmts = true;
1334
1335 /*
1336 * Do some more ring-0 initialization now that we've got the partition handle.
1337 */
1338 int rc = VMMR3CallR0Emt(pVM, &pVM->aCpus[0], VMMR0_DO_NEM_INIT_VM_PART_2, 0, NULL);
1339 if (RT_SUCCESS(rc))
1340 {
1341 LogRel(("NEM: Successfully set up partition (device handle %p, partition ID %#llx)\n", hPartitionDevice, idHvPartition));
1342 return VINF_SUCCESS;
1343 }
1344 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to NEMR0InitVMPart2 failed: %Rrc", rc);
1345}
1346
1347
1348int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1349{
1350 //BOOL fRet = SetThreadPriority(GetCurrentThread(), 0);
1351 //AssertLogRel(fRet);
1352
1353 NOREF(pVM); NOREF(enmWhat);
1354 return VINF_SUCCESS;
1355}
1356
1357
1358int nemR3NativeTerm(PVM pVM)
1359{
1360 /*
1361 * Delete the partition.
1362 */
1363 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1364 pVM->nem.s.hPartition = NULL;
1365 pVM->nem.s.hPartitionDevice = NULL;
1366 if (hPartition != NULL)
1367 {
1368 VMCPUID iCpu = pVM->nem.s.fCreatedEmts ? pVM->cCpus : 0;
1369 LogRel(("NEM: Destroying partition %p with its %u VCpus...\n", hPartition, iCpu));
1370 while (iCpu-- > 0)
1371 {
1372#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
1373 pVM->aCpus[iCpu].nem.s.pvMsgSlotMapping = NULL;
1374#else
1375 HRESULT hrc = WHvDeleteVirtualProcessor(hPartition, iCpu);
1376 AssertLogRelMsg(SUCCEEDED(hrc), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1377 hPartition, iCpu, hrc, RTNtLastStatusValue(),
1378 RTNtLastErrorValue()));
1379#endif
1380 }
1381 WHvDeletePartition(hPartition);
1382 }
1383 pVM->nem.s.fCreatedEmts = false;
1384 return VINF_SUCCESS;
1385}
1386
1387
1388/**
1389 * VM reset notification.
1390 *
1391 * @param pVM The cross context VM structure.
1392 */
1393void nemR3NativeReset(PVM pVM)
1394{
1395 /* Unfix the A20 gate. */
1396 pVM->nem.s.fA20Fixed = false;
1397}
1398
1399
1400/**
1401 * Reset CPU due to INIT IPI or hot (un)plugging.
1402 *
1403 * @param pVCpu The cross context virtual CPU structure of the CPU being
1404 * reset.
1405 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
1406 */
1407void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
1408{
1409 /* Lock the A20 gate if INIT IPI, make sure it's enabled. */
1410 if (fInitIpi && pVCpu->idCpu > 0)
1411 {
1412 PVM pVM = pVCpu->CTX_SUFF(pVM);
1413 if (!pVM->nem.s.fA20Enabled)
1414 nemR3NativeNotifySetA20(pVCpu, true);
1415 pVM->nem.s.fA20Enabled = true;
1416 pVM->nem.s.fA20Fixed = true;
1417 }
1418}
1419
1420#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
1421
1422# ifdef LOG_ENABLED
1423/**
1424 * Log the full details of an exit reason.
1425 *
1426 * @param pExitReason The exit reason to log.
1427 */
1428static void nemR3WinLogWHvExitReason(WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1429{
1430 bool fExitCtx = false;
1431 bool fExitInstr = false;
1432 switch (pExitReason->ExitReason)
1433 {
1434 case WHvRunVpExitReasonMemoryAccess:
1435 Log2(("Exit: Memory access: GCPhys=%RGp GCVirt=%RGv %s %s %s\n",
1436 pExitReason->MemoryAccess.Gpa, pExitReason->MemoryAccess.Gva,
1437 g_apszWHvMemAccesstypes[pExitReason->MemoryAccess.AccessInfo.AccessType],
1438 pExitReason->MemoryAccess.AccessInfo.GpaUnmapped ? "unmapped" : "mapped",
1439 pExitReason->MemoryAccess.AccessInfo.GvaValid ? "" : "invalid-gc-virt"));
1440 AssertMsg(!(pExitReason->MemoryAccess.AccessInfo.AsUINT32 & ~UINT32_C(0xf)),
1441 ("MemoryAccess.AccessInfo=%#x\n", pExitReason->MemoryAccess.AccessInfo.AsUINT32));
1442 fExitCtx = fExitInstr = true;
1443 break;
1444
1445 case WHvRunVpExitReasonX64IoPortAccess:
1446 Log2(("Exit: I/O port access: IoPort=%#x LB %u %s%s%s rax=%#RX64 rcx=%#RX64 rsi=%#RX64 rdi=%#RX64\n",
1447 pExitReason->IoPortAccess.PortNumber,
1448 pExitReason->IoPortAccess.AccessInfo.AccessSize,
1449 pExitReason->IoPortAccess.AccessInfo.IsWrite ? "out" : "in",
1450 pExitReason->IoPortAccess.AccessInfo.StringOp ? " string" : "",
1451 pExitReason->IoPortAccess.AccessInfo.RepPrefix ? " rep" : "",
1452 pExitReason->IoPortAccess.Rax,
1453 pExitReason->IoPortAccess.Rcx,
1454 pExitReason->IoPortAccess.Rsi,
1455 pExitReason->IoPortAccess.Rdi));
1456 Log2(("Exit: + ds=%#x:{%#RX64 LB %#RX32, %#x} es=%#x:{%#RX64 LB %#RX32, %#x}\n",
1457 pExitReason->IoPortAccess.Ds.Selector,
1458 pExitReason->IoPortAccess.Ds.Base,
1459 pExitReason->IoPortAccess.Ds.Limit,
1460 pExitReason->IoPortAccess.Ds.Attributes,
1461 pExitReason->IoPortAccess.Es.Selector,
1462 pExitReason->IoPortAccess.Es.Base,
1463 pExitReason->IoPortAccess.Es.Limit,
1464 pExitReason->IoPortAccess.Es.Attributes ));
1465
1466 AssertMsg( pExitReason->IoPortAccess.AccessInfo.AccessSize == 1
1467 || pExitReason->IoPortAccess.AccessInfo.AccessSize == 2
1468 || pExitReason->IoPortAccess.AccessInfo.AccessSize == 4,
1469 ("IoPortAccess.AccessInfo.AccessSize=%d\n", pExitReason->IoPortAccess.AccessInfo.AccessSize));
1470 AssertMsg(!(pExitReason->IoPortAccess.AccessInfo.AsUINT32 & ~UINT32_C(0x3f)),
1471 ("IoPortAccess.AccessInfo=%#x\n", pExitReason->IoPortAccess.AccessInfo.AsUINT32));
1472 fExitCtx = fExitInstr = true;
1473 break;
1474
1475# if 0
1476 case WHvRunVpExitReasonUnrecoverableException:
1477 case WHvRunVpExitReasonInvalidVpRegisterValue:
1478 case WHvRunVpExitReasonUnsupportedFeature:
1479 case WHvRunVpExitReasonX64InterruptWindow:
1480 case WHvRunVpExitReasonX64Halt:
1481 case WHvRunVpExitReasonX64MsrAccess:
1482 case WHvRunVpExitReasonX64Cpuid:
1483 case WHvRunVpExitReasonException:
1484 case WHvRunVpExitReasonCanceled:
1485 case WHvRunVpExitReasonAlerted:
1486 WHV_X64_MSR_ACCESS_CONTEXT MsrAccess;
1487 WHV_X64_CPUID_ACCESS_CONTEXT CpuidAccess;
1488 WHV_VP_EXCEPTION_CONTEXT VpException;
1489 WHV_X64_INTERRUPTION_DELIVERABLE_CONTEXT InterruptWindow;
1490 WHV_UNRECOVERABLE_EXCEPTION_CONTEXT UnrecoverableException;
1491 WHV_X64_UNSUPPORTED_FEATURE_CONTEXT UnsupportedFeature;
1492 WHV_RUN_VP_CANCELED_CONTEXT CancelReason;
1493# endif
1494
1495 case WHvRunVpExitReasonNone:
1496 Log2(("Exit: No reason\n"));
1497 AssertFailed();
1498 break;
1499
1500 default:
1501 Log(("Exit: %#x\n", pExitReason->ExitReason));
1502 break;
1503 }
1504
1505 /*
1506 * Context and maybe instruction details.
1507 */
1508 if (fExitCtx)
1509 {
1510 const WHV_VP_EXIT_CONTEXT *pVpCtx = &pExitReason->IoPortAccess.VpContext;
1511 Log2(("Exit: + CS:RIP=%04x:%08RX64 RFLAGS=%06RX64 cbInstr=%u CS={%RX64 L %#RX32, %#x}\n",
1512 pVpCtx->Cs.Selector,
1513 pVpCtx->Rip,
1514 pVpCtx->Rflags,
1515 pVpCtx->InstructionLength,
1516 pVpCtx->Cs.Base, pVpCtx->Cs.Limit, pVpCtx->Cs.Attributes));
1517 Log2(("Exit: + cpl=%d CR0.PE=%d CR0.AM=%d EFER.LMA=%d DebugActive=%d InterruptionPending=%d InterruptShadow=%d\n",
1518 pVpCtx->ExecutionState.Cpl,
1519 pVpCtx->ExecutionState.Cr0Pe,
1520 pVpCtx->ExecutionState.Cr0Am,
1521 pVpCtx->ExecutionState.EferLma,
1522 pVpCtx->ExecutionState.DebugActive,
1523 pVpCtx->ExecutionState.InterruptionPending,
1524 pVpCtx->ExecutionState.InterruptShadow));
1525 AssertMsg(!(pVpCtx->ExecutionState.AsUINT16 & ~UINT16_C(0x107f)),
1526 ("ExecutionState.AsUINT16=%#x\n", pVpCtx->ExecutionState.AsUINT16));
1527
1528 /** @todo Someone at Microsoft please explain why the InstructionBytes fields
1529 * are 16 bytes long, when 15 would've been sufficent and saved 3-7 bytes of
1530 * alignment padding? Intel max length is 15, so is this sSome ARM stuff?
1531 * Aren't ARM
1532 * instructions max 32-bit wide? Confused. */
1533 if (fExitInstr && pExitReason->IoPortAccess.InstructionByteCount > 0)
1534 Log2(("Exit: + Instruction %.*Rhxs\n",
1535 pExitReason->IoPortAccess.InstructionByteCount,
1536 &pExitReason->IoPortAccess.InstructionBytes[g_uBuildNo >= 17110 ? 3 : 0]));
1537 }
1538}
1539# endif /* LOG_ENABLED */
1540
1541
1542/**
1543 * Advances the guest RIP and clear EFLAGS.RF.
1544 *
1545 * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
1546 *
1547 * @param pVCpu The cross context virtual CPU structure.
1548 * @param pCtx The CPU context to update.
1549 * @param pExitCtx The exit context.
1550 */
1551DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, PCPUMCTX pCtx, WHV_VP_EXIT_CONTEXT const *pExitCtx)
1552{
1553 /* Advance the RIP. */
1554 Assert(pExitCtx->InstructionLength > 0 && pExitCtx->InstructionLength < 16);
1555 pCtx->rip += pExitCtx->InstructionLength;
1556 pCtx->rflags.Bits.u1RF = 0;
1557
1558 /* Update interrupt inhibition. */
1559 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1560 { /* likely */ }
1561 else if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
1562 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1563}
1564
1565
1566static VBOXSTRICTRC nemR3WinWHvHandleHalt(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1567{
1568 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
1569 LogFlow(("nemR3WinWHvHandleHalt\n"));
1570 return VINF_EM_HALT;
1571}
1572
1573
1574# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1575/**
1576 * @callback_method_impl{FNPGMPHYSNEMENUMCALLBACK,
1577 * Hack to unmap all pages when/before we run into quota (WHv only).}
1578 */
1579static DECLCALLBACK(int) nemR3WinWHvUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
1580{
1581 RT_NOREF_PV(pvUser);
1582 RT_NOREF_PV(pVCpu);
1583 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1584 if (SUCCEEDED(hrc))
1585 {
1586 Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
1587 *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1588 }
1589 else
1590 {
1591 LogRel(("nemR3WinWHvUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
1592 GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
1593 RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
1594 *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
1595 }
1596 if (pVM->nem.s.cMappedPages > 0)
1597 ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
1598 return VINF_SUCCESS;
1599}
1600# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
1601
1602
1603/**
1604 * Handles an memory access VMEXIT.
1605 *
1606 * This can be triggered by a number of things.
1607 *
1608 * @returns Strict VBox status code.
1609 * @param pVM The cross context VM structure.
1610 * @param pVCpu The cross context virtual CPU structure.
1611 * @param pCtx The CPU context to update.
1612 * @param pMemCtx The exit reason information.
1613 */
1614static VBOXSTRICTRC nemR3WinWHvHandleMemoryAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_MEMORY_ACCESS_CONTEXT const *pMemCtx)
1615{
1616 /*
1617 * Ask PGM for information about the given GCPhys. We need to check if we're
1618 * out of sync first.
1619 */
1620 NEMHCWINHMACPCCSTATE State = { pMemCtx->AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
1621 PGMPHYSNEMPAGEINFO Info;
1622 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMemCtx->Gpa, State.fWriteAccess, &Info,
1623 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
1624 if (RT_SUCCESS(rc))
1625 {
1626 if (Info.fNemProt & (pMemCtx->AccessInfo.AccessType == WHvMemoryAccessWrite ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
1627 {
1628 if (State.fCanResume)
1629 {
1630 Log4(("MemExit: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
1631 pMemCtx->Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1632 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1633 State.fDidSomething ? "" : " no-change", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1634 return VINF_SUCCESS;
1635 }
1636 }
1637 Log4(("MemExit: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
1638 pMemCtx->Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1639 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1640 State.fDidSomething ? "" : " no-change", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1641 }
1642 else
1643 Log4(("MemExit: %RGp rc=%Rrc%s; emulating (%s)\n", pMemCtx->Gpa, rc,
1644 State.fDidSomething ? " modified-backing" : "", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1645
1646 /*
1647 * Emulate the memory access, either access handler or special memory.
1648 */
1649 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1650 AssertRCReturn(rc, rc);
1651
1652 VBOXSTRICTRC rcStrict;
1653 if (pMemCtx->InstructionByteCount > 0)
1654 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pMemCtx->VpContext.Rip,
1655 &pMemCtx->InstructionBytes[g_uBuildNo >= 17110 ? 3 : 0],
1656 pMemCtx->InstructionByteCount);
1657 else
1658 rcStrict = IEMExecOne(pVCpu);
1659 /** @todo do we need to do anything wrt debugging here? */
1660 return rcStrict;
1661}
1662
1663
1664/**
1665 * Handles an I/O port access VMEXIT.
1666 *
1667 * We ASSUME that the hypervisor has don't I/O port access control.
1668 *
1669 * @returns Strict VBox status code.
1670 * @param pVM The cross context VM structure.
1671 * @param pVCpu The cross context virtual CPU structure.
1672 * @param pCtx The CPU context to update.
1673 * @param pIoPortCtx The exit reason information.
1674 */
1675static VBOXSTRICTRC nemR3WinWHvHandleIoPortAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
1676 WHV_X64_IO_PORT_ACCESS_CONTEXT const *pIoPortCtx)
1677{
1678 Assert( pIoPortCtx->AccessInfo.AccessSize == 1
1679 || pIoPortCtx->AccessInfo.AccessSize == 2
1680 || pIoPortCtx->AccessInfo.AccessSize == 4);
1681
1682 VBOXSTRICTRC rcStrict;
1683 if (!pIoPortCtx->AccessInfo.StringOp)
1684 {
1685 /*
1686 * Simple port I/O.
1687 */
1688 //Assert(pCtx->rax == pIoPortCtx->Rax); - sledgehammer
1689
1690 static uint32_t const s_fAndMask[8] =
1691 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
1692 uint32_t const fAndMask = s_fAndMask[pIoPortCtx->AccessInfo.AccessSize];
1693 if (pIoPortCtx->AccessInfo.IsWrite)
1694 {
1695 rcStrict = IOMIOPortWrite(pVM, pVCpu, pIoPortCtx->PortNumber, (uint32_t)pIoPortCtx->Rax & fAndMask,
1696 pIoPortCtx->AccessInfo.AccessSize);
1697 if (IOM_SUCCESS(rcStrict))
1698 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pIoPortCtx->VpContext);
1699 }
1700 else
1701 {
1702 uint32_t uValue = 0;
1703 rcStrict = IOMIOPortRead(pVM, pVCpu, pIoPortCtx->PortNumber, &uValue,
1704 pIoPortCtx->AccessInfo.AccessSize);
1705 if (IOM_SUCCESS(rcStrict))
1706 {
1707 pCtx->eax = (pCtx->eax & ~fAndMask) | (uValue & fAndMask);
1708 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pIoPortCtx->VpContext);
1709 }
1710 }
1711 }
1712 else
1713 {
1714 /*
1715 * String port I/O.
1716 */
1717 /** @todo Someone at Microsoft please explain how we can get the address mode
1718 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
1719 * getting the default mode, it can always be overridden by a prefix. This
1720 * forces us to interpret the instruction from opcodes, which is suboptimal.
1721 * Both AMD-V and VT-x includes the address size in the exit info, at least on
1722 * CPUs that are reasonably new. */
1723# if 0 // requires sledgehammer
1724 Assert( pIoPortCtx->Ds.Base == pCtx->ds.u64Base
1725 && pIoPortCtx->Ds.Limit == pCtx->ds.u32Limit
1726 && pIoPortCtx->Ds.Selector == pCtx->ds.Sel);
1727 Assert( pIoPortCtx->Es.Base == pCtx->es.u64Base
1728 && pIoPortCtx->Es.Limit == pCtx->es.u32Limit
1729 && pIoPortCtx->Es.Selector == pCtx->es.Sel);
1730 Assert(pIoPortCtx->Rdi == pCtx->rdi);
1731 Assert(pIoPortCtx->Rsi == pCtx->rsi);
1732 Assert(pIoPortCtx->Rcx == pCtx->rcx);
1733 Assert(pIoPortCtx->Rcx == pCtx->rcx);
1734# endif
1735
1736 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1737 AssertRCReturn(rc, rc);
1738
1739 rcStrict = IEMExecOne(pVCpu);
1740 }
1741 if (IOM_SUCCESS(rcStrict))
1742 {
1743 /*
1744 * Do debug checks.
1745 */
1746 if ( pIoPortCtx->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflext DR7? */
1747 || (pIoPortCtx->VpContext.Rflags & X86_EFL_TF)
1748 || DBGFBpIsHwIoArmed(pVM) )
1749 {
1750 /** @todo Debugging. */
1751 }
1752 }
1753 return rcStrict;
1754}
1755
1756
1757static VBOXSTRICTRC nemR3WinWHvHandleInterruptWindow(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1758{
1759 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1760 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1761}
1762
1763
1764static VBOXSTRICTRC nemR3WinWHvHandleMsrAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1765{
1766 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1767 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1768}
1769
1770
1771static VBOXSTRICTRC nemR3WinWHvHandleCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1772{
1773 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1774 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1775}
1776
1777
1778static VBOXSTRICTRC nemR3WinWHvHandleException(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1779{
1780 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1781 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1782}
1783
1784
1785static VBOXSTRICTRC nemR3WinWHvHandleUD(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1786{
1787 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1788 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1789}
1790
1791
1792static VBOXSTRICTRC nemR3WinWHvHandleTripleFault(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1793{
1794 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1795 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1796}
1797
1798
1799static VBOXSTRICTRC nemR3WinWHvHandleInvalidState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1800{
1801 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1802 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1803}
1804
1805
1806VBOXSTRICTRC nemR3WinWHvRunGC(PVM pVM, PVMCPU pVCpu)
1807{
1808# ifdef LOG_ENABLED
1809 if (LogIs3Enabled())
1810 {
1811 Log3(("nemR3NativeRunGC: Entering #%u\n", pVCpu->idCpu));
1812 nemHCWinLogState(pVM, pVCpu);
1813 }
1814# endif
1815
1816 /*
1817 * The run loop.
1818 */
1819 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1820 const bool fSingleStepping = false; /** @todo get this from somewhere. */
1821 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1822 for (unsigned iLoop = 0;;iLoop++)
1823 {
1824 /*
1825 * Copy the state.
1826 */
1827 int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu, pCtx);
1828 AssertRCBreakStmt(rc2, rcStrict = rc2);
1829
1830 /*
1831 * Run a bit.
1832 */
1833 WHV_RUN_VP_EXIT_CONTEXT ExitReason;
1834 RT_ZERO(ExitReason);
1835 if ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
1836 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
1837 {
1838 Log8(("Calling WHvRunVirtualProcessor\n"));
1839 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED);
1840 HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
1841 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM);
1842 AssertLogRelMsgBreakStmt(SUCCEEDED(hrc),
1843 ("WHvRunVirtualProcessor(%p, %u,,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu,
1844 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()),
1845 rcStrict = VERR_INTERNAL_ERROR);
1846 Log2(("WHvRunVirtualProcessor -> %#x; exit code %#x (%d) (cpu status %u)\n",
1847 hrc, ExitReason.ExitReason, ExitReason.ExitReason, nemHCWinCpuGetRunningStatus(pVCpu) ));
1848 }
1849 else
1850 {
1851 LogFlow(("nemR3NativeRunGC: returning: pending FF (pre exec)\n"));
1852 break;
1853 }
1854
1855# if 0 /* sledgehammer approach */
1856 /*
1857 * Copy back the state.
1858 */
1859 rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, UINT64_MAX);
1860 AssertRCBreakStmt(rc2, rcStrict = rc2);
1861# endif
1862
1863# ifdef LOG_ENABLED
1864 /*
1865 * Do some logging.
1866 */
1867 if (LogIs2Enabled())
1868 nemR3WinLogWHvExitReason(&ExitReason);
1869 if (LogIs3Enabled())
1870 nemHCWinLogState(pVM, pVCpu);
1871# endif
1872
1873# if 0 //def VBOX_STRICT - requires sledgehammer
1874 /* Assert that the VpContext field makes sense. */
1875 switch (ExitReason.ExitReason)
1876 {
1877 case WHvRunVpExitReasonMemoryAccess:
1878 case WHvRunVpExitReasonX64IoPortAccess:
1879 case WHvRunVpExitReasonX64MsrAccess:
1880 case WHvRunVpExitReasonX64Cpuid:
1881 case WHvRunVpExitReasonException:
1882 case WHvRunVpExitReasonUnrecoverableException:
1883 Assert( ExitReason.IoPortAccess.VpContext.InstructionLength > 0
1884 || ( ExitReason.ExitReason == WHvRunVpExitReasonMemoryAccess
1885 && ExitReason.MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessExecute));
1886 Assert(ExitReason.IoPortAccess.VpContext.InstructionLength < 16);
1887 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cpl == CPUMGetGuestCPL(pVCpu));
1888 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Pe == RT_BOOL(pCtx->cr0 & X86_CR0_PE));
1889 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Am == RT_BOOL(pCtx->cr0 & X86_CR0_AM));
1890 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.EferLma == RT_BOOL(pCtx->msrEFER & MSR_K6_EFER_LMA));
1891 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.DebugActive == RT_BOOL(pCtx->dr[7] & X86_DR7_ENABLED_MASK));
1892 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved0 == 0);
1893 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved1 == 0);
1894 Assert(ExitReason.IoPortAccess.VpContext.Rip == pCtx->rip);
1895 Assert(ExitReason.IoPortAccess.VpContext.Rflags == pCtx->rflags.u);
1896 Assert( ExitReason.IoPortAccess.VpContext.Cs.Base == pCtx->cs.u64Base
1897 && ExitReason.IoPortAccess.VpContext.Cs.Limit == pCtx->cs.u32Limit
1898 && ExitReason.IoPortAccess.VpContext.Cs.Selector == pCtx->cs.Sel);
1899 break;
1900 default: break; /* shut up compiler. */
1901 }
1902# endif
1903
1904 /*
1905 * Deal with the exit.
1906 */
1907 switch (ExitReason.ExitReason)
1908 {
1909 /* Frequent exits: */
1910 case WHvRunVpExitReasonCanceled:
1911 case WHvRunVpExitReasonAlerted:
1912 rcStrict = VINF_SUCCESS;
1913 break;
1914
1915 case WHvRunVpExitReasonX64Halt:
1916 rcStrict = nemR3WinWHvHandleHalt(pVM, pVCpu, pCtx);
1917 break;
1918
1919 case WHvRunVpExitReasonMemoryAccess:
1920 rcStrict = nemR3WinWHvHandleMemoryAccess(pVM, pVCpu, pCtx, &ExitReason.MemoryAccess);
1921 break;
1922
1923 case WHvRunVpExitReasonX64IoPortAccess:
1924 rcStrict = nemR3WinWHvHandleIoPortAccess(pVM, pVCpu, pCtx, &ExitReason.IoPortAccess);
1925 break;
1926
1927 case WHvRunVpExitReasonX64InterruptWindow:
1928 rcStrict = nemR3WinWHvHandleInterruptWindow(pVM, pVCpu, pCtx, &ExitReason);
1929 break;
1930
1931 case WHvRunVpExitReasonX64MsrAccess: /* needs configuring */
1932 rcStrict = nemR3WinWHvHandleMsrAccess(pVM, pVCpu, pCtx, &ExitReason);
1933 break;
1934
1935 case WHvRunVpExitReasonX64Cpuid: /* needs configuring */
1936 rcStrict = nemR3WinWHvHandleCpuId(pVM, pVCpu, pCtx, &ExitReason);
1937 break;
1938
1939 case WHvRunVpExitReasonException: /* needs configuring */
1940 rcStrict = nemR3WinWHvHandleException(pVM, pVCpu, pCtx, &ExitReason);
1941 break;
1942
1943 /* Unlikely exits: */
1944 case WHvRunVpExitReasonUnsupportedFeature:
1945 rcStrict = nemR3WinWHvHandleUD(pVM, pVCpu, pCtx, &ExitReason);
1946 break;
1947
1948 case WHvRunVpExitReasonUnrecoverableException:
1949 rcStrict = nemR3WinWHvHandleTripleFault(pVM, pVCpu, pCtx, &ExitReason);
1950 break;
1951
1952 case WHvRunVpExitReasonInvalidVpRegisterValue:
1953 rcStrict = nemR3WinWHvHandleInvalidState(pVM, pVCpu, pCtx, &ExitReason);
1954 break;
1955
1956 /* Undesired exits: */
1957 case WHvRunVpExitReasonNone:
1958 default:
1959 AssertLogRelMsgFailed(("Unknown ExitReason: %#x\n", ExitReason.ExitReason));
1960 rcStrict = VERR_INTERNAL_ERROR_3;
1961 break;
1962 }
1963 if (rcStrict != VINF_SUCCESS)
1964 {
1965 LogFlow(("nemR3NativeRunGC: returning: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1966 break;
1967 }
1968
1969# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1970 /* Hack alert! */
1971 uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
1972 if (cMappedPages < 4000)
1973 { /* likely */ }
1974 else
1975 {
1976 PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
1977 Log(("nemR3NativeRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
1978 }
1979# endif
1980
1981 /* If any FF is pending, return to the EM loops. That's okay for the
1982 current sledgehammer approach. */
1983 if ( VM_FF_IS_PENDING( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
1984 || VMCPU_FF_IS_PENDING(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
1985 {
1986 LogFlow(("nemR3NativeRunGC: returning: pending FF (%#x / %#x)\n", pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
1987 break;
1988 }
1989 }
1990
1991
1992 /*
1993 * Copy back the state before returning.
1994 */
1995 if (pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
1996 {
1997 int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
1998 if (RT_SUCCESS(rc2))
1999 pCtx->fExtrn = 0;
2000 else if (RT_SUCCESS(rcStrict))
2001 rcStrict = rc2;
2002 }
2003 else
2004 pCtx->fExtrn = 0;
2005
2006 return rcStrict;
2007}
2008
2009#endif /* !NEM_WIN_USE_OUR_OWN_RUN_API */
2010
2011
2012VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2013{
2014#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
2015 return nemR3WinWHvRunGC(pVM, pVCpu);
2016#elif 0
2017 return nemHCWinRunGC(pVM, pVCpu, NULL /*pGVM*/, NULL /*pGVCpu*/);
2018#else
2019 VBOXSTRICTRC rcStrict = VMMR3CallR0EmtFast(pVM, pVCpu, VMMR0_DO_NEM_RUN);
2020 if (RT_SUCCESS(rcStrict))
2021 {
2022 /* We deal wtih VINF_NEM_CHANGE_PGM_MODE and VINF_NEM_FLUSH_TLB here, since we're running
2023 the risk of getting these while we already got another RC (I/O ports). */
2024 VBOXSTRICTRC rcPgmPending = pVCpu->nem.s.rcPgmPending;
2025 pVCpu->nem.s.rcPgmPending = VINF_SUCCESS;
2026 if ( rcStrict == VINF_NEM_CHANGE_PGM_MODE
2027 || rcStrict == VINF_PGM_CHANGE_MODE
2028 || rcPgmPending == VINF_NEM_CHANGE_PGM_MODE )
2029 {
2030 LogFlow(("nemR3NativeRunGC: calling PGMChangeMode...\n"));
2031 int rc = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2032 AssertRCReturn(rc, rc);
2033 if (rcStrict == VINF_NEM_CHANGE_PGM_MODE || rcStrict == VINF_NEM_FLUSH_TLB)
2034 rcStrict = VINF_SUCCESS;
2035 }
2036 else if (rcStrict == VINF_NEM_FLUSH_TLB || rcPgmPending == VINF_NEM_FLUSH_TLB)
2037 {
2038 LogFlow(("nemR3NativeRunGC: calling PGMFlushTLB...\n"));
2039 int rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true);
2040 AssertRCReturn(rc, rc);
2041 if (rcStrict == VINF_NEM_FLUSH_TLB || rcStrict == VINF_NEM_CHANGE_PGM_MODE)
2042 rcStrict = VINF_SUCCESS;
2043 }
2044 else
2045 AssertMsg(rcPgmPending == VINF_SUCCESS, ("rcPgmPending=%Rrc\n", VBOXSTRICTRC_VAL(rcPgmPending) ));
2046 }
2047 return rcStrict;
2048#endif
2049}
2050
2051
2052bool nemR3NativeCanExecuteGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2053{
2054 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
2055 return true;
2056}
2057
2058
2059bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
2060{
2061 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
2062 return false;
2063}
2064
2065
2066/**
2067 * Forced flag notification call from VMEmt.h.
2068 *
2069 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
2070 *
2071 * @param pVM The cross context VM structure.
2072 * @param pVCpu The cross context virtual CPU structure of the CPU
2073 * to be notified.
2074 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
2075 */
2076void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
2077{
2078#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
2079 nemHCWinCancelRunVirtualProcessor(pVM, pVCpu);
2080#else
2081 Log8(("nemR3NativeNotifyFF: canceling %u\n", pVCpu->idCpu));
2082 HRESULT hrc = WHvCancelRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, 0);
2083 AssertMsg(SUCCEEDED(hrc), ("WHvCancelRunVirtualProcessor -> hrc=%Rhrc\n", hrc));
2084 RT_NOREF_PV(hrc);
2085#endif
2086 RT_NOREF_PV(fFlags);
2087}
2088
2089
2090DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
2091{
2092 PGMPAGEMAPLOCK Lock;
2093 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
2094 if (RT_SUCCESS(rc))
2095 PGMPhysReleasePageMappingLock(pVM, &Lock);
2096 return rc;
2097}
2098
2099
2100DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2101{
2102 PGMPAGEMAPLOCK Lock;
2103 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
2104 if (RT_SUCCESS(rc))
2105 PGMPhysReleasePageMappingLock(pVM, &Lock);
2106 return rc;
2107}
2108
2109
2110int nemR3NativeNotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2111{
2112 Log5(("nemR3NativeNotifyPhysRamRegister: %RGp LB %RGp\n", GCPhys, cb));
2113 NOREF(pVM); NOREF(GCPhys); NOREF(cb);
2114 return VINF_SUCCESS;
2115}
2116
2117
2118int nemR3NativeNotifyPhysMmioExMap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvMmio2)
2119{
2120 Log5(("nemR3NativeNotifyPhysMmioExMap: %RGp LB %RGp fFlags=%#x pvMmio2=%p\n", GCPhys, cb, fFlags, pvMmio2));
2121 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags); NOREF(pvMmio2);
2122 return VINF_SUCCESS;
2123}
2124
2125
2126int nemR3NativeNotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2127{
2128 Log5(("nemR3NativeNotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2129 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
2130 return VINF_SUCCESS;
2131}
2132
2133
2134/**
2135 * Called early during ROM registration, right after the pages have been
2136 * allocated and the RAM range updated.
2137 *
2138 * This will be succeeded by a number of NEMHCNotifyPhysPageProtChanged() calls
2139 * and finally a NEMR3NotifyPhysRomRegisterEarly().
2140 *
2141 * @returns VBox status code
2142 * @param pVM The cross context VM structure.
2143 * @param GCPhys The ROM address (page aligned).
2144 * @param cb The size (page aligned).
2145 * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
2146 */
2147int nemR3NativeNotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2148{
2149 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2150#if 0 /* Let's not do this after all. We'll protection change notifications for each page and if not we'll map them lazily. */
2151 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2152 for (RTGCPHYS iPage = 0; iPage < cPages; iPage++, GCPhys += X86_PAGE_SIZE)
2153 {
2154 const void *pvPage;
2155 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
2156 if (RT_SUCCESS(rc))
2157 {
2158 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhys, X86_PAGE_SIZE,
2159 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
2160 if (SUCCEEDED(hrc))
2161 { /* likely */ }
2162 else
2163 {
2164 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2165 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2166 return VERR_NEM_INIT_FAILED;
2167 }
2168 }
2169 else
2170 {
2171 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
2172 return rc;
2173 }
2174 }
2175#else
2176 NOREF(pVM); NOREF(GCPhys); NOREF(cb);
2177#endif
2178 RT_NOREF_PV(fFlags);
2179 return VINF_SUCCESS;
2180}
2181
2182
2183/**
2184 * Called after the ROM range has been fully completed.
2185 *
2186 * This will be preceeded by a NEMR3NotifyPhysRomRegisterEarly() call as well a
2187 * number of NEMHCNotifyPhysPageProtChanged calls.
2188 *
2189 * @returns VBox status code
2190 * @param pVM The cross context VM structure.
2191 * @param GCPhys The ROM address (page aligned).
2192 * @param cb The size (page aligned).
2193 * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
2194 */
2195int nemR3NativeNotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2196{
2197 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2198 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
2199 return VINF_SUCCESS;
2200}
2201
2202
2203/**
2204 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
2205 */
2206static DECLCALLBACK(int) nemR3WinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
2207 PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
2208{
2209 /* We'll just unmap the memory. */
2210 if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
2211 {
2212#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
2213 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
2214 AssertRC(rc);
2215 if (RT_SUCCESS(rc))
2216#else
2217 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
2218 if (SUCCEEDED(hrc))
2219#endif
2220 {
2221 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2222 Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
2223 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
2224 }
2225 else
2226 {
2227#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
2228 LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
2229 return rc;
2230#else
2231 LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2232 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2233 return VERR_INTERNAL_ERROR_2;
2234#endif
2235 }
2236 }
2237 RT_NOREF(pVCpu, pvUser);
2238 return VINF_SUCCESS;
2239}
2240
2241
2242/**
2243 * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
2244 *
2245 * @returns The PGMPhysNemQueryPageInfo result.
2246 * @param pVM The cross context VM structure.
2247 * @param pVCpu The cross context virtual CPU structure.
2248 * @param GCPhys The page to unmap.
2249 */
2250static int nemR3WinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2251{
2252 PGMPHYSNEMPAGEINFO Info;
2253 return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
2254 nemR3WinUnsetForA20CheckerCallback, NULL);
2255}
2256
2257
2258/**
2259 * Called when the A20 state changes.
2260 *
2261 * Hyper-V doesn't seem to offer a simple way of implementing the A20 line
2262 * features of PCs. So, we do a very minimal emulation of the HMA to make DOS
2263 * happy.
2264 *
2265 * @param pVCpu The CPU the A20 state changed on.
2266 * @param fEnabled Whether it was enabled (true) or disabled.
2267 */
2268void nemR3NativeNotifySetA20(PVMCPU pVCpu, bool fEnabled)
2269{
2270 Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
2271 PVM pVM = pVCpu->CTX_SUFF(pVM);
2272 if (!pVM->nem.s.fA20Fixed)
2273 {
2274 pVM->nem.s.fA20Enabled = fEnabled;
2275 for (RTGCPHYS GCPhys = _1M; GCPhys < _1M + _64K; GCPhys += X86_PAGE_SIZE)
2276 nemR3WinUnmapPageForA20Gate(pVM, pVCpu, GCPhys);
2277 }
2278}
2279
2280
2281/** @page pg_nem_win NEM/win - Native Execution Manager, Windows.
2282 *
2283 * On Windows the Hyper-V root partition (dom0 in zen terminology) does not have
2284 * nested VT-x or AMD-V capabilities. For a while raw-mode worked inside it,
2285 * but for a while now we've been getting \#GP when trying to modify CR4 in the
2286 * world switcher. So, when Hyper-V is active on Windows we have little choice
2287 * but to use Hyper-V to run our VMs.
2288 *
2289 *
2290 * @section sub_nem_win_whv The WinHvPlatform API
2291 *
2292 * Since Windows 10 build 17083 there is a documented API for managing Hyper-V
2293 * VMs, header file WinHvPlatform.h and implementation in WinHvPlatform.dll.
2294 * This interface is a wrapper around the undocumented Virtualization
2295 * Infrastructure Driver (VID) API - VID.DLL and VID.SYS. The wrapper is
2296 * written in C++, namespaced, early versions (at least) was using standard C++
2297 * container templates in several places.
2298 *
2299 * When creating a VM using WHvCreatePartition, it will only create the
2300 * WinHvPlatform structures for it, to which you get an abstract pointer. The
2301 * VID API that actually creates the partition is first engaged when you call
2302 * WHvSetupPartition after first setting a lot of properties using
2303 * WHvSetPartitionProperty. Since the VID API is just a very thin wrapper
2304 * around CreateFile and NtDeviceIoControlFile, it returns an actual HANDLE for
2305 * the partition WinHvPlatform. We fish this HANDLE out of the WinHvPlatform
2306 * partition structures because we need to talk directly to VID for reasons
2307 * we'll get to in a bit. (Btw. we could also intercept the CreateFileW or
2308 * NtDeviceIoControlFile calls from VID.DLL to get the HANDLE should fishing in
2309 * the partition structures become difficult.)
2310 *
2311 * The WinHvPlatform API requires us to both set the number of guest CPUs before
2312 * setting up the partition and call WHvCreateVirtualProcessor for each of them.
2313 * The CPU creation function boils down to a VidMessageSlotMap call that sets up
2314 * and maps a message buffer into ring-3 for async communication with hyper-V
2315 * and/or the VID.SYS thread actually running the CPU thru
2316 * WinHvRunVpDispatchLoop(). When for instance a VMEXIT is encountered, hyper-V
2317 * sends a message that the WHvRunVirtualProcessor API retrieves (and later
2318 * acknowledges) via VidMessageSlotHandleAndGetNext. It should be noteded that
2319 * WHvDeleteVirtualProcessor doesn't do much as there seems to be no partner
2320 * function VidMessagesSlotMap that reverses what it did.
2321 *
2322 * Memory is managed thru calls to WHvMapGpaRange and WHvUnmapGpaRange (GPA does
2323 * not mean grade point average here, but rather guest physical addressspace),
2324 * which corresponds to VidCreateVaGpaRangeSpecifyUserVa and VidDestroyGpaRange
2325 * respectively. As 'UserVa' indicates, the functions works on user process
2326 * memory. The mappings are also subject to quota restrictions, so the number
2327 * of ranges are limited and probably their total size as well. Obviously
2328 * VID.SYS keeps track of the ranges, but so does WinHvPlatform, which means
2329 * there is a bit of overhead involved and quota restrctions makes sense. For
2330 * some reason though, regions are lazily mapped on VMEXIT/memory by
2331 * WHvRunVirtualProcessor.
2332 *
2333 * Running guest code is done thru the WHvRunVirtualProcessor function. It
2334 * asynchronously starts or resumes hyper-V CPU execution and then waits for an
2335 * VMEXIT message. Hyper-V / VID.SYS will return information about the message
2336 * in the message buffer mapping, and WHvRunVirtualProcessor will convert that
2337 * finto it's own WHV_RUN_VP_EXIT_CONTEXT format.
2338 *
2339 * Other threads can interrupt the execution by using WHvCancelVirtualProcessor,
2340 * which which case the thread in WHvRunVirtualProcessor is woken up via a dummy
2341 * QueueUserAPC and will call VidStopVirtualProcessor to asynchronously end
2342 * execution. The stop CPU call not immediately succeed if the CPU encountered
2343 * a VMEXIT before the stop was processed, in which case the VMEXIT needs to be
2344 * processed first, and the pending stop will be processed in a subsequent call
2345 * to WHvRunVirtualProcessor.
2346 *
2347 * Registers are retrieved and set via WHvGetVirtualProcessorRegisters and
2348 * WHvSetVirtualProcessorRegisters. In addition, several VMEXITs include
2349 * essential register state in the exit context information, potentially making
2350 * it possible to emulate the instruction causing the exit without involving
2351 * WHvGetVirtualProcessorRegisters.
2352 *
2353 *
2354 * @subsection subsec_nem_win_whv_cons Issues & Feedback
2355 *
2356 * Here are some observations (mostly against build 17101):
2357 *
2358 * - The VMEXIT performance is dismal (build 17101).
2359 *
2360 * Our proof of concept implementation with a kernel runloop (i.e. not using
2361 * WHvRunVirtualProcessor and friends, but calling VID.SYS fast I/O control
2362 * entry point directly) delivers 9-10% of the port I/O performance and only
2363 * 6-7% of the MMIO performance that we have with our own hypervisor.
2364 *
2365 * When using the offical WinHvPlatform API, the numbers are %3 for port I/O
2366 * and 5% for MMIO.
2367 *
2368 * While the tests we've done are using tight tight loops only doing port I/O
2369 * and MMIO, the problem is clearly visible when running regular guest OSes.
2370 * Anything that hammers the VGA device would be suffering, for example:
2371 *
2372 * - Windows 2000 boot screen animation overloads us with MMIO exits
2373 * and won't even boot because all the time is spent in interrupt
2374 * handlers and redrawin the screen.
2375 *
2376 * - DSL 4.4 and its bootmenu logo is slower than molasses in january.
2377 *
2378 * We have not found a workaround for this yet.
2379 *
2380 * Something that might improve the issue a little is to detect blocks with
2381 * excessive MMIO and port I/O exits and emulate instructions to cover
2382 * multiple exits before letting Hyper-V have a go at the guest execution
2383 * again. This will only improve the situation under some circumstances,
2384 * since emulating instructions without recompilation can be expensive, so
2385 * there will only be real gains if the exitting instructions are tightly
2386 * packed.
2387 *
2388 *
2389 * - The WHvCancelVirtualProcessor API schedules a dummy usermode APC callback
2390 * in order to cancel any current or future alertable wait in VID.SYS during
2391 * the VidMessageSlotHandleAndGetNext call.
2392 *
2393 * IIRC this will make the kernel schedule the specified callback thru
2394 * NTDLL!KiUserApcDispatcher by modifying the thread context and quite
2395 * possibly the userland thread stack. When the APC callback returns to
2396 * KiUserApcDispatcher, it will call NtContinue to restore the old thread
2397 * context and resume execution from there. This naturally adds up to some
2398 * CPU cycles, ring transitions aren't for free, especially after Spectre &
2399 * Meltdown mitigations.
2400 *
2401 * Using NtAltertThread call could do the same without the thread context
2402 * modifications and the extra kernel call.
2403 *
2404 *
2405 * - Not sure if this is a thing, but WHvCancelVirtualProcessor seems to cause
2406 * cause a lot more spurious WHvRunVirtualProcessor returns that what we get
2407 * with the replacement code. By spurious returns we mean that the
2408 * subsequent call to WHvRunVirtualProcessor would return immediately.
2409 *
2410 *
2411 * - When WHvRunVirtualProcessor returns without a message, or on a terse
2412 * VID message like HLT, it will make a kernel call to get some registers.
2413 * This is potentially inefficient if the caller decides he needs more
2414 * register state.
2415 *
2416 * It would be better to just return what's available and let the caller fetch
2417 * what is missing from his point of view in a single kernel call.
2418 *
2419 *
2420 * - The WHvRunVirtualProcessor implementation does lazy GPA range mappings when
2421 * a unmapped GPA message is received from hyper-V.
2422 *
2423 * Since MMIO is currently realized as unmapped GPA, this will slow down all
2424 * MMIO accesses a tiny little bit as WHvRunVirtualProcessor looks up the
2425 * guest physical address to check if it is a pending lazy mapping.
2426 *
2427 * The lazy mapping feature makes no sense to us. We as API user have all the
2428 * information and can do lazy mapping ourselves if we want/have to (see next
2429 * point).
2430 *
2431 *
2432 * - There is no API for modifying protection of a page within a GPA range.
2433 *
2434 * From what we can tell, the only way to modify the protection (like readonly
2435 * -> writable, or vice versa) is to first unmap the range and then remap it
2436 * with the new protection.
2437 *
2438 * We are for instance doing this quite a bit in order to track dirty VRAM
2439 * pages. VRAM pages starts out as readonly, when the guest writes to a page
2440 * we take an exit, notes down which page it is, makes it writable and restart
2441 * the instruction. After refreshing the display, we reset all the writable
2442 * pages to readonly again, bulk fashion.
2443 *
2444 * Now to work around this issue, we do page sized GPA ranges. In addition to
2445 * add a lot of tracking overhead to WinHvPlatform and VID.SYS, this also
2446 * causes us to exceed our quota before we've even mapped a default sized
2447 * (128MB) VRAM page-by-page. So, to work around this quota issue we have to
2448 * lazily map pages and actively restrict the number of mappings.
2449 *
2450 * Our best workaround thus far is bypassing WinHvPlatform and VID entirely
2451 * when in comes to guest memory management and instead use the underlying
2452 * hypercalls (HvCallMapGpaPages, HvCallUnmapGpaPages) to do it ourselves.
2453 * (This also maps a whole lot better into our own guest page management
2454 * infrastructure.)
2455 *
2456 *
2457 * - Observed problems doing WHvUnmapGpaRange immediately followed by
2458 * WHvMapGpaRange.
2459 *
2460 * As mentioned above, we've been forced to use this sequence when modifying
2461 * page protection. However, when transitioning from readonly to writable,
2462 * we've ended up looping forever with the same write to readonly memory
2463 * VMEXIT. We're wondering if this issue might be related to the lazy mapping
2464 * logic in WinHvPlatform.
2465 *
2466 * Workaround: Insert a WHvRunVirtualProcessor call and make sure to get a GPA
2467 * unmapped exit between the two calls. Not entirely great performance wise
2468 * (or the santity of our code).
2469 *
2470 *
2471 * - Implementing A20 gate behavior is tedious, where as correctly emulating the
2472 * A20M# pin (present on 486 and later) is near impossible for SMP setups
2473 * (e.g. possiblity of two CPUs with different A20 status).
2474 *
2475 * Workaround: Only do A20 on CPU 0, restricting the emulation to HMA. We
2476 * unmap all pages related to HMA (0x100000..0x10ffff) when the A20 state
2477 * changes, lazily syncing the right pages back when accessed.
2478 *
2479 *
2480 * - WHVRunVirtualProcessor wastes time converting VID/Hyper-V messages to its
2481 * own format (WHV_RUN_VP_EXIT_CONTEXT).
2482 *
2483 * We understand this might be because Microsoft wishes to remain free to
2484 * modify the VID/Hyper-V messages, but it's still rather silly and does slow
2485 * things down a little. We'd much rather just process the messages directly.
2486 *
2487 *
2488 * - WHVRunVirtualProcessor would've benefited from using a callback interface:
2489 *
2490 * - The potential size changes of the exit context structure wouldn't be
2491 * an issue, since the function could manage that itself.
2492 *
2493 * - State handling could probably be simplified (like cancelation).
2494 *
2495 *
2496 * - WHvGetVirtualProcessorRegisters and WHvSetVirtualProcessorRegisters
2497 * internally converts register names, probably using temporary heap buffers.
2498 *
2499 * From the looks of things, they are converting from WHV_REGISTER_NAME to
2500 * HV_REGISTER_NAME from in the "Virtual Processor Register Names" section in
2501 * the "Hypervisor Top-Level Functional Specification" document. This feels
2502 * like an awful waste of time.
2503 *
2504 * We simply cannot understand why HV_REGISTER_NAME isn't used directly here,
2505 * or at least the same values, making any conversion reduntant. Restricting
2506 * access to certain registers could easily be implement by scanning the
2507 * inputs.
2508 *
2509 * To avoid the heap + conversion overhead, we're currently using the
2510 * HvCallGetVpRegisters and HvCallSetVpRegisters calls directly.
2511 *
2512 *
2513 * - The YMM and XCR0 registers are not yet named (17083). This probably
2514 * wouldn't be a problem if HV_REGISTER_NAME was used, see previous point.
2515 *
2516 *
2517 * - Why does VID.SYS only query/set 32 registers at the time thru the
2518 * HvCallGetVpRegisters and HvCallSetVpRegisters hypercalls?
2519 *
2520 * We've not trouble getting/setting all the registers defined by
2521 * WHV_REGISTER_NAME in one hypercall (around 80). Some kind of stack
2522 * buffering or similar?
2523 *
2524 *
2525 * - Wrong instruction length in the VpContext with unmapped GPA memory exit
2526 * contexts on 17115/AMD.
2527 *
2528 * One byte "PUSH CS" was reported as 2 bytes, while a two byte
2529 * "MOV [EBX],EAX" was reported with a 1 byte instruction length. Problem
2530 * naturally present in untranslated hyper-v messages.
2531 *
2532 *
2533 * - The I/O port exit context information seems to be missing the address size
2534 * information needed for correct string I/O emulation.
2535 *
2536 * VT-x provides this information in bits 7:9 in the instruction information
2537 * field on newer CPUs. AMD-V in bits 7:9 in the EXITINFO1 field in the VMCB.
2538 *
2539 * We can probably work around this by scanning the instruction bytes for
2540 * address size prefixes. Haven't investigated it any further yet.
2541 *
2542 *
2543 * - The WHvGetCapability function has a weird design:
2544 * - The CapabilityCode parameter is pointlessly duplicated in the output
2545 * structure (WHV_CAPABILITY).
2546 *
2547 * - API takes void pointer, but everyone will probably be using
2548 * WHV_CAPABILITY due to WHV_CAPABILITY::CapabilityCode making it
2549 * impractical to use anything else.
2550 *
2551 * - No output size.
2552 *
2553 * - See GetFileAttributesEx, GetFileInformationByHandleEx,
2554 * FindFirstFileEx, and others for typical pattern for generic
2555 * information getters.
2556 *
2557 * Update: All concerns have been addressed in build 17110.
2558 *
2559 *
2560 * - The WHvGetPartitionProperty function uses the same weird design as
2561 * WHvGetCapability, see above.
2562 *
2563 * Update: All concerns have been addressed in build 17110.
2564 *
2565 *
2566 * - The WHvSetPartitionProperty function has a totally weird design too:
2567 * - In contrast to its partner WHvGetPartitionProperty, the property code
2568 * is not a separate input parameter here but part of the input
2569 * structure.
2570 *
2571 * - The input structure is a void pointer rather than a pointer to
2572 * WHV_PARTITION_PROPERTY which everyone probably will be using because
2573 * of the WHV_PARTITION_PROPERTY::PropertyCode field.
2574 *
2575 * - Really, why use PVOID for the input when the function isn't accepting
2576 * minimal sizes. E.g. WHVPartitionPropertyCodeProcessorClFlushSize only
2577 * requires a 9 byte input, but the function insists on 16 bytes (17083).
2578 *
2579 * - See GetFileAttributesEx, SetFileInformationByHandle, FindFirstFileEx,
2580 * and others for typical pattern for generic information setters and
2581 * getters.
2582 *
2583 * Update: All concerns have been addressed in build 17110.
2584 *
2585 *
2586 *
2587 * @section sec_nem_win_impl Our implementation.
2588 *
2589 * We set out with the goal of wanting to run as much as possible in ring-0,
2590 * reasoning that this would give use the best performance.
2591 *
2592 * This goal was approached gradually, starting out with a pure WinHvPlatform
2593 * implementation, gradually replacing parts: register access, guest memory
2594 * handling, running virtual processors. Then finally moving it all into
2595 * ring-0, while keeping most of it configurable so that we could make
2596 * comparisons (see NEMInternal.h and nemR3NativeRunGC()).
2597 *
2598 *
2599 * @subsection subsect_nem_win_impl_ioctl VID.SYS I/O control calls
2600 *
2601 * To run things in ring-0 we need to talk directly to VID.SYS thru its I/O
2602 * control interface. Looking at changes between like build 17083 and 17101 (if
2603 * memory serves) a set of the VID I/O control numbers shifted a little, which
2604 * means we need to determin them dynamically. We currently do this by hooking
2605 * the NtDeviceIoControlFile API call from VID.DLL and snooping up the
2606 * parameters when making dummy calls to relevant APIs. (We could also
2607 * disassemble the relevant APIs and try fish out the information from that, but
2608 * this is way simpler.)
2609 *
2610 * Issuing I/O control calls from ring-0 is facing a small challenge with
2611 * respect to direct buffering. When using direct buffering the device will
2612 * typically check that the buffer is actually in the user address space range
2613 * and reject kernel addresses. Fortunately, we've got the cross context VM
2614 * structure that is mapped into both kernel and user space, it's also locked
2615 * and safe to access from kernel space. So, we place the I/O control buffers
2616 * in the per-CPU part of it (NEMCPU::uIoCtlBuf) and give the driver the user
2617 * address if direct access buffering or kernel address if not.
2618 *
2619 * The I/O control calls are 'abstracted' in the support driver, see
2620 * SUPR0IoCtlSetupForHandle(), SUPR0IoctlPerform() and SUPR0IoCtlCleanup().
2621 *
2622 *
2623 * @subsection subsect_nem_win_impl_cpumctx CPUMCTX
2624 *
2625 * Since the CPU state needs to live in Hyper-V when executing, we probably
2626 * should not transfer more than necessary when handling VMEXITs. To help us
2627 * manage this CPUMCTX got a new field CPUMCTX::fExtrn that to indicate which
2628 * part of the state is currently externalized (== in Hyper-V).
2629 *
2630 *
2631 */
2632
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette