VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-win.cpp@ 72473

Last change on this file since 72473 was 72473, checked in by vboxsync, 7 years ago

NEM/win: We need extended exception exit support, so fail if missing. #DB intercept fix. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 126.0 KB
Line 
1/* $Id: NEMR3Native-win.cpp 72473 2018-06-07 12:51:15Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 Windows backend.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 * Log group 6: Ring-0 memory management
9 * Log group 12: API intercepts.
10 */
11
12/*
13 * Copyright (C) 2018 Oracle Corporation
14 *
15 * This file is part of VirtualBox Open Source Edition (OSE), as
16 * available from http://www.virtualbox.org. This file is free software;
17 * you can redistribute it and/or modify it under the terms of the GNU
18 * General Public License (GPL) as published by the Free Software
19 * Foundation, in version 2 as it comes in the "COPYING" file of the
20 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
21 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
22 */
23
24
25/*********************************************************************************************************************************
26* Header Files *
27*********************************************************************************************************************************/
28#define LOG_GROUP LOG_GROUP_NEM
29#include <iprt/nt/nt-and-windows.h>
30#include <iprt/nt/hyperv.h>
31#include <iprt/nt/vid.h>
32#include <WinHvPlatform.h>
33
34#ifndef _WIN32_WINNT_WIN10
35# error "Missing _WIN32_WINNT_WIN10"
36#endif
37#ifndef _WIN32_WINNT_WIN10_RS1 /* Missing define, causing trouble for us. */
38# define _WIN32_WINNT_WIN10_RS1 (_WIN32_WINNT_WIN10 + 1)
39#endif
40#include <sysinfoapi.h>
41#include <debugapi.h>
42#include <errhandlingapi.h>
43#include <fileapi.h>
44#include <winerror.h> /* no api header for this. */
45
46#include <VBox/vmm/nem.h>
47#include <VBox/vmm/iem.h>
48#include <VBox/vmm/em.h>
49#include <VBox/vmm/apic.h>
50#include <VBox/vmm/pdm.h>
51#include "NEMInternal.h"
52#include <VBox/vmm/vm.h>
53
54#include <iprt/ldr.h>
55#include <iprt/path.h>
56#include <iprt/string.h>
57#include <iprt/system.h>
58
59
60/*********************************************************************************************************************************
61* Defined Constants And Macros *
62*********************************************************************************************************************************/
63#ifdef LOG_ENABLED
64# define NEM_WIN_INTERCEPT_NT_IO_CTLS
65#endif
66
67/** VID I/O control detection: Fake partition handle input. */
68#define NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE ((HANDLE)(uintptr_t)38479125)
69/** VID I/O control detection: Fake partition ID return. */
70#define NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID UINT64_C(0xfa1e000042424242)
71/** VID I/O control detection: Fake CPU index input. */
72#define NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX UINT32_C(42)
73/** VID I/O control detection: Fake timeout input. */
74#define NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT UINT32_C(0x00080286)
75
76
77/*********************************************************************************************************************************
78* Global Variables *
79*********************************************************************************************************************************/
80/** @name APIs imported from WinHvPlatform.dll
81 * @{ */
82static decltype(WHvGetCapability) * g_pfnWHvGetCapability;
83static decltype(WHvCreatePartition) * g_pfnWHvCreatePartition;
84static decltype(WHvSetupPartition) * g_pfnWHvSetupPartition;
85static decltype(WHvDeletePartition) * g_pfnWHvDeletePartition;
86static decltype(WHvGetPartitionProperty) * g_pfnWHvGetPartitionProperty;
87static decltype(WHvSetPartitionProperty) * g_pfnWHvSetPartitionProperty;
88static decltype(WHvMapGpaRange) * g_pfnWHvMapGpaRange;
89static decltype(WHvUnmapGpaRange) * g_pfnWHvUnmapGpaRange;
90static decltype(WHvTranslateGva) * g_pfnWHvTranslateGva;
91#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
92static decltype(WHvCreateVirtualProcessor) * g_pfnWHvCreateVirtualProcessor;
93static decltype(WHvDeleteVirtualProcessor) * g_pfnWHvDeleteVirtualProcessor;
94static decltype(WHvRunVirtualProcessor) * g_pfnWHvRunVirtualProcessor;
95static decltype(WHvCancelRunVirtualProcessor) * g_pfnWHvCancelRunVirtualProcessor;
96static decltype(WHvGetVirtualProcessorRegisters) * g_pfnWHvGetVirtualProcessorRegisters;
97static decltype(WHvSetVirtualProcessorRegisters) * g_pfnWHvSetVirtualProcessorRegisters;
98#endif
99/** @} */
100
101/** @name APIs imported from Vid.dll
102 * @{ */
103static decltype(VidGetHvPartitionId) *g_pfnVidGetHvPartitionId;
104static decltype(VidStartVirtualProcessor) *g_pfnVidStartVirtualProcessor;
105static decltype(VidStopVirtualProcessor) *g_pfnVidStopVirtualProcessor;
106static decltype(VidMessageSlotMap) *g_pfnVidMessageSlotMap;
107static decltype(VidMessageSlotHandleAndGetNext) *g_pfnVidMessageSlotHandleAndGetNext;
108#ifdef LOG_ENABLED
109static decltype(VidGetVirtualProcessorState) *g_pfnVidGetVirtualProcessorState;
110static decltype(VidSetVirtualProcessorState) *g_pfnVidSetVirtualProcessorState;
111static decltype(VidGetVirtualProcessorRunningStatus) *g_pfnVidGetVirtualProcessorRunningStatus;
112#endif
113/** @} */
114
115/** The Windows build number. */
116static uint32_t g_uBuildNo = 17134;
117
118
119
120/**
121 * Import instructions.
122 */
123static const struct
124{
125 uint8_t idxDll; /**< 0 for WinHvPlatform.dll, 1 for vid.dll. */
126 bool fOptional; /**< Set if import is optional. */
127 PFNRT *ppfn; /**< The function pointer variable. */
128 const char *pszName; /**< The function name. */
129} g_aImports[] =
130{
131#define NEM_WIN_IMPORT(a_idxDll, a_fOptional, a_Name) { (a_idxDll), (a_fOptional), (PFNRT *)&RT_CONCAT(g_pfn,a_Name), #a_Name }
132 NEM_WIN_IMPORT(0, false, WHvGetCapability),
133 NEM_WIN_IMPORT(0, false, WHvCreatePartition),
134 NEM_WIN_IMPORT(0, false, WHvSetupPartition),
135 NEM_WIN_IMPORT(0, false, WHvDeletePartition),
136 NEM_WIN_IMPORT(0, false, WHvGetPartitionProperty),
137 NEM_WIN_IMPORT(0, false, WHvSetPartitionProperty),
138 NEM_WIN_IMPORT(0, false, WHvMapGpaRange),
139 NEM_WIN_IMPORT(0, false, WHvUnmapGpaRange),
140 NEM_WIN_IMPORT(0, false, WHvTranslateGva),
141#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
142 NEM_WIN_IMPORT(0, false, WHvCreateVirtualProcessor),
143 NEM_WIN_IMPORT(0, false, WHvDeleteVirtualProcessor),
144 NEM_WIN_IMPORT(0, false, WHvRunVirtualProcessor),
145 NEM_WIN_IMPORT(0, false, WHvCancelRunVirtualProcessor),
146 NEM_WIN_IMPORT(0, false, WHvGetVirtualProcessorRegisters),
147 NEM_WIN_IMPORT(0, false, WHvSetVirtualProcessorRegisters),
148#endif
149 NEM_WIN_IMPORT(1, false, VidGetHvPartitionId),
150 NEM_WIN_IMPORT(1, false, VidMessageSlotMap),
151 NEM_WIN_IMPORT(1, false, VidMessageSlotHandleAndGetNext),
152 NEM_WIN_IMPORT(1, false, VidStartVirtualProcessor),
153 NEM_WIN_IMPORT(1, false, VidStopVirtualProcessor),
154#ifdef LOG_ENABLED
155 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorState),
156 NEM_WIN_IMPORT(1, false, VidSetVirtualProcessorState),
157 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorRunningStatus),
158#endif
159#undef NEM_WIN_IMPORT
160};
161
162
163/** The real NtDeviceIoControlFile API in NTDLL. */
164static decltype(NtDeviceIoControlFile) *g_pfnNtDeviceIoControlFile;
165/** Pointer to the NtDeviceIoControlFile import table entry. */
166static decltype(NtDeviceIoControlFile) **g_ppfnVidNtDeviceIoControlFile;
167/** Info about the VidGetHvPartitionId I/O control interface. */
168static NEMWINIOCTL g_IoCtlGetHvPartitionId;
169/** Info about the VidStartVirtualProcessor I/O control interface. */
170static NEMWINIOCTL g_IoCtlStartVirtualProcessor;
171/** Info about the VidStopVirtualProcessor I/O control interface. */
172static NEMWINIOCTL g_IoCtlStopVirtualProcessor;
173/** Info about the VidMessageSlotHandleAndGetNext I/O control interface. */
174static NEMWINIOCTL g_IoCtlMessageSlotHandleAndGetNext;
175#ifdef LOG_ENABLED
176/** Info about the VidMessageSlotMap I/O control interface - for logging. */
177static NEMWINIOCTL g_IoCtlMessageSlotMap;
178/* Info about the VidGetVirtualProcessorState I/O control interface - for logging. */
179static NEMWINIOCTL g_IoCtlGetVirtualProcessorState;
180/* Info about the VidSetVirtualProcessorState I/O control interface - for logging. */
181static NEMWINIOCTL g_IoCtlSetVirtualProcessorState;
182/** Pointer to what nemR3WinIoctlDetector_ForLogging should fill in. */
183static NEMWINIOCTL *g_pIoCtlDetectForLogging;
184#endif
185
186#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
187/** Mapping slot for CPU #0.
188 * @{ */
189static VID_MESSAGE_MAPPING_HEADER *g_pMsgSlotMapping = NULL;
190static const HV_MESSAGE_HEADER *g_pHvMsgHdr;
191static const HV_X64_INTERCEPT_MESSAGE_HEADER *g_pX64MsgHdr;
192/** @} */
193#endif
194
195
196/*
197 * Let the preprocessor alias the APIs to import variables for better autocompletion.
198 */
199#ifndef IN_SLICKEDIT
200# define WHvGetCapability g_pfnWHvGetCapability
201# define WHvCreatePartition g_pfnWHvCreatePartition
202# define WHvSetupPartition g_pfnWHvSetupPartition
203# define WHvDeletePartition g_pfnWHvDeletePartition
204# define WHvGetPartitionProperty g_pfnWHvGetPartitionProperty
205# define WHvSetPartitionProperty g_pfnWHvSetPartitionProperty
206# define WHvMapGpaRange g_pfnWHvMapGpaRange
207# define WHvUnmapGpaRange g_pfnWHvUnmapGpaRange
208# define WHvTranslateGva g_pfnWHvTranslateGva
209# define WHvCreateVirtualProcessor g_pfnWHvCreateVirtualProcessor
210# define WHvDeleteVirtualProcessor g_pfnWHvDeleteVirtualProcessor
211# define WHvRunVirtualProcessor g_pfnWHvRunVirtualProcessor
212# define WHvGetRunExitContextSize g_pfnWHvGetRunExitContextSize
213# define WHvCancelRunVirtualProcessor g_pfnWHvCancelRunVirtualProcessor
214# define WHvGetVirtualProcessorRegisters g_pfnWHvGetVirtualProcessorRegisters
215# define WHvSetVirtualProcessorRegisters g_pfnWHvSetVirtualProcessorRegisters
216
217# define VidMessageSlotHandleAndGetNext g_pfnVidMessageSlotHandleAndGetNext
218# define VidStartVirtualProcessor g_pfnVidStartVirtualProcessor
219# define VidStopVirtualProcessor g_pfnVidStopVirtualProcessor
220
221#endif
222
223/** WHV_MEMORY_ACCESS_TYPE names */
224static const char * const g_apszWHvMemAccesstypes[4] = { "read", "write", "exec", "!undefined!" };
225
226
227/*********************************************************************************************************************************
228* Internal Functions *
229*********************************************************************************************************************************/
230
231/*
232 * Instantate the code we share with ring-0.
233 */
234#include "../VMMAll/NEMAllNativeTemplate-win.cpp.h"
235
236
237
238#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
239/**
240 * Wrapper that logs the call from VID.DLL.
241 *
242 * This is very handy for figuring out why an API call fails.
243 */
244static NTSTATUS WINAPI
245nemR3WinLogWrapper_NtDeviceIoControlFile(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
246 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
247 PVOID pvOutput, ULONG cbOutput)
248{
249
250 char szFunction[32];
251 const char *pszFunction;
252 if (uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction)
253 pszFunction = "VidMessageSlotHandleAndGetNext";
254 else if (uFunction == g_IoCtlStartVirtualProcessor.uFunction)
255 pszFunction = "VidStartVirtualProcessor";
256 else if (uFunction == g_IoCtlStopVirtualProcessor.uFunction)
257 pszFunction = "VidStopVirtualProcessor";
258 else if (uFunction == g_IoCtlMessageSlotMap.uFunction)
259 pszFunction = "VidMessageSlotMap";
260 else if (uFunction == g_IoCtlGetVirtualProcessorState.uFunction)
261 pszFunction = "VidGetVirtualProcessorState";
262 else if (uFunction == g_IoCtlSetVirtualProcessorState.uFunction)
263 pszFunction = "VidSetVirtualProcessorState";
264 else
265 {
266 RTStrPrintf(szFunction, sizeof(szFunction), "%#x", uFunction);
267 pszFunction = szFunction;
268 }
269
270 if (cbInput > 0 && pvInput)
271 Log12(("VID!NtDeviceIoControlFile: %s/input: %.*Rhxs\n", pszFunction, RT_MIN(cbInput, 32), pvInput));
272 NTSTATUS rcNt = g_pfnNtDeviceIoControlFile(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, uFunction,
273 pvInput, cbInput, pvOutput, cbOutput);
274 if (!hEvt && !pfnApcCallback && !pvApcCtx)
275 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
276 hFile, pIos, pIos->Status, pIos->Information, pszFunction, pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
277 else
278 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx hEvt=%#zx Apc=%p/%p pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
279 hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pIos->Status, pIos->Information, pszFunction,
280 pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
281 if (cbOutput > 0 && pvOutput)
282 {
283 Log12(("VID!NtDeviceIoControlFile: %s/output: %.*Rhxs\n", pszFunction, RT_MIN(cbOutput, 32), pvOutput));
284 if (uFunction == 0x2210cc && g_pMsgSlotMapping == NULL && cbOutput >= sizeof(void *))
285 {
286 g_pMsgSlotMapping = *(VID_MESSAGE_MAPPING_HEADER **)pvOutput;
287 g_pHvMsgHdr = (const HV_MESSAGE_HEADER *)(g_pMsgSlotMapping + 1);
288 g_pX64MsgHdr = (const HV_X64_INTERCEPT_MESSAGE_HEADER *)(g_pHvMsgHdr + 1);
289 Log12(("VID!NtDeviceIoControlFile: Message slot mapping: %p\n", g_pMsgSlotMapping));
290 }
291 }
292 if ( g_pMsgSlotMapping
293 && ( uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction
294 || uFunction == g_IoCtlStopVirtualProcessor.uFunction
295 || uFunction == g_IoCtlMessageSlotMap.uFunction
296 ))
297 Log12(("VID!NtDeviceIoControlFile: enmVidMsgType=%#x cb=%#x msg=%#x payload=%u cs:rip=%04x:%08RX64 (%s)\n",
298 g_pMsgSlotMapping->enmVidMsgType, g_pMsgSlotMapping->cbMessage,
299 g_pHvMsgHdr->MessageType, g_pHvMsgHdr->PayloadSize,
300 g_pX64MsgHdr->CsSegment.Selector, g_pX64MsgHdr->Rip, pszFunction));
301
302 return rcNt;
303}
304#endif /* NEM_WIN_INTERCEPT_NT_IO_CTLS */
305
306
307/**
308 * Patches the call table of VID.DLL so we can intercept NtDeviceIoControlFile.
309 *
310 * This is for used to figure out the I/O control codes and in logging builds
311 * for logging API calls that WinHvPlatform.dll does.
312 *
313 * @returns VBox status code.
314 * @param hLdrModVid The VID module handle.
315 * @param pErrInfo Where to return additional error information.
316 */
317static int nemR3WinInitVidIntercepts(RTLDRMOD hLdrModVid, PRTERRINFO pErrInfo)
318{
319 /*
320 * Locate the real API.
321 */
322 g_pfnNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) *)RTLdrGetSystemSymbol("NTDLL.DLL", "NtDeviceIoControlFile");
323 AssertReturn(g_pfnNtDeviceIoControlFile != NULL,
324 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to resolve NtDeviceIoControlFile from NTDLL.DLL"));
325
326 /*
327 * Locate the PE header and get what we need from it.
328 */
329 uint8_t const *pbImage = (uint8_t const *)RTLdrGetNativeHandle(hLdrModVid);
330 IMAGE_DOS_HEADER const *pMzHdr = (IMAGE_DOS_HEADER const *)pbImage;
331 AssertReturn(pMzHdr->e_magic == IMAGE_DOS_SIGNATURE,
332 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL mapping doesn't start with MZ signature: %#x", pMzHdr->e_magic));
333 IMAGE_NT_HEADERS const *pNtHdrs = (IMAGE_NT_HEADERS const *)&pbImage[pMzHdr->e_lfanew];
334 AssertReturn(pNtHdrs->Signature == IMAGE_NT_SIGNATURE,
335 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL has invalid PE signaturre: %#x @%#x",
336 pNtHdrs->Signature, pMzHdr->e_lfanew));
337
338 uint32_t const cbImage = pNtHdrs->OptionalHeader.SizeOfImage;
339 IMAGE_DATA_DIRECTORY const ImportDir = pNtHdrs->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
340
341 /*
342 * Walk the import descriptor table looking for NTDLL.DLL.
343 */
344 AssertReturn( ImportDir.Size > 0
345 && ImportDir.Size < cbImage,
346 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory size: %#x", ImportDir.Size));
347 AssertReturn( ImportDir.VirtualAddress > 0
348 && ImportDir.VirtualAddress <= cbImage - ImportDir.Size,
349 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory RVA: %#x", ImportDir.VirtualAddress));
350
351 for (PIMAGE_IMPORT_DESCRIPTOR pImps = (PIMAGE_IMPORT_DESCRIPTOR)&pbImage[ImportDir.VirtualAddress];
352 pImps->Name != 0 && pImps->FirstThunk != 0;
353 pImps++)
354 {
355 AssertReturn(pImps->Name < cbImage,
356 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory entry name: %#x", pImps->Name));
357 const char *pszModName = (const char *)&pbImage[pImps->Name];
358 if (RTStrICmpAscii(pszModName, "ntdll.dll"))
359 continue;
360 AssertReturn(pImps->FirstThunk < cbImage,
361 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
362 AssertReturn(pImps->OriginalFirstThunk < cbImage,
363 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
364
365 /*
366 * Walk the thunks table(s) looking for NtDeviceIoControlFile.
367 */
368 PIMAGE_THUNK_DATA pFirstThunk = (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]; /* update this. */
369 PIMAGE_THUNK_DATA pThunk = pImps->OriginalFirstThunk == 0 /* read from this. */
370 ? (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]
371 : (PIMAGE_THUNK_DATA)&pbImage[pImps->OriginalFirstThunk];
372 while (pThunk->u1.Ordinal != 0)
373 {
374 if (!(pThunk->u1.Ordinal & IMAGE_ORDINAL_FLAG32))
375 {
376 AssertReturn(pThunk->u1.Ordinal > 0 && pThunk->u1.Ordinal < cbImage,
377 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
378
379 const char *pszSymbol = (const char *)&pbImage[(uintptr_t)pThunk->u1.AddressOfData + 2];
380 if (strcmp(pszSymbol, "NtDeviceIoControlFile") == 0)
381 {
382 DWORD fOldProt = PAGE_READONLY;
383 VirtualProtect(&pFirstThunk->u1.Function, sizeof(uintptr_t), PAGE_EXECUTE_READWRITE, &fOldProt);
384 g_ppfnVidNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) **)&pFirstThunk->u1.Function;
385 /* Don't restore the protection here, so we modify the NtDeviceIoControlFile pointer later. */
386 }
387 }
388
389 pThunk++;
390 pFirstThunk++;
391 }
392 }
393
394 if (*g_ppfnVidNtDeviceIoControlFile)
395 {
396#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
397 *g_ppfnVidNtDeviceIoControlFile = nemR3WinLogWrapper_NtDeviceIoControlFile;
398#endif
399 return VINF_SUCCESS;
400 }
401 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to patch NtDeviceIoControlFile import in VID.DLL!");
402}
403
404
405/**
406 * Worker for nemR3NativeInit that probes and load the native API.
407 *
408 * @returns VBox status code.
409 * @param fForced Whether the HMForced flag is set and we should
410 * fail if we cannot initialize.
411 * @param pErrInfo Where to always return error info.
412 */
413static int nemR3WinInitProbeAndLoad(bool fForced, PRTERRINFO pErrInfo)
414{
415 /*
416 * Check that the DLL files we need are present, but without loading them.
417 * We'd like to avoid loading them unnecessarily.
418 */
419 WCHAR wszPath[MAX_PATH + 64];
420 UINT cwcPath = GetSystemDirectoryW(wszPath, MAX_PATH);
421 if (cwcPath >= MAX_PATH || cwcPath < 2)
422 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "GetSystemDirectoryW failed (%#x / %u)", cwcPath, GetLastError());
423
424 if (wszPath[cwcPath - 1] != '\\' || wszPath[cwcPath - 1] != '/')
425 wszPath[cwcPath++] = '\\';
426 RTUtf16CopyAscii(&wszPath[cwcPath], RT_ELEMENTS(wszPath) - cwcPath, "WinHvPlatform.dll");
427 if (GetFileAttributesW(wszPath) == INVALID_FILE_ATTRIBUTES)
428 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "The native API dll was not found (%ls)", wszPath);
429
430 /*
431 * Check that we're in a VM and that the hypervisor identifies itself as Hyper-V.
432 */
433 if (!ASMHasCpuId())
434 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID support");
435 if (!ASMIsValidStdRange(ASMCpuId_EAX(0)))
436 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID leaf #1");
437 if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_HVP))
438 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Not in a hypervisor partition (HVP=0)");
439
440 uint32_t cMaxHyperLeaf = 0;
441 uint32_t uEbx = 0;
442 uint32_t uEcx = 0;
443 uint32_t uEdx = 0;
444 ASMCpuIdExSlow(0x40000000, 0, 0, 0, &cMaxHyperLeaf, &uEbx, &uEcx, &uEdx);
445 if (!ASMIsValidHypervisorRange(cMaxHyperLeaf))
446 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Invalid hypervisor CPUID range (%#x %#x %#x %#x)",
447 cMaxHyperLeaf, uEbx, uEcx, uEdx);
448 if ( uEbx != UINT32_C(0x7263694d) /* Micr */
449 || uEcx != UINT32_C(0x666f736f) /* osof */
450 || uEdx != UINT32_C(0x76482074) /* t Hv */)
451 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
452 "Not Hyper-V CPUID signature: %#x %#x %#x (expected %#x %#x %#x)",
453 uEbx, uEcx, uEdx, UINT32_C(0x7263694d), UINT32_C(0x666f736f), UINT32_C(0x76482074));
454 if (cMaxHyperLeaf < UINT32_C(0x40000005))
455 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Too narrow hypervisor CPUID range (%#x)", cMaxHyperLeaf);
456
457 /** @todo would be great if we could recognize a root partition from the
458 * CPUID info, but I currently don't dare do that. */
459
460 /*
461 * Now try load the DLLs and resolve the APIs.
462 */
463 static const char * const s_apszDllNames[2] = { "WinHvPlatform.dll", "vid.dll" };
464 RTLDRMOD ahMods[2] = { NIL_RTLDRMOD, NIL_RTLDRMOD };
465 int rc = VINF_SUCCESS;
466 for (unsigned i = 0; i < RT_ELEMENTS(s_apszDllNames); i++)
467 {
468 int rc2 = RTLdrLoadSystem(s_apszDllNames[i], true /*fNoUnload*/, &ahMods[i]);
469 if (RT_FAILURE(rc2))
470 {
471 if (!RTErrInfoIsSet(pErrInfo))
472 RTErrInfoSetF(pErrInfo, rc2, "Failed to load API DLL: %s: %Rrc", s_apszDllNames[i], rc2);
473 else
474 RTErrInfoAddF(pErrInfo, rc2, "; %s: %Rrc", s_apszDllNames[i], rc2);
475 ahMods[i] = NIL_RTLDRMOD;
476 rc = VERR_NEM_INIT_FAILED;
477 }
478 }
479 if (RT_SUCCESS(rc))
480 rc = nemR3WinInitVidIntercepts(ahMods[1], pErrInfo);
481 if (RT_SUCCESS(rc))
482 {
483 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
484 {
485 int rc2 = RTLdrGetSymbol(ahMods[g_aImports[i].idxDll], g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
486 if (RT_FAILURE(rc2))
487 {
488 *g_aImports[i].ppfn = NULL;
489
490 LogRel(("NEM: %s: Failed to import %s!%s: %Rrc",
491 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
492 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName, rc2));
493 if (!g_aImports[i].fOptional)
494 {
495 if (RTErrInfoIsSet(pErrInfo))
496 RTErrInfoAddF(pErrInfo, rc2, ", %s!%s",
497 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
498 else
499 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: %s!%s",
500 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
501 Assert(RT_FAILURE(rc));
502 }
503 }
504 }
505 if (RT_SUCCESS(rc))
506 {
507 Assert(!RTErrInfoIsSet(pErrInfo));
508 }
509 }
510
511 for (unsigned i = 0; i < RT_ELEMENTS(ahMods); i++)
512 RTLdrClose(ahMods[i]);
513 return rc;
514}
515
516
517/**
518 * Wrapper for different WHvGetCapability signatures.
519 */
520DECLINLINE(HRESULT) WHvGetCapabilityWrapper(WHV_CAPABILITY_CODE enmCap, WHV_CAPABILITY *pOutput, uint32_t cbOutput)
521{
522 return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput, NULL);
523}
524
525
526/**
527 * Worker for nemR3NativeInit that gets the hypervisor capabilities.
528 *
529 * @returns VBox status code.
530 * @param pVM The cross context VM structure.
531 * @param pErrInfo Where to always return error info.
532 */
533static int nemR3WinInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
534{
535#define NEM_LOG_REL_CAP_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %-38s= " a_szFmt "\n", a_szField, a_Value))
536#define NEM_LOG_REL_CAP_SUB_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %36s: " a_szFmt "\n", a_szField, a_Value))
537#define NEM_LOG_REL_CAP_SUB(a_szField, a_Value) NEM_LOG_REL_CAP_SUB_EX(a_szField, "%d", a_Value)
538
539 /*
540 * Is the hypervisor present with the desired capability?
541 *
542 * In build 17083 this translates into:
543 * - CPUID[0x00000001].HVP is set
544 * - CPUID[0x40000000] == "Microsoft Hv"
545 * - CPUID[0x40000001].eax == "Hv#1"
546 * - CPUID[0x40000003].ebx[12] is set.
547 * - VidGetExoPartitionProperty(INVALID_HANDLE_VALUE, 0x60000, &Ignored) returns
548 * a non-zero value.
549 */
550 /**
551 * @todo Someone at Microsoft please explain weird API design:
552 * 1. Pointless CapabilityCode duplication int the output;
553 * 2. No output size.
554 */
555 WHV_CAPABILITY Caps;
556 RT_ZERO(Caps);
557 SetLastError(0);
558 HRESULT hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeHypervisorPresent, &Caps, sizeof(Caps));
559 DWORD rcWin = GetLastError();
560 if (FAILED(hrc))
561 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
562 "WHvGetCapability/WHvCapabilityCodeHypervisorPresent failed: %Rhrc (Last=%#x/%u)",
563 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
564 if (!Caps.HypervisorPresent)
565 {
566 if (!RTPathExists(RTPATH_NT_PASSTHRU_PREFIX "Device\\VidExo"))
567 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
568 "WHvCapabilityCodeHypervisorPresent is FALSE! Make sure you have enabled the 'Windows Hypervisor Platform' feature.");
569 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "WHvCapabilityCodeHypervisorPresent is FALSE! (%u)", rcWin);
570 }
571 LogRel(("NEM: WHvCapabilityCodeHypervisorPresent is TRUE, so this might work...\n"));
572
573
574 /*
575 * Check what extended VM exits are supported.
576 */
577 RT_ZERO(Caps);
578 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExtendedVmExits, &Caps, sizeof(Caps));
579 if (FAILED(hrc))
580 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
581 "WHvGetCapability/WHvCapabilityCodeExtendedVmExits failed: %Rhrc (Last=%#x/%u)",
582 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
583 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeExtendedVmExits", "%'#018RX64", Caps.ExtendedVmExits.AsUINT64);
584 pVM->nem.s.fExtendedMsrExit = RT_BOOL(Caps.ExtendedVmExits.X64MsrExit);
585 pVM->nem.s.fExtendedCpuIdExit = RT_BOOL(Caps.ExtendedVmExits.X64CpuidExit);
586 pVM->nem.s.fExtendedXcptExit = RT_BOOL(Caps.ExtendedVmExits.ExceptionExit);
587 NEM_LOG_REL_CAP_SUB("fExtendedMsrExit", pVM->nem.s.fExtendedMsrExit);
588 NEM_LOG_REL_CAP_SUB("fExtendedCpuIdExit", pVM->nem.s.fExtendedCpuIdExit);
589 NEM_LOG_REL_CAP_SUB("fExtendedXcptExit", pVM->nem.s.fExtendedXcptExit);
590 if (Caps.ExtendedVmExits.AsUINT64 & ~(uint64_t)7)
591 LogRel(("NEM: Warning! Unknown VM exit definitions: %#RX64\n", Caps.ExtendedVmExits.AsUINT64));
592 /** @todo RECHECK: WHV_EXTENDED_VM_EXITS typedef. */
593
594 /*
595 * Check features in case they end up defining any.
596 */
597 RT_ZERO(Caps);
598 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeFeatures, &Caps, sizeof(Caps));
599 if (FAILED(hrc))
600 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
601 "WHvGetCapability/WHvCapabilityCodeFeatures failed: %Rhrc (Last=%#x/%u)",
602 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
603 if (Caps.Features.AsUINT64 & ~(uint64_t)0)
604 LogRel(("NEM: Warning! Unknown feature definitions: %#RX64\n", Caps.Features.AsUINT64));
605 /** @todo RECHECK: WHV_CAPABILITY_FEATURES typedef. */
606
607 /*
608 * Check supported exception exit bitmap bits.
609 * We don't currently require this, so we just log failure.
610 */
611 RT_ZERO(Caps);
612 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExceptionExitBitmap, &Caps, sizeof(Caps));
613 if (SUCCEEDED(hrc))
614 LogRel(("NEM: Supported exception exit bitmap: %#RX64\n", Caps.ExceptionExitBitmap));
615 else
616 LogRel(("NEM: Warning! WHvGetCapability/WHvCapabilityCodeExceptionExitBitmap failed: %Rhrc (Last=%#x/%u)",
617 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
618
619 /*
620 * Check that the CPU vendor is supported.
621 */
622 RT_ZERO(Caps);
623 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorVendor, &Caps, sizeof(Caps));
624 if (FAILED(hrc))
625 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
626 "WHvGetCapability/WHvCapabilityCodeProcessorVendor failed: %Rhrc (Last=%#x/%u)",
627 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
628 switch (Caps.ProcessorVendor)
629 {
630 /** @todo RECHECK: WHV_PROCESSOR_VENDOR typedef. */
631 case WHvProcessorVendorIntel:
632 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - Intel", Caps.ProcessorVendor);
633 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_INTEL;
634 break;
635 case WHvProcessorVendorAmd:
636 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - AMD", Caps.ProcessorVendor);
637 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_AMD;
638 break;
639 default:
640 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d", Caps.ProcessorVendor);
641 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unknown processor vendor: %d", Caps.ProcessorVendor);
642 }
643
644 /*
645 * CPU features, guessing these are virtual CPU features?
646 */
647 RT_ZERO(Caps);
648 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorFeatures, &Caps, sizeof(Caps));
649 if (FAILED(hrc))
650 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
651 "WHvGetCapability/WHvCapabilityCodeProcessorFeatures failed: %Rhrc (Last=%#x/%u)",
652 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
653 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorFeatures", "%'#018RX64", Caps.ProcessorFeatures.AsUINT64);
654#define NEM_LOG_REL_CPU_FEATURE(a_Field) NEM_LOG_REL_CAP_SUB(#a_Field, Caps.ProcessorFeatures.a_Field)
655 NEM_LOG_REL_CPU_FEATURE(Sse3Support);
656 NEM_LOG_REL_CPU_FEATURE(LahfSahfSupport);
657 NEM_LOG_REL_CPU_FEATURE(Ssse3Support);
658 NEM_LOG_REL_CPU_FEATURE(Sse4_1Support);
659 NEM_LOG_REL_CPU_FEATURE(Sse4_2Support);
660 NEM_LOG_REL_CPU_FEATURE(Sse4aSupport);
661 NEM_LOG_REL_CPU_FEATURE(XopSupport);
662 NEM_LOG_REL_CPU_FEATURE(PopCntSupport);
663 NEM_LOG_REL_CPU_FEATURE(Cmpxchg16bSupport);
664 NEM_LOG_REL_CPU_FEATURE(Altmovcr8Support);
665 NEM_LOG_REL_CPU_FEATURE(LzcntSupport);
666 NEM_LOG_REL_CPU_FEATURE(MisAlignSseSupport);
667 NEM_LOG_REL_CPU_FEATURE(MmxExtSupport);
668 NEM_LOG_REL_CPU_FEATURE(Amd3DNowSupport);
669 NEM_LOG_REL_CPU_FEATURE(ExtendedAmd3DNowSupport);
670 NEM_LOG_REL_CPU_FEATURE(Page1GbSupport);
671 NEM_LOG_REL_CPU_FEATURE(AesSupport);
672 NEM_LOG_REL_CPU_FEATURE(PclmulqdqSupport);
673 NEM_LOG_REL_CPU_FEATURE(PcidSupport);
674 NEM_LOG_REL_CPU_FEATURE(Fma4Support);
675 NEM_LOG_REL_CPU_FEATURE(F16CSupport);
676 NEM_LOG_REL_CPU_FEATURE(RdRandSupport);
677 NEM_LOG_REL_CPU_FEATURE(RdWrFsGsSupport);
678 NEM_LOG_REL_CPU_FEATURE(SmepSupport);
679 NEM_LOG_REL_CPU_FEATURE(EnhancedFastStringSupport);
680 NEM_LOG_REL_CPU_FEATURE(Bmi1Support);
681 NEM_LOG_REL_CPU_FEATURE(Bmi2Support);
682 /* two reserved bits here, see below */
683 NEM_LOG_REL_CPU_FEATURE(MovbeSupport);
684 NEM_LOG_REL_CPU_FEATURE(Npiep1Support);
685 NEM_LOG_REL_CPU_FEATURE(DepX87FPUSaveSupport);
686 NEM_LOG_REL_CPU_FEATURE(RdSeedSupport);
687 NEM_LOG_REL_CPU_FEATURE(AdxSupport);
688 NEM_LOG_REL_CPU_FEATURE(IntelPrefetchSupport);
689 NEM_LOG_REL_CPU_FEATURE(SmapSupport);
690 NEM_LOG_REL_CPU_FEATURE(HleSupport);
691 NEM_LOG_REL_CPU_FEATURE(RtmSupport);
692 NEM_LOG_REL_CPU_FEATURE(RdtscpSupport);
693 NEM_LOG_REL_CPU_FEATURE(ClflushoptSupport);
694 NEM_LOG_REL_CPU_FEATURE(ClwbSupport);
695 NEM_LOG_REL_CPU_FEATURE(ShaSupport);
696 NEM_LOG_REL_CPU_FEATURE(X87PointersSavedSupport);
697#undef NEM_LOG_REL_CPU_FEATURE
698 if (Caps.ProcessorFeatures.AsUINT64 & (~(RT_BIT_64(43) - 1) | RT_BIT_64(27) | RT_BIT_64(28)))
699 LogRel(("NEM: Warning! Unknown CPU features: %#RX64\n", Caps.ProcessorFeatures.AsUINT64));
700 pVM->nem.s.uCpuFeatures.u64 = Caps.ProcessorFeatures.AsUINT64;
701 /** @todo RECHECK: WHV_PROCESSOR_FEATURES typedef. */
702
703 /*
704 * The cache line flush size.
705 */
706 RT_ZERO(Caps);
707 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorClFlushSize, &Caps, sizeof(Caps));
708 if (FAILED(hrc))
709 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
710 "WHvGetCapability/WHvCapabilityCodeProcessorClFlushSize failed: %Rhrc (Last=%#x/%u)",
711 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
712 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorClFlushSize", "2^%u", Caps.ProcessorClFlushSize);
713 if (Caps.ProcessorClFlushSize < 8 && Caps.ProcessorClFlushSize > 9)
714 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unsupported cache line flush size: %u", Caps.ProcessorClFlushSize);
715 pVM->nem.s.cCacheLineFlushShift = Caps.ProcessorClFlushSize;
716
717 /*
718 * See if they've added more properties that we're not aware of.
719 */
720 /** @todo RECHECK: WHV_CAPABILITY_CODE typedef. */
721 if (!IsDebuggerPresent()) /* Too noisy when in debugger, so skip. */
722 {
723 static const struct
724 {
725 uint32_t iMin, iMax; } s_aUnknowns[] =
726 {
727 { 0x0004, 0x000f },
728 { 0x1003, 0x100f },
729 { 0x2000, 0x200f },
730 { 0x3000, 0x300f },
731 { 0x4000, 0x400f },
732 };
733 for (uint32_t j = 0; j < RT_ELEMENTS(s_aUnknowns); j++)
734 for (uint32_t i = s_aUnknowns[j].iMin; i <= s_aUnknowns[j].iMax; i++)
735 {
736 RT_ZERO(Caps);
737 hrc = WHvGetCapabilityWrapper((WHV_CAPABILITY_CODE)i, &Caps, sizeof(Caps));
738 if (SUCCEEDED(hrc))
739 LogRel(("NEM: Warning! Unknown capability %#x returning: %.*Rhxs\n", i, sizeof(Caps), &Caps));
740 }
741 }
742
743 /*
744 * For proper operation, we require CPUID exits.
745 */
746 if (!pVM->nem.s.fExtendedCpuIdExit)
747 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended CPUID exit support");
748 if (!pVM->nem.s.fExtendedMsrExit)
749 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended MSR exit support");
750 if (!pVM->nem.s.fExtendedXcptExit)
751 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended exception exit support");
752
753#undef NEM_LOG_REL_CAP_EX
754#undef NEM_LOG_REL_CAP_SUB_EX
755#undef NEM_LOG_REL_CAP_SUB
756 return VINF_SUCCESS;
757}
758
759
760/**
761 * Used to fill in g_IoCtlGetHvPartitionId.
762 */
763static NTSTATUS WINAPI
764nemR3WinIoctlDetector_GetHvPartitionId(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
765 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
766 PVOID pvOutput, ULONG cbOutput)
767{
768 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
769 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
770 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
771 AssertLogRelMsgReturn(cbInput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
772 RT_NOREF(pvInput);
773
774 AssertLogRelMsgReturn(RT_VALID_PTR(pvOutput), ("pvOutput=%p\n", pvOutput), STATUS_INVALID_PARAMETER_9);
775 AssertLogRelMsgReturn(cbOutput == sizeof(HV_PARTITION_ID), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
776 *(HV_PARTITION_ID *)pvOutput = NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID;
777
778 g_IoCtlGetHvPartitionId.cbInput = cbInput;
779 g_IoCtlGetHvPartitionId.cbOutput = cbOutput;
780 g_IoCtlGetHvPartitionId.uFunction = uFunction;
781
782 return STATUS_SUCCESS;
783}
784
785
786/**
787 * Used to fill in g_IoCtlStartVirtualProcessor.
788 */
789static NTSTATUS WINAPI
790nemR3WinIoctlDetector_StartVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
791 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
792 PVOID pvOutput, ULONG cbOutput)
793{
794 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
795 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
796 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
797 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
798 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
799 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
800 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
801 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
802 RT_NOREF(pvOutput);
803
804 g_IoCtlStartVirtualProcessor.cbInput = cbInput;
805 g_IoCtlStartVirtualProcessor.cbOutput = cbOutput;
806 g_IoCtlStartVirtualProcessor.uFunction = uFunction;
807
808 return STATUS_SUCCESS;
809}
810
811
812/**
813 * Used to fill in g_IoCtlStartVirtualProcessor.
814 */
815static NTSTATUS WINAPI
816nemR3WinIoctlDetector_StopVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
817 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
818 PVOID pvOutput, ULONG cbOutput)
819{
820 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
821 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
822 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
823 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
824 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
825 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
826 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
827 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
828 RT_NOREF(pvOutput);
829
830 g_IoCtlStopVirtualProcessor.cbInput = cbInput;
831 g_IoCtlStopVirtualProcessor.cbOutput = cbOutput;
832 g_IoCtlStopVirtualProcessor.uFunction = uFunction;
833
834 return STATUS_SUCCESS;
835}
836
837
838/**
839 * Used to fill in g_IoCtlMessageSlotHandleAndGetNext
840 */
841static NTSTATUS WINAPI
842nemR3WinIoctlDetector_MessageSlotHandleAndGetNext(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
843 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
844 PVOID pvOutput, ULONG cbOutput)
845{
846 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
847 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
848 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
849
850 AssertLogRelMsgReturn(cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT), ("cbInput=%#x\n", cbInput),
851 STATUS_INVALID_PARAMETER_8);
852 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
853 PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT pVidIn = (PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT)pvInput;
854 AssertLogRelMsgReturn( pVidIn->iCpu == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX
855 && pVidIn->fFlags == VID_MSHAGN_F_HANDLE_MESSAGE
856 && pVidIn->cMillies == NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT,
857 ("iCpu=%u fFlags=%#x cMillies=%#x\n", pVidIn->iCpu, pVidIn->fFlags, pVidIn->cMillies),
858 STATUS_INVALID_PARAMETER_9);
859 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
860 RT_NOREF(pvOutput);
861
862 g_IoCtlMessageSlotHandleAndGetNext.cbInput = cbInput;
863 g_IoCtlMessageSlotHandleAndGetNext.cbOutput = cbOutput;
864 g_IoCtlMessageSlotHandleAndGetNext.uFunction = uFunction;
865
866 return STATUS_SUCCESS;
867}
868
869
870#ifdef LOG_ENABLED
871/**
872 * Used to fill in what g_pIoCtlDetectForLogging points to.
873 */
874static NTSTATUS WINAPI nemR3WinIoctlDetector_ForLogging(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
875 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
876 PVOID pvOutput, ULONG cbOutput)
877{
878 RT_NOREF(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pvInput, pvOutput);
879
880 g_pIoCtlDetectForLogging->cbInput = cbInput;
881 g_pIoCtlDetectForLogging->cbOutput = cbOutput;
882 g_pIoCtlDetectForLogging->uFunction = uFunction;
883
884 return STATUS_SUCCESS;
885}
886#endif
887
888
889/**
890 * Worker for nemR3NativeInit that detect I/O control function numbers for VID.
891 *
892 * We use the function numbers directly in ring-0 and to name functions when
893 * logging NtDeviceIoControlFile calls.
894 *
895 * @note We could alternatively do this by disassembling the respective
896 * functions, but hooking NtDeviceIoControlFile and making fake calls
897 * more easily provides the desired information.
898 *
899 * @returns VBox status code.
900 * @param pVM The cross context VM structure. Will set I/O
901 * control info members.
902 * @param pErrInfo Where to always return error info.
903 */
904static int nemR3WinInitDiscoverIoControlProperties(PVM pVM, PRTERRINFO pErrInfo)
905{
906 /*
907 * Probe the I/O control information for select VID APIs so we can use
908 * them directly from ring-0 and better log them.
909 *
910 */
911 decltype(NtDeviceIoControlFile) * const pfnOrg = *g_ppfnVidNtDeviceIoControlFile;
912
913 /* VidGetHvPartitionId */
914 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_GetHvPartitionId;
915 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
916 BOOL fRet = g_pfnVidGetHvPartitionId(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &idHvPartition);
917 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
918 AssertReturn(fRet && idHvPartition == NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID && g_IoCtlGetHvPartitionId.uFunction != 0,
919 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
920 "Problem figuring out VidGetHvPartitionId: fRet=%u idHvPartition=%#x dwErr=%u",
921 fRet, idHvPartition, GetLastError()) );
922 LogRel(("NEM: VidGetHvPartitionId -> fun:%#x in:%#x out:%#x\n",
923 g_IoCtlGetHvPartitionId.uFunction, g_IoCtlGetHvPartitionId.cbInput, g_IoCtlGetHvPartitionId.cbOutput));
924
925 /* VidStartVirtualProcessor */
926 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StartVirtualProcessor;
927 fRet = g_pfnVidStartVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
928 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
929 AssertReturn(fRet && g_IoCtlStartVirtualProcessor.uFunction != 0,
930 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
931 "Problem figuring out VidStartVirtualProcessor: fRet=%u dwErr=%u",
932 fRet, GetLastError()) );
933 LogRel(("NEM: VidStartVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStartVirtualProcessor.uFunction,
934 g_IoCtlStartVirtualProcessor.cbInput, g_IoCtlStartVirtualProcessor.cbOutput));
935
936 /* VidStopVirtualProcessor */
937 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StopVirtualProcessor;
938 fRet = g_pfnVidStopVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
939 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
940 AssertReturn(fRet && g_IoCtlStopVirtualProcessor.uFunction != 0,
941 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
942 "Problem figuring out VidStopVirtualProcessor: fRet=%u dwErr=%u",
943 fRet, GetLastError()) );
944 LogRel(("NEM: VidStopVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStopVirtualProcessor.uFunction,
945 g_IoCtlStopVirtualProcessor.cbInput, g_IoCtlStopVirtualProcessor.cbOutput));
946
947 /* VidMessageSlotHandleAndGetNext */
948 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_MessageSlotHandleAndGetNext;
949 fRet = g_pfnVidMessageSlotHandleAndGetNext(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE,
950 NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX, VID_MSHAGN_F_HANDLE_MESSAGE,
951 NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT);
952 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
953 AssertReturn(fRet && g_IoCtlMessageSlotHandleAndGetNext.uFunction != 0,
954 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
955 "Problem figuring out VidMessageSlotHandleAndGetNext: fRet=%u dwErr=%u",
956 fRet, GetLastError()) );
957 LogRel(("NEM: VidMessageSlotHandleAndGetNext -> fun:%#x in:%#x out:%#x\n",
958 g_IoCtlMessageSlotHandleAndGetNext.uFunction, g_IoCtlMessageSlotHandleAndGetNext.cbInput,
959 g_IoCtlMessageSlotHandleAndGetNext.cbOutput));
960
961#ifdef LOG_ENABLED
962 /* The following are only for logging: */
963 union
964 {
965 VID_MAPPED_MESSAGE_SLOT MapSlot;
966 HV_REGISTER_NAME Name;
967 HV_REGISTER_VALUE Value;
968 } uBuf;
969
970 /* VidMessageSlotMap */
971 g_pIoCtlDetectForLogging = &g_IoCtlMessageSlotMap;
972 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
973 fRet = g_pfnVidMessageSlotMap(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &uBuf.MapSlot, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
974 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
975 Assert(fRet);
976 LogRel(("NEM: VidMessageSlotMap -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
977 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
978
979 /* VidGetVirtualProcessorState */
980 uBuf.Name = HvRegisterExplicitSuspend;
981 g_pIoCtlDetectForLogging = &g_IoCtlGetVirtualProcessorState;
982 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
983 fRet = g_pfnVidGetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
984 &uBuf.Name, 1, &uBuf.Value);
985 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
986 Assert(fRet);
987 LogRel(("NEM: VidGetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
988 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
989
990 /* VidSetVirtualProcessorState */
991 uBuf.Name = HvRegisterExplicitSuspend;
992 g_pIoCtlDetectForLogging = &g_IoCtlSetVirtualProcessorState;
993 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
994 fRet = g_pfnVidSetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
995 &uBuf.Name, 1, &uBuf.Value);
996 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
997 Assert(fRet);
998 LogRel(("NEM: VidSetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
999 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
1000
1001 g_pIoCtlDetectForLogging = NULL;
1002#endif
1003
1004 /* Done. */
1005 pVM->nem.s.IoCtlGetHvPartitionId = g_IoCtlGetHvPartitionId;
1006 pVM->nem.s.IoCtlStartVirtualProcessor = g_IoCtlStartVirtualProcessor;
1007 pVM->nem.s.IoCtlStopVirtualProcessor = g_IoCtlStopVirtualProcessor;
1008 pVM->nem.s.IoCtlMessageSlotHandleAndGetNext = g_IoCtlMessageSlotHandleAndGetNext;
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Creates and sets up a Hyper-V (exo) partition.
1015 *
1016 * @returns VBox status code.
1017 * @param pVM The cross context VM structure.
1018 * @param pErrInfo Where to always return error info.
1019 */
1020static int nemR3WinInitCreatePartition(PVM pVM, PRTERRINFO pErrInfo)
1021{
1022 AssertReturn(!pVM->nem.s.hPartition, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1023 AssertReturn(!pVM->nem.s.hPartitionDevice, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1024
1025 /*
1026 * Create the partition.
1027 */
1028 WHV_PARTITION_HANDLE hPartition;
1029 HRESULT hrc = WHvCreatePartition(&hPartition);
1030 if (FAILED(hrc))
1031 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "WHvCreatePartition failed with %Rhrc (Last=%#x/%u)",
1032 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1033
1034 int rc;
1035
1036 /*
1037 * Set partition properties, most importantly the CPU count.
1038 */
1039 /**
1040 * @todo Someone at Microsoft please explain another weird API:
1041 * - Why this API doesn't take the WHV_PARTITION_PROPERTY_CODE value as an
1042 * argument rather than as part of the struct. That is so weird if you've
1043 * used any other NT or windows API, including WHvGetCapability().
1044 * - Why use PVOID when WHV_PARTITION_PROPERTY is what's expected. We
1045 * technically only need 9 bytes for setting/getting
1046 * WHVPartitionPropertyCodeProcessorClFlushSize, but the API insists on 16. */
1047 WHV_PARTITION_PROPERTY Property;
1048 RT_ZERO(Property);
1049 Property.ProcessorCount = pVM->cCpus;
1050 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorCount, &Property, sizeof(Property));
1051 if (SUCCEEDED(hrc))
1052 {
1053 RT_ZERO(Property);
1054 Property.ExtendedVmExits.X64CpuidExit = pVM->nem.s.fExtendedCpuIdExit; /** @todo Register fixed results and restrict cpuid exits */
1055 Property.ExtendedVmExits.X64MsrExit = pVM->nem.s.fExtendedMsrExit;
1056 Property.ExtendedVmExits.ExceptionExit = pVM->nem.s.fExtendedXcptExit;
1057 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExtendedVmExits, &Property, sizeof(Property));
1058 if (SUCCEEDED(hrc))
1059 {
1060 /*
1061 * We'll continue setup in nemR3NativeInitAfterCPUM.
1062 */
1063 pVM->nem.s.fCreatedEmts = false;
1064 pVM->nem.s.hPartition = hPartition;
1065 LogRel(("NEM: Created partition %p.\n", hPartition));
1066 return VINF_SUCCESS;
1067 }
1068
1069 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1070 "Failed setting WHvPartitionPropertyCodeExtendedVmExits to %'#RX64: %Rhrc",
1071 Property.ExtendedVmExits.AsUINT64, hrc);
1072 }
1073 else
1074 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1075 "Failed setting WHvPartitionPropertyCodeProcessorCount to %u: %Rhrc (Last=%#x/%u)",
1076 pVM->cCpus, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1077 WHvDeletePartition(hPartition);
1078
1079 Assert(!pVM->nem.s.hPartitionDevice);
1080 Assert(!pVM->nem.s.hPartition);
1081 return rc;
1082}
1083
1084
1085/**
1086 * Makes sure APIC and firmware will not allow X2APIC mode.
1087 *
1088 * This is rather ugly.
1089 *
1090 * @returns VBox status code
1091 * @param pVM The cross context VM structure.
1092 */
1093static int nemR3WinDisableX2Apic(PVM pVM)
1094{
1095 /*
1096 * First make sure the 'Mode' config value of the APIC isn't set to X2APIC.
1097 * This defaults to APIC, so no need to change unless it's X2APIC.
1098 */
1099 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/Devices/apic/0/Config");
1100 if (pCfg)
1101 {
1102 uint8_t bMode = 0;
1103 int rc = CFGMR3QueryU8(pCfg, "Mode", &bMode);
1104 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND, ("%Rrc\n", rc), rc);
1105 if (RT_SUCCESS(rc) && bMode == PDMAPICMODE_X2APIC)
1106 {
1107 LogRel(("NEM: Adjusting APIC configuration from X2APIC to APIC max mode. X2APIC is not supported by the WinHvPlatform API!\n"));
1108 LogRel(("NEM: Disable Hyper-V if you need X2APIC for your guests!\n"));
1109 rc = CFGMR3RemoveValue(pCfg, "Mode");
1110 rc = CFGMR3InsertInteger(pCfg, "Mode", PDMAPICMODE_APIC);
1111 AssertLogRelRCReturn(rc, rc);
1112 }
1113 }
1114
1115 /*
1116 * Now the firmwares.
1117 * These also defaults to APIC and only needs adjusting if configured to X2APIC (2).
1118 */
1119 static const char * const s_apszFirmwareConfigs[] =
1120 {
1121 "/Devices/efi/0/Config",
1122 "/Devices/pcbios/0/Config",
1123 };
1124 for (unsigned i = 0; i < RT_ELEMENTS(s_apszFirmwareConfigs); i++)
1125 {
1126 pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/Devices/APIC/0/Config");
1127 if (pCfg)
1128 {
1129 uint8_t bMode = 0;
1130 int rc = CFGMR3QueryU8(pCfg, "APIC", &bMode);
1131 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND, ("%Rrc\n", rc), rc);
1132 if (RT_SUCCESS(rc) && bMode == 2)
1133 {
1134 LogRel(("NEM: Adjusting %s/Mode from 2 (X2APIC) to 1 (APIC).\n", s_apszFirmwareConfigs[i]));
1135 rc = CFGMR3RemoveValue(pCfg, "APIC");
1136 rc = CFGMR3InsertInteger(pCfg, "APIC", 1);
1137 AssertLogRelRCReturn(rc, rc);
1138 }
1139 }
1140 }
1141
1142 return VINF_SUCCESS;
1143}
1144
1145
1146/**
1147 * Try initialize the native API.
1148 *
1149 * This may only do part of the job, more can be done in
1150 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
1151 *
1152 * @returns VBox status code.
1153 * @param pVM The cross context VM structure.
1154 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
1155 * the latter we'll fail if we cannot initialize.
1156 * @param fForced Whether the HMForced flag is set and we should
1157 * fail if we cannot initialize.
1158 */
1159int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
1160{
1161 g_uBuildNo = RTSystemGetNtBuildNo();
1162
1163 /*
1164 * Some state init.
1165 */
1166 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1167 {
1168 PNEMCPU pNemCpu = &pVM->aCpus[iCpu].nem.s;
1169 pNemCpu->uPendingApicBase = UINT64_MAX;
1170 }
1171
1172 /*
1173 * Error state.
1174 * The error message will be non-empty on failure and 'rc' will be set too.
1175 */
1176 RTERRINFOSTATIC ErrInfo;
1177 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
1178 int rc = nemR3WinInitProbeAndLoad(fForced, pErrInfo);
1179 if (RT_SUCCESS(rc))
1180 {
1181 /*
1182 * Check the capabilties of the hypervisor, starting with whether it's present.
1183 */
1184 rc = nemR3WinInitCheckCapabilities(pVM, pErrInfo);
1185 if (RT_SUCCESS(rc))
1186 {
1187 /*
1188 * Discover the VID I/O control function numbers we need.
1189 */
1190 rc = nemR3WinInitDiscoverIoControlProperties(pVM, pErrInfo);
1191 if (RT_SUCCESS(rc))
1192 {
1193 /*
1194 * Check out our ring-0 capabilities.
1195 */
1196 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_NEM_INIT_VM, 0, NULL);
1197 if (RT_SUCCESS(rc))
1198 {
1199 /*
1200 * Create and initialize a partition.
1201 */
1202 rc = nemR3WinInitCreatePartition(pVM, pErrInfo);
1203 if (RT_SUCCESS(rc))
1204 {
1205 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
1206 Log(("NEM: Marked active!\n"));
1207 nemR3WinDisableX2Apic(pVM);
1208
1209 /* Register release statistics */
1210 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1211 {
1212 PNEMCPU pNemCpu = &pVM->aCpus[iCpu].nem.s;
1213 STAMR3RegisterF(pVM, &pNemCpu->StatExitPortIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of port I/O exits", "/NEM/CPU%u/ExitPortIo", iCpu);
1214 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemUnmapped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unmapped memory exits", "/NEM/CPU%u/ExitMemUnmapped", iCpu);
1215 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemIntercept, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of intercepted memory exits", "/NEM/CPU%u/ExitMemIntercept", iCpu);
1216 STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitHalt", iCpu);
1217 STAMR3RegisterF(pVM, &pNemCpu->StatExitInterruptWindow, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitInterruptWindow", iCpu);
1218 STAMR3RegisterF(pVM, &pNemCpu->StatExitCpuId, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of CPUID exits", "/NEM/CPU%u/ExitCpuId", iCpu);
1219 STAMR3RegisterF(pVM, &pNemCpu->StatExitMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of MSR access exits", "/NEM/CPU%u/ExitMsr", iCpu);
1220 STAMR3RegisterF(pVM, &pNemCpu->StatExitException, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of exception exits", "/NEM/CPU%u/ExitException", iCpu);
1221 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionBp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #BP exits", "/NEM/CPU%u/ExitExceptionBp", iCpu);
1222 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionDb, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #DB exits", "/NEM/CPU%u/ExitExceptionDb", iCpu);
1223 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUd, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #UD exits", "/NEM/CPU%u/ExitExceptionUd", iCpu);
1224 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUdHandled, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of handled #UD exits", "/NEM/CPU%u/ExitExceptionUdHandled", iCpu);
1225 STAMR3RegisterF(pVM, &pNemCpu->StatExitUnrecoverable, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unrecoverable exits", "/NEM/CPU%u/ExitUnrecoverable", iCpu);
1226 STAMR3RegisterF(pVM, &pNemCpu->StatGetMsgTimeout, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of get message timeouts/alerts", "/NEM/CPU%u/GetMsgTimeout", iCpu);
1227 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuSuccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of successful CPU stops", "/NEM/CPU%u/StopCpuSuccess", iCpu);
1228 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPending, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stops", "/NEM/CPU%u/StopCpuPending", iCpu);
1229 STAMR3RegisterF(pVM, &pNemCpu->StatCancelChangedState, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel changed state", "/NEM/CPU%u/CancelChangedState", iCpu);
1230 STAMR3RegisterF(pVM, &pNemCpu->StatCancelAlertedThread, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel alerted EMT", "/NEM/CPU%u/CancelAlertedEMT", iCpu);
1231 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPre, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pre execution FF breaks", "/NEM/CPU%u/BreakOnFFPre", iCpu);
1232 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPost, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of post execution FF breaks", "/NEM/CPU%u/BreakOnFFPost", iCpu);
1233 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnCancel, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel execution breaks", "/NEM/CPU%u/BreakOnCancel", iCpu);
1234 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnStatus, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of status code breaks", "/NEM/CPU%u/BreakOnStatus", iCpu);
1235 }
1236
1237 PUVM pUVM = pVM->pUVM;
1238 STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesAvailable, STAMTYPE_U64, STAMVISIBILITY_ALWAYS,
1239 STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Free pages available to the hypervisor",
1240 "/NEM/R0Stats/cPagesAvailable");
1241 STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesInUse, STAMTYPE_U64, STAMVISIBILITY_ALWAYS,
1242 STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Pages in use by hypervisor",
1243 "/NEM/R0Stats/cPagesInUse");
1244 }
1245 }
1246 }
1247 }
1248 }
1249
1250 /*
1251 * We only fail if in forced mode, otherwise just log the complaint and return.
1252 */
1253 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
1254 if ( (fForced || !fFallback)
1255 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
1256 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
1257
1258 if (RTErrInfoIsSet(pErrInfo))
1259 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
1260 return VINF_SUCCESS;
1261}
1262
1263
1264/**
1265 * This is called after CPUMR3Init is done.
1266 *
1267 * @returns VBox status code.
1268 * @param pVM The VM handle..
1269 */
1270int nemR3NativeInitAfterCPUM(PVM pVM)
1271{
1272 /*
1273 * Validate sanity.
1274 */
1275 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1276 AssertReturn(hPartition != NULL, VERR_WRONG_ORDER);
1277 AssertReturn(!pVM->nem.s.hPartitionDevice, VERR_WRONG_ORDER);
1278 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
1279 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
1280
1281 /*
1282 * Continue setting up the partition now that we've got most of the CPUID feature stuff.
1283 */
1284 WHV_PARTITION_PROPERTY Property;
1285 HRESULT hrc;
1286
1287#if 0
1288 /* Not sure if we really need to set the vendor.
1289 Update: Apparently we don't. WHvPartitionPropertyCodeProcessorVendor was removed in 17110. */
1290 RT_ZERO(Property);
1291 Property.ProcessorVendor = pVM->nem.s.enmCpuVendor == CPUMCPUVENDOR_AMD ? WHvProcessorVendorAmd
1292 : WHvProcessorVendorIntel;
1293 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorVendor, &Property, sizeof(Property));
1294 if (FAILED(hrc))
1295 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1296 "Failed to set WHvPartitionPropertyCodeProcessorVendor to %u: %Rhrc (Last=%#x/%u)",
1297 Property.ProcessorVendor, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1298#endif
1299
1300 /* Not sure if we really need to set the cache line flush size. */
1301 RT_ZERO(Property);
1302 Property.ProcessorClFlushSize = pVM->nem.s.cCacheLineFlushShift;
1303 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorClFlushSize, &Property, sizeof(Property));
1304 if (FAILED(hrc))
1305 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1306 "Failed to set WHvPartitionPropertyCodeProcessorClFlushSize to %u: %Rhrc (Last=%#x/%u)",
1307 pVM->nem.s.cCacheLineFlushShift, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1308
1309 /* Intercept #DB, #BP and #UD exceptions. */
1310 RT_ZERO(Property);
1311 Property.ExceptionExitBitmap = RT_BIT_64(WHvX64ExceptionTypeDebugTrapOrFault)
1312 | RT_BIT_64(WHvX64ExceptionTypeBreakpointTrap)
1313 | RT_BIT_64(WHvX64ExceptionTypeInvalidOpcodeFault);
1314 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExceptionExitBitmap, &Property, sizeof(Property));
1315 if (FAILED(hrc))
1316 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1317 "Failed to set WHvPartitionPropertyCodeExceptionExitBitmap to %#RX64: %Rhrc (Last=%#x/%u)",
1318 Property.ExceptionExitBitmap, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1319
1320
1321 /*
1322 * Sync CPU features with CPUM.
1323 */
1324 /** @todo sync CPU features with CPUM. */
1325
1326 /* Set the partition property. */
1327 RT_ZERO(Property);
1328 Property.ProcessorFeatures.AsUINT64 = pVM->nem.s.uCpuFeatures.u64;
1329 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorFeatures, &Property, sizeof(Property));
1330 if (FAILED(hrc))
1331 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1332 "Failed to set WHvPartitionPropertyCodeProcessorFeatures to %'#RX64: %Rhrc (Last=%#x/%u)",
1333 pVM->nem.s.uCpuFeatures.u64, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1334
1335 /*
1336 * Set up the partition and create EMTs.
1337 *
1338 * Seems like this is where the partition is actually instantiated and we get
1339 * a handle to it.
1340 */
1341 hrc = WHvSetupPartition(hPartition);
1342 if (FAILED(hrc))
1343 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1344 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)",
1345 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1346
1347 /* Get the handle. */
1348 HANDLE hPartitionDevice;
1349 __try
1350 {
1351 hPartitionDevice = ((HANDLE *)hPartition)[1];
1352 }
1353 __except(EXCEPTION_EXECUTE_HANDLER)
1354 {
1355 hrc = GetExceptionCode();
1356 hPartitionDevice = NULL;
1357 }
1358 if ( hPartitionDevice == NULL
1359 || hPartitionDevice == (HANDLE)(intptr_t)-1)
1360 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1361 "Failed to get device handle for partition %p: %Rhrc", hPartition, hrc);
1362
1363 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
1364 if (!g_pfnVidGetHvPartitionId(hPartitionDevice, &idHvPartition))
1365 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1366 "Failed to get device handle and/or partition ID for %p (hPartitionDevice=%p, Last=%#x/%u)",
1367 hPartition, hPartitionDevice, RTNtLastStatusValue(), RTNtLastErrorValue());
1368 pVM->nem.s.hPartitionDevice = hPartitionDevice;
1369 pVM->nem.s.idHvPartition = idHvPartition;
1370
1371 /*
1372 * Setup the EMTs.
1373 */
1374 VMCPUID iCpu;
1375 for (iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1376 {
1377 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1378
1379 pVCpu->nem.s.hNativeThreadHandle = (RTR3PTR)RTThreadGetNativeHandle(VMR3GetThreadHandle(pVCpu->pUVCpu));
1380 Assert((HANDLE)pVCpu->nem.s.hNativeThreadHandle != INVALID_HANDLE_VALUE);
1381
1382#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
1383 VID_MAPPED_MESSAGE_SLOT MappedMsgSlot = { NULL, UINT32_MAX, UINT32_MAX };
1384 if (g_pfnVidMessageSlotMap(hPartitionDevice, &MappedMsgSlot, iCpu))
1385 {
1386 AssertLogRelMsg(MappedMsgSlot.iCpu == iCpu && MappedMsgSlot.uParentAdvisory == UINT32_MAX,
1387 ("%#x %#x (iCpu=%#x)\n", MappedMsgSlot.iCpu, MappedMsgSlot.uParentAdvisory, iCpu));
1388 pVCpu->nem.s.pvMsgSlotMapping = MappedMsgSlot.pMsgBlock;
1389 }
1390 else
1391 {
1392 NTSTATUS const rcNtLast = RTNtLastStatusValue();
1393 DWORD const dwErrLast = RTNtLastErrorValue();
1394 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1395 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
1396 }
1397#else
1398 hrc = WHvCreateVirtualProcessor(hPartition, iCpu, 0 /*fFlags*/);
1399 if (FAILED(hrc))
1400 {
1401 NTSTATUS const rcNtLast = RTNtLastStatusValue();
1402 DWORD const dwErrLast = RTNtLastErrorValue();
1403 while (iCpu-- > 0)
1404 {
1405 HRESULT hrc2 = WHvDeleteVirtualProcessor(hPartition, iCpu);
1406 AssertLogRelMsg(SUCCEEDED(hrc2), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1407 hPartition, iCpu, hrc2, RTNtLastStatusValue(),
1408 RTNtLastErrorValue()));
1409 }
1410 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1411 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
1412 }
1413#endif /* !NEM_WIN_USE_OUR_OWN_RUN_API */
1414 }
1415 pVM->nem.s.fCreatedEmts = true;
1416
1417 /*
1418 * Do some more ring-0 initialization now that we've got the partition handle.
1419 */
1420 int rc = VMMR3CallR0Emt(pVM, &pVM->aCpus[0], VMMR0_DO_NEM_INIT_VM_PART_2, 0, NULL);
1421 if (RT_SUCCESS(rc))
1422 {
1423 LogRel(("NEM: Successfully set up partition (device handle %p, partition ID %#llx)\n", hPartitionDevice, idHvPartition));
1424
1425#if 1
1426 VMMR3CallR0Emt(pVM, &pVM->aCpus[0], VMMR0_DO_NEM_UPDATE_STATISTICS, 0, NULL);
1427 LogRel(("NEM: Memory balance: %#RX64 out of %#RX64 pages in use\n",
1428 pVM->nem.s.R0Stats.cPagesInUse, pVM->nem.s.R0Stats.cPagesAvailable));
1429#endif
1430
1431 /*
1432 * Register statistics on shared pages.
1433 */
1434 /** @todo HvCallMapStatsPage */
1435
1436 /*
1437 * Adjust features.
1438 * Note! We've already disabled X2APIC via CFGM during the first init call.
1439 */
1440 return VINF_SUCCESS;
1441 }
1442 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to NEMR0InitVMPart2 failed: %Rrc", rc);
1443}
1444
1445
1446int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1447{
1448 //BOOL fRet = SetThreadPriority(GetCurrentThread(), 0);
1449 //AssertLogRel(fRet);
1450
1451 NOREF(pVM); NOREF(enmWhat);
1452 return VINF_SUCCESS;
1453}
1454
1455
1456int nemR3NativeTerm(PVM pVM)
1457{
1458 /*
1459 * Delete the partition.
1460 */
1461 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1462 pVM->nem.s.hPartition = NULL;
1463 pVM->nem.s.hPartitionDevice = NULL;
1464 if (hPartition != NULL)
1465 {
1466 VMCPUID iCpu = pVM->nem.s.fCreatedEmts ? pVM->cCpus : 0;
1467 LogRel(("NEM: Destroying partition %p with its %u VCpus...\n", hPartition, iCpu));
1468 while (iCpu-- > 0)
1469 {
1470#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
1471 pVM->aCpus[iCpu].nem.s.pvMsgSlotMapping = NULL;
1472#else
1473 HRESULT hrc = WHvDeleteVirtualProcessor(hPartition, iCpu);
1474 AssertLogRelMsg(SUCCEEDED(hrc), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1475 hPartition, iCpu, hrc, RTNtLastStatusValue(),
1476 RTNtLastErrorValue()));
1477#endif
1478 }
1479 WHvDeletePartition(hPartition);
1480 }
1481 pVM->nem.s.fCreatedEmts = false;
1482 return VINF_SUCCESS;
1483}
1484
1485
1486/**
1487 * VM reset notification.
1488 *
1489 * @param pVM The cross context VM structure.
1490 */
1491void nemR3NativeReset(PVM pVM)
1492{
1493 /* Unfix the A20 gate. */
1494 pVM->nem.s.fA20Fixed = false;
1495}
1496
1497
1498/**
1499 * Reset CPU due to INIT IPI or hot (un)plugging.
1500 *
1501 * @param pVCpu The cross context virtual CPU structure of the CPU being
1502 * reset.
1503 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
1504 */
1505void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
1506{
1507 /* Lock the A20 gate if INIT IPI, make sure it's enabled. */
1508 if (fInitIpi && pVCpu->idCpu > 0)
1509 {
1510 PVM pVM = pVCpu->CTX_SUFF(pVM);
1511 if (!pVM->nem.s.fA20Enabled)
1512 nemR3NativeNotifySetA20(pVCpu, true);
1513 pVM->nem.s.fA20Enabled = true;
1514 pVM->nem.s.fA20Fixed = true;
1515 }
1516}
1517
1518#if 0 //ndef NEM_WIN_USE_OUR_OWN_RUN_API - migrating to NEMAllNativeTemplate-win.cpp.h */
1519
1520# ifdef LOG_ENABLED
1521/**
1522 * Log the full details of an exit reason.
1523 *
1524 * @param pExitReason The exit reason to log.
1525 */
1526static void nemR3WinLogWHvExitReason(WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1527{
1528 bool fExitCtx = false;
1529 bool fExitInstr = false;
1530 switch (pExitReason->ExitReason)
1531 {
1532 case WHvRunVpExitReasonMemoryAccess:
1533 Log2(("Exit: Memory access: GCPhys=%RGp GCVirt=%RGv %s %s %s\n",
1534 pExitReason->MemoryAccess.Gpa, pExitReason->MemoryAccess.Gva,
1535 g_apszWHvMemAccesstypes[pExitReason->MemoryAccess.AccessInfo.AccessType],
1536 pExitReason->MemoryAccess.AccessInfo.GpaUnmapped ? "unmapped" : "mapped",
1537 pExitReason->MemoryAccess.AccessInfo.GvaValid ? "" : "invalid-gc-virt"));
1538 AssertMsg(!(pExitReason->MemoryAccess.AccessInfo.AsUINT32 & ~UINT32_C(0xf)),
1539 ("MemoryAccess.AccessInfo=%#x\n", pExitReason->MemoryAccess.AccessInfo.AsUINT32));
1540 fExitCtx = fExitInstr = true;
1541 break;
1542
1543 case WHvRunVpExitReasonX64IoPortAccess:
1544 Log2(("Exit: I/O port access: IoPort=%#x LB %u %s%s%s rax=%#RX64 rcx=%#RX64 rsi=%#RX64 rdi=%#RX64\n",
1545 pExitReason->IoPortAccess.PortNumber,
1546 pExitReason->IoPortAccess.AccessInfo.AccessSize,
1547 pExitReason->IoPortAccess.AccessInfo.IsWrite ? "out" : "in",
1548 pExitReason->IoPortAccess.AccessInfo.StringOp ? " string" : "",
1549 pExitReason->IoPortAccess.AccessInfo.RepPrefix ? " rep" : "",
1550 pExitReason->IoPortAccess.Rax,
1551 pExitReason->IoPortAccess.Rcx,
1552 pExitReason->IoPortAccess.Rsi,
1553 pExitReason->IoPortAccess.Rdi));
1554 Log2(("Exit: + ds=%#x:{%#RX64 LB %#RX32, %#x} es=%#x:{%#RX64 LB %#RX32, %#x}\n",
1555 pExitReason->IoPortAccess.Ds.Selector,
1556 pExitReason->IoPortAccess.Ds.Base,
1557 pExitReason->IoPortAccess.Ds.Limit,
1558 pExitReason->IoPortAccess.Ds.Attributes,
1559 pExitReason->IoPortAccess.Es.Selector,
1560 pExitReason->IoPortAccess.Es.Base,
1561 pExitReason->IoPortAccess.Es.Limit,
1562 pExitReason->IoPortAccess.Es.Attributes ));
1563
1564 AssertMsg( pExitReason->IoPortAccess.AccessInfo.AccessSize == 1
1565 || pExitReason->IoPortAccess.AccessInfo.AccessSize == 2
1566 || pExitReason->IoPortAccess.AccessInfo.AccessSize == 4,
1567 ("IoPortAccess.AccessInfo.AccessSize=%d\n", pExitReason->IoPortAccess.AccessInfo.AccessSize));
1568 AssertMsg(!(pExitReason->IoPortAccess.AccessInfo.AsUINT32 & ~UINT32_C(0x3f)),
1569 ("IoPortAccess.AccessInfo=%#x\n", pExitReason->IoPortAccess.AccessInfo.AsUINT32));
1570 fExitCtx = fExitInstr = true;
1571 break;
1572
1573# if 0
1574 case WHvRunVpExitReasonUnrecoverableException:
1575 case WHvRunVpExitReasonInvalidVpRegisterValue:
1576 case WHvRunVpExitReasonUnsupportedFeature:
1577 case WHvRunVpExitReasonX64InterruptWindow:
1578 case WHvRunVpExitReasonX64Halt:
1579 case WHvRunVpExitReasonX64MsrAccess:
1580 case WHvRunVpExitReasonX64Cpuid:
1581 case WHvRunVpExitReasonException:
1582 case WHvRunVpExitReasonCanceled:
1583 case WHvRunVpExitReasonAlerted:
1584 WHV_X64_MSR_ACCESS_CONTEXT MsrAccess;
1585 WHV_X64_CPUID_ACCESS_CONTEXT CpuidAccess;
1586 WHV_VP_EXCEPTION_CONTEXT VpException;
1587 WHV_X64_INTERRUPTION_DELIVERABLE_CONTEXT InterruptWindow;
1588 WHV_UNRECOVERABLE_EXCEPTION_CONTEXT UnrecoverableException;
1589 WHV_X64_UNSUPPORTED_FEATURE_CONTEXT UnsupportedFeature;
1590 WHV_RUN_VP_CANCELED_CONTEXT CancelReason;
1591# endif
1592
1593 case WHvRunVpExitReasonNone:
1594 Log2(("Exit: No reason\n"));
1595 AssertFailed();
1596 break;
1597
1598 default:
1599 Log(("Exit: %#x\n", pExitReason->ExitReason));
1600 break;
1601 }
1602
1603 /*
1604 * Context and maybe instruction details.
1605 */
1606 if (fExitCtx)
1607 {
1608 const WHV_VP_EXIT_CONTEXT *pVpCtx = &pExitReason->VpContext;
1609 Log2(("Exit: + CS:RIP=%04x:%08RX64 RFLAGS=%06RX64 cbInstr=%u CS={%RX64 L %#RX32, %#x}\n",
1610 pVpCtx->Cs.Selector,
1611 pVpCtx->Rip,
1612 pVpCtx->Rflags,
1613 pVpCtx->InstructionLength,
1614 pVpCtx->Cs.Base, pVpCtx->Cs.Limit, pVpCtx->Cs.Attributes));
1615 Log2(("Exit: + cpl=%d CR0.PE=%d CR0.AM=%d EFER.LMA=%d DebugActive=%d InterruptionPending=%d InterruptShadow=%d\n",
1616 pVpCtx->ExecutionState.Cpl,
1617 pVpCtx->ExecutionState.Cr0Pe,
1618 pVpCtx->ExecutionState.Cr0Am,
1619 pVpCtx->ExecutionState.EferLma,
1620 pVpCtx->ExecutionState.DebugActive,
1621 pVpCtx->ExecutionState.InterruptionPending,
1622 pVpCtx->ExecutionState.InterruptShadow));
1623 AssertMsg(!(pVpCtx->ExecutionState.AsUINT16 & ~UINT16_C(0x107f)),
1624 ("ExecutionState.AsUINT16=%#x\n", pVpCtx->ExecutionState.AsUINT16));
1625
1626 /** @todo Someone at Microsoft please explain why the InstructionBytes fields
1627 * are 16 bytes long, when 15 would've been sufficent and saved 3-7 bytes of
1628 * alignment padding? Intel max length is 15, so is this sSome ARM stuff?
1629 * Aren't ARM
1630 * instructions max 32-bit wide? Confused. */
1631 if (fExitInstr && pExitReason->IoPortAccess.InstructionByteCount > 0)
1632 Log2(("Exit: + Instruction %.*Rhxs\n",
1633 pExitReason->IoPortAccess.InstructionByteCount, &pExitReason->IoPortAccess.InstructionBytes[0]));
1634 }
1635}
1636# endif /* LOG_ENABLED */
1637
1638
1639static VBOXSTRICTRC nemR3WinWHvHandleHalt(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1640{
1641 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
1642 LogFlow(("nemR3WinWHvHandleHalt\n"));
1643 return VINF_EM_HALT;
1644}
1645
1646
1647# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1648/**
1649 * @callback_method_impl{FNPGMPHYSNEMENUMCALLBACK,
1650 * Hack to unmap all pages when/before we run into quota (WHv only).}
1651 */
1652static DECLCALLBACK(int) nemR3WinWHvUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
1653{
1654 RT_NOREF_PV(pvUser);
1655 RT_NOREF_PV(pVCpu);
1656 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1657 if (SUCCEEDED(hrc))
1658 {
1659 Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
1660 *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1661 }
1662 else
1663 {
1664 LogRel(("nemR3WinWHvUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
1665 GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
1666 RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
1667 *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
1668 }
1669 if (pVM->nem.s.cMappedPages > 0)
1670 ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
1671 return VINF_SUCCESS;
1672}
1673# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
1674
1675
1676/**
1677 * Handles an memory access VMEXIT.
1678 *
1679 * This can be triggered by a number of things.
1680 *
1681 * @returns Strict VBox status code.
1682 * @param pVM The cross context VM structure.
1683 * @param pVCpu The cross context virtual CPU structure.
1684 * @param pCtx The CPU context to update.
1685 * @param pMemCtx The exit reason information.
1686 * @param pVpContext The processor context info associated with the exit.
1687 */
1688static VBOXSTRICTRC nemR3WinWHvHandleMemoryAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_MEMORY_ACCESS_CONTEXT const *pMemCtx,
1689 WHV_VP_EXIT_CONTEXT const *pVpContext)
1690{
1691 /*
1692 * Ask PGM for information about the given GCPhys. We need to check if we're
1693 * out of sync first.
1694 */
1695 NEMHCWINHMACPCCSTATE State = { pMemCtx->AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
1696 PGMPHYSNEMPAGEINFO Info;
1697 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMemCtx->Gpa, State.fWriteAccess, &Info,
1698 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
1699 if (RT_SUCCESS(rc))
1700 {
1701 if (Info.fNemProt & (pMemCtx->AccessInfo.AccessType == WHvMemoryAccessWrite ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
1702 {
1703 if (State.fCanResume)
1704 {
1705 Log4(("MemExit: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
1706 pMemCtx->Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1707 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1708 State.fDidSomething ? "" : " no-change", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1709 return VINF_SUCCESS;
1710 }
1711 }
1712 Log4(("MemExit: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
1713 pMemCtx->Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1714 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1715 State.fDidSomething ? "" : " no-change", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1716 }
1717 else
1718 Log4(("MemExit: %RGp rc=%Rrc%s; emulating (%s)\n", pMemCtx->Gpa, rc,
1719 State.fDidSomething ? " modified-backing" : "", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1720
1721 /*
1722 * Emulate the memory access, either access handler or special memory.
1723 */
1724 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1725 AssertRCReturn(rc, rc);
1726
1727 VBOXSTRICTRC rcStrict;
1728 if (pMemCtx->InstructionByteCount > 0)
1729 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pVpContext->Rip,
1730 &pMemCtx->InstructionBytes[0], pMemCtx->InstructionByteCount);
1731 else
1732 rcStrict = IEMExecOne(pVCpu);
1733 /** @todo do we need to do anything wrt debugging here? */
1734 return rcStrict;
1735}
1736
1737
1738/**
1739 * Handles an I/O port access VMEXIT.
1740 *
1741 * We ASSUME that the hypervisor has don't I/O port access control.
1742 *
1743 * @returns Strict VBox status code.
1744 * @param pVM The cross context VM structure.
1745 * @param pVCpu The cross context virtual CPU structure.
1746 * @param pCtx The CPU context to update.
1747 * @param pIoPortCtx The exit reason information.
1748 * @param pVpContext The processor context info associated with the exit.
1749 */
1750static VBOXSTRICTRC
1751nemR3WinWHvHandleIoPortAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_X64_IO_PORT_ACCESS_CONTEXT const *pIoPortCtx,
1752 WHV_VP_EXIT_CONTEXT const *pVpContext)
1753{
1754 Assert( pIoPortCtx->AccessInfo.AccessSize == 1
1755 || pIoPortCtx->AccessInfo.AccessSize == 2
1756 || pIoPortCtx->AccessInfo.AccessSize == 4);
1757
1758 VBOXSTRICTRC rcStrict;
1759 if (!pIoPortCtx->AccessInfo.StringOp)
1760 {
1761 /*
1762 * Simple port I/O.
1763 */
1764 //Assert(pCtx->rax == pIoPortCtx->Rax); - sledgehammer
1765
1766 static uint32_t const s_fAndMask[8] =
1767 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
1768 uint32_t const fAndMask = s_fAndMask[pIoPortCtx->AccessInfo.AccessSize];
1769 if (pIoPortCtx->AccessInfo.IsWrite)
1770 {
1771 rcStrict = IOMIOPortWrite(pVM, pVCpu, pIoPortCtx->PortNumber, (uint32_t)pIoPortCtx->Rax & fAndMask,
1772 pIoPortCtx->AccessInfo.AccessSize);
1773 if (IOM_SUCCESS(rcStrict))
1774 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, pVpContext);
1775 }
1776 else
1777 {
1778 uint32_t uValue = 0;
1779 rcStrict = IOMIOPortRead(pVM, pVCpu, pIoPortCtx->PortNumber, &uValue,
1780 pIoPortCtx->AccessInfo.AccessSize);
1781 if (IOM_SUCCESS(rcStrict))
1782 {
1783 pCtx->eax = (pCtx->eax & ~fAndMask) | (uValue & fAndMask);
1784 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, pVpContext);
1785 }
1786 }
1787 }
1788 else
1789 {
1790 /*
1791 * String port I/O.
1792 */
1793 /** @todo Someone at Microsoft please explain how we can get the address mode
1794 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
1795 * getting the default mode, it can always be overridden by a prefix. This
1796 * forces us to interpret the instruction from opcodes, which is suboptimal.
1797 * Both AMD-V and VT-x includes the address size in the exit info, at least on
1798 * CPUs that are reasonably new. */
1799# if 0 // requires sledgehammer
1800 Assert( pIoPortCtx->Ds.Base == pCtx->ds.u64Base
1801 && pIoPortCtx->Ds.Limit == pCtx->ds.u32Limit
1802 && pIoPortCtx->Ds.Selector == pCtx->ds.Sel);
1803 Assert( pIoPortCtx->Es.Base == pCtx->es.u64Base
1804 && pIoPortCtx->Es.Limit == pCtx->es.u32Limit
1805 && pIoPortCtx->Es.Selector == pCtx->es.Sel);
1806 Assert(pIoPortCtx->Rdi == pCtx->rdi);
1807 Assert(pIoPortCtx->Rsi == pCtx->rsi);
1808 Assert(pIoPortCtx->Rcx == pCtx->rcx);
1809 Assert(pIoPortCtx->Rcx == pCtx->rcx);
1810# endif
1811
1812 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1813 AssertRCReturn(rc, rc);
1814
1815 rcStrict = IEMExecOne(pVCpu);
1816 }
1817 if (IOM_SUCCESS(rcStrict))
1818 {
1819 /*
1820 * Do debug checks.
1821 */
1822 if ( pVpContext->ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflext DR7? */
1823 || (pVpContext->Rflags & X86_EFL_TF)
1824 || DBGFBpIsHwIoArmed(pVM) )
1825 {
1826 /** @todo Debugging. */
1827 }
1828 }
1829 return rcStrict;
1830}
1831
1832
1833static VBOXSTRICTRC nemR3WinWHvHandleInterruptWindow(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1834{
1835 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1836 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1837}
1838
1839
1840static VBOXSTRICTRC nemR3WinWHvHandleMsrAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1841{
1842 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1843 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1844}
1845
1846
1847static VBOXSTRICTRC nemR3WinWHvHandleCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1848{
1849 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1850 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1851}
1852
1853
1854static VBOXSTRICTRC nemR3WinWHvHandleException(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1855{
1856 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1857 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1858}
1859
1860
1861static VBOXSTRICTRC nemR3WinWHvHandleUD(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1862{
1863 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1864 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1865}
1866
1867
1868static VBOXSTRICTRC nemR3WinWHvHandleTripleFault(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1869{
1870 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1871 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1872}
1873
1874
1875static VBOXSTRICTRC nemR3WinWHvHandleInvalidState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1876{
1877 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1878 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1879}
1880
1881
1882VBOXSTRICTRC nemR3WinWHvRunGC(PVM pVM, PVMCPU pVCpu)
1883{
1884# ifdef LOG_ENABLED
1885 if (LogIs3Enabled())
1886 {
1887 Log3(("nemR3NativeRunGC: Entering #%u\n", pVCpu->idCpu));
1888 nemHCWinLogState(pVM, pVCpu);
1889 }
1890# endif
1891
1892 /*
1893 * The run loop.
1894 */
1895 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1896 const bool fSingleStepping = false; /** @todo get this from somewhere. */
1897 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1898 for (unsigned iLoop = 0;;iLoop++)
1899 {
1900 /*
1901 * Copy the state.
1902 */
1903 int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu, pCtx);
1904 AssertRCBreakStmt(rc2, rcStrict = rc2);
1905
1906 /*
1907 * Run a bit.
1908 */
1909 WHV_RUN_VP_EXIT_CONTEXT ExitReason;
1910 RT_ZERO(ExitReason);
1911 if ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
1912 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
1913 {
1914 Log8(("Calling WHvRunVirtualProcessor\n"));
1915 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED);
1916 HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
1917 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM);
1918 AssertLogRelMsgBreakStmt(SUCCEEDED(hrc),
1919 ("WHvRunVirtualProcessor(%p, %u,,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu,
1920 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()),
1921 rcStrict = VERR_INTERNAL_ERROR);
1922 Log2(("WHvRunVirtualProcessor -> %#x; exit code %#x (%d) (cpu status %u)\n",
1923 hrc, ExitReason.ExitReason, ExitReason.ExitReason, nemHCWinCpuGetRunningStatus(pVCpu) ));
1924 }
1925 else
1926 {
1927 LogFlow(("nemR3NativeRunGC: returning: pending FF (pre exec)\n"));
1928 break;
1929 }
1930
1931# if 0 /* sledgehammer approach */
1932 /*
1933 * Copy back the state.
1934 */
1935 rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, UINT64_MAX);
1936 AssertRCBreakStmt(rc2, rcStrict = rc2);
1937# endif
1938
1939# ifdef LOG_ENABLED
1940 /*
1941 * Do some logging.
1942 */
1943 if (LogIs2Enabled())
1944 nemR3WinLogWHvExitReason(&ExitReason);
1945 if (LogIs3Enabled())
1946 nemHCWinLogState(pVM, pVCpu);
1947# endif
1948
1949# if 0 //def VBOX_STRICT - requires sledgehammer
1950 /* Assert that the VpContext field makes sense. */
1951 switch (ExitReason.ExitReason)
1952 {
1953 case WHvRunVpExitReasonMemoryAccess:
1954 case WHvRunVpExitReasonX64IoPortAccess:
1955 case WHvRunVpExitReasonX64MsrAccess:
1956 case WHvRunVpExitReasonX64Cpuid:
1957 case WHvRunVpExitReasonException:
1958 case WHvRunVpExitReasonUnrecoverableException:
1959 Assert( ExitReason.IoPortAccess.VpContext.InstructionLength > 0
1960 || ( ExitReason.ExitReason == WHvRunVpExitReasonMemoryAccess
1961 && ExitReason.MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessExecute));
1962 Assert(ExitReason.IoPortAccess.VpContext.InstructionLength < 16);
1963 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cpl == CPUMGetGuestCPL(pVCpu));
1964 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Pe == RT_BOOL(pCtx->cr0 & X86_CR0_PE));
1965 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Am == RT_BOOL(pCtx->cr0 & X86_CR0_AM));
1966 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.EferLma == RT_BOOL(pCtx->msrEFER & MSR_K6_EFER_LMA));
1967 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.DebugActive == RT_BOOL(pCtx->dr[7] & X86_DR7_ENABLED_MASK));
1968 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved0 == 0);
1969 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved1 == 0);
1970 Assert(ExitReason.IoPortAccess.VpContext.Rip == pCtx->rip);
1971 Assert(ExitReason.IoPortAccess.VpContext.Rflags == pCtx->rflags.u);
1972 Assert( ExitReason.IoPortAccess.VpContext.Cs.Base == pCtx->cs.u64Base
1973 && ExitReason.IoPortAccess.VpContext.Cs.Limit == pCtx->cs.u32Limit
1974 && ExitReason.IoPortAccess.VpContext.Cs.Selector == pCtx->cs.Sel);
1975 break;
1976 default: break; /* shut up compiler. */
1977 }
1978# endif
1979
1980 /*
1981 * Deal with the exit.
1982 */
1983 switch (ExitReason.ExitReason)
1984 {
1985 /* Frequent exits: */
1986 case WHvRunVpExitReasonCanceled:
1987 //case WHvRunVpExitReasonAlerted:
1988 rcStrict = VINF_SUCCESS;
1989 break;
1990
1991 case WHvRunVpExitReasonX64Halt:
1992 rcStrict = nemR3WinWHvHandleHalt(pVM, pVCpu, pCtx);
1993 break;
1994
1995 case WHvRunVpExitReasonMemoryAccess:
1996 rcStrict = nemR3WinWHvHandleMemoryAccess(pVM, pVCpu, pCtx, &ExitReason.MemoryAccess, &ExitReason.VpContext);
1997 break;
1998
1999 case WHvRunVpExitReasonX64IoPortAccess:
2000 rcStrict = nemR3WinWHvHandleIoPortAccess(pVM, pVCpu, pCtx, &ExitReason.IoPortAccess, &ExitReason.VpContext);
2001 break;
2002
2003 case WHvRunVpExitReasonX64InterruptWindow:
2004 rcStrict = nemR3WinWHvHandleInterruptWindow(pVM, pVCpu, pCtx, &ExitReason);
2005 break;
2006
2007 case WHvRunVpExitReasonX64MsrAccess: /* needs configuring */
2008 rcStrict = nemR3WinWHvHandleMsrAccess(pVM, pVCpu, pCtx, &ExitReason);
2009 break;
2010
2011 case WHvRunVpExitReasonX64Cpuid: /* needs configuring */
2012 rcStrict = nemR3WinWHvHandleCpuId(pVM, pVCpu, pCtx, &ExitReason);
2013 break;
2014
2015 case WHvRunVpExitReasonException: /* needs configuring */
2016 rcStrict = nemR3WinWHvHandleException(pVM, pVCpu, pCtx, &ExitReason);
2017 break;
2018
2019 /* Unlikely exits: */
2020 case WHvRunVpExitReasonUnsupportedFeature:
2021 rcStrict = nemR3WinWHvHandleUD(pVM, pVCpu, pCtx, &ExitReason);
2022 break;
2023
2024 case WHvRunVpExitReasonUnrecoverableException:
2025 rcStrict = nemR3WinWHvHandleTripleFault(pVM, pVCpu, pCtx, &ExitReason);
2026 break;
2027
2028 case WHvRunVpExitReasonInvalidVpRegisterValue:
2029 rcStrict = nemR3WinWHvHandleInvalidState(pVM, pVCpu, pCtx, &ExitReason);
2030 break;
2031
2032 /* Undesired exits: */
2033 case WHvRunVpExitReasonNone:
2034 default:
2035 AssertLogRelMsgFailed(("Unknown ExitReason: %#x\n", ExitReason.ExitReason));
2036 rcStrict = VERR_INTERNAL_ERROR_3;
2037 break;
2038 }
2039 if (rcStrict != VINF_SUCCESS)
2040 {
2041 LogFlow(("nemR3NativeRunGC: returning: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
2042 break;
2043 }
2044
2045# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
2046 /* Hack alert! */
2047 uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
2048 if (cMappedPages < 4000)
2049 { /* likely */ }
2050 else
2051 {
2052 PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
2053 Log(("nemR3NativeRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
2054 }
2055# endif
2056
2057 /* If any FF is pending, return to the EM loops. That's okay for the
2058 current sledgehammer approach. */
2059 if ( VM_FF_IS_PENDING( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2060 || VMCPU_FF_IS_PENDING(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2061 {
2062 LogFlow(("nemR3NativeRunGC: returning: pending FF (%#x / %#x)\n", pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
2063 break;
2064 }
2065 }
2066
2067
2068 /*
2069 * Copy back the state before returning.
2070 */
2071 if (pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
2072 {
2073 int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
2074 if (RT_SUCCESS(rc2))
2075 pCtx->fExtrn = 0;
2076 else if (RT_SUCCESS(rcStrict))
2077 rcStrict = rc2;
2078 }
2079 else
2080 pCtx->fExtrn = 0;
2081
2082 return rcStrict;
2083}
2084
2085#endif /* !NEM_WIN_USE_OUR_OWN_RUN_API - migrating to NEMAllNativeTemplate-win.cpp.h*/
2086
2087
2088VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2089{
2090#if !defined(NEM_WIN_USE_OUR_OWN_RUN_API) || 0
2091 return nemHCWinRunGC(pVM, pVCpu, NULL /*pGVM*/, NULL /*pGVCpu*/);
2092#else
2093 for (;;)
2094 {
2095 VBOXSTRICTRC rcStrict = VMMR3CallR0EmtFast(pVM, pVCpu, VMMR0_DO_NEM_RUN);
2096 if (RT_SUCCESS(rcStrict))
2097 {
2098 /*
2099 * We deal with VINF_NEM_CHANGE_PGM_MODE, VINF_NEM_FLUSH_TLB and
2100 * VINF_NEM_UPDATE_APIC_BASE here, since we're running the risk of
2101 * getting these while we already got another RC (I/O ports).
2102 *
2103 * The APIC base update and a PGM update can happen at the same time, so
2104 * we don't depend on the status code for that and always checks it first.
2105 */
2106 /* APIC base: */
2107 if (pVCpu->nem.s.uPendingApicBase != UINT64_MAX)
2108 {
2109 LogFlow(("nemR3NativeRunGC: calling APICSetBaseMsr(,%RX64)...\n", pVCpu->nem.s.uPendingApicBase));
2110 VBOXSTRICTRC rc2 = APICSetBaseMsr(pVCpu, pVCpu->nem.s.uPendingApicBase);
2111 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("rc2=%Rrc [%#RX64]\n", VBOXSTRICTRC_VAL(rc2), pVCpu->nem.s.uPendingApicBase));
2112 pVCpu->nem.s.uPendingApicBase = UINT64_MAX;
2113 }
2114
2115 /* Status codes: */
2116 VBOXSTRICTRC rcPending = pVCpu->nem.s.rcPending;
2117 pVCpu->nem.s.rcPending = VINF_SUCCESS;
2118 if ( rcStrict == VINF_NEM_CHANGE_PGM_MODE
2119 || rcStrict == VINF_PGM_CHANGE_MODE
2120 || rcPending == VINF_NEM_CHANGE_PGM_MODE )
2121 {
2122 LogFlow(("nemR3NativeRunGC: calling PGMChangeMode...\n"));
2123 int rc = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2124 AssertRCReturn(rc, rc);
2125 if (rcStrict == VINF_NEM_CHANGE_PGM_MODE || rcStrict == VINF_NEM_FLUSH_TLB)
2126 {
2127 if ( !VM_FF_IS_PENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK | VM_FF_HP_R0_PRE_HM_MASK)
2128 && !VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_HIGH_PRIORITY_POST_MASK | VMCPU_FF_HP_R0_PRE_HM_MASK)
2129 & ~VMCPU_FF_RESUME_GUEST_MASK))
2130 {
2131 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
2132 continue;
2133 }
2134 rcStrict = VINF_SUCCESS;
2135 }
2136 }
2137 else if (rcStrict == VINF_NEM_FLUSH_TLB || rcPending == VINF_NEM_FLUSH_TLB)
2138 {
2139 LogFlow(("nemR3NativeRunGC: calling PGMFlushTLB...\n"));
2140 int rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true);
2141 AssertRCReturn(rc, rc);
2142 if (rcStrict == VINF_NEM_FLUSH_TLB || rcStrict == VINF_NEM_CHANGE_PGM_MODE)
2143 {
2144 if ( !VM_FF_IS_PENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK | VM_FF_HP_R0_PRE_HM_MASK)
2145 && !VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_HIGH_PRIORITY_POST_MASK | VMCPU_FF_HP_R0_PRE_HM_MASK)
2146 & ~VMCPU_FF_RESUME_GUEST_MASK))
2147 {
2148 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK);
2149 continue;
2150 }
2151 rcStrict = VINF_SUCCESS;
2152 }
2153 }
2154 else if (rcStrict == VINF_NEM_UPDATE_APIC_BASE || rcPending == VERR_NEM_UPDATE_APIC_BASE)
2155 continue;
2156 else
2157 AssertMsg(rcPending == VINF_SUCCESS, ("rcPending=%Rrc\n", VBOXSTRICTRC_VAL(rcPending) ));
2158 }
2159 LogFlow(("nemR3NativeRunGC: returns %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
2160 return rcStrict;
2161 }
2162#endif
2163}
2164
2165
2166bool nemR3NativeCanExecuteGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2167{
2168 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
2169 return true;
2170}
2171
2172
2173bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
2174{
2175 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
2176 return false;
2177}
2178
2179
2180/**
2181 * Forced flag notification call from VMEmt.h.
2182 *
2183 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
2184 *
2185 * @param pVM The cross context VM structure.
2186 * @param pVCpu The cross context virtual CPU structure of the CPU
2187 * to be notified.
2188 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
2189 */
2190void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
2191{
2192#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
2193 nemHCWinCancelRunVirtualProcessor(pVM, pVCpu);
2194#else
2195 Log8(("nemR3NativeNotifyFF: canceling %u\n", pVCpu->idCpu));
2196 HRESULT hrc = WHvCancelRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, 0);
2197 AssertMsg(SUCCEEDED(hrc), ("WHvCancelRunVirtualProcessor -> hrc=%Rhrc\n", hrc));
2198 RT_NOREF_PV(hrc);
2199#endif
2200 RT_NOREF_PV(fFlags);
2201}
2202
2203
2204DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
2205{
2206 PGMPAGEMAPLOCK Lock;
2207 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
2208 if (RT_SUCCESS(rc))
2209 PGMPhysReleasePageMappingLock(pVM, &Lock);
2210 return rc;
2211}
2212
2213
2214DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2215{
2216 PGMPAGEMAPLOCK Lock;
2217 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
2218 if (RT_SUCCESS(rc))
2219 PGMPhysReleasePageMappingLock(pVM, &Lock);
2220 return rc;
2221}
2222
2223
2224int nemR3NativeNotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2225{
2226 Log5(("nemR3NativeNotifyPhysRamRegister: %RGp LB %RGp\n", GCPhys, cb));
2227 NOREF(pVM); NOREF(GCPhys); NOREF(cb);
2228 return VINF_SUCCESS;
2229}
2230
2231
2232int nemR3NativeNotifyPhysMmioExMap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvMmio2)
2233{
2234 Log5(("nemR3NativeNotifyPhysMmioExMap: %RGp LB %RGp fFlags=%#x pvMmio2=%p\n", GCPhys, cb, fFlags, pvMmio2));
2235 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags); NOREF(pvMmio2);
2236 return VINF_SUCCESS;
2237}
2238
2239
2240int nemR3NativeNotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2241{
2242 Log5(("nemR3NativeNotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2243 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
2244 return VINF_SUCCESS;
2245}
2246
2247
2248/**
2249 * Called early during ROM registration, right after the pages have been
2250 * allocated and the RAM range updated.
2251 *
2252 * This will be succeeded by a number of NEMHCNotifyPhysPageProtChanged() calls
2253 * and finally a NEMR3NotifyPhysRomRegisterEarly().
2254 *
2255 * @returns VBox status code
2256 * @param pVM The cross context VM structure.
2257 * @param GCPhys The ROM address (page aligned).
2258 * @param cb The size (page aligned).
2259 * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
2260 */
2261int nemR3NativeNotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2262{
2263 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2264#if 0 /* Let's not do this after all. We'll protection change notifications for each page and if not we'll map them lazily. */
2265 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2266 for (RTGCPHYS iPage = 0; iPage < cPages; iPage++, GCPhys += X86_PAGE_SIZE)
2267 {
2268 const void *pvPage;
2269 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
2270 if (RT_SUCCESS(rc))
2271 {
2272 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhys, X86_PAGE_SIZE,
2273 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
2274 if (SUCCEEDED(hrc))
2275 { /* likely */ }
2276 else
2277 {
2278 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2279 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2280 return VERR_NEM_INIT_FAILED;
2281 }
2282 }
2283 else
2284 {
2285 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
2286 return rc;
2287 }
2288 }
2289#else
2290 NOREF(pVM); NOREF(GCPhys); NOREF(cb);
2291#endif
2292 RT_NOREF_PV(fFlags);
2293 return VINF_SUCCESS;
2294}
2295
2296
2297/**
2298 * Called after the ROM range has been fully completed.
2299 *
2300 * This will be preceeded by a NEMR3NotifyPhysRomRegisterEarly() call as well a
2301 * number of NEMHCNotifyPhysPageProtChanged calls.
2302 *
2303 * @returns VBox status code
2304 * @param pVM The cross context VM structure.
2305 * @param GCPhys The ROM address (page aligned).
2306 * @param cb The size (page aligned).
2307 * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
2308 */
2309int nemR3NativeNotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2310{
2311 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2312 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
2313 return VINF_SUCCESS;
2314}
2315
2316
2317/**
2318 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
2319 */
2320static DECLCALLBACK(int) nemR3WinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
2321 PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
2322{
2323 /* We'll just unmap the memory. */
2324 if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
2325 {
2326#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
2327 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
2328 AssertRC(rc);
2329 if (RT_SUCCESS(rc))
2330#else
2331 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
2332 if (SUCCEEDED(hrc))
2333#endif
2334 {
2335 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2336 Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
2337 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
2338 }
2339 else
2340 {
2341#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
2342 LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
2343 return rc;
2344#else
2345 LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2346 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2347 return VERR_INTERNAL_ERROR_2;
2348#endif
2349 }
2350 }
2351 RT_NOREF(pVCpu, pvUser);
2352 return VINF_SUCCESS;
2353}
2354
2355
2356/**
2357 * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
2358 *
2359 * @returns The PGMPhysNemQueryPageInfo result.
2360 * @param pVM The cross context VM structure.
2361 * @param pVCpu The cross context virtual CPU structure.
2362 * @param GCPhys The page to unmap.
2363 */
2364static int nemR3WinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2365{
2366 PGMPHYSNEMPAGEINFO Info;
2367 return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
2368 nemR3WinUnsetForA20CheckerCallback, NULL);
2369}
2370
2371
2372/**
2373 * Called when the A20 state changes.
2374 *
2375 * Hyper-V doesn't seem to offer a simple way of implementing the A20 line
2376 * features of PCs. So, we do a very minimal emulation of the HMA to make DOS
2377 * happy.
2378 *
2379 * @param pVCpu The CPU the A20 state changed on.
2380 * @param fEnabled Whether it was enabled (true) or disabled.
2381 */
2382void nemR3NativeNotifySetA20(PVMCPU pVCpu, bool fEnabled)
2383{
2384 Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
2385 PVM pVM = pVCpu->CTX_SUFF(pVM);
2386 if (!pVM->nem.s.fA20Fixed)
2387 {
2388 pVM->nem.s.fA20Enabled = fEnabled;
2389 for (RTGCPHYS GCPhys = _1M; GCPhys < _1M + _64K; GCPhys += X86_PAGE_SIZE)
2390 nemR3WinUnmapPageForA20Gate(pVM, pVCpu, GCPhys);
2391 }
2392}
2393
2394
2395/** @page pg_nem_win NEM/win - Native Execution Manager, Windows.
2396 *
2397 * On Windows the Hyper-V root partition (dom0 in zen terminology) does not have
2398 * nested VT-x or AMD-V capabilities. For a while raw-mode worked inside it,
2399 * but for a while now we've been getting \#GP when trying to modify CR4 in the
2400 * world switcher. So, when Hyper-V is active on Windows we have little choice
2401 * but to use Hyper-V to run our VMs.
2402 *
2403 *
2404 * @section sub_nem_win_whv The WinHvPlatform API
2405 *
2406 * Since Windows 10 build 17083 there is a documented API for managing Hyper-V
2407 * VMs, header file WinHvPlatform.h and implementation in WinHvPlatform.dll.
2408 * This interface is a wrapper around the undocumented Virtualization
2409 * Infrastructure Driver (VID) API - VID.DLL and VID.SYS. The wrapper is
2410 * written in C++, namespaced, early versions (at least) was using standard C++
2411 * container templates in several places.
2412 *
2413 * When creating a VM using WHvCreatePartition, it will only create the
2414 * WinHvPlatform structures for it, to which you get an abstract pointer. The
2415 * VID API that actually creates the partition is first engaged when you call
2416 * WHvSetupPartition after first setting a lot of properties using
2417 * WHvSetPartitionProperty. Since the VID API is just a very thin wrapper
2418 * around CreateFile and NtDeviceIoControlFile, it returns an actual HANDLE for
2419 * the partition WinHvPlatform. We fish this HANDLE out of the WinHvPlatform
2420 * partition structures because we need to talk directly to VID for reasons
2421 * we'll get to in a bit. (Btw. we could also intercept the CreateFileW or
2422 * NtDeviceIoControlFile calls from VID.DLL to get the HANDLE should fishing in
2423 * the partition structures become difficult.)
2424 *
2425 * The WinHvPlatform API requires us to both set the number of guest CPUs before
2426 * setting up the partition and call WHvCreateVirtualProcessor for each of them.
2427 * The CPU creation function boils down to a VidMessageSlotMap call that sets up
2428 * and maps a message buffer into ring-3 for async communication with hyper-V
2429 * and/or the VID.SYS thread actually running the CPU thru
2430 * WinHvRunVpDispatchLoop(). When for instance a VMEXIT is encountered, hyper-V
2431 * sends a message that the WHvRunVirtualProcessor API retrieves (and later
2432 * acknowledges) via VidMessageSlotHandleAndGetNext. It should be noteded that
2433 * WHvDeleteVirtualProcessor doesn't do much as there seems to be no partner
2434 * function VidMessagesSlotMap that reverses what it did.
2435 *
2436 * Memory is managed thru calls to WHvMapGpaRange and WHvUnmapGpaRange (GPA does
2437 * not mean grade point average here, but rather guest physical addressspace),
2438 * which corresponds to VidCreateVaGpaRangeSpecifyUserVa and VidDestroyGpaRange
2439 * respectively. As 'UserVa' indicates, the functions works on user process
2440 * memory. The mappings are also subject to quota restrictions, so the number
2441 * of ranges are limited and probably their total size as well. Obviously
2442 * VID.SYS keeps track of the ranges, but so does WinHvPlatform, which means
2443 * there is a bit of overhead involved and quota restrctions makes sense. For
2444 * some reason though, regions are lazily mapped on VMEXIT/memory by
2445 * WHvRunVirtualProcessor.
2446 *
2447 * Running guest code is done thru the WHvRunVirtualProcessor function. It
2448 * asynchronously starts or resumes hyper-V CPU execution and then waits for an
2449 * VMEXIT message. Hyper-V / VID.SYS will return information about the message
2450 * in the message buffer mapping, and WHvRunVirtualProcessor will convert that
2451 * finto it's own WHV_RUN_VP_EXIT_CONTEXT format.
2452 *
2453 * Other threads can interrupt the execution by using WHvCancelVirtualProcessor,
2454 * which which case the thread in WHvRunVirtualProcessor is woken up via a dummy
2455 * QueueUserAPC and will call VidStopVirtualProcessor to asynchronously end
2456 * execution. The stop CPU call not immediately succeed if the CPU encountered
2457 * a VMEXIT before the stop was processed, in which case the VMEXIT needs to be
2458 * processed first, and the pending stop will be processed in a subsequent call
2459 * to WHvRunVirtualProcessor.
2460 *
2461 * Registers are retrieved and set via WHvGetVirtualProcessorRegisters and
2462 * WHvSetVirtualProcessorRegisters. In addition, several VMEXITs include
2463 * essential register state in the exit context information, potentially making
2464 * it possible to emulate the instruction causing the exit without involving
2465 * WHvGetVirtualProcessorRegisters.
2466 *
2467 *
2468 * @subsection subsec_nem_win_whv_cons Issues & Feedback
2469 *
2470 * Here are some observations (mostly against build 17101):
2471 *
2472 * - The VMEXIT performance is dismal (build 17134).
2473 *
2474 * Our proof of concept implementation with a kernel runloop (i.e. not using
2475 * WHvRunVirtualProcessor and friends, but calling VID.SYS fast I/O control
2476 * entry point directly) delivers 9-10% of the port I/O performance and only
2477 * 6-7% of the MMIO performance that we have with our own hypervisor.
2478 *
2479 * When using the offical WinHvPlatform API, the numbers are %3 for port I/O
2480 * and 5% for MMIO.
2481 *
2482 * While the tests we've done are using tight tight loops only doing port I/O
2483 * and MMIO, the problem is clearly visible when running regular guest OSes.
2484 * Anything that hammers the VGA device would be suffering, for example:
2485 *
2486 * - Windows 2000 boot screen animation overloads us with MMIO exits
2487 * and won't even boot because all the time is spent in interrupt
2488 * handlers and redrawin the screen.
2489 *
2490 * - DSL 4.4 and its bootmenu logo is slower than molasses in january.
2491 *
2492 * We have not found a workaround for this yet.
2493 *
2494 * Something that might improve the issue a little is to detect blocks with
2495 * excessive MMIO and port I/O exits and emulate instructions to cover
2496 * multiple exits before letting Hyper-V have a go at the guest execution
2497 * again. This will only improve the situation under some circumstances,
2498 * since emulating instructions without recompilation can be expensive, so
2499 * there will only be real gains if the exitting instructions are tightly
2500 * packed.
2501 *
2502 *
2503 * - Unable to access WHvX64RegisterMsrMtrrCap on AMD Ryzen (build 17134).
2504 *
2505 *
2506 * - On AMD Ryzen grub/debian 9.0 ends up with a unrecoverable exception
2507 * when IA32_MTRR_PHYSMASK0 is written.
2508 *
2509 *
2510 * - The IA32_APIC_BASE register does not work right:
2511 *
2512 * - Attempts by the guest to clear bit 11 (EN) are ignored, both the
2513 * guest and the VMM reads back the old value.
2514 *
2515 * - Attempts to modify the base address (bits NN:12) seems to be ignored
2516 * in the same way.
2517 *
2518 * - The VMM can modify both the base address as well as the the EN and
2519 * BSP bits, however this is useless if we cannot intercept the WRMSR.
2520 *
2521 * - Attempts by the guest to set the EXTD bit (X2APIC) result in \#GP(0),
2522 * while the VMM ends up with with ERROR_HV_INVALID_PARAMETER. Seems
2523 * there is no way to support X2APIC.
2524 *
2525 *
2526 * - The WHvCancelVirtualProcessor API schedules a dummy usermode APC callback
2527 * in order to cancel any current or future alertable wait in VID.SYS during
2528 * the VidMessageSlotHandleAndGetNext call.
2529 *
2530 * IIRC this will make the kernel schedule the specified callback thru
2531 * NTDLL!KiUserApcDispatcher by modifying the thread context and quite
2532 * possibly the userland thread stack. When the APC callback returns to
2533 * KiUserApcDispatcher, it will call NtContinue to restore the old thread
2534 * context and resume execution from there. This naturally adds up to some
2535 * CPU cycles, ring transitions aren't for free, especially after Spectre &
2536 * Meltdown mitigations.
2537 *
2538 * Using NtAltertThread call could do the same without the thread context
2539 * modifications and the extra kernel call.
2540 *
2541 *
2542 * - Not sure if this is a thing, but WHvCancelVirtualProcessor seems to cause
2543 * cause a lot more spurious WHvRunVirtualProcessor returns that what we get
2544 * with the replacement code. By spurious returns we mean that the
2545 * subsequent call to WHvRunVirtualProcessor would return immediately.
2546 *
2547 *
2548 * - When WHvRunVirtualProcessor returns without a message, or on a terse
2549 * VID message like HLT, it will make a kernel call to get some registers.
2550 * This is potentially inefficient if the caller decides he needs more
2551 * register state.
2552 *
2553 * It would be better to just return what's available and let the caller fetch
2554 * what is missing from his point of view in a single kernel call.
2555 *
2556 *
2557 * - The WHvRunVirtualProcessor implementation does lazy GPA range mappings when
2558 * a unmapped GPA message is received from hyper-V.
2559 *
2560 * Since MMIO is currently realized as unmapped GPA, this will slow down all
2561 * MMIO accesses a tiny little bit as WHvRunVirtualProcessor looks up the
2562 * guest physical address to check if it is a pending lazy mapping.
2563 *
2564 * The lazy mapping feature makes no sense to us. We as API user have all the
2565 * information and can do lazy mapping ourselves if we want/have to (see next
2566 * point).
2567 *
2568 *
2569 * - There is no API for modifying protection of a page within a GPA range.
2570 *
2571 * From what we can tell, the only way to modify the protection (like readonly
2572 * -> writable, or vice versa) is to first unmap the range and then remap it
2573 * with the new protection.
2574 *
2575 * We are for instance doing this quite a bit in order to track dirty VRAM
2576 * pages. VRAM pages starts out as readonly, when the guest writes to a page
2577 * we take an exit, notes down which page it is, makes it writable and restart
2578 * the instruction. After refreshing the display, we reset all the writable
2579 * pages to readonly again, bulk fashion.
2580 *
2581 * Now to work around this issue, we do page sized GPA ranges. In addition to
2582 * add a lot of tracking overhead to WinHvPlatform and VID.SYS, this also
2583 * causes us to exceed our quota before we've even mapped a default sized
2584 * (128MB) VRAM page-by-page. So, to work around this quota issue we have to
2585 * lazily map pages and actively restrict the number of mappings.
2586 *
2587 * Our best workaround thus far is bypassing WinHvPlatform and VID entirely
2588 * when in comes to guest memory management and instead use the underlying
2589 * hypercalls (HvCallMapGpaPages, HvCallUnmapGpaPages) to do it ourselves.
2590 * (This also maps a whole lot better into our own guest page management
2591 * infrastructure.)
2592 *
2593 *
2594 * - Observed problems doing WHvUnmapGpaRange immediately followed by
2595 * WHvMapGpaRange.
2596 *
2597 * As mentioned above, we've been forced to use this sequence when modifying
2598 * page protection. However, when transitioning from readonly to writable,
2599 * we've ended up looping forever with the same write to readonly memory
2600 * VMEXIT. We're wondering if this issue might be related to the lazy mapping
2601 * logic in WinHvPlatform.
2602 *
2603 * Workaround: Insert a WHvRunVirtualProcessor call and make sure to get a GPA
2604 * unmapped exit between the two calls. Not entirely great performance wise
2605 * (or the santity of our code).
2606 *
2607 *
2608 * - Implementing A20 gate behavior is tedious, where as correctly emulating the
2609 * A20M# pin (present on 486 and later) is near impossible for SMP setups
2610 * (e.g. possiblity of two CPUs with different A20 status).
2611 *
2612 * Workaround: Only do A20 on CPU 0, restricting the emulation to HMA. We
2613 * unmap all pages related to HMA (0x100000..0x10ffff) when the A20 state
2614 * changes, lazily syncing the right pages back when accessed.
2615 *
2616 *
2617 * - WHVRunVirtualProcessor wastes time converting VID/Hyper-V messages to its
2618 * own format (WHV_RUN_VP_EXIT_CONTEXT).
2619 *
2620 * We understand this might be because Microsoft wishes to remain free to
2621 * modify the VID/Hyper-V messages, but it's still rather silly and does slow
2622 * things down a little. We'd much rather just process the messages directly.
2623 *
2624 *
2625 * - WHVRunVirtualProcessor would've benefited from using a callback interface:
2626 *
2627 * - The potential size changes of the exit context structure wouldn't be
2628 * an issue, since the function could manage that itself.
2629 *
2630 * - State handling could probably be simplified (like cancelation).
2631 *
2632 *
2633 * - WHvGetVirtualProcessorRegisters and WHvSetVirtualProcessorRegisters
2634 * internally converts register names, probably using temporary heap buffers.
2635 *
2636 * From the looks of things, they are converting from WHV_REGISTER_NAME to
2637 * HV_REGISTER_NAME from in the "Virtual Processor Register Names" section in
2638 * the "Hypervisor Top-Level Functional Specification" document. This feels
2639 * like an awful waste of time.
2640 *
2641 * We simply cannot understand why HV_REGISTER_NAME isn't used directly here,
2642 * or at least the same values, making any conversion reduntant. Restricting
2643 * access to certain registers could easily be implement by scanning the
2644 * inputs.
2645 *
2646 * To avoid the heap + conversion overhead, we're currently using the
2647 * HvCallGetVpRegisters and HvCallSetVpRegisters calls directly.
2648 *
2649 *
2650 * - The YMM and XCR0 registers are not yet named (17083). This probably
2651 * wouldn't be a problem if HV_REGISTER_NAME was used, see previous point.
2652 *
2653 *
2654 * - Why does VID.SYS only query/set 32 registers at the time thru the
2655 * HvCallGetVpRegisters and HvCallSetVpRegisters hypercalls?
2656 *
2657 * We've not trouble getting/setting all the registers defined by
2658 * WHV_REGISTER_NAME in one hypercall (around 80). Some kind of stack
2659 * buffering or similar?
2660 *
2661 *
2662 * - To handle the VMMCALL / VMCALL instructions, it seems we need to intercept
2663 * \#UD exceptions and inspect the opcodes. A dedicated exit for hypercalls
2664 * would be more efficient, esp. for guests using \#UD for other purposes..
2665 *
2666 *
2667 * - Wrong instruction length in the VpContext with unmapped GPA memory exit
2668 * contexts on 17115/AMD.
2669 *
2670 * One byte "PUSH CS" was reported as 2 bytes, while a two byte
2671 * "MOV [EBX],EAX" was reported with a 1 byte instruction length. Problem
2672 * naturally present in untranslated hyper-v messages.
2673 *
2674 *
2675 * - The I/O port exit context information seems to be missing the address size
2676 * information needed for correct string I/O emulation.
2677 *
2678 * VT-x provides this information in bits 7:9 in the instruction information
2679 * field on newer CPUs. AMD-V in bits 7:9 in the EXITINFO1 field in the VMCB.
2680 *
2681 * We can probably work around this by scanning the instruction bytes for
2682 * address size prefixes. Haven't investigated it any further yet.
2683 *
2684 *
2685 * - The WHvGetCapability function has a weird design:
2686 * - The CapabilityCode parameter is pointlessly duplicated in the output
2687 * structure (WHV_CAPABILITY).
2688 *
2689 * - API takes void pointer, but everyone will probably be using
2690 * WHV_CAPABILITY due to WHV_CAPABILITY::CapabilityCode making it
2691 * impractical to use anything else.
2692 *
2693 * - No output size.
2694 *
2695 * - See GetFileAttributesEx, GetFileInformationByHandleEx,
2696 * FindFirstFileEx, and others for typical pattern for generic
2697 * information getters.
2698 *
2699 * Update: All concerns have been addressed in build 17110.
2700 *
2701 *
2702 * - The WHvGetPartitionProperty function uses the same weird design as
2703 * WHvGetCapability, see above.
2704 *
2705 * Update: All concerns have been addressed in build 17110.
2706 *
2707 *
2708 * - The WHvSetPartitionProperty function has a totally weird design too:
2709 * - In contrast to its partner WHvGetPartitionProperty, the property code
2710 * is not a separate input parameter here but part of the input
2711 * structure.
2712 *
2713 * - The input structure is a void pointer rather than a pointer to
2714 * WHV_PARTITION_PROPERTY which everyone probably will be using because
2715 * of the WHV_PARTITION_PROPERTY::PropertyCode field.
2716 *
2717 * - Really, why use PVOID for the input when the function isn't accepting
2718 * minimal sizes. E.g. WHVPartitionPropertyCodeProcessorClFlushSize only
2719 * requires a 9 byte input, but the function insists on 16 bytes (17083).
2720 *
2721 * - See GetFileAttributesEx, SetFileInformationByHandle, FindFirstFileEx,
2722 * and others for typical pattern for generic information setters and
2723 * getters.
2724 *
2725 * Update: All concerns have been addressed in build 17110.
2726 *
2727 *
2728 *
2729 * @section sec_nem_win_impl Our implementation.
2730 *
2731 * We set out with the goal of wanting to run as much as possible in ring-0,
2732 * reasoning that this would give use the best performance.
2733 *
2734 * This goal was approached gradually, starting out with a pure WinHvPlatform
2735 * implementation, gradually replacing parts: register access, guest memory
2736 * handling, running virtual processors. Then finally moving it all into
2737 * ring-0, while keeping most of it configurable so that we could make
2738 * comparisons (see NEMInternal.h and nemR3NativeRunGC()).
2739 *
2740 *
2741 * @subsection subsect_nem_win_impl_ioctl VID.SYS I/O control calls
2742 *
2743 * To run things in ring-0 we need to talk directly to VID.SYS thru its I/O
2744 * control interface. Looking at changes between like build 17083 and 17101 (if
2745 * memory serves) a set of the VID I/O control numbers shifted a little, which
2746 * means we need to determin them dynamically. We currently do this by hooking
2747 * the NtDeviceIoControlFile API call from VID.DLL and snooping up the
2748 * parameters when making dummy calls to relevant APIs. (We could also
2749 * disassemble the relevant APIs and try fish out the information from that, but
2750 * this is way simpler.)
2751 *
2752 * Issuing I/O control calls from ring-0 is facing a small challenge with
2753 * respect to direct buffering. When using direct buffering the device will
2754 * typically check that the buffer is actually in the user address space range
2755 * and reject kernel addresses. Fortunately, we've got the cross context VM
2756 * structure that is mapped into both kernel and user space, it's also locked
2757 * and safe to access from kernel space. So, we place the I/O control buffers
2758 * in the per-CPU part of it (NEMCPU::uIoCtlBuf) and give the driver the user
2759 * address if direct access buffering or kernel address if not.
2760 *
2761 * The I/O control calls are 'abstracted' in the support driver, see
2762 * SUPR0IoCtlSetupForHandle(), SUPR0IoCtlPerform() and SUPR0IoCtlCleanup().
2763 *
2764 *
2765 * @subsection subsect_nem_win_impl_cpumctx CPUMCTX
2766 *
2767 * Since the CPU state needs to live in Hyper-V when executing, we probably
2768 * should not transfer more than necessary when handling VMEXITs. To help us
2769 * manage this CPUMCTX got a new field CPUMCTX::fExtrn that to indicate which
2770 * part of the state is currently externalized (== in Hyper-V).
2771 *
2772 *
2773 */
2774
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette