VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-win.cpp@ 72208

Last change on this file since 72208 was 72207, checked in by vboxsync, 7 years ago

NEM: Inject interrupts from the inner NEM loop, use interrupt windows. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 118.3 KB
Line 
1/* $Id: NEMR3Native-win.cpp 72207 2018-05-14 19:16:43Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 Windows backend.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 * Log group 6: Ring-0 memory management
9 * Log group 12: API intercepts.
10 */
11
12/*
13 * Copyright (C) 2018 Oracle Corporation
14 *
15 * This file is part of VirtualBox Open Source Edition (OSE), as
16 * available from http://www.virtualbox.org. This file is free software;
17 * you can redistribute it and/or modify it under the terms of the GNU
18 * General Public License (GPL) as published by the Free Software
19 * Foundation, in version 2 as it comes in the "COPYING" file of the
20 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
21 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
22 */
23
24
25/*********************************************************************************************************************************
26* Header Files *
27*********************************************************************************************************************************/
28#define LOG_GROUP LOG_GROUP_NEM
29#include <iprt/nt/nt-and-windows.h>
30#include <iprt/nt/hyperv.h>
31#include <iprt/nt/vid.h>
32#include <WinHvPlatform.h>
33
34#ifndef _WIN32_WINNT_WIN10
35# error "Missing _WIN32_WINNT_WIN10"
36#endif
37#ifndef _WIN32_WINNT_WIN10_RS1 /* Missing define, causing trouble for us. */
38# define _WIN32_WINNT_WIN10_RS1 (_WIN32_WINNT_WIN10 + 1)
39#endif
40#include <sysinfoapi.h>
41#include <debugapi.h>
42#include <errhandlingapi.h>
43#include <fileapi.h>
44#include <winerror.h> /* no api header for this. */
45
46#include <VBox/vmm/nem.h>
47#include <VBox/vmm/iem.h>
48#include <VBox/vmm/em.h>
49#include <VBox/vmm/apic.h>
50#include <VBox/vmm/pdm.h>
51#include "NEMInternal.h"
52#include <VBox/vmm/vm.h>
53
54#include <iprt/ldr.h>
55#include <iprt/path.h>
56#include <iprt/string.h>
57#include <iprt/system.h>
58
59
60/*********************************************************************************************************************************
61* Defined Constants And Macros *
62*********************************************************************************************************************************/
63#ifdef LOG_ENABLED
64# define NEM_WIN_INTERCEPT_NT_IO_CTLS
65#endif
66
67/** VID I/O control detection: Fake partition handle input. */
68#define NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE ((HANDLE)(uintptr_t)38479125)
69/** VID I/O control detection: Fake partition ID return. */
70#define NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID UINT64_C(0xfa1e000042424242)
71/** VID I/O control detection: Fake CPU index input. */
72#define NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX UINT32_C(42)
73/** VID I/O control detection: Fake timeout input. */
74#define NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT UINT32_C(0x00080286)
75
76
77/*********************************************************************************************************************************
78* Structures and Typedefs *
79*********************************************************************************************************************************/
80#ifndef NEM_WIN_USE_17110_PLUS_WDK
81typedef HRESULT (WINAPI *PFNWHVGETCAPABILITY_17110)(WHV_CAPABILITY_CODE, void *, uint32_t, uint32_t *);
82typedef HRESULT (WINAPI *PFNWHVSETPARTITIONPROPERTY_17110)(WHV_PARTITION_HANDLE, WHV_PARTITION_PROPERTY_CODE, void *, uint32_t);
83#endif
84
85
86/*********************************************************************************************************************************
87* Global Variables *
88*********************************************************************************************************************************/
89/** @name APIs imported from WinHvPlatform.dll
90 * @{ */
91static decltype(WHvGetCapability) * g_pfnWHvGetCapability;
92static decltype(WHvCreatePartition) * g_pfnWHvCreatePartition;
93static decltype(WHvSetupPartition) * g_pfnWHvSetupPartition;
94static decltype(WHvDeletePartition) * g_pfnWHvDeletePartition;
95static decltype(WHvGetPartitionProperty) * g_pfnWHvGetPartitionProperty;
96static decltype(WHvSetPartitionProperty) * g_pfnWHvSetPartitionProperty;
97static decltype(WHvMapGpaRange) * g_pfnWHvMapGpaRange;
98static decltype(WHvUnmapGpaRange) * g_pfnWHvUnmapGpaRange;
99static decltype(WHvTranslateGva) * g_pfnWHvTranslateGva;
100#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
101static decltype(WHvCreateVirtualProcessor) * g_pfnWHvCreateVirtualProcessor;
102static decltype(WHvDeleteVirtualProcessor) * g_pfnWHvDeleteVirtualProcessor;
103static decltype(WHvRunVirtualProcessor) * g_pfnWHvRunVirtualProcessor;
104static decltype(WHvCancelRunVirtualProcessor) * g_pfnWHvCancelRunVirtualProcessor;
105static decltype(WHvGetVirtualProcessorRegisters) * g_pfnWHvGetVirtualProcessorRegisters;
106static decltype(WHvSetVirtualProcessorRegisters) * g_pfnWHvSetVirtualProcessorRegisters;
107#endif
108/** @} */
109
110/** @name APIs imported from Vid.dll
111 * @{ */
112static decltype(VidGetHvPartitionId) *g_pfnVidGetHvPartitionId;
113static decltype(VidStartVirtualProcessor) *g_pfnVidStartVirtualProcessor;
114static decltype(VidStopVirtualProcessor) *g_pfnVidStopVirtualProcessor;
115static decltype(VidMessageSlotMap) *g_pfnVidMessageSlotMap;
116static decltype(VidMessageSlotHandleAndGetNext) *g_pfnVidMessageSlotHandleAndGetNext;
117#ifdef LOG_ENABLED
118static decltype(VidGetVirtualProcessorState) *g_pfnVidGetVirtualProcessorState;
119static decltype(VidSetVirtualProcessorState) *g_pfnVidSetVirtualProcessorState;
120static decltype(VidGetVirtualProcessorRunningStatus) *g_pfnVidGetVirtualProcessorRunningStatus;
121#endif
122/** @} */
123
124/** The Windows build number. */
125static uint32_t g_uBuildNo = 17110;
126
127
128
129/**
130 * Import instructions.
131 */
132static const struct
133{
134 uint8_t idxDll; /**< 0 for WinHvPlatform.dll, 1 for vid.dll. */
135 bool fOptional; /**< Set if import is optional. */
136 PFNRT *ppfn; /**< The function pointer variable. */
137 const char *pszName; /**< The function name. */
138} g_aImports[] =
139{
140#define NEM_WIN_IMPORT(a_idxDll, a_fOptional, a_Name) { (a_idxDll), (a_fOptional), (PFNRT *)&RT_CONCAT(g_pfn,a_Name), #a_Name }
141 NEM_WIN_IMPORT(0, false, WHvGetCapability),
142 NEM_WIN_IMPORT(0, false, WHvCreatePartition),
143 NEM_WIN_IMPORT(0, false, WHvSetupPartition),
144 NEM_WIN_IMPORT(0, false, WHvDeletePartition),
145 NEM_WIN_IMPORT(0, false, WHvGetPartitionProperty),
146 NEM_WIN_IMPORT(0, false, WHvSetPartitionProperty),
147 NEM_WIN_IMPORT(0, false, WHvMapGpaRange),
148 NEM_WIN_IMPORT(0, false, WHvUnmapGpaRange),
149 NEM_WIN_IMPORT(0, false, WHvTranslateGva),
150#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
151 NEM_WIN_IMPORT(0, false, WHvCreateVirtualProcessor),
152 NEM_WIN_IMPORT(0, false, WHvDeleteVirtualProcessor),
153 NEM_WIN_IMPORT(0, false, WHvRunVirtualProcessor),
154 NEM_WIN_IMPORT(0, false, WHvCancelRunVirtualProcessor),
155 NEM_WIN_IMPORT(0, false, WHvGetVirtualProcessorRegisters),
156 NEM_WIN_IMPORT(0, false, WHvSetVirtualProcessorRegisters),
157#endif
158 NEM_WIN_IMPORT(1, false, VidGetHvPartitionId),
159 NEM_WIN_IMPORT(1, false, VidMessageSlotMap),
160 NEM_WIN_IMPORT(1, false, VidMessageSlotHandleAndGetNext),
161 NEM_WIN_IMPORT(1, false, VidStartVirtualProcessor),
162 NEM_WIN_IMPORT(1, false, VidStopVirtualProcessor),
163#ifdef LOG_ENABLED
164 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorState),
165 NEM_WIN_IMPORT(1, false, VidSetVirtualProcessorState),
166 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorRunningStatus),
167#endif
168#undef NEM_WIN_IMPORT
169};
170
171
172/** The real NtDeviceIoControlFile API in NTDLL. */
173static decltype(NtDeviceIoControlFile) *g_pfnNtDeviceIoControlFile;
174/** Pointer to the NtDeviceIoControlFile import table entry. */
175static decltype(NtDeviceIoControlFile) **g_ppfnVidNtDeviceIoControlFile;
176/** Info about the VidGetHvPartitionId I/O control interface. */
177static NEMWINIOCTL g_IoCtlGetHvPartitionId;
178/** Info about the VidStartVirtualProcessor I/O control interface. */
179static NEMWINIOCTL g_IoCtlStartVirtualProcessor;
180/** Info about the VidStopVirtualProcessor I/O control interface. */
181static NEMWINIOCTL g_IoCtlStopVirtualProcessor;
182/** Info about the VidMessageSlotHandleAndGetNext I/O control interface. */
183static NEMWINIOCTL g_IoCtlMessageSlotHandleAndGetNext;
184#ifdef LOG_ENABLED
185/** Info about the VidMessageSlotMap I/O control interface - for logging. */
186static NEMWINIOCTL g_IoCtlMessageSlotMap;
187/* Info about the VidGetVirtualProcessorState I/O control interface - for logging. */
188static NEMWINIOCTL g_IoCtlGetVirtualProcessorState;
189/* Info about the VidSetVirtualProcessorState I/O control interface - for logging. */
190static NEMWINIOCTL g_IoCtlSetVirtualProcessorState;
191/** Pointer to what nemR3WinIoctlDetector_ForLogging should fill in. */
192static NEMWINIOCTL *g_pIoCtlDetectForLogging;
193#endif
194
195#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
196/** Mapping slot for CPU #0.
197 * @{ */
198static VID_MESSAGE_MAPPING_HEADER *g_pMsgSlotMapping = NULL;
199static const HV_MESSAGE_HEADER *g_pHvMsgHdr;
200static const HV_X64_INTERCEPT_MESSAGE_HEADER *g_pX64MsgHdr;
201/** @} */
202#endif
203
204
205/*
206 * Let the preprocessor alias the APIs to import variables for better autocompletion.
207 */
208#ifndef IN_SLICKEDIT
209# define WHvGetCapability g_pfnWHvGetCapability
210# define WHvCreatePartition g_pfnWHvCreatePartition
211# define WHvSetupPartition g_pfnWHvSetupPartition
212# define WHvDeletePartition g_pfnWHvDeletePartition
213# define WHvGetPartitionProperty g_pfnWHvGetPartitionProperty
214# define WHvSetPartitionProperty g_pfnWHvSetPartitionProperty
215# define WHvMapGpaRange g_pfnWHvMapGpaRange
216# define WHvUnmapGpaRange g_pfnWHvUnmapGpaRange
217# define WHvTranslateGva g_pfnWHvTranslateGva
218# define WHvCreateVirtualProcessor g_pfnWHvCreateVirtualProcessor
219# define WHvDeleteVirtualProcessor g_pfnWHvDeleteVirtualProcessor
220# define WHvRunVirtualProcessor g_pfnWHvRunVirtualProcessor
221# define WHvGetRunExitContextSize g_pfnWHvGetRunExitContextSize
222# define WHvCancelRunVirtualProcessor g_pfnWHvCancelRunVirtualProcessor
223# define WHvGetVirtualProcessorRegisters g_pfnWHvGetVirtualProcessorRegisters
224# define WHvSetVirtualProcessorRegisters g_pfnWHvSetVirtualProcessorRegisters
225
226# define VidMessageSlotHandleAndGetNext g_pfnVidMessageSlotHandleAndGetNext
227# define VidStartVirtualProcessor g_pfnVidStartVirtualProcessor
228# define VidStopVirtualProcessor g_pfnVidStopVirtualProcessor
229
230#endif
231
232/** WHV_MEMORY_ACCESS_TYPE names */
233static const char * const g_apszWHvMemAccesstypes[4] = { "read", "write", "exec", "!undefined!" };
234
235
236/*********************************************************************************************************************************
237* Internal Functions *
238*********************************************************************************************************************************/
239
240/*
241 * Instantate the code we share with ring-0.
242 */
243#include "../VMMAll/NEMAllNativeTemplate-win.cpp.h"
244
245
246
247#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
248/**
249 * Wrapper that logs the call from VID.DLL.
250 *
251 * This is very handy for figuring out why an API call fails.
252 */
253static NTSTATUS WINAPI
254nemR3WinLogWrapper_NtDeviceIoControlFile(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
255 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
256 PVOID pvOutput, ULONG cbOutput)
257{
258
259 char szFunction[32];
260 const char *pszFunction;
261 if (uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction)
262 pszFunction = "VidMessageSlotHandleAndGetNext";
263 else if (uFunction == g_IoCtlStartVirtualProcessor.uFunction)
264 pszFunction = "VidStartVirtualProcessor";
265 else if (uFunction == g_IoCtlStopVirtualProcessor.uFunction)
266 pszFunction = "VidStopVirtualProcessor";
267 else if (uFunction == g_IoCtlMessageSlotMap.uFunction)
268 pszFunction = "VidMessageSlotMap";
269 else if (uFunction == g_IoCtlGetVirtualProcessorState.uFunction)
270 pszFunction = "VidGetVirtualProcessorState";
271 else if (uFunction == g_IoCtlSetVirtualProcessorState.uFunction)
272 pszFunction = "VidSetVirtualProcessorState";
273 else
274 {
275 RTStrPrintf(szFunction, sizeof(szFunction), "%#x", uFunction);
276 pszFunction = szFunction;
277 }
278
279 if (cbInput > 0 && pvInput)
280 Log12(("VID!NtDeviceIoControlFile: %s/input: %.*Rhxs\n", pszFunction, RT_MIN(cbInput, 32), pvInput));
281 NTSTATUS rcNt = g_pfnNtDeviceIoControlFile(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, uFunction,
282 pvInput, cbInput, pvOutput, cbOutput);
283 if (!hEvt && !pfnApcCallback && !pvApcCtx)
284 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
285 hFile, pIos, pIos->Status, pIos->Information, pszFunction, pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
286 else
287 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx hEvt=%#zx Apc=%p/%p pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
288 hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pIos->Status, pIos->Information, pszFunction,
289 pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
290 if (cbOutput > 0 && pvOutput)
291 {
292 Log12(("VID!NtDeviceIoControlFile: %s/output: %.*Rhxs\n", pszFunction, RT_MIN(cbOutput, 32), pvOutput));
293 if (uFunction == 0x2210cc && g_pMsgSlotMapping == NULL && cbOutput >= sizeof(void *))
294 {
295 g_pMsgSlotMapping = *(VID_MESSAGE_MAPPING_HEADER **)pvOutput;
296 g_pHvMsgHdr = (const HV_MESSAGE_HEADER *)(g_pMsgSlotMapping + 1);
297 g_pX64MsgHdr = (const HV_X64_INTERCEPT_MESSAGE_HEADER *)(g_pHvMsgHdr + 1);
298 Log12(("VID!NtDeviceIoControlFile: Message slot mapping: %p\n", g_pMsgSlotMapping));
299 }
300 }
301 if ( g_pMsgSlotMapping
302 && ( uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction
303 || uFunction == g_IoCtlStopVirtualProcessor.uFunction
304 || uFunction == g_IoCtlMessageSlotMap.uFunction
305 ))
306 Log12(("VID!NtDeviceIoControlFile: enmVidMsgType=%#x cb=%#x msg=%#x payload=%u cs:rip=%04x:%08RX64 (%s)\n",
307 g_pMsgSlotMapping->enmVidMsgType, g_pMsgSlotMapping->cbMessage,
308 g_pHvMsgHdr->MessageType, g_pHvMsgHdr->PayloadSize,
309 g_pX64MsgHdr->CsSegment.Selector, g_pX64MsgHdr->Rip, pszFunction));
310
311 return rcNt;
312}
313#endif /* NEM_WIN_INTERCEPT_NT_IO_CTLS */
314
315
316/**
317 * Patches the call table of VID.DLL so we can intercept NtDeviceIoControlFile.
318 *
319 * This is for used to figure out the I/O control codes and in logging builds
320 * for logging API calls that WinHvPlatform.dll does.
321 *
322 * @returns VBox status code.
323 * @param hLdrModVid The VID module handle.
324 * @param pErrInfo Where to return additional error information.
325 */
326static int nemR3WinInitVidIntercepts(RTLDRMOD hLdrModVid, PRTERRINFO pErrInfo)
327{
328 /*
329 * Locate the real API.
330 */
331 g_pfnNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) *)RTLdrGetSystemSymbol("NTDLL.DLL", "NtDeviceIoControlFile");
332 AssertReturn(g_pfnNtDeviceIoControlFile != NULL,
333 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to resolve NtDeviceIoControlFile from NTDLL.DLL"));
334
335 /*
336 * Locate the PE header and get what we need from it.
337 */
338 uint8_t const *pbImage = (uint8_t const *)RTLdrGetNativeHandle(hLdrModVid);
339 IMAGE_DOS_HEADER const *pMzHdr = (IMAGE_DOS_HEADER const *)pbImage;
340 AssertReturn(pMzHdr->e_magic == IMAGE_DOS_SIGNATURE,
341 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL mapping doesn't start with MZ signature: %#x", pMzHdr->e_magic));
342 IMAGE_NT_HEADERS const *pNtHdrs = (IMAGE_NT_HEADERS const *)&pbImage[pMzHdr->e_lfanew];
343 AssertReturn(pNtHdrs->Signature == IMAGE_NT_SIGNATURE,
344 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL has invalid PE signaturre: %#x @%#x",
345 pNtHdrs->Signature, pMzHdr->e_lfanew));
346
347 uint32_t const cbImage = pNtHdrs->OptionalHeader.SizeOfImage;
348 IMAGE_DATA_DIRECTORY const ImportDir = pNtHdrs->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
349
350 /*
351 * Walk the import descriptor table looking for NTDLL.DLL.
352 */
353 AssertReturn( ImportDir.Size > 0
354 && ImportDir.Size < cbImage,
355 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory size: %#x", ImportDir.Size));
356 AssertReturn( ImportDir.VirtualAddress > 0
357 && ImportDir.VirtualAddress <= cbImage - ImportDir.Size,
358 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory RVA: %#x", ImportDir.VirtualAddress));
359
360 for (PIMAGE_IMPORT_DESCRIPTOR pImps = (PIMAGE_IMPORT_DESCRIPTOR)&pbImage[ImportDir.VirtualAddress];
361 pImps->Name != 0 && pImps->FirstThunk != 0;
362 pImps++)
363 {
364 AssertReturn(pImps->Name < cbImage,
365 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory entry name: %#x", pImps->Name));
366 const char *pszModName = (const char *)&pbImage[pImps->Name];
367 if (RTStrICmpAscii(pszModName, "ntdll.dll"))
368 continue;
369 AssertReturn(pImps->FirstThunk < cbImage,
370 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
371 AssertReturn(pImps->OriginalFirstThunk < cbImage,
372 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
373
374 /*
375 * Walk the thunks table(s) looking for NtDeviceIoControlFile.
376 */
377 PIMAGE_THUNK_DATA pFirstThunk = (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]; /* update this. */
378 PIMAGE_THUNK_DATA pThunk = pImps->OriginalFirstThunk == 0 /* read from this. */
379 ? (PIMAGE_THUNK_DATA)&pbImage[pImps->FirstThunk]
380 : (PIMAGE_THUNK_DATA)&pbImage[pImps->OriginalFirstThunk];
381 while (pThunk->u1.Ordinal != 0)
382 {
383 if (!(pThunk->u1.Ordinal & IMAGE_ORDINAL_FLAG32))
384 {
385 AssertReturn(pThunk->u1.Ordinal > 0 && pThunk->u1.Ordinal < cbImage,
386 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
387
388 const char *pszSymbol = (const char *)&pbImage[(uintptr_t)pThunk->u1.AddressOfData + 2];
389 if (strcmp(pszSymbol, "NtDeviceIoControlFile") == 0)
390 {
391 DWORD fOldProt = PAGE_READONLY;
392 VirtualProtect(&pFirstThunk->u1.Function, sizeof(uintptr_t), PAGE_EXECUTE_READWRITE, &fOldProt);
393 g_ppfnVidNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) **)&pFirstThunk->u1.Function;
394 /* Don't restore the protection here, so we modify the NtDeviceIoControlFile pointer later. */
395 }
396 }
397
398 pThunk++;
399 pFirstThunk++;
400 }
401 }
402
403 if (*g_ppfnVidNtDeviceIoControlFile)
404 {
405#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
406 *g_ppfnVidNtDeviceIoControlFile = nemR3WinLogWrapper_NtDeviceIoControlFile;
407#endif
408 return VINF_SUCCESS;
409 }
410 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to patch NtDeviceIoControlFile import in VID.DLL!");
411}
412
413
414/**
415 * Worker for nemR3NativeInit that probes and load the native API.
416 *
417 * @returns VBox status code.
418 * @param fForced Whether the HMForced flag is set and we should
419 * fail if we cannot initialize.
420 * @param pErrInfo Where to always return error info.
421 */
422static int nemR3WinInitProbeAndLoad(bool fForced, PRTERRINFO pErrInfo)
423{
424 /*
425 * Check that the DLL files we need are present, but without loading them.
426 * We'd like to avoid loading them unnecessarily.
427 */
428 WCHAR wszPath[MAX_PATH + 64];
429 UINT cwcPath = GetSystemDirectoryW(wszPath, MAX_PATH);
430 if (cwcPath >= MAX_PATH || cwcPath < 2)
431 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "GetSystemDirectoryW failed (%#x / %u)", cwcPath, GetLastError());
432
433 if (wszPath[cwcPath - 1] != '\\' || wszPath[cwcPath - 1] != '/')
434 wszPath[cwcPath++] = '\\';
435 RTUtf16CopyAscii(&wszPath[cwcPath], RT_ELEMENTS(wszPath) - cwcPath, "WinHvPlatform.dll");
436 if (GetFileAttributesW(wszPath) == INVALID_FILE_ATTRIBUTES)
437 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "The native API dll was not found (%ls)", wszPath);
438
439 /*
440 * Check that we're in a VM and that the hypervisor identifies itself as Hyper-V.
441 */
442 if (!ASMHasCpuId())
443 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID support");
444 if (!ASMIsValidStdRange(ASMCpuId_EAX(0)))
445 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID leaf #1");
446 if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_HVP))
447 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Not in a hypervisor partition (HVP=0)");
448
449 uint32_t cMaxHyperLeaf = 0;
450 uint32_t uEbx = 0;
451 uint32_t uEcx = 0;
452 uint32_t uEdx = 0;
453 ASMCpuIdExSlow(0x40000000, 0, 0, 0, &cMaxHyperLeaf, &uEbx, &uEcx, &uEdx);
454 if (!ASMIsValidHypervisorRange(cMaxHyperLeaf))
455 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Invalid hypervisor CPUID range (%#x %#x %#x %#x)",
456 cMaxHyperLeaf, uEbx, uEcx, uEdx);
457 if ( uEbx != UINT32_C(0x7263694d) /* Micr */
458 || uEcx != UINT32_C(0x666f736f) /* osof */
459 || uEdx != UINT32_C(0x76482074) /* t Hv */)
460 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
461 "Not Hyper-V CPUID signature: %#x %#x %#x (expected %#x %#x %#x)",
462 uEbx, uEcx, uEdx, UINT32_C(0x7263694d), UINT32_C(0x666f736f), UINT32_C(0x76482074));
463 if (cMaxHyperLeaf < UINT32_C(0x40000005))
464 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Too narrow hypervisor CPUID range (%#x)", cMaxHyperLeaf);
465
466 /** @todo would be great if we could recognize a root partition from the
467 * CPUID info, but I currently don't dare do that. */
468
469 /*
470 * Now try load the DLLs and resolve the APIs.
471 */
472 static const char * const s_apszDllNames[2] = { "WinHvPlatform.dll", "vid.dll" };
473 RTLDRMOD ahMods[2] = { NIL_RTLDRMOD, NIL_RTLDRMOD };
474 int rc = VINF_SUCCESS;
475 for (unsigned i = 0; i < RT_ELEMENTS(s_apszDllNames); i++)
476 {
477 int rc2 = RTLdrLoadSystem(s_apszDllNames[i], true /*fNoUnload*/, &ahMods[i]);
478 if (RT_FAILURE(rc2))
479 {
480 if (!RTErrInfoIsSet(pErrInfo))
481 RTErrInfoSetF(pErrInfo, rc2, "Failed to load API DLL: %s: %Rrc", s_apszDllNames[i], rc2);
482 else
483 RTErrInfoAddF(pErrInfo, rc2, "; %s: %Rrc", s_apszDllNames[i], rc2);
484 ahMods[i] = NIL_RTLDRMOD;
485 rc = VERR_NEM_INIT_FAILED;
486 }
487 }
488 if (RT_SUCCESS(rc))
489 rc = nemR3WinInitVidIntercepts(ahMods[1], pErrInfo);
490 if (RT_SUCCESS(rc))
491 {
492 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
493 {
494 int rc2 = RTLdrGetSymbol(ahMods[g_aImports[i].idxDll], g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
495 if (RT_FAILURE(rc2))
496 {
497 *g_aImports[i].ppfn = NULL;
498
499 LogRel(("NEM: %s: Failed to import %s!%s: %Rrc",
500 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
501 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName, rc2));
502 if (!g_aImports[i].fOptional)
503 {
504 if (RTErrInfoIsSet(pErrInfo))
505 RTErrInfoAddF(pErrInfo, rc2, ", %s!%s",
506 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
507 else
508 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: %s!%s",
509 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
510 Assert(RT_FAILURE(rc));
511 }
512 }
513 }
514 if (RT_SUCCESS(rc))
515 {
516 Assert(!RTErrInfoIsSet(pErrInfo));
517 }
518 }
519
520 for (unsigned i = 0; i < RT_ELEMENTS(ahMods); i++)
521 RTLdrClose(ahMods[i]);
522 return rc;
523}
524
525
526/**
527 * Wrapper for different WHvGetCapability signatures.
528 */
529DECLINLINE(HRESULT) WHvGetCapabilityWrapper(WHV_CAPABILITY_CODE enmCap, WHV_CAPABILITY *pOutput, uint32_t cbOutput)
530{
531#ifdef NEM_WIN_USE_17110_PLUS_WDK
532 return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput, NULL);
533#else
534 if (g_uBuildNo >= 17110)
535 {
536 PFNWHVGETCAPABILITY_17110 pfnNewVersion = (PFNWHVGETCAPABILITY_17110)g_pfnWHvGetCapability;
537 return pfnNewVersion(enmCap, &pOutput->HypervisorPresent, cbOutput - RT_OFFSETOF(WHV_CAPABILITY, HypervisorPresent), NULL);
538 }
539 return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput);
540#endif
541}
542
543
544/**
545 * Worker for nemR3NativeInit that gets the hypervisor capabilities.
546 *
547 * @returns VBox status code.
548 * @param pVM The cross context VM structure.
549 * @param pErrInfo Where to always return error info.
550 */
551static int nemR3WinInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
552{
553#define NEM_LOG_REL_CAP_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %-38s= " a_szFmt "\n", a_szField, a_Value))
554#define NEM_LOG_REL_CAP_SUB_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %36s: " a_szFmt "\n", a_szField, a_Value))
555#define NEM_LOG_REL_CAP_SUB(a_szField, a_Value) NEM_LOG_REL_CAP_SUB_EX(a_szField, "%d", a_Value)
556
557 /*
558 * Is the hypervisor present with the desired capability?
559 *
560 * In build 17083 this translates into:
561 * - CPUID[0x00000001].HVP is set
562 * - CPUID[0x40000000] == "Microsoft Hv"
563 * - CPUID[0x40000001].eax == "Hv#1"
564 * - CPUID[0x40000003].ebx[12] is set.
565 * - VidGetExoPartitionProperty(INVALID_HANDLE_VALUE, 0x60000, &Ignored) returns
566 * a non-zero value.
567 */
568 /**
569 * @todo Someone at Microsoft please explain weird API design:
570 * 1. Pointless CapabilityCode duplication int the output;
571 * 2. No output size.
572 */
573 WHV_CAPABILITY Caps;
574 RT_ZERO(Caps);
575 SetLastError(0);
576 HRESULT hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeHypervisorPresent, &Caps, sizeof(Caps));
577 DWORD rcWin = GetLastError();
578 if (FAILED(hrc))
579 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
580 "WHvGetCapability/WHvCapabilityCodeHypervisorPresent failed: %Rhrc (Last=%#x/%u)",
581 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
582 if (!Caps.HypervisorPresent)
583 {
584 if (!RTPathExists(RTPATH_NT_PASSTHRU_PREFIX "Device\\VidExo"))
585 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
586 "WHvCapabilityCodeHypervisorPresent is FALSE! Make sure you have enabled the 'Windows Hypervisor Platform' feature.");
587 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "WHvCapabilityCodeHypervisorPresent is FALSE! (%u)", rcWin);
588 }
589 LogRel(("NEM: WHvCapabilityCodeHypervisorPresent is TRUE, so this might work...\n"));
590
591
592 /*
593 * Check what extended VM exits are supported.
594 */
595 RT_ZERO(Caps);
596 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExtendedVmExits, &Caps, sizeof(Caps));
597 if (FAILED(hrc))
598 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
599 "WHvGetCapability/WHvCapabilityCodeExtendedVmExits failed: %Rhrc (Last=%#x/%u)",
600 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
601 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeExtendedVmExits", "%'#018RX64", Caps.ExtendedVmExits.AsUINT64);
602 pVM->nem.s.fExtendedMsrExit = RT_BOOL(Caps.ExtendedVmExits.X64MsrExit);
603 pVM->nem.s.fExtendedCpuIdExit = RT_BOOL(Caps.ExtendedVmExits.X64CpuidExit);
604 pVM->nem.s.fExtendedXcptExit = RT_BOOL(Caps.ExtendedVmExits.ExceptionExit);
605 NEM_LOG_REL_CAP_SUB("fExtendedMsrExit", pVM->nem.s.fExtendedMsrExit);
606 NEM_LOG_REL_CAP_SUB("fExtendedCpuIdExit", pVM->nem.s.fExtendedCpuIdExit);
607 NEM_LOG_REL_CAP_SUB("fExtendedXcptExit", pVM->nem.s.fExtendedXcptExit);
608 if (Caps.ExtendedVmExits.AsUINT64 & ~(uint64_t)7)
609 LogRel(("NEM: Warning! Unknown VM exit definitions: %#RX64\n", Caps.ExtendedVmExits.AsUINT64));
610 /** @todo RECHECK: WHV_EXTENDED_VM_EXITS typedef. */
611
612 /*
613 * Check features in case they end up defining any.
614 */
615 RT_ZERO(Caps);
616 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeFeatures, &Caps, sizeof(Caps));
617 if (FAILED(hrc))
618 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
619 "WHvGetCapability/WHvCapabilityCodeFeatures failed: %Rhrc (Last=%#x/%u)",
620 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
621 if (Caps.Features.AsUINT64 & ~(uint64_t)0)
622 LogRel(("NEM: Warning! Unknown feature definitions: %#RX64\n", Caps.Features.AsUINT64));
623 /** @todo RECHECK: WHV_CAPABILITY_FEATURES typedef. */
624
625 /*
626 * Check that the CPU vendor is supported.
627 */
628 RT_ZERO(Caps);
629 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorVendor, &Caps, sizeof(Caps));
630 if (FAILED(hrc))
631 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
632 "WHvGetCapability/WHvCapabilityCodeProcessorVendor failed: %Rhrc (Last=%#x/%u)",
633 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
634 switch (Caps.ProcessorVendor)
635 {
636 /** @todo RECHECK: WHV_PROCESSOR_VENDOR typedef. */
637 case WHvProcessorVendorIntel:
638 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - Intel", Caps.ProcessorVendor);
639 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_INTEL;
640 break;
641 case WHvProcessorVendorAmd:
642 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - AMD", Caps.ProcessorVendor);
643 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_AMD;
644 break;
645 default:
646 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d", Caps.ProcessorVendor);
647 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unknown processor vendor: %d", Caps.ProcessorVendor);
648 }
649
650 /*
651 * CPU features, guessing these are virtual CPU features?
652 */
653 RT_ZERO(Caps);
654 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorFeatures, &Caps, sizeof(Caps));
655 if (FAILED(hrc))
656 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
657 "WHvGetCapability/WHvCapabilityCodeProcessorFeatures failed: %Rhrc (Last=%#x/%u)",
658 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
659 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorFeatures", "%'#018RX64", Caps.ProcessorFeatures.AsUINT64);
660#define NEM_LOG_REL_CPU_FEATURE(a_Field) NEM_LOG_REL_CAP_SUB(#a_Field, Caps.ProcessorFeatures.a_Field)
661 NEM_LOG_REL_CPU_FEATURE(Sse3Support);
662 NEM_LOG_REL_CPU_FEATURE(LahfSahfSupport);
663 NEM_LOG_REL_CPU_FEATURE(Ssse3Support);
664 NEM_LOG_REL_CPU_FEATURE(Sse4_1Support);
665 NEM_LOG_REL_CPU_FEATURE(Sse4_2Support);
666 NEM_LOG_REL_CPU_FEATURE(Sse4aSupport);
667 NEM_LOG_REL_CPU_FEATURE(XopSupport);
668 NEM_LOG_REL_CPU_FEATURE(PopCntSupport);
669 NEM_LOG_REL_CPU_FEATURE(Cmpxchg16bSupport);
670 NEM_LOG_REL_CPU_FEATURE(Altmovcr8Support);
671 NEM_LOG_REL_CPU_FEATURE(LzcntSupport);
672 NEM_LOG_REL_CPU_FEATURE(MisAlignSseSupport);
673 NEM_LOG_REL_CPU_FEATURE(MmxExtSupport);
674 NEM_LOG_REL_CPU_FEATURE(Amd3DNowSupport);
675 NEM_LOG_REL_CPU_FEATURE(ExtendedAmd3DNowSupport);
676 NEM_LOG_REL_CPU_FEATURE(Page1GbSupport);
677 NEM_LOG_REL_CPU_FEATURE(AesSupport);
678 NEM_LOG_REL_CPU_FEATURE(PclmulqdqSupport);
679 NEM_LOG_REL_CPU_FEATURE(PcidSupport);
680 NEM_LOG_REL_CPU_FEATURE(Fma4Support);
681 NEM_LOG_REL_CPU_FEATURE(F16CSupport);
682 NEM_LOG_REL_CPU_FEATURE(RdRandSupport);
683 NEM_LOG_REL_CPU_FEATURE(RdWrFsGsSupport);
684 NEM_LOG_REL_CPU_FEATURE(SmepSupport);
685 NEM_LOG_REL_CPU_FEATURE(EnhancedFastStringSupport);
686 NEM_LOG_REL_CPU_FEATURE(Bmi1Support);
687 NEM_LOG_REL_CPU_FEATURE(Bmi2Support);
688 /* two reserved bits here, see below */
689 NEM_LOG_REL_CPU_FEATURE(MovbeSupport);
690 NEM_LOG_REL_CPU_FEATURE(Npiep1Support);
691 NEM_LOG_REL_CPU_FEATURE(DepX87FPUSaveSupport);
692 NEM_LOG_REL_CPU_FEATURE(RdSeedSupport);
693 NEM_LOG_REL_CPU_FEATURE(AdxSupport);
694 NEM_LOG_REL_CPU_FEATURE(IntelPrefetchSupport);
695 NEM_LOG_REL_CPU_FEATURE(SmapSupport);
696 NEM_LOG_REL_CPU_FEATURE(HleSupport);
697 NEM_LOG_REL_CPU_FEATURE(RtmSupport);
698 NEM_LOG_REL_CPU_FEATURE(RdtscpSupport);
699 NEM_LOG_REL_CPU_FEATURE(ClflushoptSupport);
700 NEM_LOG_REL_CPU_FEATURE(ClwbSupport);
701 NEM_LOG_REL_CPU_FEATURE(ShaSupport);
702 NEM_LOG_REL_CPU_FEATURE(X87PointersSavedSupport);
703#undef NEM_LOG_REL_CPU_FEATURE
704 if (Caps.ProcessorFeatures.AsUINT64 & (~(RT_BIT_64(43) - 1) | RT_BIT_64(27) | RT_BIT_64(28)))
705 LogRel(("NEM: Warning! Unknown CPU features: %#RX64\n", Caps.ProcessorFeatures.AsUINT64));
706 pVM->nem.s.uCpuFeatures.u64 = Caps.ProcessorFeatures.AsUINT64;
707 /** @todo RECHECK: WHV_PROCESSOR_FEATURES typedef. */
708
709 /*
710 * The cache line flush size.
711 */
712 RT_ZERO(Caps);
713 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorClFlushSize, &Caps, sizeof(Caps));
714 if (FAILED(hrc))
715 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
716 "WHvGetCapability/WHvCapabilityCodeProcessorClFlushSize failed: %Rhrc (Last=%#x/%u)",
717 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
718 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorClFlushSize", "2^%u", Caps.ProcessorClFlushSize);
719 if (Caps.ProcessorClFlushSize < 8 && Caps.ProcessorClFlushSize > 9)
720 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unsupported cache line flush size: %u", Caps.ProcessorClFlushSize);
721 pVM->nem.s.cCacheLineFlushShift = Caps.ProcessorClFlushSize;
722
723 /*
724 * See if they've added more properties that we're not aware of.
725 */
726 /** @todo RECHECK: WHV_CAPABILITY_CODE typedef. */
727 if (!IsDebuggerPresent()) /* Too noisy when in debugger, so skip. */
728 {
729 static const struct
730 {
731 uint32_t iMin, iMax; } s_aUnknowns[] =
732 {
733 { 0x0003, 0x000f },
734 { 0x1003, 0x100f },
735 { 0x2000, 0x200f },
736 { 0x3000, 0x300f },
737 { 0x4000, 0x400f },
738 };
739 for (uint32_t j = 0; j < RT_ELEMENTS(s_aUnknowns); j++)
740 for (uint32_t i = s_aUnknowns[j].iMin; i <= s_aUnknowns[j].iMax; i++)
741 {
742 RT_ZERO(Caps);
743 hrc = WHvGetCapabilityWrapper((WHV_CAPABILITY_CODE)i, &Caps, sizeof(Caps));
744 if (SUCCEEDED(hrc))
745 LogRel(("NEM: Warning! Unknown capability %#x returning: %.*Rhxs\n", i, sizeof(Caps), &Caps));
746 }
747 }
748
749#undef NEM_LOG_REL_CAP_EX
750#undef NEM_LOG_REL_CAP_SUB_EX
751#undef NEM_LOG_REL_CAP_SUB
752 return VINF_SUCCESS;
753}
754
755
756/**
757 * Used to fill in g_IoCtlGetHvPartitionId.
758 */
759static NTSTATUS WINAPI
760nemR3WinIoctlDetector_GetHvPartitionId(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
761 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
762 PVOID pvOutput, ULONG cbOutput)
763{
764 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
765 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
766 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
767 AssertLogRelMsgReturn(cbInput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
768 RT_NOREF(pvInput);
769
770 AssertLogRelMsgReturn(RT_VALID_PTR(pvOutput), ("pvOutput=%p\n", pvOutput), STATUS_INVALID_PARAMETER_9);
771 AssertLogRelMsgReturn(cbOutput == sizeof(HV_PARTITION_ID), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
772 *(HV_PARTITION_ID *)pvOutput = NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID;
773
774 g_IoCtlGetHvPartitionId.cbInput = cbInput;
775 g_IoCtlGetHvPartitionId.cbOutput = cbOutput;
776 g_IoCtlGetHvPartitionId.uFunction = uFunction;
777
778 return STATUS_SUCCESS;
779}
780
781
782/**
783 * Used to fill in g_IoCtlStartVirtualProcessor.
784 */
785static NTSTATUS WINAPI
786nemR3WinIoctlDetector_StartVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
787 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
788 PVOID pvOutput, ULONG cbOutput)
789{
790 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
791 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
792 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
793 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
794 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
795 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
796 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
797 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
798 RT_NOREF(pvOutput);
799
800 g_IoCtlStartVirtualProcessor.cbInput = cbInput;
801 g_IoCtlStartVirtualProcessor.cbOutput = cbOutput;
802 g_IoCtlStartVirtualProcessor.uFunction = uFunction;
803
804 return STATUS_SUCCESS;
805}
806
807
808/**
809 * Used to fill in g_IoCtlStartVirtualProcessor.
810 */
811static NTSTATUS WINAPI
812nemR3WinIoctlDetector_StopVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
813 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
814 PVOID pvOutput, ULONG cbOutput)
815{
816 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
817 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
818 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
819 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
820 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
821 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
822 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
823 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
824 RT_NOREF(pvOutput);
825
826 g_IoCtlStopVirtualProcessor.cbInput = cbInput;
827 g_IoCtlStopVirtualProcessor.cbOutput = cbOutput;
828 g_IoCtlStopVirtualProcessor.uFunction = uFunction;
829
830 return STATUS_SUCCESS;
831}
832
833
834/**
835 * Used to fill in g_IoCtlMessageSlotHandleAndGetNext
836 */
837static NTSTATUS WINAPI
838nemR3WinIoctlDetector_MessageSlotHandleAndGetNext(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
839 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
840 PVOID pvOutput, ULONG cbOutput)
841{
842 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
843 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
844 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
845
846 AssertLogRelMsgReturn(cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT), ("cbInput=%#x\n", cbInput),
847 STATUS_INVALID_PARAMETER_8);
848 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
849 PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT pVidIn = (PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT)pvInput;
850 AssertLogRelMsgReturn( pVidIn->iCpu == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX
851 && pVidIn->fFlags == VID_MSHAGN_F_HANDLE_MESSAGE
852 && pVidIn->cMillies == NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT,
853 ("iCpu=%u fFlags=%#x cMillies=%#x\n", pVidIn->iCpu, pVidIn->fFlags, pVidIn->cMillies),
854 STATUS_INVALID_PARAMETER_9);
855 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
856 RT_NOREF(pvOutput);
857
858 g_IoCtlMessageSlotHandleAndGetNext.cbInput = cbInput;
859 g_IoCtlMessageSlotHandleAndGetNext.cbOutput = cbOutput;
860 g_IoCtlMessageSlotHandleAndGetNext.uFunction = uFunction;
861
862 return STATUS_SUCCESS;
863}
864
865
866#ifdef LOG_ENABLED
867/**
868 * Used to fill in what g_pIoCtlDetectForLogging points to.
869 */
870static NTSTATUS WINAPI nemR3WinIoctlDetector_ForLogging(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
871 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
872 PVOID pvOutput, ULONG cbOutput)
873{
874 RT_NOREF(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pvInput, pvOutput);
875
876 g_pIoCtlDetectForLogging->cbInput = cbInput;
877 g_pIoCtlDetectForLogging->cbOutput = cbOutput;
878 g_pIoCtlDetectForLogging->uFunction = uFunction;
879
880 return STATUS_SUCCESS;
881}
882#endif
883
884
885/**
886 * Worker for nemR3NativeInit that detect I/O control function numbers for VID.
887 *
888 * We use the function numbers directly in ring-0 and to name functions when
889 * logging NtDeviceIoControlFile calls.
890 *
891 * @note We could alternatively do this by disassembling the respective
892 * functions, but hooking NtDeviceIoControlFile and making fake calls
893 * more easily provides the desired information.
894 *
895 * @returns VBox status code.
896 * @param pVM The cross context VM structure. Will set I/O
897 * control info members.
898 * @param pErrInfo Where to always return error info.
899 */
900static int nemR3WinInitDiscoverIoControlProperties(PVM pVM, PRTERRINFO pErrInfo)
901{
902 /*
903 * Probe the I/O control information for select VID APIs so we can use
904 * them directly from ring-0 and better log them.
905 *
906 */
907 decltype(NtDeviceIoControlFile) * const pfnOrg = *g_ppfnVidNtDeviceIoControlFile;
908
909 /* VidGetHvPartitionId */
910 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_GetHvPartitionId;
911 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
912 BOOL fRet = g_pfnVidGetHvPartitionId(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &idHvPartition);
913 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
914 AssertReturn(fRet && idHvPartition == NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID && g_IoCtlGetHvPartitionId.uFunction != 0,
915 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
916 "Problem figuring out VidGetHvPartitionId: fRet=%u idHvPartition=%#x dwErr=%u",
917 fRet, idHvPartition, GetLastError()) );
918 LogRel(("NEM: VidGetHvPartitionId -> fun:%#x in:%#x out:%#x\n",
919 g_IoCtlGetHvPartitionId.uFunction, g_IoCtlGetHvPartitionId.cbInput, g_IoCtlGetHvPartitionId.cbOutput));
920
921 /* VidStartVirtualProcessor */
922 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StartVirtualProcessor;
923 fRet = g_pfnVidStartVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
924 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
925 AssertReturn(fRet && g_IoCtlStartVirtualProcessor.uFunction != 0,
926 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
927 "Problem figuring out VidStartVirtualProcessor: fRet=%u dwErr=%u",
928 fRet, GetLastError()) );
929 LogRel(("NEM: VidStartVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStartVirtualProcessor.uFunction,
930 g_IoCtlStartVirtualProcessor.cbInput, g_IoCtlStartVirtualProcessor.cbOutput));
931
932 /* VidStopVirtualProcessor */
933 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StopVirtualProcessor;
934 fRet = g_pfnVidStopVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
935 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
936 AssertReturn(fRet && g_IoCtlStopVirtualProcessor.uFunction != 0,
937 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
938 "Problem figuring out VidStopVirtualProcessor: fRet=%u dwErr=%u",
939 fRet, GetLastError()) );
940 LogRel(("NEM: VidStopVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStopVirtualProcessor.uFunction,
941 g_IoCtlStopVirtualProcessor.cbInput, g_IoCtlStopVirtualProcessor.cbOutput));
942
943 /* VidMessageSlotHandleAndGetNext */
944 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_MessageSlotHandleAndGetNext;
945 fRet = g_pfnVidMessageSlotHandleAndGetNext(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE,
946 NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX, VID_MSHAGN_F_HANDLE_MESSAGE,
947 NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT);
948 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
949 AssertReturn(fRet && g_IoCtlMessageSlotHandleAndGetNext.uFunction != 0,
950 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
951 "Problem figuring out VidMessageSlotHandleAndGetNext: fRet=%u dwErr=%u",
952 fRet, GetLastError()) );
953 LogRel(("NEM: VidMessageSlotHandleAndGetNext -> fun:%#x in:%#x out:%#x\n",
954 g_IoCtlMessageSlotHandleAndGetNext.uFunction, g_IoCtlMessageSlotHandleAndGetNext.cbInput,
955 g_IoCtlMessageSlotHandleAndGetNext.cbOutput));
956
957#ifdef LOG_ENABLED
958 /* The following are only for logging: */
959 union
960 {
961 VID_MAPPED_MESSAGE_SLOT MapSlot;
962 HV_REGISTER_NAME Name;
963 HV_REGISTER_VALUE Value;
964 } uBuf;
965
966 /* VidMessageSlotMap */
967 g_pIoCtlDetectForLogging = &g_IoCtlMessageSlotMap;
968 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
969 fRet = g_pfnVidMessageSlotMap(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &uBuf.MapSlot, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
970 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
971 Assert(fRet);
972 LogRel(("NEM: VidMessageSlotMap -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
973 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
974
975 /* VidGetVirtualProcessorState */
976 uBuf.Name = HvRegisterExplicitSuspend;
977 g_pIoCtlDetectForLogging = &g_IoCtlGetVirtualProcessorState;
978 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
979 fRet = g_pfnVidGetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
980 &uBuf.Name, 1, &uBuf.Value);
981 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
982 Assert(fRet);
983 LogRel(("NEM: VidGetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
984 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
985
986 /* VidSetVirtualProcessorState */
987 uBuf.Name = HvRegisterExplicitSuspend;
988 g_pIoCtlDetectForLogging = &g_IoCtlSetVirtualProcessorState;
989 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
990 fRet = g_pfnVidSetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
991 &uBuf.Name, 1, &uBuf.Value);
992 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
993 Assert(fRet);
994 LogRel(("NEM: VidSetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
995 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
996
997 g_pIoCtlDetectForLogging = NULL;
998#endif
999
1000 /* Done. */
1001 pVM->nem.s.IoCtlGetHvPartitionId = g_IoCtlGetHvPartitionId;
1002 pVM->nem.s.IoCtlStartVirtualProcessor = g_IoCtlStartVirtualProcessor;
1003 pVM->nem.s.IoCtlStopVirtualProcessor = g_IoCtlStopVirtualProcessor;
1004 pVM->nem.s.IoCtlMessageSlotHandleAndGetNext = g_IoCtlMessageSlotHandleAndGetNext;
1005 return VINF_SUCCESS;
1006}
1007
1008
1009/**
1010 * Wrapper for different WHvSetPartitionProperty signatures.
1011 */
1012DECLINLINE(HRESULT) WHvSetPartitionPropertyWrapper(WHV_PARTITION_HANDLE hPartition, WHV_PARTITION_PROPERTY_CODE enmProp,
1013 WHV_PARTITION_PROPERTY *pInput, uint32_t cbInput)
1014{
1015#ifdef NEM_WIN_USE_17110_PLUS_WDK
1016 return g_pfnWHvSetPartitionProperty(hPartition, enmProp, pInput, cbInput, NULL);
1017#else
1018 pInput->PropertyCode = enmProp;
1019 if (g_uBuildNo >= 17110)
1020 {
1021 PFNWHVSETPARTITIONPROPERTY_17110 pfnNewVersion = (PFNWHVSETPARTITIONPROPERTY_17110)g_pfnWHvSetPartitionProperty;
1022 return pfnNewVersion(hPartition, enmProp, &pInput->ExtendedVmExits,
1023 cbInput - RT_UOFFSETOF(WHV_PARTITION_PROPERTY, ExtendedVmExits));
1024 }
1025 return g_pfnWHvSetPartitionProperty(hPartition, pInput, cbInput);
1026#endif
1027}
1028
1029
1030/**
1031 * Creates and sets up a Hyper-V (exo) partition.
1032 *
1033 * @returns VBox status code.
1034 * @param pVM The cross context VM structure.
1035 * @param pErrInfo Where to always return error info.
1036 */
1037static int nemR3WinInitCreatePartition(PVM pVM, PRTERRINFO pErrInfo)
1038{
1039 AssertReturn(!pVM->nem.s.hPartition, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1040 AssertReturn(!pVM->nem.s.hPartitionDevice, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1041
1042 /*
1043 * Create the partition.
1044 */
1045 WHV_PARTITION_HANDLE hPartition;
1046 HRESULT hrc = WHvCreatePartition(&hPartition);
1047 if (FAILED(hrc))
1048 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "WHvCreatePartition failed with %Rhrc (Last=%#x/%u)",
1049 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1050
1051 int rc;
1052
1053 /*
1054 * Set partition properties, most importantly the CPU count.
1055 */
1056 /**
1057 * @todo Someone at Microsoft please explain another weird API:
1058 * - Why this API doesn't take the WHV_PARTITION_PROPERTY_CODE value as an
1059 * argument rather than as part of the struct. That is so weird if you've
1060 * used any other NT or windows API, including WHvGetCapability().
1061 * - Why use PVOID when WHV_PARTITION_PROPERTY is what's expected. We
1062 * technically only need 9 bytes for setting/getting
1063 * WHVPartitionPropertyCodeProcessorClFlushSize, but the API insists on 16. */
1064 WHV_PARTITION_PROPERTY Property;
1065 RT_ZERO(Property);
1066 Property.ProcessorCount = pVM->cCpus;
1067 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorCount, &Property, sizeof(Property));
1068 if (SUCCEEDED(hrc))
1069 {
1070 RT_ZERO(Property);
1071#if 0
1072 Property.ExtendedVmExits.X64CpuidExit = pVM->nem.s.fExtendedCpuIdExit;
1073 Property.ExtendedVmExits.X64MsrExit = pVM->nem.s.fExtendedMsrExit;
1074 Property.ExtendedVmExits.ExceptionExit = pVM->nem.s.fExtendedXcptExit;
1075#endif
1076 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeExtendedVmExits, &Property, sizeof(Property));
1077 if (SUCCEEDED(hrc))
1078 {
1079 /*
1080 * We'll continue setup in nemR3NativeInitAfterCPUM.
1081 */
1082 pVM->nem.s.fCreatedEmts = false;
1083 pVM->nem.s.hPartition = hPartition;
1084 LogRel(("NEM: Created partition %p.\n", hPartition));
1085 return VINF_SUCCESS;
1086 }
1087
1088 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1089 "Failed setting WHvPartitionPropertyCodeExtendedVmExits to %'#RX64: %Rhrc",
1090 Property.ExtendedVmExits.AsUINT64, hrc);
1091 }
1092 else
1093 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1094 "Failed setting WHvPartitionPropertyCodeProcessorCount to %u: %Rhrc (Last=%#x/%u)",
1095 pVM->cCpus, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1096 WHvDeletePartition(hPartition);
1097
1098 Assert(!pVM->nem.s.hPartitionDevice);
1099 Assert(!pVM->nem.s.hPartition);
1100 return rc;
1101}
1102
1103
1104/**
1105 * Try initialize the native API.
1106 *
1107 * This may only do part of the job, more can be done in
1108 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
1109 *
1110 * @returns VBox status code.
1111 * @param pVM The cross context VM structure.
1112 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
1113 * the latter we'll fail if we cannot initialize.
1114 * @param fForced Whether the HMForced flag is set and we should
1115 * fail if we cannot initialize.
1116 */
1117int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
1118{
1119 g_uBuildNo = RTSystemGetNtBuildNo();
1120
1121 /*
1122 * Error state.
1123 * The error message will be non-empty on failure and 'rc' will be set too.
1124 */
1125 RTERRINFOSTATIC ErrInfo;
1126 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
1127 int rc = nemR3WinInitProbeAndLoad(fForced, pErrInfo);
1128 if (RT_SUCCESS(rc))
1129 {
1130 /*
1131 * Check the capabilties of the hypervisor, starting with whether it's present.
1132 */
1133 rc = nemR3WinInitCheckCapabilities(pVM, pErrInfo);
1134 if (RT_SUCCESS(rc))
1135 {
1136 /*
1137 * Discover the VID I/O control function numbers we need.
1138 */
1139 rc = nemR3WinInitDiscoverIoControlProperties(pVM, pErrInfo);
1140 if (RT_SUCCESS(rc))
1141 {
1142 /*
1143 * Check out our ring-0 capabilities.
1144 */
1145 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_NEM_INIT_VM, 0, NULL);
1146 if (RT_SUCCESS(rc))
1147 {
1148 /*
1149 * Create and initialize a partition.
1150 */
1151 rc = nemR3WinInitCreatePartition(pVM, pErrInfo);
1152 if (RT_SUCCESS(rc))
1153 {
1154 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
1155 Log(("NEM: Marked active!\n"));
1156
1157 /* Register release statistics */
1158 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1159 {
1160 PNEMCPU pNemCpu = &pVM->aCpus[iCpu].nem.s;
1161 STAMR3RegisterF(pVM, &pNemCpu->StatExitPortIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of port I/O exits", "/NEM/CPU%u/ExitPortIo", iCpu);
1162 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemUnmapped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unmapped memory exits", "/NEM/CPU%u/ExitMemUnmapped", iCpu);
1163 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemIntercept, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of intercepted memory exits", "/NEM/CPU%u/ExitMemIntercept", iCpu);
1164 STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitHalt", iCpu);
1165 STAMR3RegisterF(pVM, &pNemCpu->StatExitInterruptWindow, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitInterruptWindow", iCpu);
1166 STAMR3RegisterF(pVM, &pNemCpu->StatGetMsgTimeout, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of get message timeouts/alerts", "/NEM/CPU%u/GetMsgTimeout", iCpu);
1167 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuSuccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of successful CPU stops", "/NEM/CPU%u/StopCpuSuccess", iCpu);
1168 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPending, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stops", "/NEM/CPU%u/StopCpuPending", iCpu);
1169 STAMR3RegisterF(pVM, &pNemCpu->StatCancelChangedState, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel changed state", "/NEM/CPU%u/CancelChangedState", iCpu);
1170 STAMR3RegisterF(pVM, &pNemCpu->StatCancelAlertedThread, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel alerted EMT", "/NEM/CPU%u/CancelAlertedEMT", iCpu);
1171 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPre, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pre execution FF breaks", "/NEM/CPU%u/BreakOnFFPre", iCpu);
1172 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPost, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of post execution FF breaks", "/NEM/CPU%u/BreakOnFFPost", iCpu);
1173 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnCancel, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel execution breaks", "/NEM/CPU%u/BreakOnCancel", iCpu);
1174 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnStatus, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of status code breaks", "/NEM/CPU%u/BreakOnStatus", iCpu);
1175 }
1176 }
1177 }
1178 }
1179 }
1180 }
1181
1182 /*
1183 * We only fail if in forced mode, otherwise just log the complaint and return.
1184 */
1185 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
1186 if ( (fForced || !fFallback)
1187 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
1188 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
1189
1190 if (RTErrInfoIsSet(pErrInfo))
1191 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
1192 return VINF_SUCCESS;
1193}
1194
1195
1196/**
1197 * This is called after CPUMR3Init is done.
1198 *
1199 * @returns VBox status code.
1200 * @param pVM The VM handle..
1201 */
1202int nemR3NativeInitAfterCPUM(PVM pVM)
1203{
1204 /*
1205 * Validate sanity.
1206 */
1207 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1208 AssertReturn(hPartition != NULL, VERR_WRONG_ORDER);
1209 AssertReturn(!pVM->nem.s.hPartitionDevice, VERR_WRONG_ORDER);
1210 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
1211 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
1212
1213 /*
1214 * Continue setting up the partition now that we've got most of the CPUID feature stuff.
1215 */
1216 WHV_PARTITION_PROPERTY Property;
1217 HRESULT hrc;
1218
1219#if 0
1220 /* Not sure if we really need to set the vendor.
1221 Update: Apparently we don't. WHvPartitionPropertyCodeProcessorVendor was removed in 17110. */
1222 RT_ZERO(Property);
1223 Property.ProcessorVendor = pVM->nem.s.enmCpuVendor == CPUMCPUVENDOR_AMD ? WHvProcessorVendorAmd
1224 : WHvProcessorVendorIntel;
1225 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorVendor, &Property, sizeof(Property));
1226 if (FAILED(hrc))
1227 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1228 "Failed to set WHvPartitionPropertyCodeProcessorVendor to %u: %Rhrc (Last=%#x/%u)",
1229 Property.ProcessorVendor, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1230#endif
1231
1232 /* Not sure if we really need to set the cache line flush size. */
1233 RT_ZERO(Property);
1234 Property.ProcessorClFlushSize = pVM->nem.s.cCacheLineFlushShift;
1235 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorClFlushSize, &Property, sizeof(Property));
1236 if (FAILED(hrc))
1237 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1238 "Failed to set WHvPartitionPropertyCodeProcessorClFlushSize to %u: %Rhrc (Last=%#x/%u)",
1239 pVM->nem.s.cCacheLineFlushShift, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1240
1241 /*
1242 * Sync CPU features with CPUM.
1243 */
1244 /** @todo sync CPU features with CPUM. */
1245
1246 /* Set the partition property. */
1247 RT_ZERO(Property);
1248 Property.ProcessorFeatures.AsUINT64 = pVM->nem.s.uCpuFeatures.u64;
1249 hrc = WHvSetPartitionPropertyWrapper(hPartition, WHvPartitionPropertyCodeProcessorFeatures, &Property, sizeof(Property));
1250 if (FAILED(hrc))
1251 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1252 "Failed to set WHvPartitionPropertyCodeProcessorFeatures to %'#RX64: %Rhrc (Last=%#x/%u)",
1253 pVM->nem.s.uCpuFeatures.u64, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1254
1255 /*
1256 * Set up the partition and create EMTs.
1257 *
1258 * Seems like this is where the partition is actually instantiated and we get
1259 * a handle to it.
1260 */
1261 hrc = WHvSetupPartition(hPartition);
1262 if (FAILED(hrc))
1263 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1264 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)",
1265 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1266
1267 /* Get the handle. */
1268 HANDLE hPartitionDevice;
1269 __try
1270 {
1271 hPartitionDevice = ((HANDLE *)hPartition)[1];
1272 }
1273 __except(EXCEPTION_EXECUTE_HANDLER)
1274 {
1275 hrc = GetExceptionCode();
1276 hPartitionDevice = NULL;
1277 }
1278 if ( hPartitionDevice == NULL
1279 || hPartitionDevice == (HANDLE)(intptr_t)-1)
1280 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1281 "Failed to get device handle for partition %p: %Rhrc", hPartition, hrc);
1282
1283 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
1284 if (!g_pfnVidGetHvPartitionId(hPartitionDevice, &idHvPartition))
1285 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1286 "Failed to get device handle and/or partition ID for %p (hPartitionDevice=%p, Last=%#x/%u)",
1287 hPartition, hPartitionDevice, RTNtLastStatusValue(), RTNtLastErrorValue());
1288 pVM->nem.s.hPartitionDevice = hPartitionDevice;
1289 pVM->nem.s.idHvPartition = idHvPartition;
1290
1291 /*
1292 * Setup the EMTs.
1293 */
1294 VMCPUID iCpu;
1295 for (iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1296 {
1297 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1298
1299 pVCpu->nem.s.hNativeThreadHandle = (RTR3PTR)RTThreadGetNativeHandle(VMR3GetThreadHandle(pVCpu->pUVCpu));
1300 Assert((HANDLE)pVCpu->nem.s.hNativeThreadHandle != INVALID_HANDLE_VALUE);
1301
1302#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
1303 VID_MAPPED_MESSAGE_SLOT MappedMsgSlot = { NULL, UINT32_MAX, UINT32_MAX };
1304 if (g_pfnVidMessageSlotMap(hPartitionDevice, &MappedMsgSlot, iCpu))
1305 {
1306 AssertLogRelMsg(MappedMsgSlot.iCpu == iCpu && MappedMsgSlot.uParentAdvisory == UINT32_MAX,
1307 ("%#x %#x (iCpu=%#x)\n", MappedMsgSlot.iCpu, MappedMsgSlot.uParentAdvisory, iCpu));
1308 pVCpu->nem.s.pvMsgSlotMapping = MappedMsgSlot.pMsgBlock;
1309 }
1310 else
1311 {
1312 NTSTATUS const rcNtLast = RTNtLastStatusValue();
1313 DWORD const dwErrLast = RTNtLastErrorValue();
1314 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1315 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
1316 }
1317#else
1318 hrc = WHvCreateVirtualProcessor(hPartition, iCpu, 0 /*fFlags*/);
1319 if (FAILED(hrc))
1320 {
1321 NTSTATUS const rcNtLast = RTNtLastStatusValue();
1322 DWORD const dwErrLast = RTNtLastErrorValue();
1323 while (iCpu-- > 0)
1324 {
1325 HRESULT hrc2 = WHvDeleteVirtualProcessor(hPartition, iCpu);
1326 AssertLogRelMsg(SUCCEEDED(hrc2), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1327 hPartition, iCpu, hrc2, RTNtLastStatusValue(),
1328 RTNtLastErrorValue()));
1329 }
1330 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1331 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
1332 }
1333#endif /* !NEM_WIN_USE_OUR_OWN_RUN_API */
1334 }
1335 pVM->nem.s.fCreatedEmts = true;
1336
1337 /*
1338 * Do some more ring-0 initialization now that we've got the partition handle.
1339 */
1340 int rc = VMMR3CallR0Emt(pVM, &pVM->aCpus[0], VMMR0_DO_NEM_INIT_VM_PART_2, 0, NULL);
1341 if (RT_SUCCESS(rc))
1342 {
1343 LogRel(("NEM: Successfully set up partition (device handle %p, partition ID %#llx)\n", hPartitionDevice, idHvPartition));
1344 return VINF_SUCCESS;
1345 }
1346 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to NEMR0InitVMPart2 failed: %Rrc", rc);
1347}
1348
1349
1350int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1351{
1352 //BOOL fRet = SetThreadPriority(GetCurrentThread(), 0);
1353 //AssertLogRel(fRet);
1354
1355 NOREF(pVM); NOREF(enmWhat);
1356 return VINF_SUCCESS;
1357}
1358
1359
1360int nemR3NativeTerm(PVM pVM)
1361{
1362 /*
1363 * Delete the partition.
1364 */
1365 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1366 pVM->nem.s.hPartition = NULL;
1367 pVM->nem.s.hPartitionDevice = NULL;
1368 if (hPartition != NULL)
1369 {
1370 VMCPUID iCpu = pVM->nem.s.fCreatedEmts ? pVM->cCpus : 0;
1371 LogRel(("NEM: Destroying partition %p with its %u VCpus...\n", hPartition, iCpu));
1372 while (iCpu-- > 0)
1373 {
1374#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
1375 pVM->aCpus[iCpu].nem.s.pvMsgSlotMapping = NULL;
1376#else
1377 HRESULT hrc = WHvDeleteVirtualProcessor(hPartition, iCpu);
1378 AssertLogRelMsg(SUCCEEDED(hrc), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1379 hPartition, iCpu, hrc, RTNtLastStatusValue(),
1380 RTNtLastErrorValue()));
1381#endif
1382 }
1383 WHvDeletePartition(hPartition);
1384 }
1385 pVM->nem.s.fCreatedEmts = false;
1386 return VINF_SUCCESS;
1387}
1388
1389
1390/**
1391 * VM reset notification.
1392 *
1393 * @param pVM The cross context VM structure.
1394 */
1395void nemR3NativeReset(PVM pVM)
1396{
1397 /* Unfix the A20 gate. */
1398 pVM->nem.s.fA20Fixed = false;
1399}
1400
1401
1402/**
1403 * Reset CPU due to INIT IPI or hot (un)plugging.
1404 *
1405 * @param pVCpu The cross context virtual CPU structure of the CPU being
1406 * reset.
1407 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
1408 */
1409void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
1410{
1411 /* Lock the A20 gate if INIT IPI, make sure it's enabled. */
1412 if (fInitIpi && pVCpu->idCpu > 0)
1413 {
1414 PVM pVM = pVCpu->CTX_SUFF(pVM);
1415 if (!pVM->nem.s.fA20Enabled)
1416 nemR3NativeNotifySetA20(pVCpu, true);
1417 pVM->nem.s.fA20Enabled = true;
1418 pVM->nem.s.fA20Fixed = true;
1419 }
1420}
1421
1422#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
1423
1424# ifdef LOG_ENABLED
1425/**
1426 * Log the full details of an exit reason.
1427 *
1428 * @param pExitReason The exit reason to log.
1429 */
1430static void nemR3WinLogWHvExitReason(WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1431{
1432 bool fExitCtx = false;
1433 bool fExitInstr = false;
1434 switch (pExitReason->ExitReason)
1435 {
1436 case WHvRunVpExitReasonMemoryAccess:
1437 Log2(("Exit: Memory access: GCPhys=%RGp GCVirt=%RGv %s %s %s\n",
1438 pExitReason->MemoryAccess.Gpa, pExitReason->MemoryAccess.Gva,
1439 g_apszWHvMemAccesstypes[pExitReason->MemoryAccess.AccessInfo.AccessType],
1440 pExitReason->MemoryAccess.AccessInfo.GpaUnmapped ? "unmapped" : "mapped",
1441 pExitReason->MemoryAccess.AccessInfo.GvaValid ? "" : "invalid-gc-virt"));
1442 AssertMsg(!(pExitReason->MemoryAccess.AccessInfo.AsUINT32 & ~UINT32_C(0xf)),
1443 ("MemoryAccess.AccessInfo=%#x\n", pExitReason->MemoryAccess.AccessInfo.AsUINT32));
1444 fExitCtx = fExitInstr = true;
1445 break;
1446
1447 case WHvRunVpExitReasonX64IoPortAccess:
1448 Log2(("Exit: I/O port access: IoPort=%#x LB %u %s%s%s rax=%#RX64 rcx=%#RX64 rsi=%#RX64 rdi=%#RX64\n",
1449 pExitReason->IoPortAccess.PortNumber,
1450 pExitReason->IoPortAccess.AccessInfo.AccessSize,
1451 pExitReason->IoPortAccess.AccessInfo.IsWrite ? "out" : "in",
1452 pExitReason->IoPortAccess.AccessInfo.StringOp ? " string" : "",
1453 pExitReason->IoPortAccess.AccessInfo.RepPrefix ? " rep" : "",
1454 pExitReason->IoPortAccess.Rax,
1455 pExitReason->IoPortAccess.Rcx,
1456 pExitReason->IoPortAccess.Rsi,
1457 pExitReason->IoPortAccess.Rdi));
1458 Log2(("Exit: + ds=%#x:{%#RX64 LB %#RX32, %#x} es=%#x:{%#RX64 LB %#RX32, %#x}\n",
1459 pExitReason->IoPortAccess.Ds.Selector,
1460 pExitReason->IoPortAccess.Ds.Base,
1461 pExitReason->IoPortAccess.Ds.Limit,
1462 pExitReason->IoPortAccess.Ds.Attributes,
1463 pExitReason->IoPortAccess.Es.Selector,
1464 pExitReason->IoPortAccess.Es.Base,
1465 pExitReason->IoPortAccess.Es.Limit,
1466 pExitReason->IoPortAccess.Es.Attributes ));
1467
1468 AssertMsg( pExitReason->IoPortAccess.AccessInfo.AccessSize == 1
1469 || pExitReason->IoPortAccess.AccessInfo.AccessSize == 2
1470 || pExitReason->IoPortAccess.AccessInfo.AccessSize == 4,
1471 ("IoPortAccess.AccessInfo.AccessSize=%d\n", pExitReason->IoPortAccess.AccessInfo.AccessSize));
1472 AssertMsg(!(pExitReason->IoPortAccess.AccessInfo.AsUINT32 & ~UINT32_C(0x3f)),
1473 ("IoPortAccess.AccessInfo=%#x\n", pExitReason->IoPortAccess.AccessInfo.AsUINT32));
1474 fExitCtx = fExitInstr = true;
1475 break;
1476
1477# if 0
1478 case WHvRunVpExitReasonUnrecoverableException:
1479 case WHvRunVpExitReasonInvalidVpRegisterValue:
1480 case WHvRunVpExitReasonUnsupportedFeature:
1481 case WHvRunVpExitReasonX64InterruptWindow:
1482 case WHvRunVpExitReasonX64Halt:
1483 case WHvRunVpExitReasonX64MsrAccess:
1484 case WHvRunVpExitReasonX64Cpuid:
1485 case WHvRunVpExitReasonException:
1486 case WHvRunVpExitReasonCanceled:
1487 case WHvRunVpExitReasonAlerted:
1488 WHV_X64_MSR_ACCESS_CONTEXT MsrAccess;
1489 WHV_X64_CPUID_ACCESS_CONTEXT CpuidAccess;
1490 WHV_VP_EXCEPTION_CONTEXT VpException;
1491 WHV_X64_INTERRUPTION_DELIVERABLE_CONTEXT InterruptWindow;
1492 WHV_UNRECOVERABLE_EXCEPTION_CONTEXT UnrecoverableException;
1493 WHV_X64_UNSUPPORTED_FEATURE_CONTEXT UnsupportedFeature;
1494 WHV_RUN_VP_CANCELED_CONTEXT CancelReason;
1495# endif
1496
1497 case WHvRunVpExitReasonNone:
1498 Log2(("Exit: No reason\n"));
1499 AssertFailed();
1500 break;
1501
1502 default:
1503 Log(("Exit: %#x\n", pExitReason->ExitReason));
1504 break;
1505 }
1506
1507 /*
1508 * Context and maybe instruction details.
1509 */
1510 if (fExitCtx)
1511 {
1512 const WHV_VP_EXIT_CONTEXT *pVpCtx = &pExitReason->IoPortAccess.VpContext;
1513 Log2(("Exit: + CS:RIP=%04x:%08RX64 RFLAGS=%06RX64 cbInstr=%u CS={%RX64 L %#RX32, %#x}\n",
1514 pVpCtx->Cs.Selector,
1515 pVpCtx->Rip,
1516 pVpCtx->Rflags,
1517 pVpCtx->InstructionLength,
1518 pVpCtx->Cs.Base, pVpCtx->Cs.Limit, pVpCtx->Cs.Attributes));
1519 Log2(("Exit: + cpl=%d CR0.PE=%d CR0.AM=%d EFER.LMA=%d DebugActive=%d InterruptionPending=%d InterruptShadow=%d\n",
1520 pVpCtx->ExecutionState.Cpl,
1521 pVpCtx->ExecutionState.Cr0Pe,
1522 pVpCtx->ExecutionState.Cr0Am,
1523 pVpCtx->ExecutionState.EferLma,
1524 pVpCtx->ExecutionState.DebugActive,
1525 pVpCtx->ExecutionState.InterruptionPending,
1526 pVpCtx->ExecutionState.InterruptShadow));
1527 AssertMsg(!(pVpCtx->ExecutionState.AsUINT16 & ~UINT16_C(0x107f)),
1528 ("ExecutionState.AsUINT16=%#x\n", pVpCtx->ExecutionState.AsUINT16));
1529
1530 /** @todo Someone at Microsoft please explain why the InstructionBytes fields
1531 * are 16 bytes long, when 15 would've been sufficent and saved 3-7 bytes of
1532 * alignment padding? Intel max length is 15, so is this sSome ARM stuff?
1533 * Aren't ARM
1534 * instructions max 32-bit wide? Confused. */
1535 if (fExitInstr && pExitReason->IoPortAccess.InstructionByteCount > 0)
1536 Log2(("Exit: + Instruction %.*Rhxs\n",
1537 pExitReason->IoPortAccess.InstructionByteCount,
1538 &pExitReason->IoPortAccess.InstructionBytes[g_uBuildNo >= 17110 ? 3 : 0]));
1539 }
1540}
1541# endif /* LOG_ENABLED */
1542
1543
1544/**
1545 * Advances the guest RIP and clear EFLAGS.RF.
1546 *
1547 * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
1548 *
1549 * @param pVCpu The cross context virtual CPU structure.
1550 * @param pCtx The CPU context to update.
1551 * @param pExitCtx The exit context.
1552 */
1553DECLINLINE(void) nemR3WinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, PCPUMCTX pCtx, WHV_VP_EXIT_CONTEXT const *pExitCtx)
1554{
1555 /* Advance the RIP. */
1556 Assert(pExitCtx->InstructionLength > 0 && pExitCtx->InstructionLength < 16);
1557 pCtx->rip += pExitCtx->InstructionLength;
1558 pCtx->rflags.Bits.u1RF = 0;
1559
1560 /* Update interrupt inhibition. */
1561 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1562 { /* likely */ }
1563 else if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
1564 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1565}
1566
1567
1568static VBOXSTRICTRC nemR3WinWHvHandleHalt(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1569{
1570 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
1571 LogFlow(("nemR3WinWHvHandleHalt\n"));
1572 return VINF_EM_HALT;
1573}
1574
1575
1576# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1577/**
1578 * @callback_method_impl{FNPGMPHYSNEMENUMCALLBACK,
1579 * Hack to unmap all pages when/before we run into quota (WHv only).}
1580 */
1581static DECLCALLBACK(int) nemR3WinWHvUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
1582{
1583 RT_NOREF_PV(pvUser);
1584 RT_NOREF_PV(pVCpu);
1585 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1586 if (SUCCEEDED(hrc))
1587 {
1588 Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
1589 *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
1590 }
1591 else
1592 {
1593 LogRel(("nemR3WinWHvUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
1594 GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
1595 RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
1596 *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
1597 }
1598 if (pVM->nem.s.cMappedPages > 0)
1599 ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
1600 return VINF_SUCCESS;
1601}
1602# endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
1603
1604
1605/**
1606 * Handles an memory access VMEXIT.
1607 *
1608 * This can be triggered by a number of things.
1609 *
1610 * @returns Strict VBox status code.
1611 * @param pVM The cross context VM structure.
1612 * @param pVCpu The cross context virtual CPU structure.
1613 * @param pCtx The CPU context to update.
1614 * @param pMemCtx The exit reason information.
1615 */
1616static VBOXSTRICTRC nemR3WinWHvHandleMemoryAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_MEMORY_ACCESS_CONTEXT const *pMemCtx)
1617{
1618 /*
1619 * Ask PGM for information about the given GCPhys. We need to check if we're
1620 * out of sync first.
1621 */
1622 NEMHCWINHMACPCCSTATE State = { pMemCtx->AccessInfo.AccessType == WHvMemoryAccessWrite, false, false };
1623 PGMPHYSNEMPAGEINFO Info;
1624 int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pMemCtx->Gpa, State.fWriteAccess, &Info,
1625 nemHCWinHandleMemoryAccessPageCheckerCallback, &State);
1626 if (RT_SUCCESS(rc))
1627 {
1628 if (Info.fNemProt & (pMemCtx->AccessInfo.AccessType == WHvMemoryAccessWrite ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
1629 {
1630 if (State.fCanResume)
1631 {
1632 Log4(("MemExit: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n",
1633 pMemCtx->Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1634 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1635 State.fDidSomething ? "" : " no-change", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1636 return VINF_SUCCESS;
1637 }
1638 }
1639 Log4(("MemExit: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n",
1640 pMemCtx->Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
1641 Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
1642 State.fDidSomething ? "" : " no-change", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1643 }
1644 else
1645 Log4(("MemExit: %RGp rc=%Rrc%s; emulating (%s)\n", pMemCtx->Gpa, rc,
1646 State.fDidSomething ? " modified-backing" : "", g_apszWHvMemAccesstypes[pMemCtx->AccessInfo.AccessType]));
1647
1648 /*
1649 * Emulate the memory access, either access handler or special memory.
1650 */
1651 rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1652 AssertRCReturn(rc, rc);
1653
1654 VBOXSTRICTRC rcStrict;
1655 if (pMemCtx->InstructionByteCount > 0)
1656 rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, CPUMCTX2CORE(pCtx), pMemCtx->VpContext.Rip,
1657 &pMemCtx->InstructionBytes[g_uBuildNo >= 17110 ? 3 : 0],
1658 pMemCtx->InstructionByteCount);
1659 else
1660 rcStrict = IEMExecOne(pVCpu);
1661 /** @todo do we need to do anything wrt debugging here? */
1662 return rcStrict;
1663}
1664
1665
1666/**
1667 * Handles an I/O port access VMEXIT.
1668 *
1669 * We ASSUME that the hypervisor has don't I/O port access control.
1670 *
1671 * @returns Strict VBox status code.
1672 * @param pVM The cross context VM structure.
1673 * @param pVCpu The cross context virtual CPU structure.
1674 * @param pCtx The CPU context to update.
1675 * @param pIoPortCtx The exit reason information.
1676 */
1677static VBOXSTRICTRC nemR3WinWHvHandleIoPortAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
1678 WHV_X64_IO_PORT_ACCESS_CONTEXT const *pIoPortCtx)
1679{
1680 Assert( pIoPortCtx->AccessInfo.AccessSize == 1
1681 || pIoPortCtx->AccessInfo.AccessSize == 2
1682 || pIoPortCtx->AccessInfo.AccessSize == 4);
1683
1684 VBOXSTRICTRC rcStrict;
1685 if (!pIoPortCtx->AccessInfo.StringOp)
1686 {
1687 /*
1688 * Simple port I/O.
1689 */
1690 //Assert(pCtx->rax == pIoPortCtx->Rax); - sledgehammer
1691
1692 static uint32_t const s_fAndMask[8] =
1693 { UINT32_MAX, UINT32_C(0xff), UINT32_C(0xffff), UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX };
1694 uint32_t const fAndMask = s_fAndMask[pIoPortCtx->AccessInfo.AccessSize];
1695 if (pIoPortCtx->AccessInfo.IsWrite)
1696 {
1697 rcStrict = IOMIOPortWrite(pVM, pVCpu, pIoPortCtx->PortNumber, (uint32_t)pIoPortCtx->Rax & fAndMask,
1698 pIoPortCtx->AccessInfo.AccessSize);
1699 if (IOM_SUCCESS(rcStrict))
1700 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pIoPortCtx->VpContext);
1701 }
1702 else
1703 {
1704 uint32_t uValue = 0;
1705 rcStrict = IOMIOPortRead(pVM, pVCpu, pIoPortCtx->PortNumber, &uValue,
1706 pIoPortCtx->AccessInfo.AccessSize);
1707 if (IOM_SUCCESS(rcStrict))
1708 {
1709 pCtx->eax = (pCtx->eax & ~fAndMask) | (uValue & fAndMask);
1710 nemR3WinAdvanceGuestRipAndClearRF(pVCpu, pCtx, &pIoPortCtx->VpContext);
1711 }
1712 }
1713 }
1714 else
1715 {
1716 /*
1717 * String port I/O.
1718 */
1719 /** @todo Someone at Microsoft please explain how we can get the address mode
1720 * from the IoPortAccess.VpContext. CS.Attributes is only sufficient for
1721 * getting the default mode, it can always be overridden by a prefix. This
1722 * forces us to interpret the instruction from opcodes, which is suboptimal.
1723 * Both AMD-V and VT-x includes the address size in the exit info, at least on
1724 * CPUs that are reasonably new. */
1725# if 0 // requires sledgehammer
1726 Assert( pIoPortCtx->Ds.Base == pCtx->ds.u64Base
1727 && pIoPortCtx->Ds.Limit == pCtx->ds.u32Limit
1728 && pIoPortCtx->Ds.Selector == pCtx->ds.Sel);
1729 Assert( pIoPortCtx->Es.Base == pCtx->es.u64Base
1730 && pIoPortCtx->Es.Limit == pCtx->es.u32Limit
1731 && pIoPortCtx->Es.Selector == pCtx->es.Sel);
1732 Assert(pIoPortCtx->Rdi == pCtx->rdi);
1733 Assert(pIoPortCtx->Rsi == pCtx->rsi);
1734 Assert(pIoPortCtx->Rcx == pCtx->rcx);
1735 Assert(pIoPortCtx->Rcx == pCtx->rcx);
1736# endif
1737
1738 int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, NEM_WIN_CPUMCTX_EXTRN_MASK_FOR_IEM);
1739 AssertRCReturn(rc, rc);
1740
1741 rcStrict = IEMExecOne(pVCpu);
1742 }
1743 if (IOM_SUCCESS(rcStrict))
1744 {
1745 /*
1746 * Do debug checks.
1747 */
1748 if ( pIoPortCtx->VpContext.ExecutionState.DebugActive /** @todo Microsoft: Does DebugActive this only reflext DR7? */
1749 || (pIoPortCtx->VpContext.Rflags & X86_EFL_TF)
1750 || DBGFBpIsHwIoArmed(pVM) )
1751 {
1752 /** @todo Debugging. */
1753 }
1754 }
1755 return rcStrict;
1756}
1757
1758
1759static VBOXSTRICTRC nemR3WinWHvHandleInterruptWindow(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1760{
1761 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1762 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1763}
1764
1765
1766static VBOXSTRICTRC nemR3WinWHvHandleMsrAccess(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1767{
1768 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1769 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1770}
1771
1772
1773static VBOXSTRICTRC nemR3WinWHvHandleCpuId(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1774{
1775 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1776 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1777}
1778
1779
1780static VBOXSTRICTRC nemR3WinWHvHandleException(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1781{
1782 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1783 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1784}
1785
1786
1787static VBOXSTRICTRC nemR3WinWHvHandleUD(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1788{
1789 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1790 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1791}
1792
1793
1794static VBOXSTRICTRC nemR3WinWHvHandleTripleFault(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1795{
1796 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1797 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1798}
1799
1800
1801static VBOXSTRICTRC nemR3WinWHvHandleInvalidState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, WHV_RUN_VP_EXIT_CONTEXT const *pExitReason)
1802{
1803 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); NOREF(pExitReason);
1804 AssertLogRelFailedReturn(VERR_NOT_IMPLEMENTED);
1805}
1806
1807
1808VBOXSTRICTRC nemR3WinWHvRunGC(PVM pVM, PVMCPU pVCpu)
1809{
1810# ifdef LOG_ENABLED
1811 if (LogIs3Enabled())
1812 {
1813 Log3(("nemR3NativeRunGC: Entering #%u\n", pVCpu->idCpu));
1814 nemHCWinLogState(pVM, pVCpu);
1815 }
1816# endif
1817
1818 /*
1819 * The run loop.
1820 */
1821 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1822 const bool fSingleStepping = false; /** @todo get this from somewhere. */
1823 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1824 for (unsigned iLoop = 0;;iLoop++)
1825 {
1826 /*
1827 * Copy the state.
1828 */
1829 int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu, pCtx);
1830 AssertRCBreakStmt(rc2, rcStrict = rc2);
1831
1832 /*
1833 * Run a bit.
1834 */
1835 WHV_RUN_VP_EXIT_CONTEXT ExitReason;
1836 RT_ZERO(ExitReason);
1837 if ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
1838 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
1839 {
1840 Log8(("Calling WHvRunVirtualProcessor\n"));
1841 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED);
1842 HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
1843 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM);
1844 AssertLogRelMsgBreakStmt(SUCCEEDED(hrc),
1845 ("WHvRunVirtualProcessor(%p, %u,,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu,
1846 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()),
1847 rcStrict = VERR_INTERNAL_ERROR);
1848 Log2(("WHvRunVirtualProcessor -> %#x; exit code %#x (%d) (cpu status %u)\n",
1849 hrc, ExitReason.ExitReason, ExitReason.ExitReason, nemHCWinCpuGetRunningStatus(pVCpu) ));
1850 }
1851 else
1852 {
1853 LogFlow(("nemR3NativeRunGC: returning: pending FF (pre exec)\n"));
1854 break;
1855 }
1856
1857# if 0 /* sledgehammer approach */
1858 /*
1859 * Copy back the state.
1860 */
1861 rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, UINT64_MAX);
1862 AssertRCBreakStmt(rc2, rcStrict = rc2);
1863# endif
1864
1865# ifdef LOG_ENABLED
1866 /*
1867 * Do some logging.
1868 */
1869 if (LogIs2Enabled())
1870 nemR3WinLogWHvExitReason(&ExitReason);
1871 if (LogIs3Enabled())
1872 nemHCWinLogState(pVM, pVCpu);
1873# endif
1874
1875# if 0 //def VBOX_STRICT - requires sledgehammer
1876 /* Assert that the VpContext field makes sense. */
1877 switch (ExitReason.ExitReason)
1878 {
1879 case WHvRunVpExitReasonMemoryAccess:
1880 case WHvRunVpExitReasonX64IoPortAccess:
1881 case WHvRunVpExitReasonX64MsrAccess:
1882 case WHvRunVpExitReasonX64Cpuid:
1883 case WHvRunVpExitReasonException:
1884 case WHvRunVpExitReasonUnrecoverableException:
1885 Assert( ExitReason.IoPortAccess.VpContext.InstructionLength > 0
1886 || ( ExitReason.ExitReason == WHvRunVpExitReasonMemoryAccess
1887 && ExitReason.MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessExecute));
1888 Assert(ExitReason.IoPortAccess.VpContext.InstructionLength < 16);
1889 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cpl == CPUMGetGuestCPL(pVCpu));
1890 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Pe == RT_BOOL(pCtx->cr0 & X86_CR0_PE));
1891 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Am == RT_BOOL(pCtx->cr0 & X86_CR0_AM));
1892 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.EferLma == RT_BOOL(pCtx->msrEFER & MSR_K6_EFER_LMA));
1893 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.DebugActive == RT_BOOL(pCtx->dr[7] & X86_DR7_ENABLED_MASK));
1894 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved0 == 0);
1895 Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved1 == 0);
1896 Assert(ExitReason.IoPortAccess.VpContext.Rip == pCtx->rip);
1897 Assert(ExitReason.IoPortAccess.VpContext.Rflags == pCtx->rflags.u);
1898 Assert( ExitReason.IoPortAccess.VpContext.Cs.Base == pCtx->cs.u64Base
1899 && ExitReason.IoPortAccess.VpContext.Cs.Limit == pCtx->cs.u32Limit
1900 && ExitReason.IoPortAccess.VpContext.Cs.Selector == pCtx->cs.Sel);
1901 break;
1902 default: break; /* shut up compiler. */
1903 }
1904# endif
1905
1906 /*
1907 * Deal with the exit.
1908 */
1909 switch (ExitReason.ExitReason)
1910 {
1911 /* Frequent exits: */
1912 case WHvRunVpExitReasonCanceled:
1913 case WHvRunVpExitReasonAlerted:
1914 rcStrict = VINF_SUCCESS;
1915 break;
1916
1917 case WHvRunVpExitReasonX64Halt:
1918 rcStrict = nemR3WinWHvHandleHalt(pVM, pVCpu, pCtx);
1919 break;
1920
1921 case WHvRunVpExitReasonMemoryAccess:
1922 rcStrict = nemR3WinWHvHandleMemoryAccess(pVM, pVCpu, pCtx, &ExitReason.MemoryAccess);
1923 break;
1924
1925 case WHvRunVpExitReasonX64IoPortAccess:
1926 rcStrict = nemR3WinWHvHandleIoPortAccess(pVM, pVCpu, pCtx, &ExitReason.IoPortAccess);
1927 break;
1928
1929 case WHvRunVpExitReasonX64InterruptWindow:
1930 rcStrict = nemR3WinWHvHandleInterruptWindow(pVM, pVCpu, pCtx, &ExitReason);
1931 break;
1932
1933 case WHvRunVpExitReasonX64MsrAccess: /* needs configuring */
1934 rcStrict = nemR3WinWHvHandleMsrAccess(pVM, pVCpu, pCtx, &ExitReason);
1935 break;
1936
1937 case WHvRunVpExitReasonX64Cpuid: /* needs configuring */
1938 rcStrict = nemR3WinWHvHandleCpuId(pVM, pVCpu, pCtx, &ExitReason);
1939 break;
1940
1941 case WHvRunVpExitReasonException: /* needs configuring */
1942 rcStrict = nemR3WinWHvHandleException(pVM, pVCpu, pCtx, &ExitReason);
1943 break;
1944
1945 /* Unlikely exits: */
1946 case WHvRunVpExitReasonUnsupportedFeature:
1947 rcStrict = nemR3WinWHvHandleUD(pVM, pVCpu, pCtx, &ExitReason);
1948 break;
1949
1950 case WHvRunVpExitReasonUnrecoverableException:
1951 rcStrict = nemR3WinWHvHandleTripleFault(pVM, pVCpu, pCtx, &ExitReason);
1952 break;
1953
1954 case WHvRunVpExitReasonInvalidVpRegisterValue:
1955 rcStrict = nemR3WinWHvHandleInvalidState(pVM, pVCpu, pCtx, &ExitReason);
1956 break;
1957
1958 /* Undesired exits: */
1959 case WHvRunVpExitReasonNone:
1960 default:
1961 AssertLogRelMsgFailed(("Unknown ExitReason: %#x\n", ExitReason.ExitReason));
1962 rcStrict = VERR_INTERNAL_ERROR_3;
1963 break;
1964 }
1965 if (rcStrict != VINF_SUCCESS)
1966 {
1967 LogFlow(("nemR3NativeRunGC: returning: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1968 break;
1969 }
1970
1971# ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1972 /* Hack alert! */
1973 uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
1974 if (cMappedPages < 4000)
1975 { /* likely */ }
1976 else
1977 {
1978 PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinWHvUnmapOnePageCallback, NULL);
1979 Log(("nemR3NativeRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
1980 }
1981# endif
1982
1983 /* If any FF is pending, return to the EM loops. That's okay for the
1984 current sledgehammer approach. */
1985 if ( VM_FF_IS_PENDING( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
1986 || VMCPU_FF_IS_PENDING(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
1987 {
1988 LogFlow(("nemR3NativeRunGC: returning: pending FF (%#x / %#x)\n", pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
1989 break;
1990 }
1991 }
1992
1993
1994 /*
1995 * Copy back the state before returning.
1996 */
1997 if (pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))
1998 {
1999 int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, pCtx, CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
2000 if (RT_SUCCESS(rc2))
2001 pCtx->fExtrn = 0;
2002 else if (RT_SUCCESS(rcStrict))
2003 rcStrict = rc2;
2004 }
2005 else
2006 pCtx->fExtrn = 0;
2007
2008 return rcStrict;
2009}
2010
2011#endif /* !NEM_WIN_USE_OUR_OWN_RUN_API */
2012
2013
2014VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2015{
2016#ifndef NEM_WIN_USE_OUR_OWN_RUN_API
2017 return nemR3WinWHvRunGC(pVM, pVCpu);
2018#elif 0
2019 return nemHCWinRunGC(pVM, pVCpu, NULL /*pGVM*/, NULL /*pGVCpu*/);
2020#else
2021 VBOXSTRICTRC rcStrict = VMMR3CallR0EmtFast(pVM, pVCpu, VMMR0_DO_NEM_RUN);
2022 if (RT_SUCCESS(rcStrict))
2023 {
2024 /* We deal wtih VINF_NEM_CHANGE_PGM_MODE and VINF_NEM_FLUSH_TLB here, since we're running
2025 the risk of getting these while we already got another RC (I/O ports). */
2026 VBOXSTRICTRC rcPgmPending = pVCpu->nem.s.rcPgmPending;
2027 pVCpu->nem.s.rcPgmPending = VINF_SUCCESS;
2028 if ( rcStrict == VINF_NEM_CHANGE_PGM_MODE
2029 || rcStrict == VINF_PGM_CHANGE_MODE
2030 || rcPgmPending == VINF_NEM_CHANGE_PGM_MODE )
2031 {
2032 LogFlow(("nemR3NativeRunGC: calling PGMChangeMode...\n"));
2033 int rc = PGMChangeMode(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR4(pVCpu), CPUMGetGuestEFER(pVCpu));
2034 AssertRCReturn(rc, rc);
2035 if (rcStrict == VINF_NEM_CHANGE_PGM_MODE || rcStrict == VINF_NEM_FLUSH_TLB)
2036 rcStrict = VINF_SUCCESS;
2037 }
2038 else if (rcStrict == VINF_NEM_FLUSH_TLB || rcPgmPending == VINF_NEM_FLUSH_TLB)
2039 {
2040 LogFlow(("nemR3NativeRunGC: calling PGMFlushTLB...\n"));
2041 int rc = PGMFlushTLB(pVCpu, CPUMGetGuestCR3(pVCpu), true);
2042 AssertRCReturn(rc, rc);
2043 if (rcStrict == VINF_NEM_FLUSH_TLB || rcStrict == VINF_NEM_CHANGE_PGM_MODE)
2044 rcStrict = VINF_SUCCESS;
2045 }
2046 else
2047 AssertMsg(rcPgmPending == VINF_SUCCESS, ("rcPgmPending=%Rrc\n", VBOXSTRICTRC_VAL(rcPgmPending) ));
2048 }
2049 LogFlow(("nemR3NativeRunGC: returns %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
2050 return rcStrict;
2051#endif
2052}
2053
2054
2055bool nemR3NativeCanExecuteGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2056{
2057 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
2058 return true;
2059}
2060
2061
2062bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
2063{
2064 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
2065 return false;
2066}
2067
2068
2069/**
2070 * Forced flag notification call from VMEmt.h.
2071 *
2072 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
2073 *
2074 * @param pVM The cross context VM structure.
2075 * @param pVCpu The cross context virtual CPU structure of the CPU
2076 * to be notified.
2077 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
2078 */
2079void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
2080{
2081#ifdef NEM_WIN_USE_OUR_OWN_RUN_API
2082 nemHCWinCancelRunVirtualProcessor(pVM, pVCpu);
2083#else
2084 Log8(("nemR3NativeNotifyFF: canceling %u\n", pVCpu->idCpu));
2085 HRESULT hrc = WHvCancelRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, 0);
2086 AssertMsg(SUCCEEDED(hrc), ("WHvCancelRunVirtualProcessor -> hrc=%Rhrc\n", hrc));
2087 RT_NOREF_PV(hrc);
2088#endif
2089 RT_NOREF_PV(fFlags);
2090}
2091
2092
2093DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
2094{
2095 PGMPAGEMAPLOCK Lock;
2096 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
2097 if (RT_SUCCESS(rc))
2098 PGMPhysReleasePageMappingLock(pVM, &Lock);
2099 return rc;
2100}
2101
2102
2103DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2104{
2105 PGMPAGEMAPLOCK Lock;
2106 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
2107 if (RT_SUCCESS(rc))
2108 PGMPhysReleasePageMappingLock(pVM, &Lock);
2109 return rc;
2110}
2111
2112
2113int nemR3NativeNotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2114{
2115 Log5(("nemR3NativeNotifyPhysRamRegister: %RGp LB %RGp\n", GCPhys, cb));
2116 NOREF(pVM); NOREF(GCPhys); NOREF(cb);
2117 return VINF_SUCCESS;
2118}
2119
2120
2121int nemR3NativeNotifyPhysMmioExMap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvMmio2)
2122{
2123 Log5(("nemR3NativeNotifyPhysMmioExMap: %RGp LB %RGp fFlags=%#x pvMmio2=%p\n", GCPhys, cb, fFlags, pvMmio2));
2124 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags); NOREF(pvMmio2);
2125 return VINF_SUCCESS;
2126}
2127
2128
2129int nemR3NativeNotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2130{
2131 Log5(("nemR3NativeNotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2132 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
2133 return VINF_SUCCESS;
2134}
2135
2136
2137/**
2138 * Called early during ROM registration, right after the pages have been
2139 * allocated and the RAM range updated.
2140 *
2141 * This will be succeeded by a number of NEMHCNotifyPhysPageProtChanged() calls
2142 * and finally a NEMR3NotifyPhysRomRegisterEarly().
2143 *
2144 * @returns VBox status code
2145 * @param pVM The cross context VM structure.
2146 * @param GCPhys The ROM address (page aligned).
2147 * @param cb The size (page aligned).
2148 * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
2149 */
2150int nemR3NativeNotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2151{
2152 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2153#if 0 /* Let's not do this after all. We'll protection change notifications for each page and if not we'll map them lazily. */
2154 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2155 for (RTGCPHYS iPage = 0; iPage < cPages; iPage++, GCPhys += X86_PAGE_SIZE)
2156 {
2157 const void *pvPage;
2158 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
2159 if (RT_SUCCESS(rc))
2160 {
2161 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhys, X86_PAGE_SIZE,
2162 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
2163 if (SUCCEEDED(hrc))
2164 { /* likely */ }
2165 else
2166 {
2167 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2168 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2169 return VERR_NEM_INIT_FAILED;
2170 }
2171 }
2172 else
2173 {
2174 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
2175 return rc;
2176 }
2177 }
2178#else
2179 NOREF(pVM); NOREF(GCPhys); NOREF(cb);
2180#endif
2181 RT_NOREF_PV(fFlags);
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * Called after the ROM range has been fully completed.
2188 *
2189 * This will be preceeded by a NEMR3NotifyPhysRomRegisterEarly() call as well a
2190 * number of NEMHCNotifyPhysPageProtChanged calls.
2191 *
2192 * @returns VBox status code
2193 * @param pVM The cross context VM structure.
2194 * @param GCPhys The ROM address (page aligned).
2195 * @param cb The size (page aligned).
2196 * @param fFlags NEM_NOTIFY_PHYS_ROM_F_XXX.
2197 */
2198int nemR3NativeNotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags)
2199{
2200 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2201 NOREF(pVM); NOREF(GCPhys); NOREF(cb); NOREF(fFlags);
2202 return VINF_SUCCESS;
2203}
2204
2205
2206/**
2207 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
2208 */
2209static DECLCALLBACK(int) nemR3WinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
2210 PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
2211{
2212 /* We'll just unmap the memory. */
2213 if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
2214 {
2215#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
2216 int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
2217 AssertRC(rc);
2218 if (RT_SUCCESS(rc))
2219#else
2220 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
2221 if (SUCCEEDED(hrc))
2222#endif
2223 {
2224 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2225 Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
2226 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
2227 }
2228 else
2229 {
2230#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
2231 LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
2232 return rc;
2233#else
2234 LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2235 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2236 return VERR_INTERNAL_ERROR_2;
2237#endif
2238 }
2239 }
2240 RT_NOREF(pVCpu, pvUser);
2241 return VINF_SUCCESS;
2242}
2243
2244
2245/**
2246 * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
2247 *
2248 * @returns The PGMPhysNemQueryPageInfo result.
2249 * @param pVM The cross context VM structure.
2250 * @param pVCpu The cross context virtual CPU structure.
2251 * @param GCPhys The page to unmap.
2252 */
2253static int nemR3WinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2254{
2255 PGMPHYSNEMPAGEINFO Info;
2256 return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
2257 nemR3WinUnsetForA20CheckerCallback, NULL);
2258}
2259
2260
2261/**
2262 * Called when the A20 state changes.
2263 *
2264 * Hyper-V doesn't seem to offer a simple way of implementing the A20 line
2265 * features of PCs. So, we do a very minimal emulation of the HMA to make DOS
2266 * happy.
2267 *
2268 * @param pVCpu The CPU the A20 state changed on.
2269 * @param fEnabled Whether it was enabled (true) or disabled.
2270 */
2271void nemR3NativeNotifySetA20(PVMCPU pVCpu, bool fEnabled)
2272{
2273 Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
2274 PVM pVM = pVCpu->CTX_SUFF(pVM);
2275 if (!pVM->nem.s.fA20Fixed)
2276 {
2277 pVM->nem.s.fA20Enabled = fEnabled;
2278 for (RTGCPHYS GCPhys = _1M; GCPhys < _1M + _64K; GCPhys += X86_PAGE_SIZE)
2279 nemR3WinUnmapPageForA20Gate(pVM, pVCpu, GCPhys);
2280 }
2281}
2282
2283
2284/** @page pg_nem_win NEM/win - Native Execution Manager, Windows.
2285 *
2286 * On Windows the Hyper-V root partition (dom0 in zen terminology) does not have
2287 * nested VT-x or AMD-V capabilities. For a while raw-mode worked inside it,
2288 * but for a while now we've been getting \#GP when trying to modify CR4 in the
2289 * world switcher. So, when Hyper-V is active on Windows we have little choice
2290 * but to use Hyper-V to run our VMs.
2291 *
2292 *
2293 * @section sub_nem_win_whv The WinHvPlatform API
2294 *
2295 * Since Windows 10 build 17083 there is a documented API for managing Hyper-V
2296 * VMs, header file WinHvPlatform.h and implementation in WinHvPlatform.dll.
2297 * This interface is a wrapper around the undocumented Virtualization
2298 * Infrastructure Driver (VID) API - VID.DLL and VID.SYS. The wrapper is
2299 * written in C++, namespaced, early versions (at least) was using standard C++
2300 * container templates in several places.
2301 *
2302 * When creating a VM using WHvCreatePartition, it will only create the
2303 * WinHvPlatform structures for it, to which you get an abstract pointer. The
2304 * VID API that actually creates the partition is first engaged when you call
2305 * WHvSetupPartition after first setting a lot of properties using
2306 * WHvSetPartitionProperty. Since the VID API is just a very thin wrapper
2307 * around CreateFile and NtDeviceIoControlFile, it returns an actual HANDLE for
2308 * the partition WinHvPlatform. We fish this HANDLE out of the WinHvPlatform
2309 * partition structures because we need to talk directly to VID for reasons
2310 * we'll get to in a bit. (Btw. we could also intercept the CreateFileW or
2311 * NtDeviceIoControlFile calls from VID.DLL to get the HANDLE should fishing in
2312 * the partition structures become difficult.)
2313 *
2314 * The WinHvPlatform API requires us to both set the number of guest CPUs before
2315 * setting up the partition and call WHvCreateVirtualProcessor for each of them.
2316 * The CPU creation function boils down to a VidMessageSlotMap call that sets up
2317 * and maps a message buffer into ring-3 for async communication with hyper-V
2318 * and/or the VID.SYS thread actually running the CPU thru
2319 * WinHvRunVpDispatchLoop(). When for instance a VMEXIT is encountered, hyper-V
2320 * sends a message that the WHvRunVirtualProcessor API retrieves (and later
2321 * acknowledges) via VidMessageSlotHandleAndGetNext. It should be noteded that
2322 * WHvDeleteVirtualProcessor doesn't do much as there seems to be no partner
2323 * function VidMessagesSlotMap that reverses what it did.
2324 *
2325 * Memory is managed thru calls to WHvMapGpaRange and WHvUnmapGpaRange (GPA does
2326 * not mean grade point average here, but rather guest physical addressspace),
2327 * which corresponds to VidCreateVaGpaRangeSpecifyUserVa and VidDestroyGpaRange
2328 * respectively. As 'UserVa' indicates, the functions works on user process
2329 * memory. The mappings are also subject to quota restrictions, so the number
2330 * of ranges are limited and probably their total size as well. Obviously
2331 * VID.SYS keeps track of the ranges, but so does WinHvPlatform, which means
2332 * there is a bit of overhead involved and quota restrctions makes sense. For
2333 * some reason though, regions are lazily mapped on VMEXIT/memory by
2334 * WHvRunVirtualProcessor.
2335 *
2336 * Running guest code is done thru the WHvRunVirtualProcessor function. It
2337 * asynchronously starts or resumes hyper-V CPU execution and then waits for an
2338 * VMEXIT message. Hyper-V / VID.SYS will return information about the message
2339 * in the message buffer mapping, and WHvRunVirtualProcessor will convert that
2340 * finto it's own WHV_RUN_VP_EXIT_CONTEXT format.
2341 *
2342 * Other threads can interrupt the execution by using WHvCancelVirtualProcessor,
2343 * which which case the thread in WHvRunVirtualProcessor is woken up via a dummy
2344 * QueueUserAPC and will call VidStopVirtualProcessor to asynchronously end
2345 * execution. The stop CPU call not immediately succeed if the CPU encountered
2346 * a VMEXIT before the stop was processed, in which case the VMEXIT needs to be
2347 * processed first, and the pending stop will be processed in a subsequent call
2348 * to WHvRunVirtualProcessor.
2349 *
2350 * Registers are retrieved and set via WHvGetVirtualProcessorRegisters and
2351 * WHvSetVirtualProcessorRegisters. In addition, several VMEXITs include
2352 * essential register state in the exit context information, potentially making
2353 * it possible to emulate the instruction causing the exit without involving
2354 * WHvGetVirtualProcessorRegisters.
2355 *
2356 *
2357 * @subsection subsec_nem_win_whv_cons Issues & Feedback
2358 *
2359 * Here are some observations (mostly against build 17101):
2360 *
2361 * - The VMEXIT performance is dismal (build 17101).
2362 *
2363 * Our proof of concept implementation with a kernel runloop (i.e. not using
2364 * WHvRunVirtualProcessor and friends, but calling VID.SYS fast I/O control
2365 * entry point directly) delivers 9-10% of the port I/O performance and only
2366 * 6-7% of the MMIO performance that we have with our own hypervisor.
2367 *
2368 * When using the offical WinHvPlatform API, the numbers are %3 for port I/O
2369 * and 5% for MMIO.
2370 *
2371 * While the tests we've done are using tight tight loops only doing port I/O
2372 * and MMIO, the problem is clearly visible when running regular guest OSes.
2373 * Anything that hammers the VGA device would be suffering, for example:
2374 *
2375 * - Windows 2000 boot screen animation overloads us with MMIO exits
2376 * and won't even boot because all the time is spent in interrupt
2377 * handlers and redrawin the screen.
2378 *
2379 * - DSL 4.4 and its bootmenu logo is slower than molasses in january.
2380 *
2381 * We have not found a workaround for this yet.
2382 *
2383 * Something that might improve the issue a little is to detect blocks with
2384 * excessive MMIO and port I/O exits and emulate instructions to cover
2385 * multiple exits before letting Hyper-V have a go at the guest execution
2386 * again. This will only improve the situation under some circumstances,
2387 * since emulating instructions without recompilation can be expensive, so
2388 * there will only be real gains if the exitting instructions are tightly
2389 * packed.
2390 *
2391 *
2392 * - The WHvCancelVirtualProcessor API schedules a dummy usermode APC callback
2393 * in order to cancel any current or future alertable wait in VID.SYS during
2394 * the VidMessageSlotHandleAndGetNext call.
2395 *
2396 * IIRC this will make the kernel schedule the specified callback thru
2397 * NTDLL!KiUserApcDispatcher by modifying the thread context and quite
2398 * possibly the userland thread stack. When the APC callback returns to
2399 * KiUserApcDispatcher, it will call NtContinue to restore the old thread
2400 * context and resume execution from there. This naturally adds up to some
2401 * CPU cycles, ring transitions aren't for free, especially after Spectre &
2402 * Meltdown mitigations.
2403 *
2404 * Using NtAltertThread call could do the same without the thread context
2405 * modifications and the extra kernel call.
2406 *
2407 *
2408 * - Not sure if this is a thing, but WHvCancelVirtualProcessor seems to cause
2409 * cause a lot more spurious WHvRunVirtualProcessor returns that what we get
2410 * with the replacement code. By spurious returns we mean that the
2411 * subsequent call to WHvRunVirtualProcessor would return immediately.
2412 *
2413 *
2414 * - When WHvRunVirtualProcessor returns without a message, or on a terse
2415 * VID message like HLT, it will make a kernel call to get some registers.
2416 * This is potentially inefficient if the caller decides he needs more
2417 * register state.
2418 *
2419 * It would be better to just return what's available and let the caller fetch
2420 * what is missing from his point of view in a single kernel call.
2421 *
2422 *
2423 * - The WHvRunVirtualProcessor implementation does lazy GPA range mappings when
2424 * a unmapped GPA message is received from hyper-V.
2425 *
2426 * Since MMIO is currently realized as unmapped GPA, this will slow down all
2427 * MMIO accesses a tiny little bit as WHvRunVirtualProcessor looks up the
2428 * guest physical address to check if it is a pending lazy mapping.
2429 *
2430 * The lazy mapping feature makes no sense to us. We as API user have all the
2431 * information and can do lazy mapping ourselves if we want/have to (see next
2432 * point).
2433 *
2434 *
2435 * - There is no API for modifying protection of a page within a GPA range.
2436 *
2437 * From what we can tell, the only way to modify the protection (like readonly
2438 * -> writable, or vice versa) is to first unmap the range and then remap it
2439 * with the new protection.
2440 *
2441 * We are for instance doing this quite a bit in order to track dirty VRAM
2442 * pages. VRAM pages starts out as readonly, when the guest writes to a page
2443 * we take an exit, notes down which page it is, makes it writable and restart
2444 * the instruction. After refreshing the display, we reset all the writable
2445 * pages to readonly again, bulk fashion.
2446 *
2447 * Now to work around this issue, we do page sized GPA ranges. In addition to
2448 * add a lot of tracking overhead to WinHvPlatform and VID.SYS, this also
2449 * causes us to exceed our quota before we've even mapped a default sized
2450 * (128MB) VRAM page-by-page. So, to work around this quota issue we have to
2451 * lazily map pages and actively restrict the number of mappings.
2452 *
2453 * Our best workaround thus far is bypassing WinHvPlatform and VID entirely
2454 * when in comes to guest memory management and instead use the underlying
2455 * hypercalls (HvCallMapGpaPages, HvCallUnmapGpaPages) to do it ourselves.
2456 * (This also maps a whole lot better into our own guest page management
2457 * infrastructure.)
2458 *
2459 *
2460 * - Observed problems doing WHvUnmapGpaRange immediately followed by
2461 * WHvMapGpaRange.
2462 *
2463 * As mentioned above, we've been forced to use this sequence when modifying
2464 * page protection. However, when transitioning from readonly to writable,
2465 * we've ended up looping forever with the same write to readonly memory
2466 * VMEXIT. We're wondering if this issue might be related to the lazy mapping
2467 * logic in WinHvPlatform.
2468 *
2469 * Workaround: Insert a WHvRunVirtualProcessor call and make sure to get a GPA
2470 * unmapped exit between the two calls. Not entirely great performance wise
2471 * (or the santity of our code).
2472 *
2473 *
2474 * - Implementing A20 gate behavior is tedious, where as correctly emulating the
2475 * A20M# pin (present on 486 and later) is near impossible for SMP setups
2476 * (e.g. possiblity of two CPUs with different A20 status).
2477 *
2478 * Workaround: Only do A20 on CPU 0, restricting the emulation to HMA. We
2479 * unmap all pages related to HMA (0x100000..0x10ffff) when the A20 state
2480 * changes, lazily syncing the right pages back when accessed.
2481 *
2482 *
2483 * - WHVRunVirtualProcessor wastes time converting VID/Hyper-V messages to its
2484 * own format (WHV_RUN_VP_EXIT_CONTEXT).
2485 *
2486 * We understand this might be because Microsoft wishes to remain free to
2487 * modify the VID/Hyper-V messages, but it's still rather silly and does slow
2488 * things down a little. We'd much rather just process the messages directly.
2489 *
2490 *
2491 * - WHVRunVirtualProcessor would've benefited from using a callback interface:
2492 *
2493 * - The potential size changes of the exit context structure wouldn't be
2494 * an issue, since the function could manage that itself.
2495 *
2496 * - State handling could probably be simplified (like cancelation).
2497 *
2498 *
2499 * - WHvGetVirtualProcessorRegisters and WHvSetVirtualProcessorRegisters
2500 * internally converts register names, probably using temporary heap buffers.
2501 *
2502 * From the looks of things, they are converting from WHV_REGISTER_NAME to
2503 * HV_REGISTER_NAME from in the "Virtual Processor Register Names" section in
2504 * the "Hypervisor Top-Level Functional Specification" document. This feels
2505 * like an awful waste of time.
2506 *
2507 * We simply cannot understand why HV_REGISTER_NAME isn't used directly here,
2508 * or at least the same values, making any conversion reduntant. Restricting
2509 * access to certain registers could easily be implement by scanning the
2510 * inputs.
2511 *
2512 * To avoid the heap + conversion overhead, we're currently using the
2513 * HvCallGetVpRegisters and HvCallSetVpRegisters calls directly.
2514 *
2515 *
2516 * - The YMM and XCR0 registers are not yet named (17083). This probably
2517 * wouldn't be a problem if HV_REGISTER_NAME was used, see previous point.
2518 *
2519 *
2520 * - Why does VID.SYS only query/set 32 registers at the time thru the
2521 * HvCallGetVpRegisters and HvCallSetVpRegisters hypercalls?
2522 *
2523 * We've not trouble getting/setting all the registers defined by
2524 * WHV_REGISTER_NAME in one hypercall (around 80). Some kind of stack
2525 * buffering or similar?
2526 *
2527 *
2528 * - Wrong instruction length in the VpContext with unmapped GPA memory exit
2529 * contexts on 17115/AMD.
2530 *
2531 * One byte "PUSH CS" was reported as 2 bytes, while a two byte
2532 * "MOV [EBX],EAX" was reported with a 1 byte instruction length. Problem
2533 * naturally present in untranslated hyper-v messages.
2534 *
2535 *
2536 * - The I/O port exit context information seems to be missing the address size
2537 * information needed for correct string I/O emulation.
2538 *
2539 * VT-x provides this information in bits 7:9 in the instruction information
2540 * field on newer CPUs. AMD-V in bits 7:9 in the EXITINFO1 field in the VMCB.
2541 *
2542 * We can probably work around this by scanning the instruction bytes for
2543 * address size prefixes. Haven't investigated it any further yet.
2544 *
2545 *
2546 * - The WHvGetCapability function has a weird design:
2547 * - The CapabilityCode parameter is pointlessly duplicated in the output
2548 * structure (WHV_CAPABILITY).
2549 *
2550 * - API takes void pointer, but everyone will probably be using
2551 * WHV_CAPABILITY due to WHV_CAPABILITY::CapabilityCode making it
2552 * impractical to use anything else.
2553 *
2554 * - No output size.
2555 *
2556 * - See GetFileAttributesEx, GetFileInformationByHandleEx,
2557 * FindFirstFileEx, and others for typical pattern for generic
2558 * information getters.
2559 *
2560 * Update: All concerns have been addressed in build 17110.
2561 *
2562 *
2563 * - The WHvGetPartitionProperty function uses the same weird design as
2564 * WHvGetCapability, see above.
2565 *
2566 * Update: All concerns have been addressed in build 17110.
2567 *
2568 *
2569 * - The WHvSetPartitionProperty function has a totally weird design too:
2570 * - In contrast to its partner WHvGetPartitionProperty, the property code
2571 * is not a separate input parameter here but part of the input
2572 * structure.
2573 *
2574 * - The input structure is a void pointer rather than a pointer to
2575 * WHV_PARTITION_PROPERTY which everyone probably will be using because
2576 * of the WHV_PARTITION_PROPERTY::PropertyCode field.
2577 *
2578 * - Really, why use PVOID for the input when the function isn't accepting
2579 * minimal sizes. E.g. WHVPartitionPropertyCodeProcessorClFlushSize only
2580 * requires a 9 byte input, but the function insists on 16 bytes (17083).
2581 *
2582 * - See GetFileAttributesEx, SetFileInformationByHandle, FindFirstFileEx,
2583 * and others for typical pattern for generic information setters and
2584 * getters.
2585 *
2586 * Update: All concerns have been addressed in build 17110.
2587 *
2588 *
2589 *
2590 * @section sec_nem_win_impl Our implementation.
2591 *
2592 * We set out with the goal of wanting to run as much as possible in ring-0,
2593 * reasoning that this would give use the best performance.
2594 *
2595 * This goal was approached gradually, starting out with a pure WinHvPlatform
2596 * implementation, gradually replacing parts: register access, guest memory
2597 * handling, running virtual processors. Then finally moving it all into
2598 * ring-0, while keeping most of it configurable so that we could make
2599 * comparisons (see NEMInternal.h and nemR3NativeRunGC()).
2600 *
2601 *
2602 * @subsection subsect_nem_win_impl_ioctl VID.SYS I/O control calls
2603 *
2604 * To run things in ring-0 we need to talk directly to VID.SYS thru its I/O
2605 * control interface. Looking at changes between like build 17083 and 17101 (if
2606 * memory serves) a set of the VID I/O control numbers shifted a little, which
2607 * means we need to determin them dynamically. We currently do this by hooking
2608 * the NtDeviceIoControlFile API call from VID.DLL and snooping up the
2609 * parameters when making dummy calls to relevant APIs. (We could also
2610 * disassemble the relevant APIs and try fish out the information from that, but
2611 * this is way simpler.)
2612 *
2613 * Issuing I/O control calls from ring-0 is facing a small challenge with
2614 * respect to direct buffering. When using direct buffering the device will
2615 * typically check that the buffer is actually in the user address space range
2616 * and reject kernel addresses. Fortunately, we've got the cross context VM
2617 * structure that is mapped into both kernel and user space, it's also locked
2618 * and safe to access from kernel space. So, we place the I/O control buffers
2619 * in the per-CPU part of it (NEMCPU::uIoCtlBuf) and give the driver the user
2620 * address if direct access buffering or kernel address if not.
2621 *
2622 * The I/O control calls are 'abstracted' in the support driver, see
2623 * SUPR0IoCtlSetupForHandle(), SUPR0IoCtlPerform() and SUPR0IoCtlCleanup().
2624 *
2625 *
2626 * @subsection subsect_nem_win_impl_cpumctx CPUMCTX
2627 *
2628 * Since the CPU state needs to live in Hyper-V when executing, we probably
2629 * should not transfer more than necessary when handling VMEXITs. To help us
2630 * manage this CPUMCTX got a new field CPUMCTX::fExtrn that to indicate which
2631 * part of the state is currently externalized (== in Hyper-V).
2632 *
2633 *
2634 */
2635
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette