VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 45744

Last change on this file since 45744 was 45739, checked in by vboxsync, 12 years ago

VMM: First part of HMIsEnabled() and PGMMap*.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 202.5 KB
Line 
1/* $Id: PGM.cpp 45739 2013-04-25 19:44:05Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 *
99 * @subsection sec_pgm_misc_A20 The A20 Gate
100 *
101 * PGM implements the A20 gate masking when translating a virtual guest address
102 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
103 * the code reading the guest page table entries during shadowing. The masking
104 * is done consistenly for all CPU modes, paged ones included. Large pages are
105 * also masked correctly. (On current CPUs, experiments indicates that AMD does
106 * not apply A20M in paged modes and intel only does it for the 2nd MB of
107 * memory.)
108 *
109 * The A20 gate implementation is per CPU core. It can be configured on a per
110 * core basis via the keyboard device and PC architecture device. This is
111 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
112 * guest OSes try pushing things anyway, so who cares. (On current real systems
113 * the A20M signal is probably only sent to the boot CPU and it affects all
114 * thread and probably all cores in that package.)
115 *
116 * The keyboard device and the PC architecture device doesn't OR their A20
117 * config bits together, rather they are currently implemented such that they
118 * mirror the CPU state. So, flipping the bit in either of them will change the
119 * A20 state. (On real hardware the bits of the two devices should probably be
120 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
121 * A20 masking.)
122 *
123 * The A20 state will change immediately, transmeta fashion. There is no delays
124 * due to buses, wiring or other physical stuff. (On real hardware there are
125 * normally delays, the delays differs between the two devices and probably also
126 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
127 * does the change immediately like us, they apparently intercept/handles the
128 * port accesses in microcode. Neat.)
129 *
130 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
131 *
132 *
133 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
134 *
135 * The differences between legacy PAE and long mode PAE are:
136 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
137 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
138 * usual meanings while 6 is ignored (AMD). This means that upon switching to
139 * legacy PAE mode we'll have to clear these bits and when going to long mode
140 * they must be set. This applies to both intermediate and shadow contexts,
141 * however we don't need to do it for the intermediate one since we're
142 * executing with CR0.WP at that time.
143 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
144 * a page aligned one is required.
145 *
146 *
147 * @section sec_pgm_handlers Access Handlers
148 *
149 * Placeholder.
150 *
151 *
152 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
153 *
154 * Placeholder.
155 *
156 *
157 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
158 *
159 * We currently implement three types of virtual access handlers: ALL, WRITE
160 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
161 *
162 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
163 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
164 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
165 * rest of this section is going to be about these handlers.
166 *
167 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
168 * how successful this is gonna be...
169 *
170 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
171 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
172 * and create a new node that is inserted into the AVL tree (range key). Then
173 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
174 *
175 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
176 *
177 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
178 * via the current guest CR3 and update the physical page -> virtual handler
179 * translation. Needless to say, this doesn't exactly scale very well. If any changes
180 * are detected, it will flag a virtual bit update just like we did on registration.
181 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
182 *
183 * 2b. The virtual bit update process will iterate all the pages covered by all the
184 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
185 * virtual handlers on that page.
186 *
187 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
188 * we don't miss any alias mappings of the monitored pages.
189 *
190 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
191 *
192 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
193 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
194 * will call the handlers like in the next step. If the physical mapping has
195 * changed we will - some time in the future - perform a handler callback
196 * (optional) and update the physical -> virtual handler cache.
197 *
198 * 4. \#PF(,write) on a page in the range. This will cause the handler to
199 * be invoked.
200 *
201 * 5. The guest invalidates the page and changes the physical backing or
202 * unmaps it. This should cause the invalidation callback to be invoked
203 * (it might not yet be 100% perfect). Exactly what happens next... is
204 * this where we mess up and end up out of sync for a while?
205 *
206 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
207 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
208 * this handler to NONE and trigger a full PGM resync (basically the same
209 * as int step 1). Which means 2 is executed again.
210 *
211 *
212 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
213 *
214 * There is a bunch of things that needs to be done to make the virtual handlers
215 * work 100% correctly and work more efficiently.
216 *
217 * The first bit hasn't been implemented yet because it's going to slow the
218 * whole mess down even more, and besides it seems to be working reliably for
219 * our current uses. OTOH, some of the optimizations might end up more or less
220 * implementing the missing bits, so we'll see.
221 *
222 * On the optimization side, the first thing to do is to try avoid unnecessary
223 * cache flushing. Then try team up with the shadowing code to track changes
224 * in mappings by means of access to them (shadow in), updates to shadows pages,
225 * invlpg, and shadow PT discarding (perhaps).
226 *
227 * Some idea that have popped up for optimization for current and new features:
228 * - bitmap indicating where there are virtual handlers installed.
229 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
230 * - Further optimize this by min/max (needs min/max avl getters).
231 * - Shadow page table entry bit (if any left)?
232 *
233 */
234
235
236/** @page pg_pgm_phys PGM Physical Guest Memory Management
237 *
238 *
239 * Objectives:
240 * - Guest RAM over-commitment using memory ballooning,
241 * zero pages and general page sharing.
242 * - Moving or mirroring a VM onto a different physical machine.
243 *
244 *
245 * @subsection subsec_pgmPhys_Definitions Definitions
246 *
247 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
248 * machinery associated with it.
249 *
250 *
251 *
252 *
253 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
254 *
255 * Initially we map *all* guest memory to the (per VM) zero page, which
256 * means that none of the read functions will cause pages to be allocated.
257 *
258 * Exception, access bit in page tables that have been shared. This must
259 * be handled, but we must also make sure PGMGst*Modify doesn't make
260 * unnecessary modifications.
261 *
262 * Allocation points:
263 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
264 * - Replacing a zero page mapping at \#PF.
265 * - Replacing a shared page mapping at \#PF.
266 * - ROM registration (currently MMR3RomRegister).
267 * - VM restore (pgmR3Load).
268 *
269 * For the first three it would make sense to keep a few pages handy
270 * until we've reached the max memory commitment for the VM.
271 *
272 * For the ROM registration, we know exactly how many pages we need
273 * and will request these from ring-0. For restore, we will save
274 * the number of non-zero pages in the saved state and allocate
275 * them up front. This would allow the ring-0 component to refuse
276 * the request if the isn't sufficient memory available for VM use.
277 *
278 * Btw. for both ROM and restore allocations we won't be requiring
279 * zeroed pages as they are going to be filled instantly.
280 *
281 *
282 * @subsection subsec_pgmPhys_FreePage Freeing a page
283 *
284 * There are a few points where a page can be freed:
285 * - After being replaced by the zero page.
286 * - After being replaced by a shared page.
287 * - After being ballooned by the guest additions.
288 * - At reset.
289 * - At restore.
290 *
291 * When freeing one or more pages they will be returned to the ring-0
292 * component and replaced by the zero page.
293 *
294 * The reasoning for clearing out all the pages on reset is that it will
295 * return us to the exact same state as on power on, and may thereby help
296 * us reduce the memory load on the system. Further it might have a
297 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
298 *
299 * On restore, as mention under the allocation topic, pages should be
300 * freed / allocated depending on how many is actually required by the
301 * new VM state. The simplest approach is to do like on reset, and free
302 * all non-ROM pages and then allocate what we need.
303 *
304 * A measure to prevent some fragmentation, would be to let each allocation
305 * chunk have some affinity towards the VM having allocated the most pages
306 * from it. Also, try make sure to allocate from allocation chunks that
307 * are almost full. Admittedly, both these measures might work counter to
308 * our intentions and its probably not worth putting a lot of effort,
309 * cpu time or memory into this.
310 *
311 *
312 * @subsection subsec_pgmPhys_SharePage Sharing a page
313 *
314 * The basic idea is that there there will be a idle priority kernel
315 * thread walking the non-shared VM pages hashing them and looking for
316 * pages with the same checksum. If such pages are found, it will compare
317 * them byte-by-byte to see if they actually are identical. If found to be
318 * identical it will allocate a shared page, copy the content, check that
319 * the page didn't change while doing this, and finally request both the
320 * VMs to use the shared page instead. If the page is all zeros (special
321 * checksum and byte-by-byte check) it will request the VM that owns it
322 * to replace it with the zero page.
323 *
324 * To make this efficient, we will have to make sure not to try share a page
325 * that will change its contents soon. This part requires the most work.
326 * A simple idea would be to request the VM to write monitor the page for
327 * a while to make sure it isn't modified any time soon. Also, it may
328 * make sense to skip pages that are being write monitored since this
329 * information is readily available to the thread if it works on the
330 * per-VM guest memory structures (presently called PGMRAMRANGE).
331 *
332 *
333 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
334 *
335 * The pages are organized in allocation chunks in ring-0, this is a necessity
336 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
337 * could easily work on a page-by-page basis if we liked. Whether this is possible
338 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
339 * become a problem as part of the idea here is that we wish to return memory to
340 * the host system.
341 *
342 * For instance, starting two VMs at the same time, they will both allocate the
343 * guest memory on-demand and if permitted their page allocations will be
344 * intermixed. Shut down one of the two VMs and it will be difficult to return
345 * any memory to the host system because the page allocation for the two VMs are
346 * mixed up in the same allocation chunks.
347 *
348 * To further complicate matters, when pages are freed because they have been
349 * ballooned or become shared/zero the whole idea is that the page is supposed
350 * to be reused by another VM or returned to the host system. This will cause
351 * allocation chunks to contain pages belonging to different VMs and prevent
352 * returning memory to the host when one of those VM shuts down.
353 *
354 * The only way to really deal with this problem is to move pages. This can
355 * either be done at VM shutdown and or by the idle priority worker thread
356 * that will be responsible for finding sharable/zero pages. The mechanisms
357 * involved for coercing a VM to move a page (or to do it for it) will be
358 * the same as when telling it to share/zero a page.
359 *
360 *
361 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
362 *
363 * There's a difficult balance between keeping the per-page tracking structures
364 * (global and guest page) easy to use and keeping them from eating too much
365 * memory. We have limited virtual memory resources available when operating in
366 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
367 * tracking structures will be attempted designed such that we can deal with up
368 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
369 *
370 *
371 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
372 *
373 * @see pg_GMM
374 *
375 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
376 *
377 * Fixed info is the physical address of the page (HCPhys) and the page id
378 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
379 * Today we've restricting ourselves to 40(-12) bits because this is the current
380 * restrictions of all AMD64 implementations (I think Barcelona will up this
381 * to 48(-12) bits, not that it really matters) and I needed the bits for
382 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
383 * decent range for the page id: 2^(28+12) = 1024TB.
384 *
385 * In additions to these, we'll have to keep maintaining the page flags as we
386 * currently do. Although it wouldn't harm to optimize these quite a bit, like
387 * for instance the ROM shouldn't depend on having a write handler installed
388 * in order for it to become read-only. A RO/RW bit should be considered so
389 * that the page syncing code doesn't have to mess about checking multiple
390 * flag combinations (ROM || RW handler || write monitored) in order to
391 * figure out how to setup a shadow PTE. But this of course, is second
392 * priority at present. Current this requires 12 bits, but could probably
393 * be optimized to ~8.
394 *
395 * Then there's the 24 bits used to track which shadow page tables are
396 * currently mapping a page for the purpose of speeding up physical
397 * access handlers, and thereby the page pool cache. More bit for this
398 * purpose wouldn't hurt IIRC.
399 *
400 * Then there is a new bit in which we need to record what kind of page
401 * this is, shared, zero, normal or write-monitored-normal. This'll
402 * require 2 bits. One bit might be needed for indicating whether a
403 * write monitored page has been written to. And yet another one or
404 * two for tracking migration status. 3-4 bits total then.
405 *
406 * Whatever is left will can be used to record the sharabilitiy of a
407 * page. The page checksum will not be stored in the per-VM table as
408 * the idle thread will not be permitted to do modifications to it.
409 * It will instead have to keep its own working set of potentially
410 * shareable pages and their check sums and stuff.
411 *
412 * For the present we'll keep the current packing of the
413 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
414 * we'll have to change it to a struct with a total of 128-bits at
415 * our disposal.
416 *
417 * The initial layout will be like this:
418 * @verbatim
419 RTHCPHYS HCPhys; The current stuff.
420 63:40 Current shadow PT tracking stuff.
421 39:12 The physical page frame number.
422 11:0 The current flags.
423 uint32_t u28PageId : 28; The page id.
424 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
425 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
426 uint32_t u1Reserved : 1; Reserved for later.
427 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
428 @endverbatim
429 *
430 * The final layout will be something like this:
431 * @verbatim
432 RTHCPHYS HCPhys; The current stuff.
433 63:48 High page id (12+).
434 47:12 The physical page frame number.
435 11:0 Low page id.
436 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
437 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
438 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
439 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
440 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
441 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
442 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
443 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
444 @endverbatim
445 *
446 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
447 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
448 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
449 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
450 *
451 * A couple of cost examples for the total cost per-VM + kernel.
452 * 32-bit Windows and 32-bit linux:
453 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
454 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
455 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
456 * 64-bit Windows and 64-bit linux:
457 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
458 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
459 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
460 *
461 * UPDATE - 2007-09-27:
462 * Will need a ballooned flag/state too because we cannot
463 * trust the guest 100% and reporting the same page as ballooned more
464 * than once will put the GMM off balance.
465 *
466 *
467 * @subsection subsec_pgmPhys_Serializing Serializing Access
468 *
469 * Initially, we'll try a simple scheme:
470 *
471 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
472 * by the EMT thread of that VM while in the pgm critsect.
473 * - Other threads in the VM process that needs to make reliable use of
474 * the per-VM RAM tracking structures will enter the critsect.
475 * - No process external thread or kernel thread will ever try enter
476 * the pgm critical section, as that just won't work.
477 * - The idle thread (and similar threads) doesn't not need 100% reliable
478 * data when performing it tasks as the EMT thread will be the one to
479 * do the actual changes later anyway. So, as long as it only accesses
480 * the main ram range, it can do so by somehow preventing the VM from
481 * being destroyed while it works on it...
482 *
483 * - The over-commitment management, including the allocating/freeing
484 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
485 * more mundane mutex implementation is broken on Linux).
486 * - A separate mutex is protecting the set of allocation chunks so
487 * that pages can be shared or/and freed up while some other VM is
488 * allocating more chunks. This mutex can be take from under the other
489 * one, but not the other way around.
490 *
491 *
492 * @subsection subsec_pgmPhys_Request VM Request interface
493 *
494 * When in ring-0 it will become necessary to send requests to a VM so it can
495 * for instance move a page while defragmenting during VM destroy. The idle
496 * thread will make use of this interface to request VMs to setup shared
497 * pages and to perform write monitoring of pages.
498 *
499 * I would propose an interface similar to the current VMReq interface, similar
500 * in that it doesn't require locking and that the one sending the request may
501 * wait for completion if it wishes to. This shouldn't be very difficult to
502 * realize.
503 *
504 * The requests themselves are also pretty simple. They are basically:
505 * -# Check that some precondition is still true.
506 * -# Do the update.
507 * -# Update all shadow page tables involved with the page.
508 *
509 * The 3rd step is identical to what we're already doing when updating a
510 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
511 *
512 *
513 *
514 * @section sec_pgmPhys_MappingCaches Mapping Caches
515 *
516 * In order to be able to map in and out memory and to be able to support
517 * guest with more RAM than we've got virtual address space, we'll employing
518 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
519 * however on 32-bit darwin the ring-0 code is running in a different memory
520 * context and therefore needs a separate cache. In raw-mode context we also
521 * need a separate cache. The 32-bit darwin mapping cache and the one for
522 * raw-mode context share a lot of code, see PGMRZDYNMAP.
523 *
524 *
525 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
526 *
527 * We've considered implementing the ring-3 mapping cache page based but found
528 * that this was bother some when one had to take into account TLBs+SMP and
529 * portability (missing the necessary APIs on several platforms). There were
530 * also some performance concerns with this approach which hadn't quite been
531 * worked out.
532 *
533 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
534 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
535 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
536 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
537 * costly than a single page, although how much more costly is uncertain. We'll
538 * try address this by using a very big cache, preferably bigger than the actual
539 * VM RAM size if possible. The current VM RAM sizes should give some idea for
540 * 32-bit boxes, while on 64-bit we can probably get away with employing an
541 * unlimited cache.
542 *
543 * The cache have to parts, as already indicated, the ring-3 side and the
544 * ring-0 side.
545 *
546 * The ring-0 will be tied to the page allocator since it will operate on the
547 * memory objects it contains. It will therefore require the first ring-0 mutex
548 * discussed in @ref subsec_pgmPhys_Serializing. We
549 * some double house keeping wrt to who has mapped what I think, since both
550 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
551 *
552 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
553 * require anyone that desires to do changes to the mapping cache to do that
554 * from within this critsect. Alternatively, we could employ a separate critsect
555 * for serializing changes to the mapping cache as this would reduce potential
556 * contention with other threads accessing mappings unrelated to the changes
557 * that are in process. We can see about this later, contention will show
558 * up in the statistics anyway, so it'll be simple to tell.
559 *
560 * The organization of the ring-3 part will be very much like how the allocation
561 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
562 * having to walk the tree all the time, we'll have a couple of lookaside entries
563 * like in we do for I/O ports and MMIO in IOM.
564 *
565 * The simplified flow of a PGMPhysRead/Write function:
566 * -# Enter the PGM critsect.
567 * -# Lookup GCPhys in the ram ranges and get the Page ID.
568 * -# Calc the Allocation Chunk ID from the Page ID.
569 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
570 * If not found in cache:
571 * -# Call ring-0 and request it to be mapped and supply
572 * a chunk to be unmapped if the cache is maxed out already.
573 * -# Insert the new mapping into the AVL tree (id + R3 address).
574 * -# Update the relevant lookaside entry and return the mapping address.
575 * -# Do the read/write according to monitoring flags and everything.
576 * -# Leave the critsect.
577 *
578 *
579 * @section sec_pgmPhys_Fallback Fallback
580 *
581 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
582 * API and thus require a fallback.
583 *
584 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
585 * will return to the ring-3 caller (and later ring-0) and asking it to seed
586 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
587 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
588 * "SeededAllocPages" call to ring-0.
589 *
590 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
591 * all page sharing (zero page detection will continue). It will also force
592 * all allocations to come from the VM which seeded the page. Both these
593 * measures are taken to make sure that there will never be any need for
594 * mapping anything into ring-3 - everything will be mapped already.
595 *
596 * Whether we'll continue to use the current MM locked memory management
597 * for this I don't quite know (I'd prefer not to and just ditch that all
598 * together), we'll see what's simplest to do.
599 *
600 *
601 *
602 * @section sec_pgmPhys_Changes Changes
603 *
604 * Breakdown of the changes involved?
605 */
606
607/*******************************************************************************
608* Header Files *
609*******************************************************************************/
610#define LOG_GROUP LOG_GROUP_PGM
611#include <VBox/vmm/dbgf.h>
612#include <VBox/vmm/pgm.h>
613#include <VBox/vmm/cpum.h>
614#include <VBox/vmm/iom.h>
615#include <VBox/sup.h>
616#include <VBox/vmm/mm.h>
617#include <VBox/vmm/em.h>
618#include <VBox/vmm/stam.h>
619#ifdef VBOX_WITH_REM
620# include <VBox/vmm/rem.h>
621#endif
622#include <VBox/vmm/selm.h>
623#include <VBox/vmm/ssm.h>
624#include <VBox/vmm/hm.h>
625#include "PGMInternal.h"
626#include <VBox/vmm/vm.h>
627#include <VBox/vmm/uvm.h>
628#include "PGMInline.h"
629
630#include <VBox/dbg.h>
631#include <VBox/param.h>
632#include <VBox/err.h>
633
634#include <iprt/asm.h>
635#include <iprt/asm-amd64-x86.h>
636#include <iprt/assert.h>
637#include <iprt/env.h>
638#include <iprt/mem.h>
639#include <iprt/file.h>
640#include <iprt/string.h>
641#include <iprt/thread.h>
642
643
644/*******************************************************************************
645* Internal Functions *
646*******************************************************************************/
647static int pgmR3InitPaging(PVM pVM);
648static int pgmR3InitStats(PVM pVM);
649static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
650static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
651static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
652static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
653static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
654static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
655#ifdef VBOX_STRICT
656static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
657#endif
658static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
659static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
660static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
661
662#ifdef VBOX_WITH_DEBUGGER
663static FNDBGCCMD pgmR3CmdError;
664static FNDBGCCMD pgmR3CmdSync;
665static FNDBGCCMD pgmR3CmdSyncAlways;
666# ifdef VBOX_STRICT
667static FNDBGCCMD pgmR3CmdAssertCR3;
668# endif
669static FNDBGCCMD pgmR3CmdPhysToFile;
670#endif
671
672
673/*******************************************************************************
674* Global Variables *
675*******************************************************************************/
676#ifdef VBOX_WITH_DEBUGGER
677/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
678static const DBGCVARDESC g_aPgmErrorArgs[] =
679{
680 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
681 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
682};
683
684static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
685{
686 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
687 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
688 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
689};
690
691# ifdef DEBUG_sandervl
692static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
693{
694 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
695 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
696 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
697};
698# endif
699
700/** Command descriptors. */
701static const DBGCCMD g_aCmds[] =
702{
703 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
704 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
705 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
706 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
707# ifdef VBOX_STRICT
708 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
709# ifdef VBOX_WITH_PAGE_SHARING
710 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
711 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
712# endif
713# endif
714 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
715 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
716};
717#endif
718
719
720
721
722/*
723 * Shadow - 32-bit mode
724 */
725#define PGM_SHW_TYPE PGM_TYPE_32BIT
726#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
727#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
728#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
729#include "PGMShw.h"
730
731/* Guest - real mode */
732#define PGM_GST_TYPE PGM_TYPE_REAL
733#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
734#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
735#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
736#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
737#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
738#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
739#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
740#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
741#include "PGMBth.h"
742#include "PGMGstDefs.h"
743#include "PGMGst.h"
744#undef BTH_PGMPOOLKIND_PT_FOR_PT
745#undef BTH_PGMPOOLKIND_ROOT
746#undef PGM_BTH_NAME
747#undef PGM_BTH_NAME_RC_STR
748#undef PGM_BTH_NAME_R0_STR
749#undef PGM_GST_TYPE
750#undef PGM_GST_NAME
751#undef PGM_GST_NAME_RC_STR
752#undef PGM_GST_NAME_R0_STR
753
754/* Guest - protected mode */
755#define PGM_GST_TYPE PGM_TYPE_PROT
756#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
757#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
758#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
759#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
760#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
761#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
762#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
763#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
764#include "PGMBth.h"
765#include "PGMGstDefs.h"
766#include "PGMGst.h"
767#undef BTH_PGMPOOLKIND_PT_FOR_PT
768#undef BTH_PGMPOOLKIND_ROOT
769#undef PGM_BTH_NAME
770#undef PGM_BTH_NAME_RC_STR
771#undef PGM_BTH_NAME_R0_STR
772#undef PGM_GST_TYPE
773#undef PGM_GST_NAME
774#undef PGM_GST_NAME_RC_STR
775#undef PGM_GST_NAME_R0_STR
776
777/* Guest - 32-bit mode */
778#define PGM_GST_TYPE PGM_TYPE_32BIT
779#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
780#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
781#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
782#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
783#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
784#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
785#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
786#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
787#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
788#include "PGMBth.h"
789#include "PGMGstDefs.h"
790#include "PGMGst.h"
791#undef BTH_PGMPOOLKIND_PT_FOR_BIG
792#undef BTH_PGMPOOLKIND_PT_FOR_PT
793#undef BTH_PGMPOOLKIND_ROOT
794#undef PGM_BTH_NAME
795#undef PGM_BTH_NAME_RC_STR
796#undef PGM_BTH_NAME_R0_STR
797#undef PGM_GST_TYPE
798#undef PGM_GST_NAME
799#undef PGM_GST_NAME_RC_STR
800#undef PGM_GST_NAME_R0_STR
801
802#undef PGM_SHW_TYPE
803#undef PGM_SHW_NAME
804#undef PGM_SHW_NAME_RC_STR
805#undef PGM_SHW_NAME_R0_STR
806
807
808/*
809 * Shadow - PAE mode
810 */
811#define PGM_SHW_TYPE PGM_TYPE_PAE
812#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
813#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
814#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
815#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
816#include "PGMShw.h"
817
818/* Guest - real mode */
819#define PGM_GST_TYPE PGM_TYPE_REAL
820#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
821#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
822#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
823#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
824#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
825#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
826#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
827#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
828#include "PGMGstDefs.h"
829#include "PGMBth.h"
830#undef BTH_PGMPOOLKIND_PT_FOR_PT
831#undef BTH_PGMPOOLKIND_ROOT
832#undef PGM_BTH_NAME
833#undef PGM_BTH_NAME_RC_STR
834#undef PGM_BTH_NAME_R0_STR
835#undef PGM_GST_TYPE
836#undef PGM_GST_NAME
837#undef PGM_GST_NAME_RC_STR
838#undef PGM_GST_NAME_R0_STR
839
840/* Guest - protected mode */
841#define PGM_GST_TYPE PGM_TYPE_PROT
842#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
843#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
844#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
845#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
846#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
847#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
848#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
849#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
850#include "PGMGstDefs.h"
851#include "PGMBth.h"
852#undef BTH_PGMPOOLKIND_PT_FOR_PT
853#undef BTH_PGMPOOLKIND_ROOT
854#undef PGM_BTH_NAME
855#undef PGM_BTH_NAME_RC_STR
856#undef PGM_BTH_NAME_R0_STR
857#undef PGM_GST_TYPE
858#undef PGM_GST_NAME
859#undef PGM_GST_NAME_RC_STR
860#undef PGM_GST_NAME_R0_STR
861
862/* Guest - 32-bit mode */
863#define PGM_GST_TYPE PGM_TYPE_32BIT
864#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
865#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
866#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
867#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
868#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
869#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
870#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
871#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
872#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
873#include "PGMGstDefs.h"
874#include "PGMBth.h"
875#undef BTH_PGMPOOLKIND_PT_FOR_BIG
876#undef BTH_PGMPOOLKIND_PT_FOR_PT
877#undef BTH_PGMPOOLKIND_ROOT
878#undef PGM_BTH_NAME
879#undef PGM_BTH_NAME_RC_STR
880#undef PGM_BTH_NAME_R0_STR
881#undef PGM_GST_TYPE
882#undef PGM_GST_NAME
883#undef PGM_GST_NAME_RC_STR
884#undef PGM_GST_NAME_R0_STR
885
886/* Guest - PAE mode */
887#define PGM_GST_TYPE PGM_TYPE_PAE
888#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
889#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
890#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
891#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
892#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
893#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
894#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
895#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
896#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
897#include "PGMBth.h"
898#include "PGMGstDefs.h"
899#include "PGMGst.h"
900#undef BTH_PGMPOOLKIND_PT_FOR_BIG
901#undef BTH_PGMPOOLKIND_PT_FOR_PT
902#undef BTH_PGMPOOLKIND_ROOT
903#undef PGM_BTH_NAME
904#undef PGM_BTH_NAME_RC_STR
905#undef PGM_BTH_NAME_R0_STR
906#undef PGM_GST_TYPE
907#undef PGM_GST_NAME
908#undef PGM_GST_NAME_RC_STR
909#undef PGM_GST_NAME_R0_STR
910
911#undef PGM_SHW_TYPE
912#undef PGM_SHW_NAME
913#undef PGM_SHW_NAME_RC_STR
914#undef PGM_SHW_NAME_R0_STR
915
916
917/*
918 * Shadow - AMD64 mode
919 */
920#define PGM_SHW_TYPE PGM_TYPE_AMD64
921#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
922#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
923#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
924#include "PGMShw.h"
925
926#ifdef VBOX_WITH_64_BITS_GUESTS
927/* Guest - AMD64 mode */
928# define PGM_GST_TYPE PGM_TYPE_AMD64
929# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
930# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
931# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
932# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
933# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
934# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
935# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
936# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
937# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
938# include "PGMBth.h"
939# include "PGMGstDefs.h"
940# include "PGMGst.h"
941# undef BTH_PGMPOOLKIND_PT_FOR_BIG
942# undef BTH_PGMPOOLKIND_PT_FOR_PT
943# undef BTH_PGMPOOLKIND_ROOT
944# undef PGM_BTH_NAME
945# undef PGM_BTH_NAME_RC_STR
946# undef PGM_BTH_NAME_R0_STR
947# undef PGM_GST_TYPE
948# undef PGM_GST_NAME
949# undef PGM_GST_NAME_RC_STR
950# undef PGM_GST_NAME_R0_STR
951#endif /* VBOX_WITH_64_BITS_GUESTS */
952
953#undef PGM_SHW_TYPE
954#undef PGM_SHW_NAME
955#undef PGM_SHW_NAME_RC_STR
956#undef PGM_SHW_NAME_R0_STR
957
958
959/*
960 * Shadow - Nested paging mode
961 */
962#define PGM_SHW_TYPE PGM_TYPE_NESTED
963#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
964#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
965#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
966#include "PGMShw.h"
967
968/* Guest - real mode */
969#define PGM_GST_TYPE PGM_TYPE_REAL
970#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
971#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
972#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
973#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
974#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
975#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
976#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
977#include "PGMGstDefs.h"
978#include "PGMBth.h"
979#undef BTH_PGMPOOLKIND_PT_FOR_PT
980#undef PGM_BTH_NAME
981#undef PGM_BTH_NAME_RC_STR
982#undef PGM_BTH_NAME_R0_STR
983#undef PGM_GST_TYPE
984#undef PGM_GST_NAME
985#undef PGM_GST_NAME_RC_STR
986#undef PGM_GST_NAME_R0_STR
987
988/* Guest - protected mode */
989#define PGM_GST_TYPE PGM_TYPE_PROT
990#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
991#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
992#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
993#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
994#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
995#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
996#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
997#include "PGMGstDefs.h"
998#include "PGMBth.h"
999#undef BTH_PGMPOOLKIND_PT_FOR_PT
1000#undef PGM_BTH_NAME
1001#undef PGM_BTH_NAME_RC_STR
1002#undef PGM_BTH_NAME_R0_STR
1003#undef PGM_GST_TYPE
1004#undef PGM_GST_NAME
1005#undef PGM_GST_NAME_RC_STR
1006#undef PGM_GST_NAME_R0_STR
1007
1008/* Guest - 32-bit mode */
1009#define PGM_GST_TYPE PGM_TYPE_32BIT
1010#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1011#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1012#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1013#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1014#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1015#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1016#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1017#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1018#include "PGMGstDefs.h"
1019#include "PGMBth.h"
1020#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1021#undef BTH_PGMPOOLKIND_PT_FOR_PT
1022#undef PGM_BTH_NAME
1023#undef PGM_BTH_NAME_RC_STR
1024#undef PGM_BTH_NAME_R0_STR
1025#undef PGM_GST_TYPE
1026#undef PGM_GST_NAME
1027#undef PGM_GST_NAME_RC_STR
1028#undef PGM_GST_NAME_R0_STR
1029
1030/* Guest - PAE mode */
1031#define PGM_GST_TYPE PGM_TYPE_PAE
1032#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1033#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1034#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1035#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1036#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1037#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1038#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1039#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1040#include "PGMGstDefs.h"
1041#include "PGMBth.h"
1042#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1043#undef BTH_PGMPOOLKIND_PT_FOR_PT
1044#undef PGM_BTH_NAME
1045#undef PGM_BTH_NAME_RC_STR
1046#undef PGM_BTH_NAME_R0_STR
1047#undef PGM_GST_TYPE
1048#undef PGM_GST_NAME
1049#undef PGM_GST_NAME_RC_STR
1050#undef PGM_GST_NAME_R0_STR
1051
1052#ifdef VBOX_WITH_64_BITS_GUESTS
1053/* Guest - AMD64 mode */
1054# define PGM_GST_TYPE PGM_TYPE_AMD64
1055# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1056# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1057# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1058# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1059# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1060# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1061# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1062# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1063# include "PGMGstDefs.h"
1064# include "PGMBth.h"
1065# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1066# undef BTH_PGMPOOLKIND_PT_FOR_PT
1067# undef PGM_BTH_NAME
1068# undef PGM_BTH_NAME_RC_STR
1069# undef PGM_BTH_NAME_R0_STR
1070# undef PGM_GST_TYPE
1071# undef PGM_GST_NAME
1072# undef PGM_GST_NAME_RC_STR
1073# undef PGM_GST_NAME_R0_STR
1074#endif /* VBOX_WITH_64_BITS_GUESTS */
1075
1076#undef PGM_SHW_TYPE
1077#undef PGM_SHW_NAME
1078#undef PGM_SHW_NAME_RC_STR
1079#undef PGM_SHW_NAME_R0_STR
1080
1081
1082/*
1083 * Shadow - EPT
1084 */
1085#define PGM_SHW_TYPE PGM_TYPE_EPT
1086#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1087#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1088#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1089#include "PGMShw.h"
1090
1091/* Guest - real mode */
1092#define PGM_GST_TYPE PGM_TYPE_REAL
1093#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1094#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1095#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1096#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1097#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1098#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1099#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1100#include "PGMGstDefs.h"
1101#include "PGMBth.h"
1102#undef BTH_PGMPOOLKIND_PT_FOR_PT
1103#undef PGM_BTH_NAME
1104#undef PGM_BTH_NAME_RC_STR
1105#undef PGM_BTH_NAME_R0_STR
1106#undef PGM_GST_TYPE
1107#undef PGM_GST_NAME
1108#undef PGM_GST_NAME_RC_STR
1109#undef PGM_GST_NAME_R0_STR
1110
1111/* Guest - protected mode */
1112#define PGM_GST_TYPE PGM_TYPE_PROT
1113#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1114#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1115#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1116#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1117#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1118#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1119#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1120#include "PGMGstDefs.h"
1121#include "PGMBth.h"
1122#undef BTH_PGMPOOLKIND_PT_FOR_PT
1123#undef PGM_BTH_NAME
1124#undef PGM_BTH_NAME_RC_STR
1125#undef PGM_BTH_NAME_R0_STR
1126#undef PGM_GST_TYPE
1127#undef PGM_GST_NAME
1128#undef PGM_GST_NAME_RC_STR
1129#undef PGM_GST_NAME_R0_STR
1130
1131/* Guest - 32-bit mode */
1132#define PGM_GST_TYPE PGM_TYPE_32BIT
1133#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1134#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1135#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1136#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1137#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1138#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1139#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1140#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1141#include "PGMGstDefs.h"
1142#include "PGMBth.h"
1143#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1144#undef BTH_PGMPOOLKIND_PT_FOR_PT
1145#undef PGM_BTH_NAME
1146#undef PGM_BTH_NAME_RC_STR
1147#undef PGM_BTH_NAME_R0_STR
1148#undef PGM_GST_TYPE
1149#undef PGM_GST_NAME
1150#undef PGM_GST_NAME_RC_STR
1151#undef PGM_GST_NAME_R0_STR
1152
1153/* Guest - PAE mode */
1154#define PGM_GST_TYPE PGM_TYPE_PAE
1155#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1156#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1157#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1158#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1159#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1160#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1161#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1162#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1163#include "PGMGstDefs.h"
1164#include "PGMBth.h"
1165#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1166#undef BTH_PGMPOOLKIND_PT_FOR_PT
1167#undef PGM_BTH_NAME
1168#undef PGM_BTH_NAME_RC_STR
1169#undef PGM_BTH_NAME_R0_STR
1170#undef PGM_GST_TYPE
1171#undef PGM_GST_NAME
1172#undef PGM_GST_NAME_RC_STR
1173#undef PGM_GST_NAME_R0_STR
1174
1175#ifdef VBOX_WITH_64_BITS_GUESTS
1176/* Guest - AMD64 mode */
1177# define PGM_GST_TYPE PGM_TYPE_AMD64
1178# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1179# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1180# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1181# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1182# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1183# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1184# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1185# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1186# include "PGMGstDefs.h"
1187# include "PGMBth.h"
1188# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1189# undef BTH_PGMPOOLKIND_PT_FOR_PT
1190# undef PGM_BTH_NAME
1191# undef PGM_BTH_NAME_RC_STR
1192# undef PGM_BTH_NAME_R0_STR
1193# undef PGM_GST_TYPE
1194# undef PGM_GST_NAME
1195# undef PGM_GST_NAME_RC_STR
1196# undef PGM_GST_NAME_R0_STR
1197#endif /* VBOX_WITH_64_BITS_GUESTS */
1198
1199#undef PGM_SHW_TYPE
1200#undef PGM_SHW_NAME
1201#undef PGM_SHW_NAME_RC_STR
1202#undef PGM_SHW_NAME_R0_STR
1203
1204
1205
1206/**
1207 * Initiates the paging of VM.
1208 *
1209 * @returns VBox status code.
1210 * @param pVM Pointer to VM structure.
1211 */
1212VMMR3DECL(int) PGMR3Init(PVM pVM)
1213{
1214 LogFlow(("PGMR3Init:\n"));
1215 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1216 int rc;
1217
1218 /*
1219 * Assert alignment and sizes.
1220 */
1221 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1222 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1223 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1224
1225 /*
1226 * Init the structure.
1227 */
1228 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1229 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1230
1231 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1232 {
1233 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1234 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1235 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1236 }
1237
1238 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1239 {
1240 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1241 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1242 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1243 }
1244
1245 /* Init the per-CPU part. */
1246 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1247 {
1248 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1249 PPGMCPU pPGM = &pVCpu->pgm.s;
1250
1251 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1252 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1253 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1254
1255 pPGM->enmShadowMode = PGMMODE_INVALID;
1256 pPGM->enmGuestMode = PGMMODE_INVALID;
1257
1258 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1259
1260 pPGM->pGst32BitPdR3 = NULL;
1261 pPGM->pGstPaePdptR3 = NULL;
1262 pPGM->pGstAmd64Pml4R3 = NULL;
1263#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1264 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1265 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1266 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1267#endif
1268 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1269 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1270 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1271 {
1272 pPGM->apGstPaePDsR3[i] = NULL;
1273#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1274 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1275#endif
1276 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1277 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1278 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1279 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1280 }
1281
1282 pPGM->fA20Enabled = true;
1283 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1284 }
1285
1286 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1287 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1288 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1289
1290 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1291#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1292 true
1293#else
1294 false
1295#endif
1296 );
1297 AssertLogRelRCReturn(rc, rc);
1298
1299#if HC_ARCH_BITS == 32
1300# ifdef RT_OS_DARWIN
1301 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1302# else
1303 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1304# endif
1305#else
1306 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1307#endif
1308 AssertLogRelRCReturn(rc, rc);
1309 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1310 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1311
1312 /*
1313 * Get the configured RAM size - to estimate saved state size.
1314 */
1315 uint64_t cbRam;
1316 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1317 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1318 cbRam = 0;
1319 else if (RT_SUCCESS(rc))
1320 {
1321 if (cbRam < PAGE_SIZE)
1322 cbRam = 0;
1323 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1324 }
1325 else
1326 {
1327 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1328 return rc;
1329 }
1330
1331 /*
1332 * Check for PCI pass-through.
1333 */
1334 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1335 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1336 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1337
1338#ifdef VBOX_WITH_STATISTICS
1339 /*
1340 * Allocate memory for the statistics before someone tries to use them.
1341 */
1342 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1343 void *pv;
1344 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1345 AssertRCReturn(rc, rc);
1346
1347 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1348 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1349 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1350 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1351
1352 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1353 {
1354 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1355 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1356 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1357
1358 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1359 }
1360#endif /* VBOX_WITH_STATISTICS */
1361
1362 /*
1363 * Register callbacks, string formatters and the saved state data unit.
1364 */
1365#ifdef VBOX_STRICT
1366 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1367#endif
1368 PGMRegisterStringFormatTypes();
1369
1370 rc = pgmR3InitSavedState(pVM, cbRam);
1371 if (RT_FAILURE(rc))
1372 return rc;
1373
1374 /*
1375 * Initialize the PGM critical section and flush the phys TLBs
1376 */
1377 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1378 AssertRCReturn(rc, rc);
1379
1380 PGMR3PhysChunkInvalidateTLB(pVM);
1381 pgmPhysInvalidatePageMapTLB(pVM);
1382
1383 /*
1384 * For the time being we sport a full set of handy pages in addition to the base
1385 * memory to simplify things.
1386 */
1387 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1388 AssertRCReturn(rc, rc);
1389
1390 /*
1391 * Trees
1392 */
1393 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1394 if (RT_SUCCESS(rc))
1395 {
1396 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1397 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1398
1399 /*
1400 * Allocate the zero page.
1401 */
1402 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1403 }
1404 if (RT_SUCCESS(rc))
1405 {
1406 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1407 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1408 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1409 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1410
1411 /*
1412 * Allocate the invalid MMIO page.
1413 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1414 */
1415 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1416 }
1417 if (RT_SUCCESS(rc))
1418 {
1419 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1420 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1421 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1422 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1423
1424 /*
1425 * Init the paging.
1426 */
1427 rc = pgmR3InitPaging(pVM);
1428 }
1429 if (RT_SUCCESS(rc))
1430 {
1431 /*
1432 * Init the page pool.
1433 */
1434 rc = pgmR3PoolInit(pVM);
1435 }
1436 if (RT_SUCCESS(rc))
1437 {
1438 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1439 {
1440 PVMCPU pVCpu = &pVM->aCpus[i];
1441 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1442 if (RT_FAILURE(rc))
1443 break;
1444 }
1445 }
1446
1447 if (RT_SUCCESS(rc))
1448 {
1449 /*
1450 * Info & statistics
1451 */
1452 DBGFR3InfoRegisterInternal(pVM, "mode",
1453 "Shows the current paging mode. "
1454 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1455 pgmR3InfoMode);
1456 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1457 "Dumps all the entries in the top level paging table. No arguments.",
1458 pgmR3InfoCr3);
1459 DBGFR3InfoRegisterInternal(pVM, "phys",
1460 "Dumps all the physical address ranges. No arguments.",
1461 pgmR3PhysInfo);
1462 DBGFR3InfoRegisterInternal(pVM, "handlers",
1463 "Dumps physical, virtual and hyper virtual handlers. "
1464 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1465 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1466 pgmR3InfoHandlers);
1467 DBGFR3InfoRegisterInternal(pVM, "mappings",
1468 "Dumps guest mappings.",
1469 pgmR3MapInfo);
1470
1471 pgmR3InitStats(pVM);
1472
1473#ifdef VBOX_WITH_DEBUGGER
1474 /*
1475 * Debugger commands.
1476 */
1477 static bool s_fRegisteredCmds = false;
1478 if (!s_fRegisteredCmds)
1479 {
1480 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1481 if (RT_SUCCESS(rc2))
1482 s_fRegisteredCmds = true;
1483 }
1484#endif
1485 return VINF_SUCCESS;
1486 }
1487
1488 /* Almost no cleanup necessary, MM frees all memory. */
1489 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1490
1491 return rc;
1492}
1493
1494
1495/**
1496 * Init paging.
1497 *
1498 * Since we need to check what mode the host is operating in before we can choose
1499 * the right paging functions for the host we have to delay this until R0 has
1500 * been initialized.
1501 *
1502 * @returns VBox status code.
1503 * @param pVM Pointer to the VM.
1504 */
1505static int pgmR3InitPaging(PVM pVM)
1506{
1507 /*
1508 * Force a recalculation of modes and switcher so everyone gets notified.
1509 */
1510 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1511 {
1512 PVMCPU pVCpu = &pVM->aCpus[i];
1513
1514 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1515 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1516 }
1517
1518 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1519
1520 /*
1521 * Allocate static mapping space for whatever the cr3 register
1522 * points to and in the case of PAE mode to the 4 PDs.
1523 */
1524 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1525 if (RT_FAILURE(rc))
1526 {
1527 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1528 return rc;
1529 }
1530 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1531
1532 /*
1533 * Allocate pages for the three possible intermediate contexts
1534 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1535 * for the sake of simplicity. The AMD64 uses the PAE for the
1536 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1537 *
1538 * We assume that two page tables will be enought for the core code
1539 * mappings (HC virtual and identity).
1540 */
1541 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1542 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1543 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1544 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1545 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1546 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1547 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1548 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1549 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1550 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1551 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1552 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1553
1554 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1555 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1556 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1557 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1558 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1559 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1560
1561 /*
1562 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1563 */
1564 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1565 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1566 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1567
1568 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1569 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1570
1571 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1572 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1573 {
1574 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1575 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1576 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1577 }
1578
1579 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1580 {
1581 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1582 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1583 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1584 }
1585
1586 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1587 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1588 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1589 | HCPhysInterPaePDPT64;
1590
1591 /*
1592 * Initialize paging workers and mode from current host mode
1593 * and the guest running in real mode.
1594 */
1595 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1596 switch (pVM->pgm.s.enmHostMode)
1597 {
1598 case SUPPAGINGMODE_32_BIT:
1599 case SUPPAGINGMODE_32_BIT_GLOBAL:
1600 case SUPPAGINGMODE_PAE:
1601 case SUPPAGINGMODE_PAE_GLOBAL:
1602 case SUPPAGINGMODE_PAE_NX:
1603 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1604 break;
1605
1606 case SUPPAGINGMODE_AMD64:
1607 case SUPPAGINGMODE_AMD64_GLOBAL:
1608 case SUPPAGINGMODE_AMD64_NX:
1609 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1610#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1611 if (ARCH_BITS != 64)
1612 {
1613 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1614 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1615 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1616 }
1617#endif
1618 break;
1619 default:
1620 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1621 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1622 }
1623 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1624 if (RT_SUCCESS(rc))
1625 {
1626 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1627#if HC_ARCH_BITS == 64
1628 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1629 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1630 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1631 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1632 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1633 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1634 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1635#endif
1636
1637 /*
1638 * Log the host paging mode. It may come in handy.
1639 */
1640 const char *pszHostMode;
1641 switch (pVM->pgm.s.enmHostMode)
1642 {
1643 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1644 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1645 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1646 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1647 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1648 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1649 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1650 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1651 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1652 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1653 default: pszHostMode = "???"; break;
1654 }
1655 LogRel(("Host paging mode: %s\n", pszHostMode));
1656
1657 return VINF_SUCCESS;
1658 }
1659
1660 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1661 return rc;
1662}
1663
1664
1665/**
1666 * Init statistics
1667 * @returns VBox status code.
1668 */
1669static int pgmR3InitStats(PVM pVM)
1670{
1671 PPGM pPGM = &pVM->pgm.s;
1672 int rc;
1673
1674 /*
1675 * Release statistics.
1676 */
1677 /* Common - misc variables */
1678 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1679 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1680 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1681 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1682 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1683 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1684 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1685 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1686 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1687 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1688 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1689 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1690 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1691 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1692 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1693 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1694 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1695 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1696 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1697
1698 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1699 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1700 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1701
1702 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1703
1704 /* Live save */
1705 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1706 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1707 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1708 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1709 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1710 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1711 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1712 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1713 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1714 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1715 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1716 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1717 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1718 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1719 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1720 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1721 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1722 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1723
1724#ifdef VBOX_WITH_STATISTICS
1725
1726# define PGM_REG_COUNTER(a, b, c) \
1727 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1728 AssertRC(rc);
1729
1730# define PGM_REG_COUNTER_BYTES(a, b, c) \
1731 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1732 AssertRC(rc);
1733
1734# define PGM_REG_PROFILE(a, b, c) \
1735 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1736 AssertRC(rc);
1737
1738 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1739
1740 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1741 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1742 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1743 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1744 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1745
1746 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1747 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1748 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1749 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1750 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1751 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1752 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1753 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1754 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1755 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1756
1757 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1758 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1759 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1760 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1761 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1762 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1763
1764 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1765 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1766 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1767 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1768 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1769 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1770 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1771 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1772
1773 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1774 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1775 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1776 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1777
1778 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1779 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1780 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1781 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1782
1783 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1784 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1785 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1786 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1787 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1788 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1789 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1790 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1791
1792 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1793 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1794/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1795 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1796 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1797/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1798
1799 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1800 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1801 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1802 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1803 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1804 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1805 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1806 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1807
1808 /* GC only: */
1809 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1810 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1811
1812 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1813 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1814 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1815 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1816 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1817 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1818 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1819 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1820
1821 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1822 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1823 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1824 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1825 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1826 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1827 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1828
1829# undef PGM_REG_COUNTER
1830# undef PGM_REG_PROFILE
1831#endif
1832
1833 /*
1834 * Note! The layout below matches the member layout exactly!
1835 */
1836
1837 /*
1838 * Common - stats
1839 */
1840 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1841 {
1842 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1843
1844#define PGM_REG_COUNTER(a, b, c) \
1845 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1846 AssertRC(rc);
1847#define PGM_REG_PROFILE(a, b, c) \
1848 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1849 AssertRC(rc);
1850
1851 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1852 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1853
1854#ifdef VBOX_WITH_STATISTICS
1855 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1856
1857# if 0 /* rarely useful; leave for debugging. */
1858 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1859 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1860 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1861 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1862 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1863 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1864# endif
1865 /* R0 only: */
1866 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1867 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1868
1869 /* RZ only: */
1870 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1871 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1872 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1873 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1874 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1875 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1876 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1877 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1878 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1879 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1880 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1881 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1882 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1883 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1884 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1885 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1886 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1887 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1888 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1889 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1890 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1891 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1892 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1893 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1914#if 0 /* rarely useful; leave for debugging. */
1915 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1916 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1917 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1918#endif
1919 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1922 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1923 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1924
1925 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1926 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1927 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1929 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1930 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1931 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1932 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1939 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1944 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1945 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1947 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1950 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1951 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1952 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1953 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1954 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1955 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1956 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1957 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1958 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1959 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1960 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1961
1962 /* HC only: */
1963
1964 /* RZ & R3: */
1965 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1966 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1967 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1968 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1969 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1970 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1971 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1972 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1973 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1974 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1975 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1978 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1979 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1980 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1981 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1982 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1983 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1984 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1985 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1986 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1987 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1988 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1989 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1990 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1991 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1992 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1994 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1995 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1996 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1997 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1998 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1999 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2000 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2001 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2002 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2003 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2004 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2005 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2006 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2007 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2008 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2009 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2010 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2011 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2012
2013 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2014 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2015 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2016 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2017 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2018 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2019 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2020 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2021 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2022 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2023 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2024 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2025 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2026 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2027 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2028 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2029 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2030 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2031 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2032 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2033 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2034 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2035 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2036 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2037 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2038 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2039 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2040 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2041 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2042 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2043 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2044 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2045 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2046 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2047 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2048 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2049 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2050 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2051 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2052 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2053 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2054 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2055 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2056 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2057#endif /* VBOX_WITH_STATISTICS */
2058
2059#undef PGM_REG_PROFILE
2060#undef PGM_REG_COUNTER
2061
2062 }
2063
2064 return VINF_SUCCESS;
2065}
2066
2067
2068/**
2069 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2070 *
2071 * The dynamic mapping area will also be allocated and initialized at this
2072 * time. We could allocate it during PGMR3Init of course, but the mapping
2073 * wouldn't be allocated at that time preventing us from setting up the
2074 * page table entries with the dummy page.
2075 *
2076 * @returns VBox status code.
2077 * @param pVM Pointer to the VM.
2078 */
2079VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2080{
2081 RTGCPTR GCPtr;
2082 int rc;
2083
2084 /*
2085 * Reserve space for the dynamic mappings.
2086 */
2087 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2088 if (RT_SUCCESS(rc))
2089 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2090
2091 if ( RT_SUCCESS(rc)
2092 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2093 {
2094 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2095 if (RT_SUCCESS(rc))
2096 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2097 }
2098 if (RT_SUCCESS(rc))
2099 {
2100 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2101 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2102 }
2103 return rc;
2104}
2105
2106
2107/**
2108 * Ring-3 init finalizing.
2109 *
2110 * @returns VBox status code.
2111 * @param pVM Pointer to the VM.
2112 */
2113VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2114{
2115 int rc;
2116
2117 /*
2118 * Reserve space for the dynamic mappings.
2119 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2120 */
2121 /* get the pointer to the page table entries. */
2122 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2123 AssertRelease(pMapping);
2124 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2125 const unsigned iPT = off >> X86_PD_SHIFT;
2126 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2127 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2128 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2129
2130 /* init cache area */
2131 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2132 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2133 {
2134 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2135 AssertRCReturn(rc, rc);
2136 }
2137
2138 /*
2139 * Determine the max physical address width (MAXPHYADDR) and apply it to
2140 * all the mask members and stuff.
2141 */
2142 uint32_t cMaxPhysAddrWidth;
2143 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2144 if ( uMaxExtLeaf >= 0x80000008
2145 && uMaxExtLeaf <= 0x80000fff)
2146 {
2147 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2148 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2149 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2150 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2151 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2152 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2153 }
2154 else
2155 {
2156 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2157 cMaxPhysAddrWidth = 48;
2158 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2159 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2160 }
2161
2162 pVM->pgm.s.GCPhysInvAddrMask = 0;
2163 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2164 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2165
2166 /*
2167 * Initialize the invalid paging entry masks, assuming NX is disabled.
2168 */
2169 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2170 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2171 {
2172 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2173
2174 /** @todo The manuals are not entirely clear whether the physical
2175 * address width is relevant. See table 5-9 in the intel
2176 * manual vs the PDE4M descriptions. Write testcase (NP). */
2177 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2178 | X86_PDE4M_MBZ_MASK;
2179
2180 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2181 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2182 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2183 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2184
2185 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2186 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2187 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2188 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2189 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2190 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2191
2192 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2193 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2194 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2195 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2196 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2197 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2198 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2199 }
2200
2201 /*
2202 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2203 * Intel only goes up to 36 bits, so we stick to 36 as well.
2204 * Update: More recent intel manuals specifies 40 bits just like AMD.
2205 */
2206 uint32_t u32Dummy, u32Features;
2207 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2208 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2209 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2210 else
2211 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2212
2213 /*
2214 * Allocate memory if we're supposed to do that.
2215 */
2216 if (pVM->pgm.s.fRamPreAlloc)
2217 rc = pgmR3PhysRamPreAllocate(pVM);
2218
2219 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2220 return rc;
2221}
2222
2223
2224/**
2225 * Init phase completed callback.
2226 *
2227 * @returns VBox status code.
2228 * @param pVM Pointer to the VM.
2229 * @param enmWhat What has been completed.
2230 * @thread EMT(0)
2231 */
2232VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2233{
2234 switch (enmWhat)
2235 {
2236 case VMINITCOMPLETED_HM:
2237#ifdef VBOX_WITH_PCI_PASSTHROUGH
2238 if (pVM->pgm.s.fPciPassthrough)
2239 {
2240 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2241 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2242 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2243
2244 /*
2245 * Report assignments to the IOMMU (hope that's good enough for now).
2246 */
2247 if (pVM->pgm.s.fPciPassthrough)
2248 {
2249 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2250 AssertRCReturn(rc, rc);
2251 }
2252 }
2253#else
2254 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2255#endif
2256 break;
2257
2258 default:
2259 /* shut up gcc */
2260 break;
2261 }
2262
2263 return VINF_SUCCESS;
2264}
2265
2266
2267/**
2268 * Applies relocations to data and code managed by this component.
2269 *
2270 * This function will be called at init and whenever the VMM need to relocate it
2271 * self inside the GC.
2272 *
2273 * @param pVM The VM.
2274 * @param offDelta Relocation delta relative to old location.
2275 */
2276VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2277{
2278 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2279
2280 /*
2281 * Paging stuff.
2282 */
2283 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2284
2285 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2286
2287 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2288 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2289 {
2290 PVMCPU pVCpu = &pVM->aCpus[i];
2291
2292 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2293
2294 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2295 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2296 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2297 }
2298
2299 /*
2300 * Trees.
2301 */
2302 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2303
2304 /*
2305 * Ram ranges.
2306 */
2307 if (pVM->pgm.s.pRamRangesXR3)
2308 {
2309 /* Update the pSelfRC pointers and relink them. */
2310 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2311 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2312 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2313 pgmR3PhysRelinkRamRanges(pVM);
2314
2315 /* Flush the RC TLB. */
2316 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2317 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2318 }
2319
2320 /*
2321 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2322 * be mapped and thus not included in the above exercise.
2323 */
2324 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2325 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2326 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2327
2328 /*
2329 * Update the two page directories with all page table mappings.
2330 * (One or more of them have changed, that's why we're here.)
2331 */
2332 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2333 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2334 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2335
2336 /* Relocate GC addresses of Page Tables. */
2337 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2338 {
2339 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2340 {
2341 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2342 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2343 }
2344 }
2345
2346 /*
2347 * Dynamic page mapping area.
2348 */
2349 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2350 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2351 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2352
2353 if (pVM->pgm.s.pRCDynMap)
2354 {
2355 pVM->pgm.s.pRCDynMap += offDelta;
2356 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2357
2358 pDynMap->paPages += offDelta;
2359 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2360
2361 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2362 {
2363 paPages[iPage].pvPage += offDelta;
2364 paPages[iPage].uPte.pLegacy += offDelta;
2365 paPages[iPage].uPte.pPae += offDelta;
2366 }
2367 }
2368
2369 /*
2370 * The Zero page.
2371 */
2372 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2373#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2374 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
2375#else
2376 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2377#endif
2378
2379 /*
2380 * Physical and virtual handlers.
2381 */
2382 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2383 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2384 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2385 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2386
2387 /*
2388 * The page pool.
2389 */
2390 pgmR3PoolRelocate(pVM);
2391
2392#ifdef VBOX_WITH_STATISTICS
2393 /*
2394 * Statistics.
2395 */
2396 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2397 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2398 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2399#endif
2400}
2401
2402
2403/**
2404 * Callback function for relocating a physical access handler.
2405 *
2406 * @returns 0 (continue enum)
2407 * @param pNode Pointer to a PGMPHYSHANDLER node.
2408 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2409 * not certain the delta will fit in a void pointer for all possible configs.
2410 */
2411static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2412{
2413 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2414 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2415 if (pHandler->pfnHandlerRC)
2416 pHandler->pfnHandlerRC += offDelta;
2417 if (pHandler->pvUserRC >= 0x10000)
2418 pHandler->pvUserRC += offDelta;
2419 return 0;
2420}
2421
2422
2423/**
2424 * Callback function for relocating a virtual access handler.
2425 *
2426 * @returns 0 (continue enum)
2427 * @param pNode Pointer to a PGMVIRTHANDLER node.
2428 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2429 * not certain the delta will fit in a void pointer for all possible configs.
2430 */
2431static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2432{
2433 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2434 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2435 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2436 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2437 Assert(pHandler->pfnHandlerRC);
2438 pHandler->pfnHandlerRC += offDelta;
2439 return 0;
2440}
2441
2442
2443/**
2444 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2445 *
2446 * @returns 0 (continue enum)
2447 * @param pNode Pointer to a PGMVIRTHANDLER node.
2448 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2449 * not certain the delta will fit in a void pointer for all possible configs.
2450 */
2451static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2452{
2453 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2454 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2455 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2456 Assert(pHandler->pfnHandlerRC);
2457 pHandler->pfnHandlerRC += offDelta;
2458 return 0;
2459}
2460
2461
2462/**
2463 * Resets a virtual CPU when unplugged.
2464 *
2465 * @param pVM Pointer to the VM.
2466 * @param pVCpu Pointer to the VMCPU.
2467 */
2468VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2469{
2470 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2471 AssertRC(rc);
2472
2473 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2474 AssertRC(rc);
2475
2476 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2477
2478 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2479
2480 /*
2481 * Re-init other members.
2482 */
2483 pVCpu->pgm.s.fA20Enabled = true;
2484 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2485
2486 /*
2487 * Clear the FFs PGM owns.
2488 */
2489 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2490 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2491}
2492
2493
2494/**
2495 * The VM is being reset.
2496 *
2497 * For the PGM component this means that any PD write monitors
2498 * needs to be removed.
2499 *
2500 * @param pVM Pointer to the VM.
2501 */
2502VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2503{
2504 LogFlow(("PGMR3Reset:\n"));
2505 VM_ASSERT_EMT(pVM);
2506
2507 pgmLock(pVM);
2508
2509 /*
2510 * Unfix any fixed mappings and disable CR3 monitoring.
2511 */
2512 pVM->pgm.s.fMappingsFixed = false;
2513 pVM->pgm.s.fMappingsFixedRestored = false;
2514 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2515 pVM->pgm.s.cbMappingFixed = 0;
2516
2517 /*
2518 * Exit the guest paging mode before the pgm pool gets reset.
2519 * Important to clean up the amd64 case.
2520 */
2521 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2522 {
2523 PVMCPU pVCpu = &pVM->aCpus[i];
2524 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2525 AssertReleaseRC(rc);
2526 }
2527
2528#ifdef DEBUG
2529 DBGFR3_INFO_LOG(pVM, "mappings", NULL);
2530 DBGFR3_INFO_LOG(pVM, "handlers", "all nostat");
2531#endif
2532
2533 /*
2534 * Switch mode back to real mode. (before resetting the pgm pool!)
2535 */
2536 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2537 {
2538 PVMCPU pVCpu = &pVM->aCpus[i];
2539
2540 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2541 AssertReleaseRC(rc);
2542
2543 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2544 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2545 }
2546
2547 /*
2548 * Reset the shadow page pool.
2549 */
2550 pgmR3PoolReset(pVM);
2551
2552 /*
2553 * Re-init various other members and clear the FFs that PGM owns.
2554 */
2555 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2556 {
2557 PVMCPU pVCpu = &pVM->aCpus[i];
2558
2559 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2560 PGMNotifyNxeChanged(pVCpu, false);
2561
2562 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2563 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2564
2565 if (!pVCpu->pgm.s.fA20Enabled)
2566 {
2567 pVCpu->pgm.s.fA20Enabled = true;
2568 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2569#ifdef PGM_WITH_A20
2570 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2571 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2572 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2573 HMFlushTLB(pVCpu);
2574#endif
2575 }
2576 }
2577
2578 pgmUnlock(pVM);
2579}
2580
2581
2582/**
2583 * Memory setup after VM construction or reset.
2584 *
2585 * @param pVM Pointer to the VM.
2586 * @param fAtReset Indicates the context, after reset if @c true or after
2587 * construction if @c false.
2588 */
2589VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2590{
2591 if (fAtReset)
2592 {
2593 pgmLock(pVM);
2594
2595 int rc = pgmR3PhysRamZeroAll(pVM);
2596 AssertReleaseRC(rc);
2597
2598 rc = pgmR3PhysRomReset(pVM);
2599 AssertReleaseRC(rc);
2600
2601 pgmUnlock(pVM);
2602 }
2603}
2604
2605
2606#ifdef VBOX_STRICT
2607/**
2608 * VM state change callback for clearing fNoMorePhysWrites after
2609 * a snapshot has been created.
2610 */
2611static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2612{
2613 if ( enmState == VMSTATE_RUNNING
2614 || enmState == VMSTATE_RESUMING)
2615 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2616 NOREF(enmOldState); NOREF(pvUser);
2617}
2618#endif
2619
2620/**
2621 * Private API to reset fNoMorePhysWrites.
2622 */
2623VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2624{
2625 pVM->pgm.s.fNoMorePhysWrites = false;
2626}
2627
2628/**
2629 * Terminates the PGM.
2630 *
2631 * @returns VBox status code.
2632 * @param pVM Pointer to VM structure.
2633 */
2634VMMR3DECL(int) PGMR3Term(PVM pVM)
2635{
2636 /* Must free shared pages here. */
2637 pgmLock(pVM);
2638 pgmR3PhysRamTerm(pVM);
2639 pgmR3PhysRomTerm(pVM);
2640 pgmUnlock(pVM);
2641
2642 PGMDeregisterStringFormatTypes();
2643 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2644}
2645
2646
2647/**
2648 * Show paging mode.
2649 *
2650 * @param pVM Pointer to the VM.
2651 * @param pHlp The info helpers.
2652 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2653 */
2654static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2655{
2656 /* digest argument. */
2657 bool fGuest, fShadow, fHost;
2658 if (pszArgs)
2659 pszArgs = RTStrStripL(pszArgs);
2660 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2661 fShadow = fHost = fGuest = true;
2662 else
2663 {
2664 fShadow = fHost = fGuest = false;
2665 if (strstr(pszArgs, "guest"))
2666 fGuest = true;
2667 if (strstr(pszArgs, "shadow"))
2668 fShadow = true;
2669 if (strstr(pszArgs, "host"))
2670 fHost = true;
2671 }
2672
2673 /** @todo SMP support! */
2674 /* print info. */
2675 if (fGuest)
2676 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2677 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2678 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2679 if (fShadow)
2680 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2681 if (fHost)
2682 {
2683 const char *psz;
2684 switch (pVM->pgm.s.enmHostMode)
2685 {
2686 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2687 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2688 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2689 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2690 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2691 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2692 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2693 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2694 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2695 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2696 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2697 default: psz = "unknown"; break;
2698 }
2699 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2700 }
2701}
2702
2703
2704/**
2705 * Dump registered MMIO ranges to the log.
2706 *
2707 * @param pVM Pointer to the VM.
2708 * @param pHlp The info helpers.
2709 * @param pszArgs Arguments, ignored.
2710 */
2711static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2712{
2713 NOREF(pszArgs);
2714 pHlp->pfnPrintf(pHlp,
2715 "RAM ranges (pVM=%p)\n"
2716 "%.*s %.*s\n",
2717 pVM,
2718 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2719 sizeof(RTHCPTR) * 2, "pvHC ");
2720
2721 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2722 pHlp->pfnPrintf(pHlp,
2723 "%RGp-%RGp %RHv %s\n",
2724 pCur->GCPhys,
2725 pCur->GCPhysLast,
2726 pCur->pvR3,
2727 pCur->pszDesc);
2728}
2729
2730
2731/**
2732 * Dump the page directory to the log.
2733 *
2734 * @param pVM Pointer to the VM.
2735 * @param pHlp The info helpers.
2736 * @param pszArgs Arguments, ignored.
2737 */
2738static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2739{
2740 /** @todo SMP support!! */
2741 PVMCPU pVCpu = &pVM->aCpus[0];
2742
2743/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2744 /* Big pages supported? */
2745 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2746
2747 /* Global pages supported? */
2748 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2749
2750 NOREF(pszArgs);
2751
2752 /*
2753 * Get page directory addresses.
2754 */
2755 pgmLock(pVM);
2756 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2757 Assert(pPDSrc);
2758
2759 /*
2760 * Iterate the page directory.
2761 */
2762 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2763 {
2764 X86PDE PdeSrc = pPDSrc->a[iPD];
2765 if (PdeSrc.n.u1Present)
2766 {
2767 if (PdeSrc.b.u1Size && fPSE)
2768 pHlp->pfnPrintf(pHlp,
2769 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2770 iPD,
2771 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2772 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2773 else
2774 pHlp->pfnPrintf(pHlp,
2775 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2776 iPD,
2777 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2778 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2779 }
2780 }
2781 pgmUnlock(pVM);
2782}
2783
2784
2785/**
2786 * Service a VMMCALLRING3_PGM_LOCK call.
2787 *
2788 * @returns VBox status code.
2789 * @param pVM Pointer to the VM.
2790 */
2791VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2792{
2793 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2794 AssertRC(rc);
2795 return rc;
2796}
2797
2798
2799/**
2800 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2801 *
2802 * @returns PGM_TYPE_*.
2803 * @param pgmMode The mode value to convert.
2804 */
2805DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2806{
2807 switch (pgmMode)
2808 {
2809 case PGMMODE_REAL: return PGM_TYPE_REAL;
2810 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2811 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2812 case PGMMODE_PAE:
2813 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2814 case PGMMODE_AMD64:
2815 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2816 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2817 case PGMMODE_EPT: return PGM_TYPE_EPT;
2818 default:
2819 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2820 }
2821}
2822
2823
2824/**
2825 * Gets the index into the paging mode data array of a SHW+GST mode.
2826 *
2827 * @returns PGM::paPagingData index.
2828 * @param uShwType The shadow paging mode type.
2829 * @param uGstType The guest paging mode type.
2830 */
2831DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2832{
2833 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2834 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2835 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2836 + (uGstType - PGM_TYPE_REAL);
2837}
2838
2839
2840/**
2841 * Gets the index into the paging mode data array of a SHW+GST mode.
2842 *
2843 * @returns PGM::paPagingData index.
2844 * @param enmShw The shadow paging mode.
2845 * @param enmGst The guest paging mode.
2846 */
2847DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2848{
2849 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2850 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2851 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2852}
2853
2854
2855/**
2856 * Calculates the max data index.
2857 * @returns The number of entries in the paging data array.
2858 */
2859DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2860{
2861 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2862}
2863
2864
2865/**
2866 * Initializes the paging mode data kept in PGM::paModeData.
2867 *
2868 * @param pVM Pointer to the VM.
2869 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2870 * This is used early in the init process to avoid trouble with PDM
2871 * not being initialized yet.
2872 */
2873static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2874{
2875 PPGMMODEDATA pModeData;
2876 int rc;
2877
2878 /*
2879 * Allocate the array on the first call.
2880 */
2881 if (!pVM->pgm.s.paModeData)
2882 {
2883 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2884 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2885 }
2886
2887 /*
2888 * Initialize the array entries.
2889 */
2890 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2891 pModeData->uShwType = PGM_TYPE_32BIT;
2892 pModeData->uGstType = PGM_TYPE_REAL;
2893 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2894 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2895 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896
2897 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2898 pModeData->uShwType = PGM_TYPE_32BIT;
2899 pModeData->uGstType = PGM_TYPE_PROT;
2900 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903
2904 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2905 pModeData->uShwType = PGM_TYPE_32BIT;
2906 pModeData->uGstType = PGM_TYPE_32BIT;
2907 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2909 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910
2911 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2912 pModeData->uShwType = PGM_TYPE_PAE;
2913 pModeData->uGstType = PGM_TYPE_REAL;
2914 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2915 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917
2918 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2919 pModeData->uShwType = PGM_TYPE_PAE;
2920 pModeData->uGstType = PGM_TYPE_PROT;
2921 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2922 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2924
2925 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2926 pModeData->uShwType = PGM_TYPE_PAE;
2927 pModeData->uGstType = PGM_TYPE_32BIT;
2928 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2929 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2930 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2931
2932 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2933 pModeData->uShwType = PGM_TYPE_PAE;
2934 pModeData->uGstType = PGM_TYPE_PAE;
2935 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2936 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2937 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2938
2939#ifdef VBOX_WITH_64_BITS_GUESTS
2940 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2941 pModeData->uShwType = PGM_TYPE_AMD64;
2942 pModeData->uGstType = PGM_TYPE_AMD64;
2943 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2944 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2945 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2946#endif
2947
2948 /* The nested paging mode. */
2949 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2950 pModeData->uShwType = PGM_TYPE_NESTED;
2951 pModeData->uGstType = PGM_TYPE_REAL;
2952 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2953 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2954
2955 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2956 pModeData->uShwType = PGM_TYPE_NESTED;
2957 pModeData->uGstType = PGM_TYPE_PROT;
2958 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2959 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2960
2961 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2962 pModeData->uShwType = PGM_TYPE_NESTED;
2963 pModeData->uGstType = PGM_TYPE_32BIT;
2964 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2965 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2966
2967 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2968 pModeData->uShwType = PGM_TYPE_NESTED;
2969 pModeData->uGstType = PGM_TYPE_PAE;
2970 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2971 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2972
2973#ifdef VBOX_WITH_64_BITS_GUESTS
2974 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2975 pModeData->uShwType = PGM_TYPE_NESTED;
2976 pModeData->uGstType = PGM_TYPE_AMD64;
2977 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2978 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2979#endif
2980
2981 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2982 switch (pVM->pgm.s.enmHostMode)
2983 {
2984#if HC_ARCH_BITS == 32
2985 case SUPPAGINGMODE_32_BIT:
2986 case SUPPAGINGMODE_32_BIT_GLOBAL:
2987 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2988 {
2989 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2990 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2991 }
2992# ifdef VBOX_WITH_64_BITS_GUESTS
2993 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2994 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2995# endif
2996 break;
2997
2998 case SUPPAGINGMODE_PAE:
2999 case SUPPAGINGMODE_PAE_NX:
3000 case SUPPAGINGMODE_PAE_GLOBAL:
3001 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3002 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3003 {
3004 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3005 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3006 }
3007# ifdef VBOX_WITH_64_BITS_GUESTS
3008 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3009 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3010# endif
3011 break;
3012#endif /* HC_ARCH_BITS == 32 */
3013
3014#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3015 case SUPPAGINGMODE_AMD64:
3016 case SUPPAGINGMODE_AMD64_GLOBAL:
3017 case SUPPAGINGMODE_AMD64_NX:
3018 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3019# ifdef VBOX_WITH_64_BITS_GUESTS
3020 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3021# else
3022 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3023# endif
3024 {
3025 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3026 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3027 }
3028 break;
3029#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3030
3031 default:
3032 AssertFailed();
3033 break;
3034 }
3035
3036 /* Extended paging (EPT) / Intel VT-x */
3037 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3038 pModeData->uShwType = PGM_TYPE_EPT;
3039 pModeData->uGstType = PGM_TYPE_REAL;
3040 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3041 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3042 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3043
3044 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3045 pModeData->uShwType = PGM_TYPE_EPT;
3046 pModeData->uGstType = PGM_TYPE_PROT;
3047 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3048 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3049 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3050
3051 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3052 pModeData->uShwType = PGM_TYPE_EPT;
3053 pModeData->uGstType = PGM_TYPE_32BIT;
3054 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3055 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3056 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3057
3058 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3059 pModeData->uShwType = PGM_TYPE_EPT;
3060 pModeData->uGstType = PGM_TYPE_PAE;
3061 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3062 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3063 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3064
3065#ifdef VBOX_WITH_64_BITS_GUESTS
3066 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3067 pModeData->uShwType = PGM_TYPE_EPT;
3068 pModeData->uGstType = PGM_TYPE_AMD64;
3069 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3070 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3071 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3072#endif
3073 return VINF_SUCCESS;
3074}
3075
3076
3077/**
3078 * Switch to different (or relocated in the relocate case) mode data.
3079 *
3080 * @param pVM Pointer to the VM.
3081 * @param pVCpu Pointer to the VMCPU.
3082 * @param enmShw The shadow paging mode.
3083 * @param enmGst The guest paging mode.
3084 */
3085static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3086{
3087 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3088
3089 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3090 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3091
3092 /* shadow */
3093 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3094 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3095 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3096 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3097 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3098
3099 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3100 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3101
3102 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3103 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3104
3105
3106 /* guest */
3107 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3108 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3109 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3110 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3111 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3112 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3113 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3114 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3115 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3116 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3117 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3118 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3119
3120 /* both */
3121 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3122 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3123 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3124 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3125 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3126 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3127#ifdef VBOX_STRICT
3128 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3129#endif
3130 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3131 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3132
3133 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3134 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3135 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3136 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3137 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3138#ifdef VBOX_STRICT
3139 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3140#endif
3141 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3142 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3143
3144 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3145 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3146 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3147 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3148 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3149#ifdef VBOX_STRICT
3150 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3151#endif
3152 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3153 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3154}
3155
3156
3157/**
3158 * Calculates the shadow paging mode.
3159 *
3160 * @returns The shadow paging mode.
3161 * @param pVM Pointer to the VM.
3162 * @param enmGuestMode The guest mode.
3163 * @param enmHostMode The host mode.
3164 * @param enmShadowMode The current shadow mode.
3165 * @param penmSwitcher Where to store the switcher to use.
3166 * VMMSWITCHER_INVALID means no change.
3167 */
3168static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3169{
3170 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3171 switch (enmGuestMode)
3172 {
3173 /*
3174 * When switching to real or protected mode we don't change
3175 * anything since it's likely that we'll switch back pretty soon.
3176 *
3177 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3178 * and is supposed to determine which shadow paging and switcher to
3179 * use during init.
3180 */
3181 case PGMMODE_REAL:
3182 case PGMMODE_PROTECTED:
3183 if ( enmShadowMode != PGMMODE_INVALID
3184 && !HMIsEnabled(pVM) /* always switch in hm mode! */)
3185 break; /* (no change) */
3186
3187 switch (enmHostMode)
3188 {
3189 case SUPPAGINGMODE_32_BIT:
3190 case SUPPAGINGMODE_32_BIT_GLOBAL:
3191 enmShadowMode = PGMMODE_32_BIT;
3192 enmSwitcher = VMMSWITCHER_32_TO_32;
3193 break;
3194
3195 case SUPPAGINGMODE_PAE:
3196 case SUPPAGINGMODE_PAE_NX:
3197 case SUPPAGINGMODE_PAE_GLOBAL:
3198 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3199 enmShadowMode = PGMMODE_PAE;
3200 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3201#ifdef DEBUG_bird
3202 if (RTEnvExist("VBOX_32BIT"))
3203 {
3204 enmShadowMode = PGMMODE_32_BIT;
3205 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3206 }
3207#endif
3208 break;
3209
3210 case SUPPAGINGMODE_AMD64:
3211 case SUPPAGINGMODE_AMD64_GLOBAL:
3212 case SUPPAGINGMODE_AMD64_NX:
3213 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3214 enmShadowMode = PGMMODE_PAE;
3215 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3216#ifdef DEBUG_bird
3217 if (RTEnvExist("VBOX_32BIT"))
3218 {
3219 enmShadowMode = PGMMODE_32_BIT;
3220 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3221 }
3222#endif
3223 break;
3224
3225 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3226 }
3227 break;
3228
3229 case PGMMODE_32_BIT:
3230 switch (enmHostMode)
3231 {
3232 case SUPPAGINGMODE_32_BIT:
3233 case SUPPAGINGMODE_32_BIT_GLOBAL:
3234 enmShadowMode = PGMMODE_32_BIT;
3235 enmSwitcher = VMMSWITCHER_32_TO_32;
3236 break;
3237
3238 case SUPPAGINGMODE_PAE:
3239 case SUPPAGINGMODE_PAE_NX:
3240 case SUPPAGINGMODE_PAE_GLOBAL:
3241 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3242 enmShadowMode = PGMMODE_PAE;
3243 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3244#ifdef DEBUG_bird
3245 if (RTEnvExist("VBOX_32BIT"))
3246 {
3247 enmShadowMode = PGMMODE_32_BIT;
3248 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3249 }
3250#endif
3251 break;
3252
3253 case SUPPAGINGMODE_AMD64:
3254 case SUPPAGINGMODE_AMD64_GLOBAL:
3255 case SUPPAGINGMODE_AMD64_NX:
3256 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3257 enmShadowMode = PGMMODE_PAE;
3258 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3259#ifdef DEBUG_bird
3260 if (RTEnvExist("VBOX_32BIT"))
3261 {
3262 enmShadowMode = PGMMODE_32_BIT;
3263 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3264 }
3265#endif
3266 break;
3267
3268 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3269 }
3270 break;
3271
3272 case PGMMODE_PAE:
3273 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3274 switch (enmHostMode)
3275 {
3276 case SUPPAGINGMODE_32_BIT:
3277 case SUPPAGINGMODE_32_BIT_GLOBAL:
3278 enmShadowMode = PGMMODE_PAE;
3279 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3280 break;
3281
3282 case SUPPAGINGMODE_PAE:
3283 case SUPPAGINGMODE_PAE_NX:
3284 case SUPPAGINGMODE_PAE_GLOBAL:
3285 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3286 enmShadowMode = PGMMODE_PAE;
3287 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3288 break;
3289
3290 case SUPPAGINGMODE_AMD64:
3291 case SUPPAGINGMODE_AMD64_GLOBAL:
3292 case SUPPAGINGMODE_AMD64_NX:
3293 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3294 enmShadowMode = PGMMODE_PAE;
3295 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3296 break;
3297
3298 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3299 }
3300 break;
3301
3302 case PGMMODE_AMD64:
3303 case PGMMODE_AMD64_NX:
3304 switch (enmHostMode)
3305 {
3306 case SUPPAGINGMODE_32_BIT:
3307 case SUPPAGINGMODE_32_BIT_GLOBAL:
3308 enmShadowMode = PGMMODE_AMD64;
3309 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3310 break;
3311
3312 case SUPPAGINGMODE_PAE:
3313 case SUPPAGINGMODE_PAE_NX:
3314 case SUPPAGINGMODE_PAE_GLOBAL:
3315 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3316 enmShadowMode = PGMMODE_AMD64;
3317 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3318 break;
3319
3320 case SUPPAGINGMODE_AMD64:
3321 case SUPPAGINGMODE_AMD64_GLOBAL:
3322 case SUPPAGINGMODE_AMD64_NX:
3323 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3324 enmShadowMode = PGMMODE_AMD64;
3325 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3326 break;
3327
3328 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3329 }
3330 break;
3331
3332
3333 default:
3334 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3335 *penmSwitcher = VMMSWITCHER_INVALID;
3336 return PGMMODE_INVALID;
3337 }
3338 /* Override the shadow mode is nested paging is active. */
3339 pVM->pgm.s.fNestedPaging = HMIsNestedPagingActive(pVM);
3340 if (pVM->pgm.s.fNestedPaging)
3341 enmShadowMode = HMGetShwPagingMode(pVM);
3342
3343 *penmSwitcher = enmSwitcher;
3344 return enmShadowMode;
3345}
3346
3347
3348/**
3349 * Performs the actual mode change.
3350 * This is called by PGMChangeMode and pgmR3InitPaging().
3351 *
3352 * @returns VBox status code. May suspend or power off the VM on error, but this
3353 * will trigger using FFs and not status codes.
3354 *
3355 * @param pVM Pointer to the VM.
3356 * @param pVCpu Pointer to the VMCPU.
3357 * @param enmGuestMode The new guest mode. This is assumed to be different from
3358 * the current mode.
3359 */
3360VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3361{
3362#if HC_ARCH_BITS == 32
3363 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3364#endif
3365 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3366
3367 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3368 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3369
3370 /*
3371 * Calc the shadow mode and switcher.
3372 */
3373 VMMSWITCHER enmSwitcher;
3374 PGMMODE enmShadowMode;
3375 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3376
3377#ifdef VBOX_WITH_RAW_MODE
3378 if ( enmSwitcher != VMMSWITCHER_INVALID
3379 && !HMIsEnabled(pVM))
3380 {
3381 /*
3382 * Select new switcher.
3383 */
3384 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3385 if (RT_FAILURE(rc))
3386 {
3387 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3388 return rc;
3389 }
3390 }
3391#endif
3392
3393 /*
3394 * Exit old mode(s).
3395 */
3396#if HC_ARCH_BITS == 32
3397 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3398 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3399 && enmShadowMode == PGMMODE_NESTED);
3400#else
3401 const bool fForceShwEnterExit = false;
3402#endif
3403 /* shadow */
3404 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3405 || fForceShwEnterExit)
3406 {
3407 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3408 if (PGM_SHW_PFN(Exit, pVCpu))
3409 {
3410 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3411 if (RT_FAILURE(rc))
3412 {
3413 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3414 return rc;
3415 }
3416 }
3417
3418 }
3419 else
3420 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3421
3422 /* guest */
3423 if (PGM_GST_PFN(Exit, pVCpu))
3424 {
3425 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3426 if (RT_FAILURE(rc))
3427 {
3428 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3429 return rc;
3430 }
3431 }
3432
3433 /*
3434 * Load new paging mode data.
3435 */
3436 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3437
3438 /*
3439 * Enter new shadow mode (if changed).
3440 */
3441 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3442 || fForceShwEnterExit)
3443 {
3444 int rc;
3445 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3446 switch (enmShadowMode)
3447 {
3448 case PGMMODE_32_BIT:
3449 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3450 break;
3451 case PGMMODE_PAE:
3452 case PGMMODE_PAE_NX:
3453 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3454 break;
3455 case PGMMODE_AMD64:
3456 case PGMMODE_AMD64_NX:
3457 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3458 break;
3459 case PGMMODE_NESTED:
3460 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3461 break;
3462 case PGMMODE_EPT:
3463 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3464 break;
3465 case PGMMODE_REAL:
3466 case PGMMODE_PROTECTED:
3467 default:
3468 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3469 return VERR_INTERNAL_ERROR;
3470 }
3471 if (RT_FAILURE(rc))
3472 {
3473 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3474 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3475 return rc;
3476 }
3477 }
3478
3479 /*
3480 * Always flag the necessary updates
3481 */
3482 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3483
3484 /*
3485 * Enter the new guest and shadow+guest modes.
3486 */
3487 int rc = -1;
3488 int rc2 = -1;
3489 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3490 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3491 switch (enmGuestMode)
3492 {
3493 case PGMMODE_REAL:
3494 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3495 switch (pVCpu->pgm.s.enmShadowMode)
3496 {
3497 case PGMMODE_32_BIT:
3498 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3499 break;
3500 case PGMMODE_PAE:
3501 case PGMMODE_PAE_NX:
3502 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3503 break;
3504 case PGMMODE_NESTED:
3505 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3506 break;
3507 case PGMMODE_EPT:
3508 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3509 break;
3510 case PGMMODE_AMD64:
3511 case PGMMODE_AMD64_NX:
3512 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3513 default: AssertFailed(); break;
3514 }
3515 break;
3516
3517 case PGMMODE_PROTECTED:
3518 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3519 switch (pVCpu->pgm.s.enmShadowMode)
3520 {
3521 case PGMMODE_32_BIT:
3522 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3523 break;
3524 case PGMMODE_PAE:
3525 case PGMMODE_PAE_NX:
3526 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3527 break;
3528 case PGMMODE_NESTED:
3529 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3530 break;
3531 case PGMMODE_EPT:
3532 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3533 break;
3534 case PGMMODE_AMD64:
3535 case PGMMODE_AMD64_NX:
3536 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3537 default: AssertFailed(); break;
3538 }
3539 break;
3540
3541 case PGMMODE_32_BIT:
3542 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3543 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3544 switch (pVCpu->pgm.s.enmShadowMode)
3545 {
3546 case PGMMODE_32_BIT:
3547 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3548 break;
3549 case PGMMODE_PAE:
3550 case PGMMODE_PAE_NX:
3551 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3552 break;
3553 case PGMMODE_NESTED:
3554 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3555 break;
3556 case PGMMODE_EPT:
3557 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3558 break;
3559 case PGMMODE_AMD64:
3560 case PGMMODE_AMD64_NX:
3561 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3562 default: AssertFailed(); break;
3563 }
3564 break;
3565
3566 case PGMMODE_PAE_NX:
3567 case PGMMODE_PAE:
3568 {
3569 uint32_t u32Dummy, u32Features;
3570
3571 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3572 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3573 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3574 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3575
3576 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3577 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3578 switch (pVCpu->pgm.s.enmShadowMode)
3579 {
3580 case PGMMODE_PAE:
3581 case PGMMODE_PAE_NX:
3582 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3583 break;
3584 case PGMMODE_NESTED:
3585 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3586 break;
3587 case PGMMODE_EPT:
3588 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3589 break;
3590 case PGMMODE_32_BIT:
3591 case PGMMODE_AMD64:
3592 case PGMMODE_AMD64_NX:
3593 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3594 default: AssertFailed(); break;
3595 }
3596 break;
3597 }
3598
3599#ifdef VBOX_WITH_64_BITS_GUESTS
3600 case PGMMODE_AMD64_NX:
3601 case PGMMODE_AMD64:
3602 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3603 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3604 switch (pVCpu->pgm.s.enmShadowMode)
3605 {
3606 case PGMMODE_AMD64:
3607 case PGMMODE_AMD64_NX:
3608 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3609 break;
3610 case PGMMODE_NESTED:
3611 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3612 break;
3613 case PGMMODE_EPT:
3614 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3615 break;
3616 case PGMMODE_32_BIT:
3617 case PGMMODE_PAE:
3618 case PGMMODE_PAE_NX:
3619 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3620 default: AssertFailed(); break;
3621 }
3622 break;
3623#endif
3624
3625 default:
3626 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3627 rc = VERR_NOT_IMPLEMENTED;
3628 break;
3629 }
3630
3631 /* status codes. */
3632 AssertRC(rc);
3633 AssertRC(rc2);
3634 if (RT_SUCCESS(rc))
3635 {
3636 rc = rc2;
3637 if (RT_SUCCESS(rc)) /* no informational status codes. */
3638 rc = VINF_SUCCESS;
3639 }
3640
3641 /* Notify HM as well. */
3642 HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3643 return rc;
3644}
3645
3646
3647/**
3648 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3649 *
3650 * @returns VBox status code, fully asserted.
3651 * @param pVCpu Pointer to the VMCPU.
3652 */
3653int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3654{
3655 /* Unmap the old CR3 value before flushing everything. */
3656 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3657 AssertRC(rc);
3658
3659 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3660 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3661 AssertRC(rc);
3662 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3663 return rc;
3664}
3665
3666
3667/**
3668 * Called by pgmPoolFlushAllInt after flushing the pool.
3669 *
3670 * @returns VBox status code, fully asserted.
3671 * @param pVM Pointer to the VM.
3672 * @param pVCpu Pointer to the VMCPU.
3673 */
3674int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3675{
3676 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3677 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3678 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3679 AssertRCReturn(rc, rc);
3680 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3681
3682 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3683 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3684 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3685 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3686 return rc;
3687}
3688
3689
3690/**
3691 * Called by PGMR3PhysSetA20 after changing the A20 state.
3692 *
3693 * @param pVCpu Pointer to the VMCPU.
3694 */
3695void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3696{
3697 /** @todo Probably doing a bit too much here. */
3698 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3699 AssertReleaseRC(rc);
3700 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3701 AssertReleaseRC(rc);
3702}
3703
3704
3705#ifdef VBOX_WITH_DEBUGGER
3706
3707/**
3708 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3709 */
3710static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3711{
3712 /*
3713 * Validate input.
3714 */
3715 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3716 PVM pVM = pUVM->pVM;
3717 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3718
3719 if (!cArgs)
3720 {
3721 /*
3722 * Print the list of error injection locations with status.
3723 */
3724 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3725 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3726 }
3727 else
3728 {
3729 /*
3730 * String switch on where to inject the error.
3731 */
3732 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3733 const char *pszWhere = paArgs[0].u.pszString;
3734 if (!strcmp(pszWhere, "handy"))
3735 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3736 else
3737 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
3738 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
3739 }
3740 return VINF_SUCCESS;
3741}
3742
3743
3744/**
3745 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
3746 */
3747static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3748{
3749 /*
3750 * Validate input.
3751 */
3752 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3753 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3754 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3755 if (!pVCpu)
3756 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3757
3758 /*
3759 * Force page directory sync.
3760 */
3761 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3762
3763 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
3764 if (RT_FAILURE(rc))
3765 return rc;
3766
3767 return VINF_SUCCESS;
3768}
3769
3770#ifdef VBOX_STRICT
3771
3772/**
3773 * EMT callback for pgmR3CmdAssertCR3.
3774 *
3775 * @returns VBox status code.
3776 * @param pUVM The user mode VM handle.
3777 * @param pcErrors Where to return the error count.
3778 */
3779static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
3780{
3781 PVM pVM = pUVM->pVM;
3782 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3783 PVMCPU pVCpu = VMMGetCpu(pVM);
3784
3785 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3786
3787 return VINF_SUCCESS;
3788}
3789
3790
3791/**
3792 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
3793 */
3794static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3795{
3796 /*
3797 * Validate input.
3798 */
3799 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3800 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3801
3802 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
3803 if (RT_FAILURE(rc))
3804 return rc;
3805
3806 unsigned cErrors = 0;
3807 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
3808 if (RT_FAILURE(rc))
3809 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
3810 if (cErrors > 0)
3811 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
3812 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
3813}
3814
3815#endif /* VBOX_STRICT */
3816
3817/**
3818 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
3819 */
3820static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3821{
3822 /*
3823 * Validate input.
3824 */
3825 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3826 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3827 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3828 if (!pVCpu)
3829 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3830
3831 /*
3832 * Force page directory sync.
3833 */
3834 int rc;
3835 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3836 {
3837 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3838 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
3839 }
3840 else
3841 {
3842 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3843 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3844 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
3845 }
3846 return rc;
3847}
3848
3849
3850/**
3851 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
3852 */
3853static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3854{
3855 /*
3856 * Validate input.
3857 */
3858 NOREF(pCmd);
3859 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3860 PVM pVM = pUVM->pVM;
3861 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
3862 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING);
3863 if (cArgs == 2)
3864 {
3865 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[2].enmType != DBGCVAR_TYPE_STRING);
3866 if (strcmp(paArgs[1].u.pszString, "nozero"))
3867 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3868 }
3869 bool fIncZeroPgs = cArgs < 2;
3870
3871 /*
3872 * Open the output file and get the ram parameters.
3873 */
3874 RTFILE hFile;
3875 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3876 if (RT_FAILURE(rc))
3877 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3878
3879 uint32_t cbRamHole = 0;
3880 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3881 uint64_t cbRam = 0;
3882 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
3883 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3884
3885 /*
3886 * Dump the physical memory, page by page.
3887 */
3888 RTGCPHYS GCPhys = 0;
3889 char abZeroPg[PAGE_SIZE];
3890 RT_ZERO(abZeroPg);
3891
3892 pgmLock(pVM);
3893 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3894 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3895 pRam = pRam->pNextR3)
3896 {
3897 /* fill the gap */
3898 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3899 {
3900 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3901 {
3902 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3903 GCPhys += PAGE_SIZE;
3904 }
3905 }
3906
3907 PCPGMPAGE pPage = &pRam->aPages[0];
3908 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3909 {
3910 if ( PGM_PAGE_IS_ZERO(pPage)
3911 || PGM_PAGE_IS_BALLOONED(pPage))
3912 {
3913 if (fIncZeroPgs)
3914 {
3915 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3916 if (RT_FAILURE(rc))
3917 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3918 }
3919 }
3920 else
3921 {
3922 switch (PGM_PAGE_GET_TYPE(pPage))
3923 {
3924 case PGMPAGETYPE_RAM:
3925 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3926 case PGMPAGETYPE_ROM:
3927 case PGMPAGETYPE_MMIO2:
3928 {
3929 void const *pvPage;
3930 PGMPAGEMAPLOCK Lock;
3931 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3932 if (RT_SUCCESS(rc))
3933 {
3934 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3935 PGMPhysReleasePageMappingLock(pVM, &Lock);
3936 if (RT_FAILURE(rc))
3937 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3938 }
3939 else
3940 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3941 break;
3942 }
3943
3944 default:
3945 AssertFailed();
3946 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3947 case PGMPAGETYPE_MMIO:
3948 if (fIncZeroPgs)
3949 {
3950 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3951 if (RT_FAILURE(rc))
3952 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3953 }
3954 break;
3955 }
3956 }
3957
3958
3959 /* advance */
3960 GCPhys += PAGE_SIZE;
3961 pPage++;
3962 }
3963 }
3964 pgmUnlock(pVM);
3965
3966 RTFileClose(hFile);
3967 if (RT_SUCCESS(rc))
3968 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3969 return VINF_SUCCESS;
3970}
3971
3972#endif /* VBOX_WITH_DEBUGGER */
3973
3974/**
3975 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3976 */
3977typedef struct PGMCHECKINTARGS
3978{
3979 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3980 PPGMPHYSHANDLER pPrevPhys;
3981 PPGMVIRTHANDLER pPrevVirt;
3982 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3983 PVM pVM;
3984} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3985
3986/**
3987 * Validate a node in the physical handler tree.
3988 *
3989 * @returns 0 on if ok, other wise 1.
3990 * @param pNode The handler node.
3991 * @param pvUser pVM.
3992 */
3993static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3994{
3995 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3996 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3997 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3998 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3999 AssertReleaseMsg( !pArgs->pPrevPhys
4000 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4001 ("pPrevPhys=%p %RGp-%RGp %s\n"
4002 " pCur=%p %RGp-%RGp %s\n",
4003 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4004 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4005 pArgs->pPrevPhys = pCur;
4006 return 0;
4007}
4008
4009
4010/**
4011 * Validate a node in the virtual handler tree.
4012 *
4013 * @returns 0 on if ok, other wise 1.
4014 * @param pNode The handler node.
4015 * @param pvUser pVM.
4016 */
4017static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4018{
4019 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4020 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4021 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4022 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4023 AssertReleaseMsg( !pArgs->pPrevVirt
4024 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4025 ("pPrevVirt=%p %RGv-%RGv %s\n"
4026 " pCur=%p %RGv-%RGv %s\n",
4027 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4028 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4029 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4030 {
4031 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4032 ("pCur=%p %RGv-%RGv %s\n"
4033 "iPage=%d offVirtHandle=%#x expected %#x\n",
4034 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4035 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4036 }
4037 pArgs->pPrevVirt = pCur;
4038 return 0;
4039}
4040
4041
4042/**
4043 * Validate a node in the virtual handler tree.
4044 *
4045 * @returns 0 on if ok, other wise 1.
4046 * @param pNode The handler node.
4047 * @param pvUser pVM.
4048 */
4049static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4050{
4051 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4052 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4053 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4054 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4055 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4056 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4057 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4058 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4059 " pCur=%p %RGp-%RGp\n",
4060 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4061 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4062 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4063 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4064 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4065 " pCur=%p %RGp-%RGp\n",
4066 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4067 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4068 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4069 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4070 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4071 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4072 {
4073 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4074 for (;;)
4075 {
4076 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4077 AssertReleaseMsg(pCur2 != pCur,
4078 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4079 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4080 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4081 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4082 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4083 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4084 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4085 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4086 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4087 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4088 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4089 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4090 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4091 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4092 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4093 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4094 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4095 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4096 break;
4097 }
4098 }
4099
4100 pArgs->pPrevPhys2Virt = pCur;
4101 return 0;
4102}
4103
4104
4105/**
4106 * Perform an integrity check on the PGM component.
4107 *
4108 * @returns VINF_SUCCESS if everything is fine.
4109 * @returns VBox error status after asserting on integrity breach.
4110 * @param pVM Pointer to the VM.
4111 */
4112VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4113{
4114 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4115
4116 /*
4117 * Check the trees.
4118 */
4119 int cErrors = 0;
4120 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4121 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4122 PGMCHECKINTARGS Args = s_LeftToRight;
4123 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4124 Args = s_RightToLeft;
4125 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4126 Args = s_LeftToRight;
4127 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4128 Args = s_RightToLeft;
4129 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4130 Args = s_LeftToRight;
4131 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4132 Args = s_RightToLeft;
4133 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4134 Args = s_LeftToRight;
4135 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4136 Args = s_RightToLeft;
4137 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4138
4139 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4140}
4141
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette