VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 40054

Last change on this file since 40054 was 40054, checked in by vboxsync, 13 years ago

VMM,VMMDev: Page sharing cleanup.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 202.1 KB
Line 
1/* $Id: PGM.cpp 40054 2012-02-09 15:37:11Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2011 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred to
30 * as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successful this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery associated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attempted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the other way around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
484 * however on 32-bit darwin the ring-0 code is running in a different memory
485 * context and therefore needs a separate cache. In raw-mode context we also
486 * need a separate cache. The 32-bit darwin mapping cache and the one for
487 * raw-mode context share a lot of code, see PGMRZDYNMAP.
488 *
489 *
490 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
491 *
492 * We've considered implementing the ring-3 mapping cache page based but found
493 * that this was bother some when one had to take into account TLBs+SMP and
494 * portability (missing the necessary APIs on several platforms). There were
495 * also some performance concerns with this approach which hadn't quite been
496 * worked out.
497 *
498 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
499 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
500 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
501 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
502 * costly than a single page, although how much more costly is uncertain. We'll
503 * try address this by using a very big cache, preferably bigger than the actual
504 * VM RAM size if possible. The current VM RAM sizes should give some idea for
505 * 32-bit boxes, while on 64-bit we can probably get away with employing an
506 * unlimited cache.
507 *
508 * The cache have to parts, as already indicated, the ring-3 side and the
509 * ring-0 side.
510 *
511 * The ring-0 will be tied to the page allocator since it will operate on the
512 * memory objects it contains. It will therefore require the first ring-0 mutex
513 * discussed in @ref subsec_pgmPhys_Serializing. We
514 * some double house keeping wrt to who has mapped what I think, since both
515 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
516 *
517 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
518 * require anyone that desires to do changes to the mapping cache to do that
519 * from within this critsect. Alternatively, we could employ a separate critsect
520 * for serializing changes to the mapping cache as this would reduce potential
521 * contention with other threads accessing mappings unrelated to the changes
522 * that are in process. We can see about this later, contention will show
523 * up in the statistics anyway, so it'll be simple to tell.
524 *
525 * The organization of the ring-3 part will be very much like how the allocation
526 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
527 * having to walk the tree all the time, we'll have a couple of lookaside entries
528 * like in we do for I/O ports and MMIO in IOM.
529 *
530 * The simplified flow of a PGMPhysRead/Write function:
531 * -# Enter the PGM critsect.
532 * -# Lookup GCPhys in the ram ranges and get the Page ID.
533 * -# Calc the Allocation Chunk ID from the Page ID.
534 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
535 * If not found in cache:
536 * -# Call ring-0 and request it to be mapped and supply
537 * a chunk to be unmapped if the cache is maxed out already.
538 * -# Insert the new mapping into the AVL tree (id + R3 address).
539 * -# Update the relevant lookaside entry and return the mapping address.
540 * -# Do the read/write according to monitoring flags and everything.
541 * -# Leave the critsect.
542 *
543 *
544 * @section sec_pgmPhys_Fallback Fallback
545 *
546 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
547 * API and thus require a fallback.
548 *
549 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
550 * will return to the ring-3 caller (and later ring-0) and asking it to seed
551 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
552 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
553 * "SeededAllocPages" call to ring-0.
554 *
555 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
556 * all page sharing (zero page detection will continue). It will also force
557 * all allocations to come from the VM which seeded the page. Both these
558 * measures are taken to make sure that there will never be any need for
559 * mapping anything into ring-3 - everything will be mapped already.
560 *
561 * Whether we'll continue to use the current MM locked memory management
562 * for this I don't quite know (I'd prefer not to and just ditch that all
563 * together), we'll see what's simplest to do.
564 *
565 *
566 *
567 * @section sec_pgmPhys_Changes Changes
568 *
569 * Breakdown of the changes involved?
570 */
571
572/*******************************************************************************
573* Header Files *
574*******************************************************************************/
575#define LOG_GROUP LOG_GROUP_PGM
576#include <VBox/vmm/dbgf.h>
577#include <VBox/vmm/pgm.h>
578#include <VBox/vmm/cpum.h>
579#include <VBox/vmm/iom.h>
580#include <VBox/sup.h>
581#include <VBox/vmm/mm.h>
582#include <VBox/vmm/em.h>
583#include <VBox/vmm/stam.h>
584#include <VBox/vmm/rem.h>
585#include <VBox/vmm/selm.h>
586#include <VBox/vmm/ssm.h>
587#include <VBox/vmm/hwaccm.h>
588#include "PGMInternal.h"
589#include <VBox/vmm/vm.h>
590#include "PGMInline.h"
591
592#include <VBox/dbg.h>
593#include <VBox/param.h>
594#include <VBox/err.h>
595
596#include <iprt/asm.h>
597#include <iprt/asm-amd64-x86.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static int pgmR3InitStats(PVM pVM);
611static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
617#ifdef VBOX_STRICT
618static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
619#endif
620static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
621static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
622static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
623
624#ifdef VBOX_WITH_DEBUGGER
625/** @todo Convert the first two commands to 'info' items. */
626static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
627static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
628static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
629static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
630# ifdef VBOX_STRICT
631static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
632# endif
633static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
634#endif
635
636
637/*******************************************************************************
638* Global Variables *
639*******************************************************************************/
640#ifdef VBOX_WITH_DEBUGGER
641/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
642static const DBGCVARDESC g_aPgmErrorArgs[] =
643{
644 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
645 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
646};
647
648static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
649{
650 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
651 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
652 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
653};
654
655# ifdef DEBUG_sandervl
656static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
657{
658 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
659 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
660 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
661};
662# endif
663
664/** Command descriptors. */
665static const DBGCCMD g_aCmds[] =
666{
667 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
668 { "pgmram", 0, 0, NULL, 0, 0, pgmR3CmdRam, "", "Display the ram ranges." },
669 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
670 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
671 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
672# ifdef VBOX_STRICT
673 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
674# ifdef VBOX_WITH_PAGE_SHARING
675 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
676 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
677# endif
678# endif
679 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
680 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
681};
682#endif
683
684
685
686
687/*
688 * Shadow - 32-bit mode
689 */
690#define PGM_SHW_TYPE PGM_TYPE_32BIT
691#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
692#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
693#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
694#include "PGMShw.h"
695
696/* Guest - real mode */
697#define PGM_GST_TYPE PGM_TYPE_REAL
698#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
699#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
700#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
701#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
702#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
703#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
704#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
705#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
706#include "PGMBth.h"
707#include "PGMGstDefs.h"
708#include "PGMGst.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef BTH_PGMPOOLKIND_ROOT
711#undef PGM_BTH_NAME
712#undef PGM_BTH_NAME_RC_STR
713#undef PGM_BTH_NAME_R0_STR
714#undef PGM_GST_TYPE
715#undef PGM_GST_NAME
716#undef PGM_GST_NAME_RC_STR
717#undef PGM_GST_NAME_R0_STR
718
719/* Guest - protected mode */
720#define PGM_GST_TYPE PGM_TYPE_PROT
721#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
722#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
723#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
724#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
725#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
726#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
727#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
728#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
729#include "PGMBth.h"
730#include "PGMGstDefs.h"
731#include "PGMGst.h"
732#undef BTH_PGMPOOLKIND_PT_FOR_PT
733#undef BTH_PGMPOOLKIND_ROOT
734#undef PGM_BTH_NAME
735#undef PGM_BTH_NAME_RC_STR
736#undef PGM_BTH_NAME_R0_STR
737#undef PGM_GST_TYPE
738#undef PGM_GST_NAME
739#undef PGM_GST_NAME_RC_STR
740#undef PGM_GST_NAME_R0_STR
741
742/* Guest - 32-bit mode */
743#define PGM_GST_TYPE PGM_TYPE_32BIT
744#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
745#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
746#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
747#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
748#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
749#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
750#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
751#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
752#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
753#include "PGMBth.h"
754#include "PGMGstDefs.h"
755#include "PGMGst.h"
756#undef BTH_PGMPOOLKIND_PT_FOR_BIG
757#undef BTH_PGMPOOLKIND_PT_FOR_PT
758#undef BTH_PGMPOOLKIND_ROOT
759#undef PGM_BTH_NAME
760#undef PGM_BTH_NAME_RC_STR
761#undef PGM_BTH_NAME_R0_STR
762#undef PGM_GST_TYPE
763#undef PGM_GST_NAME
764#undef PGM_GST_NAME_RC_STR
765#undef PGM_GST_NAME_R0_STR
766
767#undef PGM_SHW_TYPE
768#undef PGM_SHW_NAME
769#undef PGM_SHW_NAME_RC_STR
770#undef PGM_SHW_NAME_R0_STR
771
772
773/*
774 * Shadow - PAE mode
775 */
776#define PGM_SHW_TYPE PGM_TYPE_PAE
777#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
778#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
779#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
781#include "PGMShw.h"
782
783/* Guest - real mode */
784#define PGM_GST_TYPE PGM_TYPE_REAL
785#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
792#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
793#include "PGMGstDefs.h"
794#include "PGMBth.h"
795#undef BTH_PGMPOOLKIND_PT_FOR_PT
796#undef BTH_PGMPOOLKIND_ROOT
797#undef PGM_BTH_NAME
798#undef PGM_BTH_NAME_RC_STR
799#undef PGM_BTH_NAME_R0_STR
800#undef PGM_GST_TYPE
801#undef PGM_GST_NAME
802#undef PGM_GST_NAME_RC_STR
803#undef PGM_GST_NAME_R0_STR
804
805/* Guest - protected mode */
806#define PGM_GST_TYPE PGM_TYPE_PROT
807#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
808#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
809#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
810#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
811#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
812#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
813#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
814#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
815#include "PGMGstDefs.h"
816#include "PGMBth.h"
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef BTH_PGMPOOLKIND_ROOT
819#undef PGM_BTH_NAME
820#undef PGM_BTH_NAME_RC_STR
821#undef PGM_BTH_NAME_R0_STR
822#undef PGM_GST_TYPE
823#undef PGM_GST_NAME
824#undef PGM_GST_NAME_RC_STR
825#undef PGM_GST_NAME_R0_STR
826
827/* Guest - 32-bit mode */
828#define PGM_GST_TYPE PGM_TYPE_32BIT
829#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
830#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
831#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
832#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
833#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
834#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
835#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
836#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
837#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
838#include "PGMGstDefs.h"
839#include "PGMBth.h"
840#undef BTH_PGMPOOLKIND_PT_FOR_BIG
841#undef BTH_PGMPOOLKIND_PT_FOR_PT
842#undef BTH_PGMPOOLKIND_ROOT
843#undef PGM_BTH_NAME
844#undef PGM_BTH_NAME_RC_STR
845#undef PGM_BTH_NAME_R0_STR
846#undef PGM_GST_TYPE
847#undef PGM_GST_NAME
848#undef PGM_GST_NAME_RC_STR
849#undef PGM_GST_NAME_R0_STR
850
851/* Guest - PAE mode */
852#define PGM_GST_TYPE PGM_TYPE_PAE
853#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
854#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
855#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
856#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
857#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
858#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
859#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
860#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
861#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
862#include "PGMBth.h"
863#include "PGMGstDefs.h"
864#include "PGMGst.h"
865#undef BTH_PGMPOOLKIND_PT_FOR_BIG
866#undef BTH_PGMPOOLKIND_PT_FOR_PT
867#undef BTH_PGMPOOLKIND_ROOT
868#undef PGM_BTH_NAME
869#undef PGM_BTH_NAME_RC_STR
870#undef PGM_BTH_NAME_R0_STR
871#undef PGM_GST_TYPE
872#undef PGM_GST_NAME
873#undef PGM_GST_NAME_RC_STR
874#undef PGM_GST_NAME_R0_STR
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - AMD64 mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_AMD64
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
889#include "PGMShw.h"
890
891#ifdef VBOX_WITH_64_BITS_GUESTS
892/* Guest - AMD64 mode */
893# define PGM_GST_TYPE PGM_TYPE_AMD64
894# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
895# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
896# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
897# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
898# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
899# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
900# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
901# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
902# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
903# include "PGMBth.h"
904# include "PGMGstDefs.h"
905# include "PGMGst.h"
906# undef BTH_PGMPOOLKIND_PT_FOR_BIG
907# undef BTH_PGMPOOLKIND_PT_FOR_PT
908# undef BTH_PGMPOOLKIND_ROOT
909# undef PGM_BTH_NAME
910# undef PGM_BTH_NAME_RC_STR
911# undef PGM_BTH_NAME_R0_STR
912# undef PGM_GST_TYPE
913# undef PGM_GST_NAME
914# undef PGM_GST_NAME_RC_STR
915# undef PGM_GST_NAME_R0_STR
916#endif /* VBOX_WITH_64_BITS_GUESTS */
917
918#undef PGM_SHW_TYPE
919#undef PGM_SHW_NAME
920#undef PGM_SHW_NAME_RC_STR
921#undef PGM_SHW_NAME_R0_STR
922
923
924/*
925 * Shadow - Nested paging mode
926 */
927#define PGM_SHW_TYPE PGM_TYPE_NESTED
928#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
929#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
930#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
931#include "PGMShw.h"
932
933/* Guest - real mode */
934#define PGM_GST_TYPE PGM_TYPE_REAL
935#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
936#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
937#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
938#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
939#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
940#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
941#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
942#include "PGMGstDefs.h"
943#include "PGMBth.h"
944#undef BTH_PGMPOOLKIND_PT_FOR_PT
945#undef PGM_BTH_NAME
946#undef PGM_BTH_NAME_RC_STR
947#undef PGM_BTH_NAME_R0_STR
948#undef PGM_GST_TYPE
949#undef PGM_GST_NAME
950#undef PGM_GST_NAME_RC_STR
951#undef PGM_GST_NAME_R0_STR
952
953/* Guest - protected mode */
954#define PGM_GST_TYPE PGM_TYPE_PROT
955#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
956#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
957#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
958#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
959#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
960#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
961#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
962#include "PGMGstDefs.h"
963#include "PGMBth.h"
964#undef BTH_PGMPOOLKIND_PT_FOR_PT
965#undef PGM_BTH_NAME
966#undef PGM_BTH_NAME_RC_STR
967#undef PGM_BTH_NAME_R0_STR
968#undef PGM_GST_TYPE
969#undef PGM_GST_NAME
970#undef PGM_GST_NAME_RC_STR
971#undef PGM_GST_NAME_R0_STR
972
973/* Guest - 32-bit mode */
974#define PGM_GST_TYPE PGM_TYPE_32BIT
975#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
976#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
977#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
978#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
979#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
980#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
981#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
982#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
983#include "PGMGstDefs.h"
984#include "PGMBth.h"
985#undef BTH_PGMPOOLKIND_PT_FOR_BIG
986#undef BTH_PGMPOOLKIND_PT_FOR_PT
987#undef PGM_BTH_NAME
988#undef PGM_BTH_NAME_RC_STR
989#undef PGM_BTH_NAME_R0_STR
990#undef PGM_GST_TYPE
991#undef PGM_GST_NAME
992#undef PGM_GST_NAME_RC_STR
993#undef PGM_GST_NAME_R0_STR
994
995/* Guest - PAE mode */
996#define PGM_GST_TYPE PGM_TYPE_PAE
997#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
998#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
999#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1000#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1001#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1002#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1003#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1004#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1005#include "PGMGstDefs.h"
1006#include "PGMBth.h"
1007#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1008#undef BTH_PGMPOOLKIND_PT_FOR_PT
1009#undef PGM_BTH_NAME
1010#undef PGM_BTH_NAME_RC_STR
1011#undef PGM_BTH_NAME_R0_STR
1012#undef PGM_GST_TYPE
1013#undef PGM_GST_NAME
1014#undef PGM_GST_NAME_RC_STR
1015#undef PGM_GST_NAME_R0_STR
1016
1017#ifdef VBOX_WITH_64_BITS_GUESTS
1018/* Guest - AMD64 mode */
1019# define PGM_GST_TYPE PGM_TYPE_AMD64
1020# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1021# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1022# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1023# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1024# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1025# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1026# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1027# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1028# include "PGMGstDefs.h"
1029# include "PGMBth.h"
1030# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1031# undef BTH_PGMPOOLKIND_PT_FOR_PT
1032# undef PGM_BTH_NAME
1033# undef PGM_BTH_NAME_RC_STR
1034# undef PGM_BTH_NAME_R0_STR
1035# undef PGM_GST_TYPE
1036# undef PGM_GST_NAME
1037# undef PGM_GST_NAME_RC_STR
1038# undef PGM_GST_NAME_R0_STR
1039#endif /* VBOX_WITH_64_BITS_GUESTS */
1040
1041#undef PGM_SHW_TYPE
1042#undef PGM_SHW_NAME
1043#undef PGM_SHW_NAME_RC_STR
1044#undef PGM_SHW_NAME_R0_STR
1045
1046
1047/*
1048 * Shadow - EPT
1049 */
1050#define PGM_SHW_TYPE PGM_TYPE_EPT
1051#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1052#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1053#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1054#include "PGMShw.h"
1055
1056/* Guest - real mode */
1057#define PGM_GST_TYPE PGM_TYPE_REAL
1058#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1059#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1060#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1061#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1062#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1063#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1064#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1065#include "PGMGstDefs.h"
1066#include "PGMBth.h"
1067#undef BTH_PGMPOOLKIND_PT_FOR_PT
1068#undef PGM_BTH_NAME
1069#undef PGM_BTH_NAME_RC_STR
1070#undef PGM_BTH_NAME_R0_STR
1071#undef PGM_GST_TYPE
1072#undef PGM_GST_NAME
1073#undef PGM_GST_NAME_RC_STR
1074#undef PGM_GST_NAME_R0_STR
1075
1076/* Guest - protected mode */
1077#define PGM_GST_TYPE PGM_TYPE_PROT
1078#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1079#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1080#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1081#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1082#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1083#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1084#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1085#include "PGMGstDefs.h"
1086#include "PGMBth.h"
1087#undef BTH_PGMPOOLKIND_PT_FOR_PT
1088#undef PGM_BTH_NAME
1089#undef PGM_BTH_NAME_RC_STR
1090#undef PGM_BTH_NAME_R0_STR
1091#undef PGM_GST_TYPE
1092#undef PGM_GST_NAME
1093#undef PGM_GST_NAME_RC_STR
1094#undef PGM_GST_NAME_R0_STR
1095
1096/* Guest - 32-bit mode */
1097#define PGM_GST_TYPE PGM_TYPE_32BIT
1098#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1099#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1100#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1101#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1102#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1103#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1104#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1105#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1106#include "PGMGstDefs.h"
1107#include "PGMBth.h"
1108#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1109#undef BTH_PGMPOOLKIND_PT_FOR_PT
1110#undef PGM_BTH_NAME
1111#undef PGM_BTH_NAME_RC_STR
1112#undef PGM_BTH_NAME_R0_STR
1113#undef PGM_GST_TYPE
1114#undef PGM_GST_NAME
1115#undef PGM_GST_NAME_RC_STR
1116#undef PGM_GST_NAME_R0_STR
1117
1118/* Guest - PAE mode */
1119#define PGM_GST_TYPE PGM_TYPE_PAE
1120#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1121#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1122#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1123#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1124#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1125#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1126#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1127#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1128#include "PGMGstDefs.h"
1129#include "PGMBth.h"
1130#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1131#undef BTH_PGMPOOLKIND_PT_FOR_PT
1132#undef PGM_BTH_NAME
1133#undef PGM_BTH_NAME_RC_STR
1134#undef PGM_BTH_NAME_R0_STR
1135#undef PGM_GST_TYPE
1136#undef PGM_GST_NAME
1137#undef PGM_GST_NAME_RC_STR
1138#undef PGM_GST_NAME_R0_STR
1139
1140#ifdef VBOX_WITH_64_BITS_GUESTS
1141/* Guest - AMD64 mode */
1142# define PGM_GST_TYPE PGM_TYPE_AMD64
1143# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1144# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1145# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1146# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1147# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1148# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1149# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1150# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1151# include "PGMGstDefs.h"
1152# include "PGMBth.h"
1153# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1154# undef BTH_PGMPOOLKIND_PT_FOR_PT
1155# undef PGM_BTH_NAME
1156# undef PGM_BTH_NAME_RC_STR
1157# undef PGM_BTH_NAME_R0_STR
1158# undef PGM_GST_TYPE
1159# undef PGM_GST_NAME
1160# undef PGM_GST_NAME_RC_STR
1161# undef PGM_GST_NAME_R0_STR
1162#endif /* VBOX_WITH_64_BITS_GUESTS */
1163
1164#undef PGM_SHW_TYPE
1165#undef PGM_SHW_NAME
1166#undef PGM_SHW_NAME_RC_STR
1167#undef PGM_SHW_NAME_R0_STR
1168
1169
1170
1171/**
1172 * Initiates the paging of VM.
1173 *
1174 * @returns VBox status code.
1175 * @param pVM Pointer to VM structure.
1176 */
1177VMMR3DECL(int) PGMR3Init(PVM pVM)
1178{
1179 LogFlow(("PGMR3Init:\n"));
1180 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1181 int rc;
1182
1183 /*
1184 * Assert alignment and sizes.
1185 */
1186 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1187 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1188 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1189
1190 /*
1191 * Init the structure.
1192 */
1193#ifdef PGM_WITHOUT_MAPPINGS
1194 pVM->pgm.s.fMappingsDisabled = true;
1195#endif
1196 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1197 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1198
1199 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1200 {
1201 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1202 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1203 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1204 }
1205
1206 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1207 {
1208 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1209 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1210 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1211 }
1212
1213 /* Init the per-CPU part. */
1214 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1215 {
1216 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1217 PPGMCPU pPGM = &pVCpu->pgm.s;
1218
1219 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1220 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1221 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1222
1223 pPGM->enmShadowMode = PGMMODE_INVALID;
1224 pPGM->enmGuestMode = PGMMODE_INVALID;
1225
1226 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1227
1228 pPGM->pGst32BitPdR3 = NULL;
1229 pPGM->pGstPaePdptR3 = NULL;
1230 pPGM->pGstAmd64Pml4R3 = NULL;
1231#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1232 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1233 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1234 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1235#endif
1236 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1237 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1238 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1239 {
1240 pPGM->apGstPaePDsR3[i] = NULL;
1241#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1242 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1243#endif
1244 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1245 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1246 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1247 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1248 }
1249
1250 pPGM->fA20Enabled = true;
1251 }
1252
1253 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1254 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1255 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1256
1257 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1258#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1259 true
1260#else
1261 false
1262#endif
1263 );
1264 AssertLogRelRCReturn(rc, rc);
1265
1266#if HC_ARCH_BITS == 32
1267# ifdef RT_OS_DARWIN
1268 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1269# else
1270 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1271# endif
1272#else
1273 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1274#endif
1275 AssertLogRelRCReturn(rc, rc);
1276 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1277 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1278
1279 /*
1280 * Get the configured RAM size - to estimate saved state size.
1281 */
1282 uint64_t cbRam;
1283 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1284 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1285 cbRam = 0;
1286 else if (RT_SUCCESS(rc))
1287 {
1288 if (cbRam < PAGE_SIZE)
1289 cbRam = 0;
1290 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1291 }
1292 else
1293 {
1294 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1295 return rc;
1296 }
1297
1298 /*
1299 * Check for PCI pass-through.
1300 */
1301 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1302 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1303 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1304
1305#ifdef VBOX_WITH_STATISTICS
1306 /*
1307 * Allocate memory for the statistics before someone tries to use them.
1308 */
1309 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1310 void *pv;
1311 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1312 AssertRCReturn(rc, rc);
1313
1314 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1315 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1316 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1317 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1318
1319 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1320 {
1321 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1322 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1323 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1324
1325 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1326 }
1327#endif /* VBOX_WITH_STATISTICS */
1328
1329 /*
1330 * Register callbacks, string formatters and the saved state data unit.
1331 */
1332#ifdef VBOX_STRICT
1333 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1334#endif
1335 PGMRegisterStringFormatTypes();
1336
1337 rc = pgmR3InitSavedState(pVM, cbRam);
1338 if (RT_FAILURE(rc))
1339 return rc;
1340
1341 /*
1342 * Initialize the PGM critical section and flush the phys TLBs
1343 */
1344 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1345 AssertRCReturn(rc, rc);
1346
1347 PGMR3PhysChunkInvalidateTLB(pVM);
1348 pgmPhysInvalidatePageMapTLB(pVM);
1349
1350 /*
1351 * For the time being we sport a full set of handy pages in addition to the base
1352 * memory to simplify things.
1353 */
1354 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1355 AssertRCReturn(rc, rc);
1356
1357 /*
1358 * Trees
1359 */
1360 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1361 if (RT_SUCCESS(rc))
1362 {
1363 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1364 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1365
1366 /*
1367 * Allocate the zero page.
1368 */
1369 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1370 }
1371 if (RT_SUCCESS(rc))
1372 {
1373 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1374 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1375 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1376 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1377
1378 /*
1379 * Allocate the invalid MMIO page.
1380 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1381 */
1382 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1383 }
1384 if (RT_SUCCESS(rc))
1385 {
1386 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1387 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1388 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1389 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1390
1391 /*
1392 * Init the paging.
1393 */
1394 rc = pgmR3InitPaging(pVM);
1395 }
1396 if (RT_SUCCESS(rc))
1397 {
1398 /*
1399 * Init the page pool.
1400 */
1401 rc = pgmR3PoolInit(pVM);
1402 }
1403 if (RT_SUCCESS(rc))
1404 {
1405 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1406 {
1407 PVMCPU pVCpu = &pVM->aCpus[i];
1408 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1409 if (RT_FAILURE(rc))
1410 break;
1411 }
1412 }
1413
1414 if (RT_SUCCESS(rc))
1415 {
1416 /*
1417 * Info & statistics
1418 */
1419 DBGFR3InfoRegisterInternal(pVM, "mode",
1420 "Shows the current paging mode. "
1421 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1422 pgmR3InfoMode);
1423 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1424 "Dumps all the entries in the top level paging table. No arguments.",
1425 pgmR3InfoCr3);
1426 DBGFR3InfoRegisterInternal(pVM, "phys",
1427 "Dumps all the physical address ranges. No arguments.",
1428 pgmR3PhysInfo);
1429 DBGFR3InfoRegisterInternal(pVM, "handlers",
1430 "Dumps physical, virtual and hyper virtual handlers. "
1431 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1432 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1433 pgmR3InfoHandlers);
1434 DBGFR3InfoRegisterInternal(pVM, "mappings",
1435 "Dumps guest mappings.",
1436 pgmR3MapInfo);
1437
1438 pgmR3InitStats(pVM);
1439
1440#ifdef VBOX_WITH_DEBUGGER
1441 /*
1442 * Debugger commands.
1443 */
1444 static bool s_fRegisteredCmds = false;
1445 if (!s_fRegisteredCmds)
1446 {
1447 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1448 if (RT_SUCCESS(rc2))
1449 s_fRegisteredCmds = true;
1450 }
1451#endif
1452 return VINF_SUCCESS;
1453 }
1454
1455 /* Almost no cleanup necessary, MM frees all memory. */
1456 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1457
1458 return rc;
1459}
1460
1461
1462/**
1463 * Init paging.
1464 *
1465 * Since we need to check what mode the host is operating in before we can choose
1466 * the right paging functions for the host we have to delay this until R0 has
1467 * been initialized.
1468 *
1469 * @returns VBox status code.
1470 * @param pVM VM handle.
1471 */
1472static int pgmR3InitPaging(PVM pVM)
1473{
1474 /*
1475 * Force a recalculation of modes and switcher so everyone gets notified.
1476 */
1477 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1478 {
1479 PVMCPU pVCpu = &pVM->aCpus[i];
1480
1481 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1482 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1483 }
1484
1485 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1486
1487 /*
1488 * Allocate static mapping space for whatever the cr3 register
1489 * points to and in the case of PAE mode to the 4 PDs.
1490 */
1491 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1492 if (RT_FAILURE(rc))
1493 {
1494 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1495 return rc;
1496 }
1497 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1498
1499 /*
1500 * Allocate pages for the three possible intermediate contexts
1501 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1502 * for the sake of simplicity. The AMD64 uses the PAE for the
1503 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1504 *
1505 * We assume that two page tables will be enought for the core code
1506 * mappings (HC virtual and identity).
1507 */
1508 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1509 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1510 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1511 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1512 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1513 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1514 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1515 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1516 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1517 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1518 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1519 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1520
1521 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1522 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1523 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1524 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1525 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1526 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1527
1528 /*
1529 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1530 */
1531 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1532 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1533 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1534
1535 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1536 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1537
1538 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1539 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1540 {
1541 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1542 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1543 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1544 }
1545
1546 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1547 {
1548 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1549 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1550 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1551 }
1552
1553 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1554 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1555 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1556 | HCPhysInterPaePDPT64;
1557
1558 /*
1559 * Initialize paging workers and mode from current host mode
1560 * and the guest running in real mode.
1561 */
1562 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1563 switch (pVM->pgm.s.enmHostMode)
1564 {
1565 case SUPPAGINGMODE_32_BIT:
1566 case SUPPAGINGMODE_32_BIT_GLOBAL:
1567 case SUPPAGINGMODE_PAE:
1568 case SUPPAGINGMODE_PAE_GLOBAL:
1569 case SUPPAGINGMODE_PAE_NX:
1570 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1571 break;
1572
1573 case SUPPAGINGMODE_AMD64:
1574 case SUPPAGINGMODE_AMD64_GLOBAL:
1575 case SUPPAGINGMODE_AMD64_NX:
1576 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1577#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1578 if (ARCH_BITS != 64)
1579 {
1580 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1581 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1582 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1583 }
1584#endif
1585 break;
1586 default:
1587 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1588 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1589 }
1590 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1591 if (RT_SUCCESS(rc))
1592 {
1593 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1594#if HC_ARCH_BITS == 64
1595 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1596 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1597 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1598 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1599 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1600 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1601 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1602#endif
1603
1604 /*
1605 * Log the host paging mode. It may come in handy.
1606 */
1607 const char *pszHostMode;
1608 switch (pVM->pgm.s.enmHostMode)
1609 {
1610 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1611 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1612 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1613 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1614 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1615 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1616 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1617 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1618 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1619 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1620 default: pszHostMode = "???"; break;
1621 }
1622 LogRel(("Host paging mode: %s\n", pszHostMode));
1623
1624 return VINF_SUCCESS;
1625 }
1626
1627 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1628 return rc;
1629}
1630
1631
1632/**
1633 * Init statistics
1634 * @returns VBox status code.
1635 */
1636static int pgmR3InitStats(PVM pVM)
1637{
1638 PPGM pPGM = &pVM->pgm.s;
1639 int rc;
1640
1641 /*
1642 * Release statistics.
1643 */
1644 /* Common - misc variables */
1645 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1646 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1647 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1648 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1649 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1650 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1651 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1652 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1653 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1654 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1655 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1656 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1657 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1658 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1659 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1660 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1661 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1662 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1663 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1664
1665 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1666 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1667 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1668
1669 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1670
1671 /* Live save */
1672 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1673 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1674 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1675 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1676 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1677 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1678 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1679 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1680 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1681 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1682 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1683 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1684 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1685 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1686 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1687 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1688 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1689 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1690
1691#ifdef VBOX_WITH_STATISTICS
1692
1693# define PGM_REG_COUNTER(a, b, c) \
1694 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1695 AssertRC(rc);
1696
1697# define PGM_REG_COUNTER_BYTES(a, b, c) \
1698 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1699 AssertRC(rc);
1700
1701# define PGM_REG_PROFILE(a, b, c) \
1702 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1703 AssertRC(rc);
1704
1705 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1706
1707 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1708 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1709 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1710 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1711 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1712
1713 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1714 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1715 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1716 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1717 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1718 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1719 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1720 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1721 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1722 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1723
1724 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1725 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1726 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1727 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1728 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1729 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1730
1731 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1732 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1733 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1734 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1735 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1736 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1737 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1738 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1739
1740 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1741 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1742 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1743 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1744
1745 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1746 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1747 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1748 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1749
1750 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1751 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1752 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1753 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1754 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1755 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1756 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1757 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1758
1759 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1760 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1761/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1762 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1763 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1764/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1765
1766 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1767 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1768 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1769 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1770 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1771 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1772 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1773 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1774
1775 /* GC only: */
1776 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1777 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1778
1779 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1780 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1781 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1782 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1783 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1784 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1785 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1786 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1787
1788 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1789 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1790 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1791 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1792 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1793 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1794 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1795
1796# undef PGM_REG_COUNTER
1797# undef PGM_REG_PROFILE
1798#endif
1799
1800 /*
1801 * Note! The layout below matches the member layout exactly!
1802 */
1803
1804 /*
1805 * Common - stats
1806 */
1807 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1808 {
1809 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1810
1811#define PGM_REG_COUNTER(a, b, c) \
1812 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1813 AssertRC(rc);
1814#define PGM_REG_PROFILE(a, b, c) \
1815 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1816 AssertRC(rc);
1817
1818 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1819
1820#ifdef VBOX_WITH_STATISTICS
1821 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1822
1823# if 0 /* rarely useful; leave for debugging. */
1824 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1825 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1826 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1827 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1828 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1829 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1830# endif
1831 /* R0 only: */
1832 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1833 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1834
1835 /* RZ only: */
1836 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1837 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1838 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1839 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1840 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1841 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1842 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1843 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1844 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1845 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1846 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1847 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1848 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1849 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1850 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1851 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1852 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1853 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1854 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1855 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1856 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1857 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1858 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1859 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1860 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1861 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1862 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1863 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1864 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1865 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1866 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1867 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1868 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1869 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1870 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1871 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1872 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1873 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1874 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1875 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1876 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1877 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1878 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1879 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1880#if 0 /* rarely useful; leave for debugging. */
1881 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1882 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1883 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1884#endif
1885 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1886 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1887 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1888 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1889 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1890
1891 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1892 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1893 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1897 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1905 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1913 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1916 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1917 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1918 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1919 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1920 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1921 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1922 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1923 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1924 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1925 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1926 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1927
1928 /* HC only: */
1929
1930 /* RZ & R3: */
1931 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1932 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1941 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1944 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1945 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1947 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1948 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1950 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1951 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1952 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1953 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1955 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1956 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1957 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1958 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1959 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1960 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1961 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1962 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1963 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1964 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1965 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1966 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1967 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1968 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1969 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1970 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1971 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1972 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1973 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1974 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1975 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1977 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1978
1979 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1980 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1981 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1982 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1983 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1984 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1985 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1986 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1987 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1988 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1989 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1990 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1991 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1992 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1993 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1994 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1995 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1996 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1997 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1998 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1999 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2000 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2001 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2002 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2003 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2004 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2005 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2006 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2007 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2008 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2009 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2010 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2011 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2012 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2013 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2014 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2015 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2016 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2017 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2018 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2019 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2020 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2021 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2022 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2023#endif /* VBOX_WITH_STATISTICS */
2024
2025#undef PGM_REG_PROFILE
2026#undef PGM_REG_COUNTER
2027
2028 }
2029
2030 return VINF_SUCCESS;
2031}
2032
2033
2034/**
2035 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2036 *
2037 * The dynamic mapping area will also be allocated and initialized at this
2038 * time. We could allocate it during PGMR3Init of course, but the mapping
2039 * wouldn't be allocated at that time preventing us from setting up the
2040 * page table entries with the dummy page.
2041 *
2042 * @returns VBox status code.
2043 * @param pVM VM handle.
2044 */
2045VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2046{
2047 RTGCPTR GCPtr;
2048 int rc;
2049
2050 /*
2051 * Reserve space for the dynamic mappings.
2052 */
2053 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2054 if (RT_SUCCESS(rc))
2055 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2056
2057 if ( RT_SUCCESS(rc)
2058 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2059 {
2060 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2061 if (RT_SUCCESS(rc))
2062 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2063 }
2064 if (RT_SUCCESS(rc))
2065 {
2066 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2067 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2068 }
2069 return rc;
2070}
2071
2072
2073/**
2074 * Ring-3 init finalizing.
2075 *
2076 * @returns VBox status code.
2077 * @param pVM The VM handle.
2078 */
2079VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2080{
2081 int rc;
2082
2083 /*
2084 * Reserve space for the dynamic mappings.
2085 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2086 */
2087 /* get the pointer to the page table entries. */
2088 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2089 AssertRelease(pMapping);
2090 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2091 const unsigned iPT = off >> X86_PD_SHIFT;
2092 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2093 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2094 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2095
2096 /* init cache area */
2097 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2098 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2099 {
2100 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2101 AssertRCReturn(rc, rc);
2102 }
2103
2104 /*
2105 * Determine the max physical address width (MAXPHYADDR) and apply it to
2106 * all the mask members and stuff.
2107 */
2108 uint32_t cMaxPhysAddrWidth;
2109 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2110 if ( uMaxExtLeaf >= 0x80000008
2111 && uMaxExtLeaf <= 0x80000fff)
2112 {
2113 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2114 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2115 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2116 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2117 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2118 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2119 }
2120 else
2121 {
2122 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2123 cMaxPhysAddrWidth = 48;
2124 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2125 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2126 }
2127
2128 pVM->pgm.s.GCPhysInvAddrMask = 0;
2129 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2130 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2131
2132 /*
2133 * Initialize the invalid paging entry masks, assuming NX is disabled.
2134 */
2135 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2136 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2137 {
2138 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2139
2140 /** @todo The manuals are not entirely clear whether the physical
2141 * address width is relevant. See table 5-9 in the intel
2142 * manual vs the PDE4M descriptions. Write testcase (NP). */
2143 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2144 | X86_PDE4M_MBZ_MASK;
2145
2146 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2147 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2148 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2149 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2150
2151 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2152 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2153 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2154 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2155 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2156 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2157
2158 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2159 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2160 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2161 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2162 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2163 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2164 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2165 }
2166
2167 /*
2168 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2169 * Intel only goes up to 36 bits, so we stick to 36 as well.
2170 * Update: More recent intel manuals specifies 40 bits just like AMD.
2171 */
2172 uint32_t u32Dummy, u32Features;
2173 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2174 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2175 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2176 else
2177 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2178
2179 /*
2180 * Allocate memory if we're supposed to do that.
2181 */
2182 if (pVM->pgm.s.fRamPreAlloc)
2183 rc = pgmR3PhysRamPreAllocate(pVM);
2184
2185 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2186 return rc;
2187}
2188
2189
2190/**
2191 * Init phase completed callback.
2192 *
2193 * @returns VBox status code.
2194 * @param pVM The VM handle.
2195 * @param enmWhat What has been completed.
2196 * @thread EMT(0)
2197 */
2198VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2199{
2200 switch (enmWhat)
2201 {
2202 case VMINITCOMPLETED_HWACCM:
2203#ifdef VBOX_WITH_PCI_PASSTHROUGH
2204 if (pVM->pgm.s.fPciPassthrough)
2205 {
2206 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2207 AssertLogRelReturn(HWACCMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HWACCM);
2208 AssertLogRelReturn(HWACCMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2209
2210 /*
2211 * Report assignments to the IOMMU (hope that's good enough for now).
2212 */
2213 if (pVM->pgm.s.fPciPassthrough)
2214 {
2215 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2216 AssertRCReturn(rc, rc);
2217 }
2218 }
2219#else
2220 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2221#endif
2222 break;
2223
2224 default:
2225 /* shut up gcc */
2226 break;
2227 }
2228
2229 return VINF_SUCCESS;
2230}
2231
2232
2233/**
2234 * Applies relocations to data and code managed by this component.
2235 *
2236 * This function will be called at init and whenever the VMM need to relocate it
2237 * self inside the GC.
2238 *
2239 * @param pVM The VM.
2240 * @param offDelta Relocation delta relative to old location.
2241 */
2242VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2243{
2244 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2245
2246 /*
2247 * Paging stuff.
2248 */
2249 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2250
2251 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2252
2253 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2254 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2255 {
2256 PVMCPU pVCpu = &pVM->aCpus[i];
2257
2258 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2259
2260 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2261 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2262 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2263 }
2264
2265 /*
2266 * Trees.
2267 */
2268 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2269
2270 /*
2271 * Ram ranges.
2272 */
2273 if (pVM->pgm.s.pRamRangesXR3)
2274 {
2275 /* Update the pSelfRC pointers and relink them. */
2276 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2277 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2278 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2279 pgmR3PhysRelinkRamRanges(pVM);
2280
2281 /* Flush the RC TLB. */
2282 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2283 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2284 }
2285
2286 /*
2287 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2288 * be mapped and thus not included in the above exercise.
2289 */
2290 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2291 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2292 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2293
2294 /*
2295 * Update the two page directories with all page table mappings.
2296 * (One or more of them have changed, that's why we're here.)
2297 */
2298 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2299 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2300 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2301
2302 /* Relocate GC addresses of Page Tables. */
2303 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2304 {
2305 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2306 {
2307 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2308 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2309 }
2310 }
2311
2312 /*
2313 * Dynamic page mapping area.
2314 */
2315 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2316 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2317 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2318
2319 if (pVM->pgm.s.pRCDynMap)
2320 {
2321 pVM->pgm.s.pRCDynMap += offDelta;
2322 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2323
2324 pDynMap->paPages += offDelta;
2325 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2326
2327 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2328 {
2329 paPages[iPage].pvPage += offDelta;
2330 paPages[iPage].uPte.pLegacy += offDelta;
2331 paPages[iPage].uPte.pPae += offDelta;
2332 }
2333 }
2334
2335 /*
2336 * The Zero page.
2337 */
2338 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2339#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2340 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2341#else
2342 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2343#endif
2344
2345 /*
2346 * Physical and virtual handlers.
2347 */
2348 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2349 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2350 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2351 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2352
2353 /*
2354 * The page pool.
2355 */
2356 pgmR3PoolRelocate(pVM);
2357
2358#ifdef VBOX_WITH_STATISTICS
2359 /*
2360 * Statistics.
2361 */
2362 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2363 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2364 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2365#endif
2366}
2367
2368
2369/**
2370 * Callback function for relocating a physical access handler.
2371 *
2372 * @returns 0 (continue enum)
2373 * @param pNode Pointer to a PGMPHYSHANDLER node.
2374 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2375 * not certain the delta will fit in a void pointer for all possible configs.
2376 */
2377static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2378{
2379 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2380 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2381 if (pHandler->pfnHandlerRC)
2382 pHandler->pfnHandlerRC += offDelta;
2383 if (pHandler->pvUserRC >= 0x10000)
2384 pHandler->pvUserRC += offDelta;
2385 return 0;
2386}
2387
2388
2389/**
2390 * Callback function for relocating a virtual access handler.
2391 *
2392 * @returns 0 (continue enum)
2393 * @param pNode Pointer to a PGMVIRTHANDLER node.
2394 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2395 * not certain the delta will fit in a void pointer for all possible configs.
2396 */
2397static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2398{
2399 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2400 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2401 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2402 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2403 Assert(pHandler->pfnHandlerRC);
2404 pHandler->pfnHandlerRC += offDelta;
2405 return 0;
2406}
2407
2408
2409/**
2410 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2411 *
2412 * @returns 0 (continue enum)
2413 * @param pNode Pointer to a PGMVIRTHANDLER node.
2414 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2415 * not certain the delta will fit in a void pointer for all possible configs.
2416 */
2417static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2418{
2419 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2420 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2421 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2422 Assert(pHandler->pfnHandlerRC);
2423 pHandler->pfnHandlerRC += offDelta;
2424 return 0;
2425}
2426
2427
2428/**
2429 * Resets a virtual CPU when unplugged.
2430 *
2431 * @param pVM The VM handle.
2432 * @param pVCpu The virtual CPU handle.
2433 */
2434VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2435{
2436 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2437 AssertRC(rc);
2438
2439 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2440 AssertRC(rc);
2441
2442 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2443
2444 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2445
2446 /*
2447 * Re-init other members.
2448 */
2449 pVCpu->pgm.s.fA20Enabled = true;
2450
2451 /*
2452 * Clear the FFs PGM owns.
2453 */
2454 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2455 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2456}
2457
2458
2459/**
2460 * The VM is being reset.
2461 *
2462 * For the PGM component this means that any PD write monitors
2463 * needs to be removed.
2464 *
2465 * @param pVM VM handle.
2466 */
2467VMMR3DECL(void) PGMR3Reset(PVM pVM)
2468{
2469 int rc;
2470
2471 LogFlow(("PGMR3Reset:\n"));
2472 VM_ASSERT_EMT(pVM);
2473
2474 pgmLock(pVM);
2475
2476 /*
2477 * Unfix any fixed mappings and disable CR3 monitoring.
2478 */
2479 pVM->pgm.s.fMappingsFixed = false;
2480 pVM->pgm.s.fMappingsFixedRestored = false;
2481 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2482 pVM->pgm.s.cbMappingFixed = 0;
2483
2484 /*
2485 * Exit the guest paging mode before the pgm pool gets reset.
2486 * Important to clean up the amd64 case.
2487 */
2488 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2489 {
2490 PVMCPU pVCpu = &pVM->aCpus[i];
2491 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2492 AssertRC(rc);
2493 }
2494
2495#ifdef DEBUG
2496 DBGFR3InfoLog(pVM, "mappings", NULL);
2497 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2498#endif
2499
2500 /*
2501 * Switch mode back to real mode. (before resetting the pgm pool!)
2502 */
2503 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2504 {
2505 PVMCPU pVCpu = &pVM->aCpus[i];
2506
2507 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2508 AssertRC(rc);
2509
2510 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2511 }
2512
2513 /*
2514 * Reset the shadow page pool.
2515 */
2516 pgmR3PoolReset(pVM);
2517
2518 /*
2519 * Re-init various other members and clear the FFs that PGM owns.
2520 */
2521 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2522 {
2523 PVMCPU pVCpu = &pVM->aCpus[i];
2524
2525 pVCpu->pgm.s.fA20Enabled = true;
2526 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2527 PGMNotifyNxeChanged(pVCpu, false);
2528
2529 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2530 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2531 }
2532
2533 /*
2534 * Reset (zero) RAM and shadow ROM pages.
2535 */
2536 rc = pgmR3PhysRamReset(pVM);
2537 if (RT_SUCCESS(rc))
2538 rc = pgmR3PhysRomReset(pVM);
2539
2540
2541 pgmUnlock(pVM);
2542 AssertReleaseRC(rc);
2543}
2544
2545
2546#ifdef VBOX_STRICT
2547/**
2548 * VM state change callback for clearing fNoMorePhysWrites after
2549 * a snapshot has been created.
2550 */
2551static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2552{
2553 if ( enmState == VMSTATE_RUNNING
2554 || enmState == VMSTATE_RESUMING)
2555 pVM->pgm.s.fNoMorePhysWrites = false;
2556 NOREF(enmOldState); NOREF(pvUser);
2557}
2558#endif
2559
2560/**
2561 * Private API to reset fNoMorePhysWrites.
2562 */
2563VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2564{
2565 pVM->pgm.s.fNoMorePhysWrites = false;
2566}
2567
2568/**
2569 * Terminates the PGM.
2570 *
2571 * @returns VBox status code.
2572 * @param pVM Pointer to VM structure.
2573 */
2574VMMR3DECL(int) PGMR3Term(PVM pVM)
2575{
2576 /* Must free shared pages here. */
2577 pgmLock(pVM);
2578 pgmR3PhysRamTerm(pVM);
2579 pgmR3PhysRomTerm(pVM);
2580 pgmUnlock(pVM);
2581
2582 PGMDeregisterStringFormatTypes();
2583 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2584}
2585
2586
2587/**
2588 * Show paging mode.
2589 *
2590 * @param pVM VM Handle.
2591 * @param pHlp The info helpers.
2592 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2593 */
2594static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2595{
2596 /* digest argument. */
2597 bool fGuest, fShadow, fHost;
2598 if (pszArgs)
2599 pszArgs = RTStrStripL(pszArgs);
2600 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2601 fShadow = fHost = fGuest = true;
2602 else
2603 {
2604 fShadow = fHost = fGuest = false;
2605 if (strstr(pszArgs, "guest"))
2606 fGuest = true;
2607 if (strstr(pszArgs, "shadow"))
2608 fShadow = true;
2609 if (strstr(pszArgs, "host"))
2610 fHost = true;
2611 }
2612
2613 /** @todo SMP support! */
2614 /* print info. */
2615 if (fGuest)
2616 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2617 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2618 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2619 if (fShadow)
2620 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2621 if (fHost)
2622 {
2623 const char *psz;
2624 switch (pVM->pgm.s.enmHostMode)
2625 {
2626 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2627 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2628 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2629 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2630 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2631 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2632 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2633 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2634 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2635 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2636 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2637 default: psz = "unknown"; break;
2638 }
2639 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2640 }
2641}
2642
2643
2644/**
2645 * Dump registered MMIO ranges to the log.
2646 *
2647 * @param pVM VM Handle.
2648 * @param pHlp The info helpers.
2649 * @param pszArgs Arguments, ignored.
2650 */
2651static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2652{
2653 NOREF(pszArgs);
2654 pHlp->pfnPrintf(pHlp,
2655 "RAM ranges (pVM=%p)\n"
2656 "%.*s %.*s\n",
2657 pVM,
2658 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2659 sizeof(RTHCPTR) * 2, "pvHC ");
2660
2661 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2662 pHlp->pfnPrintf(pHlp,
2663 "%RGp-%RGp %RHv %s\n",
2664 pCur->GCPhys,
2665 pCur->GCPhysLast,
2666 pCur->pvR3,
2667 pCur->pszDesc);
2668}
2669
2670/**
2671 * Dump the page directory to the log.
2672 *
2673 * @param pVM VM Handle.
2674 * @param pHlp The info helpers.
2675 * @param pszArgs Arguments, ignored.
2676 */
2677static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2678{
2679 /** @todo SMP support!! */
2680 PVMCPU pVCpu = &pVM->aCpus[0];
2681
2682/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2683 /* Big pages supported? */
2684 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2685
2686 /* Global pages supported? */
2687 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2688
2689 NOREF(pszArgs);
2690
2691 /*
2692 * Get page directory addresses.
2693 */
2694 pgmLock(pVM);
2695 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2696 Assert(pPDSrc);
2697
2698 /*
2699 * Iterate the page directory.
2700 */
2701 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2702 {
2703 X86PDE PdeSrc = pPDSrc->a[iPD];
2704 if (PdeSrc.n.u1Present)
2705 {
2706 if (PdeSrc.b.u1Size && fPSE)
2707 pHlp->pfnPrintf(pHlp,
2708 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2709 iPD,
2710 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2711 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2712 else
2713 pHlp->pfnPrintf(pHlp,
2714 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2715 iPD,
2716 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2717 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2718 }
2719 }
2720 pgmUnlock(pVM);
2721}
2722
2723
2724/**
2725 * Service a VMMCALLRING3_PGM_LOCK call.
2726 *
2727 * @returns VBox status code.
2728 * @param pVM The VM handle.
2729 */
2730VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2731{
2732 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2733 AssertRC(rc);
2734 return rc;
2735}
2736
2737
2738/**
2739 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2740 *
2741 * @returns PGM_TYPE_*.
2742 * @param pgmMode The mode value to convert.
2743 */
2744DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2745{
2746 switch (pgmMode)
2747 {
2748 case PGMMODE_REAL: return PGM_TYPE_REAL;
2749 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2750 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2751 case PGMMODE_PAE:
2752 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2753 case PGMMODE_AMD64:
2754 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2755 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2756 case PGMMODE_EPT: return PGM_TYPE_EPT;
2757 default:
2758 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2759 }
2760}
2761
2762
2763/**
2764 * Gets the index into the paging mode data array of a SHW+GST mode.
2765 *
2766 * @returns PGM::paPagingData index.
2767 * @param uShwType The shadow paging mode type.
2768 * @param uGstType The guest paging mode type.
2769 */
2770DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2771{
2772 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2773 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2774 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2775 + (uGstType - PGM_TYPE_REAL);
2776}
2777
2778
2779/**
2780 * Gets the index into the paging mode data array of a SHW+GST mode.
2781 *
2782 * @returns PGM::paPagingData index.
2783 * @param enmShw The shadow paging mode.
2784 * @param enmGst The guest paging mode.
2785 */
2786DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2787{
2788 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2789 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2790 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2791}
2792
2793
2794/**
2795 * Calculates the max data index.
2796 * @returns The number of entries in the paging data array.
2797 */
2798DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2799{
2800 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2801}
2802
2803
2804/**
2805 * Initializes the paging mode data kept in PGM::paModeData.
2806 *
2807 * @param pVM The VM handle.
2808 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2809 * This is used early in the init process to avoid trouble with PDM
2810 * not being initialized yet.
2811 */
2812static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2813{
2814 PPGMMODEDATA pModeData;
2815 int rc;
2816
2817 /*
2818 * Allocate the array on the first call.
2819 */
2820 if (!pVM->pgm.s.paModeData)
2821 {
2822 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2823 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2824 }
2825
2826 /*
2827 * Initialize the array entries.
2828 */
2829 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2830 pModeData->uShwType = PGM_TYPE_32BIT;
2831 pModeData->uGstType = PGM_TYPE_REAL;
2832 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2834 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2835
2836 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2837 pModeData->uShwType = PGM_TYPE_32BIT;
2838 pModeData->uGstType = PGM_TYPE_PROT;
2839 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2841 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2842
2843 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2844 pModeData->uShwType = PGM_TYPE_32BIT;
2845 pModeData->uGstType = PGM_TYPE_32BIT;
2846 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2847 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2848 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2849
2850 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2851 pModeData->uShwType = PGM_TYPE_PAE;
2852 pModeData->uGstType = PGM_TYPE_REAL;
2853 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2854 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2855 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2856
2857 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2858 pModeData->uShwType = PGM_TYPE_PAE;
2859 pModeData->uGstType = PGM_TYPE_PROT;
2860 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2861 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2862 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2863
2864 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2865 pModeData->uShwType = PGM_TYPE_PAE;
2866 pModeData->uGstType = PGM_TYPE_32BIT;
2867 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2868 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2869 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2870
2871 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2872 pModeData->uShwType = PGM_TYPE_PAE;
2873 pModeData->uGstType = PGM_TYPE_PAE;
2874 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2875 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2876 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2877
2878#ifdef VBOX_WITH_64_BITS_GUESTS
2879 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2880 pModeData->uShwType = PGM_TYPE_AMD64;
2881 pModeData->uGstType = PGM_TYPE_AMD64;
2882 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2883 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2884 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2885#endif
2886
2887 /* The nested paging mode. */
2888 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2889 pModeData->uShwType = PGM_TYPE_NESTED;
2890 pModeData->uGstType = PGM_TYPE_REAL;
2891 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2892 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2893
2894 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2895 pModeData->uShwType = PGM_TYPE_NESTED;
2896 pModeData->uGstType = PGM_TYPE_PROT;
2897 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2898 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2899
2900 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2901 pModeData->uShwType = PGM_TYPE_NESTED;
2902 pModeData->uGstType = PGM_TYPE_32BIT;
2903 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2905
2906 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2907 pModeData->uShwType = PGM_TYPE_NESTED;
2908 pModeData->uGstType = PGM_TYPE_PAE;
2909 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911
2912#ifdef VBOX_WITH_64_BITS_GUESTS
2913 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2914 pModeData->uShwType = PGM_TYPE_NESTED;
2915 pModeData->uGstType = PGM_TYPE_AMD64;
2916 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2918#endif
2919
2920 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2921 switch (pVM->pgm.s.enmHostMode)
2922 {
2923#if HC_ARCH_BITS == 32
2924 case SUPPAGINGMODE_32_BIT:
2925 case SUPPAGINGMODE_32_BIT_GLOBAL:
2926 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2927 {
2928 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2929 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2930 }
2931# ifdef VBOX_WITH_64_BITS_GUESTS
2932 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2933 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2934# endif
2935 break;
2936
2937 case SUPPAGINGMODE_PAE:
2938 case SUPPAGINGMODE_PAE_NX:
2939 case SUPPAGINGMODE_PAE_GLOBAL:
2940 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2941 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2942 {
2943 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2944 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2945 }
2946# ifdef VBOX_WITH_64_BITS_GUESTS
2947 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2948 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2949# endif
2950 break;
2951#endif /* HC_ARCH_BITS == 32 */
2952
2953#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2954 case SUPPAGINGMODE_AMD64:
2955 case SUPPAGINGMODE_AMD64_GLOBAL:
2956 case SUPPAGINGMODE_AMD64_NX:
2957 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2958# ifdef VBOX_WITH_64_BITS_GUESTS
2959 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2960# else
2961 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2962# endif
2963 {
2964 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2965 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2966 }
2967 break;
2968#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2969
2970 default:
2971 AssertFailed();
2972 break;
2973 }
2974
2975 /* Extended paging (EPT) / Intel VT-x */
2976 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2977 pModeData->uShwType = PGM_TYPE_EPT;
2978 pModeData->uGstType = PGM_TYPE_REAL;
2979 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2980 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2981 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2982
2983 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2984 pModeData->uShwType = PGM_TYPE_EPT;
2985 pModeData->uGstType = PGM_TYPE_PROT;
2986 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2987 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2988 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2989
2990 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2991 pModeData->uShwType = PGM_TYPE_EPT;
2992 pModeData->uGstType = PGM_TYPE_32BIT;
2993 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2994 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2995 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2996
2997 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2998 pModeData->uShwType = PGM_TYPE_EPT;
2999 pModeData->uGstType = PGM_TYPE_PAE;
3000 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3001 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3002 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3003
3004#ifdef VBOX_WITH_64_BITS_GUESTS
3005 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3006 pModeData->uShwType = PGM_TYPE_EPT;
3007 pModeData->uGstType = PGM_TYPE_AMD64;
3008 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3009 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3010 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3011#endif
3012 return VINF_SUCCESS;
3013}
3014
3015
3016/**
3017 * Switch to different (or relocated in the relocate case) mode data.
3018 *
3019 * @param pVM The VM handle.
3020 * @param pVCpu The VMCPU to operate on.
3021 * @param enmShw The the shadow paging mode.
3022 * @param enmGst The the guest paging mode.
3023 */
3024static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3025{
3026 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3027
3028 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3029 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3030
3031 /* shadow */
3032 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3033 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3034 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3035 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3036 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3037
3038 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3039 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3040
3041 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3042 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3043
3044
3045 /* guest */
3046 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3047 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3048 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3049 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3050 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3051 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3052 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3053 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3054 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3055 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3056 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3057 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3058
3059 /* both */
3060 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3061 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3062 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3063 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3064 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3065 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3066#ifdef VBOX_STRICT
3067 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3068#endif
3069 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3070 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3071
3072 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3073 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3074 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3075 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3076 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3077#ifdef VBOX_STRICT
3078 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3079#endif
3080 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3081 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3082
3083 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3084 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3085 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3086 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3087 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3088#ifdef VBOX_STRICT
3089 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3090#endif
3091 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3092 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3093}
3094
3095
3096/**
3097 * Calculates the shadow paging mode.
3098 *
3099 * @returns The shadow paging mode.
3100 * @param pVM VM handle.
3101 * @param enmGuestMode The guest mode.
3102 * @param enmHostMode The host mode.
3103 * @param enmShadowMode The current shadow mode.
3104 * @param penmSwitcher Where to store the switcher to use.
3105 * VMMSWITCHER_INVALID means no change.
3106 */
3107static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3108{
3109 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3110 switch (enmGuestMode)
3111 {
3112 /*
3113 * When switching to real or protected mode we don't change
3114 * anything since it's likely that we'll switch back pretty soon.
3115 *
3116 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3117 * and is supposed to determine which shadow paging and switcher to
3118 * use during init.
3119 */
3120 case PGMMODE_REAL:
3121 case PGMMODE_PROTECTED:
3122 if ( enmShadowMode != PGMMODE_INVALID
3123 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3124 break; /* (no change) */
3125
3126 switch (enmHostMode)
3127 {
3128 case SUPPAGINGMODE_32_BIT:
3129 case SUPPAGINGMODE_32_BIT_GLOBAL:
3130 enmShadowMode = PGMMODE_32_BIT;
3131 enmSwitcher = VMMSWITCHER_32_TO_32;
3132 break;
3133
3134 case SUPPAGINGMODE_PAE:
3135 case SUPPAGINGMODE_PAE_NX:
3136 case SUPPAGINGMODE_PAE_GLOBAL:
3137 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3138 enmShadowMode = PGMMODE_PAE;
3139 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3140#ifdef DEBUG_bird
3141 if (RTEnvExist("VBOX_32BIT"))
3142 {
3143 enmShadowMode = PGMMODE_32_BIT;
3144 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3145 }
3146#endif
3147 break;
3148
3149 case SUPPAGINGMODE_AMD64:
3150 case SUPPAGINGMODE_AMD64_GLOBAL:
3151 case SUPPAGINGMODE_AMD64_NX:
3152 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3153 enmShadowMode = PGMMODE_PAE;
3154 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3155#ifdef DEBUG_bird
3156 if (RTEnvExist("VBOX_32BIT"))
3157 {
3158 enmShadowMode = PGMMODE_32_BIT;
3159 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3160 }
3161#endif
3162 break;
3163
3164 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3165 }
3166 break;
3167
3168 case PGMMODE_32_BIT:
3169 switch (enmHostMode)
3170 {
3171 case SUPPAGINGMODE_32_BIT:
3172 case SUPPAGINGMODE_32_BIT_GLOBAL:
3173 enmShadowMode = PGMMODE_32_BIT;
3174 enmSwitcher = VMMSWITCHER_32_TO_32;
3175 break;
3176
3177 case SUPPAGINGMODE_PAE:
3178 case SUPPAGINGMODE_PAE_NX:
3179 case SUPPAGINGMODE_PAE_GLOBAL:
3180 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3181 enmShadowMode = PGMMODE_PAE;
3182 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3183#ifdef DEBUG_bird
3184 if (RTEnvExist("VBOX_32BIT"))
3185 {
3186 enmShadowMode = PGMMODE_32_BIT;
3187 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3188 }
3189#endif
3190 break;
3191
3192 case SUPPAGINGMODE_AMD64:
3193 case SUPPAGINGMODE_AMD64_GLOBAL:
3194 case SUPPAGINGMODE_AMD64_NX:
3195 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3196 enmShadowMode = PGMMODE_PAE;
3197 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3198#ifdef DEBUG_bird
3199 if (RTEnvExist("VBOX_32BIT"))
3200 {
3201 enmShadowMode = PGMMODE_32_BIT;
3202 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3203 }
3204#endif
3205 break;
3206
3207 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3208 }
3209 break;
3210
3211 case PGMMODE_PAE:
3212 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3213 switch (enmHostMode)
3214 {
3215 case SUPPAGINGMODE_32_BIT:
3216 case SUPPAGINGMODE_32_BIT_GLOBAL:
3217 enmShadowMode = PGMMODE_PAE;
3218 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3219 break;
3220
3221 case SUPPAGINGMODE_PAE:
3222 case SUPPAGINGMODE_PAE_NX:
3223 case SUPPAGINGMODE_PAE_GLOBAL:
3224 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3225 enmShadowMode = PGMMODE_PAE;
3226 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3227 break;
3228
3229 case SUPPAGINGMODE_AMD64:
3230 case SUPPAGINGMODE_AMD64_GLOBAL:
3231 case SUPPAGINGMODE_AMD64_NX:
3232 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3233 enmShadowMode = PGMMODE_PAE;
3234 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3235 break;
3236
3237 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3238 }
3239 break;
3240
3241 case PGMMODE_AMD64:
3242 case PGMMODE_AMD64_NX:
3243 switch (enmHostMode)
3244 {
3245 case SUPPAGINGMODE_32_BIT:
3246 case SUPPAGINGMODE_32_BIT_GLOBAL:
3247 enmShadowMode = PGMMODE_AMD64;
3248 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3249 break;
3250
3251 case SUPPAGINGMODE_PAE:
3252 case SUPPAGINGMODE_PAE_NX:
3253 case SUPPAGINGMODE_PAE_GLOBAL:
3254 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3255 enmShadowMode = PGMMODE_AMD64;
3256 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3257 break;
3258
3259 case SUPPAGINGMODE_AMD64:
3260 case SUPPAGINGMODE_AMD64_GLOBAL:
3261 case SUPPAGINGMODE_AMD64_NX:
3262 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3263 enmShadowMode = PGMMODE_AMD64;
3264 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3265 break;
3266
3267 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3268 }
3269 break;
3270
3271
3272 default:
3273 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3274 *penmSwitcher = VMMSWITCHER_INVALID;
3275 return PGMMODE_INVALID;
3276 }
3277 /* Override the shadow mode is nested paging is active. */
3278 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3279 if (pVM->pgm.s.fNestedPaging)
3280 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3281
3282 *penmSwitcher = enmSwitcher;
3283 return enmShadowMode;
3284}
3285
3286
3287/**
3288 * Performs the actual mode change.
3289 * This is called by PGMChangeMode and pgmR3InitPaging().
3290 *
3291 * @returns VBox status code. May suspend or power off the VM on error, but this
3292 * will trigger using FFs and not status codes.
3293 *
3294 * @param pVM VM handle.
3295 * @param pVCpu The VMCPU to operate on.
3296 * @param enmGuestMode The new guest mode. This is assumed to be different from
3297 * the current mode.
3298 */
3299VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3300{
3301#if HC_ARCH_BITS == 32
3302 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3303#endif
3304 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3305
3306 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3307 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3308
3309 /*
3310 * Calc the shadow mode and switcher.
3311 */
3312 VMMSWITCHER enmSwitcher;
3313 PGMMODE enmShadowMode;
3314 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3315
3316#ifdef VBOX_WITH_RAW_MODE
3317 if (enmSwitcher != VMMSWITCHER_INVALID)
3318 {
3319 /*
3320 * Select new switcher.
3321 */
3322 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3323 if (RT_FAILURE(rc))
3324 {
3325 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3326 return rc;
3327 }
3328 }
3329#endif
3330
3331 /*
3332 * Exit old mode(s).
3333 */
3334#if HC_ARCH_BITS == 32
3335 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3336 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3337 && enmShadowMode == PGMMODE_NESTED);
3338#else
3339 const bool fForceShwEnterExit = false;
3340#endif
3341 /* shadow */
3342 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3343 || fForceShwEnterExit)
3344 {
3345 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3346 if (PGM_SHW_PFN(Exit, pVCpu))
3347 {
3348 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3349 if (RT_FAILURE(rc))
3350 {
3351 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3352 return rc;
3353 }
3354 }
3355
3356 }
3357 else
3358 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3359
3360 /* guest */
3361 if (PGM_GST_PFN(Exit, pVCpu))
3362 {
3363 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3364 if (RT_FAILURE(rc))
3365 {
3366 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3367 return rc;
3368 }
3369 }
3370
3371 /*
3372 * Load new paging mode data.
3373 */
3374 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3375
3376 /*
3377 * Enter new shadow mode (if changed).
3378 */
3379 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3380 || fForceShwEnterExit)
3381 {
3382 int rc;
3383 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3384 switch (enmShadowMode)
3385 {
3386 case PGMMODE_32_BIT:
3387 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3388 break;
3389 case PGMMODE_PAE:
3390 case PGMMODE_PAE_NX:
3391 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3392 break;
3393 case PGMMODE_AMD64:
3394 case PGMMODE_AMD64_NX:
3395 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3396 break;
3397 case PGMMODE_NESTED:
3398 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3399 break;
3400 case PGMMODE_EPT:
3401 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3402 break;
3403 case PGMMODE_REAL:
3404 case PGMMODE_PROTECTED:
3405 default:
3406 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3407 return VERR_INTERNAL_ERROR;
3408 }
3409 if (RT_FAILURE(rc))
3410 {
3411 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3412 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3413 return rc;
3414 }
3415 }
3416
3417 /*
3418 * Always flag the necessary updates
3419 */
3420 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3421
3422 /*
3423 * Enter the new guest and shadow+guest modes.
3424 */
3425 int rc = -1;
3426 int rc2 = -1;
3427 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3428 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3429 switch (enmGuestMode)
3430 {
3431 case PGMMODE_REAL:
3432 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3433 switch (pVCpu->pgm.s.enmShadowMode)
3434 {
3435 case PGMMODE_32_BIT:
3436 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3437 break;
3438 case PGMMODE_PAE:
3439 case PGMMODE_PAE_NX:
3440 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3441 break;
3442 case PGMMODE_NESTED:
3443 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3444 break;
3445 case PGMMODE_EPT:
3446 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3447 break;
3448 case PGMMODE_AMD64:
3449 case PGMMODE_AMD64_NX:
3450 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3451 default: AssertFailed(); break;
3452 }
3453 break;
3454
3455 case PGMMODE_PROTECTED:
3456 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3457 switch (pVCpu->pgm.s.enmShadowMode)
3458 {
3459 case PGMMODE_32_BIT:
3460 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3461 break;
3462 case PGMMODE_PAE:
3463 case PGMMODE_PAE_NX:
3464 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3465 break;
3466 case PGMMODE_NESTED:
3467 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3468 break;
3469 case PGMMODE_EPT:
3470 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3471 break;
3472 case PGMMODE_AMD64:
3473 case PGMMODE_AMD64_NX:
3474 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3475 default: AssertFailed(); break;
3476 }
3477 break;
3478
3479 case PGMMODE_32_BIT:
3480 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3481 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3482 switch (pVCpu->pgm.s.enmShadowMode)
3483 {
3484 case PGMMODE_32_BIT:
3485 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3486 break;
3487 case PGMMODE_PAE:
3488 case PGMMODE_PAE_NX:
3489 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3490 break;
3491 case PGMMODE_NESTED:
3492 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3493 break;
3494 case PGMMODE_EPT:
3495 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3496 break;
3497 case PGMMODE_AMD64:
3498 case PGMMODE_AMD64_NX:
3499 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3500 default: AssertFailed(); break;
3501 }
3502 break;
3503
3504 case PGMMODE_PAE_NX:
3505 case PGMMODE_PAE:
3506 {
3507 uint32_t u32Dummy, u32Features;
3508
3509 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3510 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3511 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3512 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3513
3514 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3515 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3516 switch (pVCpu->pgm.s.enmShadowMode)
3517 {
3518 case PGMMODE_PAE:
3519 case PGMMODE_PAE_NX:
3520 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3521 break;
3522 case PGMMODE_NESTED:
3523 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3524 break;
3525 case PGMMODE_EPT:
3526 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3527 break;
3528 case PGMMODE_32_BIT:
3529 case PGMMODE_AMD64:
3530 case PGMMODE_AMD64_NX:
3531 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3532 default: AssertFailed(); break;
3533 }
3534 break;
3535 }
3536
3537#ifdef VBOX_WITH_64_BITS_GUESTS
3538 case PGMMODE_AMD64_NX:
3539 case PGMMODE_AMD64:
3540 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3541 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3542 switch (pVCpu->pgm.s.enmShadowMode)
3543 {
3544 case PGMMODE_AMD64:
3545 case PGMMODE_AMD64_NX:
3546 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3547 break;
3548 case PGMMODE_NESTED:
3549 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3550 break;
3551 case PGMMODE_EPT:
3552 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3553 break;
3554 case PGMMODE_32_BIT:
3555 case PGMMODE_PAE:
3556 case PGMMODE_PAE_NX:
3557 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3558 default: AssertFailed(); break;
3559 }
3560 break;
3561#endif
3562
3563 default:
3564 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3565 rc = VERR_NOT_IMPLEMENTED;
3566 break;
3567 }
3568
3569 /* status codes. */
3570 AssertRC(rc);
3571 AssertRC(rc2);
3572 if (RT_SUCCESS(rc))
3573 {
3574 rc = rc2;
3575 if (RT_SUCCESS(rc)) /* no informational status codes. */
3576 rc = VINF_SUCCESS;
3577 }
3578
3579 /* Notify HWACCM as well. */
3580 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3581 return rc;
3582}
3583
3584
3585/**
3586 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3587 *
3588 * @returns VBox status code, fully asserted.
3589 * @param pVCpu The VMCPU to operate on.
3590 */
3591int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3592{
3593 /* Unmap the old CR3 value before flushing everything. */
3594 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3595 AssertRC(rc);
3596
3597 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3598 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3599 AssertRC(rc);
3600 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3601 return rc;
3602}
3603
3604
3605/**
3606 * Called by pgmPoolFlushAllInt after flushing the pool.
3607 *
3608 * @returns VBox status code, fully asserted.
3609 * @param pVM The VM handle.
3610 * @param pVCpu The VMCPU to operate on.
3611 */
3612int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3613{
3614 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3615 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3616 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3617 AssertRCReturn(rc, rc);
3618 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3619
3620 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3621 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3622 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3623 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3624 return rc;
3625}
3626
3627#ifdef VBOX_WITH_DEBUGGER
3628
3629/**
3630 * The '.pgmram' command.
3631 *
3632 * @returns VBox status.
3633 * @param pCmd Pointer to the command descriptor (as registered).
3634 * @param pCmdHlp Pointer to command helper functions.
3635 * @param pVM Pointer to the current VM (if any).
3636 * @param paArgs Pointer to (readonly) array of arguments.
3637 * @param cArgs Number of arguments in the array.
3638 */
3639static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3640{
3641 /*
3642 * Validate input.
3643 */
3644 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3645 if (!pVM)
3646 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3647 if (!pVM->pgm.s.pRamRangesXR3)
3648 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3649
3650 /*
3651 * Dump the ranges.
3652 */
3653 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3654 PPGMRAMRANGE pRam;
3655 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
3656 {
3657 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3658 "%RGp - %RGp %p\n",
3659 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
3660 if (RT_FAILURE(rc))
3661 return rc;
3662 }
3663
3664 return VINF_SUCCESS;
3665}
3666
3667
3668/**
3669 * The '.pgmerror' and '.pgmerroroff' commands.
3670 *
3671 * @returns VBox status.
3672 * @param pCmd Pointer to the command descriptor (as registered).
3673 * @param pCmdHlp Pointer to command helper functions.
3674 * @param pVM Pointer to the current VM (if any).
3675 * @param paArgs Pointer to (readonly) array of arguments.
3676 * @param cArgs Number of arguments in the array.
3677 */
3678static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3679{
3680 /*
3681 * Validate input.
3682 */
3683 if (!pVM)
3684 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3685 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
3686 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
3687
3688 if (!cArgs)
3689 {
3690 /*
3691 * Print the list of error injection locations with status.
3692 */
3693 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
3694 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3695 }
3696 else
3697 {
3698
3699 /*
3700 * String switch on where to inject the error.
3701 */
3702 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3703 const char *pszWhere = paArgs[0].u.pszString;
3704 if (!strcmp(pszWhere, "handy"))
3705 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3706 else
3707 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
3708 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
3709 }
3710 return VINF_SUCCESS;
3711}
3712
3713
3714/**
3715 * The '.pgmsync' command.
3716 *
3717 * @returns VBox status.
3718 * @param pCmd Pointer to the command descriptor (as registered).
3719 * @param pCmdHlp Pointer to command helper functions.
3720 * @param pVM Pointer to the current VM (if any).
3721 * @param paArgs Pointer to (readonly) array of arguments.
3722 * @param cArgs Number of arguments in the array.
3723 */
3724static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3725{
3726 /** @todo SMP support */
3727
3728 /*
3729 * Validate input.
3730 */
3731 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3732 if (!pVM)
3733 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3734
3735 PVMCPU pVCpu = &pVM->aCpus[0];
3736
3737 /*
3738 * Force page directory sync.
3739 */
3740 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3741
3742 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3743 if (RT_FAILURE(rc))
3744 return rc;
3745
3746 return VINF_SUCCESS;
3747}
3748
3749
3750#ifdef VBOX_STRICT
3751/**
3752 * The '.pgmassertcr3' command.
3753 *
3754 * @returns VBox status.
3755 * @param pCmd Pointer to the command descriptor (as registered).
3756 * @param pCmdHlp Pointer to command helper functions.
3757 * @param pVM Pointer to the current VM (if any).
3758 * @param paArgs Pointer to (readonly) array of arguments.
3759 * @param cArgs Number of arguments in the array.
3760 */
3761static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3762{
3763 /** @todo SMP support!! */
3764
3765 /*
3766 * Validate input.
3767 */
3768 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3769 if (!pVM)
3770 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3771
3772 PVMCPU pVCpu = &pVM->aCpus[0];
3773
3774 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
3775 if (RT_FAILURE(rc))
3776 return rc;
3777
3778 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3779
3780 return VINF_SUCCESS;
3781}
3782#endif /* VBOX_STRICT */
3783
3784
3785/**
3786 * The '.pgmsyncalways' command.
3787 *
3788 * @returns VBox status.
3789 * @param pCmd Pointer to the command descriptor (as registered).
3790 * @param pCmdHlp Pointer to command helper functions.
3791 * @param pVM Pointer to the current VM (if any).
3792 * @param paArgs Pointer to (readonly) array of arguments.
3793 * @param cArgs Number of arguments in the array.
3794 */
3795static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3796{
3797 /** @todo SMP support!! */
3798 PVMCPU pVCpu = &pVM->aCpus[0];
3799
3800 /*
3801 * Validate input.
3802 */
3803 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3804 if (!pVM)
3805 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3806
3807 /*
3808 * Force page directory sync.
3809 */
3810 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3811 {
3812 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3813 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3814 }
3815 else
3816 {
3817 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3818 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3819 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3820 }
3821}
3822
3823
3824/**
3825 * The '.pgmphystofile' command.
3826 *
3827 * @returns VBox status.
3828 * @param pCmd Pointer to the command descriptor (as registered).
3829 * @param pCmdHlp Pointer to command helper functions.
3830 * @param pVM Pointer to the current VM (if any).
3831 * @param paArgs Pointer to (readonly) array of arguments.
3832 * @param cArgs Number of arguments in the array.
3833 */
3834static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3835{
3836 /*
3837 * Validate input.
3838 */
3839 NOREF(pCmd);
3840 if (!pVM)
3841 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3842 if ( cArgs < 1
3843 || cArgs > 2
3844 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
3845 || ( cArgs > 1
3846 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
3847 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
3848 if ( cArgs >= 2
3849 && strcmp(paArgs[1].u.pszString, "nozero"))
3850 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3851 bool fIncZeroPgs = cArgs < 2;
3852
3853 /*
3854 * Open the output file and get the ram parameters.
3855 */
3856 RTFILE hFile;
3857 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3858 if (RT_FAILURE(rc))
3859 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3860
3861 uint32_t cbRamHole = 0;
3862 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3863 uint64_t cbRam = 0;
3864 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
3865 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3866
3867 /*
3868 * Dump the physical memory, page by page.
3869 */
3870 RTGCPHYS GCPhys = 0;
3871 char abZeroPg[PAGE_SIZE];
3872 RT_ZERO(abZeroPg);
3873
3874 pgmLock(pVM);
3875 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3876 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3877 pRam = pRam->pNextR3)
3878 {
3879 /* fill the gap */
3880 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3881 {
3882 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3883 {
3884 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3885 GCPhys += PAGE_SIZE;
3886 }
3887 }
3888
3889 PCPGMPAGE pPage = &pRam->aPages[0];
3890 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3891 {
3892 if ( PGM_PAGE_IS_ZERO(pPage)
3893 || PGM_PAGE_IS_BALLOONED(pPage))
3894 {
3895 if (fIncZeroPgs)
3896 {
3897 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3898 if (RT_FAILURE(rc))
3899 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3900 }
3901 }
3902 else
3903 {
3904 switch (PGM_PAGE_GET_TYPE(pPage))
3905 {
3906 case PGMPAGETYPE_RAM:
3907 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3908 case PGMPAGETYPE_ROM:
3909 case PGMPAGETYPE_MMIO2:
3910 {
3911 void const *pvPage;
3912 PGMPAGEMAPLOCK Lock;
3913 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3914 if (RT_SUCCESS(rc))
3915 {
3916 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3917 PGMPhysReleasePageMappingLock(pVM, &Lock);
3918 if (RT_FAILURE(rc))
3919 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3920 }
3921 else
3922 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3923 break;
3924 }
3925
3926 default:
3927 AssertFailed();
3928 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3929 case PGMPAGETYPE_MMIO:
3930 if (fIncZeroPgs)
3931 {
3932 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3933 if (RT_FAILURE(rc))
3934 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3935 }
3936 break;
3937 }
3938 }
3939
3940
3941 /* advance */
3942 GCPhys += PAGE_SIZE;
3943 pPage++;
3944 }
3945 }
3946 pgmUnlock(pVM);
3947
3948 RTFileClose(hFile);
3949 if (RT_SUCCESS(rc))
3950 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3951 return VINF_SUCCESS;
3952}
3953
3954#endif /* VBOX_WITH_DEBUGGER */
3955
3956/**
3957 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3958 */
3959typedef struct PGMCHECKINTARGS
3960{
3961 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3962 PPGMPHYSHANDLER pPrevPhys;
3963 PPGMVIRTHANDLER pPrevVirt;
3964 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3965 PVM pVM;
3966} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3967
3968/**
3969 * Validate a node in the physical handler tree.
3970 *
3971 * @returns 0 on if ok, other wise 1.
3972 * @param pNode The handler node.
3973 * @param pvUser pVM.
3974 */
3975static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3976{
3977 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3978 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3979 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3980 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3981 AssertReleaseMsg( !pArgs->pPrevPhys
3982 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3983 ("pPrevPhys=%p %RGp-%RGp %s\n"
3984 " pCur=%p %RGp-%RGp %s\n",
3985 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3986 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3987 pArgs->pPrevPhys = pCur;
3988 return 0;
3989}
3990
3991
3992/**
3993 * Validate a node in the virtual handler tree.
3994 *
3995 * @returns 0 on if ok, other wise 1.
3996 * @param pNode The handler node.
3997 * @param pvUser pVM.
3998 */
3999static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4000{
4001 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4002 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4003 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4004 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4005 AssertReleaseMsg( !pArgs->pPrevVirt
4006 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4007 ("pPrevVirt=%p %RGv-%RGv %s\n"
4008 " pCur=%p %RGv-%RGv %s\n",
4009 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4010 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4011 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4012 {
4013 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4014 ("pCur=%p %RGv-%RGv %s\n"
4015 "iPage=%d offVirtHandle=%#x expected %#x\n",
4016 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4017 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4018 }
4019 pArgs->pPrevVirt = pCur;
4020 return 0;
4021}
4022
4023
4024/**
4025 * Validate a node in the virtual handler tree.
4026 *
4027 * @returns 0 on if ok, other wise 1.
4028 * @param pNode The handler node.
4029 * @param pvUser pVM.
4030 */
4031static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4032{
4033 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4034 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4035 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4036 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4037 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4038 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4039 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4040 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4041 " pCur=%p %RGp-%RGp\n",
4042 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4043 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4044 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4045 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4046 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4047 " pCur=%p %RGp-%RGp\n",
4048 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4049 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4050 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4051 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4052 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4053 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4054 {
4055 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4056 for (;;)
4057 {
4058 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4059 AssertReleaseMsg(pCur2 != pCur,
4060 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4061 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4062 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4063 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4064 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4065 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4066 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4067 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4068 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4069 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4070 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4071 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4072 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4073 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4074 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4075 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4076 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4077 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4078 break;
4079 }
4080 }
4081
4082 pArgs->pPrevPhys2Virt = pCur;
4083 return 0;
4084}
4085
4086
4087/**
4088 * Perform an integrity check on the PGM component.
4089 *
4090 * @returns VINF_SUCCESS if everything is fine.
4091 * @returns VBox error status after asserting on integrity breach.
4092 * @param pVM The VM handle.
4093 */
4094VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4095{
4096 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4097
4098 /*
4099 * Check the trees.
4100 */
4101 int cErrors = 0;
4102 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4103 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4104 PGMCHECKINTARGS Args = s_LeftToRight;
4105 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4106 Args = s_RightToLeft;
4107 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4108 Args = s_LeftToRight;
4109 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4110 Args = s_RightToLeft;
4111 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4112 Args = s_LeftToRight;
4113 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4114 Args = s_RightToLeft;
4115 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4116 Args = s_LeftToRight;
4117 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4118 Args = s_RightToLeft;
4119 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4120
4121 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4122}
4123
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette