VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 41393

Last change on this file since 41393 was 41393, checked in by vboxsync, 13 years ago

PGM: Initialize the A20 mask correctly.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 202.2 KB
Line 
1/* $Id: PGM.cpp 41393 2012-05-22 14:23:13Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2011 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred to
30 * as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successful this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery associated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attempted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the other way around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
484 * however on 32-bit darwin the ring-0 code is running in a different memory
485 * context and therefore needs a separate cache. In raw-mode context we also
486 * need a separate cache. The 32-bit darwin mapping cache and the one for
487 * raw-mode context share a lot of code, see PGMRZDYNMAP.
488 *
489 *
490 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
491 *
492 * We've considered implementing the ring-3 mapping cache page based but found
493 * that this was bother some when one had to take into account TLBs+SMP and
494 * portability (missing the necessary APIs on several platforms). There were
495 * also some performance concerns with this approach which hadn't quite been
496 * worked out.
497 *
498 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
499 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
500 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
501 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
502 * costly than a single page, although how much more costly is uncertain. We'll
503 * try address this by using a very big cache, preferably bigger than the actual
504 * VM RAM size if possible. The current VM RAM sizes should give some idea for
505 * 32-bit boxes, while on 64-bit we can probably get away with employing an
506 * unlimited cache.
507 *
508 * The cache have to parts, as already indicated, the ring-3 side and the
509 * ring-0 side.
510 *
511 * The ring-0 will be tied to the page allocator since it will operate on the
512 * memory objects it contains. It will therefore require the first ring-0 mutex
513 * discussed in @ref subsec_pgmPhys_Serializing. We
514 * some double house keeping wrt to who has mapped what I think, since both
515 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
516 *
517 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
518 * require anyone that desires to do changes to the mapping cache to do that
519 * from within this critsect. Alternatively, we could employ a separate critsect
520 * for serializing changes to the mapping cache as this would reduce potential
521 * contention with other threads accessing mappings unrelated to the changes
522 * that are in process. We can see about this later, contention will show
523 * up in the statistics anyway, so it'll be simple to tell.
524 *
525 * The organization of the ring-3 part will be very much like how the allocation
526 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
527 * having to walk the tree all the time, we'll have a couple of lookaside entries
528 * like in we do for I/O ports and MMIO in IOM.
529 *
530 * The simplified flow of a PGMPhysRead/Write function:
531 * -# Enter the PGM critsect.
532 * -# Lookup GCPhys in the ram ranges and get the Page ID.
533 * -# Calc the Allocation Chunk ID from the Page ID.
534 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
535 * If not found in cache:
536 * -# Call ring-0 and request it to be mapped and supply
537 * a chunk to be unmapped if the cache is maxed out already.
538 * -# Insert the new mapping into the AVL tree (id + R3 address).
539 * -# Update the relevant lookaside entry and return the mapping address.
540 * -# Do the read/write according to monitoring flags and everything.
541 * -# Leave the critsect.
542 *
543 *
544 * @section sec_pgmPhys_Fallback Fallback
545 *
546 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
547 * API and thus require a fallback.
548 *
549 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
550 * will return to the ring-3 caller (and later ring-0) and asking it to seed
551 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
552 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
553 * "SeededAllocPages" call to ring-0.
554 *
555 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
556 * all page sharing (zero page detection will continue). It will also force
557 * all allocations to come from the VM which seeded the page. Both these
558 * measures are taken to make sure that there will never be any need for
559 * mapping anything into ring-3 - everything will be mapped already.
560 *
561 * Whether we'll continue to use the current MM locked memory management
562 * for this I don't quite know (I'd prefer not to and just ditch that all
563 * together), we'll see what's simplest to do.
564 *
565 *
566 *
567 * @section sec_pgmPhys_Changes Changes
568 *
569 * Breakdown of the changes involved?
570 */
571
572/*******************************************************************************
573* Header Files *
574*******************************************************************************/
575#define LOG_GROUP LOG_GROUP_PGM
576#include <VBox/vmm/dbgf.h>
577#include <VBox/vmm/pgm.h>
578#include <VBox/vmm/cpum.h>
579#include <VBox/vmm/iom.h>
580#include <VBox/sup.h>
581#include <VBox/vmm/mm.h>
582#include <VBox/vmm/em.h>
583#include <VBox/vmm/stam.h>
584#ifdef VBOX_WITH_REM
585# include <VBox/vmm/rem.h>
586#endif
587#include <VBox/vmm/selm.h>
588#include <VBox/vmm/ssm.h>
589#include <VBox/vmm/hwaccm.h>
590#include "PGMInternal.h"
591#include <VBox/vmm/vm.h>
592#include "PGMInline.h"
593
594#include <VBox/dbg.h>
595#include <VBox/param.h>
596#include <VBox/err.h>
597
598#include <iprt/asm.h>
599#include <iprt/asm-amd64-x86.h>
600#include <iprt/assert.h>
601#include <iprt/env.h>
602#include <iprt/mem.h>
603#include <iprt/file.h>
604#include <iprt/string.h>
605#include <iprt/thread.h>
606
607
608/*******************************************************************************
609* Internal Functions *
610*******************************************************************************/
611static int pgmR3InitPaging(PVM pVM);
612static int pgmR3InitStats(PVM pVM);
613static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
615static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
616static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
617static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
618static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
619#ifdef VBOX_STRICT
620static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
621#endif
622static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
623static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
624static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
625
626#ifdef VBOX_WITH_DEBUGGER
627/** @todo Convert the first two commands to 'info' items. */
628static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
629static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
630static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
631static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
632# ifdef VBOX_STRICT
633static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
634# endif
635static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
636#endif
637
638
639/*******************************************************************************
640* Global Variables *
641*******************************************************************************/
642#ifdef VBOX_WITH_DEBUGGER
643/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
644static const DBGCVARDESC g_aPgmErrorArgs[] =
645{
646 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
647 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
648};
649
650static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
651{
652 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
653 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
654 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
655};
656
657# ifdef DEBUG_sandervl
658static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
659{
660 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
661 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
662 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
663};
664# endif
665
666/** Command descriptors. */
667static const DBGCCMD g_aCmds[] =
668{
669 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
670 { "pgmram", 0, 0, NULL, 0, 0, pgmR3CmdRam, "", "Display the ram ranges." },
671 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
672 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
673 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
674# ifdef VBOX_STRICT
675 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
676# ifdef VBOX_WITH_PAGE_SHARING
677 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
678 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
679# endif
680# endif
681 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
682 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
683};
684#endif
685
686
687
688
689/*
690 * Shadow - 32-bit mode
691 */
692#define PGM_SHW_TYPE PGM_TYPE_32BIT
693#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
694#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
695#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
696#include "PGMShw.h"
697
698/* Guest - real mode */
699#define PGM_GST_TYPE PGM_TYPE_REAL
700#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
701#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
702#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
703#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
704#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
705#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
706#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
707#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
708#include "PGMBth.h"
709#include "PGMGstDefs.h"
710#include "PGMGst.h"
711#undef BTH_PGMPOOLKIND_PT_FOR_PT
712#undef BTH_PGMPOOLKIND_ROOT
713#undef PGM_BTH_NAME
714#undef PGM_BTH_NAME_RC_STR
715#undef PGM_BTH_NAME_R0_STR
716#undef PGM_GST_TYPE
717#undef PGM_GST_NAME
718#undef PGM_GST_NAME_RC_STR
719#undef PGM_GST_NAME_R0_STR
720
721/* Guest - protected mode */
722#define PGM_GST_TYPE PGM_TYPE_PROT
723#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
724#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
725#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
726#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
727#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
728#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
729#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
730#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
731#include "PGMBth.h"
732#include "PGMGstDefs.h"
733#include "PGMGst.h"
734#undef BTH_PGMPOOLKIND_PT_FOR_PT
735#undef BTH_PGMPOOLKIND_ROOT
736#undef PGM_BTH_NAME
737#undef PGM_BTH_NAME_RC_STR
738#undef PGM_BTH_NAME_R0_STR
739#undef PGM_GST_TYPE
740#undef PGM_GST_NAME
741#undef PGM_GST_NAME_RC_STR
742#undef PGM_GST_NAME_R0_STR
743
744/* Guest - 32-bit mode */
745#define PGM_GST_TYPE PGM_TYPE_32BIT
746#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
747#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
748#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
749#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
750#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
751#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
752#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
753#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
754#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
755#include "PGMBth.h"
756#include "PGMGstDefs.h"
757#include "PGMGst.h"
758#undef BTH_PGMPOOLKIND_PT_FOR_BIG
759#undef BTH_PGMPOOLKIND_PT_FOR_PT
760#undef BTH_PGMPOOLKIND_ROOT
761#undef PGM_BTH_NAME
762#undef PGM_BTH_NAME_RC_STR
763#undef PGM_BTH_NAME_R0_STR
764#undef PGM_GST_TYPE
765#undef PGM_GST_NAME
766#undef PGM_GST_NAME_RC_STR
767#undef PGM_GST_NAME_R0_STR
768
769#undef PGM_SHW_TYPE
770#undef PGM_SHW_NAME
771#undef PGM_SHW_NAME_RC_STR
772#undef PGM_SHW_NAME_R0_STR
773
774
775/*
776 * Shadow - PAE mode
777 */
778#define PGM_SHW_TYPE PGM_TYPE_PAE
779#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
780#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
781#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
782#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
783#include "PGMShw.h"
784
785/* Guest - real mode */
786#define PGM_GST_TYPE PGM_TYPE_REAL
787#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
788#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
789#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
790#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
791#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
792#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
793#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
794#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
795#include "PGMGstDefs.h"
796#include "PGMBth.h"
797#undef BTH_PGMPOOLKIND_PT_FOR_PT
798#undef BTH_PGMPOOLKIND_ROOT
799#undef PGM_BTH_NAME
800#undef PGM_BTH_NAME_RC_STR
801#undef PGM_BTH_NAME_R0_STR
802#undef PGM_GST_TYPE
803#undef PGM_GST_NAME
804#undef PGM_GST_NAME_RC_STR
805#undef PGM_GST_NAME_R0_STR
806
807/* Guest - protected mode */
808#define PGM_GST_TYPE PGM_TYPE_PROT
809#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
810#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
811#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
812#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
813#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
814#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
815#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
816#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
817#include "PGMGstDefs.h"
818#include "PGMBth.h"
819#undef BTH_PGMPOOLKIND_PT_FOR_PT
820#undef BTH_PGMPOOLKIND_ROOT
821#undef PGM_BTH_NAME
822#undef PGM_BTH_NAME_RC_STR
823#undef PGM_BTH_NAME_R0_STR
824#undef PGM_GST_TYPE
825#undef PGM_GST_NAME
826#undef PGM_GST_NAME_RC_STR
827#undef PGM_GST_NAME_R0_STR
828
829/* Guest - 32-bit mode */
830#define PGM_GST_TYPE PGM_TYPE_32BIT
831#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
832#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
833#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
834#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
835#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
836#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
837#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
838#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
839#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
840#include "PGMGstDefs.h"
841#include "PGMBth.h"
842#undef BTH_PGMPOOLKIND_PT_FOR_BIG
843#undef BTH_PGMPOOLKIND_PT_FOR_PT
844#undef BTH_PGMPOOLKIND_ROOT
845#undef PGM_BTH_NAME
846#undef PGM_BTH_NAME_RC_STR
847#undef PGM_BTH_NAME_R0_STR
848#undef PGM_GST_TYPE
849#undef PGM_GST_NAME
850#undef PGM_GST_NAME_RC_STR
851#undef PGM_GST_NAME_R0_STR
852
853/* Guest - PAE mode */
854#define PGM_GST_TYPE PGM_TYPE_PAE
855#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
856#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
857#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
858#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
859#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
860#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
861#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
862#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
863#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
864#include "PGMBth.h"
865#include "PGMGstDefs.h"
866#include "PGMGst.h"
867#undef BTH_PGMPOOLKIND_PT_FOR_BIG
868#undef BTH_PGMPOOLKIND_PT_FOR_PT
869#undef BTH_PGMPOOLKIND_ROOT
870#undef PGM_BTH_NAME
871#undef PGM_BTH_NAME_RC_STR
872#undef PGM_BTH_NAME_R0_STR
873#undef PGM_GST_TYPE
874#undef PGM_GST_NAME
875#undef PGM_GST_NAME_RC_STR
876#undef PGM_GST_NAME_R0_STR
877
878#undef PGM_SHW_TYPE
879#undef PGM_SHW_NAME
880#undef PGM_SHW_NAME_RC_STR
881#undef PGM_SHW_NAME_R0_STR
882
883
884/*
885 * Shadow - AMD64 mode
886 */
887#define PGM_SHW_TYPE PGM_TYPE_AMD64
888#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
889#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
890#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
891#include "PGMShw.h"
892
893#ifdef VBOX_WITH_64_BITS_GUESTS
894/* Guest - AMD64 mode */
895# define PGM_GST_TYPE PGM_TYPE_AMD64
896# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
897# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
898# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
899# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
900# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
901# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
902# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
903# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
904# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
905# include "PGMBth.h"
906# include "PGMGstDefs.h"
907# include "PGMGst.h"
908# undef BTH_PGMPOOLKIND_PT_FOR_BIG
909# undef BTH_PGMPOOLKIND_PT_FOR_PT
910# undef BTH_PGMPOOLKIND_ROOT
911# undef PGM_BTH_NAME
912# undef PGM_BTH_NAME_RC_STR
913# undef PGM_BTH_NAME_R0_STR
914# undef PGM_GST_TYPE
915# undef PGM_GST_NAME
916# undef PGM_GST_NAME_RC_STR
917# undef PGM_GST_NAME_R0_STR
918#endif /* VBOX_WITH_64_BITS_GUESTS */
919
920#undef PGM_SHW_TYPE
921#undef PGM_SHW_NAME
922#undef PGM_SHW_NAME_RC_STR
923#undef PGM_SHW_NAME_R0_STR
924
925
926/*
927 * Shadow - Nested paging mode
928 */
929#define PGM_SHW_TYPE PGM_TYPE_NESTED
930#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
931#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
932#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
933#include "PGMShw.h"
934
935/* Guest - real mode */
936#define PGM_GST_TYPE PGM_TYPE_REAL
937#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
938#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
939#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
940#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
941#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
942#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
943#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
944#include "PGMGstDefs.h"
945#include "PGMBth.h"
946#undef BTH_PGMPOOLKIND_PT_FOR_PT
947#undef PGM_BTH_NAME
948#undef PGM_BTH_NAME_RC_STR
949#undef PGM_BTH_NAME_R0_STR
950#undef PGM_GST_TYPE
951#undef PGM_GST_NAME
952#undef PGM_GST_NAME_RC_STR
953#undef PGM_GST_NAME_R0_STR
954
955/* Guest - protected mode */
956#define PGM_GST_TYPE PGM_TYPE_PROT
957#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
958#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
959#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
960#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
961#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
962#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
963#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
964#include "PGMGstDefs.h"
965#include "PGMBth.h"
966#undef BTH_PGMPOOLKIND_PT_FOR_PT
967#undef PGM_BTH_NAME
968#undef PGM_BTH_NAME_RC_STR
969#undef PGM_BTH_NAME_R0_STR
970#undef PGM_GST_TYPE
971#undef PGM_GST_NAME
972#undef PGM_GST_NAME_RC_STR
973#undef PGM_GST_NAME_R0_STR
974
975/* Guest - 32-bit mode */
976#define PGM_GST_TYPE PGM_TYPE_32BIT
977#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
978#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
979#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
980#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
981#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
982#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
983#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
984#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
985#include "PGMGstDefs.h"
986#include "PGMBth.h"
987#undef BTH_PGMPOOLKIND_PT_FOR_BIG
988#undef BTH_PGMPOOLKIND_PT_FOR_PT
989#undef PGM_BTH_NAME
990#undef PGM_BTH_NAME_RC_STR
991#undef PGM_BTH_NAME_R0_STR
992#undef PGM_GST_TYPE
993#undef PGM_GST_NAME
994#undef PGM_GST_NAME_RC_STR
995#undef PGM_GST_NAME_R0_STR
996
997/* Guest - PAE mode */
998#define PGM_GST_TYPE PGM_TYPE_PAE
999#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1000#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1001#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1002#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1003#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1004#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1005#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1006#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1007#include "PGMGstDefs.h"
1008#include "PGMBth.h"
1009#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1010#undef BTH_PGMPOOLKIND_PT_FOR_PT
1011#undef PGM_BTH_NAME
1012#undef PGM_BTH_NAME_RC_STR
1013#undef PGM_BTH_NAME_R0_STR
1014#undef PGM_GST_TYPE
1015#undef PGM_GST_NAME
1016#undef PGM_GST_NAME_RC_STR
1017#undef PGM_GST_NAME_R0_STR
1018
1019#ifdef VBOX_WITH_64_BITS_GUESTS
1020/* Guest - AMD64 mode */
1021# define PGM_GST_TYPE PGM_TYPE_AMD64
1022# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1023# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1024# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1025# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1026# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1027# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1028# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1029# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1030# include "PGMGstDefs.h"
1031# include "PGMBth.h"
1032# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1033# undef BTH_PGMPOOLKIND_PT_FOR_PT
1034# undef PGM_BTH_NAME
1035# undef PGM_BTH_NAME_RC_STR
1036# undef PGM_BTH_NAME_R0_STR
1037# undef PGM_GST_TYPE
1038# undef PGM_GST_NAME
1039# undef PGM_GST_NAME_RC_STR
1040# undef PGM_GST_NAME_R0_STR
1041#endif /* VBOX_WITH_64_BITS_GUESTS */
1042
1043#undef PGM_SHW_TYPE
1044#undef PGM_SHW_NAME
1045#undef PGM_SHW_NAME_RC_STR
1046#undef PGM_SHW_NAME_R0_STR
1047
1048
1049/*
1050 * Shadow - EPT
1051 */
1052#define PGM_SHW_TYPE PGM_TYPE_EPT
1053#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1054#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1055#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1056#include "PGMShw.h"
1057
1058/* Guest - real mode */
1059#define PGM_GST_TYPE PGM_TYPE_REAL
1060#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1061#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1062#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1063#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1064#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1065#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1066#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1067#include "PGMGstDefs.h"
1068#include "PGMBth.h"
1069#undef BTH_PGMPOOLKIND_PT_FOR_PT
1070#undef PGM_BTH_NAME
1071#undef PGM_BTH_NAME_RC_STR
1072#undef PGM_BTH_NAME_R0_STR
1073#undef PGM_GST_TYPE
1074#undef PGM_GST_NAME
1075#undef PGM_GST_NAME_RC_STR
1076#undef PGM_GST_NAME_R0_STR
1077
1078/* Guest - protected mode */
1079#define PGM_GST_TYPE PGM_TYPE_PROT
1080#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1081#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1082#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1083#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1084#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1085#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1086#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1087#include "PGMGstDefs.h"
1088#include "PGMBth.h"
1089#undef BTH_PGMPOOLKIND_PT_FOR_PT
1090#undef PGM_BTH_NAME
1091#undef PGM_BTH_NAME_RC_STR
1092#undef PGM_BTH_NAME_R0_STR
1093#undef PGM_GST_TYPE
1094#undef PGM_GST_NAME
1095#undef PGM_GST_NAME_RC_STR
1096#undef PGM_GST_NAME_R0_STR
1097
1098/* Guest - 32-bit mode */
1099#define PGM_GST_TYPE PGM_TYPE_32BIT
1100#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1101#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1102#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1103#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1104#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1105#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1106#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1107#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1108#include "PGMGstDefs.h"
1109#include "PGMBth.h"
1110#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1111#undef BTH_PGMPOOLKIND_PT_FOR_PT
1112#undef PGM_BTH_NAME
1113#undef PGM_BTH_NAME_RC_STR
1114#undef PGM_BTH_NAME_R0_STR
1115#undef PGM_GST_TYPE
1116#undef PGM_GST_NAME
1117#undef PGM_GST_NAME_RC_STR
1118#undef PGM_GST_NAME_R0_STR
1119
1120/* Guest - PAE mode */
1121#define PGM_GST_TYPE PGM_TYPE_PAE
1122#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1123#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1124#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1125#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1126#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1127#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1128#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1129#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1130#include "PGMGstDefs.h"
1131#include "PGMBth.h"
1132#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1133#undef BTH_PGMPOOLKIND_PT_FOR_PT
1134#undef PGM_BTH_NAME
1135#undef PGM_BTH_NAME_RC_STR
1136#undef PGM_BTH_NAME_R0_STR
1137#undef PGM_GST_TYPE
1138#undef PGM_GST_NAME
1139#undef PGM_GST_NAME_RC_STR
1140#undef PGM_GST_NAME_R0_STR
1141
1142#ifdef VBOX_WITH_64_BITS_GUESTS
1143/* Guest - AMD64 mode */
1144# define PGM_GST_TYPE PGM_TYPE_AMD64
1145# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1146# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1147# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1148# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1149# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1150# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1151# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1152# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1153# include "PGMGstDefs.h"
1154# include "PGMBth.h"
1155# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1156# undef BTH_PGMPOOLKIND_PT_FOR_PT
1157# undef PGM_BTH_NAME
1158# undef PGM_BTH_NAME_RC_STR
1159# undef PGM_BTH_NAME_R0_STR
1160# undef PGM_GST_TYPE
1161# undef PGM_GST_NAME
1162# undef PGM_GST_NAME_RC_STR
1163# undef PGM_GST_NAME_R0_STR
1164#endif /* VBOX_WITH_64_BITS_GUESTS */
1165
1166#undef PGM_SHW_TYPE
1167#undef PGM_SHW_NAME
1168#undef PGM_SHW_NAME_RC_STR
1169#undef PGM_SHW_NAME_R0_STR
1170
1171
1172
1173/**
1174 * Initiates the paging of VM.
1175 *
1176 * @returns VBox status code.
1177 * @param pVM Pointer to VM structure.
1178 */
1179VMMR3DECL(int) PGMR3Init(PVM pVM)
1180{
1181 LogFlow(("PGMR3Init:\n"));
1182 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1183 int rc;
1184
1185 /*
1186 * Assert alignment and sizes.
1187 */
1188 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1189 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1190 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1191
1192 /*
1193 * Init the structure.
1194 */
1195#ifdef PGM_WITHOUT_MAPPINGS
1196 pVM->pgm.s.fMappingsDisabled = true;
1197#endif
1198 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1199 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1200
1201 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1202 {
1203 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1204 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1205 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1206 }
1207
1208 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1209 {
1210 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1211 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1212 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1213 }
1214
1215 /* Init the per-CPU part. */
1216 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1217 {
1218 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1219 PPGMCPU pPGM = &pVCpu->pgm.s;
1220
1221 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1222 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1223 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1224
1225 pPGM->enmShadowMode = PGMMODE_INVALID;
1226 pPGM->enmGuestMode = PGMMODE_INVALID;
1227
1228 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1229
1230 pPGM->pGst32BitPdR3 = NULL;
1231 pPGM->pGstPaePdptR3 = NULL;
1232 pPGM->pGstAmd64Pml4R3 = NULL;
1233#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1234 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1235 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1236 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1237#endif
1238 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1239 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1240 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1241 {
1242 pPGM->apGstPaePDsR3[i] = NULL;
1243#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1244 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1245#endif
1246 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1247 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1248 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1249 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1250 }
1251
1252 pPGM->fA20Enabled = true;
1253 pPGM->GCPhysA20Mask = ~(RTGCPHYS)(!pPGM->fA20Enabled << 20);
1254 }
1255
1256 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1257 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1258 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1259
1260 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1261#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1262 true
1263#else
1264 false
1265#endif
1266 );
1267 AssertLogRelRCReturn(rc, rc);
1268
1269#if HC_ARCH_BITS == 32
1270# ifdef RT_OS_DARWIN
1271 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1272# else
1273 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1274# endif
1275#else
1276 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1277#endif
1278 AssertLogRelRCReturn(rc, rc);
1279 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1280 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1281
1282 /*
1283 * Get the configured RAM size - to estimate saved state size.
1284 */
1285 uint64_t cbRam;
1286 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1287 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1288 cbRam = 0;
1289 else if (RT_SUCCESS(rc))
1290 {
1291 if (cbRam < PAGE_SIZE)
1292 cbRam = 0;
1293 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1294 }
1295 else
1296 {
1297 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1298 return rc;
1299 }
1300
1301 /*
1302 * Check for PCI pass-through.
1303 */
1304 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1305 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1306 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1307
1308#ifdef VBOX_WITH_STATISTICS
1309 /*
1310 * Allocate memory for the statistics before someone tries to use them.
1311 */
1312 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1313 void *pv;
1314 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1315 AssertRCReturn(rc, rc);
1316
1317 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1318 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1319 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1320 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1321
1322 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1323 {
1324 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1325 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1326 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1327
1328 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1329 }
1330#endif /* VBOX_WITH_STATISTICS */
1331
1332 /*
1333 * Register callbacks, string formatters and the saved state data unit.
1334 */
1335#ifdef VBOX_STRICT
1336 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1337#endif
1338 PGMRegisterStringFormatTypes();
1339
1340 rc = pgmR3InitSavedState(pVM, cbRam);
1341 if (RT_FAILURE(rc))
1342 return rc;
1343
1344 /*
1345 * Initialize the PGM critical section and flush the phys TLBs
1346 */
1347 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1348 AssertRCReturn(rc, rc);
1349
1350 PGMR3PhysChunkInvalidateTLB(pVM);
1351 pgmPhysInvalidatePageMapTLB(pVM);
1352
1353 /*
1354 * For the time being we sport a full set of handy pages in addition to the base
1355 * memory to simplify things.
1356 */
1357 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1358 AssertRCReturn(rc, rc);
1359
1360 /*
1361 * Trees
1362 */
1363 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1364 if (RT_SUCCESS(rc))
1365 {
1366 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1367 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1368
1369 /*
1370 * Allocate the zero page.
1371 */
1372 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1373 }
1374 if (RT_SUCCESS(rc))
1375 {
1376 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1377 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1378 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1379 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1380
1381 /*
1382 * Allocate the invalid MMIO page.
1383 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1384 */
1385 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1386 }
1387 if (RT_SUCCESS(rc))
1388 {
1389 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1390 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1391 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1392 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1393
1394 /*
1395 * Init the paging.
1396 */
1397 rc = pgmR3InitPaging(pVM);
1398 }
1399 if (RT_SUCCESS(rc))
1400 {
1401 /*
1402 * Init the page pool.
1403 */
1404 rc = pgmR3PoolInit(pVM);
1405 }
1406 if (RT_SUCCESS(rc))
1407 {
1408 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1409 {
1410 PVMCPU pVCpu = &pVM->aCpus[i];
1411 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1412 if (RT_FAILURE(rc))
1413 break;
1414 }
1415 }
1416
1417 if (RT_SUCCESS(rc))
1418 {
1419 /*
1420 * Info & statistics
1421 */
1422 DBGFR3InfoRegisterInternal(pVM, "mode",
1423 "Shows the current paging mode. "
1424 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1425 pgmR3InfoMode);
1426 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1427 "Dumps all the entries in the top level paging table. No arguments.",
1428 pgmR3InfoCr3);
1429 DBGFR3InfoRegisterInternal(pVM, "phys",
1430 "Dumps all the physical address ranges. No arguments.",
1431 pgmR3PhysInfo);
1432 DBGFR3InfoRegisterInternal(pVM, "handlers",
1433 "Dumps physical, virtual and hyper virtual handlers. "
1434 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1435 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1436 pgmR3InfoHandlers);
1437 DBGFR3InfoRegisterInternal(pVM, "mappings",
1438 "Dumps guest mappings.",
1439 pgmR3MapInfo);
1440
1441 pgmR3InitStats(pVM);
1442
1443#ifdef VBOX_WITH_DEBUGGER
1444 /*
1445 * Debugger commands.
1446 */
1447 static bool s_fRegisteredCmds = false;
1448 if (!s_fRegisteredCmds)
1449 {
1450 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1451 if (RT_SUCCESS(rc2))
1452 s_fRegisteredCmds = true;
1453 }
1454#endif
1455 return VINF_SUCCESS;
1456 }
1457
1458 /* Almost no cleanup necessary, MM frees all memory. */
1459 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1460
1461 return rc;
1462}
1463
1464
1465/**
1466 * Init paging.
1467 *
1468 * Since we need to check what mode the host is operating in before we can choose
1469 * the right paging functions for the host we have to delay this until R0 has
1470 * been initialized.
1471 *
1472 * @returns VBox status code.
1473 * @param pVM VM handle.
1474 */
1475static int pgmR3InitPaging(PVM pVM)
1476{
1477 /*
1478 * Force a recalculation of modes and switcher so everyone gets notified.
1479 */
1480 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1481 {
1482 PVMCPU pVCpu = &pVM->aCpus[i];
1483
1484 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1485 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1486 }
1487
1488 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1489
1490 /*
1491 * Allocate static mapping space for whatever the cr3 register
1492 * points to and in the case of PAE mode to the 4 PDs.
1493 */
1494 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1495 if (RT_FAILURE(rc))
1496 {
1497 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1498 return rc;
1499 }
1500 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1501
1502 /*
1503 * Allocate pages for the three possible intermediate contexts
1504 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1505 * for the sake of simplicity. The AMD64 uses the PAE for the
1506 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1507 *
1508 * We assume that two page tables will be enought for the core code
1509 * mappings (HC virtual and identity).
1510 */
1511 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1512 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1513 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1514 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1515 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1516 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1517 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1518 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1519 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1520 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1521 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1522 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1523
1524 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1525 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1526 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1527 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1528 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1529 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1530
1531 /*
1532 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1533 */
1534 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1535 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1536 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1537
1538 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1539 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1540
1541 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1542 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1543 {
1544 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1545 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1546 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1547 }
1548
1549 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1550 {
1551 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1552 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1553 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1554 }
1555
1556 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1557 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1558 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1559 | HCPhysInterPaePDPT64;
1560
1561 /*
1562 * Initialize paging workers and mode from current host mode
1563 * and the guest running in real mode.
1564 */
1565 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1566 switch (pVM->pgm.s.enmHostMode)
1567 {
1568 case SUPPAGINGMODE_32_BIT:
1569 case SUPPAGINGMODE_32_BIT_GLOBAL:
1570 case SUPPAGINGMODE_PAE:
1571 case SUPPAGINGMODE_PAE_GLOBAL:
1572 case SUPPAGINGMODE_PAE_NX:
1573 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1574 break;
1575
1576 case SUPPAGINGMODE_AMD64:
1577 case SUPPAGINGMODE_AMD64_GLOBAL:
1578 case SUPPAGINGMODE_AMD64_NX:
1579 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1580#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1581 if (ARCH_BITS != 64)
1582 {
1583 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1584 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1585 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1586 }
1587#endif
1588 break;
1589 default:
1590 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1591 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1592 }
1593 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1594 if (RT_SUCCESS(rc))
1595 {
1596 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1597#if HC_ARCH_BITS == 64
1598 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1599 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1600 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1601 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1602 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1603 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1604 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1605#endif
1606
1607 /*
1608 * Log the host paging mode. It may come in handy.
1609 */
1610 const char *pszHostMode;
1611 switch (pVM->pgm.s.enmHostMode)
1612 {
1613 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1614 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1615 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1616 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1617 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1618 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1619 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1620 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1621 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1622 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1623 default: pszHostMode = "???"; break;
1624 }
1625 LogRel(("Host paging mode: %s\n", pszHostMode));
1626
1627 return VINF_SUCCESS;
1628 }
1629
1630 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1631 return rc;
1632}
1633
1634
1635/**
1636 * Init statistics
1637 * @returns VBox status code.
1638 */
1639static int pgmR3InitStats(PVM pVM)
1640{
1641 PPGM pPGM = &pVM->pgm.s;
1642 int rc;
1643
1644 /*
1645 * Release statistics.
1646 */
1647 /* Common - misc variables */
1648 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1649 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1650 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1651 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1652 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1653 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1654 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1655 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1656 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1657 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1658 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1659 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1660 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1661 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1662 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1663 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1664 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1665 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1666 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1667
1668 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1669 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1670 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1671
1672 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1673
1674 /* Live save */
1675 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1676 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1677 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1678 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1679 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1680 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1681 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1682 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1683 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1684 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1685 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1686 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1687 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1688 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1689 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1690 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1691 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1692 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1693
1694#ifdef VBOX_WITH_STATISTICS
1695
1696# define PGM_REG_COUNTER(a, b, c) \
1697 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1698 AssertRC(rc);
1699
1700# define PGM_REG_COUNTER_BYTES(a, b, c) \
1701 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1702 AssertRC(rc);
1703
1704# define PGM_REG_PROFILE(a, b, c) \
1705 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1706 AssertRC(rc);
1707
1708 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1709
1710 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1711 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1712 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1713 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1714 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1715
1716 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1717 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1718 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1719 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1720 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1721 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1722 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1723 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1724 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1725 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1726
1727 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1728 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1729 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1730 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1731 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1732 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1733
1734 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1735 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1736 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1737 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1738 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1739 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1740 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1741 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1742
1743 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1744 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1745 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1746 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1747
1748 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1749 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1750 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1751 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1752
1753 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1754 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1755 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1756 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1757 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1758 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1759 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1760 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1761
1762 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1763 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1764/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1765 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1766 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1767/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1768
1769 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1770 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1771 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1772 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1773 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1774 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1775 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1776 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1777
1778 /* GC only: */
1779 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1780 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1781
1782 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1783 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1784 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1785 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1786 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1787 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1788 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1789 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1790
1791 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1792 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1793 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1794 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1795 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1796 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1797 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1798
1799# undef PGM_REG_COUNTER
1800# undef PGM_REG_PROFILE
1801#endif
1802
1803 /*
1804 * Note! The layout below matches the member layout exactly!
1805 */
1806
1807 /*
1808 * Common - stats
1809 */
1810 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1811 {
1812 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1813
1814#define PGM_REG_COUNTER(a, b, c) \
1815 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1816 AssertRC(rc);
1817#define PGM_REG_PROFILE(a, b, c) \
1818 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1819 AssertRC(rc);
1820
1821 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1822
1823#ifdef VBOX_WITH_STATISTICS
1824 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1825
1826# if 0 /* rarely useful; leave for debugging. */
1827 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1828 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1829 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1830 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1831 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1832 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1833# endif
1834 /* R0 only: */
1835 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1836 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1837
1838 /* RZ only: */
1839 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1840 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1841 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1842 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1843 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1844 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1845 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1846 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1847 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1848 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1849 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1850 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1851 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1852 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1853 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1854 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1855 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1856 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1857 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1858 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1859 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1860 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1861 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1862 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1863 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1864 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1865 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1866 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1867 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1868 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1869 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1870 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1871 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1872 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1873 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1874 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1875 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1876 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1877 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1878 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1879 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1880 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1881 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1882 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1883#if 0 /* rarely useful; leave for debugging. */
1884 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1885 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1886 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1887#endif
1888 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1889 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1890 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1891 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1892 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1893
1894 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1895 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1900 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1908 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1916 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1919 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1920 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1921 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1922 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1923 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1924 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1925 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1926 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1927 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1928 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1929 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1930
1931 /* HC only: */
1932
1933 /* RZ & R3: */
1934 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1935 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1944 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1945 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1947 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1950 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1951 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1952 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1953 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1955 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1956 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1957 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1958 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1959 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1960 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1961 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1962 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1963 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1964 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1965 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1966 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1967 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1968 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1969 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1970 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1971 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1972 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1973 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1974 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1975 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1978 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1979 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1980 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1981
1982 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1983 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1984 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1985 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1986 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1987 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1988 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1989 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1990 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1991 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1992 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1993 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1994 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1995 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1996 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1997 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1998 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1999 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2000 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2001 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2002 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2003 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2004 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2005 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2006 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2007 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2008 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2009 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2010 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2011 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2012 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2013 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2014 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2015 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2016 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2017 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2018 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2019 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2020 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2021 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2022 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2023 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2024 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2025 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2026#endif /* VBOX_WITH_STATISTICS */
2027
2028#undef PGM_REG_PROFILE
2029#undef PGM_REG_COUNTER
2030
2031 }
2032
2033 return VINF_SUCCESS;
2034}
2035
2036
2037/**
2038 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2039 *
2040 * The dynamic mapping area will also be allocated and initialized at this
2041 * time. We could allocate it during PGMR3Init of course, but the mapping
2042 * wouldn't be allocated at that time preventing us from setting up the
2043 * page table entries with the dummy page.
2044 *
2045 * @returns VBox status code.
2046 * @param pVM VM handle.
2047 */
2048VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2049{
2050 RTGCPTR GCPtr;
2051 int rc;
2052
2053 /*
2054 * Reserve space for the dynamic mappings.
2055 */
2056 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2057 if (RT_SUCCESS(rc))
2058 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2059
2060 if ( RT_SUCCESS(rc)
2061 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2062 {
2063 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2064 if (RT_SUCCESS(rc))
2065 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2066 }
2067 if (RT_SUCCESS(rc))
2068 {
2069 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2070 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2071 }
2072 return rc;
2073}
2074
2075
2076/**
2077 * Ring-3 init finalizing.
2078 *
2079 * @returns VBox status code.
2080 * @param pVM The VM handle.
2081 */
2082VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2083{
2084 int rc;
2085
2086 /*
2087 * Reserve space for the dynamic mappings.
2088 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2089 */
2090 /* get the pointer to the page table entries. */
2091 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2092 AssertRelease(pMapping);
2093 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2094 const unsigned iPT = off >> X86_PD_SHIFT;
2095 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2096 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2097 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2098
2099 /* init cache area */
2100 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2101 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2102 {
2103 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2104 AssertRCReturn(rc, rc);
2105 }
2106
2107 /*
2108 * Determine the max physical address width (MAXPHYADDR) and apply it to
2109 * all the mask members and stuff.
2110 */
2111 uint32_t cMaxPhysAddrWidth;
2112 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2113 if ( uMaxExtLeaf >= 0x80000008
2114 && uMaxExtLeaf <= 0x80000fff)
2115 {
2116 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2117 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2118 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2119 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2120 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2121 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2122 }
2123 else
2124 {
2125 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2126 cMaxPhysAddrWidth = 48;
2127 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2128 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2129 }
2130
2131 pVM->pgm.s.GCPhysInvAddrMask = 0;
2132 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2133 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2134
2135 /*
2136 * Initialize the invalid paging entry masks, assuming NX is disabled.
2137 */
2138 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2139 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2140 {
2141 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2142
2143 /** @todo The manuals are not entirely clear whether the physical
2144 * address width is relevant. See table 5-9 in the intel
2145 * manual vs the PDE4M descriptions. Write testcase (NP). */
2146 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2147 | X86_PDE4M_MBZ_MASK;
2148
2149 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2150 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2151 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2152 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2153
2154 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2155 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2156 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2157 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2158 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2159 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2160
2161 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2162 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2163 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2164 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2165 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2166 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2167 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2168 }
2169
2170 /*
2171 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2172 * Intel only goes up to 36 bits, so we stick to 36 as well.
2173 * Update: More recent intel manuals specifies 40 bits just like AMD.
2174 */
2175 uint32_t u32Dummy, u32Features;
2176 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2177 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2178 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2179 else
2180 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2181
2182 /*
2183 * Allocate memory if we're supposed to do that.
2184 */
2185 if (pVM->pgm.s.fRamPreAlloc)
2186 rc = pgmR3PhysRamPreAllocate(pVM);
2187
2188 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2189 return rc;
2190}
2191
2192
2193/**
2194 * Init phase completed callback.
2195 *
2196 * @returns VBox status code.
2197 * @param pVM The VM handle.
2198 * @param enmWhat What has been completed.
2199 * @thread EMT(0)
2200 */
2201VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2202{
2203 switch (enmWhat)
2204 {
2205 case VMINITCOMPLETED_HWACCM:
2206#ifdef VBOX_WITH_PCI_PASSTHROUGH
2207 if (pVM->pgm.s.fPciPassthrough)
2208 {
2209 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2210 AssertLogRelReturn(HWACCMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HWACCM);
2211 AssertLogRelReturn(HWACCMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2212
2213 /*
2214 * Report assignments to the IOMMU (hope that's good enough for now).
2215 */
2216 if (pVM->pgm.s.fPciPassthrough)
2217 {
2218 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2219 AssertRCReturn(rc, rc);
2220 }
2221 }
2222#else
2223 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2224#endif
2225 break;
2226
2227 default:
2228 /* shut up gcc */
2229 break;
2230 }
2231
2232 return VINF_SUCCESS;
2233}
2234
2235
2236/**
2237 * Applies relocations to data and code managed by this component.
2238 *
2239 * This function will be called at init and whenever the VMM need to relocate it
2240 * self inside the GC.
2241 *
2242 * @param pVM The VM.
2243 * @param offDelta Relocation delta relative to old location.
2244 */
2245VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2246{
2247 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2248
2249 /*
2250 * Paging stuff.
2251 */
2252 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2253
2254 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2255
2256 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2257 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2258 {
2259 PVMCPU pVCpu = &pVM->aCpus[i];
2260
2261 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2262
2263 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2264 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2265 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2266 }
2267
2268 /*
2269 * Trees.
2270 */
2271 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2272
2273 /*
2274 * Ram ranges.
2275 */
2276 if (pVM->pgm.s.pRamRangesXR3)
2277 {
2278 /* Update the pSelfRC pointers and relink them. */
2279 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2280 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2281 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2282 pgmR3PhysRelinkRamRanges(pVM);
2283
2284 /* Flush the RC TLB. */
2285 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2286 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2287 }
2288
2289 /*
2290 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2291 * be mapped and thus not included in the above exercise.
2292 */
2293 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2294 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2295 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2296
2297 /*
2298 * Update the two page directories with all page table mappings.
2299 * (One or more of them have changed, that's why we're here.)
2300 */
2301 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2302 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2303 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2304
2305 /* Relocate GC addresses of Page Tables. */
2306 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2307 {
2308 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2309 {
2310 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2311 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2312 }
2313 }
2314
2315 /*
2316 * Dynamic page mapping area.
2317 */
2318 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2319 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2320 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2321
2322 if (pVM->pgm.s.pRCDynMap)
2323 {
2324 pVM->pgm.s.pRCDynMap += offDelta;
2325 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2326
2327 pDynMap->paPages += offDelta;
2328 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2329
2330 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2331 {
2332 paPages[iPage].pvPage += offDelta;
2333 paPages[iPage].uPte.pLegacy += offDelta;
2334 paPages[iPage].uPte.pPae += offDelta;
2335 }
2336 }
2337
2338 /*
2339 * The Zero page.
2340 */
2341 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2342#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2343 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2344#else
2345 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2346#endif
2347
2348 /*
2349 * Physical and virtual handlers.
2350 */
2351 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2352 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2353 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2354 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2355
2356 /*
2357 * The page pool.
2358 */
2359 pgmR3PoolRelocate(pVM);
2360
2361#ifdef VBOX_WITH_STATISTICS
2362 /*
2363 * Statistics.
2364 */
2365 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2366 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2367 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2368#endif
2369}
2370
2371
2372/**
2373 * Callback function for relocating a physical access handler.
2374 *
2375 * @returns 0 (continue enum)
2376 * @param pNode Pointer to a PGMPHYSHANDLER node.
2377 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2378 * not certain the delta will fit in a void pointer for all possible configs.
2379 */
2380static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2381{
2382 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2383 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2384 if (pHandler->pfnHandlerRC)
2385 pHandler->pfnHandlerRC += offDelta;
2386 if (pHandler->pvUserRC >= 0x10000)
2387 pHandler->pvUserRC += offDelta;
2388 return 0;
2389}
2390
2391
2392/**
2393 * Callback function for relocating a virtual access handler.
2394 *
2395 * @returns 0 (continue enum)
2396 * @param pNode Pointer to a PGMVIRTHANDLER node.
2397 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2398 * not certain the delta will fit in a void pointer for all possible configs.
2399 */
2400static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2401{
2402 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2403 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2404 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2405 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2406 Assert(pHandler->pfnHandlerRC);
2407 pHandler->pfnHandlerRC += offDelta;
2408 return 0;
2409}
2410
2411
2412/**
2413 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2414 *
2415 * @returns 0 (continue enum)
2416 * @param pNode Pointer to a PGMVIRTHANDLER node.
2417 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2418 * not certain the delta will fit in a void pointer for all possible configs.
2419 */
2420static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2421{
2422 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2423 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2424 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2425 Assert(pHandler->pfnHandlerRC);
2426 pHandler->pfnHandlerRC += offDelta;
2427 return 0;
2428}
2429
2430
2431/**
2432 * Resets a virtual CPU when unplugged.
2433 *
2434 * @param pVM The VM handle.
2435 * @param pVCpu The virtual CPU handle.
2436 */
2437VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2438{
2439 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2440 AssertRC(rc);
2441
2442 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2443 AssertRC(rc);
2444
2445 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2446
2447 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2448
2449 /*
2450 * Re-init other members.
2451 */
2452 pVCpu->pgm.s.fA20Enabled = true;
2453
2454 /*
2455 * Clear the FFs PGM owns.
2456 */
2457 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2458 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2459}
2460
2461
2462/**
2463 * The VM is being reset.
2464 *
2465 * For the PGM component this means that any PD write monitors
2466 * needs to be removed.
2467 *
2468 * @param pVM VM handle.
2469 */
2470VMMR3DECL(void) PGMR3Reset(PVM pVM)
2471{
2472 int rc;
2473
2474 LogFlow(("PGMR3Reset:\n"));
2475 VM_ASSERT_EMT(pVM);
2476
2477 pgmLock(pVM);
2478
2479 /*
2480 * Unfix any fixed mappings and disable CR3 monitoring.
2481 */
2482 pVM->pgm.s.fMappingsFixed = false;
2483 pVM->pgm.s.fMappingsFixedRestored = false;
2484 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2485 pVM->pgm.s.cbMappingFixed = 0;
2486
2487 /*
2488 * Exit the guest paging mode before the pgm pool gets reset.
2489 * Important to clean up the amd64 case.
2490 */
2491 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2492 {
2493 PVMCPU pVCpu = &pVM->aCpus[i];
2494 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2495 AssertRC(rc);
2496 }
2497
2498#ifdef DEBUG
2499 DBGFR3InfoLog(pVM, "mappings", NULL);
2500 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2501#endif
2502
2503 /*
2504 * Switch mode back to real mode. (before resetting the pgm pool!)
2505 */
2506 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2507 {
2508 PVMCPU pVCpu = &pVM->aCpus[i];
2509
2510 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2511 AssertRC(rc);
2512
2513 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2514 }
2515
2516 /*
2517 * Reset the shadow page pool.
2518 */
2519 pgmR3PoolReset(pVM);
2520
2521 /*
2522 * Re-init various other members and clear the FFs that PGM owns.
2523 */
2524 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2525 {
2526 PVMCPU pVCpu = &pVM->aCpus[i];
2527
2528 pVCpu->pgm.s.fA20Enabled = true;
2529 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2530 PGMNotifyNxeChanged(pVCpu, false);
2531
2532 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2533 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2534 }
2535
2536 /*
2537 * Reset (zero) RAM and shadow ROM pages.
2538 */
2539 rc = pgmR3PhysRamReset(pVM);
2540 if (RT_SUCCESS(rc))
2541 rc = pgmR3PhysRomReset(pVM);
2542
2543
2544 pgmUnlock(pVM);
2545 AssertReleaseRC(rc);
2546}
2547
2548
2549#ifdef VBOX_STRICT
2550/**
2551 * VM state change callback for clearing fNoMorePhysWrites after
2552 * a snapshot has been created.
2553 */
2554static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2555{
2556 if ( enmState == VMSTATE_RUNNING
2557 || enmState == VMSTATE_RESUMING)
2558 pVM->pgm.s.fNoMorePhysWrites = false;
2559 NOREF(enmOldState); NOREF(pvUser);
2560}
2561#endif
2562
2563/**
2564 * Private API to reset fNoMorePhysWrites.
2565 */
2566VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2567{
2568 pVM->pgm.s.fNoMorePhysWrites = false;
2569}
2570
2571/**
2572 * Terminates the PGM.
2573 *
2574 * @returns VBox status code.
2575 * @param pVM Pointer to VM structure.
2576 */
2577VMMR3DECL(int) PGMR3Term(PVM pVM)
2578{
2579 /* Must free shared pages here. */
2580 pgmLock(pVM);
2581 pgmR3PhysRamTerm(pVM);
2582 pgmR3PhysRomTerm(pVM);
2583 pgmUnlock(pVM);
2584
2585 PGMDeregisterStringFormatTypes();
2586 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2587}
2588
2589
2590/**
2591 * Show paging mode.
2592 *
2593 * @param pVM VM Handle.
2594 * @param pHlp The info helpers.
2595 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2596 */
2597static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2598{
2599 /* digest argument. */
2600 bool fGuest, fShadow, fHost;
2601 if (pszArgs)
2602 pszArgs = RTStrStripL(pszArgs);
2603 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2604 fShadow = fHost = fGuest = true;
2605 else
2606 {
2607 fShadow = fHost = fGuest = false;
2608 if (strstr(pszArgs, "guest"))
2609 fGuest = true;
2610 if (strstr(pszArgs, "shadow"))
2611 fShadow = true;
2612 if (strstr(pszArgs, "host"))
2613 fHost = true;
2614 }
2615
2616 /** @todo SMP support! */
2617 /* print info. */
2618 if (fGuest)
2619 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2620 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2621 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2622 if (fShadow)
2623 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2624 if (fHost)
2625 {
2626 const char *psz;
2627 switch (pVM->pgm.s.enmHostMode)
2628 {
2629 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2630 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2631 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2632 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2633 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2634 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2635 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2636 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2637 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2638 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2639 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2640 default: psz = "unknown"; break;
2641 }
2642 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2643 }
2644}
2645
2646
2647/**
2648 * Dump registered MMIO ranges to the log.
2649 *
2650 * @param pVM VM Handle.
2651 * @param pHlp The info helpers.
2652 * @param pszArgs Arguments, ignored.
2653 */
2654static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2655{
2656 NOREF(pszArgs);
2657 pHlp->pfnPrintf(pHlp,
2658 "RAM ranges (pVM=%p)\n"
2659 "%.*s %.*s\n",
2660 pVM,
2661 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2662 sizeof(RTHCPTR) * 2, "pvHC ");
2663
2664 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2665 pHlp->pfnPrintf(pHlp,
2666 "%RGp-%RGp %RHv %s\n",
2667 pCur->GCPhys,
2668 pCur->GCPhysLast,
2669 pCur->pvR3,
2670 pCur->pszDesc);
2671}
2672
2673/**
2674 * Dump the page directory to the log.
2675 *
2676 * @param pVM VM Handle.
2677 * @param pHlp The info helpers.
2678 * @param pszArgs Arguments, ignored.
2679 */
2680static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2681{
2682 /** @todo SMP support!! */
2683 PVMCPU pVCpu = &pVM->aCpus[0];
2684
2685/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2686 /* Big pages supported? */
2687 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2688
2689 /* Global pages supported? */
2690 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2691
2692 NOREF(pszArgs);
2693
2694 /*
2695 * Get page directory addresses.
2696 */
2697 pgmLock(pVM);
2698 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2699 Assert(pPDSrc);
2700
2701 /*
2702 * Iterate the page directory.
2703 */
2704 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2705 {
2706 X86PDE PdeSrc = pPDSrc->a[iPD];
2707 if (PdeSrc.n.u1Present)
2708 {
2709 if (PdeSrc.b.u1Size && fPSE)
2710 pHlp->pfnPrintf(pHlp,
2711 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2712 iPD,
2713 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2714 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2715 else
2716 pHlp->pfnPrintf(pHlp,
2717 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2718 iPD,
2719 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2720 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2721 }
2722 }
2723 pgmUnlock(pVM);
2724}
2725
2726
2727/**
2728 * Service a VMMCALLRING3_PGM_LOCK call.
2729 *
2730 * @returns VBox status code.
2731 * @param pVM The VM handle.
2732 */
2733VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2734{
2735 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2736 AssertRC(rc);
2737 return rc;
2738}
2739
2740
2741/**
2742 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2743 *
2744 * @returns PGM_TYPE_*.
2745 * @param pgmMode The mode value to convert.
2746 */
2747DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2748{
2749 switch (pgmMode)
2750 {
2751 case PGMMODE_REAL: return PGM_TYPE_REAL;
2752 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2753 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2754 case PGMMODE_PAE:
2755 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2756 case PGMMODE_AMD64:
2757 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2758 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2759 case PGMMODE_EPT: return PGM_TYPE_EPT;
2760 default:
2761 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2762 }
2763}
2764
2765
2766/**
2767 * Gets the index into the paging mode data array of a SHW+GST mode.
2768 *
2769 * @returns PGM::paPagingData index.
2770 * @param uShwType The shadow paging mode type.
2771 * @param uGstType The guest paging mode type.
2772 */
2773DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2774{
2775 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2776 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2777 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2778 + (uGstType - PGM_TYPE_REAL);
2779}
2780
2781
2782/**
2783 * Gets the index into the paging mode data array of a SHW+GST mode.
2784 *
2785 * @returns PGM::paPagingData index.
2786 * @param enmShw The shadow paging mode.
2787 * @param enmGst The guest paging mode.
2788 */
2789DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2790{
2791 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2792 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2793 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2794}
2795
2796
2797/**
2798 * Calculates the max data index.
2799 * @returns The number of entries in the paging data array.
2800 */
2801DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2802{
2803 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2804}
2805
2806
2807/**
2808 * Initializes the paging mode data kept in PGM::paModeData.
2809 *
2810 * @param pVM The VM handle.
2811 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2812 * This is used early in the init process to avoid trouble with PDM
2813 * not being initialized yet.
2814 */
2815static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2816{
2817 PPGMMODEDATA pModeData;
2818 int rc;
2819
2820 /*
2821 * Allocate the array on the first call.
2822 */
2823 if (!pVM->pgm.s.paModeData)
2824 {
2825 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2826 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2827 }
2828
2829 /*
2830 * Initialize the array entries.
2831 */
2832 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2833 pModeData->uShwType = PGM_TYPE_32BIT;
2834 pModeData->uGstType = PGM_TYPE_REAL;
2835 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2836 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2837 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2838
2839 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2840 pModeData->uShwType = PGM_TYPE_32BIT;
2841 pModeData->uGstType = PGM_TYPE_PROT;
2842 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2843 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2844 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2845
2846 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2847 pModeData->uShwType = PGM_TYPE_32BIT;
2848 pModeData->uGstType = PGM_TYPE_32BIT;
2849 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2851 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2852
2853 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2854 pModeData->uShwType = PGM_TYPE_PAE;
2855 pModeData->uGstType = PGM_TYPE_REAL;
2856 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2857 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2858 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2859
2860 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2861 pModeData->uShwType = PGM_TYPE_PAE;
2862 pModeData->uGstType = PGM_TYPE_PROT;
2863 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2864 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2866
2867 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2868 pModeData->uShwType = PGM_TYPE_PAE;
2869 pModeData->uGstType = PGM_TYPE_32BIT;
2870 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2871 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2872 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2873
2874 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2875 pModeData->uShwType = PGM_TYPE_PAE;
2876 pModeData->uGstType = PGM_TYPE_PAE;
2877 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2878 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2879 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2880
2881#ifdef VBOX_WITH_64_BITS_GUESTS
2882 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2883 pModeData->uShwType = PGM_TYPE_AMD64;
2884 pModeData->uGstType = PGM_TYPE_AMD64;
2885 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2886 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2887 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2888#endif
2889
2890 /* The nested paging mode. */
2891 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2892 pModeData->uShwType = PGM_TYPE_NESTED;
2893 pModeData->uGstType = PGM_TYPE_REAL;
2894 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2895 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896
2897 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2898 pModeData->uShwType = PGM_TYPE_NESTED;
2899 pModeData->uGstType = PGM_TYPE_PROT;
2900 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902
2903 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2904 pModeData->uShwType = PGM_TYPE_NESTED;
2905 pModeData->uGstType = PGM_TYPE_32BIT;
2906 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908
2909 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2910 pModeData->uShwType = PGM_TYPE_NESTED;
2911 pModeData->uGstType = PGM_TYPE_PAE;
2912 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2913 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2914
2915#ifdef VBOX_WITH_64_BITS_GUESTS
2916 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2917 pModeData->uShwType = PGM_TYPE_NESTED;
2918 pModeData->uGstType = PGM_TYPE_AMD64;
2919 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2920 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2921#endif
2922
2923 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2924 switch (pVM->pgm.s.enmHostMode)
2925 {
2926#if HC_ARCH_BITS == 32
2927 case SUPPAGINGMODE_32_BIT:
2928 case SUPPAGINGMODE_32_BIT_GLOBAL:
2929 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2930 {
2931 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2932 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2933 }
2934# ifdef VBOX_WITH_64_BITS_GUESTS
2935 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2936 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2937# endif
2938 break;
2939
2940 case SUPPAGINGMODE_PAE:
2941 case SUPPAGINGMODE_PAE_NX:
2942 case SUPPAGINGMODE_PAE_GLOBAL:
2943 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2944 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2945 {
2946 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2947 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2948 }
2949# ifdef VBOX_WITH_64_BITS_GUESTS
2950 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2951 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2952# endif
2953 break;
2954#endif /* HC_ARCH_BITS == 32 */
2955
2956#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2957 case SUPPAGINGMODE_AMD64:
2958 case SUPPAGINGMODE_AMD64_GLOBAL:
2959 case SUPPAGINGMODE_AMD64_NX:
2960 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2961# ifdef VBOX_WITH_64_BITS_GUESTS
2962 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2963# else
2964 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2965# endif
2966 {
2967 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2968 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2969 }
2970 break;
2971#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2972
2973 default:
2974 AssertFailed();
2975 break;
2976 }
2977
2978 /* Extended paging (EPT) / Intel VT-x */
2979 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2980 pModeData->uShwType = PGM_TYPE_EPT;
2981 pModeData->uGstType = PGM_TYPE_REAL;
2982 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2983 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2984 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2985
2986 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2987 pModeData->uShwType = PGM_TYPE_EPT;
2988 pModeData->uGstType = PGM_TYPE_PROT;
2989 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2990 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2991 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2992
2993 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2994 pModeData->uShwType = PGM_TYPE_EPT;
2995 pModeData->uGstType = PGM_TYPE_32BIT;
2996 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2997 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2998 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2999
3000 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3001 pModeData->uShwType = PGM_TYPE_EPT;
3002 pModeData->uGstType = PGM_TYPE_PAE;
3003 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3004 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3005 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3006
3007#ifdef VBOX_WITH_64_BITS_GUESTS
3008 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3009 pModeData->uShwType = PGM_TYPE_EPT;
3010 pModeData->uGstType = PGM_TYPE_AMD64;
3011 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3012 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3013 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3014#endif
3015 return VINF_SUCCESS;
3016}
3017
3018
3019/**
3020 * Switch to different (or relocated in the relocate case) mode data.
3021 *
3022 * @param pVM The VM handle.
3023 * @param pVCpu The VMCPU to operate on.
3024 * @param enmShw The the shadow paging mode.
3025 * @param enmGst The the guest paging mode.
3026 */
3027static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3028{
3029 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3030
3031 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3032 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3033
3034 /* shadow */
3035 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3036 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3037 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3038 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3039 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3040
3041 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3042 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3043
3044 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3045 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3046
3047
3048 /* guest */
3049 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3050 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3051 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3052 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3053 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3054 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3055 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3056 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3057 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3058 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3059 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3060 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3061
3062 /* both */
3063 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3064 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3065 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3066 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3067 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3068 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3069#ifdef VBOX_STRICT
3070 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3071#endif
3072 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3073 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3074
3075 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3076 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3077 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3078 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3079 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3080#ifdef VBOX_STRICT
3081 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3082#endif
3083 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3084 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3085
3086 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3087 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3088 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3089 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3090 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3091#ifdef VBOX_STRICT
3092 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3093#endif
3094 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3095 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3096}
3097
3098
3099/**
3100 * Calculates the shadow paging mode.
3101 *
3102 * @returns The shadow paging mode.
3103 * @param pVM VM handle.
3104 * @param enmGuestMode The guest mode.
3105 * @param enmHostMode The host mode.
3106 * @param enmShadowMode The current shadow mode.
3107 * @param penmSwitcher Where to store the switcher to use.
3108 * VMMSWITCHER_INVALID means no change.
3109 */
3110static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3111{
3112 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3113 switch (enmGuestMode)
3114 {
3115 /*
3116 * When switching to real or protected mode we don't change
3117 * anything since it's likely that we'll switch back pretty soon.
3118 *
3119 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3120 * and is supposed to determine which shadow paging and switcher to
3121 * use during init.
3122 */
3123 case PGMMODE_REAL:
3124 case PGMMODE_PROTECTED:
3125 if ( enmShadowMode != PGMMODE_INVALID
3126 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3127 break; /* (no change) */
3128
3129 switch (enmHostMode)
3130 {
3131 case SUPPAGINGMODE_32_BIT:
3132 case SUPPAGINGMODE_32_BIT_GLOBAL:
3133 enmShadowMode = PGMMODE_32_BIT;
3134 enmSwitcher = VMMSWITCHER_32_TO_32;
3135 break;
3136
3137 case SUPPAGINGMODE_PAE:
3138 case SUPPAGINGMODE_PAE_NX:
3139 case SUPPAGINGMODE_PAE_GLOBAL:
3140 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3141 enmShadowMode = PGMMODE_PAE;
3142 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3143#ifdef DEBUG_bird
3144 if (RTEnvExist("VBOX_32BIT"))
3145 {
3146 enmShadowMode = PGMMODE_32_BIT;
3147 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3148 }
3149#endif
3150 break;
3151
3152 case SUPPAGINGMODE_AMD64:
3153 case SUPPAGINGMODE_AMD64_GLOBAL:
3154 case SUPPAGINGMODE_AMD64_NX:
3155 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3156 enmShadowMode = PGMMODE_PAE;
3157 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3158#ifdef DEBUG_bird
3159 if (RTEnvExist("VBOX_32BIT"))
3160 {
3161 enmShadowMode = PGMMODE_32_BIT;
3162 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3163 }
3164#endif
3165 break;
3166
3167 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3168 }
3169 break;
3170
3171 case PGMMODE_32_BIT:
3172 switch (enmHostMode)
3173 {
3174 case SUPPAGINGMODE_32_BIT:
3175 case SUPPAGINGMODE_32_BIT_GLOBAL:
3176 enmShadowMode = PGMMODE_32_BIT;
3177 enmSwitcher = VMMSWITCHER_32_TO_32;
3178 break;
3179
3180 case SUPPAGINGMODE_PAE:
3181 case SUPPAGINGMODE_PAE_NX:
3182 case SUPPAGINGMODE_PAE_GLOBAL:
3183 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3184 enmShadowMode = PGMMODE_PAE;
3185 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3186#ifdef DEBUG_bird
3187 if (RTEnvExist("VBOX_32BIT"))
3188 {
3189 enmShadowMode = PGMMODE_32_BIT;
3190 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3191 }
3192#endif
3193 break;
3194
3195 case SUPPAGINGMODE_AMD64:
3196 case SUPPAGINGMODE_AMD64_GLOBAL:
3197 case SUPPAGINGMODE_AMD64_NX:
3198 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3199 enmShadowMode = PGMMODE_PAE;
3200 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3201#ifdef DEBUG_bird
3202 if (RTEnvExist("VBOX_32BIT"))
3203 {
3204 enmShadowMode = PGMMODE_32_BIT;
3205 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3206 }
3207#endif
3208 break;
3209
3210 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3211 }
3212 break;
3213
3214 case PGMMODE_PAE:
3215 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3216 switch (enmHostMode)
3217 {
3218 case SUPPAGINGMODE_32_BIT:
3219 case SUPPAGINGMODE_32_BIT_GLOBAL:
3220 enmShadowMode = PGMMODE_PAE;
3221 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3222 break;
3223
3224 case SUPPAGINGMODE_PAE:
3225 case SUPPAGINGMODE_PAE_NX:
3226 case SUPPAGINGMODE_PAE_GLOBAL:
3227 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3228 enmShadowMode = PGMMODE_PAE;
3229 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3230 break;
3231
3232 case SUPPAGINGMODE_AMD64:
3233 case SUPPAGINGMODE_AMD64_GLOBAL:
3234 case SUPPAGINGMODE_AMD64_NX:
3235 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3236 enmShadowMode = PGMMODE_PAE;
3237 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3238 break;
3239
3240 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3241 }
3242 break;
3243
3244 case PGMMODE_AMD64:
3245 case PGMMODE_AMD64_NX:
3246 switch (enmHostMode)
3247 {
3248 case SUPPAGINGMODE_32_BIT:
3249 case SUPPAGINGMODE_32_BIT_GLOBAL:
3250 enmShadowMode = PGMMODE_AMD64;
3251 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3252 break;
3253
3254 case SUPPAGINGMODE_PAE:
3255 case SUPPAGINGMODE_PAE_NX:
3256 case SUPPAGINGMODE_PAE_GLOBAL:
3257 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3258 enmShadowMode = PGMMODE_AMD64;
3259 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3260 break;
3261
3262 case SUPPAGINGMODE_AMD64:
3263 case SUPPAGINGMODE_AMD64_GLOBAL:
3264 case SUPPAGINGMODE_AMD64_NX:
3265 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3266 enmShadowMode = PGMMODE_AMD64;
3267 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3268 break;
3269
3270 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3271 }
3272 break;
3273
3274
3275 default:
3276 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3277 *penmSwitcher = VMMSWITCHER_INVALID;
3278 return PGMMODE_INVALID;
3279 }
3280 /* Override the shadow mode is nested paging is active. */
3281 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3282 if (pVM->pgm.s.fNestedPaging)
3283 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3284
3285 *penmSwitcher = enmSwitcher;
3286 return enmShadowMode;
3287}
3288
3289
3290/**
3291 * Performs the actual mode change.
3292 * This is called by PGMChangeMode and pgmR3InitPaging().
3293 *
3294 * @returns VBox status code. May suspend or power off the VM on error, but this
3295 * will trigger using FFs and not status codes.
3296 *
3297 * @param pVM VM handle.
3298 * @param pVCpu The VMCPU to operate on.
3299 * @param enmGuestMode The new guest mode. This is assumed to be different from
3300 * the current mode.
3301 */
3302VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3303{
3304#if HC_ARCH_BITS == 32
3305 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3306#endif
3307 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3308
3309 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3310 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3311
3312 /*
3313 * Calc the shadow mode and switcher.
3314 */
3315 VMMSWITCHER enmSwitcher;
3316 PGMMODE enmShadowMode;
3317 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3318
3319#ifdef VBOX_WITH_RAW_MODE
3320 if (enmSwitcher != VMMSWITCHER_INVALID)
3321 {
3322 /*
3323 * Select new switcher.
3324 */
3325 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3326 if (RT_FAILURE(rc))
3327 {
3328 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3329 return rc;
3330 }
3331 }
3332#endif
3333
3334 /*
3335 * Exit old mode(s).
3336 */
3337#if HC_ARCH_BITS == 32
3338 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3339 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3340 && enmShadowMode == PGMMODE_NESTED);
3341#else
3342 const bool fForceShwEnterExit = false;
3343#endif
3344 /* shadow */
3345 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3346 || fForceShwEnterExit)
3347 {
3348 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3349 if (PGM_SHW_PFN(Exit, pVCpu))
3350 {
3351 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3352 if (RT_FAILURE(rc))
3353 {
3354 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3355 return rc;
3356 }
3357 }
3358
3359 }
3360 else
3361 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3362
3363 /* guest */
3364 if (PGM_GST_PFN(Exit, pVCpu))
3365 {
3366 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3367 if (RT_FAILURE(rc))
3368 {
3369 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3370 return rc;
3371 }
3372 }
3373
3374 /*
3375 * Load new paging mode data.
3376 */
3377 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3378
3379 /*
3380 * Enter new shadow mode (if changed).
3381 */
3382 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3383 || fForceShwEnterExit)
3384 {
3385 int rc;
3386 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3387 switch (enmShadowMode)
3388 {
3389 case PGMMODE_32_BIT:
3390 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3391 break;
3392 case PGMMODE_PAE:
3393 case PGMMODE_PAE_NX:
3394 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3395 break;
3396 case PGMMODE_AMD64:
3397 case PGMMODE_AMD64_NX:
3398 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3399 break;
3400 case PGMMODE_NESTED:
3401 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3402 break;
3403 case PGMMODE_EPT:
3404 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3405 break;
3406 case PGMMODE_REAL:
3407 case PGMMODE_PROTECTED:
3408 default:
3409 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3410 return VERR_INTERNAL_ERROR;
3411 }
3412 if (RT_FAILURE(rc))
3413 {
3414 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3415 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3416 return rc;
3417 }
3418 }
3419
3420 /*
3421 * Always flag the necessary updates
3422 */
3423 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3424
3425 /*
3426 * Enter the new guest and shadow+guest modes.
3427 */
3428 int rc = -1;
3429 int rc2 = -1;
3430 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3431 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3432 switch (enmGuestMode)
3433 {
3434 case PGMMODE_REAL:
3435 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3436 switch (pVCpu->pgm.s.enmShadowMode)
3437 {
3438 case PGMMODE_32_BIT:
3439 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3440 break;
3441 case PGMMODE_PAE:
3442 case PGMMODE_PAE_NX:
3443 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3444 break;
3445 case PGMMODE_NESTED:
3446 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3447 break;
3448 case PGMMODE_EPT:
3449 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3450 break;
3451 case PGMMODE_AMD64:
3452 case PGMMODE_AMD64_NX:
3453 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3454 default: AssertFailed(); break;
3455 }
3456 break;
3457
3458 case PGMMODE_PROTECTED:
3459 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3460 switch (pVCpu->pgm.s.enmShadowMode)
3461 {
3462 case PGMMODE_32_BIT:
3463 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3464 break;
3465 case PGMMODE_PAE:
3466 case PGMMODE_PAE_NX:
3467 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3468 break;
3469 case PGMMODE_NESTED:
3470 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3471 break;
3472 case PGMMODE_EPT:
3473 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3474 break;
3475 case PGMMODE_AMD64:
3476 case PGMMODE_AMD64_NX:
3477 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3478 default: AssertFailed(); break;
3479 }
3480 break;
3481
3482 case PGMMODE_32_BIT:
3483 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3484 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3485 switch (pVCpu->pgm.s.enmShadowMode)
3486 {
3487 case PGMMODE_32_BIT:
3488 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3489 break;
3490 case PGMMODE_PAE:
3491 case PGMMODE_PAE_NX:
3492 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3493 break;
3494 case PGMMODE_NESTED:
3495 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3496 break;
3497 case PGMMODE_EPT:
3498 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3499 break;
3500 case PGMMODE_AMD64:
3501 case PGMMODE_AMD64_NX:
3502 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3503 default: AssertFailed(); break;
3504 }
3505 break;
3506
3507 case PGMMODE_PAE_NX:
3508 case PGMMODE_PAE:
3509 {
3510 uint32_t u32Dummy, u32Features;
3511
3512 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3513 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3514 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3515 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3516
3517 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3518 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3519 switch (pVCpu->pgm.s.enmShadowMode)
3520 {
3521 case PGMMODE_PAE:
3522 case PGMMODE_PAE_NX:
3523 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3524 break;
3525 case PGMMODE_NESTED:
3526 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3527 break;
3528 case PGMMODE_EPT:
3529 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3530 break;
3531 case PGMMODE_32_BIT:
3532 case PGMMODE_AMD64:
3533 case PGMMODE_AMD64_NX:
3534 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3535 default: AssertFailed(); break;
3536 }
3537 break;
3538 }
3539
3540#ifdef VBOX_WITH_64_BITS_GUESTS
3541 case PGMMODE_AMD64_NX:
3542 case PGMMODE_AMD64:
3543 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3544 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3545 switch (pVCpu->pgm.s.enmShadowMode)
3546 {
3547 case PGMMODE_AMD64:
3548 case PGMMODE_AMD64_NX:
3549 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3550 break;
3551 case PGMMODE_NESTED:
3552 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3553 break;
3554 case PGMMODE_EPT:
3555 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3556 break;
3557 case PGMMODE_32_BIT:
3558 case PGMMODE_PAE:
3559 case PGMMODE_PAE_NX:
3560 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3561 default: AssertFailed(); break;
3562 }
3563 break;
3564#endif
3565
3566 default:
3567 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3568 rc = VERR_NOT_IMPLEMENTED;
3569 break;
3570 }
3571
3572 /* status codes. */
3573 AssertRC(rc);
3574 AssertRC(rc2);
3575 if (RT_SUCCESS(rc))
3576 {
3577 rc = rc2;
3578 if (RT_SUCCESS(rc)) /* no informational status codes. */
3579 rc = VINF_SUCCESS;
3580 }
3581
3582 /* Notify HWACCM as well. */
3583 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3584 return rc;
3585}
3586
3587
3588/**
3589 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3590 *
3591 * @returns VBox status code, fully asserted.
3592 * @param pVCpu The VMCPU to operate on.
3593 */
3594int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3595{
3596 /* Unmap the old CR3 value before flushing everything. */
3597 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3598 AssertRC(rc);
3599
3600 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3601 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3602 AssertRC(rc);
3603 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3604 return rc;
3605}
3606
3607
3608/**
3609 * Called by pgmPoolFlushAllInt after flushing the pool.
3610 *
3611 * @returns VBox status code, fully asserted.
3612 * @param pVM The VM handle.
3613 * @param pVCpu The VMCPU to operate on.
3614 */
3615int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3616{
3617 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3618 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3619 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3620 AssertRCReturn(rc, rc);
3621 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3622
3623 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3624 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3625 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3626 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3627 return rc;
3628}
3629
3630#ifdef VBOX_WITH_DEBUGGER
3631
3632/**
3633 * The '.pgmram' command.
3634 *
3635 * @returns VBox status.
3636 * @param pCmd Pointer to the command descriptor (as registered).
3637 * @param pCmdHlp Pointer to command helper functions.
3638 * @param pVM Pointer to the current VM (if any).
3639 * @param paArgs Pointer to (readonly) array of arguments.
3640 * @param cArgs Number of arguments in the array.
3641 */
3642static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3643{
3644 /*
3645 * Validate input.
3646 */
3647 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3648 if (!pVM)
3649 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3650 if (!pVM->pgm.s.pRamRangesXR3)
3651 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3652
3653 /*
3654 * Dump the ranges.
3655 */
3656 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3657 PPGMRAMRANGE pRam;
3658 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
3659 {
3660 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3661 "%RGp - %RGp %p\n",
3662 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
3663 if (RT_FAILURE(rc))
3664 return rc;
3665 }
3666
3667 return VINF_SUCCESS;
3668}
3669
3670
3671/**
3672 * The '.pgmerror' and '.pgmerroroff' commands.
3673 *
3674 * @returns VBox status.
3675 * @param pCmd Pointer to the command descriptor (as registered).
3676 * @param pCmdHlp Pointer to command helper functions.
3677 * @param pVM Pointer to the current VM (if any).
3678 * @param paArgs Pointer to (readonly) array of arguments.
3679 * @param cArgs Number of arguments in the array.
3680 */
3681static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3682{
3683 /*
3684 * Validate input.
3685 */
3686 if (!pVM)
3687 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3688 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
3689 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
3690
3691 if (!cArgs)
3692 {
3693 /*
3694 * Print the list of error injection locations with status.
3695 */
3696 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
3697 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3698 }
3699 else
3700 {
3701
3702 /*
3703 * String switch on where to inject the error.
3704 */
3705 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3706 const char *pszWhere = paArgs[0].u.pszString;
3707 if (!strcmp(pszWhere, "handy"))
3708 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3709 else
3710 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
3711 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
3712 }
3713 return VINF_SUCCESS;
3714}
3715
3716
3717/**
3718 * The '.pgmsync' command.
3719 *
3720 * @returns VBox status.
3721 * @param pCmd Pointer to the command descriptor (as registered).
3722 * @param pCmdHlp Pointer to command helper functions.
3723 * @param pVM Pointer to the current VM (if any).
3724 * @param paArgs Pointer to (readonly) array of arguments.
3725 * @param cArgs Number of arguments in the array.
3726 */
3727static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3728{
3729 /** @todo SMP support */
3730
3731 /*
3732 * Validate input.
3733 */
3734 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3735 if (!pVM)
3736 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3737
3738 PVMCPU pVCpu = &pVM->aCpus[0];
3739
3740 /*
3741 * Force page directory sync.
3742 */
3743 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3744
3745 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3746 if (RT_FAILURE(rc))
3747 return rc;
3748
3749 return VINF_SUCCESS;
3750}
3751
3752
3753#ifdef VBOX_STRICT
3754/**
3755 * The '.pgmassertcr3' command.
3756 *
3757 * @returns VBox status.
3758 * @param pCmd Pointer to the command descriptor (as registered).
3759 * @param pCmdHlp Pointer to command helper functions.
3760 * @param pVM Pointer to the current VM (if any).
3761 * @param paArgs Pointer to (readonly) array of arguments.
3762 * @param cArgs Number of arguments in the array.
3763 */
3764static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3765{
3766 /** @todo SMP support!! */
3767
3768 /*
3769 * Validate input.
3770 */
3771 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3772 if (!pVM)
3773 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3774
3775 PVMCPU pVCpu = &pVM->aCpus[0];
3776
3777 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
3778 if (RT_FAILURE(rc))
3779 return rc;
3780
3781 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3782
3783 return VINF_SUCCESS;
3784}
3785#endif /* VBOX_STRICT */
3786
3787
3788/**
3789 * The '.pgmsyncalways' command.
3790 *
3791 * @returns VBox status.
3792 * @param pCmd Pointer to the command descriptor (as registered).
3793 * @param pCmdHlp Pointer to command helper functions.
3794 * @param pVM Pointer to the current VM (if any).
3795 * @param paArgs Pointer to (readonly) array of arguments.
3796 * @param cArgs Number of arguments in the array.
3797 */
3798static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3799{
3800 /** @todo SMP support!! */
3801 PVMCPU pVCpu = &pVM->aCpus[0];
3802
3803 /*
3804 * Validate input.
3805 */
3806 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3807 if (!pVM)
3808 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3809
3810 /*
3811 * Force page directory sync.
3812 */
3813 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3814 {
3815 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3816 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3817 }
3818 else
3819 {
3820 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3821 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3822 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3823 }
3824}
3825
3826
3827/**
3828 * The '.pgmphystofile' command.
3829 *
3830 * @returns VBox status.
3831 * @param pCmd Pointer to the command descriptor (as registered).
3832 * @param pCmdHlp Pointer to command helper functions.
3833 * @param pVM Pointer to the current VM (if any).
3834 * @param paArgs Pointer to (readonly) array of arguments.
3835 * @param cArgs Number of arguments in the array.
3836 */
3837static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3838{
3839 /*
3840 * Validate input.
3841 */
3842 NOREF(pCmd);
3843 if (!pVM)
3844 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3845 if ( cArgs < 1
3846 || cArgs > 2
3847 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
3848 || ( cArgs > 1
3849 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
3850 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
3851 if ( cArgs >= 2
3852 && strcmp(paArgs[1].u.pszString, "nozero"))
3853 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3854 bool fIncZeroPgs = cArgs < 2;
3855
3856 /*
3857 * Open the output file and get the ram parameters.
3858 */
3859 RTFILE hFile;
3860 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3861 if (RT_FAILURE(rc))
3862 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3863
3864 uint32_t cbRamHole = 0;
3865 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3866 uint64_t cbRam = 0;
3867 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
3868 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3869
3870 /*
3871 * Dump the physical memory, page by page.
3872 */
3873 RTGCPHYS GCPhys = 0;
3874 char abZeroPg[PAGE_SIZE];
3875 RT_ZERO(abZeroPg);
3876
3877 pgmLock(pVM);
3878 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3879 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3880 pRam = pRam->pNextR3)
3881 {
3882 /* fill the gap */
3883 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3884 {
3885 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3886 {
3887 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3888 GCPhys += PAGE_SIZE;
3889 }
3890 }
3891
3892 PCPGMPAGE pPage = &pRam->aPages[0];
3893 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3894 {
3895 if ( PGM_PAGE_IS_ZERO(pPage)
3896 || PGM_PAGE_IS_BALLOONED(pPage))
3897 {
3898 if (fIncZeroPgs)
3899 {
3900 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3901 if (RT_FAILURE(rc))
3902 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3903 }
3904 }
3905 else
3906 {
3907 switch (PGM_PAGE_GET_TYPE(pPage))
3908 {
3909 case PGMPAGETYPE_RAM:
3910 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3911 case PGMPAGETYPE_ROM:
3912 case PGMPAGETYPE_MMIO2:
3913 {
3914 void const *pvPage;
3915 PGMPAGEMAPLOCK Lock;
3916 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3917 if (RT_SUCCESS(rc))
3918 {
3919 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3920 PGMPhysReleasePageMappingLock(pVM, &Lock);
3921 if (RT_FAILURE(rc))
3922 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3923 }
3924 else
3925 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3926 break;
3927 }
3928
3929 default:
3930 AssertFailed();
3931 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3932 case PGMPAGETYPE_MMIO:
3933 if (fIncZeroPgs)
3934 {
3935 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3936 if (RT_FAILURE(rc))
3937 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3938 }
3939 break;
3940 }
3941 }
3942
3943
3944 /* advance */
3945 GCPhys += PAGE_SIZE;
3946 pPage++;
3947 }
3948 }
3949 pgmUnlock(pVM);
3950
3951 RTFileClose(hFile);
3952 if (RT_SUCCESS(rc))
3953 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3954 return VINF_SUCCESS;
3955}
3956
3957#endif /* VBOX_WITH_DEBUGGER */
3958
3959/**
3960 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3961 */
3962typedef struct PGMCHECKINTARGS
3963{
3964 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3965 PPGMPHYSHANDLER pPrevPhys;
3966 PPGMVIRTHANDLER pPrevVirt;
3967 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3968 PVM pVM;
3969} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3970
3971/**
3972 * Validate a node in the physical handler tree.
3973 *
3974 * @returns 0 on if ok, other wise 1.
3975 * @param pNode The handler node.
3976 * @param pvUser pVM.
3977 */
3978static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3979{
3980 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3981 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3982 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3983 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3984 AssertReleaseMsg( !pArgs->pPrevPhys
3985 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3986 ("pPrevPhys=%p %RGp-%RGp %s\n"
3987 " pCur=%p %RGp-%RGp %s\n",
3988 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3989 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3990 pArgs->pPrevPhys = pCur;
3991 return 0;
3992}
3993
3994
3995/**
3996 * Validate a node in the virtual handler tree.
3997 *
3998 * @returns 0 on if ok, other wise 1.
3999 * @param pNode The handler node.
4000 * @param pvUser pVM.
4001 */
4002static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4003{
4004 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4005 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4006 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4007 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4008 AssertReleaseMsg( !pArgs->pPrevVirt
4009 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4010 ("pPrevVirt=%p %RGv-%RGv %s\n"
4011 " pCur=%p %RGv-%RGv %s\n",
4012 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4013 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4014 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4015 {
4016 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4017 ("pCur=%p %RGv-%RGv %s\n"
4018 "iPage=%d offVirtHandle=%#x expected %#x\n",
4019 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4020 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4021 }
4022 pArgs->pPrevVirt = pCur;
4023 return 0;
4024}
4025
4026
4027/**
4028 * Validate a node in the virtual handler tree.
4029 *
4030 * @returns 0 on if ok, other wise 1.
4031 * @param pNode The handler node.
4032 * @param pvUser pVM.
4033 */
4034static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4035{
4036 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4037 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4038 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4039 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4040 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4041 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4042 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4043 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4044 " pCur=%p %RGp-%RGp\n",
4045 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4046 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4047 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4048 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4049 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4050 " pCur=%p %RGp-%RGp\n",
4051 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4052 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4053 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4054 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4055 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4056 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4057 {
4058 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4059 for (;;)
4060 {
4061 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4062 AssertReleaseMsg(pCur2 != pCur,
4063 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4064 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4065 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4066 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4067 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4068 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4069 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4070 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4071 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4072 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4073 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4074 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4075 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4076 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4077 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4078 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4079 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4080 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4081 break;
4082 }
4083 }
4084
4085 pArgs->pPrevPhys2Virt = pCur;
4086 return 0;
4087}
4088
4089
4090/**
4091 * Perform an integrity check on the PGM component.
4092 *
4093 * @returns VINF_SUCCESS if everything is fine.
4094 * @returns VBox error status after asserting on integrity breach.
4095 * @param pVM The VM handle.
4096 */
4097VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4098{
4099 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4100
4101 /*
4102 * Check the trees.
4103 */
4104 int cErrors = 0;
4105 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4106 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4107 PGMCHECKINTARGS Args = s_LeftToRight;
4108 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4109 Args = s_RightToLeft;
4110 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4111 Args = s_LeftToRight;
4112 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4113 Args = s_RightToLeft;
4114 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4115 Args = s_LeftToRight;
4116 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4117 Args = s_RightToLeft;
4118 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4119 Args = s_LeftToRight;
4120 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4121 Args = s_RightToLeft;
4122 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4123
4124 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4125}
4126
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette