VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 41468

Last change on this file since 41468 was 41468, checked in by vboxsync, 13 years ago

PGM.cpp: A couple of words about the A20 implementation.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 203.8 KB
Line 
1/* $Id: PGM.cpp 41468 2012-05-28 22:55:35Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2011 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 *
99 * @subsection sec_pgm_misc_A20 The A20 Gate
100 *
101 * PGM implements the A20 gate masking when translating a virtual guest address
102 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
103 * the code reading the guest page table entries during shadowing.
104 *
105 * The A20 gate implementation is per CPU core. It can be configured on a per
106 * core basis via the keyboard device and PC architecture device. This is
107 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
108 * guest OSes try pushing things anyway, so who cares.
109 *
110 * The keyboard device and the PC architecture device doesn't OR their A20
111 * config bits together, rather they are currently implemented such that they
112 * mirror the CPU state. So, flipping the bit in either of them will change the
113 * A20 state.
114 *
115 * The A20 state will change immediately, transmeta fashion. There is no delays
116 * due to buses, wiring or other physical stuff.
117 *
118 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
119 *
120 *
121 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
122 *
123 * The differences between legacy PAE and long mode PAE are:
124 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
125 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
126 * usual meanings while 6 is ignored (AMD). This means that upon switching to
127 * legacy PAE mode we'll have to clear these bits and when going to long mode
128 * they must be set. This applies to both intermediate and shadow contexts,
129 * however we don't need to do it for the intermediate one since we're
130 * executing with CR0.WP at that time.
131 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
132 * a page aligned one is required.
133 *
134 *
135 * @section sec_pgm_handlers Access Handlers
136 *
137 * Placeholder.
138 *
139 *
140 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
141 *
142 * Placeholder.
143 *
144 *
145 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
146 *
147 * We currently implement three types of virtual access handlers: ALL, WRITE
148 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
149 *
150 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
151 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
152 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
153 * rest of this section is going to be about these handlers.
154 *
155 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
156 * how successful this is gonna be...
157 *
158 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
159 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
160 * and create a new node that is inserted into the AVL tree (range key). Then
161 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
162 *
163 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
164 *
165 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
166 * via the current guest CR3 and update the physical page -> virtual handler
167 * translation. Needless to say, this doesn't exactly scale very well. If any changes
168 * are detected, it will flag a virtual bit update just like we did on registration.
169 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
170 *
171 * 2b. The virtual bit update process will iterate all the pages covered by all the
172 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
173 * virtual handlers on that page.
174 *
175 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
176 * we don't miss any alias mappings of the monitored pages.
177 *
178 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
179 *
180 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
181 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
182 * will call the handlers like in the next step. If the physical mapping has
183 * changed we will - some time in the future - perform a handler callback
184 * (optional) and update the physical -> virtual handler cache.
185 *
186 * 4. \#PF(,write) on a page in the range. This will cause the handler to
187 * be invoked.
188 *
189 * 5. The guest invalidates the page and changes the physical backing or
190 * unmaps it. This should cause the invalidation callback to be invoked
191 * (it might not yet be 100% perfect). Exactly what happens next... is
192 * this where we mess up and end up out of sync for a while?
193 *
194 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
195 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
196 * this handler to NONE and trigger a full PGM resync (basically the same
197 * as int step 1). Which means 2 is executed again.
198 *
199 *
200 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
201 *
202 * There is a bunch of things that needs to be done to make the virtual handlers
203 * work 100% correctly and work more efficiently.
204 *
205 * The first bit hasn't been implemented yet because it's going to slow the
206 * whole mess down even more, and besides it seems to be working reliably for
207 * our current uses. OTOH, some of the optimizations might end up more or less
208 * implementing the missing bits, so we'll see.
209 *
210 * On the optimization side, the first thing to do is to try avoid unnecessary
211 * cache flushing. Then try team up with the shadowing code to track changes
212 * in mappings by means of access to them (shadow in), updates to shadows pages,
213 * invlpg, and shadow PT discarding (perhaps).
214 *
215 * Some idea that have popped up for optimization for current and new features:
216 * - bitmap indicating where there are virtual handlers installed.
217 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
218 * - Further optimize this by min/max (needs min/max avl getters).
219 * - Shadow page table entry bit (if any left)?
220 *
221 */
222
223
224/** @page pg_pgm_phys PGM Physical Guest Memory Management
225 *
226 *
227 * Objectives:
228 * - Guest RAM over-commitment using memory ballooning,
229 * zero pages and general page sharing.
230 * - Moving or mirroring a VM onto a different physical machine.
231 *
232 *
233 * @subsection subsec_pgmPhys_Definitions Definitions
234 *
235 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
236 * machinery associated with it.
237 *
238 *
239 *
240 *
241 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
242 *
243 * Initially we map *all* guest memory to the (per VM) zero page, which
244 * means that none of the read functions will cause pages to be allocated.
245 *
246 * Exception, access bit in page tables that have been shared. This must
247 * be handled, but we must also make sure PGMGst*Modify doesn't make
248 * unnecessary modifications.
249 *
250 * Allocation points:
251 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
252 * - Replacing a zero page mapping at \#PF.
253 * - Replacing a shared page mapping at \#PF.
254 * - ROM registration (currently MMR3RomRegister).
255 * - VM restore (pgmR3Load).
256 *
257 * For the first three it would make sense to keep a few pages handy
258 * until we've reached the max memory commitment for the VM.
259 *
260 * For the ROM registration, we know exactly how many pages we need
261 * and will request these from ring-0. For restore, we will save
262 * the number of non-zero pages in the saved state and allocate
263 * them up front. This would allow the ring-0 component to refuse
264 * the request if the isn't sufficient memory available for VM use.
265 *
266 * Btw. for both ROM and restore allocations we won't be requiring
267 * zeroed pages as they are going to be filled instantly.
268 *
269 *
270 * @subsection subsec_pgmPhys_FreePage Freeing a page
271 *
272 * There are a few points where a page can be freed:
273 * - After being replaced by the zero page.
274 * - After being replaced by a shared page.
275 * - After being ballooned by the guest additions.
276 * - At reset.
277 * - At restore.
278 *
279 * When freeing one or more pages they will be returned to the ring-0
280 * component and replaced by the zero page.
281 *
282 * The reasoning for clearing out all the pages on reset is that it will
283 * return us to the exact same state as on power on, and may thereby help
284 * us reduce the memory load on the system. Further it might have a
285 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
286 *
287 * On restore, as mention under the allocation topic, pages should be
288 * freed / allocated depending on how many is actually required by the
289 * new VM state. The simplest approach is to do like on reset, and free
290 * all non-ROM pages and then allocate what we need.
291 *
292 * A measure to prevent some fragmentation, would be to let each allocation
293 * chunk have some affinity towards the VM having allocated the most pages
294 * from it. Also, try make sure to allocate from allocation chunks that
295 * are almost full. Admittedly, both these measures might work counter to
296 * our intentions and its probably not worth putting a lot of effort,
297 * cpu time or memory into this.
298 *
299 *
300 * @subsection subsec_pgmPhys_SharePage Sharing a page
301 *
302 * The basic idea is that there there will be a idle priority kernel
303 * thread walking the non-shared VM pages hashing them and looking for
304 * pages with the same checksum. If such pages are found, it will compare
305 * them byte-by-byte to see if they actually are identical. If found to be
306 * identical it will allocate a shared page, copy the content, check that
307 * the page didn't change while doing this, and finally request both the
308 * VMs to use the shared page instead. If the page is all zeros (special
309 * checksum and byte-by-byte check) it will request the VM that owns it
310 * to replace it with the zero page.
311 *
312 * To make this efficient, we will have to make sure not to try share a page
313 * that will change its contents soon. This part requires the most work.
314 * A simple idea would be to request the VM to write monitor the page for
315 * a while to make sure it isn't modified any time soon. Also, it may
316 * make sense to skip pages that are being write monitored since this
317 * information is readily available to the thread if it works on the
318 * per-VM guest memory structures (presently called PGMRAMRANGE).
319 *
320 *
321 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
322 *
323 * The pages are organized in allocation chunks in ring-0, this is a necessity
324 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
325 * could easily work on a page-by-page basis if we liked. Whether this is possible
326 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
327 * become a problem as part of the idea here is that we wish to return memory to
328 * the host system.
329 *
330 * For instance, starting two VMs at the same time, they will both allocate the
331 * guest memory on-demand and if permitted their page allocations will be
332 * intermixed. Shut down one of the two VMs and it will be difficult to return
333 * any memory to the host system because the page allocation for the two VMs are
334 * mixed up in the same allocation chunks.
335 *
336 * To further complicate matters, when pages are freed because they have been
337 * ballooned or become shared/zero the whole idea is that the page is supposed
338 * to be reused by another VM or returned to the host system. This will cause
339 * allocation chunks to contain pages belonging to different VMs and prevent
340 * returning memory to the host when one of those VM shuts down.
341 *
342 * The only way to really deal with this problem is to move pages. This can
343 * either be done at VM shutdown and or by the idle priority worker thread
344 * that will be responsible for finding sharable/zero pages. The mechanisms
345 * involved for coercing a VM to move a page (or to do it for it) will be
346 * the same as when telling it to share/zero a page.
347 *
348 *
349 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
350 *
351 * There's a difficult balance between keeping the per-page tracking structures
352 * (global and guest page) easy to use and keeping them from eating too much
353 * memory. We have limited virtual memory resources available when operating in
354 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
355 * tracking structures will be attempted designed such that we can deal with up
356 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
357 *
358 *
359 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
360 *
361 * @see pg_GMM
362 *
363 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
364 *
365 * Fixed info is the physical address of the page (HCPhys) and the page id
366 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
367 * Today we've restricting ourselves to 40(-12) bits because this is the current
368 * restrictions of all AMD64 implementations (I think Barcelona will up this
369 * to 48(-12) bits, not that it really matters) and I needed the bits for
370 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
371 * decent range for the page id: 2^(28+12) = 1024TB.
372 *
373 * In additions to these, we'll have to keep maintaining the page flags as we
374 * currently do. Although it wouldn't harm to optimize these quite a bit, like
375 * for instance the ROM shouldn't depend on having a write handler installed
376 * in order for it to become read-only. A RO/RW bit should be considered so
377 * that the page syncing code doesn't have to mess about checking multiple
378 * flag combinations (ROM || RW handler || write monitored) in order to
379 * figure out how to setup a shadow PTE. But this of course, is second
380 * priority at present. Current this requires 12 bits, but could probably
381 * be optimized to ~8.
382 *
383 * Then there's the 24 bits used to track which shadow page tables are
384 * currently mapping a page for the purpose of speeding up physical
385 * access handlers, and thereby the page pool cache. More bit for this
386 * purpose wouldn't hurt IIRC.
387 *
388 * Then there is a new bit in which we need to record what kind of page
389 * this is, shared, zero, normal or write-monitored-normal. This'll
390 * require 2 bits. One bit might be needed for indicating whether a
391 * write monitored page has been written to. And yet another one or
392 * two for tracking migration status. 3-4 bits total then.
393 *
394 * Whatever is left will can be used to record the sharabilitiy of a
395 * page. The page checksum will not be stored in the per-VM table as
396 * the idle thread will not be permitted to do modifications to it.
397 * It will instead have to keep its own working set of potentially
398 * shareable pages and their check sums and stuff.
399 *
400 * For the present we'll keep the current packing of the
401 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
402 * we'll have to change it to a struct with a total of 128-bits at
403 * our disposal.
404 *
405 * The initial layout will be like this:
406 * @verbatim
407 RTHCPHYS HCPhys; The current stuff.
408 63:40 Current shadow PT tracking stuff.
409 39:12 The physical page frame number.
410 11:0 The current flags.
411 uint32_t u28PageId : 28; The page id.
412 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
413 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
414 uint32_t u1Reserved : 1; Reserved for later.
415 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
416 @endverbatim
417 *
418 * The final layout will be something like this:
419 * @verbatim
420 RTHCPHYS HCPhys; The current stuff.
421 63:48 High page id (12+).
422 47:12 The physical page frame number.
423 11:0 Low page id.
424 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
425 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
426 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
427 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
428 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
429 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
430 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
431 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
432 @endverbatim
433 *
434 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
435 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
436 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
437 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
438 *
439 * A couple of cost examples for the total cost per-VM + kernel.
440 * 32-bit Windows and 32-bit linux:
441 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
442 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
443 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
444 * 64-bit Windows and 64-bit linux:
445 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
446 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
447 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
448 *
449 * UPDATE - 2007-09-27:
450 * Will need a ballooned flag/state too because we cannot
451 * trust the guest 100% and reporting the same page as ballooned more
452 * than once will put the GMM off balance.
453 *
454 *
455 * @subsection subsec_pgmPhys_Serializing Serializing Access
456 *
457 * Initially, we'll try a simple scheme:
458 *
459 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
460 * by the EMT thread of that VM while in the pgm critsect.
461 * - Other threads in the VM process that needs to make reliable use of
462 * the per-VM RAM tracking structures will enter the critsect.
463 * - No process external thread or kernel thread will ever try enter
464 * the pgm critical section, as that just won't work.
465 * - The idle thread (and similar threads) doesn't not need 100% reliable
466 * data when performing it tasks as the EMT thread will be the one to
467 * do the actual changes later anyway. So, as long as it only accesses
468 * the main ram range, it can do so by somehow preventing the VM from
469 * being destroyed while it works on it...
470 *
471 * - The over-commitment management, including the allocating/freeing
472 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
473 * more mundane mutex implementation is broken on Linux).
474 * - A separate mutex is protecting the set of allocation chunks so
475 * that pages can be shared or/and freed up while some other VM is
476 * allocating more chunks. This mutex can be take from under the other
477 * one, but not the other way around.
478 *
479 *
480 * @subsection subsec_pgmPhys_Request VM Request interface
481 *
482 * When in ring-0 it will become necessary to send requests to a VM so it can
483 * for instance move a page while defragmenting during VM destroy. The idle
484 * thread will make use of this interface to request VMs to setup shared
485 * pages and to perform write monitoring of pages.
486 *
487 * I would propose an interface similar to the current VMReq interface, similar
488 * in that it doesn't require locking and that the one sending the request may
489 * wait for completion if it wishes to. This shouldn't be very difficult to
490 * realize.
491 *
492 * The requests themselves are also pretty simple. They are basically:
493 * -# Check that some precondition is still true.
494 * -# Do the update.
495 * -# Update all shadow page tables involved with the page.
496 *
497 * The 3rd step is identical to what we're already doing when updating a
498 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
499 *
500 *
501 *
502 * @section sec_pgmPhys_MappingCaches Mapping Caches
503 *
504 * In order to be able to map in and out memory and to be able to support
505 * guest with more RAM than we've got virtual address space, we'll employing
506 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
507 * however on 32-bit darwin the ring-0 code is running in a different memory
508 * context and therefore needs a separate cache. In raw-mode context we also
509 * need a separate cache. The 32-bit darwin mapping cache and the one for
510 * raw-mode context share a lot of code, see PGMRZDYNMAP.
511 *
512 *
513 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
514 *
515 * We've considered implementing the ring-3 mapping cache page based but found
516 * that this was bother some when one had to take into account TLBs+SMP and
517 * portability (missing the necessary APIs on several platforms). There were
518 * also some performance concerns with this approach which hadn't quite been
519 * worked out.
520 *
521 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
522 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
523 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
524 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
525 * costly than a single page, although how much more costly is uncertain. We'll
526 * try address this by using a very big cache, preferably bigger than the actual
527 * VM RAM size if possible. The current VM RAM sizes should give some idea for
528 * 32-bit boxes, while on 64-bit we can probably get away with employing an
529 * unlimited cache.
530 *
531 * The cache have to parts, as already indicated, the ring-3 side and the
532 * ring-0 side.
533 *
534 * The ring-0 will be tied to the page allocator since it will operate on the
535 * memory objects it contains. It will therefore require the first ring-0 mutex
536 * discussed in @ref subsec_pgmPhys_Serializing. We
537 * some double house keeping wrt to who has mapped what I think, since both
538 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
539 *
540 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
541 * require anyone that desires to do changes to the mapping cache to do that
542 * from within this critsect. Alternatively, we could employ a separate critsect
543 * for serializing changes to the mapping cache as this would reduce potential
544 * contention with other threads accessing mappings unrelated to the changes
545 * that are in process. We can see about this later, contention will show
546 * up in the statistics anyway, so it'll be simple to tell.
547 *
548 * The organization of the ring-3 part will be very much like how the allocation
549 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
550 * having to walk the tree all the time, we'll have a couple of lookaside entries
551 * like in we do for I/O ports and MMIO in IOM.
552 *
553 * The simplified flow of a PGMPhysRead/Write function:
554 * -# Enter the PGM critsect.
555 * -# Lookup GCPhys in the ram ranges and get the Page ID.
556 * -# Calc the Allocation Chunk ID from the Page ID.
557 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
558 * If not found in cache:
559 * -# Call ring-0 and request it to be mapped and supply
560 * a chunk to be unmapped if the cache is maxed out already.
561 * -# Insert the new mapping into the AVL tree (id + R3 address).
562 * -# Update the relevant lookaside entry and return the mapping address.
563 * -# Do the read/write according to monitoring flags and everything.
564 * -# Leave the critsect.
565 *
566 *
567 * @section sec_pgmPhys_Fallback Fallback
568 *
569 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
570 * API and thus require a fallback.
571 *
572 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
573 * will return to the ring-3 caller (and later ring-0) and asking it to seed
574 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
575 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
576 * "SeededAllocPages" call to ring-0.
577 *
578 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
579 * all page sharing (zero page detection will continue). It will also force
580 * all allocations to come from the VM which seeded the page. Both these
581 * measures are taken to make sure that there will never be any need for
582 * mapping anything into ring-3 - everything will be mapped already.
583 *
584 * Whether we'll continue to use the current MM locked memory management
585 * for this I don't quite know (I'd prefer not to and just ditch that all
586 * together), we'll see what's simplest to do.
587 *
588 *
589 *
590 * @section sec_pgmPhys_Changes Changes
591 *
592 * Breakdown of the changes involved?
593 */
594
595/*******************************************************************************
596* Header Files *
597*******************************************************************************/
598#define LOG_GROUP LOG_GROUP_PGM
599#include <VBox/vmm/dbgf.h>
600#include <VBox/vmm/pgm.h>
601#include <VBox/vmm/cpum.h>
602#include <VBox/vmm/iom.h>
603#include <VBox/sup.h>
604#include <VBox/vmm/mm.h>
605#include <VBox/vmm/em.h>
606#include <VBox/vmm/stam.h>
607#ifdef VBOX_WITH_REM
608# include <VBox/vmm/rem.h>
609#endif
610#include <VBox/vmm/selm.h>
611#include <VBox/vmm/ssm.h>
612#include <VBox/vmm/hwaccm.h>
613#include "PGMInternal.h"
614#include <VBox/vmm/vm.h>
615#include "PGMInline.h"
616
617#include <VBox/dbg.h>
618#include <VBox/param.h>
619#include <VBox/err.h>
620
621#include <iprt/asm.h>
622#include <iprt/asm-amd64-x86.h>
623#include <iprt/assert.h>
624#include <iprt/env.h>
625#include <iprt/mem.h>
626#include <iprt/file.h>
627#include <iprt/string.h>
628#include <iprt/thread.h>
629
630
631/*******************************************************************************
632* Internal Functions *
633*******************************************************************************/
634static int pgmR3InitPaging(PVM pVM);
635static int pgmR3InitStats(PVM pVM);
636static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
637static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
638static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
639static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
640static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
641static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
642#ifdef VBOX_STRICT
643static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
644#endif
645static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
646static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
647static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
648
649#ifdef VBOX_WITH_DEBUGGER
650/** @todo Convert the first two commands to 'info' items. */
651static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
652static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
653static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
654static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
655# ifdef VBOX_STRICT
656static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
657# endif
658static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
659#endif
660
661
662/*******************************************************************************
663* Global Variables *
664*******************************************************************************/
665#ifdef VBOX_WITH_DEBUGGER
666/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
667static const DBGCVARDESC g_aPgmErrorArgs[] =
668{
669 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
670 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
671};
672
673static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
674{
675 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
676 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
677 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
678};
679
680# ifdef DEBUG_sandervl
681static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
682{
683 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
684 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
685 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
686};
687# endif
688
689/** Command descriptors. */
690static const DBGCCMD g_aCmds[] =
691{
692 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
693 { "pgmram", 0, 0, NULL, 0, 0, pgmR3CmdRam, "", "Display the ram ranges." },
694 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
695 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
696 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
697# ifdef VBOX_STRICT
698 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
699# ifdef VBOX_WITH_PAGE_SHARING
700 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
701 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
702# endif
703# endif
704 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
705 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
706};
707#endif
708
709
710
711
712/*
713 * Shadow - 32-bit mode
714 */
715#define PGM_SHW_TYPE PGM_TYPE_32BIT
716#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
717#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
718#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
719#include "PGMShw.h"
720
721/* Guest - real mode */
722#define PGM_GST_TYPE PGM_TYPE_REAL
723#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
724#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
725#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
726#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
727#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
728#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
729#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
730#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
731#include "PGMBth.h"
732#include "PGMGstDefs.h"
733#include "PGMGst.h"
734#undef BTH_PGMPOOLKIND_PT_FOR_PT
735#undef BTH_PGMPOOLKIND_ROOT
736#undef PGM_BTH_NAME
737#undef PGM_BTH_NAME_RC_STR
738#undef PGM_BTH_NAME_R0_STR
739#undef PGM_GST_TYPE
740#undef PGM_GST_NAME
741#undef PGM_GST_NAME_RC_STR
742#undef PGM_GST_NAME_R0_STR
743
744/* Guest - protected mode */
745#define PGM_GST_TYPE PGM_TYPE_PROT
746#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
747#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
748#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
749#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
750#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
751#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
752#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
753#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
754#include "PGMBth.h"
755#include "PGMGstDefs.h"
756#include "PGMGst.h"
757#undef BTH_PGMPOOLKIND_PT_FOR_PT
758#undef BTH_PGMPOOLKIND_ROOT
759#undef PGM_BTH_NAME
760#undef PGM_BTH_NAME_RC_STR
761#undef PGM_BTH_NAME_R0_STR
762#undef PGM_GST_TYPE
763#undef PGM_GST_NAME
764#undef PGM_GST_NAME_RC_STR
765#undef PGM_GST_NAME_R0_STR
766
767/* Guest - 32-bit mode */
768#define PGM_GST_TYPE PGM_TYPE_32BIT
769#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
770#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
771#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
772#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
773#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
774#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
775#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
776#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
777#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
778#include "PGMBth.h"
779#include "PGMGstDefs.h"
780#include "PGMGst.h"
781#undef BTH_PGMPOOLKIND_PT_FOR_BIG
782#undef BTH_PGMPOOLKIND_PT_FOR_PT
783#undef BTH_PGMPOOLKIND_ROOT
784#undef PGM_BTH_NAME
785#undef PGM_BTH_NAME_RC_STR
786#undef PGM_BTH_NAME_R0_STR
787#undef PGM_GST_TYPE
788#undef PGM_GST_NAME
789#undef PGM_GST_NAME_RC_STR
790#undef PGM_GST_NAME_R0_STR
791
792#undef PGM_SHW_TYPE
793#undef PGM_SHW_NAME
794#undef PGM_SHW_NAME_RC_STR
795#undef PGM_SHW_NAME_R0_STR
796
797
798/*
799 * Shadow - PAE mode
800 */
801#define PGM_SHW_TYPE PGM_TYPE_PAE
802#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
803#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
804#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
805#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
806#include "PGMShw.h"
807
808/* Guest - real mode */
809#define PGM_GST_TYPE PGM_TYPE_REAL
810#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
811#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
812#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
813#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
814#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
815#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
816#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
817#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
818#include "PGMGstDefs.h"
819#include "PGMBth.h"
820#undef BTH_PGMPOOLKIND_PT_FOR_PT
821#undef BTH_PGMPOOLKIND_ROOT
822#undef PGM_BTH_NAME
823#undef PGM_BTH_NAME_RC_STR
824#undef PGM_BTH_NAME_R0_STR
825#undef PGM_GST_TYPE
826#undef PGM_GST_NAME
827#undef PGM_GST_NAME_RC_STR
828#undef PGM_GST_NAME_R0_STR
829
830/* Guest - protected mode */
831#define PGM_GST_TYPE PGM_TYPE_PROT
832#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
833#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
834#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
835#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
836#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
837#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
838#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
839#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
840#include "PGMGstDefs.h"
841#include "PGMBth.h"
842#undef BTH_PGMPOOLKIND_PT_FOR_PT
843#undef BTH_PGMPOOLKIND_ROOT
844#undef PGM_BTH_NAME
845#undef PGM_BTH_NAME_RC_STR
846#undef PGM_BTH_NAME_R0_STR
847#undef PGM_GST_TYPE
848#undef PGM_GST_NAME
849#undef PGM_GST_NAME_RC_STR
850#undef PGM_GST_NAME_R0_STR
851
852/* Guest - 32-bit mode */
853#define PGM_GST_TYPE PGM_TYPE_32BIT
854#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
855#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
856#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
857#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
858#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
859#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
860#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
861#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
862#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
863#include "PGMGstDefs.h"
864#include "PGMBth.h"
865#undef BTH_PGMPOOLKIND_PT_FOR_BIG
866#undef BTH_PGMPOOLKIND_PT_FOR_PT
867#undef BTH_PGMPOOLKIND_ROOT
868#undef PGM_BTH_NAME
869#undef PGM_BTH_NAME_RC_STR
870#undef PGM_BTH_NAME_R0_STR
871#undef PGM_GST_TYPE
872#undef PGM_GST_NAME
873#undef PGM_GST_NAME_RC_STR
874#undef PGM_GST_NAME_R0_STR
875
876/* Guest - PAE mode */
877#define PGM_GST_TYPE PGM_TYPE_PAE
878#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
879#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
880#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
881#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
882#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
883#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
884#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
885#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
886#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
887#include "PGMBth.h"
888#include "PGMGstDefs.h"
889#include "PGMGst.h"
890#undef BTH_PGMPOOLKIND_PT_FOR_BIG
891#undef BTH_PGMPOOLKIND_PT_FOR_PT
892#undef BTH_PGMPOOLKIND_ROOT
893#undef PGM_BTH_NAME
894#undef PGM_BTH_NAME_RC_STR
895#undef PGM_BTH_NAME_R0_STR
896#undef PGM_GST_TYPE
897#undef PGM_GST_NAME
898#undef PGM_GST_NAME_RC_STR
899#undef PGM_GST_NAME_R0_STR
900
901#undef PGM_SHW_TYPE
902#undef PGM_SHW_NAME
903#undef PGM_SHW_NAME_RC_STR
904#undef PGM_SHW_NAME_R0_STR
905
906
907/*
908 * Shadow - AMD64 mode
909 */
910#define PGM_SHW_TYPE PGM_TYPE_AMD64
911#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
912#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
913#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
914#include "PGMShw.h"
915
916#ifdef VBOX_WITH_64_BITS_GUESTS
917/* Guest - AMD64 mode */
918# define PGM_GST_TYPE PGM_TYPE_AMD64
919# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
920# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
921# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
922# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
923# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
924# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
925# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
926# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
927# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
928# include "PGMBth.h"
929# include "PGMGstDefs.h"
930# include "PGMGst.h"
931# undef BTH_PGMPOOLKIND_PT_FOR_BIG
932# undef BTH_PGMPOOLKIND_PT_FOR_PT
933# undef BTH_PGMPOOLKIND_ROOT
934# undef PGM_BTH_NAME
935# undef PGM_BTH_NAME_RC_STR
936# undef PGM_BTH_NAME_R0_STR
937# undef PGM_GST_TYPE
938# undef PGM_GST_NAME
939# undef PGM_GST_NAME_RC_STR
940# undef PGM_GST_NAME_R0_STR
941#endif /* VBOX_WITH_64_BITS_GUESTS */
942
943#undef PGM_SHW_TYPE
944#undef PGM_SHW_NAME
945#undef PGM_SHW_NAME_RC_STR
946#undef PGM_SHW_NAME_R0_STR
947
948
949/*
950 * Shadow - Nested paging mode
951 */
952#define PGM_SHW_TYPE PGM_TYPE_NESTED
953#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
954#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
955#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
956#include "PGMShw.h"
957
958/* Guest - real mode */
959#define PGM_GST_TYPE PGM_TYPE_REAL
960#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
961#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
962#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
963#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
964#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
965#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
966#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
967#include "PGMGstDefs.h"
968#include "PGMBth.h"
969#undef BTH_PGMPOOLKIND_PT_FOR_PT
970#undef PGM_BTH_NAME
971#undef PGM_BTH_NAME_RC_STR
972#undef PGM_BTH_NAME_R0_STR
973#undef PGM_GST_TYPE
974#undef PGM_GST_NAME
975#undef PGM_GST_NAME_RC_STR
976#undef PGM_GST_NAME_R0_STR
977
978/* Guest - protected mode */
979#define PGM_GST_TYPE PGM_TYPE_PROT
980#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
981#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
982#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
983#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
984#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
985#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
986#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
987#include "PGMGstDefs.h"
988#include "PGMBth.h"
989#undef BTH_PGMPOOLKIND_PT_FOR_PT
990#undef PGM_BTH_NAME
991#undef PGM_BTH_NAME_RC_STR
992#undef PGM_BTH_NAME_R0_STR
993#undef PGM_GST_TYPE
994#undef PGM_GST_NAME
995#undef PGM_GST_NAME_RC_STR
996#undef PGM_GST_NAME_R0_STR
997
998/* Guest - 32-bit mode */
999#define PGM_GST_TYPE PGM_TYPE_32BIT
1000#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1001#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1002#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1003#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1004#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1005#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1006#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1007#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1008#include "PGMGstDefs.h"
1009#include "PGMBth.h"
1010#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1011#undef BTH_PGMPOOLKIND_PT_FOR_PT
1012#undef PGM_BTH_NAME
1013#undef PGM_BTH_NAME_RC_STR
1014#undef PGM_BTH_NAME_R0_STR
1015#undef PGM_GST_TYPE
1016#undef PGM_GST_NAME
1017#undef PGM_GST_NAME_RC_STR
1018#undef PGM_GST_NAME_R0_STR
1019
1020/* Guest - PAE mode */
1021#define PGM_GST_TYPE PGM_TYPE_PAE
1022#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1023#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1024#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1025#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1026#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1027#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1028#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1029#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1030#include "PGMGstDefs.h"
1031#include "PGMBth.h"
1032#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1033#undef BTH_PGMPOOLKIND_PT_FOR_PT
1034#undef PGM_BTH_NAME
1035#undef PGM_BTH_NAME_RC_STR
1036#undef PGM_BTH_NAME_R0_STR
1037#undef PGM_GST_TYPE
1038#undef PGM_GST_NAME
1039#undef PGM_GST_NAME_RC_STR
1040#undef PGM_GST_NAME_R0_STR
1041
1042#ifdef VBOX_WITH_64_BITS_GUESTS
1043/* Guest - AMD64 mode */
1044# define PGM_GST_TYPE PGM_TYPE_AMD64
1045# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1046# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1047# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1048# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1049# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1050# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1051# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1052# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1053# include "PGMGstDefs.h"
1054# include "PGMBth.h"
1055# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1056# undef BTH_PGMPOOLKIND_PT_FOR_PT
1057# undef PGM_BTH_NAME
1058# undef PGM_BTH_NAME_RC_STR
1059# undef PGM_BTH_NAME_R0_STR
1060# undef PGM_GST_TYPE
1061# undef PGM_GST_NAME
1062# undef PGM_GST_NAME_RC_STR
1063# undef PGM_GST_NAME_R0_STR
1064#endif /* VBOX_WITH_64_BITS_GUESTS */
1065
1066#undef PGM_SHW_TYPE
1067#undef PGM_SHW_NAME
1068#undef PGM_SHW_NAME_RC_STR
1069#undef PGM_SHW_NAME_R0_STR
1070
1071
1072/*
1073 * Shadow - EPT
1074 */
1075#define PGM_SHW_TYPE PGM_TYPE_EPT
1076#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1077#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1078#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1079#include "PGMShw.h"
1080
1081/* Guest - real mode */
1082#define PGM_GST_TYPE PGM_TYPE_REAL
1083#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1084#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1085#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1086#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1087#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1088#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1089#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1090#include "PGMGstDefs.h"
1091#include "PGMBth.h"
1092#undef BTH_PGMPOOLKIND_PT_FOR_PT
1093#undef PGM_BTH_NAME
1094#undef PGM_BTH_NAME_RC_STR
1095#undef PGM_BTH_NAME_R0_STR
1096#undef PGM_GST_TYPE
1097#undef PGM_GST_NAME
1098#undef PGM_GST_NAME_RC_STR
1099#undef PGM_GST_NAME_R0_STR
1100
1101/* Guest - protected mode */
1102#define PGM_GST_TYPE PGM_TYPE_PROT
1103#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1104#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1105#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1106#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1107#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1108#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1109#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1110#include "PGMGstDefs.h"
1111#include "PGMBth.h"
1112#undef BTH_PGMPOOLKIND_PT_FOR_PT
1113#undef PGM_BTH_NAME
1114#undef PGM_BTH_NAME_RC_STR
1115#undef PGM_BTH_NAME_R0_STR
1116#undef PGM_GST_TYPE
1117#undef PGM_GST_NAME
1118#undef PGM_GST_NAME_RC_STR
1119#undef PGM_GST_NAME_R0_STR
1120
1121/* Guest - 32-bit mode */
1122#define PGM_GST_TYPE PGM_TYPE_32BIT
1123#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1124#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1125#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1126#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1127#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1128#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1129#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1130#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1131#include "PGMGstDefs.h"
1132#include "PGMBth.h"
1133#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1134#undef BTH_PGMPOOLKIND_PT_FOR_PT
1135#undef PGM_BTH_NAME
1136#undef PGM_BTH_NAME_RC_STR
1137#undef PGM_BTH_NAME_R0_STR
1138#undef PGM_GST_TYPE
1139#undef PGM_GST_NAME
1140#undef PGM_GST_NAME_RC_STR
1141#undef PGM_GST_NAME_R0_STR
1142
1143/* Guest - PAE mode */
1144#define PGM_GST_TYPE PGM_TYPE_PAE
1145#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1146#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1147#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1148#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1149#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1150#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1151#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1152#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1153#include "PGMGstDefs.h"
1154#include "PGMBth.h"
1155#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1156#undef BTH_PGMPOOLKIND_PT_FOR_PT
1157#undef PGM_BTH_NAME
1158#undef PGM_BTH_NAME_RC_STR
1159#undef PGM_BTH_NAME_R0_STR
1160#undef PGM_GST_TYPE
1161#undef PGM_GST_NAME
1162#undef PGM_GST_NAME_RC_STR
1163#undef PGM_GST_NAME_R0_STR
1164
1165#ifdef VBOX_WITH_64_BITS_GUESTS
1166/* Guest - AMD64 mode */
1167# define PGM_GST_TYPE PGM_TYPE_AMD64
1168# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1169# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1170# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1171# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1172# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1173# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1174# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1175# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1176# include "PGMGstDefs.h"
1177# include "PGMBth.h"
1178# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1179# undef BTH_PGMPOOLKIND_PT_FOR_PT
1180# undef PGM_BTH_NAME
1181# undef PGM_BTH_NAME_RC_STR
1182# undef PGM_BTH_NAME_R0_STR
1183# undef PGM_GST_TYPE
1184# undef PGM_GST_NAME
1185# undef PGM_GST_NAME_RC_STR
1186# undef PGM_GST_NAME_R0_STR
1187#endif /* VBOX_WITH_64_BITS_GUESTS */
1188
1189#undef PGM_SHW_TYPE
1190#undef PGM_SHW_NAME
1191#undef PGM_SHW_NAME_RC_STR
1192#undef PGM_SHW_NAME_R0_STR
1193
1194
1195
1196/**
1197 * Initiates the paging of VM.
1198 *
1199 * @returns VBox status code.
1200 * @param pVM Pointer to VM structure.
1201 */
1202VMMR3DECL(int) PGMR3Init(PVM pVM)
1203{
1204 LogFlow(("PGMR3Init:\n"));
1205 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1206 int rc;
1207
1208 /*
1209 * Assert alignment and sizes.
1210 */
1211 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1212 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1213 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1214
1215 /*
1216 * Init the structure.
1217 */
1218#ifdef PGM_WITHOUT_MAPPINGS
1219 pVM->pgm.s.fMappingsDisabled = true;
1220#endif
1221 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1222 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1223
1224 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1225 {
1226 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1227 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1228 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1229 }
1230
1231 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1232 {
1233 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1234 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1235 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1236 }
1237
1238 /* Init the per-CPU part. */
1239 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1240 {
1241 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1242 PPGMCPU pPGM = &pVCpu->pgm.s;
1243
1244 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1245 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1246 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1247
1248 pPGM->enmShadowMode = PGMMODE_INVALID;
1249 pPGM->enmGuestMode = PGMMODE_INVALID;
1250
1251 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1252
1253 pPGM->pGst32BitPdR3 = NULL;
1254 pPGM->pGstPaePdptR3 = NULL;
1255 pPGM->pGstAmd64Pml4R3 = NULL;
1256#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1257 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1258 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1259 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1260#endif
1261 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1262 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1263 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1264 {
1265 pPGM->apGstPaePDsR3[i] = NULL;
1266#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1267 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1268#endif
1269 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1270 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1271 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1272 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1273 }
1274
1275 pPGM->fA20Enabled = true;
1276 pPGM->GCPhysA20Mask = ~(RTGCPHYS)(!pPGM->fA20Enabled << 20);
1277 }
1278
1279 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1280 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1281 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1282
1283 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1284#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1285 true
1286#else
1287 false
1288#endif
1289 );
1290 AssertLogRelRCReturn(rc, rc);
1291
1292#if HC_ARCH_BITS == 32
1293# ifdef RT_OS_DARWIN
1294 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1295# else
1296 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1297# endif
1298#else
1299 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1300#endif
1301 AssertLogRelRCReturn(rc, rc);
1302 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1303 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1304
1305 /*
1306 * Get the configured RAM size - to estimate saved state size.
1307 */
1308 uint64_t cbRam;
1309 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1310 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1311 cbRam = 0;
1312 else if (RT_SUCCESS(rc))
1313 {
1314 if (cbRam < PAGE_SIZE)
1315 cbRam = 0;
1316 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1317 }
1318 else
1319 {
1320 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1321 return rc;
1322 }
1323
1324 /*
1325 * Check for PCI pass-through.
1326 */
1327 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1328 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1329 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1330
1331#ifdef VBOX_WITH_STATISTICS
1332 /*
1333 * Allocate memory for the statistics before someone tries to use them.
1334 */
1335 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1336 void *pv;
1337 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1338 AssertRCReturn(rc, rc);
1339
1340 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1341 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1342 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1343 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1344
1345 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1346 {
1347 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1348 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1349 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1350
1351 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1352 }
1353#endif /* VBOX_WITH_STATISTICS */
1354
1355 /*
1356 * Register callbacks, string formatters and the saved state data unit.
1357 */
1358#ifdef VBOX_STRICT
1359 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1360#endif
1361 PGMRegisterStringFormatTypes();
1362
1363 rc = pgmR3InitSavedState(pVM, cbRam);
1364 if (RT_FAILURE(rc))
1365 return rc;
1366
1367 /*
1368 * Initialize the PGM critical section and flush the phys TLBs
1369 */
1370 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1371 AssertRCReturn(rc, rc);
1372
1373 PGMR3PhysChunkInvalidateTLB(pVM);
1374 pgmPhysInvalidatePageMapTLB(pVM);
1375
1376 /*
1377 * For the time being we sport a full set of handy pages in addition to the base
1378 * memory to simplify things.
1379 */
1380 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1381 AssertRCReturn(rc, rc);
1382
1383 /*
1384 * Trees
1385 */
1386 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1387 if (RT_SUCCESS(rc))
1388 {
1389 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1390 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1391
1392 /*
1393 * Allocate the zero page.
1394 */
1395 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1396 }
1397 if (RT_SUCCESS(rc))
1398 {
1399 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1400 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1401 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1402 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1403
1404 /*
1405 * Allocate the invalid MMIO page.
1406 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1407 */
1408 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1409 }
1410 if (RT_SUCCESS(rc))
1411 {
1412 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1413 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1414 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1415 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1416
1417 /*
1418 * Init the paging.
1419 */
1420 rc = pgmR3InitPaging(pVM);
1421 }
1422 if (RT_SUCCESS(rc))
1423 {
1424 /*
1425 * Init the page pool.
1426 */
1427 rc = pgmR3PoolInit(pVM);
1428 }
1429 if (RT_SUCCESS(rc))
1430 {
1431 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1432 {
1433 PVMCPU pVCpu = &pVM->aCpus[i];
1434 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1435 if (RT_FAILURE(rc))
1436 break;
1437 }
1438 }
1439
1440 if (RT_SUCCESS(rc))
1441 {
1442 /*
1443 * Info & statistics
1444 */
1445 DBGFR3InfoRegisterInternal(pVM, "mode",
1446 "Shows the current paging mode. "
1447 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1448 pgmR3InfoMode);
1449 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1450 "Dumps all the entries in the top level paging table. No arguments.",
1451 pgmR3InfoCr3);
1452 DBGFR3InfoRegisterInternal(pVM, "phys",
1453 "Dumps all the physical address ranges. No arguments.",
1454 pgmR3PhysInfo);
1455 DBGFR3InfoRegisterInternal(pVM, "handlers",
1456 "Dumps physical, virtual and hyper virtual handlers. "
1457 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1458 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1459 pgmR3InfoHandlers);
1460 DBGFR3InfoRegisterInternal(pVM, "mappings",
1461 "Dumps guest mappings.",
1462 pgmR3MapInfo);
1463
1464 pgmR3InitStats(pVM);
1465
1466#ifdef VBOX_WITH_DEBUGGER
1467 /*
1468 * Debugger commands.
1469 */
1470 static bool s_fRegisteredCmds = false;
1471 if (!s_fRegisteredCmds)
1472 {
1473 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1474 if (RT_SUCCESS(rc2))
1475 s_fRegisteredCmds = true;
1476 }
1477#endif
1478 return VINF_SUCCESS;
1479 }
1480
1481 /* Almost no cleanup necessary, MM frees all memory. */
1482 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1483
1484 return rc;
1485}
1486
1487
1488/**
1489 * Init paging.
1490 *
1491 * Since we need to check what mode the host is operating in before we can choose
1492 * the right paging functions for the host we have to delay this until R0 has
1493 * been initialized.
1494 *
1495 * @returns VBox status code.
1496 * @param pVM VM handle.
1497 */
1498static int pgmR3InitPaging(PVM pVM)
1499{
1500 /*
1501 * Force a recalculation of modes and switcher so everyone gets notified.
1502 */
1503 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1504 {
1505 PVMCPU pVCpu = &pVM->aCpus[i];
1506
1507 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1508 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1509 }
1510
1511 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1512
1513 /*
1514 * Allocate static mapping space for whatever the cr3 register
1515 * points to and in the case of PAE mode to the 4 PDs.
1516 */
1517 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1518 if (RT_FAILURE(rc))
1519 {
1520 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1521 return rc;
1522 }
1523 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1524
1525 /*
1526 * Allocate pages for the three possible intermediate contexts
1527 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1528 * for the sake of simplicity. The AMD64 uses the PAE for the
1529 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1530 *
1531 * We assume that two page tables will be enought for the core code
1532 * mappings (HC virtual and identity).
1533 */
1534 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1535 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1536 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1537 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1538 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1539 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1540 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1541 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1542 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1543 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1544 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1545 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1546
1547 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1548 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1549 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1550 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1551 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1552 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1553
1554 /*
1555 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1556 */
1557 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1558 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1559 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1560
1561 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1562 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1563
1564 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1565 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1566 {
1567 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1568 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1569 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1570 }
1571
1572 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1573 {
1574 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1575 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1576 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1577 }
1578
1579 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1580 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1581 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1582 | HCPhysInterPaePDPT64;
1583
1584 /*
1585 * Initialize paging workers and mode from current host mode
1586 * and the guest running in real mode.
1587 */
1588 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1589 switch (pVM->pgm.s.enmHostMode)
1590 {
1591 case SUPPAGINGMODE_32_BIT:
1592 case SUPPAGINGMODE_32_BIT_GLOBAL:
1593 case SUPPAGINGMODE_PAE:
1594 case SUPPAGINGMODE_PAE_GLOBAL:
1595 case SUPPAGINGMODE_PAE_NX:
1596 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1597 break;
1598
1599 case SUPPAGINGMODE_AMD64:
1600 case SUPPAGINGMODE_AMD64_GLOBAL:
1601 case SUPPAGINGMODE_AMD64_NX:
1602 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1603#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1604 if (ARCH_BITS != 64)
1605 {
1606 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1607 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1608 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1609 }
1610#endif
1611 break;
1612 default:
1613 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1614 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1615 }
1616 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1617 if (RT_SUCCESS(rc))
1618 {
1619 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1620#if HC_ARCH_BITS == 64
1621 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1622 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1623 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1624 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1625 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1626 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1627 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1628#endif
1629
1630 /*
1631 * Log the host paging mode. It may come in handy.
1632 */
1633 const char *pszHostMode;
1634 switch (pVM->pgm.s.enmHostMode)
1635 {
1636 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1637 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1638 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1639 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1640 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1641 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1642 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1643 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1644 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1645 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1646 default: pszHostMode = "???"; break;
1647 }
1648 LogRel(("Host paging mode: %s\n", pszHostMode));
1649
1650 return VINF_SUCCESS;
1651 }
1652
1653 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1654 return rc;
1655}
1656
1657
1658/**
1659 * Init statistics
1660 * @returns VBox status code.
1661 */
1662static int pgmR3InitStats(PVM pVM)
1663{
1664 PPGM pPGM = &pVM->pgm.s;
1665 int rc;
1666
1667 /*
1668 * Release statistics.
1669 */
1670 /* Common - misc variables */
1671 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1672 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1673 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1674 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1675 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1676 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1677 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1678 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1679 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1680 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1681 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1682 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1683 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1684 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1685 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1686 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1687 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1688 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1689 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1690
1691 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1692 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1693 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1694
1695 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1696
1697 /* Live save */
1698 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1699 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1700 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1701 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1702 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1703 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1704 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1705 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1706 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1707 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1708 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1709 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1710 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1711 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1712 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1713 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1714 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1715 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1716
1717#ifdef VBOX_WITH_STATISTICS
1718
1719# define PGM_REG_COUNTER(a, b, c) \
1720 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1721 AssertRC(rc);
1722
1723# define PGM_REG_COUNTER_BYTES(a, b, c) \
1724 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1725 AssertRC(rc);
1726
1727# define PGM_REG_PROFILE(a, b, c) \
1728 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1729 AssertRC(rc);
1730
1731 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1732
1733 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1734 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1735 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1736 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1737 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1738
1739 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1740 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1741 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1742 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1743 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1744 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1745 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1746 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1747 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1748 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1749
1750 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1751 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1752 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1753 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1754 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1755 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1756
1757 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1758 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1759 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1760 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1761 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1762 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1763 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1764 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1765
1766 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1767 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1768 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1769 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1770
1771 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1772 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1773 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1774 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1775
1776 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1777 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1778 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1779 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1780 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1781 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1782 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1783 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1784
1785 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1786 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1787/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1788 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1789 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1790/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1791
1792 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1793 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1794 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1795 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1796 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1797 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1798 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1799 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1800
1801 /* GC only: */
1802 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1803 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1804
1805 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1806 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1807 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1808 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1809 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1810 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1811 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1812 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1813
1814 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1815 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1816 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1817 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1818 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1819 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1820 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1821
1822# undef PGM_REG_COUNTER
1823# undef PGM_REG_PROFILE
1824#endif
1825
1826 /*
1827 * Note! The layout below matches the member layout exactly!
1828 */
1829
1830 /*
1831 * Common - stats
1832 */
1833 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1834 {
1835 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1836
1837#define PGM_REG_COUNTER(a, b, c) \
1838 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1839 AssertRC(rc);
1840#define PGM_REG_PROFILE(a, b, c) \
1841 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1842 AssertRC(rc);
1843
1844 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1845 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1846
1847#ifdef VBOX_WITH_STATISTICS
1848 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1849
1850# if 0 /* rarely useful; leave for debugging. */
1851 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1852 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1853 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1854 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1855 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1856 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1857# endif
1858 /* R0 only: */
1859 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1860 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1861
1862 /* RZ only: */
1863 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1864 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1865 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1866 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1867 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1868 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1869 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1870 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1871 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1872 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1873 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1874 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1875 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1876 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1877 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1878 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1879 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1880 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1881 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1882 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1883 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1884 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1885 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1886 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1887 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1888 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1889 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1890 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1891 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1892 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1893 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1907#if 0 /* rarely useful; leave for debugging. */
1908 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1909 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1910 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1911#endif
1912 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1917
1918 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1919 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1922 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1923 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1924 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1925 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1926 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1927 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1929 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1930 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1931 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1932 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1940 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1943 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1944 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1945 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1946 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1947 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1948 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1949 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1950 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1951 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1952 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1953 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1954
1955 /* HC only: */
1956
1957 /* RZ & R3: */
1958 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1959 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1960 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1961 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1962 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1963 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1964 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1965 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1966 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1967 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1968 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1969 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1970 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1971 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1972 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1973 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1974 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1975 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1978 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1979 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1980 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1981 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1982 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1983 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1984 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1985 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1986 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1987 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1988 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1989 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1990 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1991 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1992 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1994 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1995 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1996 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1997 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1998 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1999 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2000 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2001 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2002 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2003 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2004 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2005
2006 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2007 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2008 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2009 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2010 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2011 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2012 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2013 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2014 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2015 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2016 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2017 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2018 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2019 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2020 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2021 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2022 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2023 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2024 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2025 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2026 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2027 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2028 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2029 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2030 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2031 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2032 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2033 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2034 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2035 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2036 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2037 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2038 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2039 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2040 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2041 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2042 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2043 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2044 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2045 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2046 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2047 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2048 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2049 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2050#endif /* VBOX_WITH_STATISTICS */
2051
2052#undef PGM_REG_PROFILE
2053#undef PGM_REG_COUNTER
2054
2055 }
2056
2057 return VINF_SUCCESS;
2058}
2059
2060
2061/**
2062 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2063 *
2064 * The dynamic mapping area will also be allocated and initialized at this
2065 * time. We could allocate it during PGMR3Init of course, but the mapping
2066 * wouldn't be allocated at that time preventing us from setting up the
2067 * page table entries with the dummy page.
2068 *
2069 * @returns VBox status code.
2070 * @param pVM VM handle.
2071 */
2072VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2073{
2074 RTGCPTR GCPtr;
2075 int rc;
2076
2077 /*
2078 * Reserve space for the dynamic mappings.
2079 */
2080 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2081 if (RT_SUCCESS(rc))
2082 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2083
2084 if ( RT_SUCCESS(rc)
2085 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2086 {
2087 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2088 if (RT_SUCCESS(rc))
2089 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2090 }
2091 if (RT_SUCCESS(rc))
2092 {
2093 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2094 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2095 }
2096 return rc;
2097}
2098
2099
2100/**
2101 * Ring-3 init finalizing.
2102 *
2103 * @returns VBox status code.
2104 * @param pVM The VM handle.
2105 */
2106VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2107{
2108 int rc;
2109
2110 /*
2111 * Reserve space for the dynamic mappings.
2112 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2113 */
2114 /* get the pointer to the page table entries. */
2115 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2116 AssertRelease(pMapping);
2117 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2118 const unsigned iPT = off >> X86_PD_SHIFT;
2119 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2120 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2121 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2122
2123 /* init cache area */
2124 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2125 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2126 {
2127 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2128 AssertRCReturn(rc, rc);
2129 }
2130
2131 /*
2132 * Determine the max physical address width (MAXPHYADDR) and apply it to
2133 * all the mask members and stuff.
2134 */
2135 uint32_t cMaxPhysAddrWidth;
2136 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2137 if ( uMaxExtLeaf >= 0x80000008
2138 && uMaxExtLeaf <= 0x80000fff)
2139 {
2140 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2141 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2142 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2143 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2144 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2145 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2146 }
2147 else
2148 {
2149 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2150 cMaxPhysAddrWidth = 48;
2151 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2152 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2153 }
2154
2155 pVM->pgm.s.GCPhysInvAddrMask = 0;
2156 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2157 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2158
2159 /*
2160 * Initialize the invalid paging entry masks, assuming NX is disabled.
2161 */
2162 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2163 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2164 {
2165 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2166
2167 /** @todo The manuals are not entirely clear whether the physical
2168 * address width is relevant. See table 5-9 in the intel
2169 * manual vs the PDE4M descriptions. Write testcase (NP). */
2170 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2171 | X86_PDE4M_MBZ_MASK;
2172
2173 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2174 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2175 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2176 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2177
2178 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2179 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2180 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2181 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2182 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2183 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2184
2185 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2186 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2187 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2188 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2189 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2190 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2191 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2192 }
2193
2194 /*
2195 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2196 * Intel only goes up to 36 bits, so we stick to 36 as well.
2197 * Update: More recent intel manuals specifies 40 bits just like AMD.
2198 */
2199 uint32_t u32Dummy, u32Features;
2200 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2201 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2202 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2203 else
2204 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2205
2206 /*
2207 * Allocate memory if we're supposed to do that.
2208 */
2209 if (pVM->pgm.s.fRamPreAlloc)
2210 rc = pgmR3PhysRamPreAllocate(pVM);
2211
2212 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2213 return rc;
2214}
2215
2216
2217/**
2218 * Init phase completed callback.
2219 *
2220 * @returns VBox status code.
2221 * @param pVM The VM handle.
2222 * @param enmWhat What has been completed.
2223 * @thread EMT(0)
2224 */
2225VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2226{
2227 switch (enmWhat)
2228 {
2229 case VMINITCOMPLETED_HWACCM:
2230#ifdef VBOX_WITH_PCI_PASSTHROUGH
2231 if (pVM->pgm.s.fPciPassthrough)
2232 {
2233 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2234 AssertLogRelReturn(HWACCMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HWACCM);
2235 AssertLogRelReturn(HWACCMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2236
2237 /*
2238 * Report assignments to the IOMMU (hope that's good enough for now).
2239 */
2240 if (pVM->pgm.s.fPciPassthrough)
2241 {
2242 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2243 AssertRCReturn(rc, rc);
2244 }
2245 }
2246#else
2247 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2248#endif
2249 break;
2250
2251 default:
2252 /* shut up gcc */
2253 break;
2254 }
2255
2256 return VINF_SUCCESS;
2257}
2258
2259
2260/**
2261 * Applies relocations to data and code managed by this component.
2262 *
2263 * This function will be called at init and whenever the VMM need to relocate it
2264 * self inside the GC.
2265 *
2266 * @param pVM The VM.
2267 * @param offDelta Relocation delta relative to old location.
2268 */
2269VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2270{
2271 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2272
2273 /*
2274 * Paging stuff.
2275 */
2276 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2277
2278 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2279
2280 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2281 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2282 {
2283 PVMCPU pVCpu = &pVM->aCpus[i];
2284
2285 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2286
2287 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2288 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2289 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2290 }
2291
2292 /*
2293 * Trees.
2294 */
2295 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2296
2297 /*
2298 * Ram ranges.
2299 */
2300 if (pVM->pgm.s.pRamRangesXR3)
2301 {
2302 /* Update the pSelfRC pointers and relink them. */
2303 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2304 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2305 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2306 pgmR3PhysRelinkRamRanges(pVM);
2307
2308 /* Flush the RC TLB. */
2309 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2310 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2311 }
2312
2313 /*
2314 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2315 * be mapped and thus not included in the above exercise.
2316 */
2317 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2318 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2319 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2320
2321 /*
2322 * Update the two page directories with all page table mappings.
2323 * (One or more of them have changed, that's why we're here.)
2324 */
2325 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2326 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2327 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2328
2329 /* Relocate GC addresses of Page Tables. */
2330 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2331 {
2332 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2333 {
2334 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2335 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2336 }
2337 }
2338
2339 /*
2340 * Dynamic page mapping area.
2341 */
2342 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2343 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2344 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2345
2346 if (pVM->pgm.s.pRCDynMap)
2347 {
2348 pVM->pgm.s.pRCDynMap += offDelta;
2349 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2350
2351 pDynMap->paPages += offDelta;
2352 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2353
2354 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2355 {
2356 paPages[iPage].pvPage += offDelta;
2357 paPages[iPage].uPte.pLegacy += offDelta;
2358 paPages[iPage].uPte.pPae += offDelta;
2359 }
2360 }
2361
2362 /*
2363 * The Zero page.
2364 */
2365 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2366#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2367 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2368#else
2369 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2370#endif
2371
2372 /*
2373 * Physical and virtual handlers.
2374 */
2375 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2376 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2377 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2378 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2379
2380 /*
2381 * The page pool.
2382 */
2383 pgmR3PoolRelocate(pVM);
2384
2385#ifdef VBOX_WITH_STATISTICS
2386 /*
2387 * Statistics.
2388 */
2389 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2390 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2391 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2392#endif
2393}
2394
2395
2396/**
2397 * Callback function for relocating a physical access handler.
2398 *
2399 * @returns 0 (continue enum)
2400 * @param pNode Pointer to a PGMPHYSHANDLER node.
2401 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2402 * not certain the delta will fit in a void pointer for all possible configs.
2403 */
2404static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2405{
2406 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2407 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2408 if (pHandler->pfnHandlerRC)
2409 pHandler->pfnHandlerRC += offDelta;
2410 if (pHandler->pvUserRC >= 0x10000)
2411 pHandler->pvUserRC += offDelta;
2412 return 0;
2413}
2414
2415
2416/**
2417 * Callback function for relocating a virtual access handler.
2418 *
2419 * @returns 0 (continue enum)
2420 * @param pNode Pointer to a PGMVIRTHANDLER node.
2421 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2422 * not certain the delta will fit in a void pointer for all possible configs.
2423 */
2424static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2425{
2426 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2427 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2428 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2429 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2430 Assert(pHandler->pfnHandlerRC);
2431 pHandler->pfnHandlerRC += offDelta;
2432 return 0;
2433}
2434
2435
2436/**
2437 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2438 *
2439 * @returns 0 (continue enum)
2440 * @param pNode Pointer to a PGMVIRTHANDLER node.
2441 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2442 * not certain the delta will fit in a void pointer for all possible configs.
2443 */
2444static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2445{
2446 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2447 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2448 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2449 Assert(pHandler->pfnHandlerRC);
2450 pHandler->pfnHandlerRC += offDelta;
2451 return 0;
2452}
2453
2454
2455/**
2456 * Resets a virtual CPU when unplugged.
2457 *
2458 * @param pVM The VM handle.
2459 * @param pVCpu The virtual CPU handle.
2460 */
2461VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2462{
2463 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2464 AssertRC(rc);
2465
2466 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2467 AssertRC(rc);
2468
2469 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2470
2471 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2472
2473 /*
2474 * Re-init other members.
2475 */
2476 pVCpu->pgm.s.fA20Enabled = true;
2477
2478 /*
2479 * Clear the FFs PGM owns.
2480 */
2481 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2482 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2483}
2484
2485
2486/**
2487 * The VM is being reset.
2488 *
2489 * For the PGM component this means that any PD write monitors
2490 * needs to be removed.
2491 *
2492 * @param pVM VM handle.
2493 */
2494VMMR3DECL(void) PGMR3Reset(PVM pVM)
2495{
2496 int rc;
2497
2498 LogFlow(("PGMR3Reset:\n"));
2499 VM_ASSERT_EMT(pVM);
2500
2501 pgmLock(pVM);
2502
2503 /*
2504 * Unfix any fixed mappings and disable CR3 monitoring.
2505 */
2506 pVM->pgm.s.fMappingsFixed = false;
2507 pVM->pgm.s.fMappingsFixedRestored = false;
2508 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2509 pVM->pgm.s.cbMappingFixed = 0;
2510
2511 /*
2512 * Exit the guest paging mode before the pgm pool gets reset.
2513 * Important to clean up the amd64 case.
2514 */
2515 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2516 {
2517 PVMCPU pVCpu = &pVM->aCpus[i];
2518 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2519 AssertRC(rc);
2520 }
2521
2522#ifdef DEBUG
2523 DBGFR3InfoLog(pVM, "mappings", NULL);
2524 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2525#endif
2526
2527 /*
2528 * Switch mode back to real mode. (before resetting the pgm pool!)
2529 */
2530 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2531 {
2532 PVMCPU pVCpu = &pVM->aCpus[i];
2533
2534 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2535 AssertRC(rc);
2536
2537 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2538 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2539 }
2540
2541 /*
2542 * Reset the shadow page pool.
2543 */
2544 pgmR3PoolReset(pVM);
2545
2546 /*
2547 * Re-init various other members and clear the FFs that PGM owns.
2548 */
2549 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2550 {
2551 PVMCPU pVCpu = &pVM->aCpus[i];
2552
2553 pVCpu->pgm.s.fA20Enabled = true;
2554 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2555 PGMNotifyNxeChanged(pVCpu, false);
2556
2557 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2558 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2559 }
2560
2561 /*
2562 * Reset (zero) RAM and shadow ROM pages.
2563 */
2564 rc = pgmR3PhysRamReset(pVM);
2565 if (RT_SUCCESS(rc))
2566 rc = pgmR3PhysRomReset(pVM);
2567
2568
2569 pgmUnlock(pVM);
2570 AssertReleaseRC(rc);
2571}
2572
2573
2574#ifdef VBOX_STRICT
2575/**
2576 * VM state change callback for clearing fNoMorePhysWrites after
2577 * a snapshot has been created.
2578 */
2579static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2580{
2581 if ( enmState == VMSTATE_RUNNING
2582 || enmState == VMSTATE_RESUMING)
2583 pVM->pgm.s.fNoMorePhysWrites = false;
2584 NOREF(enmOldState); NOREF(pvUser);
2585}
2586#endif
2587
2588/**
2589 * Private API to reset fNoMorePhysWrites.
2590 */
2591VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2592{
2593 pVM->pgm.s.fNoMorePhysWrites = false;
2594}
2595
2596/**
2597 * Terminates the PGM.
2598 *
2599 * @returns VBox status code.
2600 * @param pVM Pointer to VM structure.
2601 */
2602VMMR3DECL(int) PGMR3Term(PVM pVM)
2603{
2604 /* Must free shared pages here. */
2605 pgmLock(pVM);
2606 pgmR3PhysRamTerm(pVM);
2607 pgmR3PhysRomTerm(pVM);
2608 pgmUnlock(pVM);
2609
2610 PGMDeregisterStringFormatTypes();
2611 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2612}
2613
2614
2615/**
2616 * Show paging mode.
2617 *
2618 * @param pVM VM Handle.
2619 * @param pHlp The info helpers.
2620 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2621 */
2622static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2623{
2624 /* digest argument. */
2625 bool fGuest, fShadow, fHost;
2626 if (pszArgs)
2627 pszArgs = RTStrStripL(pszArgs);
2628 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2629 fShadow = fHost = fGuest = true;
2630 else
2631 {
2632 fShadow = fHost = fGuest = false;
2633 if (strstr(pszArgs, "guest"))
2634 fGuest = true;
2635 if (strstr(pszArgs, "shadow"))
2636 fShadow = true;
2637 if (strstr(pszArgs, "host"))
2638 fHost = true;
2639 }
2640
2641 /** @todo SMP support! */
2642 /* print info. */
2643 if (fGuest)
2644 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2645 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2646 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2647 if (fShadow)
2648 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2649 if (fHost)
2650 {
2651 const char *psz;
2652 switch (pVM->pgm.s.enmHostMode)
2653 {
2654 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2655 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2656 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2657 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2658 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2659 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2660 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2661 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2662 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2663 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2664 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2665 default: psz = "unknown"; break;
2666 }
2667 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2668 }
2669}
2670
2671
2672/**
2673 * Dump registered MMIO ranges to the log.
2674 *
2675 * @param pVM VM Handle.
2676 * @param pHlp The info helpers.
2677 * @param pszArgs Arguments, ignored.
2678 */
2679static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2680{
2681 NOREF(pszArgs);
2682 pHlp->pfnPrintf(pHlp,
2683 "RAM ranges (pVM=%p)\n"
2684 "%.*s %.*s\n",
2685 pVM,
2686 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2687 sizeof(RTHCPTR) * 2, "pvHC ");
2688
2689 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2690 pHlp->pfnPrintf(pHlp,
2691 "%RGp-%RGp %RHv %s\n",
2692 pCur->GCPhys,
2693 pCur->GCPhysLast,
2694 pCur->pvR3,
2695 pCur->pszDesc);
2696}
2697
2698/**
2699 * Dump the page directory to the log.
2700 *
2701 * @param pVM VM Handle.
2702 * @param pHlp The info helpers.
2703 * @param pszArgs Arguments, ignored.
2704 */
2705static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2706{
2707 /** @todo SMP support!! */
2708 PVMCPU pVCpu = &pVM->aCpus[0];
2709
2710/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2711 /* Big pages supported? */
2712 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2713
2714 /* Global pages supported? */
2715 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2716
2717 NOREF(pszArgs);
2718
2719 /*
2720 * Get page directory addresses.
2721 */
2722 pgmLock(pVM);
2723 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2724 Assert(pPDSrc);
2725
2726 /*
2727 * Iterate the page directory.
2728 */
2729 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2730 {
2731 X86PDE PdeSrc = pPDSrc->a[iPD];
2732 if (PdeSrc.n.u1Present)
2733 {
2734 if (PdeSrc.b.u1Size && fPSE)
2735 pHlp->pfnPrintf(pHlp,
2736 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2737 iPD,
2738 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2739 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2740 else
2741 pHlp->pfnPrintf(pHlp,
2742 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2743 iPD,
2744 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2745 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2746 }
2747 }
2748 pgmUnlock(pVM);
2749}
2750
2751
2752/**
2753 * Service a VMMCALLRING3_PGM_LOCK call.
2754 *
2755 * @returns VBox status code.
2756 * @param pVM The VM handle.
2757 */
2758VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2759{
2760 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2761 AssertRC(rc);
2762 return rc;
2763}
2764
2765
2766/**
2767 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2768 *
2769 * @returns PGM_TYPE_*.
2770 * @param pgmMode The mode value to convert.
2771 */
2772DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2773{
2774 switch (pgmMode)
2775 {
2776 case PGMMODE_REAL: return PGM_TYPE_REAL;
2777 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2778 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2779 case PGMMODE_PAE:
2780 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2781 case PGMMODE_AMD64:
2782 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2783 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2784 case PGMMODE_EPT: return PGM_TYPE_EPT;
2785 default:
2786 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2787 }
2788}
2789
2790
2791/**
2792 * Gets the index into the paging mode data array of a SHW+GST mode.
2793 *
2794 * @returns PGM::paPagingData index.
2795 * @param uShwType The shadow paging mode type.
2796 * @param uGstType The guest paging mode type.
2797 */
2798DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2799{
2800 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2801 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2802 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2803 + (uGstType - PGM_TYPE_REAL);
2804}
2805
2806
2807/**
2808 * Gets the index into the paging mode data array of a SHW+GST mode.
2809 *
2810 * @returns PGM::paPagingData index.
2811 * @param enmShw The shadow paging mode.
2812 * @param enmGst The guest paging mode.
2813 */
2814DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2815{
2816 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2817 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2818 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2819}
2820
2821
2822/**
2823 * Calculates the max data index.
2824 * @returns The number of entries in the paging data array.
2825 */
2826DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2827{
2828 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2829}
2830
2831
2832/**
2833 * Initializes the paging mode data kept in PGM::paModeData.
2834 *
2835 * @param pVM The VM handle.
2836 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2837 * This is used early in the init process to avoid trouble with PDM
2838 * not being initialized yet.
2839 */
2840static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2841{
2842 PPGMMODEDATA pModeData;
2843 int rc;
2844
2845 /*
2846 * Allocate the array on the first call.
2847 */
2848 if (!pVM->pgm.s.paModeData)
2849 {
2850 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2851 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2852 }
2853
2854 /*
2855 * Initialize the array entries.
2856 */
2857 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2858 pModeData->uShwType = PGM_TYPE_32BIT;
2859 pModeData->uGstType = PGM_TYPE_REAL;
2860 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2861 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2862 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2863
2864 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2865 pModeData->uShwType = PGM_TYPE_32BIT;
2866 pModeData->uGstType = PGM_TYPE_PROT;
2867 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2868 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2869 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2870
2871 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2872 pModeData->uShwType = PGM_TYPE_32BIT;
2873 pModeData->uGstType = PGM_TYPE_32BIT;
2874 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2875 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2876 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2877
2878 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2879 pModeData->uShwType = PGM_TYPE_PAE;
2880 pModeData->uGstType = PGM_TYPE_REAL;
2881 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2882 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2883 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2884
2885 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2886 pModeData->uShwType = PGM_TYPE_PAE;
2887 pModeData->uGstType = PGM_TYPE_PROT;
2888 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2889 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2890 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2891
2892 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2893 pModeData->uShwType = PGM_TYPE_PAE;
2894 pModeData->uGstType = PGM_TYPE_32BIT;
2895 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2897 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2898
2899 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2900 pModeData->uShwType = PGM_TYPE_PAE;
2901 pModeData->uGstType = PGM_TYPE_PAE;
2902 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2905
2906#ifdef VBOX_WITH_64_BITS_GUESTS
2907 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2908 pModeData->uShwType = PGM_TYPE_AMD64;
2909 pModeData->uGstType = PGM_TYPE_AMD64;
2910 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2912 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2913#endif
2914
2915 /* The nested paging mode. */
2916 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2917 pModeData->uShwType = PGM_TYPE_NESTED;
2918 pModeData->uGstType = PGM_TYPE_REAL;
2919 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2920 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2921
2922 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2923 pModeData->uShwType = PGM_TYPE_NESTED;
2924 pModeData->uGstType = PGM_TYPE_PROT;
2925 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2926 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2927
2928 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2929 pModeData->uShwType = PGM_TYPE_NESTED;
2930 pModeData->uGstType = PGM_TYPE_32BIT;
2931 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2933
2934 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2935 pModeData->uShwType = PGM_TYPE_NESTED;
2936 pModeData->uGstType = PGM_TYPE_PAE;
2937 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2938 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2939
2940#ifdef VBOX_WITH_64_BITS_GUESTS
2941 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2942 pModeData->uShwType = PGM_TYPE_NESTED;
2943 pModeData->uGstType = PGM_TYPE_AMD64;
2944 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2945 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2946#endif
2947
2948 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2949 switch (pVM->pgm.s.enmHostMode)
2950 {
2951#if HC_ARCH_BITS == 32
2952 case SUPPAGINGMODE_32_BIT:
2953 case SUPPAGINGMODE_32_BIT_GLOBAL:
2954 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2955 {
2956 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2957 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2958 }
2959# ifdef VBOX_WITH_64_BITS_GUESTS
2960 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2961 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2962# endif
2963 break;
2964
2965 case SUPPAGINGMODE_PAE:
2966 case SUPPAGINGMODE_PAE_NX:
2967 case SUPPAGINGMODE_PAE_GLOBAL:
2968 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2969 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2970 {
2971 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2972 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2973 }
2974# ifdef VBOX_WITH_64_BITS_GUESTS
2975 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2976 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2977# endif
2978 break;
2979#endif /* HC_ARCH_BITS == 32 */
2980
2981#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2982 case SUPPAGINGMODE_AMD64:
2983 case SUPPAGINGMODE_AMD64_GLOBAL:
2984 case SUPPAGINGMODE_AMD64_NX:
2985 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2986# ifdef VBOX_WITH_64_BITS_GUESTS
2987 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2988# else
2989 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2990# endif
2991 {
2992 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2993 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2994 }
2995 break;
2996#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2997
2998 default:
2999 AssertFailed();
3000 break;
3001 }
3002
3003 /* Extended paging (EPT) / Intel VT-x */
3004 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3005 pModeData->uShwType = PGM_TYPE_EPT;
3006 pModeData->uGstType = PGM_TYPE_REAL;
3007 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3008 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3009 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3010
3011 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3012 pModeData->uShwType = PGM_TYPE_EPT;
3013 pModeData->uGstType = PGM_TYPE_PROT;
3014 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3015 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3016 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3017
3018 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3019 pModeData->uShwType = PGM_TYPE_EPT;
3020 pModeData->uGstType = PGM_TYPE_32BIT;
3021 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3022 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3023 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3024
3025 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3026 pModeData->uShwType = PGM_TYPE_EPT;
3027 pModeData->uGstType = PGM_TYPE_PAE;
3028 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3029 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3030 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3031
3032#ifdef VBOX_WITH_64_BITS_GUESTS
3033 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3034 pModeData->uShwType = PGM_TYPE_EPT;
3035 pModeData->uGstType = PGM_TYPE_AMD64;
3036 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3037 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3038 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3039#endif
3040 return VINF_SUCCESS;
3041}
3042
3043
3044/**
3045 * Switch to different (or relocated in the relocate case) mode data.
3046 *
3047 * @param pVM The VM handle.
3048 * @param pVCpu The VMCPU to operate on.
3049 * @param enmShw The the shadow paging mode.
3050 * @param enmGst The the guest paging mode.
3051 */
3052static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3053{
3054 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3055
3056 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3057 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3058
3059 /* shadow */
3060 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3061 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3062 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3063 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3064 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3065
3066 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3067 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3068
3069 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3070 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3071
3072
3073 /* guest */
3074 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3075 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3076 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3077 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3078 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3079 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3080 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3081 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3082 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3083 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3084 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3085 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3086
3087 /* both */
3088 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3089 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3090 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3091 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3092 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3093 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3094#ifdef VBOX_STRICT
3095 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3096#endif
3097 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3098 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3099
3100 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3101 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3102 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3103 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3104 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3105#ifdef VBOX_STRICT
3106 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3107#endif
3108 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3109 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3110
3111 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3112 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3113 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3114 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3115 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3116#ifdef VBOX_STRICT
3117 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3118#endif
3119 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3120 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3121}
3122
3123
3124/**
3125 * Calculates the shadow paging mode.
3126 *
3127 * @returns The shadow paging mode.
3128 * @param pVM VM handle.
3129 * @param enmGuestMode The guest mode.
3130 * @param enmHostMode The host mode.
3131 * @param enmShadowMode The current shadow mode.
3132 * @param penmSwitcher Where to store the switcher to use.
3133 * VMMSWITCHER_INVALID means no change.
3134 */
3135static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3136{
3137 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3138 switch (enmGuestMode)
3139 {
3140 /*
3141 * When switching to real or protected mode we don't change
3142 * anything since it's likely that we'll switch back pretty soon.
3143 *
3144 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3145 * and is supposed to determine which shadow paging and switcher to
3146 * use during init.
3147 */
3148 case PGMMODE_REAL:
3149 case PGMMODE_PROTECTED:
3150 if ( enmShadowMode != PGMMODE_INVALID
3151 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3152 break; /* (no change) */
3153
3154 switch (enmHostMode)
3155 {
3156 case SUPPAGINGMODE_32_BIT:
3157 case SUPPAGINGMODE_32_BIT_GLOBAL:
3158 enmShadowMode = PGMMODE_32_BIT;
3159 enmSwitcher = VMMSWITCHER_32_TO_32;
3160 break;
3161
3162 case SUPPAGINGMODE_PAE:
3163 case SUPPAGINGMODE_PAE_NX:
3164 case SUPPAGINGMODE_PAE_GLOBAL:
3165 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3166 enmShadowMode = PGMMODE_PAE;
3167 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3168#ifdef DEBUG_bird
3169 if (RTEnvExist("VBOX_32BIT"))
3170 {
3171 enmShadowMode = PGMMODE_32_BIT;
3172 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3173 }
3174#endif
3175 break;
3176
3177 case SUPPAGINGMODE_AMD64:
3178 case SUPPAGINGMODE_AMD64_GLOBAL:
3179 case SUPPAGINGMODE_AMD64_NX:
3180 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3181 enmShadowMode = PGMMODE_PAE;
3182 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3183#ifdef DEBUG_bird
3184 if (RTEnvExist("VBOX_32BIT"))
3185 {
3186 enmShadowMode = PGMMODE_32_BIT;
3187 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3188 }
3189#endif
3190 break;
3191
3192 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3193 }
3194 break;
3195
3196 case PGMMODE_32_BIT:
3197 switch (enmHostMode)
3198 {
3199 case SUPPAGINGMODE_32_BIT:
3200 case SUPPAGINGMODE_32_BIT_GLOBAL:
3201 enmShadowMode = PGMMODE_32_BIT;
3202 enmSwitcher = VMMSWITCHER_32_TO_32;
3203 break;
3204
3205 case SUPPAGINGMODE_PAE:
3206 case SUPPAGINGMODE_PAE_NX:
3207 case SUPPAGINGMODE_PAE_GLOBAL:
3208 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3209 enmShadowMode = PGMMODE_PAE;
3210 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3211#ifdef DEBUG_bird
3212 if (RTEnvExist("VBOX_32BIT"))
3213 {
3214 enmShadowMode = PGMMODE_32_BIT;
3215 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3216 }
3217#endif
3218 break;
3219
3220 case SUPPAGINGMODE_AMD64:
3221 case SUPPAGINGMODE_AMD64_GLOBAL:
3222 case SUPPAGINGMODE_AMD64_NX:
3223 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3224 enmShadowMode = PGMMODE_PAE;
3225 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3226#ifdef DEBUG_bird
3227 if (RTEnvExist("VBOX_32BIT"))
3228 {
3229 enmShadowMode = PGMMODE_32_BIT;
3230 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3231 }
3232#endif
3233 break;
3234
3235 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3236 }
3237 break;
3238
3239 case PGMMODE_PAE:
3240 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3241 switch (enmHostMode)
3242 {
3243 case SUPPAGINGMODE_32_BIT:
3244 case SUPPAGINGMODE_32_BIT_GLOBAL:
3245 enmShadowMode = PGMMODE_PAE;
3246 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3247 break;
3248
3249 case SUPPAGINGMODE_PAE:
3250 case SUPPAGINGMODE_PAE_NX:
3251 case SUPPAGINGMODE_PAE_GLOBAL:
3252 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3253 enmShadowMode = PGMMODE_PAE;
3254 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3255 break;
3256
3257 case SUPPAGINGMODE_AMD64:
3258 case SUPPAGINGMODE_AMD64_GLOBAL:
3259 case SUPPAGINGMODE_AMD64_NX:
3260 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3261 enmShadowMode = PGMMODE_PAE;
3262 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3263 break;
3264
3265 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3266 }
3267 break;
3268
3269 case PGMMODE_AMD64:
3270 case PGMMODE_AMD64_NX:
3271 switch (enmHostMode)
3272 {
3273 case SUPPAGINGMODE_32_BIT:
3274 case SUPPAGINGMODE_32_BIT_GLOBAL:
3275 enmShadowMode = PGMMODE_AMD64;
3276 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3277 break;
3278
3279 case SUPPAGINGMODE_PAE:
3280 case SUPPAGINGMODE_PAE_NX:
3281 case SUPPAGINGMODE_PAE_GLOBAL:
3282 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3283 enmShadowMode = PGMMODE_AMD64;
3284 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3285 break;
3286
3287 case SUPPAGINGMODE_AMD64:
3288 case SUPPAGINGMODE_AMD64_GLOBAL:
3289 case SUPPAGINGMODE_AMD64_NX:
3290 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3291 enmShadowMode = PGMMODE_AMD64;
3292 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3293 break;
3294
3295 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3296 }
3297 break;
3298
3299
3300 default:
3301 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3302 *penmSwitcher = VMMSWITCHER_INVALID;
3303 return PGMMODE_INVALID;
3304 }
3305 /* Override the shadow mode is nested paging is active. */
3306 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3307 if (pVM->pgm.s.fNestedPaging)
3308 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3309
3310 *penmSwitcher = enmSwitcher;
3311 return enmShadowMode;
3312}
3313
3314
3315/**
3316 * Performs the actual mode change.
3317 * This is called by PGMChangeMode and pgmR3InitPaging().
3318 *
3319 * @returns VBox status code. May suspend or power off the VM on error, but this
3320 * will trigger using FFs and not status codes.
3321 *
3322 * @param pVM VM handle.
3323 * @param pVCpu The VMCPU to operate on.
3324 * @param enmGuestMode The new guest mode. This is assumed to be different from
3325 * the current mode.
3326 */
3327VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3328{
3329#if HC_ARCH_BITS == 32
3330 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3331#endif
3332 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3333
3334 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3335 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3336
3337 /*
3338 * Calc the shadow mode and switcher.
3339 */
3340 VMMSWITCHER enmSwitcher;
3341 PGMMODE enmShadowMode;
3342 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3343
3344#ifdef VBOX_WITH_RAW_MODE
3345 if (enmSwitcher != VMMSWITCHER_INVALID)
3346 {
3347 /*
3348 * Select new switcher.
3349 */
3350 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3351 if (RT_FAILURE(rc))
3352 {
3353 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3354 return rc;
3355 }
3356 }
3357#endif
3358
3359 /*
3360 * Exit old mode(s).
3361 */
3362#if HC_ARCH_BITS == 32
3363 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3364 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3365 && enmShadowMode == PGMMODE_NESTED);
3366#else
3367 const bool fForceShwEnterExit = false;
3368#endif
3369 /* shadow */
3370 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3371 || fForceShwEnterExit)
3372 {
3373 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3374 if (PGM_SHW_PFN(Exit, pVCpu))
3375 {
3376 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3377 if (RT_FAILURE(rc))
3378 {
3379 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3380 return rc;
3381 }
3382 }
3383
3384 }
3385 else
3386 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3387
3388 /* guest */
3389 if (PGM_GST_PFN(Exit, pVCpu))
3390 {
3391 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3392 if (RT_FAILURE(rc))
3393 {
3394 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3395 return rc;
3396 }
3397 }
3398
3399 /*
3400 * Load new paging mode data.
3401 */
3402 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3403
3404 /*
3405 * Enter new shadow mode (if changed).
3406 */
3407 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3408 || fForceShwEnterExit)
3409 {
3410 int rc;
3411 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3412 switch (enmShadowMode)
3413 {
3414 case PGMMODE_32_BIT:
3415 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3416 break;
3417 case PGMMODE_PAE:
3418 case PGMMODE_PAE_NX:
3419 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3420 break;
3421 case PGMMODE_AMD64:
3422 case PGMMODE_AMD64_NX:
3423 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3424 break;
3425 case PGMMODE_NESTED:
3426 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3427 break;
3428 case PGMMODE_EPT:
3429 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3430 break;
3431 case PGMMODE_REAL:
3432 case PGMMODE_PROTECTED:
3433 default:
3434 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3435 return VERR_INTERNAL_ERROR;
3436 }
3437 if (RT_FAILURE(rc))
3438 {
3439 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3440 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3441 return rc;
3442 }
3443 }
3444
3445 /*
3446 * Always flag the necessary updates
3447 */
3448 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3449
3450 /*
3451 * Enter the new guest and shadow+guest modes.
3452 */
3453 int rc = -1;
3454 int rc2 = -1;
3455 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3456 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3457 switch (enmGuestMode)
3458 {
3459 case PGMMODE_REAL:
3460 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3461 switch (pVCpu->pgm.s.enmShadowMode)
3462 {
3463 case PGMMODE_32_BIT:
3464 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3465 break;
3466 case PGMMODE_PAE:
3467 case PGMMODE_PAE_NX:
3468 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3469 break;
3470 case PGMMODE_NESTED:
3471 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3472 break;
3473 case PGMMODE_EPT:
3474 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3475 break;
3476 case PGMMODE_AMD64:
3477 case PGMMODE_AMD64_NX:
3478 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3479 default: AssertFailed(); break;
3480 }
3481 break;
3482
3483 case PGMMODE_PROTECTED:
3484 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3485 switch (pVCpu->pgm.s.enmShadowMode)
3486 {
3487 case PGMMODE_32_BIT:
3488 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3489 break;
3490 case PGMMODE_PAE:
3491 case PGMMODE_PAE_NX:
3492 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3493 break;
3494 case PGMMODE_NESTED:
3495 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3496 break;
3497 case PGMMODE_EPT:
3498 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3499 break;
3500 case PGMMODE_AMD64:
3501 case PGMMODE_AMD64_NX:
3502 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3503 default: AssertFailed(); break;
3504 }
3505 break;
3506
3507 case PGMMODE_32_BIT:
3508 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3509 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3510 switch (pVCpu->pgm.s.enmShadowMode)
3511 {
3512 case PGMMODE_32_BIT:
3513 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3514 break;
3515 case PGMMODE_PAE:
3516 case PGMMODE_PAE_NX:
3517 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3518 break;
3519 case PGMMODE_NESTED:
3520 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3521 break;
3522 case PGMMODE_EPT:
3523 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3524 break;
3525 case PGMMODE_AMD64:
3526 case PGMMODE_AMD64_NX:
3527 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3528 default: AssertFailed(); break;
3529 }
3530 break;
3531
3532 case PGMMODE_PAE_NX:
3533 case PGMMODE_PAE:
3534 {
3535 uint32_t u32Dummy, u32Features;
3536
3537 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3538 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3539 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3540 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3541
3542 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3543 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3544 switch (pVCpu->pgm.s.enmShadowMode)
3545 {
3546 case PGMMODE_PAE:
3547 case PGMMODE_PAE_NX:
3548 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3549 break;
3550 case PGMMODE_NESTED:
3551 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3552 break;
3553 case PGMMODE_EPT:
3554 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3555 break;
3556 case PGMMODE_32_BIT:
3557 case PGMMODE_AMD64:
3558 case PGMMODE_AMD64_NX:
3559 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3560 default: AssertFailed(); break;
3561 }
3562 break;
3563 }
3564
3565#ifdef VBOX_WITH_64_BITS_GUESTS
3566 case PGMMODE_AMD64_NX:
3567 case PGMMODE_AMD64:
3568 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3569 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3570 switch (pVCpu->pgm.s.enmShadowMode)
3571 {
3572 case PGMMODE_AMD64:
3573 case PGMMODE_AMD64_NX:
3574 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3575 break;
3576 case PGMMODE_NESTED:
3577 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3578 break;
3579 case PGMMODE_EPT:
3580 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3581 break;
3582 case PGMMODE_32_BIT:
3583 case PGMMODE_PAE:
3584 case PGMMODE_PAE_NX:
3585 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3586 default: AssertFailed(); break;
3587 }
3588 break;
3589#endif
3590
3591 default:
3592 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3593 rc = VERR_NOT_IMPLEMENTED;
3594 break;
3595 }
3596
3597 /* status codes. */
3598 AssertRC(rc);
3599 AssertRC(rc2);
3600 if (RT_SUCCESS(rc))
3601 {
3602 rc = rc2;
3603 if (RT_SUCCESS(rc)) /* no informational status codes. */
3604 rc = VINF_SUCCESS;
3605 }
3606
3607 /* Notify HWACCM as well. */
3608 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3609 return rc;
3610}
3611
3612
3613/**
3614 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3615 *
3616 * @returns VBox status code, fully asserted.
3617 * @param pVCpu The VMCPU to operate on.
3618 */
3619int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3620{
3621 /* Unmap the old CR3 value before flushing everything. */
3622 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3623 AssertRC(rc);
3624
3625 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3626 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3627 AssertRC(rc);
3628 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3629 return rc;
3630}
3631
3632
3633/**
3634 * Called by pgmPoolFlushAllInt after flushing the pool.
3635 *
3636 * @returns VBox status code, fully asserted.
3637 * @param pVM The VM handle.
3638 * @param pVCpu The VMCPU to operate on.
3639 */
3640int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3641{
3642 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3643 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3644 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3645 AssertRCReturn(rc, rc);
3646 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3647
3648 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3649 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3650 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3651 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3652 return rc;
3653}
3654
3655
3656/**
3657 * Called by PGMR3PhysSetA20 after changing the A20 state.
3658 *
3659 * @param pVCpu The VMCPU to operate on.
3660 */
3661void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3662{
3663 /** @todo Probably doing a bit too much here. */
3664 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3665 AssertReleaseRC(rc);
3666 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3667 AssertReleaseRC(rc);
3668}
3669
3670
3671#ifdef VBOX_WITH_DEBUGGER
3672
3673/**
3674 * The '.pgmram' command.
3675 *
3676 * @returns VBox status.
3677 * @param pCmd Pointer to the command descriptor (as registered).
3678 * @param pCmdHlp Pointer to command helper functions.
3679 * @param pVM Pointer to the current VM (if any).
3680 * @param paArgs Pointer to (readonly) array of arguments.
3681 * @param cArgs Number of arguments in the array.
3682 */
3683static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3684{
3685 /*
3686 * Validate input.
3687 */
3688 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3689 if (!pVM)
3690 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3691 if (!pVM->pgm.s.pRamRangesXR3)
3692 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3693
3694 /*
3695 * Dump the ranges.
3696 */
3697 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3698 PPGMRAMRANGE pRam;
3699 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
3700 {
3701 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3702 "%RGp - %RGp %p\n",
3703 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
3704 if (RT_FAILURE(rc))
3705 return rc;
3706 }
3707
3708 return VINF_SUCCESS;
3709}
3710
3711
3712/**
3713 * The '.pgmerror' and '.pgmerroroff' commands.
3714 *
3715 * @returns VBox status.
3716 * @param pCmd Pointer to the command descriptor (as registered).
3717 * @param pCmdHlp Pointer to command helper functions.
3718 * @param pVM Pointer to the current VM (if any).
3719 * @param paArgs Pointer to (readonly) array of arguments.
3720 * @param cArgs Number of arguments in the array.
3721 */
3722static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3723{
3724 /*
3725 * Validate input.
3726 */
3727 if (!pVM)
3728 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3729 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
3730 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
3731
3732 if (!cArgs)
3733 {
3734 /*
3735 * Print the list of error injection locations with status.
3736 */
3737 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
3738 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3739 }
3740 else
3741 {
3742
3743 /*
3744 * String switch on where to inject the error.
3745 */
3746 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3747 const char *pszWhere = paArgs[0].u.pszString;
3748 if (!strcmp(pszWhere, "handy"))
3749 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3750 else
3751 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
3752 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
3753 }
3754 return VINF_SUCCESS;
3755}
3756
3757
3758/**
3759 * The '.pgmsync' command.
3760 *
3761 * @returns VBox status.
3762 * @param pCmd Pointer to the command descriptor (as registered).
3763 * @param pCmdHlp Pointer to command helper functions.
3764 * @param pVM Pointer to the current VM (if any).
3765 * @param paArgs Pointer to (readonly) array of arguments.
3766 * @param cArgs Number of arguments in the array.
3767 */
3768static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3769{
3770 /** @todo SMP support */
3771
3772 /*
3773 * Validate input.
3774 */
3775 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3776 if (!pVM)
3777 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3778
3779 PVMCPU pVCpu = &pVM->aCpus[0];
3780
3781 /*
3782 * Force page directory sync.
3783 */
3784 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3785
3786 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3787 if (RT_FAILURE(rc))
3788 return rc;
3789
3790 return VINF_SUCCESS;
3791}
3792
3793
3794#ifdef VBOX_STRICT
3795/**
3796 * The '.pgmassertcr3' command.
3797 *
3798 * @returns VBox status.
3799 * @param pCmd Pointer to the command descriptor (as registered).
3800 * @param pCmdHlp Pointer to command helper functions.
3801 * @param pVM Pointer to the current VM (if any).
3802 * @param paArgs Pointer to (readonly) array of arguments.
3803 * @param cArgs Number of arguments in the array.
3804 */
3805static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3806{
3807 /** @todo SMP support!! */
3808
3809 /*
3810 * Validate input.
3811 */
3812 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3813 if (!pVM)
3814 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3815
3816 PVMCPU pVCpu = &pVM->aCpus[0];
3817
3818 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
3819 if (RT_FAILURE(rc))
3820 return rc;
3821
3822 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3823
3824 return VINF_SUCCESS;
3825}
3826#endif /* VBOX_STRICT */
3827
3828
3829/**
3830 * The '.pgmsyncalways' command.
3831 *
3832 * @returns VBox status.
3833 * @param pCmd Pointer to the command descriptor (as registered).
3834 * @param pCmdHlp Pointer to command helper functions.
3835 * @param pVM Pointer to the current VM (if any).
3836 * @param paArgs Pointer to (readonly) array of arguments.
3837 * @param cArgs Number of arguments in the array.
3838 */
3839static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3840{
3841 /** @todo SMP support!! */
3842 PVMCPU pVCpu = &pVM->aCpus[0];
3843
3844 /*
3845 * Validate input.
3846 */
3847 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3848 if (!pVM)
3849 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3850
3851 /*
3852 * Force page directory sync.
3853 */
3854 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3855 {
3856 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3857 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3858 }
3859 else
3860 {
3861 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3862 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3863 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3864 }
3865}
3866
3867
3868/**
3869 * The '.pgmphystofile' command.
3870 *
3871 * @returns VBox status.
3872 * @param pCmd Pointer to the command descriptor (as registered).
3873 * @param pCmdHlp Pointer to command helper functions.
3874 * @param pVM Pointer to the current VM (if any).
3875 * @param paArgs Pointer to (readonly) array of arguments.
3876 * @param cArgs Number of arguments in the array.
3877 */
3878static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3879{
3880 /*
3881 * Validate input.
3882 */
3883 NOREF(pCmd);
3884 if (!pVM)
3885 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3886 if ( cArgs < 1
3887 || cArgs > 2
3888 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
3889 || ( cArgs > 1
3890 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
3891 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
3892 if ( cArgs >= 2
3893 && strcmp(paArgs[1].u.pszString, "nozero"))
3894 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3895 bool fIncZeroPgs = cArgs < 2;
3896
3897 /*
3898 * Open the output file and get the ram parameters.
3899 */
3900 RTFILE hFile;
3901 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3902 if (RT_FAILURE(rc))
3903 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3904
3905 uint32_t cbRamHole = 0;
3906 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3907 uint64_t cbRam = 0;
3908 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
3909 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3910
3911 /*
3912 * Dump the physical memory, page by page.
3913 */
3914 RTGCPHYS GCPhys = 0;
3915 char abZeroPg[PAGE_SIZE];
3916 RT_ZERO(abZeroPg);
3917
3918 pgmLock(pVM);
3919 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3920 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3921 pRam = pRam->pNextR3)
3922 {
3923 /* fill the gap */
3924 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3925 {
3926 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3927 {
3928 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3929 GCPhys += PAGE_SIZE;
3930 }
3931 }
3932
3933 PCPGMPAGE pPage = &pRam->aPages[0];
3934 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3935 {
3936 if ( PGM_PAGE_IS_ZERO(pPage)
3937 || PGM_PAGE_IS_BALLOONED(pPage))
3938 {
3939 if (fIncZeroPgs)
3940 {
3941 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3942 if (RT_FAILURE(rc))
3943 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3944 }
3945 }
3946 else
3947 {
3948 switch (PGM_PAGE_GET_TYPE(pPage))
3949 {
3950 case PGMPAGETYPE_RAM:
3951 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3952 case PGMPAGETYPE_ROM:
3953 case PGMPAGETYPE_MMIO2:
3954 {
3955 void const *pvPage;
3956 PGMPAGEMAPLOCK Lock;
3957 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3958 if (RT_SUCCESS(rc))
3959 {
3960 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3961 PGMPhysReleasePageMappingLock(pVM, &Lock);
3962 if (RT_FAILURE(rc))
3963 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3964 }
3965 else
3966 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3967 break;
3968 }
3969
3970 default:
3971 AssertFailed();
3972 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3973 case PGMPAGETYPE_MMIO:
3974 if (fIncZeroPgs)
3975 {
3976 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3977 if (RT_FAILURE(rc))
3978 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3979 }
3980 break;
3981 }
3982 }
3983
3984
3985 /* advance */
3986 GCPhys += PAGE_SIZE;
3987 pPage++;
3988 }
3989 }
3990 pgmUnlock(pVM);
3991
3992 RTFileClose(hFile);
3993 if (RT_SUCCESS(rc))
3994 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3995 return VINF_SUCCESS;
3996}
3997
3998#endif /* VBOX_WITH_DEBUGGER */
3999
4000/**
4001 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4002 */
4003typedef struct PGMCHECKINTARGS
4004{
4005 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4006 PPGMPHYSHANDLER pPrevPhys;
4007 PPGMVIRTHANDLER pPrevVirt;
4008 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4009 PVM pVM;
4010} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4011
4012/**
4013 * Validate a node in the physical handler tree.
4014 *
4015 * @returns 0 on if ok, other wise 1.
4016 * @param pNode The handler node.
4017 * @param pvUser pVM.
4018 */
4019static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4020{
4021 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4022 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4023 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4024 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4025 AssertReleaseMsg( !pArgs->pPrevPhys
4026 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4027 ("pPrevPhys=%p %RGp-%RGp %s\n"
4028 " pCur=%p %RGp-%RGp %s\n",
4029 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4030 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4031 pArgs->pPrevPhys = pCur;
4032 return 0;
4033}
4034
4035
4036/**
4037 * Validate a node in the virtual handler tree.
4038 *
4039 * @returns 0 on if ok, other wise 1.
4040 * @param pNode The handler node.
4041 * @param pvUser pVM.
4042 */
4043static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4044{
4045 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4046 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4047 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4048 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4049 AssertReleaseMsg( !pArgs->pPrevVirt
4050 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4051 ("pPrevVirt=%p %RGv-%RGv %s\n"
4052 " pCur=%p %RGv-%RGv %s\n",
4053 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4054 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4055 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4056 {
4057 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4058 ("pCur=%p %RGv-%RGv %s\n"
4059 "iPage=%d offVirtHandle=%#x expected %#x\n",
4060 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4061 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4062 }
4063 pArgs->pPrevVirt = pCur;
4064 return 0;
4065}
4066
4067
4068/**
4069 * Validate a node in the virtual handler tree.
4070 *
4071 * @returns 0 on if ok, other wise 1.
4072 * @param pNode The handler node.
4073 * @param pvUser pVM.
4074 */
4075static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4076{
4077 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4078 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4079 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4080 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4081 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4082 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4083 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4084 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4085 " pCur=%p %RGp-%RGp\n",
4086 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4087 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4088 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4089 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4090 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4091 " pCur=%p %RGp-%RGp\n",
4092 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4093 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4094 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4095 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4096 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4097 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4098 {
4099 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4100 for (;;)
4101 {
4102 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4103 AssertReleaseMsg(pCur2 != pCur,
4104 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4105 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4106 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4107 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4108 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4109 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4110 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4111 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4112 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4113 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4114 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4115 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4116 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4117 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4118 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4119 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4120 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4121 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4122 break;
4123 }
4124 }
4125
4126 pArgs->pPrevPhys2Virt = pCur;
4127 return 0;
4128}
4129
4130
4131/**
4132 * Perform an integrity check on the PGM component.
4133 *
4134 * @returns VINF_SUCCESS if everything is fine.
4135 * @returns VBox error status after asserting on integrity breach.
4136 * @param pVM The VM handle.
4137 */
4138VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4139{
4140 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4141
4142 /*
4143 * Check the trees.
4144 */
4145 int cErrors = 0;
4146 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4147 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4148 PGMCHECKINTARGS Args = s_LeftToRight;
4149 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4150 Args = s_RightToLeft;
4151 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4152 Args = s_LeftToRight;
4153 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4154 Args = s_RightToLeft;
4155 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4156 Args = s_LeftToRight;
4157 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4158 Args = s_RightToLeft;
4159 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4160 Args = s_LeftToRight;
4161 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4162 Args = s_RightToLeft;
4163 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4164
4165 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4166}
4167
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette