VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 47538

Last change on this file since 47538 was 46420, checked in by vboxsync, 12 years ago

VMM, recompiler: Purge deprecated macros.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 203.3 KB
Line 
1/* $Id: PGM.cpp 46420 2013-06-06 16:27:25Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @subsection subsec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @subsection subsec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @subsection subsec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @subsection subsec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @subsection subsec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref subsec_pgmPhys_Serializing. We
555 * some double house keeping wrt to who has mapped what I think, since both
556 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613/*******************************************************************************
614* Header Files *
615*******************************************************************************/
616#define LOG_GROUP LOG_GROUP_PGM
617#include <VBox/vmm/dbgf.h>
618#include <VBox/vmm/pgm.h>
619#include <VBox/vmm/cpum.h>
620#include <VBox/vmm/iom.h>
621#include <VBox/sup.h>
622#include <VBox/vmm/mm.h>
623#include <VBox/vmm/em.h>
624#include <VBox/vmm/stam.h>
625#ifdef VBOX_WITH_REM
626# include <VBox/vmm/rem.h>
627#endif
628#include <VBox/vmm/selm.h>
629#include <VBox/vmm/ssm.h>
630#include <VBox/vmm/hm.h>
631#include "PGMInternal.h"
632#include <VBox/vmm/vm.h>
633#include <VBox/vmm/uvm.h>
634#include "PGMInline.h"
635
636#include <VBox/dbg.h>
637#include <VBox/param.h>
638#include <VBox/err.h>
639
640#include <iprt/asm.h>
641#include <iprt/asm-amd64-x86.h>
642#include <iprt/assert.h>
643#include <iprt/env.h>
644#include <iprt/mem.h>
645#include <iprt/file.h>
646#include <iprt/string.h>
647#include <iprt/thread.h>
648
649
650/*******************************************************************************
651* Internal Functions *
652*******************************************************************************/
653static int pgmR3InitPaging(PVM pVM);
654static int pgmR3InitStats(PVM pVM);
655static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
656static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
657static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
658static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
659static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
660static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
661#ifdef VBOX_STRICT
662static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
663#endif
664static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
665static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
666static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
667
668#ifdef VBOX_WITH_DEBUGGER
669static FNDBGCCMD pgmR3CmdError;
670static FNDBGCCMD pgmR3CmdSync;
671static FNDBGCCMD pgmR3CmdSyncAlways;
672# ifdef VBOX_STRICT
673static FNDBGCCMD pgmR3CmdAssertCR3;
674# endif
675static FNDBGCCMD pgmR3CmdPhysToFile;
676#endif
677
678
679/*******************************************************************************
680* Global Variables *
681*******************************************************************************/
682#ifdef VBOX_WITH_DEBUGGER
683/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
684static const DBGCVARDESC g_aPgmErrorArgs[] =
685{
686 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
687 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
688};
689
690static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
691{
692 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
693 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
694 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
695};
696
697# ifdef DEBUG_sandervl
698static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
699{
700 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
701 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
702 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
703};
704# endif
705
706/** Command descriptors. */
707static const DBGCCMD g_aCmds[] =
708{
709 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
710 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
711 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
712 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
713# ifdef VBOX_STRICT
714 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
715# ifdef VBOX_WITH_PAGE_SHARING
716 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
717 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
718# endif
719# endif
720 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
721 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
722};
723#endif
724
725
726
727
728/*
729 * Shadow - 32-bit mode
730 */
731#define PGM_SHW_TYPE PGM_TYPE_32BIT
732#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
733#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
734#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
735#include "PGMShw.h"
736
737/* Guest - real mode */
738#define PGM_GST_TYPE PGM_TYPE_REAL
739#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
740#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
741#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
742#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
743#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
744#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
745#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
746#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
747#include "PGMBth.h"
748#include "PGMGstDefs.h"
749#include "PGMGst.h"
750#undef BTH_PGMPOOLKIND_PT_FOR_PT
751#undef BTH_PGMPOOLKIND_ROOT
752#undef PGM_BTH_NAME
753#undef PGM_BTH_NAME_RC_STR
754#undef PGM_BTH_NAME_R0_STR
755#undef PGM_GST_TYPE
756#undef PGM_GST_NAME
757#undef PGM_GST_NAME_RC_STR
758#undef PGM_GST_NAME_R0_STR
759
760/* Guest - protected mode */
761#define PGM_GST_TYPE PGM_TYPE_PROT
762#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
763#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
764#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
765#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
766#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
767#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
768#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
769#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
770#include "PGMBth.h"
771#include "PGMGstDefs.h"
772#include "PGMGst.h"
773#undef BTH_PGMPOOLKIND_PT_FOR_PT
774#undef BTH_PGMPOOLKIND_ROOT
775#undef PGM_BTH_NAME
776#undef PGM_BTH_NAME_RC_STR
777#undef PGM_BTH_NAME_R0_STR
778#undef PGM_GST_TYPE
779#undef PGM_GST_NAME
780#undef PGM_GST_NAME_RC_STR
781#undef PGM_GST_NAME_R0_STR
782
783/* Guest - 32-bit mode */
784#define PGM_GST_TYPE PGM_TYPE_32BIT
785#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
792#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
793#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
794#include "PGMBth.h"
795#include "PGMGstDefs.h"
796#include "PGMGst.h"
797#undef BTH_PGMPOOLKIND_PT_FOR_BIG
798#undef BTH_PGMPOOLKIND_PT_FOR_PT
799#undef BTH_PGMPOOLKIND_ROOT
800#undef PGM_BTH_NAME
801#undef PGM_BTH_NAME_RC_STR
802#undef PGM_BTH_NAME_R0_STR
803#undef PGM_GST_TYPE
804#undef PGM_GST_NAME
805#undef PGM_GST_NAME_RC_STR
806#undef PGM_GST_NAME_R0_STR
807
808#undef PGM_SHW_TYPE
809#undef PGM_SHW_NAME
810#undef PGM_SHW_NAME_RC_STR
811#undef PGM_SHW_NAME_R0_STR
812
813
814/*
815 * Shadow - PAE mode
816 */
817#define PGM_SHW_TYPE PGM_TYPE_PAE
818#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
819#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
820#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
821#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
822#include "PGMShw.h"
823
824/* Guest - real mode */
825#define PGM_GST_TYPE PGM_TYPE_REAL
826#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
827#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
828#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
829#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
830#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
831#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
832#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
833#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
834#include "PGMGstDefs.h"
835#include "PGMBth.h"
836#undef BTH_PGMPOOLKIND_PT_FOR_PT
837#undef BTH_PGMPOOLKIND_ROOT
838#undef PGM_BTH_NAME
839#undef PGM_BTH_NAME_RC_STR
840#undef PGM_BTH_NAME_R0_STR
841#undef PGM_GST_TYPE
842#undef PGM_GST_NAME
843#undef PGM_GST_NAME_RC_STR
844#undef PGM_GST_NAME_R0_STR
845
846/* Guest - protected mode */
847#define PGM_GST_TYPE PGM_TYPE_PROT
848#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
849#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
850#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
851#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
852#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
853#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
854#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
855#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
856#include "PGMGstDefs.h"
857#include "PGMBth.h"
858#undef BTH_PGMPOOLKIND_PT_FOR_PT
859#undef BTH_PGMPOOLKIND_ROOT
860#undef PGM_BTH_NAME
861#undef PGM_BTH_NAME_RC_STR
862#undef PGM_BTH_NAME_R0_STR
863#undef PGM_GST_TYPE
864#undef PGM_GST_NAME
865#undef PGM_GST_NAME_RC_STR
866#undef PGM_GST_NAME_R0_STR
867
868/* Guest - 32-bit mode */
869#define PGM_GST_TYPE PGM_TYPE_32BIT
870#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
871#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
872#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
873#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
874#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
875#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
876#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
877#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
878#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
879#include "PGMGstDefs.h"
880#include "PGMBth.h"
881#undef BTH_PGMPOOLKIND_PT_FOR_BIG
882#undef BTH_PGMPOOLKIND_PT_FOR_PT
883#undef BTH_PGMPOOLKIND_ROOT
884#undef PGM_BTH_NAME
885#undef PGM_BTH_NAME_RC_STR
886#undef PGM_BTH_NAME_R0_STR
887#undef PGM_GST_TYPE
888#undef PGM_GST_NAME
889#undef PGM_GST_NAME_RC_STR
890#undef PGM_GST_NAME_R0_STR
891
892/* Guest - PAE mode */
893#define PGM_GST_TYPE PGM_TYPE_PAE
894#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
895#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
896#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
897#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
898#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
899#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
900#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
901#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
902#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
903#include "PGMBth.h"
904#include "PGMGstDefs.h"
905#include "PGMGst.h"
906#undef BTH_PGMPOOLKIND_PT_FOR_BIG
907#undef BTH_PGMPOOLKIND_PT_FOR_PT
908#undef BTH_PGMPOOLKIND_ROOT
909#undef PGM_BTH_NAME
910#undef PGM_BTH_NAME_RC_STR
911#undef PGM_BTH_NAME_R0_STR
912#undef PGM_GST_TYPE
913#undef PGM_GST_NAME
914#undef PGM_GST_NAME_RC_STR
915#undef PGM_GST_NAME_R0_STR
916
917#undef PGM_SHW_TYPE
918#undef PGM_SHW_NAME
919#undef PGM_SHW_NAME_RC_STR
920#undef PGM_SHW_NAME_R0_STR
921
922
923/*
924 * Shadow - AMD64 mode
925 */
926#define PGM_SHW_TYPE PGM_TYPE_AMD64
927#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
928#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
929#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
930#include "PGMShw.h"
931
932#ifdef VBOX_WITH_64_BITS_GUESTS
933/* Guest - AMD64 mode */
934# define PGM_GST_TYPE PGM_TYPE_AMD64
935# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
936# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
937# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
938# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
939# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
940# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
941# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
942# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
943# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
944# include "PGMBth.h"
945# include "PGMGstDefs.h"
946# include "PGMGst.h"
947# undef BTH_PGMPOOLKIND_PT_FOR_BIG
948# undef BTH_PGMPOOLKIND_PT_FOR_PT
949# undef BTH_PGMPOOLKIND_ROOT
950# undef PGM_BTH_NAME
951# undef PGM_BTH_NAME_RC_STR
952# undef PGM_BTH_NAME_R0_STR
953# undef PGM_GST_TYPE
954# undef PGM_GST_NAME
955# undef PGM_GST_NAME_RC_STR
956# undef PGM_GST_NAME_R0_STR
957#endif /* VBOX_WITH_64_BITS_GUESTS */
958
959#undef PGM_SHW_TYPE
960#undef PGM_SHW_NAME
961#undef PGM_SHW_NAME_RC_STR
962#undef PGM_SHW_NAME_R0_STR
963
964
965/*
966 * Shadow - Nested paging mode
967 */
968#define PGM_SHW_TYPE PGM_TYPE_NESTED
969#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
970#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
971#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
972#include "PGMShw.h"
973
974/* Guest - real mode */
975#define PGM_GST_TYPE PGM_TYPE_REAL
976#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
977#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
978#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
979#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
980#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
981#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
982#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
983#include "PGMGstDefs.h"
984#include "PGMBth.h"
985#undef BTH_PGMPOOLKIND_PT_FOR_PT
986#undef PGM_BTH_NAME
987#undef PGM_BTH_NAME_RC_STR
988#undef PGM_BTH_NAME_R0_STR
989#undef PGM_GST_TYPE
990#undef PGM_GST_NAME
991#undef PGM_GST_NAME_RC_STR
992#undef PGM_GST_NAME_R0_STR
993
994/* Guest - protected mode */
995#define PGM_GST_TYPE PGM_TYPE_PROT
996#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
997#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
998#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
999#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
1000#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
1001#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
1002#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1003#include "PGMGstDefs.h"
1004#include "PGMBth.h"
1005#undef BTH_PGMPOOLKIND_PT_FOR_PT
1006#undef PGM_BTH_NAME
1007#undef PGM_BTH_NAME_RC_STR
1008#undef PGM_BTH_NAME_R0_STR
1009#undef PGM_GST_TYPE
1010#undef PGM_GST_NAME
1011#undef PGM_GST_NAME_RC_STR
1012#undef PGM_GST_NAME_R0_STR
1013
1014/* Guest - 32-bit mode */
1015#define PGM_GST_TYPE PGM_TYPE_32BIT
1016#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1017#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1018#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1019#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1020#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1021#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1022#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1023#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1024#include "PGMGstDefs.h"
1025#include "PGMBth.h"
1026#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1027#undef BTH_PGMPOOLKIND_PT_FOR_PT
1028#undef PGM_BTH_NAME
1029#undef PGM_BTH_NAME_RC_STR
1030#undef PGM_BTH_NAME_R0_STR
1031#undef PGM_GST_TYPE
1032#undef PGM_GST_NAME
1033#undef PGM_GST_NAME_RC_STR
1034#undef PGM_GST_NAME_R0_STR
1035
1036/* Guest - PAE mode */
1037#define PGM_GST_TYPE PGM_TYPE_PAE
1038#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1039#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1040#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1041#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1042#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1043#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1044#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1045#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1046#include "PGMGstDefs.h"
1047#include "PGMBth.h"
1048#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058#ifdef VBOX_WITH_64_BITS_GUESTS
1059/* Guest - AMD64 mode */
1060# define PGM_GST_TYPE PGM_TYPE_AMD64
1061# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1062# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1063# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1064# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1065# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1066# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1067# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1068# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1069# include "PGMGstDefs.h"
1070# include "PGMBth.h"
1071# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1072# undef BTH_PGMPOOLKIND_PT_FOR_PT
1073# undef PGM_BTH_NAME
1074# undef PGM_BTH_NAME_RC_STR
1075# undef PGM_BTH_NAME_R0_STR
1076# undef PGM_GST_TYPE
1077# undef PGM_GST_NAME
1078# undef PGM_GST_NAME_RC_STR
1079# undef PGM_GST_NAME_R0_STR
1080#endif /* VBOX_WITH_64_BITS_GUESTS */
1081
1082#undef PGM_SHW_TYPE
1083#undef PGM_SHW_NAME
1084#undef PGM_SHW_NAME_RC_STR
1085#undef PGM_SHW_NAME_R0_STR
1086
1087
1088/*
1089 * Shadow - EPT
1090 */
1091#define PGM_SHW_TYPE PGM_TYPE_EPT
1092#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1093#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1094#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1095#include "PGMShw.h"
1096
1097/* Guest - real mode */
1098#define PGM_GST_TYPE PGM_TYPE_REAL
1099#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1100#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1101#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1102#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1103#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1104#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1105#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1106#include "PGMGstDefs.h"
1107#include "PGMBth.h"
1108#undef BTH_PGMPOOLKIND_PT_FOR_PT
1109#undef PGM_BTH_NAME
1110#undef PGM_BTH_NAME_RC_STR
1111#undef PGM_BTH_NAME_R0_STR
1112#undef PGM_GST_TYPE
1113#undef PGM_GST_NAME
1114#undef PGM_GST_NAME_RC_STR
1115#undef PGM_GST_NAME_R0_STR
1116
1117/* Guest - protected mode */
1118#define PGM_GST_TYPE PGM_TYPE_PROT
1119#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1120#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1121#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1122#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1123#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1124#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1125#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1126#include "PGMGstDefs.h"
1127#include "PGMBth.h"
1128#undef BTH_PGMPOOLKIND_PT_FOR_PT
1129#undef PGM_BTH_NAME
1130#undef PGM_BTH_NAME_RC_STR
1131#undef PGM_BTH_NAME_R0_STR
1132#undef PGM_GST_TYPE
1133#undef PGM_GST_NAME
1134#undef PGM_GST_NAME_RC_STR
1135#undef PGM_GST_NAME_R0_STR
1136
1137/* Guest - 32-bit mode */
1138#define PGM_GST_TYPE PGM_TYPE_32BIT
1139#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1140#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1141#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1142#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1143#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1144#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1145#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1146#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1147#include "PGMGstDefs.h"
1148#include "PGMBth.h"
1149#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1150#undef BTH_PGMPOOLKIND_PT_FOR_PT
1151#undef PGM_BTH_NAME
1152#undef PGM_BTH_NAME_RC_STR
1153#undef PGM_BTH_NAME_R0_STR
1154#undef PGM_GST_TYPE
1155#undef PGM_GST_NAME
1156#undef PGM_GST_NAME_RC_STR
1157#undef PGM_GST_NAME_R0_STR
1158
1159/* Guest - PAE mode */
1160#define PGM_GST_TYPE PGM_TYPE_PAE
1161#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1162#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1163#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1164#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1165#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1166#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1167#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1168#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1169#include "PGMGstDefs.h"
1170#include "PGMBth.h"
1171#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1172#undef BTH_PGMPOOLKIND_PT_FOR_PT
1173#undef PGM_BTH_NAME
1174#undef PGM_BTH_NAME_RC_STR
1175#undef PGM_BTH_NAME_R0_STR
1176#undef PGM_GST_TYPE
1177#undef PGM_GST_NAME
1178#undef PGM_GST_NAME_RC_STR
1179#undef PGM_GST_NAME_R0_STR
1180
1181#ifdef VBOX_WITH_64_BITS_GUESTS
1182/* Guest - AMD64 mode */
1183# define PGM_GST_TYPE PGM_TYPE_AMD64
1184# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1185# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1186# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1187# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1188# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1189# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1190# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1191# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1192# include "PGMGstDefs.h"
1193# include "PGMBth.h"
1194# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1195# undef BTH_PGMPOOLKIND_PT_FOR_PT
1196# undef PGM_BTH_NAME
1197# undef PGM_BTH_NAME_RC_STR
1198# undef PGM_BTH_NAME_R0_STR
1199# undef PGM_GST_TYPE
1200# undef PGM_GST_NAME
1201# undef PGM_GST_NAME_RC_STR
1202# undef PGM_GST_NAME_R0_STR
1203#endif /* VBOX_WITH_64_BITS_GUESTS */
1204
1205#undef PGM_SHW_TYPE
1206#undef PGM_SHW_NAME
1207#undef PGM_SHW_NAME_RC_STR
1208#undef PGM_SHW_NAME_R0_STR
1209
1210
1211
1212/**
1213 * Initiates the paging of VM.
1214 *
1215 * @returns VBox status code.
1216 * @param pVM Pointer to VM structure.
1217 */
1218VMMR3DECL(int) PGMR3Init(PVM pVM)
1219{
1220 LogFlow(("PGMR3Init:\n"));
1221 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1222 int rc;
1223
1224 /*
1225 * Assert alignment and sizes.
1226 */
1227 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1228 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1229 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1230
1231 /*
1232 * Init the structure.
1233 */
1234 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1235 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1236
1237 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1238 {
1239 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1240 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1241 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1242 }
1243
1244 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1245 {
1246 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1247 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1248 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1249 }
1250
1251 /* Init the per-CPU part. */
1252 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1253 {
1254 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1255 PPGMCPU pPGM = &pVCpu->pgm.s;
1256
1257 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1258 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1259 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1260
1261 pPGM->enmShadowMode = PGMMODE_INVALID;
1262 pPGM->enmGuestMode = PGMMODE_INVALID;
1263
1264 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1265
1266 pPGM->pGst32BitPdR3 = NULL;
1267 pPGM->pGstPaePdptR3 = NULL;
1268 pPGM->pGstAmd64Pml4R3 = NULL;
1269#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1270 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1271 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1272 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1273#endif
1274 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1275 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1276 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1277 {
1278 pPGM->apGstPaePDsR3[i] = NULL;
1279#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1280 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1281#endif
1282 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1283 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1284 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1285 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1286 }
1287
1288 pPGM->fA20Enabled = true;
1289 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1290 }
1291
1292 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1293 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1294 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1295
1296 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1297#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1298 true
1299#else
1300 false
1301#endif
1302 );
1303 AssertLogRelRCReturn(rc, rc);
1304
1305#if HC_ARCH_BITS == 32
1306# ifdef RT_OS_DARWIN
1307 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1308# else
1309 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1310# endif
1311#else
1312 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1313#endif
1314 AssertLogRelRCReturn(rc, rc);
1315 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1316 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1317
1318 /*
1319 * Get the configured RAM size - to estimate saved state size.
1320 */
1321 uint64_t cbRam;
1322 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1323 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1324 cbRam = 0;
1325 else if (RT_SUCCESS(rc))
1326 {
1327 if (cbRam < PAGE_SIZE)
1328 cbRam = 0;
1329 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1330 }
1331 else
1332 {
1333 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1334 return rc;
1335 }
1336
1337 /*
1338 * Check for PCI pass-through.
1339 */
1340 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1341 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1342 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1343
1344#ifdef VBOX_WITH_STATISTICS
1345 /*
1346 * Allocate memory for the statistics before someone tries to use them.
1347 */
1348 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1349 void *pv;
1350 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1351 AssertRCReturn(rc, rc);
1352
1353 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1354 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1355 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1356 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1357
1358 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1359 {
1360 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1361 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1362 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1363
1364 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1365 }
1366#endif /* VBOX_WITH_STATISTICS */
1367
1368 /*
1369 * Register callbacks, string formatters and the saved state data unit.
1370 */
1371#ifdef VBOX_STRICT
1372 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1373#endif
1374 PGMRegisterStringFormatTypes();
1375
1376 rc = pgmR3InitSavedState(pVM, cbRam);
1377 if (RT_FAILURE(rc))
1378 return rc;
1379
1380 /*
1381 * Initialize the PGM critical section and flush the phys TLBs
1382 */
1383 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1384 AssertRCReturn(rc, rc);
1385
1386 PGMR3PhysChunkInvalidateTLB(pVM);
1387 pgmPhysInvalidatePageMapTLB(pVM);
1388
1389 /*
1390 * For the time being we sport a full set of handy pages in addition to the base
1391 * memory to simplify things.
1392 */
1393 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1394 AssertRCReturn(rc, rc);
1395
1396 /*
1397 * Trees
1398 */
1399 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1400 if (RT_SUCCESS(rc))
1401 {
1402 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1403 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1404
1405 /*
1406 * Allocate the zero page.
1407 */
1408 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1409 }
1410 if (RT_SUCCESS(rc))
1411 {
1412 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1413 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1414 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1415 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1416
1417 /*
1418 * Allocate the invalid MMIO page.
1419 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1420 */
1421 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1422 }
1423 if (RT_SUCCESS(rc))
1424 {
1425 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1426 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1427 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1428 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1429
1430 /*
1431 * Init the paging.
1432 */
1433 rc = pgmR3InitPaging(pVM);
1434 }
1435 if (RT_SUCCESS(rc))
1436 {
1437 /*
1438 * Init the page pool.
1439 */
1440 rc = pgmR3PoolInit(pVM);
1441 }
1442 if (RT_SUCCESS(rc))
1443 {
1444 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1445 {
1446 PVMCPU pVCpu = &pVM->aCpus[i];
1447 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1448 if (RT_FAILURE(rc))
1449 break;
1450 }
1451 }
1452
1453 if (RT_SUCCESS(rc))
1454 {
1455 /*
1456 * Info & statistics
1457 */
1458 DBGFR3InfoRegisterInternal(pVM, "mode",
1459 "Shows the current paging mode. "
1460 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1461 pgmR3InfoMode);
1462 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1463 "Dumps all the entries in the top level paging table. No arguments.",
1464 pgmR3InfoCr3);
1465 DBGFR3InfoRegisterInternal(pVM, "phys",
1466 "Dumps all the physical address ranges. No arguments.",
1467 pgmR3PhysInfo);
1468 DBGFR3InfoRegisterInternal(pVM, "handlers",
1469 "Dumps physical, virtual and hyper virtual handlers. "
1470 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1471 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1472 pgmR3InfoHandlers);
1473 DBGFR3InfoRegisterInternal(pVM, "mappings",
1474 "Dumps guest mappings.",
1475 pgmR3MapInfo);
1476
1477 pgmR3InitStats(pVM);
1478
1479#ifdef VBOX_WITH_DEBUGGER
1480 /*
1481 * Debugger commands.
1482 */
1483 static bool s_fRegisteredCmds = false;
1484 if (!s_fRegisteredCmds)
1485 {
1486 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1487 if (RT_SUCCESS(rc2))
1488 s_fRegisteredCmds = true;
1489 }
1490#endif
1491 return VINF_SUCCESS;
1492 }
1493
1494 /* Almost no cleanup necessary, MM frees all memory. */
1495 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1496
1497 return rc;
1498}
1499
1500
1501/**
1502 * Init paging.
1503 *
1504 * Since we need to check what mode the host is operating in before we can choose
1505 * the right paging functions for the host we have to delay this until R0 has
1506 * been initialized.
1507 *
1508 * @returns VBox status code.
1509 * @param pVM Pointer to the VM.
1510 */
1511static int pgmR3InitPaging(PVM pVM)
1512{
1513 /*
1514 * Force a recalculation of modes and switcher so everyone gets notified.
1515 */
1516 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1517 {
1518 PVMCPU pVCpu = &pVM->aCpus[i];
1519
1520 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1521 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1522 }
1523
1524 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1525
1526 /*
1527 * Allocate static mapping space for whatever the cr3 register
1528 * points to and in the case of PAE mode to the 4 PDs.
1529 */
1530 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1531 if (RT_FAILURE(rc))
1532 {
1533 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1534 return rc;
1535 }
1536 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1537
1538 /*
1539 * Allocate pages for the three possible intermediate contexts
1540 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1541 * for the sake of simplicity. The AMD64 uses the PAE for the
1542 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1543 *
1544 * We assume that two page tables will be enought for the core code
1545 * mappings (HC virtual and identity).
1546 */
1547 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1548 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1549 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1550 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1551 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1552 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1553 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1554 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1555 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1556 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1557 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1558 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1559
1560 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1561 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1562 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1563 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1564 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1565 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1566
1567 /*
1568 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1569 */
1570 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1571 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1572 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1573
1574 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1575 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1576
1577 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1578 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1579 {
1580 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1581 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1582 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1583 }
1584
1585 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1586 {
1587 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1588 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1589 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1590 }
1591
1592 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1593 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1594 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1595 | HCPhysInterPaePDPT64;
1596
1597 /*
1598 * Initialize paging workers and mode from current host mode
1599 * and the guest running in real mode.
1600 */
1601 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1602 switch (pVM->pgm.s.enmHostMode)
1603 {
1604 case SUPPAGINGMODE_32_BIT:
1605 case SUPPAGINGMODE_32_BIT_GLOBAL:
1606 case SUPPAGINGMODE_PAE:
1607 case SUPPAGINGMODE_PAE_GLOBAL:
1608 case SUPPAGINGMODE_PAE_NX:
1609 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1610 break;
1611
1612 case SUPPAGINGMODE_AMD64:
1613 case SUPPAGINGMODE_AMD64_GLOBAL:
1614 case SUPPAGINGMODE_AMD64_NX:
1615 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1616#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1617 if (ARCH_BITS != 64)
1618 {
1619 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1620 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1621 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1622 }
1623#endif
1624 break;
1625 default:
1626 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1627 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1628 }
1629 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1630 if (RT_SUCCESS(rc))
1631 {
1632 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1633#if HC_ARCH_BITS == 64
1634 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1635 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1636 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1637 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1638 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1639 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1640 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1641#endif
1642
1643 /*
1644 * Log the host paging mode. It may come in handy.
1645 */
1646 const char *pszHostMode;
1647 switch (pVM->pgm.s.enmHostMode)
1648 {
1649 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1650 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1651 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1652 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1653 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1654 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1655 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1656 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1657 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1658 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1659 default: pszHostMode = "???"; break;
1660 }
1661 LogRel(("Host paging mode: %s\n", pszHostMode));
1662
1663 return VINF_SUCCESS;
1664 }
1665
1666 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1667 return rc;
1668}
1669
1670
1671/**
1672 * Init statistics
1673 * @returns VBox status code.
1674 */
1675static int pgmR3InitStats(PVM pVM)
1676{
1677 PPGM pPGM = &pVM->pgm.s;
1678 int rc;
1679
1680 /*
1681 * Release statistics.
1682 */
1683 /* Common - misc variables */
1684 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1685 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1686 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1687 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1688 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1689 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1690 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1691 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1692 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1693 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1694 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1695 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1696 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1697 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1698 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1699 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1700 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1701 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1702 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1703
1704 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1705 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1706 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1707
1708 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1709
1710 /* Live save */
1711 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1712 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1713 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1714 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1715 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1716 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1717 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1718 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1719 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1720 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1721 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1722 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1723 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1724 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1725 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1726 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1727 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1728 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1729
1730#ifdef VBOX_WITH_STATISTICS
1731
1732# define PGM_REG_COUNTER(a, b, c) \
1733 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1734 AssertRC(rc);
1735
1736# define PGM_REG_COUNTER_BYTES(a, b, c) \
1737 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1738 AssertRC(rc);
1739
1740# define PGM_REG_PROFILE(a, b, c) \
1741 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1742 AssertRC(rc);
1743
1744 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1745
1746 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1747 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1748 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1749 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1750 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1751
1752 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1753 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1754 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1755 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1756 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1757 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1758 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1759 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1760 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1761 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1762
1763 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1764 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1765 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1766 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1767 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1768 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1769
1770 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1771 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1772 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1773 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1774 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1775 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1776 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1777 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1778
1779 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1780 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1781 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1782 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1783
1784 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1785 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1786 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1787 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1788
1789 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1790 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1791 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1792 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1793 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1794 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1795 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1796 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1797
1798 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1799 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1800/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1801 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1802 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1803/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1804
1805 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1806 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1807 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1808 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1809 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1810 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1811 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1812 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1813
1814 /* GC only: */
1815 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1816 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1817
1818 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1819 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1820 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1821 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1822 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1823 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1824 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1825 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1826
1827 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1828 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1829 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1830 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1831 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1832 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1833 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1834
1835# undef PGM_REG_COUNTER
1836# undef PGM_REG_PROFILE
1837#endif
1838
1839 /*
1840 * Note! The layout below matches the member layout exactly!
1841 */
1842
1843 /*
1844 * Common - stats
1845 */
1846 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1847 {
1848 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1849
1850#define PGM_REG_COUNTER(a, b, c) \
1851 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1852 AssertRC(rc);
1853#define PGM_REG_PROFILE(a, b, c) \
1854 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1855 AssertRC(rc);
1856
1857 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1858 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1859
1860#ifdef VBOX_WITH_STATISTICS
1861 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1862
1863# if 0 /* rarely useful; leave for debugging. */
1864 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1865 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1866 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1867 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1868 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1869 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1870# endif
1871 /* R0 only: */
1872 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1873 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1874
1875 /* RZ only: */
1876 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1877 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1878 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1879 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1880 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1881 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1882 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1883 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1884 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1885 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1886 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1887 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1888 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1889 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1890 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1891 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1892 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1893 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1894 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1895 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1919 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1922#if 0 /* rarely useful; leave for debugging. */
1923 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1924 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1925 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1926#endif
1927 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1929 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1930 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1931 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1932
1933 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1934 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1939 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1944 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1945 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1947 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1950 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1951 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1952 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1953 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1955 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1956 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1957 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1958 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1959 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1960 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1961 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1962 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1963 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1964 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1965 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1966 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1967 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1968 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1969
1970 /* HC only: */
1971
1972 /* RZ & R3: */
1973 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1974 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1975 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1978 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1979 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1980 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1981 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1982 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1983 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1984 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1985 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1986 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1987 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1988 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1989 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1990 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1991 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1992 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1994 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1995 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1996 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1997 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1998 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1999 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
2000 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2001 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2002 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2003 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2004 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2005 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2006 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2007 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2008 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2009 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2010 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2011 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2012 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2013 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2014 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2015 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2016 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2017 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2018 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2019 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2020
2021 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2022 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2023 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2024 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2025 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2026 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2027 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2028 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2029 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2030 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2031 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2032 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2033 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2034 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2035 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2036 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2037 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2038 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2039 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2040 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2041 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2042 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2043 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2044 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2045 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2046 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2047 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2048 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2049 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2050 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2051 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2052 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2053 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2054 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2055 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2056 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2057 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2058 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2059 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2060 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2061 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2062 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2063 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2064 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2065#endif /* VBOX_WITH_STATISTICS */
2066
2067#undef PGM_REG_PROFILE
2068#undef PGM_REG_COUNTER
2069
2070 }
2071
2072 return VINF_SUCCESS;
2073}
2074
2075
2076/**
2077 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2078 *
2079 * The dynamic mapping area will also be allocated and initialized at this
2080 * time. We could allocate it during PGMR3Init of course, but the mapping
2081 * wouldn't be allocated at that time preventing us from setting up the
2082 * page table entries with the dummy page.
2083 *
2084 * @returns VBox status code.
2085 * @param pVM Pointer to the VM.
2086 */
2087VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2088{
2089 RTGCPTR GCPtr;
2090 int rc;
2091
2092 /*
2093 * Reserve space for the dynamic mappings.
2094 */
2095 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2096 if (RT_SUCCESS(rc))
2097 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2098
2099 if ( RT_SUCCESS(rc)
2100 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2101 {
2102 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2103 if (RT_SUCCESS(rc))
2104 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2105 }
2106 if (RT_SUCCESS(rc))
2107 {
2108 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2109 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2110 }
2111 return rc;
2112}
2113
2114
2115/**
2116 * Ring-3 init finalizing.
2117 *
2118 * @returns VBox status code.
2119 * @param pVM Pointer to the VM.
2120 */
2121VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2122{
2123 int rc;
2124
2125 /*
2126 * Reserve space for the dynamic mappings.
2127 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2128 */
2129 /* get the pointer to the page table entries. */
2130 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2131 AssertRelease(pMapping);
2132 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2133 const unsigned iPT = off >> X86_PD_SHIFT;
2134 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2135 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2136 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2137
2138 /* init cache area */
2139 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2140 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2141 {
2142 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2143 AssertRCReturn(rc, rc);
2144 }
2145
2146 /*
2147 * Determine the max physical address width (MAXPHYADDR) and apply it to
2148 * all the mask members and stuff.
2149 */
2150 uint32_t cMaxPhysAddrWidth;
2151 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2152 if ( uMaxExtLeaf >= 0x80000008
2153 && uMaxExtLeaf <= 0x80000fff)
2154 {
2155 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2156 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2157 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2158 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2159 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2160 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2161 }
2162 else
2163 {
2164 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2165 cMaxPhysAddrWidth = 48;
2166 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2167 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2168 }
2169
2170 pVM->pgm.s.GCPhysInvAddrMask = 0;
2171 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2172 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2173
2174 /*
2175 * Initialize the invalid paging entry masks, assuming NX is disabled.
2176 */
2177 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2178 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2179 {
2180 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2181
2182 /** @todo The manuals are not entirely clear whether the physical
2183 * address width is relevant. See table 5-9 in the intel
2184 * manual vs the PDE4M descriptions. Write testcase (NP). */
2185 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2186 | X86_PDE4M_MBZ_MASK;
2187
2188 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2189 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2190 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2191 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2192
2193 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2194 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2195 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2196 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2197 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2198 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2199
2200 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2201 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2202 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2203 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2204 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2205 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2206 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2207 }
2208
2209 /*
2210 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2211 * Intel only goes up to 36 bits, so we stick to 36 as well.
2212 * Update: More recent intel manuals specifies 40 bits just like AMD.
2213 */
2214 uint32_t u32Dummy, u32Features;
2215 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2216 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2217 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2218 else
2219 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2220
2221 /*
2222 * Allocate memory if we're supposed to do that.
2223 */
2224 if (pVM->pgm.s.fRamPreAlloc)
2225 rc = pgmR3PhysRamPreAllocate(pVM);
2226
2227 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2228 return rc;
2229}
2230
2231
2232/**
2233 * Init phase completed callback.
2234 *
2235 * @returns VBox status code.
2236 * @param pVM Pointer to the VM.
2237 * @param enmWhat What has been completed.
2238 * @thread EMT(0)
2239 */
2240VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2241{
2242 switch (enmWhat)
2243 {
2244 case VMINITCOMPLETED_HM:
2245#ifdef VBOX_WITH_PCI_PASSTHROUGH
2246 if (pVM->pgm.s.fPciPassthrough)
2247 {
2248 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2249 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2250 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2251
2252 /*
2253 * Report assignments to the IOMMU (hope that's good enough for now).
2254 */
2255 if (pVM->pgm.s.fPciPassthrough)
2256 {
2257 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2258 AssertRCReturn(rc, rc);
2259 }
2260 }
2261#else
2262 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2263#endif
2264 break;
2265
2266 default:
2267 /* shut up gcc */
2268 break;
2269 }
2270
2271 return VINF_SUCCESS;
2272}
2273
2274
2275/**
2276 * Applies relocations to data and code managed by this component.
2277 *
2278 * This function will be called at init and whenever the VMM need to relocate it
2279 * self inside the GC.
2280 *
2281 * @param pVM The VM.
2282 * @param offDelta Relocation delta relative to old location.
2283 */
2284VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2285{
2286 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2287
2288 /*
2289 * Paging stuff.
2290 */
2291 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2292
2293 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2294
2295 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2296 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2297 {
2298 PVMCPU pVCpu = &pVM->aCpus[i];
2299
2300 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2301
2302 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2303 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2304 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2305 }
2306
2307 /*
2308 * Trees.
2309 */
2310 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2311
2312 /*
2313 * Ram ranges.
2314 */
2315 if (pVM->pgm.s.pRamRangesXR3)
2316 {
2317 /* Update the pSelfRC pointers and relink them. */
2318 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2319 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2320 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2321 pgmR3PhysRelinkRamRanges(pVM);
2322
2323 /* Flush the RC TLB. */
2324 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2325 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2326 }
2327
2328 /*
2329 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2330 * be mapped and thus not included in the above exercise.
2331 */
2332 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2333 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2334 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2335
2336 /*
2337 * Update the two page directories with all page table mappings.
2338 * (One or more of them have changed, that's why we're here.)
2339 */
2340 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2341 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2342 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2343
2344 /* Relocate GC addresses of Page Tables. */
2345 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2346 {
2347 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2348 {
2349 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2350 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2351 }
2352 }
2353
2354 /*
2355 * Dynamic page mapping area.
2356 */
2357 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2358 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2359 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2360
2361 if (pVM->pgm.s.pRCDynMap)
2362 {
2363 pVM->pgm.s.pRCDynMap += offDelta;
2364 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2365
2366 pDynMap->paPages += offDelta;
2367 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2368
2369 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2370 {
2371 paPages[iPage].pvPage += offDelta;
2372 paPages[iPage].uPte.pLegacy += offDelta;
2373 paPages[iPage].uPte.pPae += offDelta;
2374 }
2375 }
2376
2377 /*
2378 * The Zero page.
2379 */
2380 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2381#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2382 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
2383#else
2384 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2385#endif
2386
2387 /*
2388 * Physical and virtual handlers.
2389 */
2390 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2391 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2392 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2393 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2394
2395 /*
2396 * The page pool.
2397 */
2398 pgmR3PoolRelocate(pVM);
2399
2400#ifdef VBOX_WITH_STATISTICS
2401 /*
2402 * Statistics.
2403 */
2404 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2405 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2406 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2407#endif
2408}
2409
2410
2411/**
2412 * Callback function for relocating a physical access handler.
2413 *
2414 * @returns 0 (continue enum)
2415 * @param pNode Pointer to a PGMPHYSHANDLER node.
2416 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2417 * not certain the delta will fit in a void pointer for all possible configs.
2418 */
2419static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2420{
2421 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2422 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2423 if (pHandler->pfnHandlerRC)
2424 pHandler->pfnHandlerRC += offDelta;
2425 if (pHandler->pvUserRC >= 0x10000)
2426 pHandler->pvUserRC += offDelta;
2427 return 0;
2428}
2429
2430
2431/**
2432 * Callback function for relocating a virtual access handler.
2433 *
2434 * @returns 0 (continue enum)
2435 * @param pNode Pointer to a PGMVIRTHANDLER node.
2436 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2437 * not certain the delta will fit in a void pointer for all possible configs.
2438 */
2439static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2440{
2441 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2442 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2443 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2444 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2445 Assert(pHandler->pfnHandlerRC);
2446 pHandler->pfnHandlerRC += offDelta;
2447 return 0;
2448}
2449
2450
2451/**
2452 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2453 *
2454 * @returns 0 (continue enum)
2455 * @param pNode Pointer to a PGMVIRTHANDLER node.
2456 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2457 * not certain the delta will fit in a void pointer for all possible configs.
2458 */
2459static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2460{
2461 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2462 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2463 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2464 Assert(pHandler->pfnHandlerRC);
2465 pHandler->pfnHandlerRC += offDelta;
2466 return 0;
2467}
2468
2469
2470/**
2471 * Resets a virtual CPU when unplugged.
2472 *
2473 * @param pVM Pointer to the VM.
2474 * @param pVCpu Pointer to the VMCPU.
2475 */
2476VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2477{
2478 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2479 AssertRC(rc);
2480
2481 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2482 AssertRC(rc);
2483
2484 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2485
2486 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2487
2488 /*
2489 * Re-init other members.
2490 */
2491 pVCpu->pgm.s.fA20Enabled = true;
2492 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2493
2494 /*
2495 * Clear the FFs PGM owns.
2496 */
2497 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2498 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2499}
2500
2501
2502/**
2503 * The VM is being reset.
2504 *
2505 * For the PGM component this means that any PD write monitors
2506 * needs to be removed.
2507 *
2508 * @param pVM Pointer to the VM.
2509 */
2510VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2511{
2512 LogFlow(("PGMR3Reset:\n"));
2513 VM_ASSERT_EMT(pVM);
2514
2515 pgmLock(pVM);
2516
2517 /*
2518 * Unfix any fixed mappings and disable CR3 monitoring.
2519 */
2520 pVM->pgm.s.fMappingsFixed = false;
2521 pVM->pgm.s.fMappingsFixedRestored = false;
2522 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2523 pVM->pgm.s.cbMappingFixed = 0;
2524
2525 /*
2526 * Exit the guest paging mode before the pgm pool gets reset.
2527 * Important to clean up the amd64 case.
2528 */
2529 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2530 {
2531 PVMCPU pVCpu = &pVM->aCpus[i];
2532 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2533 AssertReleaseRC(rc);
2534 }
2535
2536#ifdef DEBUG
2537 DBGFR3_INFO_LOG(pVM, "mappings", NULL);
2538 DBGFR3_INFO_LOG(pVM, "handlers", "all nostat");
2539#endif
2540
2541 /*
2542 * Switch mode back to real mode. (before resetting the pgm pool!)
2543 */
2544 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2545 {
2546 PVMCPU pVCpu = &pVM->aCpus[i];
2547
2548 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2549 AssertReleaseRC(rc);
2550
2551 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2552 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2553 }
2554
2555 /*
2556 * Reset the shadow page pool.
2557 */
2558 pgmR3PoolReset(pVM);
2559
2560 /*
2561 * Re-init various other members and clear the FFs that PGM owns.
2562 */
2563 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2564 {
2565 PVMCPU pVCpu = &pVM->aCpus[i];
2566
2567 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2568 PGMNotifyNxeChanged(pVCpu, false);
2569
2570 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2571 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2572
2573 if (!pVCpu->pgm.s.fA20Enabled)
2574 {
2575 pVCpu->pgm.s.fA20Enabled = true;
2576 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2577#ifdef PGM_WITH_A20
2578 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2579 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2580 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2581 HMFlushTLB(pVCpu);
2582#endif
2583 }
2584 }
2585
2586 pgmUnlock(pVM);
2587}
2588
2589
2590/**
2591 * Memory setup after VM construction or reset.
2592 *
2593 * @param pVM Pointer to the VM.
2594 * @param fAtReset Indicates the context, after reset if @c true or after
2595 * construction if @c false.
2596 */
2597VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2598{
2599 if (fAtReset)
2600 {
2601 pgmLock(pVM);
2602
2603 int rc = pgmR3PhysRamZeroAll(pVM);
2604 AssertReleaseRC(rc);
2605
2606 rc = pgmR3PhysRomReset(pVM);
2607 AssertReleaseRC(rc);
2608
2609 pgmUnlock(pVM);
2610 }
2611}
2612
2613
2614#ifdef VBOX_STRICT
2615/**
2616 * VM state change callback for clearing fNoMorePhysWrites after
2617 * a snapshot has been created.
2618 */
2619static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2620{
2621 if ( enmState == VMSTATE_RUNNING
2622 || enmState == VMSTATE_RESUMING)
2623 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2624 NOREF(enmOldState); NOREF(pvUser);
2625}
2626#endif
2627
2628/**
2629 * Private API to reset fNoMorePhysWrites.
2630 */
2631VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2632{
2633 pVM->pgm.s.fNoMorePhysWrites = false;
2634}
2635
2636/**
2637 * Terminates the PGM.
2638 *
2639 * @returns VBox status code.
2640 * @param pVM Pointer to VM structure.
2641 */
2642VMMR3DECL(int) PGMR3Term(PVM pVM)
2643{
2644 /* Must free shared pages here. */
2645 pgmLock(pVM);
2646 pgmR3PhysRamTerm(pVM);
2647 pgmR3PhysRomTerm(pVM);
2648 pgmUnlock(pVM);
2649
2650 PGMDeregisterStringFormatTypes();
2651 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2652}
2653
2654
2655/**
2656 * Show paging mode.
2657 *
2658 * @param pVM Pointer to the VM.
2659 * @param pHlp The info helpers.
2660 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2661 */
2662static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2663{
2664 /* digest argument. */
2665 bool fGuest, fShadow, fHost;
2666 if (pszArgs)
2667 pszArgs = RTStrStripL(pszArgs);
2668 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2669 fShadow = fHost = fGuest = true;
2670 else
2671 {
2672 fShadow = fHost = fGuest = false;
2673 if (strstr(pszArgs, "guest"))
2674 fGuest = true;
2675 if (strstr(pszArgs, "shadow"))
2676 fShadow = true;
2677 if (strstr(pszArgs, "host"))
2678 fHost = true;
2679 }
2680
2681 /** @todo SMP support! */
2682 /* print info. */
2683 if (fGuest)
2684 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2685 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2686 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2687 if (fShadow)
2688 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2689 if (fHost)
2690 {
2691 const char *psz;
2692 switch (pVM->pgm.s.enmHostMode)
2693 {
2694 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2695 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2696 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2697 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2698 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2699 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2700 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2701 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2702 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2703 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2704 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2705 default: psz = "unknown"; break;
2706 }
2707 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2708 }
2709}
2710
2711
2712/**
2713 * Dump registered MMIO ranges to the log.
2714 *
2715 * @param pVM Pointer to the VM.
2716 * @param pHlp The info helpers.
2717 * @param pszArgs Arguments, ignored.
2718 */
2719static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2720{
2721 NOREF(pszArgs);
2722 pHlp->pfnPrintf(pHlp,
2723 "RAM ranges (pVM=%p)\n"
2724 "%.*s %.*s\n",
2725 pVM,
2726 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2727 sizeof(RTHCPTR) * 2, "pvHC ");
2728
2729 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2730 pHlp->pfnPrintf(pHlp,
2731 "%RGp-%RGp %RHv %s\n",
2732 pCur->GCPhys,
2733 pCur->GCPhysLast,
2734 pCur->pvR3,
2735 pCur->pszDesc);
2736}
2737
2738
2739/**
2740 * Dump the page directory to the log.
2741 *
2742 * @param pVM Pointer to the VM.
2743 * @param pHlp The info helpers.
2744 * @param pszArgs Arguments, ignored.
2745 */
2746static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2747{
2748 /** @todo SMP support!! */
2749 PVMCPU pVCpu = &pVM->aCpus[0];
2750
2751/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2752 /* Big pages supported? */
2753 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2754
2755 /* Global pages supported? */
2756 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2757
2758 NOREF(pszArgs);
2759
2760 /*
2761 * Get page directory addresses.
2762 */
2763 pgmLock(pVM);
2764 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2765 Assert(pPDSrc);
2766
2767 /*
2768 * Iterate the page directory.
2769 */
2770 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2771 {
2772 X86PDE PdeSrc = pPDSrc->a[iPD];
2773 if (PdeSrc.n.u1Present)
2774 {
2775 if (PdeSrc.b.u1Size && fPSE)
2776 pHlp->pfnPrintf(pHlp,
2777 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2778 iPD,
2779 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2780 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2781 else
2782 pHlp->pfnPrintf(pHlp,
2783 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2784 iPD,
2785 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2786 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2787 }
2788 }
2789 pgmUnlock(pVM);
2790}
2791
2792
2793/**
2794 * Service a VMMCALLRING3_PGM_LOCK call.
2795 *
2796 * @returns VBox status code.
2797 * @param pVM Pointer to the VM.
2798 */
2799VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2800{
2801 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2802 AssertRC(rc);
2803 return rc;
2804}
2805
2806
2807/**
2808 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2809 *
2810 * @returns PGM_TYPE_*.
2811 * @param pgmMode The mode value to convert.
2812 */
2813DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2814{
2815 switch (pgmMode)
2816 {
2817 case PGMMODE_REAL: return PGM_TYPE_REAL;
2818 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2819 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2820 case PGMMODE_PAE:
2821 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2822 case PGMMODE_AMD64:
2823 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2824 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2825 case PGMMODE_EPT: return PGM_TYPE_EPT;
2826 default:
2827 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2828 }
2829}
2830
2831
2832/**
2833 * Gets the index into the paging mode data array of a SHW+GST mode.
2834 *
2835 * @returns PGM::paPagingData index.
2836 * @param uShwType The shadow paging mode type.
2837 * @param uGstType The guest paging mode type.
2838 */
2839DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2840{
2841 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2842 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2843 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2844 + (uGstType - PGM_TYPE_REAL);
2845}
2846
2847
2848/**
2849 * Gets the index into the paging mode data array of a SHW+GST mode.
2850 *
2851 * @returns PGM::paPagingData index.
2852 * @param enmShw The shadow paging mode.
2853 * @param enmGst The guest paging mode.
2854 */
2855DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2856{
2857 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2858 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2859 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2860}
2861
2862
2863/**
2864 * Calculates the max data index.
2865 * @returns The number of entries in the paging data array.
2866 */
2867DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2868{
2869 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2870}
2871
2872
2873/**
2874 * Initializes the paging mode data kept in PGM::paModeData.
2875 *
2876 * @param pVM Pointer to the VM.
2877 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2878 * This is used early in the init process to avoid trouble with PDM
2879 * not being initialized yet.
2880 */
2881static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2882{
2883 PPGMMODEDATA pModeData;
2884 int rc;
2885
2886 /*
2887 * Allocate the array on the first call.
2888 */
2889 if (!pVM->pgm.s.paModeData)
2890 {
2891 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2892 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2893 }
2894
2895 /*
2896 * Initialize the array entries.
2897 */
2898 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2899 pModeData->uShwType = PGM_TYPE_32BIT;
2900 pModeData->uGstType = PGM_TYPE_REAL;
2901 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904
2905 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2906 pModeData->uShwType = PGM_TYPE_32BIT;
2907 pModeData->uGstType = PGM_TYPE_PROT;
2908 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2909 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911
2912 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2913 pModeData->uShwType = PGM_TYPE_32BIT;
2914 pModeData->uGstType = PGM_TYPE_32BIT;
2915 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2918
2919 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2920 pModeData->uShwType = PGM_TYPE_PAE;
2921 pModeData->uGstType = PGM_TYPE_REAL;
2922 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2924 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925
2926 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2927 pModeData->uShwType = PGM_TYPE_PAE;
2928 pModeData->uGstType = PGM_TYPE_PROT;
2929 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2930 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2931 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932
2933 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2934 pModeData->uShwType = PGM_TYPE_PAE;
2935 pModeData->uGstType = PGM_TYPE_32BIT;
2936 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2937 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2938 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2939
2940 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2941 pModeData->uShwType = PGM_TYPE_PAE;
2942 pModeData->uGstType = PGM_TYPE_PAE;
2943 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2944 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2945 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2946
2947#ifdef VBOX_WITH_64_BITS_GUESTS
2948 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2949 pModeData->uShwType = PGM_TYPE_AMD64;
2950 pModeData->uGstType = PGM_TYPE_AMD64;
2951 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2952 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2953 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2954#endif
2955
2956 /* The nested paging mode. */
2957 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2958 pModeData->uShwType = PGM_TYPE_NESTED;
2959 pModeData->uGstType = PGM_TYPE_REAL;
2960 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2961 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2962
2963 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2964 pModeData->uShwType = PGM_TYPE_NESTED;
2965 pModeData->uGstType = PGM_TYPE_PROT;
2966 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2967 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2968
2969 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2970 pModeData->uShwType = PGM_TYPE_NESTED;
2971 pModeData->uGstType = PGM_TYPE_32BIT;
2972 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2973 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2974
2975 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2976 pModeData->uShwType = PGM_TYPE_NESTED;
2977 pModeData->uGstType = PGM_TYPE_PAE;
2978 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2979 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2980
2981#ifdef VBOX_WITH_64_BITS_GUESTS
2982 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2983 pModeData->uShwType = PGM_TYPE_NESTED;
2984 pModeData->uGstType = PGM_TYPE_AMD64;
2985 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2986 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2987#endif
2988
2989 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2990 switch (pVM->pgm.s.enmHostMode)
2991 {
2992#if HC_ARCH_BITS == 32
2993 case SUPPAGINGMODE_32_BIT:
2994 case SUPPAGINGMODE_32_BIT_GLOBAL:
2995 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2996 {
2997 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2998 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2999 }
3000# ifdef VBOX_WITH_64_BITS_GUESTS
3001 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3002 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3003# endif
3004 break;
3005
3006 case SUPPAGINGMODE_PAE:
3007 case SUPPAGINGMODE_PAE_NX:
3008 case SUPPAGINGMODE_PAE_GLOBAL:
3009 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3010 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3011 {
3012 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3013 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3014 }
3015# ifdef VBOX_WITH_64_BITS_GUESTS
3016 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3017 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3018# endif
3019 break;
3020#endif /* HC_ARCH_BITS == 32 */
3021
3022#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3023 case SUPPAGINGMODE_AMD64:
3024 case SUPPAGINGMODE_AMD64_GLOBAL:
3025 case SUPPAGINGMODE_AMD64_NX:
3026 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3027# ifdef VBOX_WITH_64_BITS_GUESTS
3028 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3029# else
3030 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3031# endif
3032 {
3033 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3034 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3035 }
3036 break;
3037#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3038
3039 default:
3040 AssertFailed();
3041 break;
3042 }
3043
3044 /* Extended paging (EPT) / Intel VT-x */
3045 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3046 pModeData->uShwType = PGM_TYPE_EPT;
3047 pModeData->uGstType = PGM_TYPE_REAL;
3048 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3049 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3050 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3051
3052 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3053 pModeData->uShwType = PGM_TYPE_EPT;
3054 pModeData->uGstType = PGM_TYPE_PROT;
3055 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3056 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3057 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3058
3059 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3060 pModeData->uShwType = PGM_TYPE_EPT;
3061 pModeData->uGstType = PGM_TYPE_32BIT;
3062 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3063 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3064 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3065
3066 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3067 pModeData->uShwType = PGM_TYPE_EPT;
3068 pModeData->uGstType = PGM_TYPE_PAE;
3069 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3070 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3071 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3072
3073#ifdef VBOX_WITH_64_BITS_GUESTS
3074 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3075 pModeData->uShwType = PGM_TYPE_EPT;
3076 pModeData->uGstType = PGM_TYPE_AMD64;
3077 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3078 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3079 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3080#endif
3081 return VINF_SUCCESS;
3082}
3083
3084
3085/**
3086 * Switch to different (or relocated in the relocate case) mode data.
3087 *
3088 * @param pVM Pointer to the VM.
3089 * @param pVCpu Pointer to the VMCPU.
3090 * @param enmShw The shadow paging mode.
3091 * @param enmGst The guest paging mode.
3092 */
3093static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3094{
3095 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3096
3097 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3098 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3099
3100 /* shadow */
3101 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3102 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3103 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3104 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3105 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3106
3107 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3108 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3109
3110 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3111 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3112
3113
3114 /* guest */
3115 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3116 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3117 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3118 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3119 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3120 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3121 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3122 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3123 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3124 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3125 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3126 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3127
3128 /* both */
3129 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3130 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3131 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3132 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3133 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3134 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3135#ifdef VBOX_STRICT
3136 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3137#endif
3138 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3139 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3140
3141 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3142 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3143 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3144 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3145 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3146#ifdef VBOX_STRICT
3147 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3148#endif
3149 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3150 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3151
3152 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3153 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3154 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3155 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3156 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3157#ifdef VBOX_STRICT
3158 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3159#endif
3160 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3161 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3162}
3163
3164
3165/**
3166 * Calculates the shadow paging mode.
3167 *
3168 * @returns The shadow paging mode.
3169 * @param pVM Pointer to the VM.
3170 * @param enmGuestMode The guest mode.
3171 * @param enmHostMode The host mode.
3172 * @param enmShadowMode The current shadow mode.
3173 * @param penmSwitcher Where to store the switcher to use.
3174 * VMMSWITCHER_INVALID means no change.
3175 */
3176static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3177{
3178 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3179 switch (enmGuestMode)
3180 {
3181 /*
3182 * When switching to real or protected mode we don't change
3183 * anything since it's likely that we'll switch back pretty soon.
3184 *
3185 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3186 * and is supposed to determine which shadow paging and switcher to
3187 * use during init.
3188 */
3189 case PGMMODE_REAL:
3190 case PGMMODE_PROTECTED:
3191 if ( enmShadowMode != PGMMODE_INVALID
3192 && !HMIsEnabled(pVM) /* always switch in hm mode! */)
3193 break; /* (no change) */
3194
3195 switch (enmHostMode)
3196 {
3197 case SUPPAGINGMODE_32_BIT:
3198 case SUPPAGINGMODE_32_BIT_GLOBAL:
3199 enmShadowMode = PGMMODE_32_BIT;
3200 enmSwitcher = VMMSWITCHER_32_TO_32;
3201 break;
3202
3203 case SUPPAGINGMODE_PAE:
3204 case SUPPAGINGMODE_PAE_NX:
3205 case SUPPAGINGMODE_PAE_GLOBAL:
3206 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3207 enmShadowMode = PGMMODE_PAE;
3208 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3209#ifdef DEBUG_bird
3210 if (RTEnvExist("VBOX_32BIT"))
3211 {
3212 enmShadowMode = PGMMODE_32_BIT;
3213 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3214 }
3215#endif
3216 break;
3217
3218 case SUPPAGINGMODE_AMD64:
3219 case SUPPAGINGMODE_AMD64_GLOBAL:
3220 case SUPPAGINGMODE_AMD64_NX:
3221 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3222 enmShadowMode = PGMMODE_PAE;
3223 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3224#ifdef DEBUG_bird
3225 if (RTEnvExist("VBOX_32BIT"))
3226 {
3227 enmShadowMode = PGMMODE_32_BIT;
3228 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3229 }
3230#endif
3231 break;
3232
3233 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3234 }
3235 break;
3236
3237 case PGMMODE_32_BIT:
3238 switch (enmHostMode)
3239 {
3240 case SUPPAGINGMODE_32_BIT:
3241 case SUPPAGINGMODE_32_BIT_GLOBAL:
3242 enmShadowMode = PGMMODE_32_BIT;
3243 enmSwitcher = VMMSWITCHER_32_TO_32;
3244 break;
3245
3246 case SUPPAGINGMODE_PAE:
3247 case SUPPAGINGMODE_PAE_NX:
3248 case SUPPAGINGMODE_PAE_GLOBAL:
3249 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3250 enmShadowMode = PGMMODE_PAE;
3251 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3252#ifdef DEBUG_bird
3253 if (RTEnvExist("VBOX_32BIT"))
3254 {
3255 enmShadowMode = PGMMODE_32_BIT;
3256 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3257 }
3258#endif
3259 break;
3260
3261 case SUPPAGINGMODE_AMD64:
3262 case SUPPAGINGMODE_AMD64_GLOBAL:
3263 case SUPPAGINGMODE_AMD64_NX:
3264 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3265 enmShadowMode = PGMMODE_PAE;
3266 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3267#ifdef DEBUG_bird
3268 if (RTEnvExist("VBOX_32BIT"))
3269 {
3270 enmShadowMode = PGMMODE_32_BIT;
3271 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3272 }
3273#endif
3274 break;
3275
3276 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3277 }
3278 break;
3279
3280 case PGMMODE_PAE:
3281 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3282 switch (enmHostMode)
3283 {
3284 case SUPPAGINGMODE_32_BIT:
3285 case SUPPAGINGMODE_32_BIT_GLOBAL:
3286 enmShadowMode = PGMMODE_PAE;
3287 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3288 break;
3289
3290 case SUPPAGINGMODE_PAE:
3291 case SUPPAGINGMODE_PAE_NX:
3292 case SUPPAGINGMODE_PAE_GLOBAL:
3293 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3294 enmShadowMode = PGMMODE_PAE;
3295 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3296 break;
3297
3298 case SUPPAGINGMODE_AMD64:
3299 case SUPPAGINGMODE_AMD64_GLOBAL:
3300 case SUPPAGINGMODE_AMD64_NX:
3301 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3302 enmShadowMode = PGMMODE_PAE;
3303 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3304 break;
3305
3306 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3307 }
3308 break;
3309
3310 case PGMMODE_AMD64:
3311 case PGMMODE_AMD64_NX:
3312 switch (enmHostMode)
3313 {
3314 case SUPPAGINGMODE_32_BIT:
3315 case SUPPAGINGMODE_32_BIT_GLOBAL:
3316 enmShadowMode = PGMMODE_AMD64;
3317 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3318 break;
3319
3320 case SUPPAGINGMODE_PAE:
3321 case SUPPAGINGMODE_PAE_NX:
3322 case SUPPAGINGMODE_PAE_GLOBAL:
3323 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3324 enmShadowMode = PGMMODE_AMD64;
3325 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3326 break;
3327
3328 case SUPPAGINGMODE_AMD64:
3329 case SUPPAGINGMODE_AMD64_GLOBAL:
3330 case SUPPAGINGMODE_AMD64_NX:
3331 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3332 enmShadowMode = PGMMODE_AMD64;
3333 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3334 break;
3335
3336 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3337 }
3338 break;
3339
3340
3341 default:
3342 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3343 *penmSwitcher = VMMSWITCHER_INVALID;
3344 return PGMMODE_INVALID;
3345 }
3346 /* Override the shadow mode is nested paging is active. */
3347 pVM->pgm.s.fNestedPaging = HMIsNestedPagingActive(pVM);
3348 if (pVM->pgm.s.fNestedPaging)
3349 enmShadowMode = HMGetShwPagingMode(pVM);
3350
3351 *penmSwitcher = enmSwitcher;
3352 return enmShadowMode;
3353}
3354
3355
3356/**
3357 * Performs the actual mode change.
3358 * This is called by PGMChangeMode and pgmR3InitPaging().
3359 *
3360 * @returns VBox status code. May suspend or power off the VM on error, but this
3361 * will trigger using FFs and not status codes.
3362 *
3363 * @param pVM Pointer to the VM.
3364 * @param pVCpu Pointer to the VMCPU.
3365 * @param enmGuestMode The new guest mode. This is assumed to be different from
3366 * the current mode.
3367 */
3368VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3369{
3370#if HC_ARCH_BITS == 32
3371 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3372#endif
3373 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3374
3375 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3376 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3377
3378 /*
3379 * Calc the shadow mode and switcher.
3380 */
3381 VMMSWITCHER enmSwitcher;
3382 PGMMODE enmShadowMode;
3383 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3384
3385#ifdef VBOX_WITH_RAW_MODE
3386 if ( enmSwitcher != VMMSWITCHER_INVALID
3387 && !HMIsEnabled(pVM))
3388 {
3389 /*
3390 * Select new switcher.
3391 */
3392 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3393 if (RT_FAILURE(rc))
3394 {
3395 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3396 return rc;
3397 }
3398 }
3399#endif
3400
3401 /*
3402 * Exit old mode(s).
3403 */
3404#if HC_ARCH_BITS == 32
3405 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3406 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3407 && enmShadowMode == PGMMODE_NESTED);
3408#else
3409 const bool fForceShwEnterExit = false;
3410#endif
3411 /* shadow */
3412 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3413 || fForceShwEnterExit)
3414 {
3415 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3416 if (PGM_SHW_PFN(Exit, pVCpu))
3417 {
3418 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3419 if (RT_FAILURE(rc))
3420 {
3421 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3422 return rc;
3423 }
3424 }
3425
3426 }
3427 else
3428 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3429
3430 /* guest */
3431 if (PGM_GST_PFN(Exit, pVCpu))
3432 {
3433 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3434 if (RT_FAILURE(rc))
3435 {
3436 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3437 return rc;
3438 }
3439 }
3440
3441 /*
3442 * Load new paging mode data.
3443 */
3444 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3445
3446 /*
3447 * Enter new shadow mode (if changed).
3448 */
3449 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3450 || fForceShwEnterExit)
3451 {
3452 int rc;
3453 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3454 switch (enmShadowMode)
3455 {
3456 case PGMMODE_32_BIT:
3457 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3458 break;
3459 case PGMMODE_PAE:
3460 case PGMMODE_PAE_NX:
3461 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3462 break;
3463 case PGMMODE_AMD64:
3464 case PGMMODE_AMD64_NX:
3465 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3466 break;
3467 case PGMMODE_NESTED:
3468 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3469 break;
3470 case PGMMODE_EPT:
3471 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3472 break;
3473 case PGMMODE_REAL:
3474 case PGMMODE_PROTECTED:
3475 default:
3476 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3477 return VERR_INTERNAL_ERROR;
3478 }
3479 if (RT_FAILURE(rc))
3480 {
3481 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3482 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3483 return rc;
3484 }
3485 }
3486
3487 /*
3488 * Always flag the necessary updates
3489 */
3490 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3491
3492 /*
3493 * Enter the new guest and shadow+guest modes.
3494 */
3495 int rc = -1;
3496 int rc2 = -1;
3497 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3498 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3499 switch (enmGuestMode)
3500 {
3501 case PGMMODE_REAL:
3502 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3503 switch (pVCpu->pgm.s.enmShadowMode)
3504 {
3505 case PGMMODE_32_BIT:
3506 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3507 break;
3508 case PGMMODE_PAE:
3509 case PGMMODE_PAE_NX:
3510 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3511 break;
3512 case PGMMODE_NESTED:
3513 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3514 break;
3515 case PGMMODE_EPT:
3516 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3517 break;
3518 case PGMMODE_AMD64:
3519 case PGMMODE_AMD64_NX:
3520 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3521 default: AssertFailed(); break;
3522 }
3523 break;
3524
3525 case PGMMODE_PROTECTED:
3526 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3527 switch (pVCpu->pgm.s.enmShadowMode)
3528 {
3529 case PGMMODE_32_BIT:
3530 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3531 break;
3532 case PGMMODE_PAE:
3533 case PGMMODE_PAE_NX:
3534 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3535 break;
3536 case PGMMODE_NESTED:
3537 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3538 break;
3539 case PGMMODE_EPT:
3540 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3541 break;
3542 case PGMMODE_AMD64:
3543 case PGMMODE_AMD64_NX:
3544 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3545 default: AssertFailed(); break;
3546 }
3547 break;
3548
3549 case PGMMODE_32_BIT:
3550 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3551 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3552 switch (pVCpu->pgm.s.enmShadowMode)
3553 {
3554 case PGMMODE_32_BIT:
3555 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3556 break;
3557 case PGMMODE_PAE:
3558 case PGMMODE_PAE_NX:
3559 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3560 break;
3561 case PGMMODE_NESTED:
3562 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3563 break;
3564 case PGMMODE_EPT:
3565 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3566 break;
3567 case PGMMODE_AMD64:
3568 case PGMMODE_AMD64_NX:
3569 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3570 default: AssertFailed(); break;
3571 }
3572 break;
3573
3574 case PGMMODE_PAE_NX:
3575 case PGMMODE_PAE:
3576 {
3577 uint32_t u32Dummy, u32Features;
3578
3579 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3580 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3581 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3582 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3583
3584 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3585 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3586 switch (pVCpu->pgm.s.enmShadowMode)
3587 {
3588 case PGMMODE_PAE:
3589 case PGMMODE_PAE_NX:
3590 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3591 break;
3592 case PGMMODE_NESTED:
3593 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3594 break;
3595 case PGMMODE_EPT:
3596 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3597 break;
3598 case PGMMODE_32_BIT:
3599 case PGMMODE_AMD64:
3600 case PGMMODE_AMD64_NX:
3601 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3602 default: AssertFailed(); break;
3603 }
3604 break;
3605 }
3606
3607#ifdef VBOX_WITH_64_BITS_GUESTS
3608 case PGMMODE_AMD64_NX:
3609 case PGMMODE_AMD64:
3610 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3611 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3612 switch (pVCpu->pgm.s.enmShadowMode)
3613 {
3614 case PGMMODE_AMD64:
3615 case PGMMODE_AMD64_NX:
3616 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3617 break;
3618 case PGMMODE_NESTED:
3619 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3620 break;
3621 case PGMMODE_EPT:
3622 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3623 break;
3624 case PGMMODE_32_BIT:
3625 case PGMMODE_PAE:
3626 case PGMMODE_PAE_NX:
3627 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3628 default: AssertFailed(); break;
3629 }
3630 break;
3631#endif
3632
3633 default:
3634 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3635 rc = VERR_NOT_IMPLEMENTED;
3636 break;
3637 }
3638
3639 /* status codes. */
3640 AssertRC(rc);
3641 AssertRC(rc2);
3642 if (RT_SUCCESS(rc))
3643 {
3644 rc = rc2;
3645 if (RT_SUCCESS(rc)) /* no informational status codes. */
3646 rc = VINF_SUCCESS;
3647 }
3648
3649 /* Notify HM as well. */
3650 HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3651 return rc;
3652}
3653
3654
3655/**
3656 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3657 *
3658 * @returns VBox status code, fully asserted.
3659 * @param pVCpu Pointer to the VMCPU.
3660 */
3661int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3662{
3663 /* Unmap the old CR3 value before flushing everything. */
3664 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3665 AssertRC(rc);
3666
3667 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3668 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3669 AssertRC(rc);
3670 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3671 return rc;
3672}
3673
3674
3675/**
3676 * Called by pgmPoolFlushAllInt after flushing the pool.
3677 *
3678 * @returns VBox status code, fully asserted.
3679 * @param pVM Pointer to the VM.
3680 * @param pVCpu Pointer to the VMCPU.
3681 */
3682int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3683{
3684 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3685 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3686 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3687 AssertRCReturn(rc, rc);
3688 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3689
3690 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3691 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3692 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3693 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3694 return rc;
3695}
3696
3697
3698/**
3699 * Called by PGMR3PhysSetA20 after changing the A20 state.
3700 *
3701 * @param pVCpu Pointer to the VMCPU.
3702 */
3703void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3704{
3705 /** @todo Probably doing a bit too much here. */
3706 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3707 AssertReleaseRC(rc);
3708 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3709 AssertReleaseRC(rc);
3710}
3711
3712
3713#ifdef VBOX_WITH_DEBUGGER
3714
3715/**
3716 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3717 */
3718static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3719{
3720 /*
3721 * Validate input.
3722 */
3723 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3724 PVM pVM = pUVM->pVM;
3725 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3726
3727 if (!cArgs)
3728 {
3729 /*
3730 * Print the list of error injection locations with status.
3731 */
3732 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3733 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3734 }
3735 else
3736 {
3737 /*
3738 * String switch on where to inject the error.
3739 */
3740 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3741 const char *pszWhere = paArgs[0].u.pszString;
3742 if (!strcmp(pszWhere, "handy"))
3743 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3744 else
3745 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
3746 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
3747 }
3748 return VINF_SUCCESS;
3749}
3750
3751
3752/**
3753 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
3754 */
3755static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3756{
3757 /*
3758 * Validate input.
3759 */
3760 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3761 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3762 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3763 if (!pVCpu)
3764 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3765
3766 /*
3767 * Force page directory sync.
3768 */
3769 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3770
3771 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
3772 if (RT_FAILURE(rc))
3773 return rc;
3774
3775 return VINF_SUCCESS;
3776}
3777
3778#ifdef VBOX_STRICT
3779
3780/**
3781 * EMT callback for pgmR3CmdAssertCR3.
3782 *
3783 * @returns VBox status code.
3784 * @param pUVM The user mode VM handle.
3785 * @param pcErrors Where to return the error count.
3786 */
3787static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
3788{
3789 PVM pVM = pUVM->pVM;
3790 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3791 PVMCPU pVCpu = VMMGetCpu(pVM);
3792
3793 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3794
3795 return VINF_SUCCESS;
3796}
3797
3798
3799/**
3800 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
3801 */
3802static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3803{
3804 /*
3805 * Validate input.
3806 */
3807 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3808 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3809
3810 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
3811 if (RT_FAILURE(rc))
3812 return rc;
3813
3814 unsigned cErrors = 0;
3815 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
3816 if (RT_FAILURE(rc))
3817 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
3818 if (cErrors > 0)
3819 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
3820 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
3821}
3822
3823#endif /* VBOX_STRICT */
3824
3825/**
3826 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
3827 */
3828static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3829{
3830 /*
3831 * Validate input.
3832 */
3833 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3834 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3835 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3836 if (!pVCpu)
3837 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3838
3839 /*
3840 * Force page directory sync.
3841 */
3842 int rc;
3843 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3844 {
3845 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3846 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
3847 }
3848 else
3849 {
3850 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3851 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3852 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
3853 }
3854 return rc;
3855}
3856
3857
3858/**
3859 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
3860 */
3861static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3862{
3863 /*
3864 * Validate input.
3865 */
3866 NOREF(pCmd);
3867 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3868 PVM pVM = pUVM->pVM;
3869 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
3870 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING);
3871 if (cArgs == 2)
3872 {
3873 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[2].enmType != DBGCVAR_TYPE_STRING);
3874 if (strcmp(paArgs[1].u.pszString, "nozero"))
3875 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3876 }
3877 bool fIncZeroPgs = cArgs < 2;
3878
3879 /*
3880 * Open the output file and get the ram parameters.
3881 */
3882 RTFILE hFile;
3883 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3884 if (RT_FAILURE(rc))
3885 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3886
3887 uint32_t cbRamHole = 0;
3888 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3889 uint64_t cbRam = 0;
3890 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
3891 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3892
3893 /*
3894 * Dump the physical memory, page by page.
3895 */
3896 RTGCPHYS GCPhys = 0;
3897 char abZeroPg[PAGE_SIZE];
3898 RT_ZERO(abZeroPg);
3899
3900 pgmLock(pVM);
3901 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3902 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3903 pRam = pRam->pNextR3)
3904 {
3905 /* fill the gap */
3906 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3907 {
3908 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3909 {
3910 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3911 GCPhys += PAGE_SIZE;
3912 }
3913 }
3914
3915 PCPGMPAGE pPage = &pRam->aPages[0];
3916 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3917 {
3918 if ( PGM_PAGE_IS_ZERO(pPage)
3919 || PGM_PAGE_IS_BALLOONED(pPage))
3920 {
3921 if (fIncZeroPgs)
3922 {
3923 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3924 if (RT_FAILURE(rc))
3925 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3926 }
3927 }
3928 else
3929 {
3930 switch (PGM_PAGE_GET_TYPE(pPage))
3931 {
3932 case PGMPAGETYPE_RAM:
3933 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3934 case PGMPAGETYPE_ROM:
3935 case PGMPAGETYPE_MMIO2:
3936 {
3937 void const *pvPage;
3938 PGMPAGEMAPLOCK Lock;
3939 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3940 if (RT_SUCCESS(rc))
3941 {
3942 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3943 PGMPhysReleasePageMappingLock(pVM, &Lock);
3944 if (RT_FAILURE(rc))
3945 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3946 }
3947 else
3948 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3949 break;
3950 }
3951
3952 default:
3953 AssertFailed();
3954 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3955 case PGMPAGETYPE_MMIO:
3956 if (fIncZeroPgs)
3957 {
3958 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3959 if (RT_FAILURE(rc))
3960 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3961 }
3962 break;
3963 }
3964 }
3965
3966
3967 /* advance */
3968 GCPhys += PAGE_SIZE;
3969 pPage++;
3970 }
3971 }
3972 pgmUnlock(pVM);
3973
3974 RTFileClose(hFile);
3975 if (RT_SUCCESS(rc))
3976 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3977 return VINF_SUCCESS;
3978}
3979
3980#endif /* VBOX_WITH_DEBUGGER */
3981
3982/**
3983 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3984 */
3985typedef struct PGMCHECKINTARGS
3986{
3987 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3988 PPGMPHYSHANDLER pPrevPhys;
3989 PPGMVIRTHANDLER pPrevVirt;
3990 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3991 PVM pVM;
3992} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3993
3994/**
3995 * Validate a node in the physical handler tree.
3996 *
3997 * @returns 0 on if ok, other wise 1.
3998 * @param pNode The handler node.
3999 * @param pvUser pVM.
4000 */
4001static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4002{
4003 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4004 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4005 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4006 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4007 AssertReleaseMsg( !pArgs->pPrevPhys
4008 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4009 ("pPrevPhys=%p %RGp-%RGp %s\n"
4010 " pCur=%p %RGp-%RGp %s\n",
4011 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4012 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4013 pArgs->pPrevPhys = pCur;
4014 return 0;
4015}
4016
4017
4018/**
4019 * Validate a node in the virtual handler tree.
4020 *
4021 * @returns 0 on if ok, other wise 1.
4022 * @param pNode The handler node.
4023 * @param pvUser pVM.
4024 */
4025static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4026{
4027 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4028 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4029 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4030 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4031 AssertReleaseMsg( !pArgs->pPrevVirt
4032 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4033 ("pPrevVirt=%p %RGv-%RGv %s\n"
4034 " pCur=%p %RGv-%RGv %s\n",
4035 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4036 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4037 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4038 {
4039 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4040 ("pCur=%p %RGv-%RGv %s\n"
4041 "iPage=%d offVirtHandle=%#x expected %#x\n",
4042 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4043 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4044 }
4045 pArgs->pPrevVirt = pCur;
4046 return 0;
4047}
4048
4049
4050/**
4051 * Validate a node in the virtual handler tree.
4052 *
4053 * @returns 0 on if ok, other wise 1.
4054 * @param pNode The handler node.
4055 * @param pvUser pVM.
4056 */
4057static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4058{
4059 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4060 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4061 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4062 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4063 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4064 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4065 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4066 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4067 " pCur=%p %RGp-%RGp\n",
4068 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4069 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4070 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4071 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4072 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4073 " pCur=%p %RGp-%RGp\n",
4074 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4075 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4076 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4077 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4078 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4079 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4080 {
4081 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4082 for (;;)
4083 {
4084 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4085 AssertReleaseMsg(pCur2 != pCur,
4086 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4087 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4088 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4089 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4090 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4091 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4092 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4093 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4094 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4095 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4096 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4097 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4098 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4099 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4100 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4101 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4102 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4103 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4104 break;
4105 }
4106 }
4107
4108 pArgs->pPrevPhys2Virt = pCur;
4109 return 0;
4110}
4111
4112
4113/**
4114 * Perform an integrity check on the PGM component.
4115 *
4116 * @returns VINF_SUCCESS if everything is fine.
4117 * @returns VBox error status after asserting on integrity breach.
4118 * @param pVM Pointer to the VM.
4119 */
4120VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4121{
4122 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4123
4124 /*
4125 * Check the trees.
4126 */
4127 int cErrors = 0;
4128 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4129 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4130 PGMCHECKINTARGS Args = s_LeftToRight;
4131 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4132 Args = s_RightToLeft;
4133 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4134 Args = s_LeftToRight;
4135 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4136 Args = s_RightToLeft;
4137 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4138 Args = s_LeftToRight;
4139 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4140 Args = s_RightToLeft;
4141 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4142 Args = s_LeftToRight;
4143 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4144 Args = s_RightToLeft;
4145 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4146
4147 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4148}
4149
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette