VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 55628

Last change on this file since 55628 was 55503, checked in by vboxsync, 10 years ago

PGM: fix .pgmphystofile debug command (thanks Federico)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 204.2 KB
Line 
1/* $Id: PGM.cpp 55503 2015-04-29 08:11:26Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @subsection subsec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @subsection subsec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @subsection subsec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @subsection subsec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @subsection subsec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref subsec_pgmPhys_Serializing. We
555 * some double house keeping wrt to who has mapped what I think, since both
556 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613/*******************************************************************************
614* Header Files *
615*******************************************************************************/
616#define LOG_GROUP LOG_GROUP_PGM
617#include <VBox/vmm/dbgf.h>
618#include <VBox/vmm/pgm.h>
619#include <VBox/vmm/cpum.h>
620#include <VBox/vmm/iom.h>
621#include <VBox/sup.h>
622#include <VBox/vmm/mm.h>
623#include <VBox/vmm/em.h>
624#include <VBox/vmm/stam.h>
625#ifdef VBOX_WITH_REM
626# include <VBox/vmm/rem.h>
627#endif
628#include <VBox/vmm/selm.h>
629#include <VBox/vmm/ssm.h>
630#include <VBox/vmm/hm.h>
631#include "PGMInternal.h"
632#include <VBox/vmm/vm.h>
633#include <VBox/vmm/uvm.h>
634#include "PGMInline.h"
635
636#include <VBox/dbg.h>
637#include <VBox/param.h>
638#include <VBox/err.h>
639
640#include <iprt/asm.h>
641#include <iprt/asm-amd64-x86.h>
642#include <iprt/assert.h>
643#include <iprt/env.h>
644#include <iprt/mem.h>
645#include <iprt/file.h>
646#include <iprt/string.h>
647#include <iprt/thread.h>
648
649
650/*******************************************************************************
651* Internal Functions *
652*******************************************************************************/
653static int pgmR3InitPaging(PVM pVM);
654static int pgmR3InitStats(PVM pVM);
655static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
656static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
657static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
658static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
659static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
660static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
661#ifdef VBOX_STRICT
662static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
663#endif
664static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
665static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
666static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
667
668#ifdef VBOX_WITH_DEBUGGER
669static FNDBGCCMD pgmR3CmdError;
670static FNDBGCCMD pgmR3CmdSync;
671static FNDBGCCMD pgmR3CmdSyncAlways;
672# ifdef VBOX_STRICT
673static FNDBGCCMD pgmR3CmdAssertCR3;
674# endif
675static FNDBGCCMD pgmR3CmdPhysToFile;
676#endif
677
678
679/*******************************************************************************
680* Global Variables *
681*******************************************************************************/
682#ifdef VBOX_WITH_DEBUGGER
683/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
684static const DBGCVARDESC g_aPgmErrorArgs[] =
685{
686 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
687 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
688};
689
690static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
691{
692 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
693 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
694 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
695};
696
697# ifdef DEBUG_sandervl
698static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
699{
700 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
701 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
702 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
703};
704# endif
705
706/** Command descriptors. */
707static const DBGCCMD g_aCmds[] =
708{
709 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
710 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
711 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
712 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
713# ifdef VBOX_STRICT
714 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
715# ifdef VBOX_WITH_PAGE_SHARING
716 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
717 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
718# endif
719# endif
720 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
721 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
722};
723#endif
724
725
726
727
728/*
729 * Shadow - 32-bit mode
730 */
731#define PGM_SHW_TYPE PGM_TYPE_32BIT
732#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
733#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
734#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
735#include "PGMShw.h"
736
737/* Guest - real mode */
738#define PGM_GST_TYPE PGM_TYPE_REAL
739#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
740#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
741#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
742#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
743#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
744#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
745#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
746#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
747#include "PGMBth.h"
748#include "PGMGstDefs.h"
749#include "PGMGst.h"
750#undef BTH_PGMPOOLKIND_PT_FOR_PT
751#undef BTH_PGMPOOLKIND_ROOT
752#undef PGM_BTH_NAME
753#undef PGM_BTH_NAME_RC_STR
754#undef PGM_BTH_NAME_R0_STR
755#undef PGM_GST_TYPE
756#undef PGM_GST_NAME
757#undef PGM_GST_NAME_RC_STR
758#undef PGM_GST_NAME_R0_STR
759
760/* Guest - protected mode */
761#define PGM_GST_TYPE PGM_TYPE_PROT
762#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
763#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
764#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
765#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
766#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
767#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
768#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
769#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
770#include "PGMBth.h"
771#include "PGMGstDefs.h"
772#include "PGMGst.h"
773#undef BTH_PGMPOOLKIND_PT_FOR_PT
774#undef BTH_PGMPOOLKIND_ROOT
775#undef PGM_BTH_NAME
776#undef PGM_BTH_NAME_RC_STR
777#undef PGM_BTH_NAME_R0_STR
778#undef PGM_GST_TYPE
779#undef PGM_GST_NAME
780#undef PGM_GST_NAME_RC_STR
781#undef PGM_GST_NAME_R0_STR
782
783/* Guest - 32-bit mode */
784#define PGM_GST_TYPE PGM_TYPE_32BIT
785#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
792#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
793#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
794#include "PGMBth.h"
795#include "PGMGstDefs.h"
796#include "PGMGst.h"
797#undef BTH_PGMPOOLKIND_PT_FOR_BIG
798#undef BTH_PGMPOOLKIND_PT_FOR_PT
799#undef BTH_PGMPOOLKIND_ROOT
800#undef PGM_BTH_NAME
801#undef PGM_BTH_NAME_RC_STR
802#undef PGM_BTH_NAME_R0_STR
803#undef PGM_GST_TYPE
804#undef PGM_GST_NAME
805#undef PGM_GST_NAME_RC_STR
806#undef PGM_GST_NAME_R0_STR
807
808#undef PGM_SHW_TYPE
809#undef PGM_SHW_NAME
810#undef PGM_SHW_NAME_RC_STR
811#undef PGM_SHW_NAME_R0_STR
812
813
814/*
815 * Shadow - PAE mode
816 */
817#define PGM_SHW_TYPE PGM_TYPE_PAE
818#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
819#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
820#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
821#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
822#include "PGMShw.h"
823
824/* Guest - real mode */
825#define PGM_GST_TYPE PGM_TYPE_REAL
826#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
827#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
828#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
829#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
830#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
831#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
832#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
833#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
834#include "PGMGstDefs.h"
835#include "PGMBth.h"
836#undef BTH_PGMPOOLKIND_PT_FOR_PT
837#undef BTH_PGMPOOLKIND_ROOT
838#undef PGM_BTH_NAME
839#undef PGM_BTH_NAME_RC_STR
840#undef PGM_BTH_NAME_R0_STR
841#undef PGM_GST_TYPE
842#undef PGM_GST_NAME
843#undef PGM_GST_NAME_RC_STR
844#undef PGM_GST_NAME_R0_STR
845
846/* Guest - protected mode */
847#define PGM_GST_TYPE PGM_TYPE_PROT
848#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
849#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
850#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
851#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
852#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
853#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
854#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
855#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
856#include "PGMGstDefs.h"
857#include "PGMBth.h"
858#undef BTH_PGMPOOLKIND_PT_FOR_PT
859#undef BTH_PGMPOOLKIND_ROOT
860#undef PGM_BTH_NAME
861#undef PGM_BTH_NAME_RC_STR
862#undef PGM_BTH_NAME_R0_STR
863#undef PGM_GST_TYPE
864#undef PGM_GST_NAME
865#undef PGM_GST_NAME_RC_STR
866#undef PGM_GST_NAME_R0_STR
867
868/* Guest - 32-bit mode */
869#define PGM_GST_TYPE PGM_TYPE_32BIT
870#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
871#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
872#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
873#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
874#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
875#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
876#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
877#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
878#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
879#include "PGMGstDefs.h"
880#include "PGMBth.h"
881#undef BTH_PGMPOOLKIND_PT_FOR_BIG
882#undef BTH_PGMPOOLKIND_PT_FOR_PT
883#undef BTH_PGMPOOLKIND_ROOT
884#undef PGM_BTH_NAME
885#undef PGM_BTH_NAME_RC_STR
886#undef PGM_BTH_NAME_R0_STR
887#undef PGM_GST_TYPE
888#undef PGM_GST_NAME
889#undef PGM_GST_NAME_RC_STR
890#undef PGM_GST_NAME_R0_STR
891
892/* Guest - PAE mode */
893#define PGM_GST_TYPE PGM_TYPE_PAE
894#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
895#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
896#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
897#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
898#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
899#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
900#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
901#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
902#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
903#include "PGMBth.h"
904#include "PGMGstDefs.h"
905#include "PGMGst.h"
906#undef BTH_PGMPOOLKIND_PT_FOR_BIG
907#undef BTH_PGMPOOLKIND_PT_FOR_PT
908#undef BTH_PGMPOOLKIND_ROOT
909#undef PGM_BTH_NAME
910#undef PGM_BTH_NAME_RC_STR
911#undef PGM_BTH_NAME_R0_STR
912#undef PGM_GST_TYPE
913#undef PGM_GST_NAME
914#undef PGM_GST_NAME_RC_STR
915#undef PGM_GST_NAME_R0_STR
916
917#undef PGM_SHW_TYPE
918#undef PGM_SHW_NAME
919#undef PGM_SHW_NAME_RC_STR
920#undef PGM_SHW_NAME_R0_STR
921
922
923/*
924 * Shadow - AMD64 mode
925 */
926#define PGM_SHW_TYPE PGM_TYPE_AMD64
927#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
928#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
929#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
930#include "PGMShw.h"
931
932#ifdef VBOX_WITH_64_BITS_GUESTS
933/* Guest - AMD64 mode */
934# define PGM_GST_TYPE PGM_TYPE_AMD64
935# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
936# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
937# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
938# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
939# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
940# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
941# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
942# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
943# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
944# include "PGMBth.h"
945# include "PGMGstDefs.h"
946# include "PGMGst.h"
947# undef BTH_PGMPOOLKIND_PT_FOR_BIG
948# undef BTH_PGMPOOLKIND_PT_FOR_PT
949# undef BTH_PGMPOOLKIND_ROOT
950# undef PGM_BTH_NAME
951# undef PGM_BTH_NAME_RC_STR
952# undef PGM_BTH_NAME_R0_STR
953# undef PGM_GST_TYPE
954# undef PGM_GST_NAME
955# undef PGM_GST_NAME_RC_STR
956# undef PGM_GST_NAME_R0_STR
957#endif /* VBOX_WITH_64_BITS_GUESTS */
958
959#undef PGM_SHW_TYPE
960#undef PGM_SHW_NAME
961#undef PGM_SHW_NAME_RC_STR
962#undef PGM_SHW_NAME_R0_STR
963
964
965/*
966 * Shadow - Nested paging mode
967 */
968#define PGM_SHW_TYPE PGM_TYPE_NESTED
969#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
970#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
971#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
972#include "PGMShw.h"
973
974/* Guest - real mode */
975#define PGM_GST_TYPE PGM_TYPE_REAL
976#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
977#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
978#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
979#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
980#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
981#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
982#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
983#include "PGMGstDefs.h"
984#include "PGMBth.h"
985#undef BTH_PGMPOOLKIND_PT_FOR_PT
986#undef PGM_BTH_NAME
987#undef PGM_BTH_NAME_RC_STR
988#undef PGM_BTH_NAME_R0_STR
989#undef PGM_GST_TYPE
990#undef PGM_GST_NAME
991#undef PGM_GST_NAME_RC_STR
992#undef PGM_GST_NAME_R0_STR
993
994/* Guest - protected mode */
995#define PGM_GST_TYPE PGM_TYPE_PROT
996#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
997#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
998#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
999#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
1000#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
1001#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
1002#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1003#include "PGMGstDefs.h"
1004#include "PGMBth.h"
1005#undef BTH_PGMPOOLKIND_PT_FOR_PT
1006#undef PGM_BTH_NAME
1007#undef PGM_BTH_NAME_RC_STR
1008#undef PGM_BTH_NAME_R0_STR
1009#undef PGM_GST_TYPE
1010#undef PGM_GST_NAME
1011#undef PGM_GST_NAME_RC_STR
1012#undef PGM_GST_NAME_R0_STR
1013
1014/* Guest - 32-bit mode */
1015#define PGM_GST_TYPE PGM_TYPE_32BIT
1016#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1017#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1018#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1019#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1020#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1021#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1022#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1023#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1024#include "PGMGstDefs.h"
1025#include "PGMBth.h"
1026#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1027#undef BTH_PGMPOOLKIND_PT_FOR_PT
1028#undef PGM_BTH_NAME
1029#undef PGM_BTH_NAME_RC_STR
1030#undef PGM_BTH_NAME_R0_STR
1031#undef PGM_GST_TYPE
1032#undef PGM_GST_NAME
1033#undef PGM_GST_NAME_RC_STR
1034#undef PGM_GST_NAME_R0_STR
1035
1036/* Guest - PAE mode */
1037#define PGM_GST_TYPE PGM_TYPE_PAE
1038#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1039#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1040#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1041#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1042#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1043#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1044#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1045#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1046#include "PGMGstDefs.h"
1047#include "PGMBth.h"
1048#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058#ifdef VBOX_WITH_64_BITS_GUESTS
1059/* Guest - AMD64 mode */
1060# define PGM_GST_TYPE PGM_TYPE_AMD64
1061# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1062# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1063# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1064# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1065# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1066# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1067# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1068# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1069# include "PGMGstDefs.h"
1070# include "PGMBth.h"
1071# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1072# undef BTH_PGMPOOLKIND_PT_FOR_PT
1073# undef PGM_BTH_NAME
1074# undef PGM_BTH_NAME_RC_STR
1075# undef PGM_BTH_NAME_R0_STR
1076# undef PGM_GST_TYPE
1077# undef PGM_GST_NAME
1078# undef PGM_GST_NAME_RC_STR
1079# undef PGM_GST_NAME_R0_STR
1080#endif /* VBOX_WITH_64_BITS_GUESTS */
1081
1082#undef PGM_SHW_TYPE
1083#undef PGM_SHW_NAME
1084#undef PGM_SHW_NAME_RC_STR
1085#undef PGM_SHW_NAME_R0_STR
1086
1087
1088/*
1089 * Shadow - EPT
1090 */
1091#define PGM_SHW_TYPE PGM_TYPE_EPT
1092#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1093#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1094#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1095#include "PGMShw.h"
1096
1097/* Guest - real mode */
1098#define PGM_GST_TYPE PGM_TYPE_REAL
1099#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1100#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1101#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1102#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1103#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1104#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1105#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1106#include "PGMGstDefs.h"
1107#include "PGMBth.h"
1108#undef BTH_PGMPOOLKIND_PT_FOR_PT
1109#undef PGM_BTH_NAME
1110#undef PGM_BTH_NAME_RC_STR
1111#undef PGM_BTH_NAME_R0_STR
1112#undef PGM_GST_TYPE
1113#undef PGM_GST_NAME
1114#undef PGM_GST_NAME_RC_STR
1115#undef PGM_GST_NAME_R0_STR
1116
1117/* Guest - protected mode */
1118#define PGM_GST_TYPE PGM_TYPE_PROT
1119#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1120#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1121#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1122#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1123#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1124#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1125#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1126#include "PGMGstDefs.h"
1127#include "PGMBth.h"
1128#undef BTH_PGMPOOLKIND_PT_FOR_PT
1129#undef PGM_BTH_NAME
1130#undef PGM_BTH_NAME_RC_STR
1131#undef PGM_BTH_NAME_R0_STR
1132#undef PGM_GST_TYPE
1133#undef PGM_GST_NAME
1134#undef PGM_GST_NAME_RC_STR
1135#undef PGM_GST_NAME_R0_STR
1136
1137/* Guest - 32-bit mode */
1138#define PGM_GST_TYPE PGM_TYPE_32BIT
1139#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1140#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1141#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1142#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1143#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1144#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1145#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1146#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1147#include "PGMGstDefs.h"
1148#include "PGMBth.h"
1149#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1150#undef BTH_PGMPOOLKIND_PT_FOR_PT
1151#undef PGM_BTH_NAME
1152#undef PGM_BTH_NAME_RC_STR
1153#undef PGM_BTH_NAME_R0_STR
1154#undef PGM_GST_TYPE
1155#undef PGM_GST_NAME
1156#undef PGM_GST_NAME_RC_STR
1157#undef PGM_GST_NAME_R0_STR
1158
1159/* Guest - PAE mode */
1160#define PGM_GST_TYPE PGM_TYPE_PAE
1161#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1162#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1163#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1164#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1165#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1166#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1167#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1168#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1169#include "PGMGstDefs.h"
1170#include "PGMBth.h"
1171#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1172#undef BTH_PGMPOOLKIND_PT_FOR_PT
1173#undef PGM_BTH_NAME
1174#undef PGM_BTH_NAME_RC_STR
1175#undef PGM_BTH_NAME_R0_STR
1176#undef PGM_GST_TYPE
1177#undef PGM_GST_NAME
1178#undef PGM_GST_NAME_RC_STR
1179#undef PGM_GST_NAME_R0_STR
1180
1181#ifdef VBOX_WITH_64_BITS_GUESTS
1182/* Guest - AMD64 mode */
1183# define PGM_GST_TYPE PGM_TYPE_AMD64
1184# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1185# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1186# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1187# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1188# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1189# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1190# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1191# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1192# include "PGMGstDefs.h"
1193# include "PGMBth.h"
1194# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1195# undef BTH_PGMPOOLKIND_PT_FOR_PT
1196# undef PGM_BTH_NAME
1197# undef PGM_BTH_NAME_RC_STR
1198# undef PGM_BTH_NAME_R0_STR
1199# undef PGM_GST_TYPE
1200# undef PGM_GST_NAME
1201# undef PGM_GST_NAME_RC_STR
1202# undef PGM_GST_NAME_R0_STR
1203#endif /* VBOX_WITH_64_BITS_GUESTS */
1204
1205#undef PGM_SHW_TYPE
1206#undef PGM_SHW_NAME
1207#undef PGM_SHW_NAME_RC_STR
1208#undef PGM_SHW_NAME_R0_STR
1209
1210
1211
1212/**
1213 * Initiates the paging of VM.
1214 *
1215 * @returns VBox status code.
1216 * @param pVM Pointer to VM structure.
1217 */
1218VMMR3DECL(int) PGMR3Init(PVM pVM)
1219{
1220 LogFlow(("PGMR3Init:\n"));
1221 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1222 int rc;
1223
1224 /*
1225 * Assert alignment and sizes.
1226 */
1227 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1228 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1229 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1230
1231 /*
1232 * Init the structure.
1233 */
1234 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1235 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1236
1237 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1238 {
1239 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1240 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1241 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1242 }
1243
1244 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1245 {
1246 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1247 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1248 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1249 }
1250
1251 /* Init the per-CPU part. */
1252 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1253 {
1254 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1255 PPGMCPU pPGM = &pVCpu->pgm.s;
1256
1257 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1258 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1259 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1260
1261 pPGM->enmShadowMode = PGMMODE_INVALID;
1262 pPGM->enmGuestMode = PGMMODE_INVALID;
1263
1264 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1265
1266 pPGM->pGst32BitPdR3 = NULL;
1267 pPGM->pGstPaePdptR3 = NULL;
1268 pPGM->pGstAmd64Pml4R3 = NULL;
1269#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1270 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1271 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1272 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1273#endif
1274 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1275 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1276 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1277 {
1278 pPGM->apGstPaePDsR3[i] = NULL;
1279#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1280 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1281#endif
1282 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1283 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1284 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1285 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1286 }
1287
1288 pPGM->fA20Enabled = true;
1289 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1290 }
1291
1292 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1293 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1294 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1295
1296 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1297#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1298 true
1299#else
1300 false
1301#endif
1302 );
1303 AssertLogRelRCReturn(rc, rc);
1304
1305#if HC_ARCH_BITS == 32
1306# ifdef RT_OS_DARWIN
1307 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1308# else
1309 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1310# endif
1311#else
1312 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1313#endif
1314 AssertLogRelRCReturn(rc, rc);
1315 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1316 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1317
1318 /*
1319 * Get the configured RAM size - to estimate saved state size.
1320 */
1321 uint64_t cbRam;
1322 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1323 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1324 cbRam = 0;
1325 else if (RT_SUCCESS(rc))
1326 {
1327 if (cbRam < PAGE_SIZE)
1328 cbRam = 0;
1329 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1330 }
1331 else
1332 {
1333 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1334 return rc;
1335 }
1336
1337 /*
1338 * Check for PCI pass-through.
1339 */
1340 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1341 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1342 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1343
1344#ifdef VBOX_WITH_STATISTICS
1345 /*
1346 * Allocate memory for the statistics before someone tries to use them.
1347 */
1348 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1349 void *pv;
1350 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1351 AssertRCReturn(rc, rc);
1352
1353 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1354 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1355 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1356 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1357
1358 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1359 {
1360 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1361 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1362 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1363
1364 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1365 }
1366#endif /* VBOX_WITH_STATISTICS */
1367
1368 /*
1369 * Register callbacks, string formatters and the saved state data unit.
1370 */
1371#ifdef VBOX_STRICT
1372 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1373#endif
1374 PGMRegisterStringFormatTypes();
1375
1376 rc = pgmR3InitSavedState(pVM, cbRam);
1377 if (RT_FAILURE(rc))
1378 return rc;
1379
1380 /*
1381 * Initialize the PGM critical section and flush the phys TLBs
1382 */
1383 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1384 AssertRCReturn(rc, rc);
1385
1386 PGMR3PhysChunkInvalidateTLB(pVM);
1387 pgmPhysInvalidatePageMapTLB(pVM);
1388
1389 /*
1390 * For the time being we sport a full set of handy pages in addition to the base
1391 * memory to simplify things.
1392 */
1393 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1394 AssertRCReturn(rc, rc);
1395
1396 /*
1397 * Trees
1398 */
1399 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1400 if (RT_SUCCESS(rc))
1401 {
1402 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1403 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1404 }
1405
1406 /*
1407 * Allocate the zero page.
1408 */
1409 if (RT_SUCCESS(rc))
1410 {
1411 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1412 if (RT_SUCCESS(rc))
1413 {
1414 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1415 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1416 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1417 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1418 }
1419 }
1420
1421 /*
1422 * Allocate the invalid MMIO page.
1423 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1424 */
1425 if (RT_SUCCESS(rc))
1426 {
1427 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1428 if (RT_SUCCESS(rc))
1429 {
1430 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1431 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1432 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1433 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1434 }
1435 }
1436
1437 /*
1438 * Register the physical access handler protecting ROMs.
1439 */
1440 if (RT_SUCCESS(rc))
1441 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
1442 pgmR3PhysRomWriteHandler,
1443 NULL, "pgmPhysRomWriteHandler",
1444 NULL, "pgmPhysRomWriteHandler",
1445 "ROM write protection",
1446 &pVM->pgm.s.hRomPhysHandlerType);
1447
1448 /*
1449 * Init the paging.
1450 */
1451 if (RT_SUCCESS(rc))
1452 rc = pgmR3InitPaging(pVM);
1453
1454 /*
1455 * Init the page pool.
1456 */
1457 if (RT_SUCCESS(rc))
1458 rc = pgmR3PoolInit(pVM);
1459
1460 if (RT_SUCCESS(rc))
1461 {
1462 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1463 {
1464 PVMCPU pVCpu = &pVM->aCpus[i];
1465 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1466 if (RT_FAILURE(rc))
1467 break;
1468 }
1469 }
1470
1471 if (RT_SUCCESS(rc))
1472 {
1473 /*
1474 * Info & statistics
1475 */
1476 DBGFR3InfoRegisterInternal(pVM, "mode",
1477 "Shows the current paging mode. "
1478 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1479 pgmR3InfoMode);
1480 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1481 "Dumps all the entries in the top level paging table. No arguments.",
1482 pgmR3InfoCr3);
1483 DBGFR3InfoRegisterInternal(pVM, "phys",
1484 "Dumps all the physical address ranges. No arguments.",
1485 pgmR3PhysInfo);
1486 DBGFR3InfoRegisterInternal(pVM, "handlers",
1487 "Dumps physical, virtual and hyper virtual handlers. "
1488 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1489 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1490 pgmR3InfoHandlers);
1491 DBGFR3InfoRegisterInternal(pVM, "mappings",
1492 "Dumps guest mappings.",
1493 pgmR3MapInfo);
1494
1495 pgmR3InitStats(pVM);
1496
1497#ifdef VBOX_WITH_DEBUGGER
1498 /*
1499 * Debugger commands.
1500 */
1501 static bool s_fRegisteredCmds = false;
1502 if (!s_fRegisteredCmds)
1503 {
1504 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1505 if (RT_SUCCESS(rc2))
1506 s_fRegisteredCmds = true;
1507 }
1508#endif
1509 return VINF_SUCCESS;
1510 }
1511
1512 /* Almost no cleanup necessary, MM frees all memory. */
1513 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1514
1515 return rc;
1516}
1517
1518
1519/**
1520 * Init paging.
1521 *
1522 * Since we need to check what mode the host is operating in before we can choose
1523 * the right paging functions for the host we have to delay this until R0 has
1524 * been initialized.
1525 *
1526 * @returns VBox status code.
1527 * @param pVM Pointer to the VM.
1528 */
1529static int pgmR3InitPaging(PVM pVM)
1530{
1531 /*
1532 * Force a recalculation of modes and switcher so everyone gets notified.
1533 */
1534 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1535 {
1536 PVMCPU pVCpu = &pVM->aCpus[i];
1537
1538 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1539 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1540 }
1541
1542 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1543
1544 /*
1545 * Allocate static mapping space for whatever the cr3 register
1546 * points to and in the case of PAE mode to the 4 PDs.
1547 */
1548 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1549 if (RT_FAILURE(rc))
1550 {
1551 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1552 return rc;
1553 }
1554 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1555
1556 /*
1557 * Allocate pages for the three possible intermediate contexts
1558 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1559 * for the sake of simplicity. The AMD64 uses the PAE for the
1560 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1561 *
1562 * We assume that two page tables will be enought for the core code
1563 * mappings (HC virtual and identity).
1564 */
1565 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1566 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1567 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1568 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1569 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1570 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1571 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1572 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1573 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1574 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1575 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1576 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1577
1578 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1579 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1580 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1581 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1582 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1583 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1584
1585 /*
1586 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1587 */
1588 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1589 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1590 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1591
1592 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1593 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1594
1595 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1596 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1597 {
1598 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1599 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1600 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1601 }
1602
1603 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1604 {
1605 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1606 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1607 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1608 }
1609
1610 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1611 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1612 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1613 | HCPhysInterPaePDPT64;
1614
1615 /*
1616 * Initialize paging workers and mode from current host mode
1617 * and the guest running in real mode.
1618 */
1619 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1620 switch (pVM->pgm.s.enmHostMode)
1621 {
1622 case SUPPAGINGMODE_32_BIT:
1623 case SUPPAGINGMODE_32_BIT_GLOBAL:
1624 case SUPPAGINGMODE_PAE:
1625 case SUPPAGINGMODE_PAE_GLOBAL:
1626 case SUPPAGINGMODE_PAE_NX:
1627 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1628 break;
1629
1630 case SUPPAGINGMODE_AMD64:
1631 case SUPPAGINGMODE_AMD64_GLOBAL:
1632 case SUPPAGINGMODE_AMD64_NX:
1633 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1634#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1635 if (ARCH_BITS != 64)
1636 {
1637 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1638 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1639 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1640 }
1641#endif
1642 break;
1643 default:
1644 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1645 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1646 }
1647 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1648 if (RT_SUCCESS(rc))
1649 {
1650 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1651#if HC_ARCH_BITS == 64
1652 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1653 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1654 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1655 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1656 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1657 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1658 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1659#endif
1660
1661 /*
1662 * Log the host paging mode. It may come in handy.
1663 */
1664 const char *pszHostMode;
1665 switch (pVM->pgm.s.enmHostMode)
1666 {
1667 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1668 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1669 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1670 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1671 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1672 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1673 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1674 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1675 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1676 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1677 default: pszHostMode = "???"; break;
1678 }
1679 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1680
1681 return VINF_SUCCESS;
1682 }
1683
1684 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1685 return rc;
1686}
1687
1688
1689/**
1690 * Init statistics
1691 * @returns VBox status code.
1692 */
1693static int pgmR3InitStats(PVM pVM)
1694{
1695 PPGM pPGM = &pVM->pgm.s;
1696 int rc;
1697
1698 /*
1699 * Release statistics.
1700 */
1701 /* Common - misc variables */
1702 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1703 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1704 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1705 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1706 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1707 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1708 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1709 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1710 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1711 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1712 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1713 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1714 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1715 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1716 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1717 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1718 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1719 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1720 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1721
1722 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1723 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1724 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1725
1726 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1727
1728 /* Live save */
1729 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1730 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1731 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1732 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1733 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1734 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1735 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1736 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1737 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1738 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1739 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1740 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1741 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1742 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1743 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1744 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1745 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1746 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1747
1748#ifdef VBOX_WITH_STATISTICS
1749
1750# define PGM_REG_COUNTER(a, b, c) \
1751 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1752 AssertRC(rc);
1753
1754# define PGM_REG_COUNTER_BYTES(a, b, c) \
1755 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1756 AssertRC(rc);
1757
1758# define PGM_REG_PROFILE(a, b, c) \
1759 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1760 AssertRC(rc);
1761
1762 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1763
1764 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1765 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1766 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1767 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1768 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1769
1770 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1771 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1772 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1773 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1774 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1775 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1776 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1777 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1778 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1779 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1780
1781 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1782 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1783 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1784 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1785 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1786 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1787
1788 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1789 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1790 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1791 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1792 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1793 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1794 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1795 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1796
1797 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1798 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1799 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1800 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1801
1802 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1803 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1804 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1805 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1806
1807 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1808 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1809 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1810 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1811 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1812 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1813 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1814 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1815
1816 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1817 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1818/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1819 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1820 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1821/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1822
1823 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1824 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1825 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1826 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1827 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1828 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1829 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1830 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1831
1832 /* GC only: */
1833 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1834 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1835
1836 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1837 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1838 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1839 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1840 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1841 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1842 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1843 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1844
1845 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1846 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1847 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1848 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1849 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1850 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1851 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1852
1853# undef PGM_REG_COUNTER
1854# undef PGM_REG_PROFILE
1855#endif
1856
1857 /*
1858 * Note! The layout below matches the member layout exactly!
1859 */
1860
1861 /*
1862 * Common - stats
1863 */
1864 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1865 {
1866 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1867
1868#define PGM_REG_COUNTER(a, b, c) \
1869 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1870 AssertRC(rc);
1871#define PGM_REG_PROFILE(a, b, c) \
1872 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1873 AssertRC(rc);
1874
1875 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1876 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1877
1878#ifdef VBOX_WITH_STATISTICS
1879 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1880
1881# if 0 /* rarely useful; leave for debugging. */
1882 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1883 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1884 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1885 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1886 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1887 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1888# endif
1889 /* R0 only: */
1890 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1891 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1892
1893 /* RZ only: */
1894 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1895 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1896 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1897 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1898 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1899 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1900 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1901 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1902 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1903 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1904 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1905 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1906 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1907 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1908 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1909 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1910 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1911 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1912 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1913 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1919 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1922 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1923 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1924 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1925 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1926 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1927 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1929 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1930 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1931 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1932 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1940#if 0 /* rarely useful; leave for debugging. */
1941 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1942 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1943 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1944#endif
1945 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1947 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1950
1951 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1952 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1953 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1955 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1956 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1957 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1958 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1959 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1960 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1961 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1962 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1963 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1964 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1965 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1966 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1967 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1968 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1969 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1970 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1971 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1972 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1973 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1974 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1975 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1976 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1977 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1978 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1979 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1980 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1981 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1982 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1983 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1984 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1985 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1986 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1987
1988 /* HC only: */
1989
1990 /* RZ & R3: */
1991 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1992 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1994 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1995 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1996 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1997 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1998 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1999 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2000 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2001 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
2002 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2003 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
2004 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
2005 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2006 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2007 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2008 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2009 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2010 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2011 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2012 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2013 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
2014 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2015 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2016 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2017 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
2018 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2019 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2020 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2021 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2022 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2023 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2024 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2025 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2026 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2027 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2028 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2029 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2030 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2031 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2032 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2033 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2034 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2035 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2036 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2037 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2038
2039 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2040 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2041 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2042 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2043 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2044 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2045 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2046 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2047 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2048 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2049 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2050 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2051 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2052 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2053 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2054 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2055 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2056 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2057 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2058 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2059 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2060 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2061 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2062 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2063 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2064 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2065 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2066 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2067 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2068 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2069 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2070 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2071 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2072 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2073 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2074 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2075 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2076 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2077 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2078 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2079 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2080 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2081 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2082 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2083#endif /* VBOX_WITH_STATISTICS */
2084
2085#undef PGM_REG_PROFILE
2086#undef PGM_REG_COUNTER
2087
2088 }
2089
2090 return VINF_SUCCESS;
2091}
2092
2093
2094/**
2095 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2096 *
2097 * The dynamic mapping area will also be allocated and initialized at this
2098 * time. We could allocate it during PGMR3Init of course, but the mapping
2099 * wouldn't be allocated at that time preventing us from setting up the
2100 * page table entries with the dummy page.
2101 *
2102 * @returns VBox status code.
2103 * @param pVM Pointer to the VM.
2104 */
2105VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2106{
2107 RTGCPTR GCPtr;
2108 int rc;
2109
2110 /*
2111 * Reserve space for the dynamic mappings.
2112 */
2113 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2114 if (RT_SUCCESS(rc))
2115 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2116
2117 if ( RT_SUCCESS(rc)
2118 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2119 {
2120 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2121 if (RT_SUCCESS(rc))
2122 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2123 }
2124 if (RT_SUCCESS(rc))
2125 {
2126 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2127 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2128 }
2129 return rc;
2130}
2131
2132
2133/**
2134 * Ring-3 init finalizing.
2135 *
2136 * @returns VBox status code.
2137 * @param pVM Pointer to the VM.
2138 */
2139VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2140{
2141 int rc;
2142
2143 /*
2144 * Reserve space for the dynamic mappings.
2145 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2146 */
2147 /* get the pointer to the page table entries. */
2148 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2149 AssertRelease(pMapping);
2150 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2151 const unsigned iPT = off >> X86_PD_SHIFT;
2152 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2153 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2154 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2155
2156 /* init cache area */
2157 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2158 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2159 {
2160 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2161 AssertRCReturn(rc, rc);
2162 }
2163
2164 /*
2165 * Determine the max physical address width (MAXPHYADDR) and apply it to
2166 * all the mask members and stuff.
2167 */
2168 uint32_t cMaxPhysAddrWidth;
2169 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2170 if ( uMaxExtLeaf >= 0x80000008
2171 && uMaxExtLeaf <= 0x80000fff)
2172 {
2173 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2174 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2175 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2176 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2177 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2178 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2179 }
2180 else
2181 {
2182 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2183 cMaxPhysAddrWidth = 48;
2184 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2185 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2186 }
2187
2188 /** @todo query from CPUM. */
2189 pVM->pgm.s.GCPhysInvAddrMask = 0;
2190 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2191 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2192
2193 /*
2194 * Initialize the invalid paging entry masks, assuming NX is disabled.
2195 */
2196 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2197 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2198 {
2199 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2200
2201 /** @todo The manuals are not entirely clear whether the physical
2202 * address width is relevant. See table 5-9 in the intel
2203 * manual vs the PDE4M descriptions. Write testcase (NP). */
2204 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2205 | X86_PDE4M_MBZ_MASK;
2206
2207 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2208 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2209 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2210 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2211
2212 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2213 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2214 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2215 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2216 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2217 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2218
2219 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2220 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2221 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2222 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2223 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2224 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2225 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2226 }
2227
2228 /*
2229 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2230 * Intel only goes up to 36 bits, so we stick to 36 as well.
2231 * Update: More recent intel manuals specifies 40 bits just like AMD.
2232 */
2233 uint32_t u32Dummy, u32Features;
2234 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2235 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2236 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2237 else
2238 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2239
2240 /*
2241 * Allocate memory if we're supposed to do that.
2242 */
2243 if (pVM->pgm.s.fRamPreAlloc)
2244 rc = pgmR3PhysRamPreAllocate(pVM);
2245
2246 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2247 return rc;
2248}
2249
2250
2251/**
2252 * Init phase completed callback.
2253 *
2254 * @returns VBox status code.
2255 * @param pVM Pointer to the VM.
2256 * @param enmWhat What has been completed.
2257 * @thread EMT(0)
2258 */
2259VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2260{
2261 switch (enmWhat)
2262 {
2263 case VMINITCOMPLETED_HM:
2264#ifdef VBOX_WITH_PCI_PASSTHROUGH
2265 if (pVM->pgm.s.fPciPassthrough)
2266 {
2267 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2268 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2269 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2270
2271 /*
2272 * Report assignments to the IOMMU (hope that's good enough for now).
2273 */
2274 if (pVM->pgm.s.fPciPassthrough)
2275 {
2276 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2277 AssertRCReturn(rc, rc);
2278 }
2279 }
2280#else
2281 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2282#endif
2283 break;
2284
2285 default:
2286 /* shut up gcc */
2287 break;
2288 }
2289
2290 return VINF_SUCCESS;
2291}
2292
2293
2294/**
2295 * Applies relocations to data and code managed by this component.
2296 *
2297 * This function will be called at init and whenever the VMM need to relocate it
2298 * self inside the GC.
2299 *
2300 * @param pVM The VM.
2301 * @param offDelta Relocation delta relative to old location.
2302 */
2303VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2304{
2305 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2306
2307 /*
2308 * Paging stuff.
2309 */
2310 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2311
2312 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2313
2314 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2315 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2316 {
2317 PVMCPU pVCpu = &pVM->aCpus[i];
2318
2319 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2320
2321 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2322 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2323 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2324 }
2325
2326 /*
2327 * Trees.
2328 */
2329 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2330
2331 /*
2332 * Ram ranges.
2333 */
2334 if (pVM->pgm.s.pRamRangesXR3)
2335 {
2336 /* Update the pSelfRC pointers and relink them. */
2337 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2338 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2339 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2340 pgmR3PhysRelinkRamRanges(pVM);
2341
2342 /* Flush the RC TLB. */
2343 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2344 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2345 }
2346
2347 /*
2348 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2349 * be mapped and thus not included in the above exercise.
2350 */
2351 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2352 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2353 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2354
2355 /*
2356 * Update the two page directories with all page table mappings.
2357 * (One or more of them have changed, that's why we're here.)
2358 */
2359 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2360 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2361 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2362
2363 /* Relocate GC addresses of Page Tables. */
2364 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2365 {
2366 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2367 {
2368 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2369 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2370 }
2371 }
2372
2373 /*
2374 * Dynamic page mapping area.
2375 */
2376 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2377 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2378 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2379
2380 if (pVM->pgm.s.pRCDynMap)
2381 {
2382 pVM->pgm.s.pRCDynMap += offDelta;
2383 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2384
2385 pDynMap->paPages += offDelta;
2386 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2387
2388 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2389 {
2390 paPages[iPage].pvPage += offDelta;
2391 paPages[iPage].uPte.pLegacy += offDelta;
2392 paPages[iPage].uPte.pPae += offDelta;
2393 }
2394 }
2395
2396 /*
2397 * The Zero page.
2398 */
2399 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2400#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2401 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
2402#else
2403 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2404#endif
2405
2406 /*
2407 * Physical and virtual handlers.
2408 */
2409 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2410 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2411
2412 PPGMPHYSHANDLERTYPEINT pCurPhysType;
2413 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadPhysHandlerTypes, pCurPhysType, PGMPHYSHANDLERTYPEINT, ListNode)
2414 {
2415 if (pCurPhysType->pfnHandlerRC)
2416 pCurPhysType->pfnHandlerRC += offDelta;
2417 }
2418
2419 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2420 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2421
2422 /*
2423 * The page pool.
2424 */
2425 pgmR3PoolRelocate(pVM);
2426
2427#ifdef VBOX_WITH_STATISTICS
2428 /*
2429 * Statistics.
2430 */
2431 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2432 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2433 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2434#endif
2435}
2436
2437
2438/**
2439 * Callback function for relocating a physical access handler.
2440 *
2441 * @returns 0 (continue enum)
2442 * @param pNode Pointer to a PGMPHYSHANDLER node.
2443 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2444 * not certain the delta will fit in a void pointer for all possible configs.
2445 */
2446static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2447{
2448 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2449 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2450 if (pHandler->pvUserRC >= 0x10000)
2451 pHandler->pvUserRC += offDelta;
2452 return 0;
2453}
2454
2455
2456/**
2457 * Callback function for relocating a virtual access handler.
2458 *
2459 * @returns 0 (continue enum)
2460 * @param pNode Pointer to a PGMVIRTHANDLER node.
2461 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2462 * not certain the delta will fit in a void pointer for all possible configs.
2463 */
2464static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2465{
2466 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2467 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2468 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2469 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2470 Assert(pHandler->pfnHandlerRC);
2471 pHandler->pfnHandlerRC += offDelta;
2472 return 0;
2473}
2474
2475
2476/**
2477 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2478 *
2479 * @returns 0 (continue enum)
2480 * @param pNode Pointer to a PGMVIRTHANDLER node.
2481 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2482 * not certain the delta will fit in a void pointer for all possible configs.
2483 */
2484static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2485{
2486 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2487 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2488 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2489 Assert(pHandler->pfnHandlerRC);
2490 pHandler->pfnHandlerRC += offDelta;
2491 return 0;
2492}
2493
2494
2495/**
2496 * Resets a virtual CPU when unplugged.
2497 *
2498 * @param pVM Pointer to the VM.
2499 * @param pVCpu Pointer to the VMCPU.
2500 */
2501VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2502{
2503 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2504 AssertRC(rc);
2505
2506 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2507 AssertRC(rc);
2508
2509 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2510
2511 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2512
2513 /*
2514 * Re-init other members.
2515 */
2516 pVCpu->pgm.s.fA20Enabled = true;
2517 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2518
2519 /*
2520 * Clear the FFs PGM owns.
2521 */
2522 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2523 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2524}
2525
2526
2527/**
2528 * The VM is being reset.
2529 *
2530 * For the PGM component this means that any PD write monitors
2531 * needs to be removed.
2532 *
2533 * @param pVM Pointer to the VM.
2534 */
2535VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2536{
2537 LogFlow(("PGMR3Reset:\n"));
2538 VM_ASSERT_EMT(pVM);
2539
2540 pgmLock(pVM);
2541
2542 /*
2543 * Unfix any fixed mappings and disable CR3 monitoring.
2544 */
2545 pVM->pgm.s.fMappingsFixed = false;
2546 pVM->pgm.s.fMappingsFixedRestored = false;
2547 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2548 pVM->pgm.s.cbMappingFixed = 0;
2549
2550 /*
2551 * Exit the guest paging mode before the pgm pool gets reset.
2552 * Important to clean up the amd64 case.
2553 */
2554 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2555 {
2556 PVMCPU pVCpu = &pVM->aCpus[i];
2557 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2558 AssertReleaseRC(rc);
2559 }
2560
2561#ifdef DEBUG
2562 DBGFR3_INFO_LOG(pVM, "mappings", NULL);
2563 DBGFR3_INFO_LOG(pVM, "handlers", "all nostat");
2564#endif
2565
2566 /*
2567 * Switch mode back to real mode. (before resetting the pgm pool!)
2568 */
2569 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2570 {
2571 PVMCPU pVCpu = &pVM->aCpus[i];
2572
2573 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2574 AssertReleaseRC(rc);
2575
2576 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2577 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2578 }
2579
2580 /*
2581 * Reset the shadow page pool.
2582 */
2583 pgmR3PoolReset(pVM);
2584
2585 /*
2586 * Re-init various other members and clear the FFs that PGM owns.
2587 */
2588 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2589 {
2590 PVMCPU pVCpu = &pVM->aCpus[i];
2591
2592 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2593 PGMNotifyNxeChanged(pVCpu, false);
2594
2595 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2596 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2597
2598 if (!pVCpu->pgm.s.fA20Enabled)
2599 {
2600 pVCpu->pgm.s.fA20Enabled = true;
2601 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2602#ifdef PGM_WITH_A20
2603 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2605 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2606 HMFlushTLB(pVCpu);
2607#endif
2608 }
2609 }
2610
2611 pgmUnlock(pVM);
2612}
2613
2614
2615/**
2616 * Memory setup after VM construction or reset.
2617 *
2618 * @param pVM Pointer to the VM.
2619 * @param fAtReset Indicates the context, after reset if @c true or after
2620 * construction if @c false.
2621 */
2622VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2623{
2624 if (fAtReset)
2625 {
2626 pgmLock(pVM);
2627
2628 int rc = pgmR3PhysRamZeroAll(pVM);
2629 AssertReleaseRC(rc);
2630
2631 rc = pgmR3PhysRomReset(pVM);
2632 AssertReleaseRC(rc);
2633
2634 pgmUnlock(pVM);
2635 }
2636}
2637
2638
2639#ifdef VBOX_STRICT
2640/**
2641 * VM state change callback for clearing fNoMorePhysWrites after
2642 * a snapshot has been created.
2643 */
2644static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2645{
2646 if ( enmState == VMSTATE_RUNNING
2647 || enmState == VMSTATE_RESUMING)
2648 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2649 NOREF(enmOldState); NOREF(pvUser);
2650}
2651#endif
2652
2653/**
2654 * Private API to reset fNoMorePhysWrites.
2655 */
2656VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2657{
2658 pVM->pgm.s.fNoMorePhysWrites = false;
2659}
2660
2661/**
2662 * Terminates the PGM.
2663 *
2664 * @returns VBox status code.
2665 * @param pVM Pointer to VM structure.
2666 */
2667VMMR3DECL(int) PGMR3Term(PVM pVM)
2668{
2669 /* Must free shared pages here. */
2670 pgmLock(pVM);
2671 pgmR3PhysRamTerm(pVM);
2672 pgmR3PhysRomTerm(pVM);
2673 pgmUnlock(pVM);
2674
2675 PGMDeregisterStringFormatTypes();
2676 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2677}
2678
2679
2680/**
2681 * Show paging mode.
2682 *
2683 * @param pVM Pointer to the VM.
2684 * @param pHlp The info helpers.
2685 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2686 */
2687static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2688{
2689 /* digest argument. */
2690 bool fGuest, fShadow, fHost;
2691 if (pszArgs)
2692 pszArgs = RTStrStripL(pszArgs);
2693 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2694 fShadow = fHost = fGuest = true;
2695 else
2696 {
2697 fShadow = fHost = fGuest = false;
2698 if (strstr(pszArgs, "guest"))
2699 fGuest = true;
2700 if (strstr(pszArgs, "shadow"))
2701 fShadow = true;
2702 if (strstr(pszArgs, "host"))
2703 fHost = true;
2704 }
2705
2706 /** @todo SMP support! */
2707 /* print info. */
2708 if (fGuest)
2709 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2710 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2711 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2712 if (fShadow)
2713 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2714 if (fHost)
2715 {
2716 const char *psz;
2717 switch (pVM->pgm.s.enmHostMode)
2718 {
2719 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2720 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2721 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2722 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2723 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2724 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2725 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2726 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2727 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2728 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2729 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2730 default: psz = "unknown"; break;
2731 }
2732 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2733 }
2734}
2735
2736
2737/**
2738 * Dump registered MMIO ranges to the log.
2739 *
2740 * @param pVM Pointer to the VM.
2741 * @param pHlp The info helpers.
2742 * @param pszArgs Arguments, ignored.
2743 */
2744static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2745{
2746 NOREF(pszArgs);
2747 pHlp->pfnPrintf(pHlp,
2748 "RAM ranges (pVM=%p)\n"
2749 "%.*s %.*s\n",
2750 pVM,
2751 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2752 sizeof(RTHCPTR) * 2, "pvHC ");
2753
2754 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2755 pHlp->pfnPrintf(pHlp,
2756 "%RGp-%RGp %RHv %s\n",
2757 pCur->GCPhys,
2758 pCur->GCPhysLast,
2759 pCur->pvR3,
2760 pCur->pszDesc);
2761}
2762
2763
2764/**
2765 * Dump the page directory to the log.
2766 *
2767 * @param pVM Pointer to the VM.
2768 * @param pHlp The info helpers.
2769 * @param pszArgs Arguments, ignored.
2770 */
2771static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2772{
2773 /** @todo SMP support!! */
2774 PVMCPU pVCpu = &pVM->aCpus[0];
2775
2776/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2777 /* Big pages supported? */
2778 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2779
2780 /* Global pages supported? */
2781 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2782
2783 NOREF(pszArgs);
2784
2785 /*
2786 * Get page directory addresses.
2787 */
2788 pgmLock(pVM);
2789 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2790 Assert(pPDSrc);
2791
2792 /*
2793 * Iterate the page directory.
2794 */
2795 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2796 {
2797 X86PDE PdeSrc = pPDSrc->a[iPD];
2798 if (PdeSrc.n.u1Present)
2799 {
2800 if (PdeSrc.b.u1Size && fPSE)
2801 pHlp->pfnPrintf(pHlp,
2802 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2803 iPD,
2804 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2805 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2806 else
2807 pHlp->pfnPrintf(pHlp,
2808 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2809 iPD,
2810 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2811 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2812 }
2813 }
2814 pgmUnlock(pVM);
2815}
2816
2817
2818/**
2819 * Service a VMMCALLRING3_PGM_LOCK call.
2820 *
2821 * @returns VBox status code.
2822 * @param pVM Pointer to the VM.
2823 */
2824VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2825{
2826 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2827 AssertRC(rc);
2828 return rc;
2829}
2830
2831
2832/**
2833 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2834 *
2835 * @returns PGM_TYPE_*.
2836 * @param pgmMode The mode value to convert.
2837 */
2838DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2839{
2840 switch (pgmMode)
2841 {
2842 case PGMMODE_REAL: return PGM_TYPE_REAL;
2843 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2844 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2845 case PGMMODE_PAE:
2846 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2847 case PGMMODE_AMD64:
2848 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2849 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2850 case PGMMODE_EPT: return PGM_TYPE_EPT;
2851 default:
2852 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2853 }
2854}
2855
2856
2857/**
2858 * Gets the index into the paging mode data array of a SHW+GST mode.
2859 *
2860 * @returns PGM::paPagingData index.
2861 * @param uShwType The shadow paging mode type.
2862 * @param uGstType The guest paging mode type.
2863 */
2864DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2865{
2866 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2867 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2868 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2869 + (uGstType - PGM_TYPE_REAL);
2870}
2871
2872
2873/**
2874 * Gets the index into the paging mode data array of a SHW+GST mode.
2875 *
2876 * @returns PGM::paPagingData index.
2877 * @param enmShw The shadow paging mode.
2878 * @param enmGst The guest paging mode.
2879 */
2880DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2881{
2882 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2883 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2884 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2885}
2886
2887
2888/**
2889 * Calculates the max data index.
2890 * @returns The number of entries in the paging data array.
2891 */
2892DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2893{
2894 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2895}
2896
2897
2898/**
2899 * Initializes the paging mode data kept in PGM::paModeData.
2900 *
2901 * @param pVM Pointer to the VM.
2902 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2903 * This is used early in the init process to avoid trouble with PDM
2904 * not being initialized yet.
2905 */
2906static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2907{
2908 PPGMMODEDATA pModeData;
2909 int rc;
2910
2911 /*
2912 * Allocate the array on the first call.
2913 */
2914 if (!pVM->pgm.s.paModeData)
2915 {
2916 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2917 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2918 }
2919
2920 /*
2921 * Initialize the array entries.
2922 */
2923 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2924 pModeData->uShwType = PGM_TYPE_32BIT;
2925 pModeData->uGstType = PGM_TYPE_REAL;
2926 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2927 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2928 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2929
2930 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2931 pModeData->uShwType = PGM_TYPE_32BIT;
2932 pModeData->uGstType = PGM_TYPE_PROT;
2933 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2934 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2935 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2936
2937 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2938 pModeData->uShwType = PGM_TYPE_32BIT;
2939 pModeData->uGstType = PGM_TYPE_32BIT;
2940 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2941 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2942 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2943
2944 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2945 pModeData->uShwType = PGM_TYPE_PAE;
2946 pModeData->uGstType = PGM_TYPE_REAL;
2947 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2948 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2949 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2950
2951 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2952 pModeData->uShwType = PGM_TYPE_PAE;
2953 pModeData->uGstType = PGM_TYPE_PROT;
2954 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2955 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2956 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2957
2958 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2959 pModeData->uShwType = PGM_TYPE_PAE;
2960 pModeData->uGstType = PGM_TYPE_32BIT;
2961 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2962 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2963 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2964
2965 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2966 pModeData->uShwType = PGM_TYPE_PAE;
2967 pModeData->uGstType = PGM_TYPE_PAE;
2968 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2969 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2970 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2971
2972#ifdef VBOX_WITH_64_BITS_GUESTS
2973 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2974 pModeData->uShwType = PGM_TYPE_AMD64;
2975 pModeData->uGstType = PGM_TYPE_AMD64;
2976 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2977 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2978 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2979#endif
2980
2981 /* The nested paging mode. */
2982 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2983 pModeData->uShwType = PGM_TYPE_NESTED;
2984 pModeData->uGstType = PGM_TYPE_REAL;
2985 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2986 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2987
2988 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2989 pModeData->uShwType = PGM_TYPE_NESTED;
2990 pModeData->uGstType = PGM_TYPE_PROT;
2991 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2992 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2993
2994 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2995 pModeData->uShwType = PGM_TYPE_NESTED;
2996 pModeData->uGstType = PGM_TYPE_32BIT;
2997 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2998 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2999
3000 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3001 pModeData->uShwType = PGM_TYPE_NESTED;
3002 pModeData->uGstType = PGM_TYPE_PAE;
3003 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3004 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3005
3006#ifdef VBOX_WITH_64_BITS_GUESTS
3007 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3008 pModeData->uShwType = PGM_TYPE_NESTED;
3009 pModeData->uGstType = PGM_TYPE_AMD64;
3010 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3011 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3012#endif
3013
3014 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3015 switch (pVM->pgm.s.enmHostMode)
3016 {
3017#if HC_ARCH_BITS == 32
3018 case SUPPAGINGMODE_32_BIT:
3019 case SUPPAGINGMODE_32_BIT_GLOBAL:
3020 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3021 {
3022 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3023 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3024 }
3025# ifdef VBOX_WITH_64_BITS_GUESTS
3026 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3027 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3028# endif
3029 break;
3030
3031 case SUPPAGINGMODE_PAE:
3032 case SUPPAGINGMODE_PAE_NX:
3033 case SUPPAGINGMODE_PAE_GLOBAL:
3034 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3035 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3036 {
3037 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3038 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3039 }
3040# ifdef VBOX_WITH_64_BITS_GUESTS
3041 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3042 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3043# endif
3044 break;
3045#endif /* HC_ARCH_BITS == 32 */
3046
3047#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3048 case SUPPAGINGMODE_AMD64:
3049 case SUPPAGINGMODE_AMD64_GLOBAL:
3050 case SUPPAGINGMODE_AMD64_NX:
3051 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3052# ifdef VBOX_WITH_64_BITS_GUESTS
3053 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3054# else
3055 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3056# endif
3057 {
3058 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3059 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3060 }
3061 break;
3062#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3063
3064 default:
3065 AssertFailed();
3066 break;
3067 }
3068
3069 /* Extended paging (EPT) / Intel VT-x */
3070 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3071 pModeData->uShwType = PGM_TYPE_EPT;
3072 pModeData->uGstType = PGM_TYPE_REAL;
3073 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3074 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3075 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3076
3077 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3078 pModeData->uShwType = PGM_TYPE_EPT;
3079 pModeData->uGstType = PGM_TYPE_PROT;
3080 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3081 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3082 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3083
3084 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3085 pModeData->uShwType = PGM_TYPE_EPT;
3086 pModeData->uGstType = PGM_TYPE_32BIT;
3087 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3088 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3089 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3090
3091 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3092 pModeData->uShwType = PGM_TYPE_EPT;
3093 pModeData->uGstType = PGM_TYPE_PAE;
3094 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3095 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3096 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3097
3098#ifdef VBOX_WITH_64_BITS_GUESTS
3099 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3100 pModeData->uShwType = PGM_TYPE_EPT;
3101 pModeData->uGstType = PGM_TYPE_AMD64;
3102 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3103 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3104 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3105#endif
3106 return VINF_SUCCESS;
3107}
3108
3109
3110/**
3111 * Switch to different (or relocated in the relocate case) mode data.
3112 *
3113 * @param pVM Pointer to the VM.
3114 * @param pVCpu Pointer to the VMCPU.
3115 * @param enmShw The shadow paging mode.
3116 * @param enmGst The guest paging mode.
3117 */
3118static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3119{
3120 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3121
3122 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3123 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3124
3125 /* shadow */
3126 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3127 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3128 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3129 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3130 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3131
3132 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3133 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3134
3135 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3136 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3137
3138
3139 /* guest */
3140 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3141 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3142 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3143 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3144 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3145 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3146 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3147 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3148 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3149 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3150 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3151 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3152
3153 /* both */
3154 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3155 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3156 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3157 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3158 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3159 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3160#ifdef VBOX_STRICT
3161 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3162#endif
3163 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3164 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3165
3166 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3167 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3168 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3169 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3170 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3171#ifdef VBOX_STRICT
3172 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3173#endif
3174 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3175 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3176
3177 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3178 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3179 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3180 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3181 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3182#ifdef VBOX_STRICT
3183 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3184#endif
3185 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3186 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3187}
3188
3189
3190/**
3191 * Calculates the shadow paging mode.
3192 *
3193 * @returns The shadow paging mode.
3194 * @param pVM Pointer to the VM.
3195 * @param enmGuestMode The guest mode.
3196 * @param enmHostMode The host mode.
3197 * @param enmShadowMode The current shadow mode.
3198 * @param penmSwitcher Where to store the switcher to use.
3199 * VMMSWITCHER_INVALID means no change.
3200 */
3201static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3202{
3203 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3204 switch (enmGuestMode)
3205 {
3206 /*
3207 * When switching to real or protected mode we don't change
3208 * anything since it's likely that we'll switch back pretty soon.
3209 *
3210 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3211 * and is supposed to determine which shadow paging and switcher to
3212 * use during init.
3213 */
3214 case PGMMODE_REAL:
3215 case PGMMODE_PROTECTED:
3216 if ( enmShadowMode != PGMMODE_INVALID
3217 && !HMIsEnabled(pVM) /* always switch in hm mode! */)
3218 break; /* (no change) */
3219
3220 switch (enmHostMode)
3221 {
3222 case SUPPAGINGMODE_32_BIT:
3223 case SUPPAGINGMODE_32_BIT_GLOBAL:
3224 enmShadowMode = PGMMODE_32_BIT;
3225 enmSwitcher = VMMSWITCHER_32_TO_32;
3226 break;
3227
3228 case SUPPAGINGMODE_PAE:
3229 case SUPPAGINGMODE_PAE_NX:
3230 case SUPPAGINGMODE_PAE_GLOBAL:
3231 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3232 enmShadowMode = PGMMODE_PAE;
3233 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3234#ifdef DEBUG_bird
3235 if (RTEnvExist("VBOX_32BIT"))
3236 {
3237 enmShadowMode = PGMMODE_32_BIT;
3238 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3239 }
3240#endif
3241 break;
3242
3243 case SUPPAGINGMODE_AMD64:
3244 case SUPPAGINGMODE_AMD64_GLOBAL:
3245 case SUPPAGINGMODE_AMD64_NX:
3246 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3247 enmShadowMode = PGMMODE_PAE;
3248 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3249#ifdef DEBUG_bird
3250 if (RTEnvExist("VBOX_32BIT"))
3251 {
3252 enmShadowMode = PGMMODE_32_BIT;
3253 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3254 }
3255#endif
3256 break;
3257
3258 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3259 }
3260 break;
3261
3262 case PGMMODE_32_BIT:
3263 switch (enmHostMode)
3264 {
3265 case SUPPAGINGMODE_32_BIT:
3266 case SUPPAGINGMODE_32_BIT_GLOBAL:
3267 enmShadowMode = PGMMODE_32_BIT;
3268 enmSwitcher = VMMSWITCHER_32_TO_32;
3269 break;
3270
3271 case SUPPAGINGMODE_PAE:
3272 case SUPPAGINGMODE_PAE_NX:
3273 case SUPPAGINGMODE_PAE_GLOBAL:
3274 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3275 enmShadowMode = PGMMODE_PAE;
3276 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3277#ifdef DEBUG_bird
3278 if (RTEnvExist("VBOX_32BIT"))
3279 {
3280 enmShadowMode = PGMMODE_32_BIT;
3281 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3282 }
3283#endif
3284 break;
3285
3286 case SUPPAGINGMODE_AMD64:
3287 case SUPPAGINGMODE_AMD64_GLOBAL:
3288 case SUPPAGINGMODE_AMD64_NX:
3289 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3290 enmShadowMode = PGMMODE_PAE;
3291 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3292#ifdef DEBUG_bird
3293 if (RTEnvExist("VBOX_32BIT"))
3294 {
3295 enmShadowMode = PGMMODE_32_BIT;
3296 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3297 }
3298#endif
3299 break;
3300
3301 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3302 }
3303 break;
3304
3305 case PGMMODE_PAE:
3306 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3307 switch (enmHostMode)
3308 {
3309 case SUPPAGINGMODE_32_BIT:
3310 case SUPPAGINGMODE_32_BIT_GLOBAL:
3311 enmShadowMode = PGMMODE_PAE;
3312 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3313 break;
3314
3315 case SUPPAGINGMODE_PAE:
3316 case SUPPAGINGMODE_PAE_NX:
3317 case SUPPAGINGMODE_PAE_GLOBAL:
3318 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3319 enmShadowMode = PGMMODE_PAE;
3320 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3321 break;
3322
3323 case SUPPAGINGMODE_AMD64:
3324 case SUPPAGINGMODE_AMD64_GLOBAL:
3325 case SUPPAGINGMODE_AMD64_NX:
3326 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3327 enmShadowMode = PGMMODE_PAE;
3328 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3329 break;
3330
3331 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3332 }
3333 break;
3334
3335 case PGMMODE_AMD64:
3336 case PGMMODE_AMD64_NX:
3337 switch (enmHostMode)
3338 {
3339 case SUPPAGINGMODE_32_BIT:
3340 case SUPPAGINGMODE_32_BIT_GLOBAL:
3341 enmShadowMode = PGMMODE_AMD64;
3342 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3343 break;
3344
3345 case SUPPAGINGMODE_PAE:
3346 case SUPPAGINGMODE_PAE_NX:
3347 case SUPPAGINGMODE_PAE_GLOBAL:
3348 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3349 enmShadowMode = PGMMODE_AMD64;
3350 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3351 break;
3352
3353 case SUPPAGINGMODE_AMD64:
3354 case SUPPAGINGMODE_AMD64_GLOBAL:
3355 case SUPPAGINGMODE_AMD64_NX:
3356 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3357 enmShadowMode = PGMMODE_AMD64;
3358 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3359 break;
3360
3361 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3362 }
3363 break;
3364
3365
3366 default:
3367 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3368 *penmSwitcher = VMMSWITCHER_INVALID;
3369 return PGMMODE_INVALID;
3370 }
3371 /* Override the shadow mode is nested paging is active. */
3372 pVM->pgm.s.fNestedPaging = HMIsNestedPagingActive(pVM);
3373 if (pVM->pgm.s.fNestedPaging)
3374 enmShadowMode = HMGetShwPagingMode(pVM);
3375
3376 *penmSwitcher = enmSwitcher;
3377 return enmShadowMode;
3378}
3379
3380
3381/**
3382 * Performs the actual mode change.
3383 * This is called by PGMChangeMode and pgmR3InitPaging().
3384 *
3385 * @returns VBox status code. May suspend or power off the VM on error, but this
3386 * will trigger using FFs and not status codes.
3387 *
3388 * @param pVM Pointer to the VM.
3389 * @param pVCpu Pointer to the VMCPU.
3390 * @param enmGuestMode The new guest mode. This is assumed to be different from
3391 * the current mode.
3392 */
3393VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3394{
3395#if HC_ARCH_BITS == 32
3396 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3397#endif
3398 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3399
3400 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3401 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3402
3403 /*
3404 * Calc the shadow mode and switcher.
3405 */
3406 VMMSWITCHER enmSwitcher;
3407 PGMMODE enmShadowMode;
3408 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3409
3410#ifdef VBOX_WITH_RAW_MODE
3411 if ( enmSwitcher != VMMSWITCHER_INVALID
3412 && !HMIsEnabled(pVM))
3413 {
3414 /*
3415 * Select new switcher.
3416 */
3417 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3418 if (RT_FAILURE(rc))
3419 {
3420 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3421 return rc;
3422 }
3423 }
3424#endif
3425
3426 /*
3427 * Exit old mode(s).
3428 */
3429#if HC_ARCH_BITS == 32
3430 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3431 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3432 && enmShadowMode == PGMMODE_NESTED);
3433#else
3434 const bool fForceShwEnterExit = false;
3435#endif
3436 /* shadow */
3437 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3438 || fForceShwEnterExit)
3439 {
3440 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3441 if (PGM_SHW_PFN(Exit, pVCpu))
3442 {
3443 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3444 if (RT_FAILURE(rc))
3445 {
3446 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3447 return rc;
3448 }
3449 }
3450
3451 }
3452 else
3453 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3454
3455 /* guest */
3456 if (PGM_GST_PFN(Exit, pVCpu))
3457 {
3458 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3459 if (RT_FAILURE(rc))
3460 {
3461 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3462 return rc;
3463 }
3464 }
3465
3466 /*
3467 * Load new paging mode data.
3468 */
3469 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3470
3471 /*
3472 * Enter new shadow mode (if changed).
3473 */
3474 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3475 || fForceShwEnterExit)
3476 {
3477 int rc;
3478 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3479 switch (enmShadowMode)
3480 {
3481 case PGMMODE_32_BIT:
3482 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3483 break;
3484 case PGMMODE_PAE:
3485 case PGMMODE_PAE_NX:
3486 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3487 break;
3488 case PGMMODE_AMD64:
3489 case PGMMODE_AMD64_NX:
3490 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3491 break;
3492 case PGMMODE_NESTED:
3493 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3494 break;
3495 case PGMMODE_EPT:
3496 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3497 break;
3498 case PGMMODE_REAL:
3499 case PGMMODE_PROTECTED:
3500 default:
3501 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3502 return VERR_INTERNAL_ERROR;
3503 }
3504 if (RT_FAILURE(rc))
3505 {
3506 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3507 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3508 return rc;
3509 }
3510 }
3511
3512 /*
3513 * Always flag the necessary updates
3514 */
3515 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3516
3517 /*
3518 * Enter the new guest and shadow+guest modes.
3519 */
3520 int rc = -1;
3521 int rc2 = -1;
3522 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3523 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3524 switch (enmGuestMode)
3525 {
3526 case PGMMODE_REAL:
3527 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3528 switch (pVCpu->pgm.s.enmShadowMode)
3529 {
3530 case PGMMODE_32_BIT:
3531 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3532 break;
3533 case PGMMODE_PAE:
3534 case PGMMODE_PAE_NX:
3535 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3536 break;
3537 case PGMMODE_NESTED:
3538 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3539 break;
3540 case PGMMODE_EPT:
3541 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3542 break;
3543 case PGMMODE_AMD64:
3544 case PGMMODE_AMD64_NX:
3545 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3546 default: AssertFailed(); break;
3547 }
3548 break;
3549
3550 case PGMMODE_PROTECTED:
3551 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3552 switch (pVCpu->pgm.s.enmShadowMode)
3553 {
3554 case PGMMODE_32_BIT:
3555 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3556 break;
3557 case PGMMODE_PAE:
3558 case PGMMODE_PAE_NX:
3559 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3560 break;
3561 case PGMMODE_NESTED:
3562 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3563 break;
3564 case PGMMODE_EPT:
3565 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3566 break;
3567 case PGMMODE_AMD64:
3568 case PGMMODE_AMD64_NX:
3569 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3570 default: AssertFailed(); break;
3571 }
3572 break;
3573
3574 case PGMMODE_32_BIT:
3575 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3576 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3577 switch (pVCpu->pgm.s.enmShadowMode)
3578 {
3579 case PGMMODE_32_BIT:
3580 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3581 break;
3582 case PGMMODE_PAE:
3583 case PGMMODE_PAE_NX:
3584 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3585 break;
3586 case PGMMODE_NESTED:
3587 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3588 break;
3589 case PGMMODE_EPT:
3590 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3591 break;
3592 case PGMMODE_AMD64:
3593 case PGMMODE_AMD64_NX:
3594 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3595 default: AssertFailed(); break;
3596 }
3597 break;
3598
3599 case PGMMODE_PAE_NX:
3600 case PGMMODE_PAE:
3601 {
3602 uint32_t u32Dummy, u32Features;
3603
3604 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3605 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3606 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3607 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (System/Processor)"));
3608
3609 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3610 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3611 switch (pVCpu->pgm.s.enmShadowMode)
3612 {
3613 case PGMMODE_PAE:
3614 case PGMMODE_PAE_NX:
3615 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3616 break;
3617 case PGMMODE_NESTED:
3618 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3619 break;
3620 case PGMMODE_EPT:
3621 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3622 break;
3623 case PGMMODE_32_BIT:
3624 case PGMMODE_AMD64:
3625 case PGMMODE_AMD64_NX:
3626 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3627 default: AssertFailed(); break;
3628 }
3629 break;
3630 }
3631
3632#ifdef VBOX_WITH_64_BITS_GUESTS
3633 case PGMMODE_AMD64_NX:
3634 case PGMMODE_AMD64:
3635 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3636 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3637 switch (pVCpu->pgm.s.enmShadowMode)
3638 {
3639 case PGMMODE_AMD64:
3640 case PGMMODE_AMD64_NX:
3641 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3642 break;
3643 case PGMMODE_NESTED:
3644 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3645 break;
3646 case PGMMODE_EPT:
3647 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3648 break;
3649 case PGMMODE_32_BIT:
3650 case PGMMODE_PAE:
3651 case PGMMODE_PAE_NX:
3652 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3653 default: AssertFailed(); break;
3654 }
3655 break;
3656#endif
3657
3658 default:
3659 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3660 rc = VERR_NOT_IMPLEMENTED;
3661 break;
3662 }
3663
3664 /* status codes. */
3665 AssertRC(rc);
3666 AssertRC(rc2);
3667 if (RT_SUCCESS(rc))
3668 {
3669 rc = rc2;
3670 if (RT_SUCCESS(rc)) /* no informational status codes. */
3671 rc = VINF_SUCCESS;
3672 }
3673
3674 /* Notify HM as well. */
3675 HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3676 return rc;
3677}
3678
3679
3680/**
3681 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3682 *
3683 * @returns VBox status code, fully asserted.
3684 * @param pVCpu Pointer to the VMCPU.
3685 */
3686int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3687{
3688 /* Unmap the old CR3 value before flushing everything. */
3689 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3690 AssertRC(rc);
3691
3692 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3693 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3694 AssertRC(rc);
3695 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3696 return rc;
3697}
3698
3699
3700/**
3701 * Called by pgmPoolFlushAllInt after flushing the pool.
3702 *
3703 * @returns VBox status code, fully asserted.
3704 * @param pVM Pointer to the VM.
3705 * @param pVCpu Pointer to the VMCPU.
3706 */
3707int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3708{
3709 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3710 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3711 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3712 AssertRCReturn(rc, rc);
3713 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3714
3715 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3716 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3717 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3718 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3719 return rc;
3720}
3721
3722
3723/**
3724 * Called by PGMR3PhysSetA20 after changing the A20 state.
3725 *
3726 * @param pVCpu Pointer to the VMCPU.
3727 */
3728void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3729{
3730 /** @todo Probably doing a bit too much here. */
3731 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3732 AssertReleaseRC(rc);
3733 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3734 AssertReleaseRC(rc);
3735}
3736
3737
3738#ifdef VBOX_WITH_DEBUGGER
3739
3740/**
3741 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3742 */
3743static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3744{
3745 /*
3746 * Validate input.
3747 */
3748 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3749 PVM pVM = pUVM->pVM;
3750 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3751
3752 if (!cArgs)
3753 {
3754 /*
3755 * Print the list of error injection locations with status.
3756 */
3757 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3758 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3759 }
3760 else
3761 {
3762 /*
3763 * String switch on where to inject the error.
3764 */
3765 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3766 const char *pszWhere = paArgs[0].u.pszString;
3767 if (!strcmp(pszWhere, "handy"))
3768 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3769 else
3770 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
3771 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
3772 }
3773 return VINF_SUCCESS;
3774}
3775
3776
3777/**
3778 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
3779 */
3780static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3781{
3782 /*
3783 * Validate input.
3784 */
3785 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3786 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3787 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3788 if (!pVCpu)
3789 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3790
3791 /*
3792 * Force page directory sync.
3793 */
3794 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3795
3796 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
3797 if (RT_FAILURE(rc))
3798 return rc;
3799
3800 return VINF_SUCCESS;
3801}
3802
3803#ifdef VBOX_STRICT
3804
3805/**
3806 * EMT callback for pgmR3CmdAssertCR3.
3807 *
3808 * @returns VBox status code.
3809 * @param pUVM The user mode VM handle.
3810 * @param pcErrors Where to return the error count.
3811 */
3812static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
3813{
3814 PVM pVM = pUVM->pVM;
3815 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3816 PVMCPU pVCpu = VMMGetCpu(pVM);
3817
3818 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3819
3820 return VINF_SUCCESS;
3821}
3822
3823
3824/**
3825 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
3826 */
3827static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3828{
3829 /*
3830 * Validate input.
3831 */
3832 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3833 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3834
3835 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
3836 if (RT_FAILURE(rc))
3837 return rc;
3838
3839 unsigned cErrors = 0;
3840 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
3841 if (RT_FAILURE(rc))
3842 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
3843 if (cErrors > 0)
3844 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
3845 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
3846}
3847
3848#endif /* VBOX_STRICT */
3849
3850/**
3851 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
3852 */
3853static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3854{
3855 /*
3856 * Validate input.
3857 */
3858 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3859 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3860 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3861 if (!pVCpu)
3862 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3863
3864 /*
3865 * Force page directory sync.
3866 */
3867 int rc;
3868 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3869 {
3870 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3871 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
3872 }
3873 else
3874 {
3875 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3876 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3877 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
3878 }
3879 return rc;
3880}
3881
3882
3883/**
3884 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
3885 */
3886static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3887{
3888 /*
3889 * Validate input.
3890 */
3891 NOREF(pCmd);
3892 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3893 PVM pVM = pUVM->pVM;
3894 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
3895 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
3896 if (cArgs == 2)
3897 {
3898 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
3899 if (strcmp(paArgs[1].u.pszString, "nozero"))
3900 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3901 }
3902 bool fIncZeroPgs = cArgs < 2;
3903
3904 /*
3905 * Open the output file and get the ram parameters.
3906 */
3907 RTFILE hFile;
3908 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3909 if (RT_FAILURE(rc))
3910 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3911
3912 uint32_t cbRamHole = 0;
3913 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3914 uint64_t cbRam = 0;
3915 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
3916 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3917
3918 /*
3919 * Dump the physical memory, page by page.
3920 */
3921 RTGCPHYS GCPhys = 0;
3922 char abZeroPg[PAGE_SIZE];
3923 RT_ZERO(abZeroPg);
3924
3925 pgmLock(pVM);
3926 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3927 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3928 pRam = pRam->pNextR3)
3929 {
3930 /* fill the gap */
3931 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3932 {
3933 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3934 {
3935 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3936 GCPhys += PAGE_SIZE;
3937 }
3938 }
3939
3940 PCPGMPAGE pPage = &pRam->aPages[0];
3941 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3942 {
3943 if ( PGM_PAGE_IS_ZERO(pPage)
3944 || PGM_PAGE_IS_BALLOONED(pPage))
3945 {
3946 if (fIncZeroPgs)
3947 {
3948 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3949 if (RT_FAILURE(rc))
3950 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3951 }
3952 }
3953 else
3954 {
3955 switch (PGM_PAGE_GET_TYPE(pPage))
3956 {
3957 case PGMPAGETYPE_RAM:
3958 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3959 case PGMPAGETYPE_ROM:
3960 case PGMPAGETYPE_MMIO2:
3961 {
3962 void const *pvPage;
3963 PGMPAGEMAPLOCK Lock;
3964 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3965 if (RT_SUCCESS(rc))
3966 {
3967 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3968 PGMPhysReleasePageMappingLock(pVM, &Lock);
3969 if (RT_FAILURE(rc))
3970 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3971 }
3972 else
3973 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3974 break;
3975 }
3976
3977 default:
3978 AssertFailed();
3979 case PGMPAGETYPE_MMIO:
3980 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3981 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
3982 if (fIncZeroPgs)
3983 {
3984 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3985 if (RT_FAILURE(rc))
3986 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3987 }
3988 break;
3989 }
3990 }
3991
3992
3993 /* advance */
3994 GCPhys += PAGE_SIZE;
3995 pPage++;
3996 }
3997 }
3998 pgmUnlock(pVM);
3999
4000 RTFileClose(hFile);
4001 if (RT_SUCCESS(rc))
4002 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4003 return VINF_SUCCESS;
4004}
4005
4006#endif /* VBOX_WITH_DEBUGGER */
4007
4008/**
4009 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4010 */
4011typedef struct PGMCHECKINTARGS
4012{
4013 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4014 PPGMPHYSHANDLER pPrevPhys;
4015 PPGMVIRTHANDLER pPrevVirt;
4016 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4017 PVM pVM;
4018} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4019
4020/**
4021 * Validate a node in the physical handler tree.
4022 *
4023 * @returns 0 on if ok, other wise 1.
4024 * @param pNode The handler node.
4025 * @param pvUser pVM.
4026 */
4027static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4028{
4029 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4030 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4031 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4032 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
4033 ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4034 AssertReleaseMsg( !pArgs->pPrevPhys
4035 || ( pArgs->fLeftToRight
4036 ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
4037 : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4038 ("pPrevPhys=%p %RGp-%RGp %s\n"
4039 " pCur=%p %RGp-%RGp %s\n",
4040 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4041 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4042 pArgs->pPrevPhys = pCur;
4043 return 0;
4044}
4045
4046
4047/**
4048 * Validate a node in the virtual handler tree.
4049 *
4050 * @returns 0 on if ok, other wise 1.
4051 * @param pNode The handler node.
4052 * @param pvUser pVM.
4053 */
4054static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4055{
4056 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4057 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4058 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4059 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4060 AssertReleaseMsg( !pArgs->pPrevVirt
4061 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4062 ("pPrevVirt=%p %RGv-%RGv %s\n"
4063 " pCur=%p %RGv-%RGv %s\n",
4064 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4065 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4066 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4067 {
4068 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4069 ("pCur=%p %RGv-%RGv %s\n"
4070 "iPage=%d offVirtHandle=%#x expected %#x\n",
4071 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4072 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4073 }
4074 pArgs->pPrevVirt = pCur;
4075 return 0;
4076}
4077
4078
4079/**
4080 * Validate a node in the virtual handler tree.
4081 *
4082 * @returns 0 on if ok, other wise 1.
4083 * @param pNode The handler node.
4084 * @param pvUser pVM.
4085 */
4086static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4087{
4088 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4089 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4090 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4091 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4092 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4093 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4094 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4095 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4096 " pCur=%p %RGp-%RGp\n",
4097 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4098 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4099 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4100 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4101 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4102 " pCur=%p %RGp-%RGp\n",
4103 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4104 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4105 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4106 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4107 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4108 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4109 {
4110 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4111 for (;;)
4112 {
4113 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4114 AssertReleaseMsg(pCur2 != pCur,
4115 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4116 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4117 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4118 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4119 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4120 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4121 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4122 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4123 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4124 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4125 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4126 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4127 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4128 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4129 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4130 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4131 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4132 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4133 break;
4134 }
4135 }
4136
4137 pArgs->pPrevPhys2Virt = pCur;
4138 return 0;
4139}
4140
4141
4142/**
4143 * Perform an integrity check on the PGM component.
4144 *
4145 * @returns VINF_SUCCESS if everything is fine.
4146 * @returns VBox error status after asserting on integrity breach.
4147 * @param pVM Pointer to the VM.
4148 */
4149VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4150{
4151 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4152
4153 /*
4154 * Check the trees.
4155 */
4156 int cErrors = 0;
4157 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4158 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4159 PGMCHECKINTARGS Args = s_LeftToRight;
4160 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4161 Args = s_RightToLeft;
4162 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4163 Args = s_LeftToRight;
4164 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4165 Args = s_RightToLeft;
4166 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4167 Args = s_LeftToRight;
4168 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4169 Args = s_RightToLeft;
4170 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4171 Args = s_LeftToRight;
4172 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4173 Args = s_RightToLeft;
4174 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4175
4176 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4177}
4178
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette