VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 57008

Last change on this file since 57008 was 56412, checked in by vboxsync, 10 years ago

Move internal/pgm.h bits to VBox/vmm/pgm.h.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 205.8 KB
Line 
1/* $Id: PGM.cpp 56412 2015-06-14 03:42:38Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @subsection subsec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @subsection subsec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @subsection subsec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @subsection subsec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @subsection subsec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref subsec_pgmPhys_Serializing. We
555 * some double house keeping wrt to who has mapped what I think, since both
556 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613/*******************************************************************************
614* Header Files *
615*******************************************************************************/
616#define LOG_GROUP LOG_GROUP_PGM
617#include <VBox/vmm/dbgf.h>
618#include <VBox/vmm/pgm.h>
619#include <VBox/vmm/cpum.h>
620#include <VBox/vmm/iom.h>
621#include <VBox/sup.h>
622#include <VBox/vmm/mm.h>
623#include <VBox/vmm/em.h>
624#include <VBox/vmm/stam.h>
625#ifdef VBOX_WITH_REM
626# include <VBox/vmm/rem.h>
627#endif
628#include <VBox/vmm/selm.h>
629#include <VBox/vmm/ssm.h>
630#include <VBox/vmm/hm.h>
631#include "PGMInternal.h"
632#include <VBox/vmm/vm.h>
633#include <VBox/vmm/uvm.h>
634#include "PGMInline.h"
635
636#include <VBox/dbg.h>
637#include <VBox/param.h>
638#include <VBox/err.h>
639
640#include <iprt/asm.h>
641#include <iprt/asm-amd64-x86.h>
642#include <iprt/assert.h>
643#include <iprt/env.h>
644#include <iprt/mem.h>
645#include <iprt/file.h>
646#include <iprt/string.h>
647#include <iprt/thread.h>
648
649
650/*******************************************************************************
651* Structures and Typedefs *
652*******************************************************************************/
653/**
654 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
655 * pgmR3RelocateHyperVirtHandler.
656 */
657typedef struct PGMRELOCHANDLERARGS
658{
659 RTGCINTPTR offDelta;
660 PVM pVM;
661} PGMRELOCHANDLERARGS;
662/** Pointer to a page access handlere relocation argument package. */
663typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
664
665
666/*******************************************************************************
667* Internal Functions *
668*******************************************************************************/
669static int pgmR3InitPaging(PVM pVM);
670static int pgmR3InitStats(PVM pVM);
671static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
672static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
673static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
674static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
675#ifdef VBOX_WITH_RAW_MODE
676static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
677static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
678#endif /* VBOX_WITH_RAW_MODE */
679#ifdef VBOX_STRICT
680static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
681#endif
682static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
683static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
684static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
685
686#ifdef VBOX_WITH_DEBUGGER
687static FNDBGCCMD pgmR3CmdError;
688static FNDBGCCMD pgmR3CmdSync;
689static FNDBGCCMD pgmR3CmdSyncAlways;
690# ifdef VBOX_STRICT
691static FNDBGCCMD pgmR3CmdAssertCR3;
692# endif
693static FNDBGCCMD pgmR3CmdPhysToFile;
694#endif
695
696
697/*******************************************************************************
698* Global Variables *
699*******************************************************************************/
700#ifdef VBOX_WITH_DEBUGGER
701/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
702static const DBGCVARDESC g_aPgmErrorArgs[] =
703{
704 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
705 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
706};
707
708static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
709{
710 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
711 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
712 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
713};
714
715# ifdef DEBUG_sandervl
716static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
717{
718 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
719 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
720 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
721};
722# endif
723
724/** Command descriptors. */
725static const DBGCCMD g_aCmds[] =
726{
727 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
728 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
729 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
730 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
731# ifdef VBOX_STRICT
732 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
733# ifdef VBOX_WITH_PAGE_SHARING
734 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
735 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
736# endif
737# endif
738 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
739 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
740};
741#endif
742
743
744
745
746/*
747 * Shadow - 32-bit mode
748 */
749#define PGM_SHW_TYPE PGM_TYPE_32BIT
750#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
751#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
752#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
753#include "PGMShw.h"
754
755/* Guest - real mode */
756#define PGM_GST_TYPE PGM_TYPE_REAL
757#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
758#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
759#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
760#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
761#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
762#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
763#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
764#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
765#include "PGMBth.h"
766#include "PGMGstDefs.h"
767#include "PGMGst.h"
768#undef BTH_PGMPOOLKIND_PT_FOR_PT
769#undef BTH_PGMPOOLKIND_ROOT
770#undef PGM_BTH_NAME
771#undef PGM_BTH_NAME_RC_STR
772#undef PGM_BTH_NAME_R0_STR
773#undef PGM_GST_TYPE
774#undef PGM_GST_NAME
775#undef PGM_GST_NAME_RC_STR
776#undef PGM_GST_NAME_R0_STR
777
778/* Guest - protected mode */
779#define PGM_GST_TYPE PGM_TYPE_PROT
780#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
781#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
782#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
783#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
784#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
785#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
786#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
787#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
788#include "PGMBth.h"
789#include "PGMGstDefs.h"
790#include "PGMGst.h"
791#undef BTH_PGMPOOLKIND_PT_FOR_PT
792#undef BTH_PGMPOOLKIND_ROOT
793#undef PGM_BTH_NAME
794#undef PGM_BTH_NAME_RC_STR
795#undef PGM_BTH_NAME_R0_STR
796#undef PGM_GST_TYPE
797#undef PGM_GST_NAME
798#undef PGM_GST_NAME_RC_STR
799#undef PGM_GST_NAME_R0_STR
800
801/* Guest - 32-bit mode */
802#define PGM_GST_TYPE PGM_TYPE_32BIT
803#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
804#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
805#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
806#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
807#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
808#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
809#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
810#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
811#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
812#include "PGMBth.h"
813#include "PGMGstDefs.h"
814#include "PGMGst.h"
815#undef BTH_PGMPOOLKIND_PT_FOR_BIG
816#undef BTH_PGMPOOLKIND_PT_FOR_PT
817#undef BTH_PGMPOOLKIND_ROOT
818#undef PGM_BTH_NAME
819#undef PGM_BTH_NAME_RC_STR
820#undef PGM_BTH_NAME_R0_STR
821#undef PGM_GST_TYPE
822#undef PGM_GST_NAME
823#undef PGM_GST_NAME_RC_STR
824#undef PGM_GST_NAME_R0_STR
825
826#undef PGM_SHW_TYPE
827#undef PGM_SHW_NAME
828#undef PGM_SHW_NAME_RC_STR
829#undef PGM_SHW_NAME_R0_STR
830
831
832/*
833 * Shadow - PAE mode
834 */
835#define PGM_SHW_TYPE PGM_TYPE_PAE
836#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
837#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
838#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
839#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
840#include "PGMShw.h"
841
842/* Guest - real mode */
843#define PGM_GST_TYPE PGM_TYPE_REAL
844#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
845#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
846#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
847#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
848#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
849#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
850#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
851#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
852#include "PGMGstDefs.h"
853#include "PGMBth.h"
854#undef BTH_PGMPOOLKIND_PT_FOR_PT
855#undef BTH_PGMPOOLKIND_ROOT
856#undef PGM_BTH_NAME
857#undef PGM_BTH_NAME_RC_STR
858#undef PGM_BTH_NAME_R0_STR
859#undef PGM_GST_TYPE
860#undef PGM_GST_NAME
861#undef PGM_GST_NAME_RC_STR
862#undef PGM_GST_NAME_R0_STR
863
864/* Guest - protected mode */
865#define PGM_GST_TYPE PGM_TYPE_PROT
866#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
867#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
868#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
869#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
870#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
871#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
872#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
873#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
874#include "PGMGstDefs.h"
875#include "PGMBth.h"
876#undef BTH_PGMPOOLKIND_PT_FOR_PT
877#undef BTH_PGMPOOLKIND_ROOT
878#undef PGM_BTH_NAME
879#undef PGM_BTH_NAME_RC_STR
880#undef PGM_BTH_NAME_R0_STR
881#undef PGM_GST_TYPE
882#undef PGM_GST_NAME
883#undef PGM_GST_NAME_RC_STR
884#undef PGM_GST_NAME_R0_STR
885
886/* Guest - 32-bit mode */
887#define PGM_GST_TYPE PGM_TYPE_32BIT
888#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
889#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
890#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
891#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
892#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
893#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
894#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
895#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
896#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
897#include "PGMGstDefs.h"
898#include "PGMBth.h"
899#undef BTH_PGMPOOLKIND_PT_FOR_BIG
900#undef BTH_PGMPOOLKIND_PT_FOR_PT
901#undef BTH_PGMPOOLKIND_ROOT
902#undef PGM_BTH_NAME
903#undef PGM_BTH_NAME_RC_STR
904#undef PGM_BTH_NAME_R0_STR
905#undef PGM_GST_TYPE
906#undef PGM_GST_NAME
907#undef PGM_GST_NAME_RC_STR
908#undef PGM_GST_NAME_R0_STR
909
910/* Guest - PAE mode */
911#define PGM_GST_TYPE PGM_TYPE_PAE
912#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
913#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
914#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
915#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
916#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
917#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
918#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
919#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
920#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
921#include "PGMBth.h"
922#include "PGMGstDefs.h"
923#include "PGMGst.h"
924#undef BTH_PGMPOOLKIND_PT_FOR_BIG
925#undef BTH_PGMPOOLKIND_PT_FOR_PT
926#undef BTH_PGMPOOLKIND_ROOT
927#undef PGM_BTH_NAME
928#undef PGM_BTH_NAME_RC_STR
929#undef PGM_BTH_NAME_R0_STR
930#undef PGM_GST_TYPE
931#undef PGM_GST_NAME
932#undef PGM_GST_NAME_RC_STR
933#undef PGM_GST_NAME_R0_STR
934
935#undef PGM_SHW_TYPE
936#undef PGM_SHW_NAME
937#undef PGM_SHW_NAME_RC_STR
938#undef PGM_SHW_NAME_R0_STR
939
940
941/*
942 * Shadow - AMD64 mode
943 */
944#define PGM_SHW_TYPE PGM_TYPE_AMD64
945#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
946#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
947#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
948#include "PGMShw.h"
949
950#ifdef VBOX_WITH_64_BITS_GUESTS
951/* Guest - AMD64 mode */
952# define PGM_GST_TYPE PGM_TYPE_AMD64
953# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
954# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
955# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
956# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
957# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
958# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
959# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
960# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
961# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
962# include "PGMBth.h"
963# include "PGMGstDefs.h"
964# include "PGMGst.h"
965# undef BTH_PGMPOOLKIND_PT_FOR_BIG
966# undef BTH_PGMPOOLKIND_PT_FOR_PT
967# undef BTH_PGMPOOLKIND_ROOT
968# undef PGM_BTH_NAME
969# undef PGM_BTH_NAME_RC_STR
970# undef PGM_BTH_NAME_R0_STR
971# undef PGM_GST_TYPE
972# undef PGM_GST_NAME
973# undef PGM_GST_NAME_RC_STR
974# undef PGM_GST_NAME_R0_STR
975#endif /* VBOX_WITH_64_BITS_GUESTS */
976
977#undef PGM_SHW_TYPE
978#undef PGM_SHW_NAME
979#undef PGM_SHW_NAME_RC_STR
980#undef PGM_SHW_NAME_R0_STR
981
982
983/*
984 * Shadow - Nested paging mode
985 */
986#define PGM_SHW_TYPE PGM_TYPE_NESTED
987#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
988#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
989#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
990#include "PGMShw.h"
991
992/* Guest - real mode */
993#define PGM_GST_TYPE PGM_TYPE_REAL
994#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
995#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
996#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
997#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
998#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
999#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
1000#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1001#include "PGMGstDefs.h"
1002#include "PGMBth.h"
1003#undef BTH_PGMPOOLKIND_PT_FOR_PT
1004#undef PGM_BTH_NAME
1005#undef PGM_BTH_NAME_RC_STR
1006#undef PGM_BTH_NAME_R0_STR
1007#undef PGM_GST_TYPE
1008#undef PGM_GST_NAME
1009#undef PGM_GST_NAME_RC_STR
1010#undef PGM_GST_NAME_R0_STR
1011
1012/* Guest - protected mode */
1013#define PGM_GST_TYPE PGM_TYPE_PROT
1014#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1015#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1016#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1017#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
1018#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
1019#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
1020#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1021#include "PGMGstDefs.h"
1022#include "PGMBth.h"
1023#undef BTH_PGMPOOLKIND_PT_FOR_PT
1024#undef PGM_BTH_NAME
1025#undef PGM_BTH_NAME_RC_STR
1026#undef PGM_BTH_NAME_R0_STR
1027#undef PGM_GST_TYPE
1028#undef PGM_GST_NAME
1029#undef PGM_GST_NAME_RC_STR
1030#undef PGM_GST_NAME_R0_STR
1031
1032/* Guest - 32-bit mode */
1033#define PGM_GST_TYPE PGM_TYPE_32BIT
1034#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1035#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1036#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1037#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1038#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1039#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1040#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1041#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1042#include "PGMGstDefs.h"
1043#include "PGMBth.h"
1044#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1045#undef BTH_PGMPOOLKIND_PT_FOR_PT
1046#undef PGM_BTH_NAME
1047#undef PGM_BTH_NAME_RC_STR
1048#undef PGM_BTH_NAME_R0_STR
1049#undef PGM_GST_TYPE
1050#undef PGM_GST_NAME
1051#undef PGM_GST_NAME_RC_STR
1052#undef PGM_GST_NAME_R0_STR
1053
1054/* Guest - PAE mode */
1055#define PGM_GST_TYPE PGM_TYPE_PAE
1056#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1057#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1058#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1059#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1060#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1061#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1062#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1063#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1064#include "PGMGstDefs.h"
1065#include "PGMBth.h"
1066#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1067#undef BTH_PGMPOOLKIND_PT_FOR_PT
1068#undef PGM_BTH_NAME
1069#undef PGM_BTH_NAME_RC_STR
1070#undef PGM_BTH_NAME_R0_STR
1071#undef PGM_GST_TYPE
1072#undef PGM_GST_NAME
1073#undef PGM_GST_NAME_RC_STR
1074#undef PGM_GST_NAME_R0_STR
1075
1076#ifdef VBOX_WITH_64_BITS_GUESTS
1077/* Guest - AMD64 mode */
1078# define PGM_GST_TYPE PGM_TYPE_AMD64
1079# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1080# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1081# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1082# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1083# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1084# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1085# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1086# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1087# include "PGMGstDefs.h"
1088# include "PGMBth.h"
1089# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1090# undef BTH_PGMPOOLKIND_PT_FOR_PT
1091# undef PGM_BTH_NAME
1092# undef PGM_BTH_NAME_RC_STR
1093# undef PGM_BTH_NAME_R0_STR
1094# undef PGM_GST_TYPE
1095# undef PGM_GST_NAME
1096# undef PGM_GST_NAME_RC_STR
1097# undef PGM_GST_NAME_R0_STR
1098#endif /* VBOX_WITH_64_BITS_GUESTS */
1099
1100#undef PGM_SHW_TYPE
1101#undef PGM_SHW_NAME
1102#undef PGM_SHW_NAME_RC_STR
1103#undef PGM_SHW_NAME_R0_STR
1104
1105
1106/*
1107 * Shadow - EPT
1108 */
1109#define PGM_SHW_TYPE PGM_TYPE_EPT
1110#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1111#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1112#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1113#include "PGMShw.h"
1114
1115/* Guest - real mode */
1116#define PGM_GST_TYPE PGM_TYPE_REAL
1117#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1118#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1119#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1120#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1121#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1122#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1123#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1124#include "PGMGstDefs.h"
1125#include "PGMBth.h"
1126#undef BTH_PGMPOOLKIND_PT_FOR_PT
1127#undef PGM_BTH_NAME
1128#undef PGM_BTH_NAME_RC_STR
1129#undef PGM_BTH_NAME_R0_STR
1130#undef PGM_GST_TYPE
1131#undef PGM_GST_NAME
1132#undef PGM_GST_NAME_RC_STR
1133#undef PGM_GST_NAME_R0_STR
1134
1135/* Guest - protected mode */
1136#define PGM_GST_TYPE PGM_TYPE_PROT
1137#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1138#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1139#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1140#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1141#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1142#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1143#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1144#include "PGMGstDefs.h"
1145#include "PGMBth.h"
1146#undef BTH_PGMPOOLKIND_PT_FOR_PT
1147#undef PGM_BTH_NAME
1148#undef PGM_BTH_NAME_RC_STR
1149#undef PGM_BTH_NAME_R0_STR
1150#undef PGM_GST_TYPE
1151#undef PGM_GST_NAME
1152#undef PGM_GST_NAME_RC_STR
1153#undef PGM_GST_NAME_R0_STR
1154
1155/* Guest - 32-bit mode */
1156#define PGM_GST_TYPE PGM_TYPE_32BIT
1157#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1158#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1159#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1160#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1161#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1162#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1163#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1164#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1165#include "PGMGstDefs.h"
1166#include "PGMBth.h"
1167#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1168#undef BTH_PGMPOOLKIND_PT_FOR_PT
1169#undef PGM_BTH_NAME
1170#undef PGM_BTH_NAME_RC_STR
1171#undef PGM_BTH_NAME_R0_STR
1172#undef PGM_GST_TYPE
1173#undef PGM_GST_NAME
1174#undef PGM_GST_NAME_RC_STR
1175#undef PGM_GST_NAME_R0_STR
1176
1177/* Guest - PAE mode */
1178#define PGM_GST_TYPE PGM_TYPE_PAE
1179#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1180#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1181#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1182#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1183#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1184#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1185#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1186#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1187#include "PGMGstDefs.h"
1188#include "PGMBth.h"
1189#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1190#undef BTH_PGMPOOLKIND_PT_FOR_PT
1191#undef PGM_BTH_NAME
1192#undef PGM_BTH_NAME_RC_STR
1193#undef PGM_BTH_NAME_R0_STR
1194#undef PGM_GST_TYPE
1195#undef PGM_GST_NAME
1196#undef PGM_GST_NAME_RC_STR
1197#undef PGM_GST_NAME_R0_STR
1198
1199#ifdef VBOX_WITH_64_BITS_GUESTS
1200/* Guest - AMD64 mode */
1201# define PGM_GST_TYPE PGM_TYPE_AMD64
1202# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1203# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1204# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1205# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1206# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1207# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1208# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1209# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1210# include "PGMGstDefs.h"
1211# include "PGMBth.h"
1212# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1213# undef BTH_PGMPOOLKIND_PT_FOR_PT
1214# undef PGM_BTH_NAME
1215# undef PGM_BTH_NAME_RC_STR
1216# undef PGM_BTH_NAME_R0_STR
1217# undef PGM_GST_TYPE
1218# undef PGM_GST_NAME
1219# undef PGM_GST_NAME_RC_STR
1220# undef PGM_GST_NAME_R0_STR
1221#endif /* VBOX_WITH_64_BITS_GUESTS */
1222
1223#undef PGM_SHW_TYPE
1224#undef PGM_SHW_NAME
1225#undef PGM_SHW_NAME_RC_STR
1226#undef PGM_SHW_NAME_R0_STR
1227
1228
1229
1230/**
1231 * Initiates the paging of VM.
1232 *
1233 * @returns VBox status code.
1234 * @param pVM Pointer to VM structure.
1235 */
1236VMMR3DECL(int) PGMR3Init(PVM pVM)
1237{
1238 LogFlow(("PGMR3Init:\n"));
1239 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1240 int rc;
1241
1242 /*
1243 * Assert alignment and sizes.
1244 */
1245 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1246 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1247 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1248
1249 /*
1250 * Init the structure.
1251 */
1252 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1253 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1254
1255 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1256 {
1257 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1258 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1259 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1260 }
1261
1262 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1263 {
1264 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1265 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1266 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1267 }
1268
1269 /* Init the per-CPU part. */
1270 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1271 {
1272 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1273 PPGMCPU pPGM = &pVCpu->pgm.s;
1274
1275 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1276 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1277 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1278
1279 pPGM->enmShadowMode = PGMMODE_INVALID;
1280 pPGM->enmGuestMode = PGMMODE_INVALID;
1281
1282 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1283
1284 pPGM->pGst32BitPdR3 = NULL;
1285 pPGM->pGstPaePdptR3 = NULL;
1286 pPGM->pGstAmd64Pml4R3 = NULL;
1287#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1288 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1289 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1290 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1291#endif
1292 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1293 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1294 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1295 {
1296 pPGM->apGstPaePDsR3[i] = NULL;
1297#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1298 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1299#endif
1300 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1301 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1302 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1303 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1304 }
1305
1306 pPGM->fA20Enabled = true;
1307 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1308 }
1309
1310 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1311 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1312 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1313
1314 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1315#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1316 true
1317#else
1318 false
1319#endif
1320 );
1321 AssertLogRelRCReturn(rc, rc);
1322
1323#if HC_ARCH_BITS == 32
1324# ifdef RT_OS_DARWIN
1325 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1326# else
1327 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1328# endif
1329#else
1330 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1331#endif
1332 AssertLogRelRCReturn(rc, rc);
1333 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1334 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1335
1336 /*
1337 * Get the configured RAM size - to estimate saved state size.
1338 */
1339 uint64_t cbRam;
1340 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1341 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1342 cbRam = 0;
1343 else if (RT_SUCCESS(rc))
1344 {
1345 if (cbRam < PAGE_SIZE)
1346 cbRam = 0;
1347 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1348 }
1349 else
1350 {
1351 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1352 return rc;
1353 }
1354
1355 /*
1356 * Check for PCI pass-through and other configurables.
1357 */
1358 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1359 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1360 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1361
1362 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
1363 AssertLogRelRCReturn(rc, rc);
1364
1365#ifdef VBOX_WITH_STATISTICS
1366 /*
1367 * Allocate memory for the statistics before someone tries to use them.
1368 */
1369 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1370 void *pv;
1371 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1372 AssertRCReturn(rc, rc);
1373
1374 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1375 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1376 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1377 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1378
1379 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1380 {
1381 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1382 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1383 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1384
1385 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1386 }
1387#endif /* VBOX_WITH_STATISTICS */
1388
1389 /*
1390 * Register callbacks, string formatters and the saved state data unit.
1391 */
1392#ifdef VBOX_STRICT
1393 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1394#endif
1395 PGMRegisterStringFormatTypes();
1396
1397 rc = pgmR3InitSavedState(pVM, cbRam);
1398 if (RT_FAILURE(rc))
1399 return rc;
1400
1401 /*
1402 * Initialize the PGM critical section and flush the phys TLBs
1403 */
1404 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1405 AssertRCReturn(rc, rc);
1406
1407 PGMR3PhysChunkInvalidateTLB(pVM);
1408 pgmPhysInvalidatePageMapTLB(pVM);
1409
1410 /*
1411 * For the time being we sport a full set of handy pages in addition to the base
1412 * memory to simplify things.
1413 */
1414 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1415 AssertRCReturn(rc, rc);
1416
1417 /*
1418 * Trees
1419 */
1420 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1421 if (RT_SUCCESS(rc))
1422 {
1423 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1424 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1425 }
1426
1427 /*
1428 * Allocate the zero page.
1429 */
1430 if (RT_SUCCESS(rc))
1431 {
1432 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1433 if (RT_SUCCESS(rc))
1434 {
1435 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1436 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1437 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1438 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1439 }
1440 }
1441
1442 /*
1443 * Allocate the invalid MMIO page.
1444 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1445 */
1446 if (RT_SUCCESS(rc))
1447 {
1448 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1449 if (RT_SUCCESS(rc))
1450 {
1451 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1452 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1453 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1454 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1455 }
1456 }
1457
1458 /*
1459 * Register the physical access handler protecting ROMs.
1460 */
1461 if (RT_SUCCESS(rc))
1462 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
1463 pgmPhysRomWriteHandler,
1464 NULL, NULL, "pgmPhysRomWritePfHandler",
1465 NULL, NULL, "pgmPhysRomWritePfHandler",
1466 "ROM write protection",
1467 &pVM->pgm.s.hRomPhysHandlerType);
1468
1469 /*
1470 * Init the paging.
1471 */
1472 if (RT_SUCCESS(rc))
1473 rc = pgmR3InitPaging(pVM);
1474
1475 /*
1476 * Init the page pool.
1477 */
1478 if (RT_SUCCESS(rc))
1479 rc = pgmR3PoolInit(pVM);
1480
1481 if (RT_SUCCESS(rc))
1482 {
1483 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1484 {
1485 PVMCPU pVCpu = &pVM->aCpus[i];
1486 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1487 if (RT_FAILURE(rc))
1488 break;
1489 }
1490 }
1491
1492 if (RT_SUCCESS(rc))
1493 {
1494 /*
1495 * Info & statistics
1496 */
1497 DBGFR3InfoRegisterInternal(pVM, "mode",
1498 "Shows the current paging mode. "
1499 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1500 pgmR3InfoMode);
1501 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1502 "Dumps all the entries in the top level paging table. No arguments.",
1503 pgmR3InfoCr3);
1504 DBGFR3InfoRegisterInternal(pVM, "phys",
1505 "Dumps all the physical address ranges. No arguments.",
1506 pgmR3PhysInfo);
1507 DBGFR3InfoRegisterInternal(pVM, "handlers",
1508 "Dumps physical, virtual and hyper virtual handlers. "
1509 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1510 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1511 pgmR3InfoHandlers);
1512 DBGFR3InfoRegisterInternal(pVM, "mappings",
1513 "Dumps guest mappings.",
1514 pgmR3MapInfo);
1515
1516 pgmR3InitStats(pVM);
1517
1518#ifdef VBOX_WITH_DEBUGGER
1519 /*
1520 * Debugger commands.
1521 */
1522 static bool s_fRegisteredCmds = false;
1523 if (!s_fRegisteredCmds)
1524 {
1525 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1526 if (RT_SUCCESS(rc2))
1527 s_fRegisteredCmds = true;
1528 }
1529#endif
1530 return VINF_SUCCESS;
1531 }
1532
1533 /* Almost no cleanup necessary, MM frees all memory. */
1534 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1535
1536 return rc;
1537}
1538
1539
1540/**
1541 * Init paging.
1542 *
1543 * Since we need to check what mode the host is operating in before we can choose
1544 * the right paging functions for the host we have to delay this until R0 has
1545 * been initialized.
1546 *
1547 * @returns VBox status code.
1548 * @param pVM Pointer to the VM.
1549 */
1550static int pgmR3InitPaging(PVM pVM)
1551{
1552 /*
1553 * Force a recalculation of modes and switcher so everyone gets notified.
1554 */
1555 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1556 {
1557 PVMCPU pVCpu = &pVM->aCpus[i];
1558
1559 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1560 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1561 }
1562
1563 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1564
1565 /*
1566 * Allocate static mapping space for whatever the cr3 register
1567 * points to and in the case of PAE mode to the 4 PDs.
1568 */
1569 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1570 if (RT_FAILURE(rc))
1571 {
1572 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1573 return rc;
1574 }
1575 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1576
1577 /*
1578 * Allocate pages for the three possible intermediate contexts
1579 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1580 * for the sake of simplicity. The AMD64 uses the PAE for the
1581 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1582 *
1583 * We assume that two page tables will be enought for the core code
1584 * mappings (HC virtual and identity).
1585 */
1586 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1587 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1588 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1589 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1590 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1591 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1592 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1593 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1594 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1595 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1596 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1597 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1598
1599 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1600 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1601 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1602 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1603 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1604 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1605
1606 /*
1607 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1608 */
1609 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1610 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1611 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1612
1613 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1614 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1615
1616 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1617 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1618 {
1619 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1620 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1621 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1622 }
1623
1624 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1625 {
1626 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1627 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1628 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1629 }
1630
1631 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1632 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1633 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1634 | HCPhysInterPaePDPT64;
1635
1636 /*
1637 * Initialize paging workers and mode from current host mode
1638 * and the guest running in real mode.
1639 */
1640 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1641 switch (pVM->pgm.s.enmHostMode)
1642 {
1643 case SUPPAGINGMODE_32_BIT:
1644 case SUPPAGINGMODE_32_BIT_GLOBAL:
1645 case SUPPAGINGMODE_PAE:
1646 case SUPPAGINGMODE_PAE_GLOBAL:
1647 case SUPPAGINGMODE_PAE_NX:
1648 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1649 break;
1650
1651 case SUPPAGINGMODE_AMD64:
1652 case SUPPAGINGMODE_AMD64_GLOBAL:
1653 case SUPPAGINGMODE_AMD64_NX:
1654 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1655#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1656 if (ARCH_BITS != 64)
1657 {
1658 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1659 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1660 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1661 }
1662#endif
1663 break;
1664 default:
1665 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1666 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1667 }
1668 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1669 if (RT_SUCCESS(rc))
1670 {
1671 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1672#if HC_ARCH_BITS == 64
1673 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1674 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1675 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1676 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1677 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1678 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1679 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1680#endif
1681
1682 /*
1683 * Log the host paging mode. It may come in handy.
1684 */
1685 const char *pszHostMode;
1686 switch (pVM->pgm.s.enmHostMode)
1687 {
1688 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1689 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1690 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1691 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1692 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1693 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1694 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1695 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1696 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1697 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1698 default: pszHostMode = "???"; break;
1699 }
1700 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1701
1702 return VINF_SUCCESS;
1703 }
1704
1705 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1706 return rc;
1707}
1708
1709
1710/**
1711 * Init statistics
1712 * @returns VBox status code.
1713 */
1714static int pgmR3InitStats(PVM pVM)
1715{
1716 PPGM pPGM = &pVM->pgm.s;
1717 int rc;
1718
1719 /*
1720 * Release statistics.
1721 */
1722 /* Common - misc variables */
1723 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1724 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1725 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1726 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1727 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1728 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1729 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1730 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1731 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1732 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1733 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1734 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1735 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1736 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1737 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1738 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1739 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1740 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1741 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1742
1743 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1744 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1745 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1746
1747 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1748
1749 /* Live save */
1750 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1751 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1752 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1753 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1754 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1755 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1756 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1757 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1758 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1759 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1760 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1761 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1762 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1763 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1764 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1765 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1766 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1767 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1768
1769#ifdef VBOX_WITH_STATISTICS
1770
1771# define PGM_REG_COUNTER(a, b, c) \
1772 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1773 AssertRC(rc);
1774
1775# define PGM_REG_COUNTER_BYTES(a, b, c) \
1776 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1777 AssertRC(rc);
1778
1779# define PGM_REG_PROFILE(a, b, c) \
1780 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1781 AssertRC(rc);
1782
1783 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1784
1785 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1786 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1787 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1788 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1789 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1790
1791 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1792 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1793 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1794 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1795 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1796 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1797 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1798 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1799 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1800 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1801
1802 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1803 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1804 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1805 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1806 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1807 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1808
1809 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1810 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1811 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1812 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1813 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1814 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1815 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1816 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1817
1818 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1819 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1820 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1821 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1822
1823 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1824 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1825 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1826 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1827
1828 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1829 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1830 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1831 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1832 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1833 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1834 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1835 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1836
1837 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1838 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1839/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1840 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1841 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1842/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1843
1844 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1845 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1846 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1847 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1848 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1849 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1850 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1851 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1852
1853 /* GC only: */
1854 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1855 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1856
1857 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1858 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1859 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1860 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1861 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1862 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1863 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1864 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1865
1866 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1867 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1868 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1869 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1870 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1871 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1872 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1873
1874# undef PGM_REG_COUNTER
1875# undef PGM_REG_PROFILE
1876#endif
1877
1878 /*
1879 * Note! The layout below matches the member layout exactly!
1880 */
1881
1882 /*
1883 * Common - stats
1884 */
1885 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1886 {
1887 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1888
1889#define PGM_REG_COUNTER(a, b, c) \
1890 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1891 AssertRC(rc);
1892#define PGM_REG_PROFILE(a, b, c) \
1893 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1894 AssertRC(rc);
1895
1896 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1897 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1898
1899#ifdef VBOX_WITH_STATISTICS
1900 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1901
1902# if 0 /* rarely useful; leave for debugging. */
1903 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1904 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1905 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1906 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1907 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1908 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1909# endif
1910 /* R0 only: */
1911 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1912 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1913
1914 /* RZ only: */
1915 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1916 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1917 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1918 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1919 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1920 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1921 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1922 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1923 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1924 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1925 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1926 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1927 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1928 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1929 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1930 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1931 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1932 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1933 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1934 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1944 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1945 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1947 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1950 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1951 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1952 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1953 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1955 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1956 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1957 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1958 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1959 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1960 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1961#if 0 /* rarely useful; leave for debugging. */
1962 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1963 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1964 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1965#endif
1966 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1967 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1968 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1969 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1970 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1971
1972 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1973 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1974 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1975 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1978 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1979 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1980 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1981 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1982 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1983 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1984 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1985 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1986 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1987 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1988 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1989 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1990 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1991 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1992 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1994 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1995 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1996 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1997 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1998 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1999 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
2000 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
2001 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
2002 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
2003 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
2004 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
2005 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
2006 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
2007 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
2008
2009 /* HC only: */
2010
2011 /* RZ & R3: */
2012 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2013 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2014 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
2015 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2016 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2017 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2018 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2019 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2020 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2021 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2022 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
2023 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2024 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
2025 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
2026 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2027 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2028 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2029 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2030 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2031 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2032 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2033 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2034 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
2035 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2036 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2037 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2038 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
2039 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2040 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2041 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2042 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2043 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2044 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2045 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2046 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2047 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2048 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2049 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2050 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2051 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2052 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2053 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2054 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2055 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2056 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2057 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2058 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2059
2060 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2061 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2062 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2063 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2064 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2065 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2066 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2067 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2068 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2069 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2070 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2071 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2072 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2073 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2074 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2075 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2076 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2077 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2078 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2079 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2080 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2081 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2082 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2083 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2084 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2085 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2086 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2087 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2088 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2089 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2090 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2091 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2092 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2093 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2094 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2095 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2096 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2097 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2098 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2099 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2100 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2101 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2102 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2103 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2104#endif /* VBOX_WITH_STATISTICS */
2105
2106#undef PGM_REG_PROFILE
2107#undef PGM_REG_COUNTER
2108
2109 }
2110
2111 return VINF_SUCCESS;
2112}
2113
2114
2115/**
2116 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2117 *
2118 * The dynamic mapping area will also be allocated and initialized at this
2119 * time. We could allocate it during PGMR3Init of course, but the mapping
2120 * wouldn't be allocated at that time preventing us from setting up the
2121 * page table entries with the dummy page.
2122 *
2123 * @returns VBox status code.
2124 * @param pVM Pointer to the VM.
2125 */
2126VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2127{
2128 RTGCPTR GCPtr;
2129 int rc;
2130
2131 /*
2132 * Reserve space for the dynamic mappings.
2133 */
2134 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2135 if (RT_SUCCESS(rc))
2136 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2137
2138 if ( RT_SUCCESS(rc)
2139 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2140 {
2141 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2142 if (RT_SUCCESS(rc))
2143 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2144 }
2145 if (RT_SUCCESS(rc))
2146 {
2147 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2148 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2149 }
2150 return rc;
2151}
2152
2153
2154/**
2155 * Ring-3 init finalizing.
2156 *
2157 * @returns VBox status code.
2158 * @param pVM Pointer to the VM.
2159 */
2160VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2161{
2162 int rc;
2163
2164 /*
2165 * Reserve space for the dynamic mappings.
2166 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2167 */
2168 /* get the pointer to the page table entries. */
2169 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2170 AssertRelease(pMapping);
2171 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2172 const unsigned iPT = off >> X86_PD_SHIFT;
2173 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2174 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2175 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2176
2177 /* init cache area */
2178 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2179 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2180 {
2181 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2182 AssertRCReturn(rc, rc);
2183 }
2184
2185 /*
2186 * Determine the max physical address width (MAXPHYADDR) and apply it to
2187 * all the mask members and stuff.
2188 */
2189 uint32_t cMaxPhysAddrWidth;
2190 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2191 if ( uMaxExtLeaf >= 0x80000008
2192 && uMaxExtLeaf <= 0x80000fff)
2193 {
2194 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2195 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2196 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2197 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2198 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2199 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2200 }
2201 else
2202 {
2203 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2204 cMaxPhysAddrWidth = 48;
2205 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2206 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2207 }
2208
2209 /** @todo query from CPUM. */
2210 pVM->pgm.s.GCPhysInvAddrMask = 0;
2211 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2212 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2213
2214 /*
2215 * Initialize the invalid paging entry masks, assuming NX is disabled.
2216 */
2217 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2218 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2219 {
2220 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2221
2222 /** @todo The manuals are not entirely clear whether the physical
2223 * address width is relevant. See table 5-9 in the intel
2224 * manual vs the PDE4M descriptions. Write testcase (NP). */
2225 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2226 | X86_PDE4M_MBZ_MASK;
2227
2228 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2229 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2230 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2231 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2232
2233 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2234 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2235 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2236 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2237 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2238 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2239
2240 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2241 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2242 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2243 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2244 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2245 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2246 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2247 }
2248
2249 /*
2250 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2251 * Intel only goes up to 36 bits, so we stick to 36 as well.
2252 * Update: More recent intel manuals specifies 40 bits just like AMD.
2253 */
2254 uint32_t u32Dummy, u32Features;
2255 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2256 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2257 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2258 else
2259 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2260
2261 /*
2262 * Allocate memory if we're supposed to do that.
2263 */
2264 if (pVM->pgm.s.fRamPreAlloc)
2265 rc = pgmR3PhysRamPreAllocate(pVM);
2266
2267 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2268 return rc;
2269}
2270
2271
2272/**
2273 * Init phase completed callback.
2274 *
2275 * @returns VBox status code.
2276 * @param pVM Pointer to the VM.
2277 * @param enmWhat What has been completed.
2278 * @thread EMT(0)
2279 */
2280VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2281{
2282 switch (enmWhat)
2283 {
2284 case VMINITCOMPLETED_HM:
2285#ifdef VBOX_WITH_PCI_PASSTHROUGH
2286 if (pVM->pgm.s.fPciPassthrough)
2287 {
2288 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2289 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2290 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2291
2292 /*
2293 * Report assignments to the IOMMU (hope that's good enough for now).
2294 */
2295 if (pVM->pgm.s.fPciPassthrough)
2296 {
2297 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2298 AssertRCReturn(rc, rc);
2299 }
2300 }
2301#else
2302 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2303#endif
2304 break;
2305
2306 default:
2307 /* shut up gcc */
2308 break;
2309 }
2310
2311 return VINF_SUCCESS;
2312}
2313
2314
2315/**
2316 * Applies relocations to data and code managed by this component.
2317 *
2318 * This function will be called at init and whenever the VMM need to relocate it
2319 * self inside the GC.
2320 *
2321 * @param pVM The VM.
2322 * @param offDelta Relocation delta relative to old location.
2323 */
2324VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2325{
2326 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2327
2328 /*
2329 * Paging stuff.
2330 */
2331 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2332
2333 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2334
2335 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2336 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2337 {
2338 PVMCPU pVCpu = &pVM->aCpus[i];
2339
2340 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2341
2342 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2343 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2344 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2345 }
2346
2347 /*
2348 * Trees.
2349 */
2350 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2351
2352 /*
2353 * Ram ranges.
2354 */
2355 if (pVM->pgm.s.pRamRangesXR3)
2356 {
2357 /* Update the pSelfRC pointers and relink them. */
2358 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2359 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2360 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2361 pgmR3PhysRelinkRamRanges(pVM);
2362
2363 /* Flush the RC TLB. */
2364 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2365 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2366 }
2367
2368 /*
2369 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2370 * be mapped and thus not included in the above exercise.
2371 */
2372 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2373 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2374 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2375
2376 /*
2377 * Update the two page directories with all page table mappings.
2378 * (One or more of them have changed, that's why we're here.)
2379 */
2380 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2381 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2382 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2383
2384 /* Relocate GC addresses of Page Tables. */
2385 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2386 {
2387 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2388 {
2389 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2390 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2391 }
2392 }
2393
2394 /*
2395 * Dynamic page mapping area.
2396 */
2397 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2398 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2399 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2400
2401 if (pVM->pgm.s.pRCDynMap)
2402 {
2403 pVM->pgm.s.pRCDynMap += offDelta;
2404 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2405
2406 pDynMap->paPages += offDelta;
2407 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2408
2409 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2410 {
2411 paPages[iPage].pvPage += offDelta;
2412 paPages[iPage].uPte.pLegacy += offDelta;
2413 paPages[iPage].uPte.pPae += offDelta;
2414 }
2415 }
2416
2417 /*
2418 * The Zero page.
2419 */
2420 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2421#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2422 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
2423#else
2424 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2425#endif
2426
2427 /*
2428 * Physical and virtual handlers.
2429 */
2430 PGMRELOCHANDLERARGS Args = { offDelta, pVM };
2431 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &Args);
2432 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2433
2434 PPGMPHYSHANDLERTYPEINT pCurPhysType;
2435 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadPhysHandlerTypes, pCurPhysType, PGMPHYSHANDLERTYPEINT, ListNode)
2436 {
2437 if (pCurPhysType->pfnHandlerRC != NIL_RTRCPTR)
2438 pCurPhysType->pfnHandlerRC += offDelta;
2439 if (pCurPhysType->pfnPfHandlerRC != NIL_RTRCPTR)
2440 pCurPhysType->pfnPfHandlerRC += offDelta;
2441 }
2442
2443#ifdef VBOX_WITH_RAW_MODE
2444 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &Args);
2445 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &Args);
2446
2447 PPGMVIRTHANDLERTYPEINT pCurVirtType;
2448 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadVirtHandlerTypes, pCurVirtType, PGMVIRTHANDLERTYPEINT, ListNode)
2449 {
2450 if (pCurVirtType->pfnHandlerRC != NIL_RTRCPTR)
2451 pCurVirtType->pfnHandlerRC += offDelta;
2452 if (pCurVirtType->pfnPfHandlerRC != NIL_RTRCPTR)
2453 pCurVirtType->pfnPfHandlerRC += offDelta;
2454 }
2455#endif
2456
2457 /*
2458 * The page pool.
2459 */
2460 pgmR3PoolRelocate(pVM);
2461
2462#ifdef VBOX_WITH_STATISTICS
2463 /*
2464 * Statistics.
2465 */
2466 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2467 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2468 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2469#endif
2470}
2471
2472
2473/**
2474 * Callback function for relocating a physical access handler.
2475 *
2476 * @returns 0 (continue enum)
2477 * @param pNode Pointer to a PGMPHYSHANDLER node.
2478 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2479 */
2480static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2481{
2482 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2483 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2484 if (pHandler->pvUserRC >= 0x10000)
2485 pHandler->pvUserRC += pArgs->offDelta;
2486 return 0;
2487}
2488
2489#ifdef VBOX_WITH_RAW_MODE
2490
2491/**
2492 * Callback function for relocating a virtual access handler.
2493 *
2494 * @returns 0 (continue enum)
2495 * @param pNode Pointer to a PGMVIRTHANDLER node.
2496 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2497 */
2498static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2499{
2500 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2501 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2502 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind != PGMVIRTHANDLERKIND_HYPERVISOR);
2503
2504 if ( pHandler->pvUserRC != NIL_RTRCPTR
2505 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2506 pHandler->pvUserRC += pArgs->offDelta;
2507 return 0;
2508}
2509
2510
2511/**
2512 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2513 *
2514 * @returns 0 (continue enum)
2515 * @param pNode Pointer to a PGMVIRTHANDLER node.
2516 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2517 */
2518static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2519{
2520 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2521 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2522 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind == PGMVIRTHANDLERKIND_HYPERVISOR);
2523
2524 if ( pHandler->pvUserRC != NIL_RTRCPTR
2525 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2526 pHandler->pvUserRC += pArgs->offDelta;
2527 return 0;
2528}
2529
2530#endif /* VBOX_WITH_RAW_MODE */
2531
2532/**
2533 * Resets a virtual CPU when unplugged.
2534 *
2535 * @param pVM Pointer to the VM.
2536 * @param pVCpu Pointer to the VMCPU.
2537 */
2538VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2539{
2540 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2541 AssertRC(rc);
2542
2543 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2544 AssertRC(rc);
2545
2546 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2547
2548 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2549
2550 /*
2551 * Re-init other members.
2552 */
2553 pVCpu->pgm.s.fA20Enabled = true;
2554 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2555
2556 /*
2557 * Clear the FFs PGM owns.
2558 */
2559 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2560 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2561}
2562
2563
2564/**
2565 * The VM is being reset.
2566 *
2567 * For the PGM component this means that any PD write monitors
2568 * needs to be removed.
2569 *
2570 * @param pVM Pointer to the VM.
2571 */
2572VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2573{
2574 LogFlow(("PGMR3Reset:\n"));
2575 VM_ASSERT_EMT(pVM);
2576
2577 pgmLock(pVM);
2578
2579 /*
2580 * Unfix any fixed mappings and disable CR3 monitoring.
2581 */
2582 pVM->pgm.s.fMappingsFixed = false;
2583 pVM->pgm.s.fMappingsFixedRestored = false;
2584 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2585 pVM->pgm.s.cbMappingFixed = 0;
2586
2587 /*
2588 * Exit the guest paging mode before the pgm pool gets reset.
2589 * Important to clean up the amd64 case.
2590 */
2591 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2592 {
2593 PVMCPU pVCpu = &pVM->aCpus[i];
2594 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2595 AssertReleaseRC(rc);
2596 }
2597
2598#ifdef DEBUG
2599 DBGFR3_INFO_LOG(pVM, "mappings", NULL);
2600 DBGFR3_INFO_LOG(pVM, "handlers", "all nostat");
2601#endif
2602
2603 /*
2604 * Switch mode back to real mode. (before resetting the pgm pool!)
2605 */
2606 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2607 {
2608 PVMCPU pVCpu = &pVM->aCpus[i];
2609
2610 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2611 AssertReleaseRC(rc);
2612
2613 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2614 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2615 }
2616
2617 /*
2618 * Reset the shadow page pool.
2619 */
2620 pgmR3PoolReset(pVM);
2621
2622 /*
2623 * Re-init various other members and clear the FFs that PGM owns.
2624 */
2625 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2626 {
2627 PVMCPU pVCpu = &pVM->aCpus[i];
2628
2629 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2630 PGMNotifyNxeChanged(pVCpu, false);
2631
2632 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2633 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2634
2635 if (!pVCpu->pgm.s.fA20Enabled)
2636 {
2637 pVCpu->pgm.s.fA20Enabled = true;
2638 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2639#ifdef PGM_WITH_A20
2640 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2641 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2642 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2643 HMFlushTLB(pVCpu);
2644#endif
2645 }
2646 }
2647
2648 pgmUnlock(pVM);
2649}
2650
2651
2652/**
2653 * Memory setup after VM construction or reset.
2654 *
2655 * @param pVM Pointer to the VM.
2656 * @param fAtReset Indicates the context, after reset if @c true or after
2657 * construction if @c false.
2658 */
2659VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2660{
2661 if (fAtReset)
2662 {
2663 pgmLock(pVM);
2664
2665 int rc = pgmR3PhysRamZeroAll(pVM);
2666 AssertReleaseRC(rc);
2667
2668 rc = pgmR3PhysRomReset(pVM);
2669 AssertReleaseRC(rc);
2670
2671 pgmUnlock(pVM);
2672 }
2673}
2674
2675
2676#ifdef VBOX_STRICT
2677/**
2678 * VM state change callback for clearing fNoMorePhysWrites after
2679 * a snapshot has been created.
2680 */
2681static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2682{
2683 if ( enmState == VMSTATE_RUNNING
2684 || enmState == VMSTATE_RESUMING)
2685 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2686 NOREF(enmOldState); NOREF(pvUser);
2687}
2688#endif
2689
2690/**
2691 * Private API to reset fNoMorePhysWrites.
2692 */
2693VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2694{
2695 pVM->pgm.s.fNoMorePhysWrites = false;
2696}
2697
2698/**
2699 * Terminates the PGM.
2700 *
2701 * @returns VBox status code.
2702 * @param pVM Pointer to VM structure.
2703 */
2704VMMR3DECL(int) PGMR3Term(PVM pVM)
2705{
2706 /* Must free shared pages here. */
2707 pgmLock(pVM);
2708 pgmR3PhysRamTerm(pVM);
2709 pgmR3PhysRomTerm(pVM);
2710 pgmUnlock(pVM);
2711
2712 PGMDeregisterStringFormatTypes();
2713 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2714}
2715
2716
2717/**
2718 * Show paging mode.
2719 *
2720 * @param pVM Pointer to the VM.
2721 * @param pHlp The info helpers.
2722 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2723 */
2724static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2725{
2726 /* digest argument. */
2727 bool fGuest, fShadow, fHost;
2728 if (pszArgs)
2729 pszArgs = RTStrStripL(pszArgs);
2730 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2731 fShadow = fHost = fGuest = true;
2732 else
2733 {
2734 fShadow = fHost = fGuest = false;
2735 if (strstr(pszArgs, "guest"))
2736 fGuest = true;
2737 if (strstr(pszArgs, "shadow"))
2738 fShadow = true;
2739 if (strstr(pszArgs, "host"))
2740 fHost = true;
2741 }
2742
2743 /** @todo SMP support! */
2744 /* print info. */
2745 if (fGuest)
2746 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2747 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2748 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2749 if (fShadow)
2750 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2751 if (fHost)
2752 {
2753 const char *psz;
2754 switch (pVM->pgm.s.enmHostMode)
2755 {
2756 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2757 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2758 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2759 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2760 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2761 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2762 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2763 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2764 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2765 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2766 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2767 default: psz = "unknown"; break;
2768 }
2769 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2770 }
2771}
2772
2773
2774/**
2775 * Dump registered MMIO ranges to the log.
2776 *
2777 * @param pVM Pointer to the VM.
2778 * @param pHlp The info helpers.
2779 * @param pszArgs Arguments, ignored.
2780 */
2781static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2782{
2783 NOREF(pszArgs);
2784 pHlp->pfnPrintf(pHlp,
2785 "RAM ranges (pVM=%p)\n"
2786 "%.*s %.*s\n",
2787 pVM,
2788 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2789 sizeof(RTHCPTR) * 2, "pvHC ");
2790
2791 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2792 pHlp->pfnPrintf(pHlp,
2793 "%RGp-%RGp %RHv %s\n",
2794 pCur->GCPhys,
2795 pCur->GCPhysLast,
2796 pCur->pvR3,
2797 pCur->pszDesc);
2798}
2799
2800
2801/**
2802 * Dump the page directory to the log.
2803 *
2804 * @param pVM Pointer to the VM.
2805 * @param pHlp The info helpers.
2806 * @param pszArgs Arguments, ignored.
2807 */
2808static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2809{
2810 /** @todo SMP support!! */
2811 PVMCPU pVCpu = &pVM->aCpus[0];
2812
2813/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2814 /* Big pages supported? */
2815 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2816
2817 /* Global pages supported? */
2818 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2819
2820 NOREF(pszArgs);
2821
2822 /*
2823 * Get page directory addresses.
2824 */
2825 pgmLock(pVM);
2826 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2827 Assert(pPDSrc);
2828
2829 /*
2830 * Iterate the page directory.
2831 */
2832 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2833 {
2834 X86PDE PdeSrc = pPDSrc->a[iPD];
2835 if (PdeSrc.n.u1Present)
2836 {
2837 if (PdeSrc.b.u1Size && fPSE)
2838 pHlp->pfnPrintf(pHlp,
2839 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2840 iPD,
2841 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2842 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2843 else
2844 pHlp->pfnPrintf(pHlp,
2845 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2846 iPD,
2847 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2848 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2849 }
2850 }
2851 pgmUnlock(pVM);
2852}
2853
2854
2855/**
2856 * Service a VMMCALLRING3_PGM_LOCK call.
2857 *
2858 * @returns VBox status code.
2859 * @param pVM Pointer to the VM.
2860 */
2861VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2862{
2863 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2864 AssertRC(rc);
2865 return rc;
2866}
2867
2868
2869/**
2870 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2871 *
2872 * @returns PGM_TYPE_*.
2873 * @param pgmMode The mode value to convert.
2874 */
2875DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2876{
2877 switch (pgmMode)
2878 {
2879 case PGMMODE_REAL: return PGM_TYPE_REAL;
2880 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2881 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2882 case PGMMODE_PAE:
2883 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2884 case PGMMODE_AMD64:
2885 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2886 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2887 case PGMMODE_EPT: return PGM_TYPE_EPT;
2888 default:
2889 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2890 }
2891}
2892
2893
2894/**
2895 * Gets the index into the paging mode data array of a SHW+GST mode.
2896 *
2897 * @returns PGM::paPagingData index.
2898 * @param uShwType The shadow paging mode type.
2899 * @param uGstType The guest paging mode type.
2900 */
2901DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2902{
2903 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2904 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2905 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2906 + (uGstType - PGM_TYPE_REAL);
2907}
2908
2909
2910/**
2911 * Gets the index into the paging mode data array of a SHW+GST mode.
2912 *
2913 * @returns PGM::paPagingData index.
2914 * @param enmShw The shadow paging mode.
2915 * @param enmGst The guest paging mode.
2916 */
2917DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2918{
2919 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2920 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2921 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2922}
2923
2924
2925/**
2926 * Calculates the max data index.
2927 * @returns The number of entries in the paging data array.
2928 */
2929DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2930{
2931 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2932}
2933
2934
2935/**
2936 * Initializes the paging mode data kept in PGM::paModeData.
2937 *
2938 * @param pVM Pointer to the VM.
2939 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2940 * This is used early in the init process to avoid trouble with PDM
2941 * not being initialized yet.
2942 */
2943static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2944{
2945 PPGMMODEDATA pModeData;
2946 int rc;
2947
2948 /*
2949 * Allocate the array on the first call.
2950 */
2951 if (!pVM->pgm.s.paModeData)
2952 {
2953 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2954 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2955 }
2956
2957 /*
2958 * Initialize the array entries.
2959 */
2960 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2961 pModeData->uShwType = PGM_TYPE_32BIT;
2962 pModeData->uGstType = PGM_TYPE_REAL;
2963 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2964 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2965 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2966
2967 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2968 pModeData->uShwType = PGM_TYPE_32BIT;
2969 pModeData->uGstType = PGM_TYPE_PROT;
2970 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2971 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2972 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2973
2974 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2975 pModeData->uShwType = PGM_TYPE_32BIT;
2976 pModeData->uGstType = PGM_TYPE_32BIT;
2977 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2978 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2979 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2980
2981 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2982 pModeData->uShwType = PGM_TYPE_PAE;
2983 pModeData->uGstType = PGM_TYPE_REAL;
2984 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2985 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2986 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2987
2988 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2989 pModeData->uShwType = PGM_TYPE_PAE;
2990 pModeData->uGstType = PGM_TYPE_PROT;
2991 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2992 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2993 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2994
2995 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2996 pModeData->uShwType = PGM_TYPE_PAE;
2997 pModeData->uGstType = PGM_TYPE_32BIT;
2998 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2999 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3000 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3001
3002 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3003 pModeData->uShwType = PGM_TYPE_PAE;
3004 pModeData->uGstType = PGM_TYPE_PAE;
3005 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3006 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3007 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3008
3009#ifdef VBOX_WITH_64_BITS_GUESTS
3010 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3011 pModeData->uShwType = PGM_TYPE_AMD64;
3012 pModeData->uGstType = PGM_TYPE_AMD64;
3013 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3014 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3015 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3016#endif
3017
3018 /* The nested paging mode. */
3019 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3020 pModeData->uShwType = PGM_TYPE_NESTED;
3021 pModeData->uGstType = PGM_TYPE_REAL;
3022 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3023 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3024
3025 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3026 pModeData->uShwType = PGM_TYPE_NESTED;
3027 pModeData->uGstType = PGM_TYPE_PROT;
3028 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3029 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3030
3031 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3032 pModeData->uShwType = PGM_TYPE_NESTED;
3033 pModeData->uGstType = PGM_TYPE_32BIT;
3034 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3035 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3036
3037 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3038 pModeData->uShwType = PGM_TYPE_NESTED;
3039 pModeData->uGstType = PGM_TYPE_PAE;
3040 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3041 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3042
3043#ifdef VBOX_WITH_64_BITS_GUESTS
3044 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3045 pModeData->uShwType = PGM_TYPE_NESTED;
3046 pModeData->uGstType = PGM_TYPE_AMD64;
3047 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3048 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3049#endif
3050
3051 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3052 switch (pVM->pgm.s.enmHostMode)
3053 {
3054#if HC_ARCH_BITS == 32
3055 case SUPPAGINGMODE_32_BIT:
3056 case SUPPAGINGMODE_32_BIT_GLOBAL:
3057 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3058 {
3059 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3060 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3061 }
3062# ifdef VBOX_WITH_64_BITS_GUESTS
3063 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3064 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3065# endif
3066 break;
3067
3068 case SUPPAGINGMODE_PAE:
3069 case SUPPAGINGMODE_PAE_NX:
3070 case SUPPAGINGMODE_PAE_GLOBAL:
3071 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3072 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3073 {
3074 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3075 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3076 }
3077# ifdef VBOX_WITH_64_BITS_GUESTS
3078 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3079 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3080# endif
3081 break;
3082#endif /* HC_ARCH_BITS == 32 */
3083
3084#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3085 case SUPPAGINGMODE_AMD64:
3086 case SUPPAGINGMODE_AMD64_GLOBAL:
3087 case SUPPAGINGMODE_AMD64_NX:
3088 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3089# ifdef VBOX_WITH_64_BITS_GUESTS
3090 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3091# else
3092 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3093# endif
3094 {
3095 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3096 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3097 }
3098 break;
3099#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3100
3101 default:
3102 AssertFailed();
3103 break;
3104 }
3105
3106 /* Extended paging (EPT) / Intel VT-x */
3107 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3108 pModeData->uShwType = PGM_TYPE_EPT;
3109 pModeData->uGstType = PGM_TYPE_REAL;
3110 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3111 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3112 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3113
3114 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3115 pModeData->uShwType = PGM_TYPE_EPT;
3116 pModeData->uGstType = PGM_TYPE_PROT;
3117 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3118 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3119 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3120
3121 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3122 pModeData->uShwType = PGM_TYPE_EPT;
3123 pModeData->uGstType = PGM_TYPE_32BIT;
3124 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3125 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3126 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3127
3128 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3129 pModeData->uShwType = PGM_TYPE_EPT;
3130 pModeData->uGstType = PGM_TYPE_PAE;
3131 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3132 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3133 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3134
3135#ifdef VBOX_WITH_64_BITS_GUESTS
3136 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3137 pModeData->uShwType = PGM_TYPE_EPT;
3138 pModeData->uGstType = PGM_TYPE_AMD64;
3139 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3140 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3141 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3142#endif
3143 return VINF_SUCCESS;
3144}
3145
3146
3147/**
3148 * Switch to different (or relocated in the relocate case) mode data.
3149 *
3150 * @param pVM Pointer to the VM.
3151 * @param pVCpu Pointer to the VMCPU.
3152 * @param enmShw The shadow paging mode.
3153 * @param enmGst The guest paging mode.
3154 */
3155static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3156{
3157 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3158
3159 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3160 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3161
3162 /* shadow */
3163 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3164 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3165 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3166 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3167 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3168
3169 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3170 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3171
3172 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3173 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3174
3175
3176 /* guest */
3177 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3178 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3179 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3180 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3181 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3182 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3183 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3184 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3185 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3186 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3187 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3188 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3189
3190 /* both */
3191 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3192 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3193 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3194 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3195 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3196 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3197#ifdef VBOX_STRICT
3198 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3199#endif
3200 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3201 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3202
3203 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3204 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3205 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3206 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3207 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3208#ifdef VBOX_STRICT
3209 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3210#endif
3211 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3212 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3213
3214 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3215 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3216 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3217 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3218 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3219#ifdef VBOX_STRICT
3220 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3221#endif
3222 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3223 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3224}
3225
3226
3227/**
3228 * Calculates the shadow paging mode.
3229 *
3230 * @returns The shadow paging mode.
3231 * @param pVM Pointer to the VM.
3232 * @param enmGuestMode The guest mode.
3233 * @param enmHostMode The host mode.
3234 * @param enmShadowMode The current shadow mode.
3235 * @param penmSwitcher Where to store the switcher to use.
3236 * VMMSWITCHER_INVALID means no change.
3237 */
3238static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3239{
3240 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3241 switch (enmGuestMode)
3242 {
3243 /*
3244 * When switching to real or protected mode we don't change
3245 * anything since it's likely that we'll switch back pretty soon.
3246 *
3247 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3248 * and is supposed to determine which shadow paging and switcher to
3249 * use during init.
3250 */
3251 case PGMMODE_REAL:
3252 case PGMMODE_PROTECTED:
3253 if ( enmShadowMode != PGMMODE_INVALID
3254 && !HMIsEnabled(pVM) /* always switch in hm mode! */)
3255 break; /* (no change) */
3256
3257 switch (enmHostMode)
3258 {
3259 case SUPPAGINGMODE_32_BIT:
3260 case SUPPAGINGMODE_32_BIT_GLOBAL:
3261 enmShadowMode = PGMMODE_32_BIT;
3262 enmSwitcher = VMMSWITCHER_32_TO_32;
3263 break;
3264
3265 case SUPPAGINGMODE_PAE:
3266 case SUPPAGINGMODE_PAE_NX:
3267 case SUPPAGINGMODE_PAE_GLOBAL:
3268 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3269 enmShadowMode = PGMMODE_PAE;
3270 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3271#ifdef DEBUG_bird
3272 if (RTEnvExist("VBOX_32BIT"))
3273 {
3274 enmShadowMode = PGMMODE_32_BIT;
3275 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3276 }
3277#endif
3278 break;
3279
3280 case SUPPAGINGMODE_AMD64:
3281 case SUPPAGINGMODE_AMD64_GLOBAL:
3282 case SUPPAGINGMODE_AMD64_NX:
3283 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3284 enmShadowMode = PGMMODE_PAE;
3285 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3286#ifdef DEBUG_bird
3287 if (RTEnvExist("VBOX_32BIT"))
3288 {
3289 enmShadowMode = PGMMODE_32_BIT;
3290 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3291 }
3292#endif
3293 break;
3294
3295 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3296 }
3297 break;
3298
3299 case PGMMODE_32_BIT:
3300 switch (enmHostMode)
3301 {
3302 case SUPPAGINGMODE_32_BIT:
3303 case SUPPAGINGMODE_32_BIT_GLOBAL:
3304 enmShadowMode = PGMMODE_32_BIT;
3305 enmSwitcher = VMMSWITCHER_32_TO_32;
3306 break;
3307
3308 case SUPPAGINGMODE_PAE:
3309 case SUPPAGINGMODE_PAE_NX:
3310 case SUPPAGINGMODE_PAE_GLOBAL:
3311 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3312 enmShadowMode = PGMMODE_PAE;
3313 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3314#ifdef DEBUG_bird
3315 if (RTEnvExist("VBOX_32BIT"))
3316 {
3317 enmShadowMode = PGMMODE_32_BIT;
3318 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3319 }
3320#endif
3321 break;
3322
3323 case SUPPAGINGMODE_AMD64:
3324 case SUPPAGINGMODE_AMD64_GLOBAL:
3325 case SUPPAGINGMODE_AMD64_NX:
3326 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3327 enmShadowMode = PGMMODE_PAE;
3328 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3329#ifdef DEBUG_bird
3330 if (RTEnvExist("VBOX_32BIT"))
3331 {
3332 enmShadowMode = PGMMODE_32_BIT;
3333 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3334 }
3335#endif
3336 break;
3337
3338 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3339 }
3340 break;
3341
3342 case PGMMODE_PAE:
3343 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3344 switch (enmHostMode)
3345 {
3346 case SUPPAGINGMODE_32_BIT:
3347 case SUPPAGINGMODE_32_BIT_GLOBAL:
3348 enmShadowMode = PGMMODE_PAE;
3349 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3350 break;
3351
3352 case SUPPAGINGMODE_PAE:
3353 case SUPPAGINGMODE_PAE_NX:
3354 case SUPPAGINGMODE_PAE_GLOBAL:
3355 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3356 enmShadowMode = PGMMODE_PAE;
3357 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3358 break;
3359
3360 case SUPPAGINGMODE_AMD64:
3361 case SUPPAGINGMODE_AMD64_GLOBAL:
3362 case SUPPAGINGMODE_AMD64_NX:
3363 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3364 enmShadowMode = PGMMODE_PAE;
3365 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3366 break;
3367
3368 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3369 }
3370 break;
3371
3372 case PGMMODE_AMD64:
3373 case PGMMODE_AMD64_NX:
3374 switch (enmHostMode)
3375 {
3376 case SUPPAGINGMODE_32_BIT:
3377 case SUPPAGINGMODE_32_BIT_GLOBAL:
3378 enmShadowMode = PGMMODE_AMD64;
3379 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3380 break;
3381
3382 case SUPPAGINGMODE_PAE:
3383 case SUPPAGINGMODE_PAE_NX:
3384 case SUPPAGINGMODE_PAE_GLOBAL:
3385 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3386 enmShadowMode = PGMMODE_AMD64;
3387 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3388 break;
3389
3390 case SUPPAGINGMODE_AMD64:
3391 case SUPPAGINGMODE_AMD64_GLOBAL:
3392 case SUPPAGINGMODE_AMD64_NX:
3393 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3394 enmShadowMode = PGMMODE_AMD64;
3395 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3396 break;
3397
3398 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3399 }
3400 break;
3401
3402
3403 default:
3404 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3405 *penmSwitcher = VMMSWITCHER_INVALID;
3406 return PGMMODE_INVALID;
3407 }
3408 /* Override the shadow mode is nested paging is active. */
3409 pVM->pgm.s.fNestedPaging = HMIsNestedPagingActive(pVM);
3410 if (pVM->pgm.s.fNestedPaging)
3411 enmShadowMode = HMGetShwPagingMode(pVM);
3412
3413 *penmSwitcher = enmSwitcher;
3414 return enmShadowMode;
3415}
3416
3417
3418/**
3419 * Performs the actual mode change.
3420 * This is called by PGMChangeMode and pgmR3InitPaging().
3421 *
3422 * @returns VBox status code. May suspend or power off the VM on error, but this
3423 * will trigger using FFs and not status codes.
3424 *
3425 * @param pVM Pointer to the VM.
3426 * @param pVCpu Pointer to the VMCPU.
3427 * @param enmGuestMode The new guest mode. This is assumed to be different from
3428 * the current mode.
3429 */
3430VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3431{
3432#if HC_ARCH_BITS == 32
3433 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3434#endif
3435 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3436
3437 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3438 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3439
3440 /*
3441 * Calc the shadow mode and switcher.
3442 */
3443 VMMSWITCHER enmSwitcher;
3444 PGMMODE enmShadowMode;
3445 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3446
3447#ifdef VBOX_WITH_RAW_MODE
3448 if ( enmSwitcher != VMMSWITCHER_INVALID
3449 && !HMIsEnabled(pVM))
3450 {
3451 /*
3452 * Select new switcher.
3453 */
3454 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3455 if (RT_FAILURE(rc))
3456 {
3457 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3458 return rc;
3459 }
3460 }
3461#endif
3462
3463 /*
3464 * Exit old mode(s).
3465 */
3466#if HC_ARCH_BITS == 32
3467 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3468 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3469 && enmShadowMode == PGMMODE_NESTED);
3470#else
3471 const bool fForceShwEnterExit = false;
3472#endif
3473 /* shadow */
3474 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3475 || fForceShwEnterExit)
3476 {
3477 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3478 if (PGM_SHW_PFN(Exit, pVCpu))
3479 {
3480 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3481 if (RT_FAILURE(rc))
3482 {
3483 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3484 return rc;
3485 }
3486 }
3487
3488 }
3489 else
3490 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3491
3492 /* guest */
3493 if (PGM_GST_PFN(Exit, pVCpu))
3494 {
3495 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3496 if (RT_FAILURE(rc))
3497 {
3498 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3499 return rc;
3500 }
3501 }
3502
3503 /*
3504 * Load new paging mode data.
3505 */
3506 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3507
3508 /*
3509 * Enter new shadow mode (if changed).
3510 */
3511 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3512 || fForceShwEnterExit)
3513 {
3514 int rc;
3515 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3516 switch (enmShadowMode)
3517 {
3518 case PGMMODE_32_BIT:
3519 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3520 break;
3521 case PGMMODE_PAE:
3522 case PGMMODE_PAE_NX:
3523 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3524 break;
3525 case PGMMODE_AMD64:
3526 case PGMMODE_AMD64_NX:
3527 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3528 break;
3529 case PGMMODE_NESTED:
3530 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3531 break;
3532 case PGMMODE_EPT:
3533 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3534 break;
3535 case PGMMODE_REAL:
3536 case PGMMODE_PROTECTED:
3537 default:
3538 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3539 return VERR_INTERNAL_ERROR;
3540 }
3541 if (RT_FAILURE(rc))
3542 {
3543 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3544 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3545 return rc;
3546 }
3547 }
3548
3549 /*
3550 * Always flag the necessary updates
3551 */
3552 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3553
3554 /*
3555 * Enter the new guest and shadow+guest modes.
3556 */
3557 int rc = -1;
3558 int rc2 = -1;
3559 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3560 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3561 switch (enmGuestMode)
3562 {
3563 case PGMMODE_REAL:
3564 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3565 switch (pVCpu->pgm.s.enmShadowMode)
3566 {
3567 case PGMMODE_32_BIT:
3568 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3569 break;
3570 case PGMMODE_PAE:
3571 case PGMMODE_PAE_NX:
3572 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3573 break;
3574 case PGMMODE_NESTED:
3575 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3576 break;
3577 case PGMMODE_EPT:
3578 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3579 break;
3580 case PGMMODE_AMD64:
3581 case PGMMODE_AMD64_NX:
3582 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3583 default: AssertFailed(); break;
3584 }
3585 break;
3586
3587 case PGMMODE_PROTECTED:
3588 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3589 switch (pVCpu->pgm.s.enmShadowMode)
3590 {
3591 case PGMMODE_32_BIT:
3592 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3593 break;
3594 case PGMMODE_PAE:
3595 case PGMMODE_PAE_NX:
3596 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3597 break;
3598 case PGMMODE_NESTED:
3599 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3600 break;
3601 case PGMMODE_EPT:
3602 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3603 break;
3604 case PGMMODE_AMD64:
3605 case PGMMODE_AMD64_NX:
3606 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3607 default: AssertFailed(); break;
3608 }
3609 break;
3610
3611 case PGMMODE_32_BIT:
3612 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3613 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3614 switch (pVCpu->pgm.s.enmShadowMode)
3615 {
3616 case PGMMODE_32_BIT:
3617 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3618 break;
3619 case PGMMODE_PAE:
3620 case PGMMODE_PAE_NX:
3621 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3622 break;
3623 case PGMMODE_NESTED:
3624 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3625 break;
3626 case PGMMODE_EPT:
3627 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3628 break;
3629 case PGMMODE_AMD64:
3630 case PGMMODE_AMD64_NX:
3631 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3632 default: AssertFailed(); break;
3633 }
3634 break;
3635
3636 case PGMMODE_PAE_NX:
3637 case PGMMODE_PAE:
3638 {
3639 uint32_t u32Dummy, u32Features;
3640
3641 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3642 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3643 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3644 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (System/Processor)"));
3645
3646 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3647 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3648 switch (pVCpu->pgm.s.enmShadowMode)
3649 {
3650 case PGMMODE_PAE:
3651 case PGMMODE_PAE_NX:
3652 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3653 break;
3654 case PGMMODE_NESTED:
3655 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3656 break;
3657 case PGMMODE_EPT:
3658 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3659 break;
3660 case PGMMODE_32_BIT:
3661 case PGMMODE_AMD64:
3662 case PGMMODE_AMD64_NX:
3663 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3664 default: AssertFailed(); break;
3665 }
3666 break;
3667 }
3668
3669#ifdef VBOX_WITH_64_BITS_GUESTS
3670 case PGMMODE_AMD64_NX:
3671 case PGMMODE_AMD64:
3672 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3673 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3674 switch (pVCpu->pgm.s.enmShadowMode)
3675 {
3676 case PGMMODE_AMD64:
3677 case PGMMODE_AMD64_NX:
3678 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3679 break;
3680 case PGMMODE_NESTED:
3681 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3682 break;
3683 case PGMMODE_EPT:
3684 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3685 break;
3686 case PGMMODE_32_BIT:
3687 case PGMMODE_PAE:
3688 case PGMMODE_PAE_NX:
3689 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3690 default: AssertFailed(); break;
3691 }
3692 break;
3693#endif
3694
3695 default:
3696 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3697 rc = VERR_NOT_IMPLEMENTED;
3698 break;
3699 }
3700
3701 /* status codes. */
3702 AssertRC(rc);
3703 AssertRC(rc2);
3704 if (RT_SUCCESS(rc))
3705 {
3706 rc = rc2;
3707 if (RT_SUCCESS(rc)) /* no informational status codes. */
3708 rc = VINF_SUCCESS;
3709 }
3710
3711 /* Notify HM as well. */
3712 HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3713 return rc;
3714}
3715
3716
3717/**
3718 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3719 *
3720 * @returns VBox status code, fully asserted.
3721 * @param pVCpu Pointer to the VMCPU.
3722 */
3723int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3724{
3725 /* Unmap the old CR3 value before flushing everything. */
3726 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3727 AssertRC(rc);
3728
3729 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3730 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3731 AssertRC(rc);
3732 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3733 return rc;
3734}
3735
3736
3737/**
3738 * Called by pgmPoolFlushAllInt after flushing the pool.
3739 *
3740 * @returns VBox status code, fully asserted.
3741 * @param pVM Pointer to the VM.
3742 * @param pVCpu Pointer to the VMCPU.
3743 */
3744int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3745{
3746 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3747 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3748 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3749 AssertRCReturn(rc, rc);
3750 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3751
3752 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3753 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3754 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3755 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3756 return rc;
3757}
3758
3759
3760/**
3761 * Called by PGMR3PhysSetA20 after changing the A20 state.
3762 *
3763 * @param pVCpu Pointer to the VMCPU.
3764 */
3765void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3766{
3767 /** @todo Probably doing a bit too much here. */
3768 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3769 AssertReleaseRC(rc);
3770 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3771 AssertReleaseRC(rc);
3772}
3773
3774
3775#ifdef VBOX_WITH_DEBUGGER
3776
3777/**
3778 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3779 */
3780static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3781{
3782 /*
3783 * Validate input.
3784 */
3785 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3786 PVM pVM = pUVM->pVM;
3787 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3788
3789 if (!cArgs)
3790 {
3791 /*
3792 * Print the list of error injection locations with status.
3793 */
3794 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3795 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3796 }
3797 else
3798 {
3799 /*
3800 * String switch on where to inject the error.
3801 */
3802 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3803 const char *pszWhere = paArgs[0].u.pszString;
3804 if (!strcmp(pszWhere, "handy"))
3805 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3806 else
3807 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
3808 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
3809 }
3810 return VINF_SUCCESS;
3811}
3812
3813
3814/**
3815 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
3816 */
3817static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3818{
3819 /*
3820 * Validate input.
3821 */
3822 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3823 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3824 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3825 if (!pVCpu)
3826 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3827
3828 /*
3829 * Force page directory sync.
3830 */
3831 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3832
3833 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
3834 if (RT_FAILURE(rc))
3835 return rc;
3836
3837 return VINF_SUCCESS;
3838}
3839
3840#ifdef VBOX_STRICT
3841
3842/**
3843 * EMT callback for pgmR3CmdAssertCR3.
3844 *
3845 * @returns VBox status code.
3846 * @param pUVM The user mode VM handle.
3847 * @param pcErrors Where to return the error count.
3848 */
3849static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
3850{
3851 PVM pVM = pUVM->pVM;
3852 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3853 PVMCPU pVCpu = VMMGetCpu(pVM);
3854
3855 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3856
3857 return VINF_SUCCESS;
3858}
3859
3860
3861/**
3862 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
3863 */
3864static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3865{
3866 /*
3867 * Validate input.
3868 */
3869 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3870 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3871
3872 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
3873 if (RT_FAILURE(rc))
3874 return rc;
3875
3876 unsigned cErrors = 0;
3877 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
3878 if (RT_FAILURE(rc))
3879 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
3880 if (cErrors > 0)
3881 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
3882 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
3883}
3884
3885#endif /* VBOX_STRICT */
3886
3887/**
3888 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
3889 */
3890static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3891{
3892 /*
3893 * Validate input.
3894 */
3895 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3896 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3897 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3898 if (!pVCpu)
3899 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3900
3901 /*
3902 * Force page directory sync.
3903 */
3904 int rc;
3905 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3906 {
3907 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3908 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
3909 }
3910 else
3911 {
3912 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3913 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3914 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
3915 }
3916 return rc;
3917}
3918
3919
3920/**
3921 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
3922 */
3923static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3924{
3925 /*
3926 * Validate input.
3927 */
3928 NOREF(pCmd);
3929 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3930 PVM pVM = pUVM->pVM;
3931 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
3932 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
3933 if (cArgs == 2)
3934 {
3935 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
3936 if (strcmp(paArgs[1].u.pszString, "nozero"))
3937 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3938 }
3939 bool fIncZeroPgs = cArgs < 2;
3940
3941 /*
3942 * Open the output file and get the ram parameters.
3943 */
3944 RTFILE hFile;
3945 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3946 if (RT_FAILURE(rc))
3947 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3948
3949 uint32_t cbRamHole = 0;
3950 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3951 uint64_t cbRam = 0;
3952 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
3953 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3954
3955 /*
3956 * Dump the physical memory, page by page.
3957 */
3958 RTGCPHYS GCPhys = 0;
3959 char abZeroPg[PAGE_SIZE];
3960 RT_ZERO(abZeroPg);
3961
3962 pgmLock(pVM);
3963 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3964 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3965 pRam = pRam->pNextR3)
3966 {
3967 /* fill the gap */
3968 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3969 {
3970 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3971 {
3972 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3973 GCPhys += PAGE_SIZE;
3974 }
3975 }
3976
3977 PCPGMPAGE pPage = &pRam->aPages[0];
3978 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3979 {
3980 if ( PGM_PAGE_IS_ZERO(pPage)
3981 || PGM_PAGE_IS_BALLOONED(pPage))
3982 {
3983 if (fIncZeroPgs)
3984 {
3985 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3986 if (RT_FAILURE(rc))
3987 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3988 }
3989 }
3990 else
3991 {
3992 switch (PGM_PAGE_GET_TYPE(pPage))
3993 {
3994 case PGMPAGETYPE_RAM:
3995 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3996 case PGMPAGETYPE_ROM:
3997 case PGMPAGETYPE_MMIO2:
3998 {
3999 void const *pvPage;
4000 PGMPAGEMAPLOCK Lock;
4001 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4002 if (RT_SUCCESS(rc))
4003 {
4004 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4005 PGMPhysReleasePageMappingLock(pVM, &Lock);
4006 if (RT_FAILURE(rc))
4007 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4008 }
4009 else
4010 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4011 break;
4012 }
4013
4014 default:
4015 AssertFailed();
4016 case PGMPAGETYPE_MMIO:
4017 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4018 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
4019 if (fIncZeroPgs)
4020 {
4021 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4022 if (RT_FAILURE(rc))
4023 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4024 }
4025 break;
4026 }
4027 }
4028
4029
4030 /* advance */
4031 GCPhys += PAGE_SIZE;
4032 pPage++;
4033 }
4034 }
4035 pgmUnlock(pVM);
4036
4037 RTFileClose(hFile);
4038 if (RT_SUCCESS(rc))
4039 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4040 return VINF_SUCCESS;
4041}
4042
4043#endif /* VBOX_WITH_DEBUGGER */
4044
4045/**
4046 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4047 */
4048typedef struct PGMCHECKINTARGS
4049{
4050 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4051 PPGMPHYSHANDLER pPrevPhys;
4052#ifdef VBOX_WITH_RAW_MODE
4053 PPGMVIRTHANDLER pPrevVirt;
4054 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4055#else
4056 void *pvFiller1, *pvFiller2;
4057#endif
4058 PVM pVM;
4059} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4060
4061/**
4062 * Validate a node in the physical handler tree.
4063 *
4064 * @returns 0 on if ok, other wise 1.
4065 * @param pNode The handler node.
4066 * @param pvUser pVM.
4067 */
4068static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4069{
4070 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4071 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4072 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4073 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
4074 ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4075 AssertReleaseMsg( !pArgs->pPrevPhys
4076 || ( pArgs->fLeftToRight
4077 ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
4078 : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4079 ("pPrevPhys=%p %RGp-%RGp %s\n"
4080 " pCur=%p %RGp-%RGp %s\n",
4081 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4082 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4083 pArgs->pPrevPhys = pCur;
4084 return 0;
4085}
4086
4087#ifdef VBOX_WITH_RAW_MODE
4088
4089/**
4090 * Validate a node in the virtual handler tree.
4091 *
4092 * @returns 0 on if ok, other wise 1.
4093 * @param pNode The handler node.
4094 * @param pvUser pVM.
4095 */
4096static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4097{
4098 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4099 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4100 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4101 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4102 AssertReleaseMsg( !pArgs->pPrevVirt
4103 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4104 ("pPrevVirt=%p %RGv-%RGv %s\n"
4105 " pCur=%p %RGv-%RGv %s\n",
4106 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4107 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4108 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4109 {
4110 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4111 ("pCur=%p %RGv-%RGv %s\n"
4112 "iPage=%d offVirtHandle=%#x expected %#x\n",
4113 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4114 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4115 }
4116 pArgs->pPrevVirt = pCur;
4117 return 0;
4118}
4119
4120
4121/**
4122 * Validate a node in the virtual handler tree.
4123 *
4124 * @returns 0 on if ok, other wise 1.
4125 * @param pNode The handler node.
4126 * @param pvUser pVM.
4127 */
4128static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4129{
4130 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4131 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4132 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4133 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4134 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4135 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4136 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4137 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4138 " pCur=%p %RGp-%RGp\n",
4139 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4140 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4141 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4142 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4143 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4144 " pCur=%p %RGp-%RGp\n",
4145 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4146 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4147 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4148 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4149 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4150 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4151 {
4152 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4153 for (;;)
4154 {
4155 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4156 AssertReleaseMsg(pCur2 != pCur,
4157 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4158 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4159 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4160 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4161 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4162 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4163 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4164 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4165 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4166 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4167 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4168 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4169 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4170 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4171 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4172 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4173 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4174 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4175 break;
4176 }
4177 }
4178
4179 pArgs->pPrevPhys2Virt = pCur;
4180 return 0;
4181}
4182
4183#endif /* VBOX_WITH_RAW_MODE */
4184
4185/**
4186 * Perform an integrity check on the PGM component.
4187 *
4188 * @returns VINF_SUCCESS if everything is fine.
4189 * @returns VBox error status after asserting on integrity breach.
4190 * @param pVM Pointer to the VM.
4191 */
4192VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4193{
4194 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4195
4196 /*
4197 * Check the trees.
4198 */
4199 int cErrors = 0;
4200 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4201 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4202 PGMCHECKINTARGS Args = s_LeftToRight;
4203 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4204 Args = s_RightToLeft;
4205 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4206#ifdef VBOX_WITH_RAW_MODE
4207 Args = s_LeftToRight;
4208 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4209 Args = s_RightToLeft;
4210 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4211 Args = s_LeftToRight;
4212 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4213 Args = s_RightToLeft;
4214 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4215 Args = s_LeftToRight;
4216 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4217 Args = s_RightToLeft;
4218 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4219#endif /* VBOX_WITH_RAW_MODE */
4220
4221 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4222}
4223
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette