VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 57394

Last change on this file since 57394 was 57358, checked in by vboxsync, 9 years ago

*: scm cleanup run.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 206.4 KB
Line 
1/* $Id: PGM.cpp 57358 2015-08-14 15:16:38Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @subsection subsec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @subsection subsec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @subsection subsec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @subsection subsec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @subsection subsec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref subsec_pgmPhys_Serializing. We
555 * some double house keeping wrt to who has mapped what I think, since both
556 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613
614/*********************************************************************************************************************************
615* Header Files *
616*********************************************************************************************************************************/
617#define LOG_GROUP LOG_GROUP_PGM
618#include <VBox/vmm/dbgf.h>
619#include <VBox/vmm/pgm.h>
620#include <VBox/vmm/cpum.h>
621#include <VBox/vmm/iom.h>
622#include <VBox/sup.h>
623#include <VBox/vmm/mm.h>
624#include <VBox/vmm/em.h>
625#include <VBox/vmm/stam.h>
626#ifdef VBOX_WITH_REM
627# include <VBox/vmm/rem.h>
628#endif
629#include <VBox/vmm/selm.h>
630#include <VBox/vmm/ssm.h>
631#include <VBox/vmm/hm.h>
632#include "PGMInternal.h"
633#include <VBox/vmm/vm.h>
634#include <VBox/vmm/uvm.h>
635#include "PGMInline.h"
636
637#include <VBox/dbg.h>
638#include <VBox/param.h>
639#include <VBox/err.h>
640
641#include <iprt/asm.h>
642#include <iprt/asm-amd64-x86.h>
643#include <iprt/assert.h>
644#include <iprt/env.h>
645#include <iprt/mem.h>
646#include <iprt/file.h>
647#include <iprt/string.h>
648#include <iprt/thread.h>
649
650
651/*********************************************************************************************************************************
652* Structures and Typedefs *
653*********************************************************************************************************************************/
654/**
655 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
656 * pgmR3RelocateHyperVirtHandler.
657 */
658typedef struct PGMRELOCHANDLERARGS
659{
660 RTGCINTPTR offDelta;
661 PVM pVM;
662} PGMRELOCHANDLERARGS;
663/** Pointer to a page access handlere relocation argument package. */
664typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
665
666
667/*********************************************************************************************************************************
668* Internal Functions *
669*********************************************************************************************************************************/
670static int pgmR3InitPaging(PVM pVM);
671static int pgmR3InitStats(PVM pVM);
672static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
673static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
674static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
675static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
676#ifdef VBOX_WITH_RAW_MODE
677static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
678static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
679#endif /* VBOX_WITH_RAW_MODE */
680#ifdef VBOX_STRICT
681static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
682#endif
683static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
684static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
685static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
686
687#ifdef VBOX_WITH_DEBUGGER
688static FNDBGCCMD pgmR3CmdError;
689static FNDBGCCMD pgmR3CmdSync;
690static FNDBGCCMD pgmR3CmdSyncAlways;
691# ifdef VBOX_STRICT
692static FNDBGCCMD pgmR3CmdAssertCR3;
693# endif
694static FNDBGCCMD pgmR3CmdPhysToFile;
695#endif
696
697
698/*********************************************************************************************************************************
699* Global Variables *
700*********************************************************************************************************************************/
701#ifdef VBOX_WITH_DEBUGGER
702/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
703static const DBGCVARDESC g_aPgmErrorArgs[] =
704{
705 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
706 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
707};
708
709static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
710{
711 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
712 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
713 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
714};
715
716# ifdef DEBUG_sandervl
717static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
718{
719 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
720 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
721 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
722};
723# endif
724
725/** Command descriptors. */
726static const DBGCCMD g_aCmds[] =
727{
728 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
729 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
730 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
731 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
732# ifdef VBOX_STRICT
733 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
734# ifdef VBOX_WITH_PAGE_SHARING
735 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
736 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
737# endif
738# endif
739 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
740 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
741};
742#endif
743
744
745
746
747/*
748 * Shadow - 32-bit mode
749 */
750#define PGM_SHW_TYPE PGM_TYPE_32BIT
751#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
752#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
753#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
754#include "PGMShw.h"
755
756/* Guest - real mode */
757#define PGM_GST_TYPE PGM_TYPE_REAL
758#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
759#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
760#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
761#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
762#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
763#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
764#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
765#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
766#include "PGMBth.h"
767#include "PGMGstDefs.h"
768#include "PGMGst.h"
769#undef BTH_PGMPOOLKIND_PT_FOR_PT
770#undef BTH_PGMPOOLKIND_ROOT
771#undef PGM_BTH_NAME
772#undef PGM_BTH_NAME_RC_STR
773#undef PGM_BTH_NAME_R0_STR
774#undef PGM_GST_TYPE
775#undef PGM_GST_NAME
776#undef PGM_GST_NAME_RC_STR
777#undef PGM_GST_NAME_R0_STR
778
779/* Guest - protected mode */
780#define PGM_GST_TYPE PGM_TYPE_PROT
781#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
782#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
783#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
784#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
785#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
786#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
787#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
788#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
789#include "PGMBth.h"
790#include "PGMGstDefs.h"
791#include "PGMGst.h"
792#undef BTH_PGMPOOLKIND_PT_FOR_PT
793#undef BTH_PGMPOOLKIND_ROOT
794#undef PGM_BTH_NAME
795#undef PGM_BTH_NAME_RC_STR
796#undef PGM_BTH_NAME_R0_STR
797#undef PGM_GST_TYPE
798#undef PGM_GST_NAME
799#undef PGM_GST_NAME_RC_STR
800#undef PGM_GST_NAME_R0_STR
801
802/* Guest - 32-bit mode */
803#define PGM_GST_TYPE PGM_TYPE_32BIT
804#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
805#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
806#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
807#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
808#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
809#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
810#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
811#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
812#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
813#include "PGMBth.h"
814#include "PGMGstDefs.h"
815#include "PGMGst.h"
816#undef BTH_PGMPOOLKIND_PT_FOR_BIG
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef BTH_PGMPOOLKIND_ROOT
819#undef PGM_BTH_NAME
820#undef PGM_BTH_NAME_RC_STR
821#undef PGM_BTH_NAME_R0_STR
822#undef PGM_GST_TYPE
823#undef PGM_GST_NAME
824#undef PGM_GST_NAME_RC_STR
825#undef PGM_GST_NAME_R0_STR
826
827#undef PGM_SHW_TYPE
828#undef PGM_SHW_NAME
829#undef PGM_SHW_NAME_RC_STR
830#undef PGM_SHW_NAME_R0_STR
831
832
833/*
834 * Shadow - PAE mode
835 */
836#define PGM_SHW_TYPE PGM_TYPE_PAE
837#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
838#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
839#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
840#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
841#include "PGMShw.h"
842
843/* Guest - real mode */
844#define PGM_GST_TYPE PGM_TYPE_REAL
845#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
846#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
847#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
848#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
849#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
850#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
851#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
852#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
853#include "PGMGstDefs.h"
854#include "PGMBth.h"
855#undef BTH_PGMPOOLKIND_PT_FOR_PT
856#undef BTH_PGMPOOLKIND_ROOT
857#undef PGM_BTH_NAME
858#undef PGM_BTH_NAME_RC_STR
859#undef PGM_BTH_NAME_R0_STR
860#undef PGM_GST_TYPE
861#undef PGM_GST_NAME
862#undef PGM_GST_NAME_RC_STR
863#undef PGM_GST_NAME_R0_STR
864
865/* Guest - protected mode */
866#define PGM_GST_TYPE PGM_TYPE_PROT
867#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
868#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
869#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
870#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
871#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
872#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
873#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
874#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
875#include "PGMGstDefs.h"
876#include "PGMBth.h"
877#undef BTH_PGMPOOLKIND_PT_FOR_PT
878#undef BTH_PGMPOOLKIND_ROOT
879#undef PGM_BTH_NAME
880#undef PGM_BTH_NAME_RC_STR
881#undef PGM_BTH_NAME_R0_STR
882#undef PGM_GST_TYPE
883#undef PGM_GST_NAME
884#undef PGM_GST_NAME_RC_STR
885#undef PGM_GST_NAME_R0_STR
886
887/* Guest - 32-bit mode */
888#define PGM_GST_TYPE PGM_TYPE_32BIT
889#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
890#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
891#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
892#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
893#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
894#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
895#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
896#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
897#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
898#include "PGMGstDefs.h"
899#include "PGMBth.h"
900#undef BTH_PGMPOOLKIND_PT_FOR_BIG
901#undef BTH_PGMPOOLKIND_PT_FOR_PT
902#undef BTH_PGMPOOLKIND_ROOT
903#undef PGM_BTH_NAME
904#undef PGM_BTH_NAME_RC_STR
905#undef PGM_BTH_NAME_R0_STR
906#undef PGM_GST_TYPE
907#undef PGM_GST_NAME
908#undef PGM_GST_NAME_RC_STR
909#undef PGM_GST_NAME_R0_STR
910
911/* Guest - PAE mode */
912#define PGM_GST_TYPE PGM_TYPE_PAE
913#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
914#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
915#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
916#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
917#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
918#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
919#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
920#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
921#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
922#include "PGMBth.h"
923#include "PGMGstDefs.h"
924#include "PGMGst.h"
925#undef BTH_PGMPOOLKIND_PT_FOR_BIG
926#undef BTH_PGMPOOLKIND_PT_FOR_PT
927#undef BTH_PGMPOOLKIND_ROOT
928#undef PGM_BTH_NAME
929#undef PGM_BTH_NAME_RC_STR
930#undef PGM_BTH_NAME_R0_STR
931#undef PGM_GST_TYPE
932#undef PGM_GST_NAME
933#undef PGM_GST_NAME_RC_STR
934#undef PGM_GST_NAME_R0_STR
935
936#undef PGM_SHW_TYPE
937#undef PGM_SHW_NAME
938#undef PGM_SHW_NAME_RC_STR
939#undef PGM_SHW_NAME_R0_STR
940
941
942/*
943 * Shadow - AMD64 mode
944 */
945#define PGM_SHW_TYPE PGM_TYPE_AMD64
946#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
947#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
948#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
949#include "PGMShw.h"
950
951#ifdef VBOX_WITH_64_BITS_GUESTS
952/* Guest - AMD64 mode */
953# define PGM_GST_TYPE PGM_TYPE_AMD64
954# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
955# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
956# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
957# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
958# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
959# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
960# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
961# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
962# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
963# include "PGMBth.h"
964# include "PGMGstDefs.h"
965# include "PGMGst.h"
966# undef BTH_PGMPOOLKIND_PT_FOR_BIG
967# undef BTH_PGMPOOLKIND_PT_FOR_PT
968# undef BTH_PGMPOOLKIND_ROOT
969# undef PGM_BTH_NAME
970# undef PGM_BTH_NAME_RC_STR
971# undef PGM_BTH_NAME_R0_STR
972# undef PGM_GST_TYPE
973# undef PGM_GST_NAME
974# undef PGM_GST_NAME_RC_STR
975# undef PGM_GST_NAME_R0_STR
976#endif /* VBOX_WITH_64_BITS_GUESTS */
977
978#undef PGM_SHW_TYPE
979#undef PGM_SHW_NAME
980#undef PGM_SHW_NAME_RC_STR
981#undef PGM_SHW_NAME_R0_STR
982
983
984/*
985 * Shadow - Nested paging mode
986 */
987#define PGM_SHW_TYPE PGM_TYPE_NESTED
988#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
989#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
990#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
991#include "PGMShw.h"
992
993/* Guest - real mode */
994#define PGM_GST_TYPE PGM_TYPE_REAL
995#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
996#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
997#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
998#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
999#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
1000#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
1001#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1002#include "PGMGstDefs.h"
1003#include "PGMBth.h"
1004#undef BTH_PGMPOOLKIND_PT_FOR_PT
1005#undef PGM_BTH_NAME
1006#undef PGM_BTH_NAME_RC_STR
1007#undef PGM_BTH_NAME_R0_STR
1008#undef PGM_GST_TYPE
1009#undef PGM_GST_NAME
1010#undef PGM_GST_NAME_RC_STR
1011#undef PGM_GST_NAME_R0_STR
1012
1013/* Guest - protected mode */
1014#define PGM_GST_TYPE PGM_TYPE_PROT
1015#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1016#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1017#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1018#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
1019#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
1020#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
1021#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1022#include "PGMGstDefs.h"
1023#include "PGMBth.h"
1024#undef BTH_PGMPOOLKIND_PT_FOR_PT
1025#undef PGM_BTH_NAME
1026#undef PGM_BTH_NAME_RC_STR
1027#undef PGM_BTH_NAME_R0_STR
1028#undef PGM_GST_TYPE
1029#undef PGM_GST_NAME
1030#undef PGM_GST_NAME_RC_STR
1031#undef PGM_GST_NAME_R0_STR
1032
1033/* Guest - 32-bit mode */
1034#define PGM_GST_TYPE PGM_TYPE_32BIT
1035#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1036#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1037#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1038#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1039#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1040#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1041#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1042#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1043#include "PGMGstDefs.h"
1044#include "PGMBth.h"
1045#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1046#undef BTH_PGMPOOLKIND_PT_FOR_PT
1047#undef PGM_BTH_NAME
1048#undef PGM_BTH_NAME_RC_STR
1049#undef PGM_BTH_NAME_R0_STR
1050#undef PGM_GST_TYPE
1051#undef PGM_GST_NAME
1052#undef PGM_GST_NAME_RC_STR
1053#undef PGM_GST_NAME_R0_STR
1054
1055/* Guest - PAE mode */
1056#define PGM_GST_TYPE PGM_TYPE_PAE
1057#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1058#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1059#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1060#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1061#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1062#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1063#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1064#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1065#include "PGMGstDefs.h"
1066#include "PGMBth.h"
1067#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1068#undef BTH_PGMPOOLKIND_PT_FOR_PT
1069#undef PGM_BTH_NAME
1070#undef PGM_BTH_NAME_RC_STR
1071#undef PGM_BTH_NAME_R0_STR
1072#undef PGM_GST_TYPE
1073#undef PGM_GST_NAME
1074#undef PGM_GST_NAME_RC_STR
1075#undef PGM_GST_NAME_R0_STR
1076
1077#ifdef VBOX_WITH_64_BITS_GUESTS
1078/* Guest - AMD64 mode */
1079# define PGM_GST_TYPE PGM_TYPE_AMD64
1080# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1081# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1082# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1083# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1084# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1085# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1086# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1087# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1088# include "PGMGstDefs.h"
1089# include "PGMBth.h"
1090# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1091# undef BTH_PGMPOOLKIND_PT_FOR_PT
1092# undef PGM_BTH_NAME
1093# undef PGM_BTH_NAME_RC_STR
1094# undef PGM_BTH_NAME_R0_STR
1095# undef PGM_GST_TYPE
1096# undef PGM_GST_NAME
1097# undef PGM_GST_NAME_RC_STR
1098# undef PGM_GST_NAME_R0_STR
1099#endif /* VBOX_WITH_64_BITS_GUESTS */
1100
1101#undef PGM_SHW_TYPE
1102#undef PGM_SHW_NAME
1103#undef PGM_SHW_NAME_RC_STR
1104#undef PGM_SHW_NAME_R0_STR
1105
1106
1107/*
1108 * Shadow - EPT
1109 */
1110#define PGM_SHW_TYPE PGM_TYPE_EPT
1111#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1112#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1113#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1114#include "PGMShw.h"
1115
1116/* Guest - real mode */
1117#define PGM_GST_TYPE PGM_TYPE_REAL
1118#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1119#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1120#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1121#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1122#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1123#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1124#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1125#include "PGMGstDefs.h"
1126#include "PGMBth.h"
1127#undef BTH_PGMPOOLKIND_PT_FOR_PT
1128#undef PGM_BTH_NAME
1129#undef PGM_BTH_NAME_RC_STR
1130#undef PGM_BTH_NAME_R0_STR
1131#undef PGM_GST_TYPE
1132#undef PGM_GST_NAME
1133#undef PGM_GST_NAME_RC_STR
1134#undef PGM_GST_NAME_R0_STR
1135
1136/* Guest - protected mode */
1137#define PGM_GST_TYPE PGM_TYPE_PROT
1138#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1139#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1140#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1141#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1142#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1143#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1144#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1145#include "PGMGstDefs.h"
1146#include "PGMBth.h"
1147#undef BTH_PGMPOOLKIND_PT_FOR_PT
1148#undef PGM_BTH_NAME
1149#undef PGM_BTH_NAME_RC_STR
1150#undef PGM_BTH_NAME_R0_STR
1151#undef PGM_GST_TYPE
1152#undef PGM_GST_NAME
1153#undef PGM_GST_NAME_RC_STR
1154#undef PGM_GST_NAME_R0_STR
1155
1156/* Guest - 32-bit mode */
1157#define PGM_GST_TYPE PGM_TYPE_32BIT
1158#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1159#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1160#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1161#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1162#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1163#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1164#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1165#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1166#include "PGMGstDefs.h"
1167#include "PGMBth.h"
1168#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1169#undef BTH_PGMPOOLKIND_PT_FOR_PT
1170#undef PGM_BTH_NAME
1171#undef PGM_BTH_NAME_RC_STR
1172#undef PGM_BTH_NAME_R0_STR
1173#undef PGM_GST_TYPE
1174#undef PGM_GST_NAME
1175#undef PGM_GST_NAME_RC_STR
1176#undef PGM_GST_NAME_R0_STR
1177
1178/* Guest - PAE mode */
1179#define PGM_GST_TYPE PGM_TYPE_PAE
1180#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1181#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1182#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1183#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1184#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1185#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1186#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1187#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1188#include "PGMGstDefs.h"
1189#include "PGMBth.h"
1190#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1191#undef BTH_PGMPOOLKIND_PT_FOR_PT
1192#undef PGM_BTH_NAME
1193#undef PGM_BTH_NAME_RC_STR
1194#undef PGM_BTH_NAME_R0_STR
1195#undef PGM_GST_TYPE
1196#undef PGM_GST_NAME
1197#undef PGM_GST_NAME_RC_STR
1198#undef PGM_GST_NAME_R0_STR
1199
1200#ifdef VBOX_WITH_64_BITS_GUESTS
1201/* Guest - AMD64 mode */
1202# define PGM_GST_TYPE PGM_TYPE_AMD64
1203# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1204# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1205# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1206# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1207# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1208# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1209# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1210# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1211# include "PGMGstDefs.h"
1212# include "PGMBth.h"
1213# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1214# undef BTH_PGMPOOLKIND_PT_FOR_PT
1215# undef PGM_BTH_NAME
1216# undef PGM_BTH_NAME_RC_STR
1217# undef PGM_BTH_NAME_R0_STR
1218# undef PGM_GST_TYPE
1219# undef PGM_GST_NAME
1220# undef PGM_GST_NAME_RC_STR
1221# undef PGM_GST_NAME_R0_STR
1222#endif /* VBOX_WITH_64_BITS_GUESTS */
1223
1224#undef PGM_SHW_TYPE
1225#undef PGM_SHW_NAME
1226#undef PGM_SHW_NAME_RC_STR
1227#undef PGM_SHW_NAME_R0_STR
1228
1229
1230
1231/**
1232 * Initiates the paging of VM.
1233 *
1234 * @returns VBox status code.
1235 * @param pVM Pointer to VM structure.
1236 */
1237VMMR3DECL(int) PGMR3Init(PVM pVM)
1238{
1239 LogFlow(("PGMR3Init:\n"));
1240 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1241 int rc;
1242
1243 /*
1244 * Assert alignment and sizes.
1245 */
1246 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1247 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1248 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1249
1250 /*
1251 * Init the structure.
1252 */
1253 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1254 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1255
1256 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1257 {
1258 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1259 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1260 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1261 }
1262
1263 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1264 {
1265 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1266 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1267 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1268 }
1269
1270 /* Init the per-CPU part. */
1271 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1272 {
1273 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1274 PPGMCPU pPGM = &pVCpu->pgm.s;
1275
1276 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1277 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1278 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1279
1280 pPGM->enmShadowMode = PGMMODE_INVALID;
1281 pPGM->enmGuestMode = PGMMODE_INVALID;
1282
1283 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1284
1285 pPGM->pGst32BitPdR3 = NULL;
1286 pPGM->pGstPaePdptR3 = NULL;
1287 pPGM->pGstAmd64Pml4R3 = NULL;
1288#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1289 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1290 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1291 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1292#endif
1293 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1294 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1295 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1296 {
1297 pPGM->apGstPaePDsR3[i] = NULL;
1298#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1299 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1300#endif
1301 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1302 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1303 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1304 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1305 }
1306
1307 pPGM->fA20Enabled = true;
1308 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1309 }
1310
1311 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1312 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1313 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1314
1315 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1316#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1317 true
1318#else
1319 false
1320#endif
1321 );
1322 AssertLogRelRCReturn(rc, rc);
1323
1324#if HC_ARCH_BITS == 32
1325# ifdef RT_OS_DARWIN
1326 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1327# else
1328 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1329# endif
1330#else
1331 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1332#endif
1333 AssertLogRelRCReturn(rc, rc);
1334 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1335 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1336
1337 /*
1338 * Get the configured RAM size - to estimate saved state size.
1339 */
1340 uint64_t cbRam;
1341 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1342 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1343 cbRam = 0;
1344 else if (RT_SUCCESS(rc))
1345 {
1346 if (cbRam < PAGE_SIZE)
1347 cbRam = 0;
1348 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1349 }
1350 else
1351 {
1352 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1353 return rc;
1354 }
1355
1356 /*
1357 * Check for PCI pass-through and other configurables.
1358 */
1359 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1360 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1361 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1362
1363 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
1364 AssertLogRelRCReturn(rc, rc);
1365
1366#ifdef VBOX_WITH_STATISTICS
1367 /*
1368 * Allocate memory for the statistics before someone tries to use them.
1369 */
1370 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1371 void *pv;
1372 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1373 AssertRCReturn(rc, rc);
1374
1375 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1376 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1377 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1378 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1379
1380 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1381 {
1382 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1383 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1384 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1385
1386 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1387 }
1388#endif /* VBOX_WITH_STATISTICS */
1389
1390 /*
1391 * Register callbacks, string formatters and the saved state data unit.
1392 */
1393#ifdef VBOX_STRICT
1394 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1395#endif
1396 PGMRegisterStringFormatTypes();
1397
1398 rc = pgmR3InitSavedState(pVM, cbRam);
1399 if (RT_FAILURE(rc))
1400 return rc;
1401
1402 /*
1403 * Initialize the PGM critical section and flush the phys TLBs
1404 */
1405 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1406 AssertRCReturn(rc, rc);
1407
1408 PGMR3PhysChunkInvalidateTLB(pVM);
1409 pgmPhysInvalidatePageMapTLB(pVM);
1410
1411 /*
1412 * For the time being we sport a full set of handy pages in addition to the base
1413 * memory to simplify things.
1414 */
1415 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1416 AssertRCReturn(rc, rc);
1417
1418 /*
1419 * Trees
1420 */
1421 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1422 if (RT_SUCCESS(rc))
1423 {
1424 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1425 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1426 }
1427
1428 /*
1429 * Allocate the zero page.
1430 */
1431 if (RT_SUCCESS(rc))
1432 {
1433 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1434 if (RT_SUCCESS(rc))
1435 {
1436 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1437 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1438 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1439 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1440 }
1441 }
1442
1443 /*
1444 * Allocate the invalid MMIO page.
1445 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1446 */
1447 if (RT_SUCCESS(rc))
1448 {
1449 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1450 if (RT_SUCCESS(rc))
1451 {
1452 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1453 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1454 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1455 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1456 }
1457 }
1458
1459 /*
1460 * Register the physical access handler protecting ROMs.
1461 */
1462 if (RT_SUCCESS(rc))
1463 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
1464 pgmPhysRomWriteHandler,
1465 NULL, NULL, "pgmPhysRomWritePfHandler",
1466 NULL, NULL, "pgmPhysRomWritePfHandler",
1467 "ROM write protection",
1468 &pVM->pgm.s.hRomPhysHandlerType);
1469
1470 /*
1471 * Init the paging.
1472 */
1473 if (RT_SUCCESS(rc))
1474 rc = pgmR3InitPaging(pVM);
1475
1476 /*
1477 * Init the page pool.
1478 */
1479 if (RT_SUCCESS(rc))
1480 rc = pgmR3PoolInit(pVM);
1481
1482 if (RT_SUCCESS(rc))
1483 {
1484 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1485 {
1486 PVMCPU pVCpu = &pVM->aCpus[i];
1487 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1488 if (RT_FAILURE(rc))
1489 break;
1490 }
1491 }
1492
1493 if (RT_SUCCESS(rc))
1494 {
1495 /*
1496 * Info & statistics
1497 */
1498 DBGFR3InfoRegisterInternal(pVM, "mode",
1499 "Shows the current paging mode. "
1500 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1501 pgmR3InfoMode);
1502 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1503 "Dumps all the entries in the top level paging table. No arguments.",
1504 pgmR3InfoCr3);
1505 DBGFR3InfoRegisterInternal(pVM, "phys",
1506 "Dumps all the physical address ranges. No arguments.",
1507 pgmR3PhysInfo);
1508 DBGFR3InfoRegisterInternal(pVM, "handlers",
1509 "Dumps physical, virtual and hyper virtual handlers. "
1510 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1511 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1512 pgmR3InfoHandlers);
1513 DBGFR3InfoRegisterInternal(pVM, "mappings",
1514 "Dumps guest mappings.",
1515 pgmR3MapInfo);
1516
1517 pgmR3InitStats(pVM);
1518
1519#ifdef VBOX_WITH_DEBUGGER
1520 /*
1521 * Debugger commands.
1522 */
1523 static bool s_fRegisteredCmds = false;
1524 if (!s_fRegisteredCmds)
1525 {
1526 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1527 if (RT_SUCCESS(rc2))
1528 s_fRegisteredCmds = true;
1529 }
1530#endif
1531 return VINF_SUCCESS;
1532 }
1533
1534 /* Almost no cleanup necessary, MM frees all memory. */
1535 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1536
1537 return rc;
1538}
1539
1540
1541/**
1542 * Init paging.
1543 *
1544 * Since we need to check what mode the host is operating in before we can choose
1545 * the right paging functions for the host we have to delay this until R0 has
1546 * been initialized.
1547 *
1548 * @returns VBox status code.
1549 * @param pVM Pointer to the VM.
1550 */
1551static int pgmR3InitPaging(PVM pVM)
1552{
1553 /*
1554 * Force a recalculation of modes and switcher so everyone gets notified.
1555 */
1556 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1557 {
1558 PVMCPU pVCpu = &pVM->aCpus[i];
1559
1560 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1561 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1562 }
1563
1564 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1565
1566 /*
1567 * Allocate static mapping space for whatever the cr3 register
1568 * points to and in the case of PAE mode to the 4 PDs.
1569 */
1570 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1571 if (RT_FAILURE(rc))
1572 {
1573 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1574 return rc;
1575 }
1576 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1577
1578 /*
1579 * Allocate pages for the three possible intermediate contexts
1580 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1581 * for the sake of simplicity. The AMD64 uses the PAE for the
1582 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1583 *
1584 * We assume that two page tables will be enought for the core code
1585 * mappings (HC virtual and identity).
1586 */
1587 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1588 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1589 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1590 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1591 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1592 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1593 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1594 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1595 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1596 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1597 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1598 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1599
1600 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1601 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1602 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1603 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1604 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1605 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1606
1607 /*
1608 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1609 */
1610 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1611 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1612 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1613
1614 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1615 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1616
1617 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1618 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1619 {
1620 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1621 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1622 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1623 }
1624
1625 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1626 {
1627 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1628 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1629 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1630 }
1631
1632 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1633 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1634 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1635 | HCPhysInterPaePDPT64;
1636
1637 /*
1638 * Initialize paging workers and mode from current host mode
1639 * and the guest running in real mode.
1640 */
1641 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1642 switch (pVM->pgm.s.enmHostMode)
1643 {
1644 case SUPPAGINGMODE_32_BIT:
1645 case SUPPAGINGMODE_32_BIT_GLOBAL:
1646 case SUPPAGINGMODE_PAE:
1647 case SUPPAGINGMODE_PAE_GLOBAL:
1648 case SUPPAGINGMODE_PAE_NX:
1649 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1650 break;
1651
1652 case SUPPAGINGMODE_AMD64:
1653 case SUPPAGINGMODE_AMD64_GLOBAL:
1654 case SUPPAGINGMODE_AMD64_NX:
1655 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1656#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1657 if (ARCH_BITS != 64)
1658 {
1659 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1660 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1661 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1662 }
1663#endif
1664 break;
1665 default:
1666 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1667 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1668 }
1669 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1670 if (RT_SUCCESS(rc))
1671 {
1672 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1673#if HC_ARCH_BITS == 64
1674 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1675 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1676 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1677 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1678 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1679 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1680 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1681#endif
1682
1683 /*
1684 * Log the host paging mode. It may come in handy.
1685 */
1686 const char *pszHostMode;
1687 switch (pVM->pgm.s.enmHostMode)
1688 {
1689 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1690 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1691 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1692 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1693 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1694 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1695 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1696 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1697 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1698 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1699 default: pszHostMode = "???"; break;
1700 }
1701 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1702
1703 return VINF_SUCCESS;
1704 }
1705
1706 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1707 return rc;
1708}
1709
1710
1711/**
1712 * Init statistics
1713 * @returns VBox status code.
1714 */
1715static int pgmR3InitStats(PVM pVM)
1716{
1717 PPGM pPGM = &pVM->pgm.s;
1718 int rc;
1719
1720 /*
1721 * Release statistics.
1722 */
1723 /* Common - misc variables */
1724 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1725 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1726 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1727 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1728 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1729 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1730 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1731 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1732 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1733 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1734 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1735 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1736 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1737 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1738 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1739 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1740 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1741 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1742 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1743
1744 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1745 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1746 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1747
1748 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1749
1750 /* Live save */
1751 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1752 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1753 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1754 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1755 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1756 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1757 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1758 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1759 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1760 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1761 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1762 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1763 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1764 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1765 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1766 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1767 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1768 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1769
1770#ifdef VBOX_WITH_STATISTICS
1771
1772# define PGM_REG_COUNTER(a, b, c) \
1773 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1774 AssertRC(rc);
1775
1776# define PGM_REG_COUNTER_BYTES(a, b, c) \
1777 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1778 AssertRC(rc);
1779
1780# define PGM_REG_PROFILE(a, b, c) \
1781 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1782 AssertRC(rc);
1783
1784 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1785
1786 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1787 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1788 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1789 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1790 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1791
1792 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1793 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1794 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1795 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1796 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1797 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1798 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1799 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1800 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1801 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1802
1803 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1804 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1805 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1806 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1807 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1808 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1809
1810 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1811 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1812 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1813 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1814 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1815 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1816 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1817 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1818
1819 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1820 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1821 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1822 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1823
1824 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1825 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1826 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1827 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1828
1829 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1830 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1831 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1832 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1833 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1834 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1835 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1836 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1837
1838 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1839 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1840/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1841 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1842 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1843/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1844
1845 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1846 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1847 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1848 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1849 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1850 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1851 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1852 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1853
1854 /* GC only: */
1855 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1856 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1857
1858 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1859 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1860 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1861 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1862 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1863 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1864 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1865 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1866
1867 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1868 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1869 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1870 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1871 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1872 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1873 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1874
1875# undef PGM_REG_COUNTER
1876# undef PGM_REG_PROFILE
1877#endif
1878
1879 /*
1880 * Note! The layout below matches the member layout exactly!
1881 */
1882
1883 /*
1884 * Common - stats
1885 */
1886 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1887 {
1888 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1889
1890#define PGM_REG_COUNTER(a, b, c) \
1891 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1892 AssertRC(rc);
1893#define PGM_REG_PROFILE(a, b, c) \
1894 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1895 AssertRC(rc);
1896
1897 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1898 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1899
1900#ifdef VBOX_WITH_STATISTICS
1901 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1902
1903# if 0 /* rarely useful; leave for debugging. */
1904 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1905 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1906 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1907 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1908 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1909 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1910# endif
1911 /* R0 only: */
1912 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1913 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1914
1915 /* RZ only: */
1916 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1917 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1918 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1919 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1920 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1921 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1922 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1923 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1924 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1925 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1926 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1927 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1928 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1929 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1930 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1931 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1932 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1933 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1934 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1935 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1944 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1945 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1947 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1950 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1951 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1952 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1953 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1955 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1956 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1957 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1958 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1959 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1960 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1961 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1962#if 0 /* rarely useful; leave for debugging. */
1963 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1964 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1965 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1966#endif
1967 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1968 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1969 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1970 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1971 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1972
1973 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1974 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1975 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1978 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1979 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1980 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1981 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1982 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1983 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1984 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1985 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1986 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1987 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1988 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1989 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1990 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1991 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1992 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1994 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1995 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1996 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1997 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1998 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1999 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
2000 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
2001 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
2002 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
2003 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
2004 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
2005 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
2006 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
2007 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
2008 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
2009
2010 /* HC only: */
2011
2012 /* RZ & R3: */
2013 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2014 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2015 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
2016 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2017 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2018 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2019 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2020 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2021 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2022 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2023 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
2024 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2025 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
2026 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
2027 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2028 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2029 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2030 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2031 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2032 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2033 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2034 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2035 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
2036 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2037 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2038 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2039 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
2040 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2041 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2042 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2043 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2044 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2045 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2046 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2047 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2048 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2049 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2050 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2051 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2052 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2053 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2054 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2055 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2056 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2057 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2058 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2059 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2060
2061 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2062 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2063 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2064 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2065 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2066 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2067 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2068 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2069 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2070 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2071 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2072 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2073 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2074 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2075 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2076 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2077 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2078 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2079 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2080 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2081 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2082 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2083 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2084 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2085 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2086 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2087 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2088 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2089 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2090 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2091 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2092 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2093 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2094 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2095 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2096 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2097 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2098 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2099 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2100 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2101 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2102 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2103 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2104 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2105#endif /* VBOX_WITH_STATISTICS */
2106
2107#undef PGM_REG_PROFILE
2108#undef PGM_REG_COUNTER
2109
2110 }
2111
2112 return VINF_SUCCESS;
2113}
2114
2115
2116/**
2117 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2118 *
2119 * The dynamic mapping area will also be allocated and initialized at this
2120 * time. We could allocate it during PGMR3Init of course, but the mapping
2121 * wouldn't be allocated at that time preventing us from setting up the
2122 * page table entries with the dummy page.
2123 *
2124 * @returns VBox status code.
2125 * @param pVM Pointer to the VM.
2126 */
2127VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2128{
2129 RTGCPTR GCPtr;
2130 int rc;
2131
2132 /*
2133 * Reserve space for the dynamic mappings.
2134 */
2135 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2136 if (RT_SUCCESS(rc))
2137 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2138
2139 if ( RT_SUCCESS(rc)
2140 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2141 {
2142 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2143 if (RT_SUCCESS(rc))
2144 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2145 }
2146 if (RT_SUCCESS(rc))
2147 {
2148 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2149 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2150 }
2151 return rc;
2152}
2153
2154
2155/**
2156 * Ring-3 init finalizing.
2157 *
2158 * @returns VBox status code.
2159 * @param pVM Pointer to the VM.
2160 */
2161VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2162{
2163 int rc;
2164
2165 /*
2166 * Reserve space for the dynamic mappings.
2167 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2168 */
2169 /* get the pointer to the page table entries. */
2170 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2171 AssertRelease(pMapping);
2172 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2173 const unsigned iPT = off >> X86_PD_SHIFT;
2174 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2175 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2176 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2177
2178 /* init cache area */
2179 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2180 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2181 {
2182 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2183 AssertRCReturn(rc, rc);
2184 }
2185
2186 /*
2187 * Determine the max physical address width (MAXPHYADDR) and apply it to
2188 * all the mask members and stuff.
2189 */
2190 uint32_t cMaxPhysAddrWidth;
2191 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2192 if ( uMaxExtLeaf >= 0x80000008
2193 && uMaxExtLeaf <= 0x80000fff)
2194 {
2195 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2196 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2197 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2198 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2199 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2200 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2201 }
2202 else
2203 {
2204 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2205 cMaxPhysAddrWidth = 48;
2206 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2207 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2208 }
2209
2210 /** @todo query from CPUM. */
2211 pVM->pgm.s.GCPhysInvAddrMask = 0;
2212 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2213 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2214
2215 /*
2216 * Initialize the invalid paging entry masks, assuming NX is disabled.
2217 */
2218 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2219 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2220 {
2221 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2222
2223 /** @todo The manuals are not entirely clear whether the physical
2224 * address width is relevant. See table 5-9 in the intel
2225 * manual vs the PDE4M descriptions. Write testcase (NP). */
2226 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2227 | X86_PDE4M_MBZ_MASK;
2228
2229 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2230 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2231 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2232 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2233
2234 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2235 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2236 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2237 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2238 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2239 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2240
2241 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2242 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2243 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2244 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2245 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2246 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2247 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2248 }
2249
2250 /*
2251 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2252 * Intel only goes up to 36 bits, so we stick to 36 as well.
2253 * Update: More recent intel manuals specifies 40 bits just like AMD.
2254 */
2255 uint32_t u32Dummy, u32Features;
2256 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2257 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2258 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2259 else
2260 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2261
2262 /*
2263 * Allocate memory if we're supposed to do that.
2264 */
2265 if (pVM->pgm.s.fRamPreAlloc)
2266 rc = pgmR3PhysRamPreAllocate(pVM);
2267
2268 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2269 return rc;
2270}
2271
2272
2273/**
2274 * Init phase completed callback.
2275 *
2276 * @returns VBox status code.
2277 * @param pVM Pointer to the VM.
2278 * @param enmWhat What has been completed.
2279 * @thread EMT(0)
2280 */
2281VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2282{
2283 switch (enmWhat)
2284 {
2285 case VMINITCOMPLETED_HM:
2286#ifdef VBOX_WITH_PCI_PASSTHROUGH
2287 if (pVM->pgm.s.fPciPassthrough)
2288 {
2289 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2290 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2291 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2292
2293 /*
2294 * Report assignments to the IOMMU (hope that's good enough for now).
2295 */
2296 if (pVM->pgm.s.fPciPassthrough)
2297 {
2298 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2299 AssertRCReturn(rc, rc);
2300 }
2301 }
2302#else
2303 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2304#endif
2305 break;
2306
2307 default:
2308 /* shut up gcc */
2309 break;
2310 }
2311
2312 return VINF_SUCCESS;
2313}
2314
2315
2316/**
2317 * Applies relocations to data and code managed by this component.
2318 *
2319 * This function will be called at init and whenever the VMM need to relocate it
2320 * self inside the GC.
2321 *
2322 * @param pVM The VM.
2323 * @param offDelta Relocation delta relative to old location.
2324 */
2325VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2326{
2327 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2328
2329 /*
2330 * Paging stuff.
2331 */
2332 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2333
2334 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2335
2336 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2337 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2338 {
2339 PVMCPU pVCpu = &pVM->aCpus[i];
2340
2341 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2342
2343 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2344 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2345 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2346 }
2347
2348 /*
2349 * Trees.
2350 */
2351 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2352
2353 /*
2354 * Ram ranges.
2355 */
2356 if (pVM->pgm.s.pRamRangesXR3)
2357 {
2358 /* Update the pSelfRC pointers and relink them. */
2359 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2360 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2361 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2362 pgmR3PhysRelinkRamRanges(pVM);
2363
2364 /* Flush the RC TLB. */
2365 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2366 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2367 }
2368
2369 /*
2370 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2371 * be mapped and thus not included in the above exercise.
2372 */
2373 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2374 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2375 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2376
2377 /*
2378 * Update the two page directories with all page table mappings.
2379 * (One or more of them have changed, that's why we're here.)
2380 */
2381 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2382 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2383 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2384
2385 /* Relocate GC addresses of Page Tables. */
2386 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2387 {
2388 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2389 {
2390 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2391 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2392 }
2393 }
2394
2395 /*
2396 * Dynamic page mapping area.
2397 */
2398 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2399 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2400 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2401
2402 if (pVM->pgm.s.pRCDynMap)
2403 {
2404 pVM->pgm.s.pRCDynMap += offDelta;
2405 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2406
2407 pDynMap->paPages += offDelta;
2408 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2409
2410 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2411 {
2412 paPages[iPage].pvPage += offDelta;
2413 paPages[iPage].uPte.pLegacy += offDelta;
2414 paPages[iPage].uPte.pPae += offDelta;
2415 }
2416 }
2417
2418 /*
2419 * The Zero page.
2420 */
2421 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2422#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2423 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
2424#else
2425 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2426#endif
2427
2428 /*
2429 * Physical and virtual handlers.
2430 */
2431 PGMRELOCHANDLERARGS Args = { offDelta, pVM };
2432 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &Args);
2433 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2434
2435 PPGMPHYSHANDLERTYPEINT pCurPhysType;
2436 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadPhysHandlerTypes, pCurPhysType, PGMPHYSHANDLERTYPEINT, ListNode)
2437 {
2438 if (pCurPhysType->pfnHandlerRC != NIL_RTRCPTR)
2439 pCurPhysType->pfnHandlerRC += offDelta;
2440 if (pCurPhysType->pfnPfHandlerRC != NIL_RTRCPTR)
2441 pCurPhysType->pfnPfHandlerRC += offDelta;
2442 }
2443
2444#ifdef VBOX_WITH_RAW_MODE
2445 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &Args);
2446 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &Args);
2447
2448 PPGMVIRTHANDLERTYPEINT pCurVirtType;
2449 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadVirtHandlerTypes, pCurVirtType, PGMVIRTHANDLERTYPEINT, ListNode)
2450 {
2451 if (pCurVirtType->pfnHandlerRC != NIL_RTRCPTR)
2452 pCurVirtType->pfnHandlerRC += offDelta;
2453 if (pCurVirtType->pfnPfHandlerRC != NIL_RTRCPTR)
2454 pCurVirtType->pfnPfHandlerRC += offDelta;
2455 }
2456#endif
2457
2458 /*
2459 * The page pool.
2460 */
2461 pgmR3PoolRelocate(pVM);
2462
2463#ifdef VBOX_WITH_STATISTICS
2464 /*
2465 * Statistics.
2466 */
2467 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2468 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2469 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2470#endif
2471}
2472
2473
2474/**
2475 * Callback function for relocating a physical access handler.
2476 *
2477 * @returns 0 (continue enum)
2478 * @param pNode Pointer to a PGMPHYSHANDLER node.
2479 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2480 */
2481static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2482{
2483 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2484 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2485 if (pHandler->pvUserRC >= 0x10000)
2486 pHandler->pvUserRC += pArgs->offDelta;
2487 return 0;
2488}
2489
2490#ifdef VBOX_WITH_RAW_MODE
2491
2492/**
2493 * Callback function for relocating a virtual access handler.
2494 *
2495 * @returns 0 (continue enum)
2496 * @param pNode Pointer to a PGMVIRTHANDLER node.
2497 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2498 */
2499static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2500{
2501 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2502 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2503 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind != PGMVIRTHANDLERKIND_HYPERVISOR);
2504
2505 if ( pHandler->pvUserRC != NIL_RTRCPTR
2506 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2507 pHandler->pvUserRC += pArgs->offDelta;
2508 return 0;
2509}
2510
2511
2512/**
2513 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2514 *
2515 * @returns 0 (continue enum)
2516 * @param pNode Pointer to a PGMVIRTHANDLER node.
2517 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2518 */
2519static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2520{
2521 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2522 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2523 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind == PGMVIRTHANDLERKIND_HYPERVISOR);
2524
2525 if ( pHandler->pvUserRC != NIL_RTRCPTR
2526 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2527 pHandler->pvUserRC += pArgs->offDelta;
2528 return 0;
2529}
2530
2531#endif /* VBOX_WITH_RAW_MODE */
2532
2533/**
2534 * Resets a virtual CPU when unplugged.
2535 *
2536 * @param pVM Pointer to the VM.
2537 * @param pVCpu Pointer to the VMCPU.
2538 */
2539VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2540{
2541 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2542 AssertRC(rc);
2543
2544 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2545 AssertRC(rc);
2546
2547 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2548
2549 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2550
2551 /*
2552 * Re-init other members.
2553 */
2554 pVCpu->pgm.s.fA20Enabled = true;
2555 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2556
2557 /*
2558 * Clear the FFs PGM owns.
2559 */
2560 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2561 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2562}
2563
2564
2565/**
2566 * The VM is being reset.
2567 *
2568 * For the PGM component this means that any PD write monitors
2569 * needs to be removed.
2570 *
2571 * @param pVM Pointer to the VM.
2572 */
2573VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2574{
2575 LogFlow(("PGMR3Reset:\n"));
2576 VM_ASSERT_EMT(pVM);
2577
2578 pgmLock(pVM);
2579
2580 /*
2581 * Unfix any fixed mappings and disable CR3 monitoring.
2582 */
2583 pVM->pgm.s.fMappingsFixed = false;
2584 pVM->pgm.s.fMappingsFixedRestored = false;
2585 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2586 pVM->pgm.s.cbMappingFixed = 0;
2587
2588 /*
2589 * Exit the guest paging mode before the pgm pool gets reset.
2590 * Important to clean up the amd64 case.
2591 */
2592 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2593 {
2594 PVMCPU pVCpu = &pVM->aCpus[i];
2595 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2596 AssertReleaseRC(rc);
2597 }
2598
2599#ifdef DEBUG
2600 DBGFR3_INFO_LOG(pVM, "mappings", NULL);
2601 DBGFR3_INFO_LOG(pVM, "handlers", "all nostat");
2602#endif
2603
2604 /*
2605 * Switch mode back to real mode. (before resetting the pgm pool!)
2606 */
2607 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2608 {
2609 PVMCPU pVCpu = &pVM->aCpus[i];
2610
2611 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2612 AssertReleaseRC(rc);
2613
2614 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2615 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2616 }
2617
2618 /*
2619 * Reset the shadow page pool.
2620 */
2621 pgmR3PoolReset(pVM);
2622
2623 /*
2624 * Re-init various other members and clear the FFs that PGM owns.
2625 */
2626 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2627 {
2628 PVMCPU pVCpu = &pVM->aCpus[i];
2629
2630 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2631 PGMNotifyNxeChanged(pVCpu, false);
2632
2633 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2634 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2635
2636 if (!pVCpu->pgm.s.fA20Enabled)
2637 {
2638 pVCpu->pgm.s.fA20Enabled = true;
2639 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2640#ifdef PGM_WITH_A20
2641 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2642 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2643 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2644 HMFlushTLB(pVCpu);
2645#endif
2646 }
2647 }
2648
2649 pgmUnlock(pVM);
2650}
2651
2652
2653/**
2654 * Memory setup after VM construction or reset.
2655 *
2656 * @param pVM Pointer to the VM.
2657 * @param fAtReset Indicates the context, after reset if @c true or after
2658 * construction if @c false.
2659 */
2660VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2661{
2662 if (fAtReset)
2663 {
2664 pgmLock(pVM);
2665
2666 int rc = pgmR3PhysRamZeroAll(pVM);
2667 AssertReleaseRC(rc);
2668
2669 rc = pgmR3PhysRomReset(pVM);
2670 AssertReleaseRC(rc);
2671
2672 pgmUnlock(pVM);
2673 }
2674}
2675
2676
2677#ifdef VBOX_STRICT
2678/**
2679 * VM state change callback for clearing fNoMorePhysWrites after
2680 * a snapshot has been created.
2681 */
2682static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2683{
2684 if ( enmState == VMSTATE_RUNNING
2685 || enmState == VMSTATE_RESUMING)
2686 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2687 NOREF(enmOldState); NOREF(pvUser);
2688}
2689#endif
2690
2691/**
2692 * Private API to reset fNoMorePhysWrites.
2693 */
2694VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2695{
2696 pVM->pgm.s.fNoMorePhysWrites = false;
2697}
2698
2699/**
2700 * Terminates the PGM.
2701 *
2702 * @returns VBox status code.
2703 * @param pVM Pointer to VM structure.
2704 */
2705VMMR3DECL(int) PGMR3Term(PVM pVM)
2706{
2707 /* Must free shared pages here. */
2708 pgmLock(pVM);
2709 pgmR3PhysRamTerm(pVM);
2710 pgmR3PhysRomTerm(pVM);
2711 pgmUnlock(pVM);
2712
2713 PGMDeregisterStringFormatTypes();
2714 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2715}
2716
2717
2718/**
2719 * Show paging mode.
2720 *
2721 * @param pVM Pointer to the VM.
2722 * @param pHlp The info helpers.
2723 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2724 */
2725static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2726{
2727 /* digest argument. */
2728 bool fGuest, fShadow, fHost;
2729 if (pszArgs)
2730 pszArgs = RTStrStripL(pszArgs);
2731 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2732 fShadow = fHost = fGuest = true;
2733 else
2734 {
2735 fShadow = fHost = fGuest = false;
2736 if (strstr(pszArgs, "guest"))
2737 fGuest = true;
2738 if (strstr(pszArgs, "shadow"))
2739 fShadow = true;
2740 if (strstr(pszArgs, "host"))
2741 fHost = true;
2742 }
2743
2744 /** @todo SMP support! */
2745 /* print info. */
2746 if (fGuest)
2747 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2748 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2749 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2750 if (fShadow)
2751 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2752 if (fHost)
2753 {
2754 const char *psz;
2755 switch (pVM->pgm.s.enmHostMode)
2756 {
2757 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2758 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2759 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2760 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2761 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2762 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2763 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2764 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2765 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2766 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2767 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2768 default: psz = "unknown"; break;
2769 }
2770 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2771 }
2772}
2773
2774
2775/**
2776 * Dump registered MMIO ranges to the log.
2777 *
2778 * @param pVM Pointer to the VM.
2779 * @param pHlp The info helpers.
2780 * @param pszArgs Arguments, ignored.
2781 */
2782static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2783{
2784 NOREF(pszArgs);
2785 pHlp->pfnPrintf(pHlp,
2786 "RAM ranges (pVM=%p)\n"
2787 "%.*s %.*s\n",
2788 pVM,
2789 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2790 sizeof(RTHCPTR) * 2, "pvHC ");
2791
2792 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2793 pHlp->pfnPrintf(pHlp,
2794 "%RGp-%RGp %RHv %s\n",
2795 pCur->GCPhys,
2796 pCur->GCPhysLast,
2797 pCur->pvR3,
2798 pCur->pszDesc);
2799}
2800
2801
2802/**
2803 * Dump the page directory to the log.
2804 *
2805 * @param pVM Pointer to the VM.
2806 * @param pHlp The info helpers.
2807 * @param pszArgs Arguments, ignored.
2808 */
2809static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2810{
2811 /** @todo SMP support!! */
2812 PVMCPU pVCpu = &pVM->aCpus[0];
2813
2814/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2815 /* Big pages supported? */
2816 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2817
2818 /* Global pages supported? */
2819 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2820
2821 NOREF(pszArgs);
2822
2823 /*
2824 * Get page directory addresses.
2825 */
2826 pgmLock(pVM);
2827 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2828 Assert(pPDSrc);
2829
2830 /*
2831 * Iterate the page directory.
2832 */
2833 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2834 {
2835 X86PDE PdeSrc = pPDSrc->a[iPD];
2836 if (PdeSrc.n.u1Present)
2837 {
2838 if (PdeSrc.b.u1Size && fPSE)
2839 pHlp->pfnPrintf(pHlp,
2840 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2841 iPD,
2842 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2843 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2844 else
2845 pHlp->pfnPrintf(pHlp,
2846 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2847 iPD,
2848 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2849 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2850 }
2851 }
2852 pgmUnlock(pVM);
2853}
2854
2855
2856/**
2857 * Service a VMMCALLRING3_PGM_LOCK call.
2858 *
2859 * @returns VBox status code.
2860 * @param pVM Pointer to the VM.
2861 */
2862VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2863{
2864 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2865 AssertRC(rc);
2866 return rc;
2867}
2868
2869
2870/**
2871 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2872 *
2873 * @returns PGM_TYPE_*.
2874 * @param pgmMode The mode value to convert.
2875 */
2876DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2877{
2878 switch (pgmMode)
2879 {
2880 case PGMMODE_REAL: return PGM_TYPE_REAL;
2881 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2882 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2883 case PGMMODE_PAE:
2884 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2885 case PGMMODE_AMD64:
2886 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2887 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2888 case PGMMODE_EPT: return PGM_TYPE_EPT;
2889 default:
2890 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2891 }
2892}
2893
2894
2895/**
2896 * Gets the index into the paging mode data array of a SHW+GST mode.
2897 *
2898 * @returns PGM::paPagingData index.
2899 * @param uShwType The shadow paging mode type.
2900 * @param uGstType The guest paging mode type.
2901 */
2902DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2903{
2904 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2905 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2906 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2907 + (uGstType - PGM_TYPE_REAL);
2908}
2909
2910
2911/**
2912 * Gets the index into the paging mode data array of a SHW+GST mode.
2913 *
2914 * @returns PGM::paPagingData index.
2915 * @param enmShw The shadow paging mode.
2916 * @param enmGst The guest paging mode.
2917 */
2918DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2919{
2920 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2921 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2922 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2923}
2924
2925
2926/**
2927 * Calculates the max data index.
2928 * @returns The number of entries in the paging data array.
2929 */
2930DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2931{
2932 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2933}
2934
2935
2936/**
2937 * Initializes the paging mode data kept in PGM::paModeData.
2938 *
2939 * @param pVM Pointer to the VM.
2940 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2941 * This is used early in the init process to avoid trouble with PDM
2942 * not being initialized yet.
2943 */
2944static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2945{
2946 PPGMMODEDATA pModeData;
2947 int rc;
2948
2949 /*
2950 * Allocate the array on the first call.
2951 */
2952 if (!pVM->pgm.s.paModeData)
2953 {
2954 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2955 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2956 }
2957
2958 /*
2959 * Initialize the array entries.
2960 */
2961 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2962 pModeData->uShwType = PGM_TYPE_32BIT;
2963 pModeData->uGstType = PGM_TYPE_REAL;
2964 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2965 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2966 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2967
2968 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2969 pModeData->uShwType = PGM_TYPE_32BIT;
2970 pModeData->uGstType = PGM_TYPE_PROT;
2971 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2972 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2973 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2974
2975 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2976 pModeData->uShwType = PGM_TYPE_32BIT;
2977 pModeData->uGstType = PGM_TYPE_32BIT;
2978 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2979 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2980 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2981
2982 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2983 pModeData->uShwType = PGM_TYPE_PAE;
2984 pModeData->uGstType = PGM_TYPE_REAL;
2985 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2986 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2987 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2988
2989 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2990 pModeData->uShwType = PGM_TYPE_PAE;
2991 pModeData->uGstType = PGM_TYPE_PROT;
2992 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2993 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2994 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2995
2996 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2997 pModeData->uShwType = PGM_TYPE_PAE;
2998 pModeData->uGstType = PGM_TYPE_32BIT;
2999 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3000 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3001 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3002
3003 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3004 pModeData->uShwType = PGM_TYPE_PAE;
3005 pModeData->uGstType = PGM_TYPE_PAE;
3006 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3007 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3008 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3009
3010#ifdef VBOX_WITH_64_BITS_GUESTS
3011 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3012 pModeData->uShwType = PGM_TYPE_AMD64;
3013 pModeData->uGstType = PGM_TYPE_AMD64;
3014 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3015 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3016 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3017#endif
3018
3019 /* The nested paging mode. */
3020 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3021 pModeData->uShwType = PGM_TYPE_NESTED;
3022 pModeData->uGstType = PGM_TYPE_REAL;
3023 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3024 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3025
3026 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3027 pModeData->uShwType = PGM_TYPE_NESTED;
3028 pModeData->uGstType = PGM_TYPE_PROT;
3029 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3030 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3031
3032 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3033 pModeData->uShwType = PGM_TYPE_NESTED;
3034 pModeData->uGstType = PGM_TYPE_32BIT;
3035 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3036 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3037
3038 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3039 pModeData->uShwType = PGM_TYPE_NESTED;
3040 pModeData->uGstType = PGM_TYPE_PAE;
3041 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3042 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3043
3044#ifdef VBOX_WITH_64_BITS_GUESTS
3045 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3046 pModeData->uShwType = PGM_TYPE_NESTED;
3047 pModeData->uGstType = PGM_TYPE_AMD64;
3048 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3049 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3050#endif
3051
3052 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3053 switch (pVM->pgm.s.enmHostMode)
3054 {
3055#if HC_ARCH_BITS == 32
3056 case SUPPAGINGMODE_32_BIT:
3057 case SUPPAGINGMODE_32_BIT_GLOBAL:
3058 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3059 {
3060 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3061 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3062 }
3063# ifdef VBOX_WITH_64_BITS_GUESTS
3064 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3065 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3066# endif
3067 break;
3068
3069 case SUPPAGINGMODE_PAE:
3070 case SUPPAGINGMODE_PAE_NX:
3071 case SUPPAGINGMODE_PAE_GLOBAL:
3072 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3073 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3074 {
3075 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3076 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3077 }
3078# ifdef VBOX_WITH_64_BITS_GUESTS
3079 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3080 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3081# endif
3082 break;
3083#endif /* HC_ARCH_BITS == 32 */
3084
3085#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3086 case SUPPAGINGMODE_AMD64:
3087 case SUPPAGINGMODE_AMD64_GLOBAL:
3088 case SUPPAGINGMODE_AMD64_NX:
3089 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3090# ifdef VBOX_WITH_64_BITS_GUESTS
3091 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3092# else
3093 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3094# endif
3095 {
3096 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3097 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3098 }
3099 break;
3100#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3101
3102 default:
3103 AssertFailed();
3104 break;
3105 }
3106
3107 /* Extended paging (EPT) / Intel VT-x */
3108 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3109 pModeData->uShwType = PGM_TYPE_EPT;
3110 pModeData->uGstType = PGM_TYPE_REAL;
3111 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3112 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3113 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3114
3115 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3116 pModeData->uShwType = PGM_TYPE_EPT;
3117 pModeData->uGstType = PGM_TYPE_PROT;
3118 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3119 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3120 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3121
3122 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3123 pModeData->uShwType = PGM_TYPE_EPT;
3124 pModeData->uGstType = PGM_TYPE_32BIT;
3125 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3126 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3127 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3128
3129 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3130 pModeData->uShwType = PGM_TYPE_EPT;
3131 pModeData->uGstType = PGM_TYPE_PAE;
3132 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3133 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3134 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3135
3136#ifdef VBOX_WITH_64_BITS_GUESTS
3137 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3138 pModeData->uShwType = PGM_TYPE_EPT;
3139 pModeData->uGstType = PGM_TYPE_AMD64;
3140 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3141 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3142 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3143#endif
3144 return VINF_SUCCESS;
3145}
3146
3147
3148/**
3149 * Switch to different (or relocated in the relocate case) mode data.
3150 *
3151 * @param pVM Pointer to the VM.
3152 * @param pVCpu Pointer to the VMCPU.
3153 * @param enmShw The shadow paging mode.
3154 * @param enmGst The guest paging mode.
3155 */
3156static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3157{
3158 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3159
3160 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3161 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3162
3163 /* shadow */
3164 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3165 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3166 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3167 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3168 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3169
3170 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3171 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3172
3173 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3174 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3175
3176
3177 /* guest */
3178 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3179 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3180 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3181 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3182 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3183 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3184 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3185 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3186 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3187 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3188 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3189 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3190
3191 /* both */
3192 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3193 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3194 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3195 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3196 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3197 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3198#ifdef VBOX_STRICT
3199 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3200#endif
3201 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3202 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3203
3204 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3205 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3206 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3207 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3208 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3209#ifdef VBOX_STRICT
3210 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3211#endif
3212 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3213 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3214
3215 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3216 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3217 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3218 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3219 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3220#ifdef VBOX_STRICT
3221 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3222#endif
3223 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3224 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3225}
3226
3227
3228/**
3229 * Calculates the shadow paging mode.
3230 *
3231 * @returns The shadow paging mode.
3232 * @param pVM Pointer to the VM.
3233 * @param enmGuestMode The guest mode.
3234 * @param enmHostMode The host mode.
3235 * @param enmShadowMode The current shadow mode.
3236 * @param penmSwitcher Where to store the switcher to use.
3237 * VMMSWITCHER_INVALID means no change.
3238 */
3239static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3240{
3241 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3242 switch (enmGuestMode)
3243 {
3244 /*
3245 * When switching to real or protected mode we don't change
3246 * anything since it's likely that we'll switch back pretty soon.
3247 *
3248 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3249 * and is supposed to determine which shadow paging and switcher to
3250 * use during init.
3251 */
3252 case PGMMODE_REAL:
3253 case PGMMODE_PROTECTED:
3254 if ( enmShadowMode != PGMMODE_INVALID
3255 && !HMIsEnabled(pVM) /* always switch in hm mode! */)
3256 break; /* (no change) */
3257
3258 switch (enmHostMode)
3259 {
3260 case SUPPAGINGMODE_32_BIT:
3261 case SUPPAGINGMODE_32_BIT_GLOBAL:
3262 enmShadowMode = PGMMODE_32_BIT;
3263 enmSwitcher = VMMSWITCHER_32_TO_32;
3264 break;
3265
3266 case SUPPAGINGMODE_PAE:
3267 case SUPPAGINGMODE_PAE_NX:
3268 case SUPPAGINGMODE_PAE_GLOBAL:
3269 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3270 enmShadowMode = PGMMODE_PAE;
3271 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3272#ifdef DEBUG_bird
3273 if (RTEnvExist("VBOX_32BIT"))
3274 {
3275 enmShadowMode = PGMMODE_32_BIT;
3276 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3277 }
3278#endif
3279 break;
3280
3281 case SUPPAGINGMODE_AMD64:
3282 case SUPPAGINGMODE_AMD64_GLOBAL:
3283 case SUPPAGINGMODE_AMD64_NX:
3284 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3285 enmShadowMode = PGMMODE_PAE;
3286 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3287#ifdef DEBUG_bird
3288 if (RTEnvExist("VBOX_32BIT"))
3289 {
3290 enmShadowMode = PGMMODE_32_BIT;
3291 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3292 }
3293#endif
3294 break;
3295
3296 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3297 }
3298 break;
3299
3300 case PGMMODE_32_BIT:
3301 switch (enmHostMode)
3302 {
3303 case SUPPAGINGMODE_32_BIT:
3304 case SUPPAGINGMODE_32_BIT_GLOBAL:
3305 enmShadowMode = PGMMODE_32_BIT;
3306 enmSwitcher = VMMSWITCHER_32_TO_32;
3307 break;
3308
3309 case SUPPAGINGMODE_PAE:
3310 case SUPPAGINGMODE_PAE_NX:
3311 case SUPPAGINGMODE_PAE_GLOBAL:
3312 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3313 enmShadowMode = PGMMODE_PAE;
3314 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3315#ifdef DEBUG_bird
3316 if (RTEnvExist("VBOX_32BIT"))
3317 {
3318 enmShadowMode = PGMMODE_32_BIT;
3319 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3320 }
3321#endif
3322 break;
3323
3324 case SUPPAGINGMODE_AMD64:
3325 case SUPPAGINGMODE_AMD64_GLOBAL:
3326 case SUPPAGINGMODE_AMD64_NX:
3327 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3328 enmShadowMode = PGMMODE_PAE;
3329 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3330#ifdef DEBUG_bird
3331 if (RTEnvExist("VBOX_32BIT"))
3332 {
3333 enmShadowMode = PGMMODE_32_BIT;
3334 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3335 }
3336#endif
3337 break;
3338
3339 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3340 }
3341 break;
3342
3343 case PGMMODE_PAE:
3344 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3345 switch (enmHostMode)
3346 {
3347 case SUPPAGINGMODE_32_BIT:
3348 case SUPPAGINGMODE_32_BIT_GLOBAL:
3349 enmShadowMode = PGMMODE_PAE;
3350 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3351 break;
3352
3353 case SUPPAGINGMODE_PAE:
3354 case SUPPAGINGMODE_PAE_NX:
3355 case SUPPAGINGMODE_PAE_GLOBAL:
3356 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3357 enmShadowMode = PGMMODE_PAE;
3358 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3359 break;
3360
3361 case SUPPAGINGMODE_AMD64:
3362 case SUPPAGINGMODE_AMD64_GLOBAL:
3363 case SUPPAGINGMODE_AMD64_NX:
3364 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3365 enmShadowMode = PGMMODE_PAE;
3366 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3367 break;
3368
3369 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3370 }
3371 break;
3372
3373 case PGMMODE_AMD64:
3374 case PGMMODE_AMD64_NX:
3375 switch (enmHostMode)
3376 {
3377 case SUPPAGINGMODE_32_BIT:
3378 case SUPPAGINGMODE_32_BIT_GLOBAL:
3379 enmShadowMode = PGMMODE_AMD64;
3380 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3381 break;
3382
3383 case SUPPAGINGMODE_PAE:
3384 case SUPPAGINGMODE_PAE_NX:
3385 case SUPPAGINGMODE_PAE_GLOBAL:
3386 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3387 enmShadowMode = PGMMODE_AMD64;
3388 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3389 break;
3390
3391 case SUPPAGINGMODE_AMD64:
3392 case SUPPAGINGMODE_AMD64_GLOBAL:
3393 case SUPPAGINGMODE_AMD64_NX:
3394 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3395 enmShadowMode = PGMMODE_AMD64;
3396 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3397 break;
3398
3399 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3400 }
3401 break;
3402
3403
3404 default:
3405 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3406 *penmSwitcher = VMMSWITCHER_INVALID;
3407 return PGMMODE_INVALID;
3408 }
3409 /* Override the shadow mode is nested paging is active. */
3410 pVM->pgm.s.fNestedPaging = HMIsNestedPagingActive(pVM);
3411 if (pVM->pgm.s.fNestedPaging)
3412 enmShadowMode = HMGetShwPagingMode(pVM);
3413
3414 *penmSwitcher = enmSwitcher;
3415 return enmShadowMode;
3416}
3417
3418
3419/**
3420 * Performs the actual mode change.
3421 * This is called by PGMChangeMode and pgmR3InitPaging().
3422 *
3423 * @returns VBox status code. May suspend or power off the VM on error, but this
3424 * will trigger using FFs and not status codes.
3425 *
3426 * @param pVM Pointer to the VM.
3427 * @param pVCpu Pointer to the VMCPU.
3428 * @param enmGuestMode The new guest mode. This is assumed to be different from
3429 * the current mode.
3430 */
3431VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3432{
3433#if HC_ARCH_BITS == 32
3434 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3435#endif
3436 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3437
3438 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3439 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3440
3441 /*
3442 * Calc the shadow mode and switcher.
3443 */
3444 VMMSWITCHER enmSwitcher;
3445 PGMMODE enmShadowMode;
3446 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3447
3448#ifdef VBOX_WITH_RAW_MODE
3449 if ( enmSwitcher != VMMSWITCHER_INVALID
3450 && !HMIsEnabled(pVM))
3451 {
3452 /*
3453 * Select new switcher.
3454 */
3455 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3456 if (RT_FAILURE(rc))
3457 {
3458 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3459 return rc;
3460 }
3461 }
3462#endif
3463
3464 /*
3465 * Exit old mode(s).
3466 */
3467#if HC_ARCH_BITS == 32
3468 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3469 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3470 && enmShadowMode == PGMMODE_NESTED);
3471#else
3472 const bool fForceShwEnterExit = false;
3473#endif
3474 /* shadow */
3475 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3476 || fForceShwEnterExit)
3477 {
3478 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3479 if (PGM_SHW_PFN(Exit, pVCpu))
3480 {
3481 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3482 if (RT_FAILURE(rc))
3483 {
3484 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3485 return rc;
3486 }
3487 }
3488
3489 }
3490 else
3491 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3492
3493 /* guest */
3494 if (PGM_GST_PFN(Exit, pVCpu))
3495 {
3496 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3497 if (RT_FAILURE(rc))
3498 {
3499 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3500 return rc;
3501 }
3502 }
3503
3504 /*
3505 * Load new paging mode data.
3506 */
3507 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3508
3509 /*
3510 * Enter new shadow mode (if changed).
3511 */
3512 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3513 || fForceShwEnterExit)
3514 {
3515 int rc;
3516 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3517 switch (enmShadowMode)
3518 {
3519 case PGMMODE_32_BIT:
3520 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3521 break;
3522 case PGMMODE_PAE:
3523 case PGMMODE_PAE_NX:
3524 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3525 break;
3526 case PGMMODE_AMD64:
3527 case PGMMODE_AMD64_NX:
3528 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3529 break;
3530 case PGMMODE_NESTED:
3531 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3532 break;
3533 case PGMMODE_EPT:
3534 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3535 break;
3536 case PGMMODE_REAL:
3537 case PGMMODE_PROTECTED:
3538 default:
3539 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3540 return VERR_INTERNAL_ERROR;
3541 }
3542 if (RT_FAILURE(rc))
3543 {
3544 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3545 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3546 return rc;
3547 }
3548 }
3549
3550 /*
3551 * Always flag the necessary updates
3552 */
3553 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3554
3555 /*
3556 * Enter the new guest and shadow+guest modes.
3557 */
3558 int rc = -1;
3559 int rc2 = -1;
3560 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3561 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3562 switch (enmGuestMode)
3563 {
3564 case PGMMODE_REAL:
3565 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3566 switch (pVCpu->pgm.s.enmShadowMode)
3567 {
3568 case PGMMODE_32_BIT:
3569 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3570 break;
3571 case PGMMODE_PAE:
3572 case PGMMODE_PAE_NX:
3573 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3574 break;
3575 case PGMMODE_NESTED:
3576 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3577 break;
3578 case PGMMODE_EPT:
3579 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3580 break;
3581 case PGMMODE_AMD64:
3582 case PGMMODE_AMD64_NX:
3583 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3584 default: AssertFailed(); break;
3585 }
3586 break;
3587
3588 case PGMMODE_PROTECTED:
3589 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3590 switch (pVCpu->pgm.s.enmShadowMode)
3591 {
3592 case PGMMODE_32_BIT:
3593 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3594 break;
3595 case PGMMODE_PAE:
3596 case PGMMODE_PAE_NX:
3597 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3598 break;
3599 case PGMMODE_NESTED:
3600 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3601 break;
3602 case PGMMODE_EPT:
3603 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3604 break;
3605 case PGMMODE_AMD64:
3606 case PGMMODE_AMD64_NX:
3607 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3608 default: AssertFailed(); break;
3609 }
3610 break;
3611
3612 case PGMMODE_32_BIT:
3613 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3614 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3615 switch (pVCpu->pgm.s.enmShadowMode)
3616 {
3617 case PGMMODE_32_BIT:
3618 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3619 break;
3620 case PGMMODE_PAE:
3621 case PGMMODE_PAE_NX:
3622 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3623 break;
3624 case PGMMODE_NESTED:
3625 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3626 break;
3627 case PGMMODE_EPT:
3628 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3629 break;
3630 case PGMMODE_AMD64:
3631 case PGMMODE_AMD64_NX:
3632 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3633 default: AssertFailed(); break;
3634 }
3635 break;
3636
3637 case PGMMODE_PAE_NX:
3638 case PGMMODE_PAE:
3639 {
3640 uint32_t u32Dummy, u32Features;
3641
3642 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3643 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3644 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3645 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (System/Processor)"));
3646
3647 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3648 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3649 switch (pVCpu->pgm.s.enmShadowMode)
3650 {
3651 case PGMMODE_PAE:
3652 case PGMMODE_PAE_NX:
3653 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3654 break;
3655 case PGMMODE_NESTED:
3656 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3657 break;
3658 case PGMMODE_EPT:
3659 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3660 break;
3661 case PGMMODE_32_BIT:
3662 case PGMMODE_AMD64:
3663 case PGMMODE_AMD64_NX:
3664 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3665 default: AssertFailed(); break;
3666 }
3667 break;
3668 }
3669
3670#ifdef VBOX_WITH_64_BITS_GUESTS
3671 case PGMMODE_AMD64_NX:
3672 case PGMMODE_AMD64:
3673 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3674 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3675 switch (pVCpu->pgm.s.enmShadowMode)
3676 {
3677 case PGMMODE_AMD64:
3678 case PGMMODE_AMD64_NX:
3679 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3680 break;
3681 case PGMMODE_NESTED:
3682 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3683 break;
3684 case PGMMODE_EPT:
3685 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3686 break;
3687 case PGMMODE_32_BIT:
3688 case PGMMODE_PAE:
3689 case PGMMODE_PAE_NX:
3690 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3691 default: AssertFailed(); break;
3692 }
3693 break;
3694#endif
3695
3696 default:
3697 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3698 rc = VERR_NOT_IMPLEMENTED;
3699 break;
3700 }
3701
3702 /* status codes. */
3703 AssertRC(rc);
3704 AssertRC(rc2);
3705 if (RT_SUCCESS(rc))
3706 {
3707 rc = rc2;
3708 if (RT_SUCCESS(rc)) /* no informational status codes. */
3709 rc = VINF_SUCCESS;
3710 }
3711
3712 /* Notify HM as well. */
3713 HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3714 return rc;
3715}
3716
3717
3718/**
3719 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3720 *
3721 * @returns VBox status code, fully asserted.
3722 * @param pVCpu Pointer to the VMCPU.
3723 */
3724int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3725{
3726 /* Unmap the old CR3 value before flushing everything. */
3727 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3728 AssertRC(rc);
3729
3730 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3731 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3732 AssertRC(rc);
3733 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3734 return rc;
3735}
3736
3737
3738/**
3739 * Called by pgmPoolFlushAllInt after flushing the pool.
3740 *
3741 * @returns VBox status code, fully asserted.
3742 * @param pVM Pointer to the VM.
3743 * @param pVCpu Pointer to the VMCPU.
3744 */
3745int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3746{
3747 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3748 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3749 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3750 AssertRCReturn(rc, rc);
3751 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3752
3753 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3754 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3755 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3756 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3757 return rc;
3758}
3759
3760
3761/**
3762 * Called by PGMR3PhysSetA20 after changing the A20 state.
3763 *
3764 * @param pVCpu Pointer to the VMCPU.
3765 */
3766void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3767{
3768 /** @todo Probably doing a bit too much here. */
3769 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3770 AssertReleaseRC(rc);
3771 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3772 AssertReleaseRC(rc);
3773}
3774
3775
3776#ifdef VBOX_WITH_DEBUGGER
3777
3778/**
3779 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3780 */
3781static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3782{
3783 /*
3784 * Validate input.
3785 */
3786 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3787 PVM pVM = pUVM->pVM;
3788 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3789
3790 if (!cArgs)
3791 {
3792 /*
3793 * Print the list of error injection locations with status.
3794 */
3795 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3796 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3797 }
3798 else
3799 {
3800 /*
3801 * String switch on where to inject the error.
3802 */
3803 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3804 const char *pszWhere = paArgs[0].u.pszString;
3805 if (!strcmp(pszWhere, "handy"))
3806 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3807 else
3808 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
3809 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
3810 }
3811 return VINF_SUCCESS;
3812}
3813
3814
3815/**
3816 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
3817 */
3818static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3819{
3820 /*
3821 * Validate input.
3822 */
3823 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3824 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3825 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3826 if (!pVCpu)
3827 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3828
3829 /*
3830 * Force page directory sync.
3831 */
3832 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3833
3834 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
3835 if (RT_FAILURE(rc))
3836 return rc;
3837
3838 return VINF_SUCCESS;
3839}
3840
3841#ifdef VBOX_STRICT
3842
3843/**
3844 * EMT callback for pgmR3CmdAssertCR3.
3845 *
3846 * @returns VBox status code.
3847 * @param pUVM The user mode VM handle.
3848 * @param pcErrors Where to return the error count.
3849 */
3850static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
3851{
3852 PVM pVM = pUVM->pVM;
3853 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3854 PVMCPU pVCpu = VMMGetCpu(pVM);
3855
3856 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3857
3858 return VINF_SUCCESS;
3859}
3860
3861
3862/**
3863 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
3864 */
3865static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3866{
3867 /*
3868 * Validate input.
3869 */
3870 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3871 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3872
3873 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
3874 if (RT_FAILURE(rc))
3875 return rc;
3876
3877 unsigned cErrors = 0;
3878 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
3879 if (RT_FAILURE(rc))
3880 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
3881 if (cErrors > 0)
3882 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
3883 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
3884}
3885
3886#endif /* VBOX_STRICT */
3887
3888/**
3889 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
3890 */
3891static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3892{
3893 /*
3894 * Validate input.
3895 */
3896 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3897 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3898 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3899 if (!pVCpu)
3900 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3901
3902 /*
3903 * Force page directory sync.
3904 */
3905 int rc;
3906 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3907 {
3908 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3909 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
3910 }
3911 else
3912 {
3913 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3914 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3915 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
3916 }
3917 return rc;
3918}
3919
3920
3921/**
3922 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
3923 */
3924static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3925{
3926 /*
3927 * Validate input.
3928 */
3929 NOREF(pCmd);
3930 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3931 PVM pVM = pUVM->pVM;
3932 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
3933 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
3934 if (cArgs == 2)
3935 {
3936 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
3937 if (strcmp(paArgs[1].u.pszString, "nozero"))
3938 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3939 }
3940 bool fIncZeroPgs = cArgs < 2;
3941
3942 /*
3943 * Open the output file and get the ram parameters.
3944 */
3945 RTFILE hFile;
3946 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3947 if (RT_FAILURE(rc))
3948 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3949
3950 uint32_t cbRamHole = 0;
3951 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3952 uint64_t cbRam = 0;
3953 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
3954 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3955
3956 /*
3957 * Dump the physical memory, page by page.
3958 */
3959 RTGCPHYS GCPhys = 0;
3960 char abZeroPg[PAGE_SIZE];
3961 RT_ZERO(abZeroPg);
3962
3963 pgmLock(pVM);
3964 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3965 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3966 pRam = pRam->pNextR3)
3967 {
3968 /* fill the gap */
3969 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3970 {
3971 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3972 {
3973 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3974 GCPhys += PAGE_SIZE;
3975 }
3976 }
3977
3978 PCPGMPAGE pPage = &pRam->aPages[0];
3979 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3980 {
3981 if ( PGM_PAGE_IS_ZERO(pPage)
3982 || PGM_PAGE_IS_BALLOONED(pPage))
3983 {
3984 if (fIncZeroPgs)
3985 {
3986 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3987 if (RT_FAILURE(rc))
3988 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3989 }
3990 }
3991 else
3992 {
3993 switch (PGM_PAGE_GET_TYPE(pPage))
3994 {
3995 case PGMPAGETYPE_RAM:
3996 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3997 case PGMPAGETYPE_ROM:
3998 case PGMPAGETYPE_MMIO2:
3999 {
4000 void const *pvPage;
4001 PGMPAGEMAPLOCK Lock;
4002 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4003 if (RT_SUCCESS(rc))
4004 {
4005 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4006 PGMPhysReleasePageMappingLock(pVM, &Lock);
4007 if (RT_FAILURE(rc))
4008 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4009 }
4010 else
4011 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4012 break;
4013 }
4014
4015 default:
4016 AssertFailed();
4017 case PGMPAGETYPE_MMIO:
4018 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4019 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
4020 if (fIncZeroPgs)
4021 {
4022 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4023 if (RT_FAILURE(rc))
4024 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4025 }
4026 break;
4027 }
4028 }
4029
4030
4031 /* advance */
4032 GCPhys += PAGE_SIZE;
4033 pPage++;
4034 }
4035 }
4036 pgmUnlock(pVM);
4037
4038 RTFileClose(hFile);
4039 if (RT_SUCCESS(rc))
4040 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4041 return VINF_SUCCESS;
4042}
4043
4044#endif /* VBOX_WITH_DEBUGGER */
4045
4046/**
4047 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4048 */
4049typedef struct PGMCHECKINTARGS
4050{
4051 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4052 PPGMPHYSHANDLER pPrevPhys;
4053#ifdef VBOX_WITH_RAW_MODE
4054 PPGMVIRTHANDLER pPrevVirt;
4055 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4056#else
4057 void *pvFiller1, *pvFiller2;
4058#endif
4059 PVM pVM;
4060} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4061
4062/**
4063 * Validate a node in the physical handler tree.
4064 *
4065 * @returns 0 on if ok, other wise 1.
4066 * @param pNode The handler node.
4067 * @param pvUser pVM.
4068 */
4069static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4070{
4071 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4072 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4073 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4074 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
4075 ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4076 AssertReleaseMsg( !pArgs->pPrevPhys
4077 || ( pArgs->fLeftToRight
4078 ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
4079 : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4080 ("pPrevPhys=%p %RGp-%RGp %s\n"
4081 " pCur=%p %RGp-%RGp %s\n",
4082 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4083 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4084 pArgs->pPrevPhys = pCur;
4085 return 0;
4086}
4087
4088#ifdef VBOX_WITH_RAW_MODE
4089
4090/**
4091 * Validate a node in the virtual handler tree.
4092 *
4093 * @returns 0 on if ok, other wise 1.
4094 * @param pNode The handler node.
4095 * @param pvUser pVM.
4096 */
4097static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4098{
4099 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4100 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4101 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4102 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4103 AssertReleaseMsg( !pArgs->pPrevVirt
4104 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4105 ("pPrevVirt=%p %RGv-%RGv %s\n"
4106 " pCur=%p %RGv-%RGv %s\n",
4107 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4108 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4109 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4110 {
4111 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4112 ("pCur=%p %RGv-%RGv %s\n"
4113 "iPage=%d offVirtHandle=%#x expected %#x\n",
4114 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4115 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4116 }
4117 pArgs->pPrevVirt = pCur;
4118 return 0;
4119}
4120
4121
4122/**
4123 * Validate a node in the virtual handler tree.
4124 *
4125 * @returns 0 on if ok, other wise 1.
4126 * @param pNode The handler node.
4127 * @param pvUser pVM.
4128 */
4129static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4130{
4131 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4132 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4133 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4134 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4135 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4136 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4137 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4138 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4139 " pCur=%p %RGp-%RGp\n",
4140 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4141 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4142 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4143 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4144 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4145 " pCur=%p %RGp-%RGp\n",
4146 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4147 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4148 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4149 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4150 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4151 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4152 {
4153 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4154 for (;;)
4155 {
4156 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4157 AssertReleaseMsg(pCur2 != pCur,
4158 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4159 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4160 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4161 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4162 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4163 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4164 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4165 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4166 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4167 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4168 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4169 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4170 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4171 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4172 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4173 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4174 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4175 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4176 break;
4177 }
4178 }
4179
4180 pArgs->pPrevPhys2Virt = pCur;
4181 return 0;
4182}
4183
4184#endif /* VBOX_WITH_RAW_MODE */
4185
4186/**
4187 * Perform an integrity check on the PGM component.
4188 *
4189 * @returns VINF_SUCCESS if everything is fine.
4190 * @returns VBox error status after asserting on integrity breach.
4191 * @param pVM Pointer to the VM.
4192 */
4193VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4194{
4195 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4196
4197 /*
4198 * Check the trees.
4199 */
4200 int cErrors = 0;
4201 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4202 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4203 PGMCHECKINTARGS Args = s_LeftToRight;
4204 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4205 Args = s_RightToLeft;
4206 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4207#ifdef VBOX_WITH_RAW_MODE
4208 Args = s_LeftToRight;
4209 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4210 Args = s_RightToLeft;
4211 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4212 Args = s_LeftToRight;
4213 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4214 Args = s_RightToLeft;
4215 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4216 Args = s_LeftToRight;
4217 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4218 Args = s_RightToLeft;
4219 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4220#endif /* VBOX_WITH_RAW_MODE */
4221
4222 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4223}
4224
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette