VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 73250

Last change on this file since 73250 was 73250, checked in by vboxsync, 6 years ago

PGM: Working on eliminating PGMMODEDATA and the corresponding PGMCPU section so we can do mode switching in ring-0. This forth part dealing with shadow+guest paging pointers and finally removing the PGMMODEDATA type. bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 212.2 KB
Line 
1/* $Id: PGM.cpp 73250 2018-07-19 17:57:31Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @sa @ref grp_pgm
22 * @subpage pg_pgm_pool
23 * @subpage pg_pgm_phys
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_phys Physical Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @section sec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @section sec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @section sec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @section sec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @section sec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @section sec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
555 * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
556 * track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613
614/*********************************************************************************************************************************
615* Header Files *
616*********************************************************************************************************************************/
617#define LOG_GROUP LOG_GROUP_PGM
618#include <VBox/vmm/dbgf.h>
619#include <VBox/vmm/pgm.h>
620#include <VBox/vmm/cpum.h>
621#include <VBox/vmm/iom.h>
622#include <VBox/sup.h>
623#include <VBox/vmm/mm.h>
624#include <VBox/vmm/em.h>
625#include <VBox/vmm/stam.h>
626#ifdef VBOX_WITH_REM
627# include <VBox/vmm/rem.h>
628#endif
629#include <VBox/vmm/selm.h>
630#include <VBox/vmm/ssm.h>
631#include <VBox/vmm/hm.h>
632#include "PGMInternal.h"
633#include <VBox/vmm/vm.h>
634#include <VBox/vmm/uvm.h>
635#include "PGMInline.h"
636
637#include <VBox/dbg.h>
638#include <VBox/param.h>
639#include <VBox/err.h>
640
641#include <iprt/asm.h>
642#include <iprt/asm-amd64-x86.h>
643#include <iprt/assert.h>
644#include <iprt/env.h>
645#include <iprt/mem.h>
646#include <iprt/file.h>
647#include <iprt/string.h>
648#include <iprt/thread.h>
649
650
651/*********************************************************************************************************************************
652* Structures and Typedefs *
653*********************************************************************************************************************************/
654/**
655 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
656 * pgmR3RelocateHyperVirtHandler.
657 */
658typedef struct PGMRELOCHANDLERARGS
659{
660 RTGCINTPTR offDelta;
661 PVM pVM;
662} PGMRELOCHANDLERARGS;
663/** Pointer to a page access handlere relocation argument package. */
664typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
665
666
667/*********************************************************************************************************************************
668* Internal Functions *
669*********************************************************************************************************************************/
670static int pgmR3InitPaging(PVM pVM);
671static int pgmR3InitStats(PVM pVM);
672static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
673static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
674static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
675static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
676#ifdef VBOX_WITH_RAW_MODE
677static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
678static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
679#endif /* VBOX_WITH_RAW_MODE */
680#ifdef VBOX_STRICT
681static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
682#endif
683static void pgmR3ModeDataSwitch(PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
684static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
685
686#ifdef VBOX_WITH_DEBUGGER
687static FNDBGCCMD pgmR3CmdError;
688static FNDBGCCMD pgmR3CmdSync;
689static FNDBGCCMD pgmR3CmdSyncAlways;
690# ifdef VBOX_STRICT
691static FNDBGCCMD pgmR3CmdAssertCR3;
692# endif
693static FNDBGCCMD pgmR3CmdPhysToFile;
694#endif
695
696
697/*********************************************************************************************************************************
698* Global Variables *
699*********************************************************************************************************************************/
700#ifdef VBOX_WITH_DEBUGGER
701/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
702static const DBGCVARDESC g_aPgmErrorArgs[] =
703{
704 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
705 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
706};
707
708static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
709{
710 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
711 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
712 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
713};
714
715# ifdef DEBUG_sandervl
716static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
717{
718 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
719 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
720 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
721};
722# endif
723
724/** Command descriptors. */
725static const DBGCCMD g_aCmds[] =
726{
727 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
728 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
729 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
730 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
731# ifdef VBOX_STRICT
732 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
733# ifdef VBOX_WITH_PAGE_SHARING
734 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
735 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
736# endif
737# endif
738 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
739 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
740};
741#endif
742
743
744
745
746/*
747 * Shadow - 32-bit mode
748 */
749#define PGM_SHW_TYPE PGM_TYPE_32BIT
750#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
751#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
752#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
753#include "PGMShw.h"
754
755/* Guest - real mode */
756#define PGM_GST_TYPE PGM_TYPE_REAL
757#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
758#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
759#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
760#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
761#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
762#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
763#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
764#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
765#include "PGMBth.h"
766#include "PGMGstDefs.h"
767#include "PGMGst.h"
768#undef BTH_PGMPOOLKIND_PT_FOR_PT
769#undef BTH_PGMPOOLKIND_ROOT
770#undef PGM_BTH_NAME
771#undef PGM_BTH_NAME_RC_STR
772#undef PGM_BTH_NAME_R0_STR
773#undef PGM_GST_TYPE
774#undef PGM_GST_NAME
775#undef PGM_GST_NAME_RC_STR
776#undef PGM_GST_NAME_R0_STR
777
778/* Guest - protected mode */
779#define PGM_GST_TYPE PGM_TYPE_PROT
780#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
781#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
782#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
783#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
784#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
785#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
786#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
787#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
788#include "PGMBth.h"
789#include "PGMGstDefs.h"
790#include "PGMGst.h"
791#undef BTH_PGMPOOLKIND_PT_FOR_PT
792#undef BTH_PGMPOOLKIND_ROOT
793#undef PGM_BTH_NAME
794#undef PGM_BTH_NAME_RC_STR
795#undef PGM_BTH_NAME_R0_STR
796#undef PGM_GST_TYPE
797#undef PGM_GST_NAME
798#undef PGM_GST_NAME_RC_STR
799#undef PGM_GST_NAME_R0_STR
800
801/* Guest - 32-bit mode */
802#define PGM_GST_TYPE PGM_TYPE_32BIT
803#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
804#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
805#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
806#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
807#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
808#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
809#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
810#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
811#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
812#include "PGMBth.h"
813#include "PGMGstDefs.h"
814#include "PGMGst.h"
815#undef BTH_PGMPOOLKIND_PT_FOR_BIG
816#undef BTH_PGMPOOLKIND_PT_FOR_PT
817#undef BTH_PGMPOOLKIND_ROOT
818#undef PGM_BTH_NAME
819#undef PGM_BTH_NAME_RC_STR
820#undef PGM_BTH_NAME_R0_STR
821#undef PGM_GST_TYPE
822#undef PGM_GST_NAME
823#undef PGM_GST_NAME_RC_STR
824#undef PGM_GST_NAME_R0_STR
825
826#undef PGM_SHW_TYPE
827#undef PGM_SHW_NAME
828#undef PGM_SHW_NAME_RC_STR
829#undef PGM_SHW_NAME_R0_STR
830
831
832/*
833 * Shadow - PAE mode
834 */
835#define PGM_SHW_TYPE PGM_TYPE_PAE
836#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
837#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
838#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
839#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
840#include "PGMShw.h"
841
842/* Guest - real mode */
843#define PGM_GST_TYPE PGM_TYPE_REAL
844#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
845#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
846#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
847#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
848#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
849#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
850#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
851#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
852#include "PGMGstDefs.h"
853#include "PGMBth.h"
854#undef BTH_PGMPOOLKIND_PT_FOR_PT
855#undef BTH_PGMPOOLKIND_ROOT
856#undef PGM_BTH_NAME
857#undef PGM_BTH_NAME_RC_STR
858#undef PGM_BTH_NAME_R0_STR
859#undef PGM_GST_TYPE
860#undef PGM_GST_NAME
861#undef PGM_GST_NAME_RC_STR
862#undef PGM_GST_NAME_R0_STR
863
864/* Guest - protected mode */
865#define PGM_GST_TYPE PGM_TYPE_PROT
866#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
867#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
868#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
869#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
870#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
871#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
872#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
873#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
874#include "PGMGstDefs.h"
875#include "PGMBth.h"
876#undef BTH_PGMPOOLKIND_PT_FOR_PT
877#undef BTH_PGMPOOLKIND_ROOT
878#undef PGM_BTH_NAME
879#undef PGM_BTH_NAME_RC_STR
880#undef PGM_BTH_NAME_R0_STR
881#undef PGM_GST_TYPE
882#undef PGM_GST_NAME
883#undef PGM_GST_NAME_RC_STR
884#undef PGM_GST_NAME_R0_STR
885
886/* Guest - 32-bit mode */
887#define PGM_GST_TYPE PGM_TYPE_32BIT
888#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
889#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
890#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
891#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
892#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
893#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
894#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
895#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
896#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
897#include "PGMGstDefs.h"
898#include "PGMBth.h"
899#undef BTH_PGMPOOLKIND_PT_FOR_BIG
900#undef BTH_PGMPOOLKIND_PT_FOR_PT
901#undef BTH_PGMPOOLKIND_ROOT
902#undef PGM_BTH_NAME
903#undef PGM_BTH_NAME_RC_STR
904#undef PGM_BTH_NAME_R0_STR
905#undef PGM_GST_TYPE
906#undef PGM_GST_NAME
907#undef PGM_GST_NAME_RC_STR
908#undef PGM_GST_NAME_R0_STR
909
910/* Guest - PAE mode */
911#define PGM_GST_TYPE PGM_TYPE_PAE
912#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
913#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
914#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
915#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
916#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
917#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
918#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
919#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
920#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
921#include "PGMBth.h"
922#include "PGMGstDefs.h"
923#include "PGMGst.h"
924#undef BTH_PGMPOOLKIND_PT_FOR_BIG
925#undef BTH_PGMPOOLKIND_PT_FOR_PT
926#undef BTH_PGMPOOLKIND_ROOT
927#undef PGM_BTH_NAME
928#undef PGM_BTH_NAME_RC_STR
929#undef PGM_BTH_NAME_R0_STR
930#undef PGM_GST_TYPE
931#undef PGM_GST_NAME
932#undef PGM_GST_NAME_RC_STR
933#undef PGM_GST_NAME_R0_STR
934
935#undef PGM_SHW_TYPE
936#undef PGM_SHW_NAME
937#undef PGM_SHW_NAME_RC_STR
938#undef PGM_SHW_NAME_R0_STR
939
940
941/*
942 * Shadow - AMD64 mode
943 */
944#define PGM_SHW_TYPE PGM_TYPE_AMD64
945#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
946#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
947#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
948#include "PGMShw.h"
949
950#ifdef VBOX_WITH_64_BITS_GUESTS
951/* Guest - AMD64 mode */
952# define PGM_GST_TYPE PGM_TYPE_AMD64
953# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
954# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
955# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
956# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
957# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
958# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
959# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
960# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
961# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
962# include "PGMBth.h"
963# include "PGMGstDefs.h"
964# include "PGMGst.h"
965# undef BTH_PGMPOOLKIND_PT_FOR_BIG
966# undef BTH_PGMPOOLKIND_PT_FOR_PT
967# undef BTH_PGMPOOLKIND_ROOT
968# undef PGM_BTH_NAME
969# undef PGM_BTH_NAME_RC_STR
970# undef PGM_BTH_NAME_R0_STR
971# undef PGM_GST_TYPE
972# undef PGM_GST_NAME
973# undef PGM_GST_NAME_RC_STR
974# undef PGM_GST_NAME_R0_STR
975#endif /* VBOX_WITH_64_BITS_GUESTS */
976
977#undef PGM_SHW_TYPE
978#undef PGM_SHW_NAME
979#undef PGM_SHW_NAME_RC_STR
980#undef PGM_SHW_NAME_R0_STR
981
982
983/*
984 * Shadow - 32-bit nested paging mode
985 */
986#define PGM_SHW_TYPE PGM_TYPE_NESTED_32BIT
987#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED_32BIT(name)
988#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_32BIT_STR(name)
989#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_32BIT_STR(name)
990#include "PGMShw.h"
991
992/* Guest - real mode */
993#define PGM_GST_TYPE PGM_TYPE_REAL
994#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
995#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
996#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
997#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_REAL(name)
998#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_REAL_STR(name)
999#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_REAL_STR(name)
1000#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1001#include "PGMGstDefs.h"
1002#include "PGMBth.h"
1003#undef BTH_PGMPOOLKIND_PT_FOR_PT
1004#undef PGM_BTH_NAME
1005#undef PGM_BTH_NAME_RC_STR
1006#undef PGM_BTH_NAME_R0_STR
1007#undef PGM_GST_TYPE
1008#undef PGM_GST_NAME
1009#undef PGM_GST_NAME_RC_STR
1010#undef PGM_GST_NAME_R0_STR
1011
1012/* Guest - protected mode */
1013#define PGM_GST_TYPE PGM_TYPE_PROT
1014#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1015#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1016#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1017#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_PROT(name)
1018#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_PROT_STR(name)
1019#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_PROT_STR(name)
1020#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1021#include "PGMGstDefs.h"
1022#include "PGMBth.h"
1023#undef BTH_PGMPOOLKIND_PT_FOR_PT
1024#undef PGM_BTH_NAME
1025#undef PGM_BTH_NAME_RC_STR
1026#undef PGM_BTH_NAME_R0_STR
1027#undef PGM_GST_TYPE
1028#undef PGM_GST_NAME
1029#undef PGM_GST_NAME_RC_STR
1030#undef PGM_GST_NAME_R0_STR
1031
1032/* Guest - 32-bit mode */
1033#define PGM_GST_TYPE PGM_TYPE_32BIT
1034#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1035#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1036#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1037#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_32BIT(name)
1038#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_32BIT_STR(name)
1039#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_32BIT_STR(name)
1040#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1041#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1042#include "PGMGstDefs.h"
1043#include "PGMBth.h"
1044#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1045#undef BTH_PGMPOOLKIND_PT_FOR_PT
1046#undef PGM_BTH_NAME
1047#undef PGM_BTH_NAME_RC_STR
1048#undef PGM_BTH_NAME_R0_STR
1049#undef PGM_GST_TYPE
1050#undef PGM_GST_NAME
1051#undef PGM_GST_NAME_RC_STR
1052#undef PGM_GST_NAME_R0_STR
1053
1054/* Guest - PAE mode */
1055#define PGM_GST_TYPE PGM_TYPE_PAE
1056#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1057#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1058#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1059#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_PAE(name)
1060#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_PAE_STR(name)
1061#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_PAE_STR(name)
1062#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1063#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1064#include "PGMGstDefs.h"
1065#include "PGMBth.h"
1066#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1067#undef BTH_PGMPOOLKIND_PT_FOR_PT
1068#undef PGM_BTH_NAME
1069#undef PGM_BTH_NAME_RC_STR
1070#undef PGM_BTH_NAME_R0_STR
1071#undef PGM_GST_TYPE
1072#undef PGM_GST_NAME
1073#undef PGM_GST_NAME_RC_STR
1074#undef PGM_GST_NAME_R0_STR
1075
1076#ifdef VBOX_WITH_64_BITS_GUESTS
1077/* Guest - AMD64 mode */
1078# define PGM_GST_TYPE PGM_TYPE_AMD64
1079# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1080# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1081# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1082# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_AMD64(name)
1083# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_AMD64_STR(name)
1084# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_AMD64_STR(name)
1085# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1086# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1087# include "PGMGstDefs.h"
1088# include "PGMBth.h"
1089# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1090# undef BTH_PGMPOOLKIND_PT_FOR_PT
1091# undef PGM_BTH_NAME
1092# undef PGM_BTH_NAME_RC_STR
1093# undef PGM_BTH_NAME_R0_STR
1094# undef PGM_GST_TYPE
1095# undef PGM_GST_NAME
1096# undef PGM_GST_NAME_RC_STR
1097# undef PGM_GST_NAME_R0_STR
1098#endif /* VBOX_WITH_64_BITS_GUESTS */
1099
1100#undef PGM_SHW_TYPE
1101#undef PGM_SHW_NAME
1102#undef PGM_SHW_NAME_RC_STR
1103#undef PGM_SHW_NAME_R0_STR
1104
1105
1106/*
1107 * Shadow - PAE nested paging mode
1108 */
1109#define PGM_SHW_TYPE PGM_TYPE_NESTED_PAE
1110#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED_PAE(name)
1111#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_PAE_STR(name)
1112#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_PAE_STR(name)
1113#include "PGMShw.h"
1114
1115/* Guest - real mode */
1116#define PGM_GST_TYPE PGM_TYPE_REAL
1117#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1118#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1119#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1120#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_REAL(name)
1121#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_REAL_STR(name)
1122#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_REAL_STR(name)
1123#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1124#include "PGMGstDefs.h"
1125#include "PGMBth.h"
1126#undef BTH_PGMPOOLKIND_PT_FOR_PT
1127#undef PGM_BTH_NAME
1128#undef PGM_BTH_NAME_RC_STR
1129#undef PGM_BTH_NAME_R0_STR
1130#undef PGM_GST_TYPE
1131#undef PGM_GST_NAME
1132#undef PGM_GST_NAME_RC_STR
1133#undef PGM_GST_NAME_R0_STR
1134
1135/* Guest - protected mode */
1136#define PGM_GST_TYPE PGM_TYPE_PROT
1137#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1138#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1139#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1140#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_PROT(name)
1141#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_PROT_STR(name)
1142#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_PROT_STR(name)
1143#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1144#include "PGMGstDefs.h"
1145#include "PGMBth.h"
1146#undef BTH_PGMPOOLKIND_PT_FOR_PT
1147#undef PGM_BTH_NAME
1148#undef PGM_BTH_NAME_RC_STR
1149#undef PGM_BTH_NAME_R0_STR
1150#undef PGM_GST_TYPE
1151#undef PGM_GST_NAME
1152#undef PGM_GST_NAME_RC_STR
1153#undef PGM_GST_NAME_R0_STR
1154
1155/* Guest - 32-bit mode */
1156#define PGM_GST_TYPE PGM_TYPE_32BIT
1157#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1158#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1159#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1160#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_32BIT(name)
1161#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_32BIT_STR(name)
1162#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_32BIT_STR(name)
1163#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1164#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1165#include "PGMGstDefs.h"
1166#include "PGMBth.h"
1167#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1168#undef BTH_PGMPOOLKIND_PT_FOR_PT
1169#undef PGM_BTH_NAME
1170#undef PGM_BTH_NAME_RC_STR
1171#undef PGM_BTH_NAME_R0_STR
1172#undef PGM_GST_TYPE
1173#undef PGM_GST_NAME
1174#undef PGM_GST_NAME_RC_STR
1175#undef PGM_GST_NAME_R0_STR
1176
1177/* Guest - PAE mode */
1178#define PGM_GST_TYPE PGM_TYPE_PAE
1179#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1180#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1181#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1182#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_PAE(name)
1183#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_PAE_STR(name)
1184#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_PAE_STR(name)
1185#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1186#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1187#include "PGMGstDefs.h"
1188#include "PGMBth.h"
1189#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1190#undef BTH_PGMPOOLKIND_PT_FOR_PT
1191#undef PGM_BTH_NAME
1192#undef PGM_BTH_NAME_RC_STR
1193#undef PGM_BTH_NAME_R0_STR
1194#undef PGM_GST_TYPE
1195#undef PGM_GST_NAME
1196#undef PGM_GST_NAME_RC_STR
1197#undef PGM_GST_NAME_R0_STR
1198
1199#ifdef VBOX_WITH_64_BITS_GUESTS
1200/* Guest - AMD64 mode */
1201# define PGM_GST_TYPE PGM_TYPE_AMD64
1202# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1203# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1204# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1205# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_AMD64(name)
1206# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_AMD64_STR(name)
1207# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_AMD64_STR(name)
1208# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1209# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1210# include "PGMGstDefs.h"
1211# include "PGMBth.h"
1212# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1213# undef BTH_PGMPOOLKIND_PT_FOR_PT
1214# undef PGM_BTH_NAME
1215# undef PGM_BTH_NAME_RC_STR
1216# undef PGM_BTH_NAME_R0_STR
1217# undef PGM_GST_TYPE
1218# undef PGM_GST_NAME
1219# undef PGM_GST_NAME_RC_STR
1220# undef PGM_GST_NAME_R0_STR
1221#endif /* VBOX_WITH_64_BITS_GUESTS */
1222
1223#undef PGM_SHW_TYPE
1224#undef PGM_SHW_NAME
1225#undef PGM_SHW_NAME_RC_STR
1226#undef PGM_SHW_NAME_R0_STR
1227
1228
1229/*
1230 * Shadow - AMD64 nested paging mode
1231 */
1232#define PGM_SHW_TYPE PGM_TYPE_NESTED_AMD64
1233#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED_AMD64(name)
1234#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_AMD64_STR(name)
1235#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_AMD64_STR(name)
1236#include "PGMShw.h"
1237
1238/* Guest - real mode */
1239#define PGM_GST_TYPE PGM_TYPE_REAL
1240#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1241#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1242#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1243#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_REAL(name)
1244#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_REAL_STR(name)
1245#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_REAL_STR(name)
1246#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1247#include "PGMGstDefs.h"
1248#include "PGMBth.h"
1249#undef BTH_PGMPOOLKIND_PT_FOR_PT
1250#undef PGM_BTH_NAME
1251#undef PGM_BTH_NAME_RC_STR
1252#undef PGM_BTH_NAME_R0_STR
1253#undef PGM_GST_TYPE
1254#undef PGM_GST_NAME
1255#undef PGM_GST_NAME_RC_STR
1256#undef PGM_GST_NAME_R0_STR
1257
1258/* Guest - protected mode */
1259#define PGM_GST_TYPE PGM_TYPE_PROT
1260#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1261#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1262#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1263#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_PROT(name)
1264#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_PROT_STR(name)
1265#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_PROT_STR(name)
1266#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1267#include "PGMGstDefs.h"
1268#include "PGMBth.h"
1269#undef BTH_PGMPOOLKIND_PT_FOR_PT
1270#undef PGM_BTH_NAME
1271#undef PGM_BTH_NAME_RC_STR
1272#undef PGM_BTH_NAME_R0_STR
1273#undef PGM_GST_TYPE
1274#undef PGM_GST_NAME
1275#undef PGM_GST_NAME_RC_STR
1276#undef PGM_GST_NAME_R0_STR
1277
1278/* Guest - 32-bit mode */
1279#define PGM_GST_TYPE PGM_TYPE_32BIT
1280#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1281#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1282#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1283#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_32BIT(name)
1284#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_32BIT_STR(name)
1285#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_32BIT_STR(name)
1286#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1287#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1288#include "PGMGstDefs.h"
1289#include "PGMBth.h"
1290#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1291#undef BTH_PGMPOOLKIND_PT_FOR_PT
1292#undef PGM_BTH_NAME
1293#undef PGM_BTH_NAME_RC_STR
1294#undef PGM_BTH_NAME_R0_STR
1295#undef PGM_GST_TYPE
1296#undef PGM_GST_NAME
1297#undef PGM_GST_NAME_RC_STR
1298#undef PGM_GST_NAME_R0_STR
1299
1300/* Guest - PAE mode */
1301#define PGM_GST_TYPE PGM_TYPE_PAE
1302#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1303#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1304#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1305#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_PAE(name)
1306#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_PAE_STR(name)
1307#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_PAE_STR(name)
1308#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1309#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1310#include "PGMGstDefs.h"
1311#include "PGMBth.h"
1312#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1313#undef BTH_PGMPOOLKIND_PT_FOR_PT
1314#undef PGM_BTH_NAME
1315#undef PGM_BTH_NAME_RC_STR
1316#undef PGM_BTH_NAME_R0_STR
1317#undef PGM_GST_TYPE
1318#undef PGM_GST_NAME
1319#undef PGM_GST_NAME_RC_STR
1320#undef PGM_GST_NAME_R0_STR
1321
1322#ifdef VBOX_WITH_64_BITS_GUESTS
1323/* Guest - AMD64 mode */
1324# define PGM_GST_TYPE PGM_TYPE_AMD64
1325# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1326# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1327# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1328# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_AMD64(name)
1329# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_AMD64_STR(name)
1330# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_AMD64_STR(name)
1331# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1332# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1333# include "PGMGstDefs.h"
1334# include "PGMBth.h"
1335# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1336# undef BTH_PGMPOOLKIND_PT_FOR_PT
1337# undef PGM_BTH_NAME
1338# undef PGM_BTH_NAME_RC_STR
1339# undef PGM_BTH_NAME_R0_STR
1340# undef PGM_GST_TYPE
1341# undef PGM_GST_NAME
1342# undef PGM_GST_NAME_RC_STR
1343# undef PGM_GST_NAME_R0_STR
1344#endif /* VBOX_WITH_64_BITS_GUESTS */
1345
1346#undef PGM_SHW_TYPE
1347#undef PGM_SHW_NAME
1348#undef PGM_SHW_NAME_RC_STR
1349#undef PGM_SHW_NAME_R0_STR
1350
1351
1352/*
1353 * Shadow - EPT
1354 */
1355#define PGM_SHW_TYPE PGM_TYPE_EPT
1356#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1357#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1358#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1359#include "PGMShw.h"
1360
1361/* Guest - real mode */
1362#define PGM_GST_TYPE PGM_TYPE_REAL
1363#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1364#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1365#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1366#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1367#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1368#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1369#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1370#include "PGMGstDefs.h"
1371#include "PGMBth.h"
1372#undef BTH_PGMPOOLKIND_PT_FOR_PT
1373#undef PGM_BTH_NAME
1374#undef PGM_BTH_NAME_RC_STR
1375#undef PGM_BTH_NAME_R0_STR
1376#undef PGM_GST_TYPE
1377#undef PGM_GST_NAME
1378#undef PGM_GST_NAME_RC_STR
1379#undef PGM_GST_NAME_R0_STR
1380
1381/* Guest - protected mode */
1382#define PGM_GST_TYPE PGM_TYPE_PROT
1383#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1384#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1385#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1386#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1387#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1388#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1389#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1390#include "PGMGstDefs.h"
1391#include "PGMBth.h"
1392#undef BTH_PGMPOOLKIND_PT_FOR_PT
1393#undef PGM_BTH_NAME
1394#undef PGM_BTH_NAME_RC_STR
1395#undef PGM_BTH_NAME_R0_STR
1396#undef PGM_GST_TYPE
1397#undef PGM_GST_NAME
1398#undef PGM_GST_NAME_RC_STR
1399#undef PGM_GST_NAME_R0_STR
1400
1401/* Guest - 32-bit mode */
1402#define PGM_GST_TYPE PGM_TYPE_32BIT
1403#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1404#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1405#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1406#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1407#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1408#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1409#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1410#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1411#include "PGMGstDefs.h"
1412#include "PGMBth.h"
1413#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1414#undef BTH_PGMPOOLKIND_PT_FOR_PT
1415#undef PGM_BTH_NAME
1416#undef PGM_BTH_NAME_RC_STR
1417#undef PGM_BTH_NAME_R0_STR
1418#undef PGM_GST_TYPE
1419#undef PGM_GST_NAME
1420#undef PGM_GST_NAME_RC_STR
1421#undef PGM_GST_NAME_R0_STR
1422
1423/* Guest - PAE mode */
1424#define PGM_GST_TYPE PGM_TYPE_PAE
1425#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1426#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1427#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1428#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1429#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1430#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1431#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1432#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1433#include "PGMGstDefs.h"
1434#include "PGMBth.h"
1435#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1436#undef BTH_PGMPOOLKIND_PT_FOR_PT
1437#undef PGM_BTH_NAME
1438#undef PGM_BTH_NAME_RC_STR
1439#undef PGM_BTH_NAME_R0_STR
1440#undef PGM_GST_TYPE
1441#undef PGM_GST_NAME
1442#undef PGM_GST_NAME_RC_STR
1443#undef PGM_GST_NAME_R0_STR
1444
1445#ifdef VBOX_WITH_64_BITS_GUESTS
1446/* Guest - AMD64 mode */
1447# define PGM_GST_TYPE PGM_TYPE_AMD64
1448# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1449# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1450# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1451# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1452# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1453# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1454# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1455# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1456# include "PGMGstDefs.h"
1457# include "PGMBth.h"
1458# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1459# undef BTH_PGMPOOLKIND_PT_FOR_PT
1460# undef PGM_BTH_NAME
1461# undef PGM_BTH_NAME_RC_STR
1462# undef PGM_BTH_NAME_R0_STR
1463# undef PGM_GST_TYPE
1464# undef PGM_GST_NAME
1465# undef PGM_GST_NAME_RC_STR
1466# undef PGM_GST_NAME_R0_STR
1467#endif /* VBOX_WITH_64_BITS_GUESTS */
1468
1469#undef PGM_SHW_TYPE
1470#undef PGM_SHW_NAME
1471#undef PGM_SHW_NAME_RC_STR
1472#undef PGM_SHW_NAME_R0_STR
1473
1474
1475
1476/**
1477 * Initiates the paging of VM.
1478 *
1479 * @returns VBox status code.
1480 * @param pVM The cross context VM structure.
1481 */
1482VMMR3DECL(int) PGMR3Init(PVM pVM)
1483{
1484 LogFlow(("PGMR3Init:\n"));
1485 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1486 int rc;
1487
1488 /*
1489 * Assert alignment and sizes.
1490 */
1491 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1492 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1493 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1494
1495 /*
1496 * Init the structure.
1497 */
1498 pVM->pgm.s.offVM = RT_UOFFSETOF(VM, pgm.s);
1499 pVM->pgm.s.offVCpuPGM = RT_UOFFSETOF(VMCPU, pgm.s);
1500 /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
1501
1502 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1503 {
1504 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1505 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1506 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1507 }
1508
1509 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1510 {
1511 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1512 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1513 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1514 }
1515
1516 /* Init the per-CPU part. */
1517 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1518 {
1519 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1520 PPGMCPU pPGM = &pVCpu->pgm.s;
1521
1522 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1523 pPGM->offVCpu = RT_UOFFSETOF(VMCPU, pgm.s);
1524 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1525
1526 pPGM->enmShadowMode = PGMMODE_INVALID;
1527 pPGM->enmGuestMode = PGMMODE_INVALID;
1528 pPGM->idxGuestModeData = UINT8_MAX;
1529 pPGM->idxShadowModeData = UINT8_MAX;
1530 pPGM->idxBothModeData = UINT8_MAX;
1531
1532 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1533
1534 pPGM->pGst32BitPdR3 = NULL;
1535 pPGM->pGstPaePdptR3 = NULL;
1536 pPGM->pGstAmd64Pml4R3 = NULL;
1537#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1538 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1539 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1540 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1541#endif
1542 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1543 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1544 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1545 {
1546 pPGM->apGstPaePDsR3[i] = NULL;
1547#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1548 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1549#endif
1550 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1551 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1552 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1553 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1554 }
1555
1556 pPGM->fA20Enabled = true;
1557 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1558 }
1559
1560 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1561 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1562 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1563
1564 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1565#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1566 true
1567#else
1568 false
1569#endif
1570 );
1571 AssertLogRelRCReturn(rc, rc);
1572
1573#if HC_ARCH_BITS == 32
1574# ifdef RT_OS_DARWIN
1575 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1576# else
1577 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1578# endif
1579#else
1580 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1581#endif
1582 AssertLogRelRCReturn(rc, rc);
1583 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1584 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1585
1586 /*
1587 * Get the configured RAM size - to estimate saved state size.
1588 */
1589 uint64_t cbRam;
1590 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1591 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1592 cbRam = 0;
1593 else if (RT_SUCCESS(rc))
1594 {
1595 if (cbRam < PAGE_SIZE)
1596 cbRam = 0;
1597 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1598 }
1599 else
1600 {
1601 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1602 return rc;
1603 }
1604
1605 /*
1606 * Check for PCI pass-through and other configurables.
1607 */
1608 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1609 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1610 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1611
1612 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
1613 AssertLogRelRCReturn(rc, rc);
1614
1615 /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
1616 * Whether to clear RAM pages on (hard) reset. */
1617 rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
1618 AssertLogRelRCReturn(rc, rc);
1619
1620#ifdef VBOX_WITH_STATISTICS
1621 /*
1622 * Allocate memory for the statistics before someone tries to use them.
1623 */
1624 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1625 void *pv;
1626 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1627 AssertRCReturn(rc, rc);
1628
1629 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1630 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1631 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1632 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1633
1634 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1635 {
1636 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1637 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1638 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1639
1640 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1641 }
1642#endif /* VBOX_WITH_STATISTICS */
1643
1644 /*
1645 * Register callbacks, string formatters and the saved state data unit.
1646 */
1647#ifdef VBOX_STRICT
1648 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1649#endif
1650 PGMRegisterStringFormatTypes();
1651
1652 rc = pgmR3InitSavedState(pVM, cbRam);
1653 if (RT_FAILURE(rc))
1654 return rc;
1655
1656 /*
1657 * Initialize the PGM critical section and flush the phys TLBs
1658 */
1659 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1660 AssertRCReturn(rc, rc);
1661
1662 PGMR3PhysChunkInvalidateTLB(pVM);
1663 pgmPhysInvalidatePageMapTLB(pVM);
1664
1665 /*
1666 * For the time being we sport a full set of handy pages in addition to the base
1667 * memory to simplify things.
1668 */
1669 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1670 AssertRCReturn(rc, rc);
1671
1672 /*
1673 * Trees
1674 */
1675 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1676 if (RT_SUCCESS(rc))
1677 {
1678 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1679 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1680 }
1681
1682 /*
1683 * Allocate the zero page.
1684 */
1685 if (RT_SUCCESS(rc))
1686 {
1687 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1688 if (RT_SUCCESS(rc))
1689 {
1690 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1691 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1692 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1693 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1694 }
1695 }
1696
1697 /*
1698 * Allocate the invalid MMIO page.
1699 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1700 */
1701 if (RT_SUCCESS(rc))
1702 {
1703 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1704 if (RT_SUCCESS(rc))
1705 {
1706 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1707 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1708 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1709 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1710 }
1711 }
1712
1713 /*
1714 * Register the physical access handler protecting ROMs.
1715 */
1716 if (RT_SUCCESS(rc))
1717 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
1718 pgmPhysRomWriteHandler,
1719 NULL, NULL, "pgmPhysRomWritePfHandler",
1720 NULL, NULL, "pgmPhysRomWritePfHandler",
1721 "ROM write protection",
1722 &pVM->pgm.s.hRomPhysHandlerType);
1723
1724 /*
1725 * Init the paging.
1726 */
1727 if (RT_SUCCESS(rc))
1728 rc = pgmR3InitPaging(pVM);
1729
1730 /*
1731 * Init the page pool.
1732 */
1733 if (RT_SUCCESS(rc))
1734 rc = pgmR3PoolInit(pVM);
1735
1736 if (RT_SUCCESS(rc))
1737 {
1738 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1739 {
1740 PVMCPU pVCpu = &pVM->aCpus[i];
1741 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1742 if (RT_FAILURE(rc))
1743 break;
1744 }
1745 }
1746
1747 if (RT_SUCCESS(rc))
1748 {
1749 /*
1750 * Info & statistics
1751 */
1752 DBGFR3InfoRegisterInternalEx(pVM, "mode",
1753 "Shows the current paging mode. "
1754 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1755 pgmR3InfoMode,
1756 DBGFINFO_FLAGS_ALL_EMTS);
1757 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1758 "Dumps all the entries in the top level paging table. No arguments.",
1759 pgmR3InfoCr3);
1760 DBGFR3InfoRegisterInternal(pVM, "phys",
1761 "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
1762 pgmR3PhysInfo);
1763 DBGFR3InfoRegisterInternal(pVM, "handlers",
1764 "Dumps physical, virtual and hyper virtual handlers. "
1765 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1766 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1767 pgmR3InfoHandlers);
1768 DBGFR3InfoRegisterInternal(pVM, "mappings",
1769 "Dumps guest mappings.",
1770 pgmR3MapInfo);
1771
1772 pgmR3InitStats(pVM);
1773
1774#ifdef VBOX_WITH_DEBUGGER
1775 /*
1776 * Debugger commands.
1777 */
1778 static bool s_fRegisteredCmds = false;
1779 if (!s_fRegisteredCmds)
1780 {
1781 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1782 if (RT_SUCCESS(rc2))
1783 s_fRegisteredCmds = true;
1784 }
1785#endif
1786 return VINF_SUCCESS;
1787 }
1788
1789 /* Almost no cleanup necessary, MM frees all memory. */
1790 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1791
1792 return rc;
1793}
1794
1795
1796/**
1797 * Init paging.
1798 *
1799 * Since we need to check what mode the host is operating in before we can choose
1800 * the right paging functions for the host we have to delay this until R0 has
1801 * been initialized.
1802 *
1803 * @returns VBox status code.
1804 * @param pVM The cross context VM structure.
1805 */
1806static int pgmR3InitPaging(PVM pVM)
1807{
1808 /*
1809 * Force a recalculation of modes and switcher so everyone gets notified.
1810 */
1811 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1812 {
1813 PVMCPU pVCpu = &pVM->aCpus[i];
1814
1815 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1816 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1817 pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
1818 pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
1819 pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
1820 }
1821
1822 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1823
1824 /*
1825 * Allocate static mapping space for whatever the cr3 register
1826 * points to and in the case of PAE mode to the 4 PDs.
1827 */
1828 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1829 if (RT_FAILURE(rc))
1830 {
1831 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1832 return rc;
1833 }
1834 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1835
1836 /*
1837 * Allocate pages for the three possible intermediate contexts
1838 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1839 * for the sake of simplicity. The AMD64 uses the PAE for the
1840 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1841 *
1842 * We assume that two page tables will be enought for the core code
1843 * mappings (HC virtual and identity).
1844 */
1845 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1846 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1847 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1848 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1849 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1850 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1851 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1852 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1853 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1854 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1855 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1856 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1857
1858 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1859 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1860 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1861 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1862 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1863 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1864
1865 /*
1866 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1867 */
1868 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1869 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1870 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1871
1872 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1873 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1874
1875 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1876 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1877 {
1878 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1879 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1880 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1881 }
1882
1883 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1884 {
1885 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1886 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1887 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1888 }
1889
1890 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1891 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1892 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1893 | HCPhysInterPaePDPT64;
1894
1895 /*
1896 * Initialize paging workers and mode from current host mode
1897 * and the guest running in real mode.
1898 */
1899 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1900 switch (pVM->pgm.s.enmHostMode)
1901 {
1902 case SUPPAGINGMODE_32_BIT:
1903 case SUPPAGINGMODE_32_BIT_GLOBAL:
1904 case SUPPAGINGMODE_PAE:
1905 case SUPPAGINGMODE_PAE_GLOBAL:
1906 case SUPPAGINGMODE_PAE_NX:
1907 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1908 break;
1909
1910 case SUPPAGINGMODE_AMD64:
1911 case SUPPAGINGMODE_AMD64_GLOBAL:
1912 case SUPPAGINGMODE_AMD64_NX:
1913 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1914 if (ARCH_BITS != 64)
1915 {
1916 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1917 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1918 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1919 }
1920 break;
1921 default:
1922 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1923 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1924 }
1925
1926 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1927#if HC_ARCH_BITS == 64
1928 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1929 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1930 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1931 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1932 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1933 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1934 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1935#endif
1936
1937 /*
1938 * Log the host paging mode. It may come in handy.
1939 */
1940 const char *pszHostMode;
1941 switch (pVM->pgm.s.enmHostMode)
1942 {
1943 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1944 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1945 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1946 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1947 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1948 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1949 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1950 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1951 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1952 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1953 default: pszHostMode = "???"; break;
1954 }
1955 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1956
1957 return VINF_SUCCESS;
1958}
1959
1960
1961/**
1962 * Init statistics
1963 * @returns VBox status code.
1964 */
1965static int pgmR3InitStats(PVM pVM)
1966{
1967 PPGM pPGM = &pVM->pgm.s;
1968 int rc;
1969
1970 /*
1971 * Release statistics.
1972 */
1973 /* Common - misc variables */
1974 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1975 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1976 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1977 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1978 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1979 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1980 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1981 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1982 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1983 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1984 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1985 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1986 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1987 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1988 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1989 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1990 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1991 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1992 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1993
1994 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1995 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1996 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1997
1998 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1999
2000 /* Live save */
2001 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
2002 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
2003 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
2004 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
2005 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
2006 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
2007 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
2008 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
2009 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
2010 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
2011 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
2012 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
2013 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
2014 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
2015 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
2016 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
2017 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
2018 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
2019
2020#ifdef VBOX_WITH_STATISTICS
2021
2022# define PGM_REG_COUNTER(a, b, c) \
2023 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
2024 AssertRC(rc);
2025
2026# define PGM_REG_COUNTER_BYTES(a, b, c) \
2027 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
2028 AssertRC(rc);
2029
2030# define PGM_REG_PROFILE(a, b, c) \
2031 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
2032 AssertRC(rc);
2033
2034 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
2035
2036 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
2037 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
2038 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
2039 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
2040 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
2041
2042 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
2043 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
2044 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
2045 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
2046 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
2047 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
2048 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
2049 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
2050 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
2051 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
2052
2053 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
2054 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
2055 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
2056 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
2057 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
2058 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
2059
2060 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
2061 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
2062 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
2063 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
2064 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
2065 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
2066 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
2067 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
2068
2069 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
2070 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
2071 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
2072 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
2073
2074 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
2075 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
2076 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
2077 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
2078
2079 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
2080 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
2081 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
2082 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
2083 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
2084 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
2085 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
2086 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
2087
2088 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
2089 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
2090/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
2091 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
2092 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
2093/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
2094
2095 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
2096 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
2097 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
2098 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
2099 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
2100 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
2101 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
2102 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
2103
2104 /* GC only: */
2105 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
2106 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
2107
2108 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
2109 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
2110 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
2111 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
2112 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
2113 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
2114 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
2115 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
2116
2117 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
2118 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
2119 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
2120 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
2121 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
2122 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
2123 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
2124
2125# undef PGM_REG_COUNTER
2126# undef PGM_REG_PROFILE
2127#endif
2128
2129 /*
2130 * Note! The layout below matches the member layout exactly!
2131 */
2132
2133 /*
2134 * Common - stats
2135 */
2136 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2137 {
2138 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
2139
2140#define PGM_REG_COUNTER(a, b, c) \
2141 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
2142 AssertRC(rc);
2143#define PGM_REG_PROFILE(a, b, c) \
2144 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
2145 AssertRC(rc);
2146
2147 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
2148 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
2149
2150#ifdef VBOX_WITH_STATISTICS
2151 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
2152
2153# if 0 /* rarely useful; leave for debugging. */
2154 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
2155 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
2156 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
2157 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
2158 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
2159 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
2160# endif
2161 /* R0 only: */
2162 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
2163 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
2164
2165 /* RZ only: */
2166 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
2167 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
2168 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
2169 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
2170 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
2171 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
2172 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
2173 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
2174 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
2175 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
2176 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
2177 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
2178 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
2179 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
2180 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
2181 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
2182 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
2183 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
2184 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
2185 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
2186 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
2187 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
2188 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
2189 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
2190 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
2191 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
2192 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
2193 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
2194 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
2195 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
2196 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
2197 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
2198 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
2199 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
2200 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
2201 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
2202 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
2203 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
2204 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
2205 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
2206 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
2207 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
2208 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
2209 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
2210 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
2211 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
2212#if 0 /* rarely useful; leave for debugging. */
2213 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
2214 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
2215 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
2216#endif
2217 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
2218 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
2219 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
2220 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
2221 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
2222
2223 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
2224 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
2225 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
2226 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
2227 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
2228 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
2229 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
2230 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
2231 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
2232 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
2233 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
2234 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
2235 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
2236 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
2237 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
2238 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
2239 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
2240 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
2241 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
2242 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
2243 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
2244 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
2245 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
2246 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
2247 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
2248 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
2249 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
2250 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
2251 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
2252 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
2253 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
2254 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
2255 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
2256 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
2257 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
2258 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
2259
2260 /* HC only: */
2261
2262 /* RZ & R3: */
2263 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2264 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2265 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
2266 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2267 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2268 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2269 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2270 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2271 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2272 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2273 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
2274 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2275 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
2276 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
2277 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2278 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2279 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2280 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2281 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2282 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2283 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2284 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2285 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
2286 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2287 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2288 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2289 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
2290 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2291 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2292 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2293 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2294 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2295 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2296 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2297 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
2298 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2299 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2300 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2301 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2302 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2303 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2304 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2305 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2306 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2307 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2308 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2309 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2310 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2311
2312 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2313 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2314 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2315 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2316 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2317 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2318 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2319 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2320 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2321 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2322 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2323 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2324 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2325 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2326 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2327 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2328 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2329 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2330 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2331 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2332 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2333 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2334 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2335 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2336 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2337 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2338 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2339 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2340 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2341 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2342 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2343 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2344 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2345 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
2346 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2347 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2348 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2349 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2350 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2351 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2352 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2353 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2354 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2355 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2356 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2357#endif /* VBOX_WITH_STATISTICS */
2358
2359#undef PGM_REG_PROFILE
2360#undef PGM_REG_COUNTER
2361
2362 }
2363
2364 return VINF_SUCCESS;
2365}
2366
2367
2368/**
2369 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2370 *
2371 * The dynamic mapping area will also be allocated and initialized at this
2372 * time. We could allocate it during PGMR3Init of course, but the mapping
2373 * wouldn't be allocated at that time preventing us from setting up the
2374 * page table entries with the dummy page.
2375 *
2376 * @returns VBox status code.
2377 * @param pVM The cross context VM structure.
2378 */
2379VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2380{
2381 RTGCPTR GCPtr;
2382 int rc;
2383
2384 /*
2385 * Reserve space for the dynamic mappings.
2386 */
2387 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2388 if (RT_SUCCESS(rc))
2389 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2390
2391 if ( RT_SUCCESS(rc)
2392 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2393 {
2394 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2395 if (RT_SUCCESS(rc))
2396 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2397 }
2398 if (RT_SUCCESS(rc))
2399 {
2400 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2401 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2402 }
2403 return rc;
2404}
2405
2406
2407/**
2408 * Ring-3 init finalizing.
2409 *
2410 * @returns VBox status code.
2411 * @param pVM The cross context VM structure.
2412 */
2413VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2414{
2415 int rc = VERR_IPE_UNINITIALIZED_STATUS; /* (MSC incorrectly thinks it can be usused uninitialized) */
2416
2417 /*
2418 * Reserve space for the dynamic mappings.
2419 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2420 */
2421 /* get the pointer to the page table entries. */
2422 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2423 AssertRelease(pMapping);
2424 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2425 const unsigned iPT = off >> X86_PD_SHIFT;
2426 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2427 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2428 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2429
2430 /* init cache area */
2431 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2432 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2433 {
2434 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2435 AssertRCReturn(rc, rc);
2436 }
2437
2438 /*
2439 * Determine the max physical address width (MAXPHYADDR) and apply it to
2440 * all the mask members and stuff.
2441 */
2442 uint32_t cMaxPhysAddrWidth;
2443 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2444 if ( uMaxExtLeaf >= 0x80000008
2445 && uMaxExtLeaf <= 0x80000fff)
2446 {
2447 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2448 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2449 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2450 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2451 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2452 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2453 }
2454 else
2455 {
2456 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2457 cMaxPhysAddrWidth = 48;
2458 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2459 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2460 }
2461
2462 /** @todo query from CPUM. */
2463 pVM->pgm.s.GCPhysInvAddrMask = 0;
2464 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2465 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2466
2467 /*
2468 * Initialize the invalid paging entry masks, assuming NX is disabled.
2469 */
2470 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2471 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2472 {
2473 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2474
2475 /** @todo The manuals are not entirely clear whether the physical
2476 * address width is relevant. See table 5-9 in the intel
2477 * manual vs the PDE4M descriptions. Write testcase (NP). */
2478 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2479 | X86_PDE4M_MBZ_MASK;
2480
2481 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2482 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2483 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2484 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2485
2486 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2487 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2488 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2489 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2490 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2491 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2492
2493 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2494 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2495 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2496 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2497 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2498 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2499 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2500 }
2501
2502 /*
2503 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2504 * Intel only goes up to 36 bits, so we stick to 36 as well.
2505 * Update: More recent intel manuals specifies 40 bits just like AMD.
2506 */
2507 uint32_t u32Dummy, u32Features;
2508 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2509 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2510 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2511 else
2512 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2513
2514 /*
2515 * Allocate memory if we're supposed to do that.
2516 */
2517 if (pVM->pgm.s.fRamPreAlloc)
2518 rc = pgmR3PhysRamPreAllocate(pVM);
2519
2520 //pgmLogState(pVM);
2521 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2522 return rc;
2523}
2524
2525
2526/**
2527 * Init phase completed callback.
2528 *
2529 * @returns VBox status code.
2530 * @param pVM The cross context VM structure.
2531 * @param enmWhat What has been completed.
2532 * @thread EMT(0)
2533 */
2534VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2535{
2536 switch (enmWhat)
2537 {
2538 case VMINITCOMPLETED_HM:
2539#ifdef VBOX_WITH_PCI_PASSTHROUGH
2540 if (pVM->pgm.s.fPciPassthrough)
2541 {
2542 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2543 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2544 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2545
2546 /*
2547 * Report assignments to the IOMMU (hope that's good enough for now).
2548 */
2549 if (pVM->pgm.s.fPciPassthrough)
2550 {
2551 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2552 AssertRCReturn(rc, rc);
2553 }
2554 }
2555#else
2556 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2557#endif
2558 break;
2559
2560 default:
2561 /* shut up gcc */
2562 break;
2563 }
2564
2565 return VINF_SUCCESS;
2566}
2567
2568
2569/**
2570 * Applies relocations to data and code managed by this component.
2571 *
2572 * This function will be called at init and whenever the VMM need to relocate it
2573 * self inside the GC.
2574 *
2575 * @param pVM The cross context VM structure.
2576 * @param offDelta Relocation delta relative to old location.
2577 */
2578VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2579{
2580 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2581
2582 /*
2583 * Paging stuff.
2584 */
2585 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2586
2587 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2588 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2589 {
2590 PVMCPU pVCpu = &pVM->aCpus[i];
2591
2592 pgmR3ModeDataSwitch(pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2593
2594 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
2595 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
2596 && g_aPgmShadowModeData[idxShw].pfnRelocate)
2597 g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
2598
2599 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
2600 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
2601 && g_aPgmGuestModeData[idxGst].pfnRelocate)
2602 g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
2603
2604 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
2605 if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
2606 && g_aPgmBothModeData[idxBth].pfnRelocate)
2607 g_aPgmBothModeData[idxBth].pfnRelocate(pVCpu, offDelta);
2608 }
2609
2610 /*
2611 * Trees.
2612 */
2613 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2614
2615 /*
2616 * Ram ranges.
2617 */
2618 if (pVM->pgm.s.pRamRangesXR3)
2619 {
2620 /* Update the pSelfRC pointers and relink them. */
2621 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2622 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2623 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2624 pgmR3PhysRelinkRamRanges(pVM);
2625
2626 /* Flush the RC TLB. */
2627 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2628 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2629 }
2630
2631 /*
2632 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2633 * be mapped and thus not included in the above exercise.
2634 */
2635 for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2636 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2637 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2638
2639 /*
2640 * Update the two page directories with all page table mappings.
2641 * (One or more of them have changed, that's why we're here.)
2642 */
2643 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2644 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2645 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2646
2647 /* Relocate GC addresses of Page Tables. */
2648 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2649 {
2650 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2651 {
2652 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2653 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2654 }
2655 }
2656
2657 /*
2658 * Dynamic page mapping area.
2659 */
2660 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2661 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2662 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2663
2664 if (pVM->pgm.s.pRCDynMap)
2665 {
2666 pVM->pgm.s.pRCDynMap += offDelta;
2667 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2668
2669 pDynMap->paPages += offDelta;
2670 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2671
2672 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2673 {
2674 paPages[iPage].pvPage += offDelta;
2675 paPages[iPage].uPte.pLegacy += offDelta;
2676 paPages[iPage].uPte.pPae += offDelta;
2677 }
2678 }
2679
2680 /*
2681 * The Zero page.
2682 */
2683 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2684#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2685 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || VM_IS_RAW_MODE_ENABLED(pVM));
2686#else
2687 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2688#endif
2689
2690 /*
2691 * Physical and virtual handlers.
2692 */
2693 PGMRELOCHANDLERARGS Args = { offDelta, pVM };
2694 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &Args);
2695 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2696
2697 PPGMPHYSHANDLERTYPEINT pCurPhysType;
2698 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadPhysHandlerTypes, pCurPhysType, PGMPHYSHANDLERTYPEINT, ListNode)
2699 {
2700 if (pCurPhysType->pfnHandlerRC != NIL_RTRCPTR)
2701 pCurPhysType->pfnHandlerRC += offDelta;
2702 if (pCurPhysType->pfnPfHandlerRC != NIL_RTRCPTR)
2703 pCurPhysType->pfnPfHandlerRC += offDelta;
2704 }
2705
2706#ifdef VBOX_WITH_RAW_MODE
2707 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &Args);
2708 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &Args);
2709
2710 PPGMVIRTHANDLERTYPEINT pCurVirtType;
2711 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadVirtHandlerTypes, pCurVirtType, PGMVIRTHANDLERTYPEINT, ListNode)
2712 {
2713 if (pCurVirtType->pfnHandlerRC != NIL_RTRCPTR)
2714 pCurVirtType->pfnHandlerRC += offDelta;
2715 if (pCurVirtType->pfnPfHandlerRC != NIL_RTRCPTR)
2716 pCurVirtType->pfnPfHandlerRC += offDelta;
2717 }
2718#endif
2719
2720 /*
2721 * The page pool.
2722 */
2723 pgmR3PoolRelocate(pVM);
2724
2725#ifdef VBOX_WITH_STATISTICS
2726 /*
2727 * Statistics.
2728 */
2729 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2730 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2731 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2732#endif
2733}
2734
2735
2736/**
2737 * Callback function for relocating a physical access handler.
2738 *
2739 * @returns 0 (continue enum)
2740 * @param pNode Pointer to a PGMPHYSHANDLER node.
2741 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2742 */
2743static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2744{
2745 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2746 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2747 if (pHandler->pvUserRC >= 0x10000)
2748 pHandler->pvUserRC += pArgs->offDelta;
2749 return 0;
2750}
2751
2752#ifdef VBOX_WITH_RAW_MODE
2753
2754/**
2755 * Callback function for relocating a virtual access handler.
2756 *
2757 * @returns 0 (continue enum)
2758 * @param pNode Pointer to a PGMVIRTHANDLER node.
2759 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2760 */
2761static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2762{
2763 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2764 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2765 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind != PGMVIRTHANDLERKIND_HYPERVISOR);
2766
2767 if ( pHandler->pvUserRC != NIL_RTRCPTR
2768 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2769 pHandler->pvUserRC += pArgs->offDelta;
2770 return 0;
2771}
2772
2773
2774/**
2775 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2776 *
2777 * @returns 0 (continue enum)
2778 * @param pNode Pointer to a PGMVIRTHANDLER node.
2779 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2780 */
2781static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2782{
2783 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2784 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2785 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind == PGMVIRTHANDLERKIND_HYPERVISOR);
2786
2787 if ( pHandler->pvUserRC != NIL_RTRCPTR
2788 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2789 pHandler->pvUserRC += pArgs->offDelta;
2790 return 0;
2791}
2792
2793#endif /* VBOX_WITH_RAW_MODE */
2794
2795/**
2796 * Resets a virtual CPU when unplugged.
2797 *
2798 * @param pVM The cross context VM structure.
2799 * @param pVCpu The cross context virtual CPU structure.
2800 */
2801VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2802{
2803 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
2804 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
2805 && g_aPgmGuestModeData[idxGst].pfnExit)
2806 {
2807 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
2808 AssertReleaseRC(rc);
2809 }
2810 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
2811
2812 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2813 AssertReleaseRC(rc);
2814
2815 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2816
2817 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2818
2819 /*
2820 * Re-init other members.
2821 */
2822 pVCpu->pgm.s.fA20Enabled = true;
2823 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2824
2825 /*
2826 * Clear the FFs PGM owns.
2827 */
2828 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2829 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2830}
2831
2832
2833/**
2834 * The VM is being reset.
2835 *
2836 * For the PGM component this means that any PD write monitors
2837 * needs to be removed.
2838 *
2839 * @param pVM The cross context VM structure.
2840 */
2841VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2842{
2843 LogFlow(("PGMR3Reset:\n"));
2844 VM_ASSERT_EMT(pVM);
2845
2846 pgmLock(pVM);
2847
2848 /*
2849 * Unfix any fixed mappings and disable CR3 monitoring.
2850 */
2851 pVM->pgm.s.fMappingsFixed = false;
2852 pVM->pgm.s.fMappingsFixedRestored = false;
2853 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2854 pVM->pgm.s.cbMappingFixed = 0;
2855
2856 /*
2857 * Exit the guest paging mode before the pgm pool gets reset.
2858 * Important to clean up the amd64 case.
2859 */
2860 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2861 {
2862 PVMCPU pVCpu = &pVM->aCpus[i];
2863 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
2864 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
2865 && g_aPgmGuestModeData[idxGst].pfnExit)
2866 {
2867 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
2868 AssertReleaseRC(rc);
2869 }
2870 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
2871 }
2872
2873#ifdef DEBUG
2874 DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
2875 DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
2876#endif
2877
2878 /*
2879 * Switch mode back to real mode. (Before resetting the pgm pool!)
2880 */
2881 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2882 {
2883 PVMCPU pVCpu = &pVM->aCpus[i];
2884
2885 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2886 AssertReleaseRC(rc);
2887
2888 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2889 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2890 }
2891
2892 /*
2893 * Reset the shadow page pool.
2894 */
2895 pgmR3PoolReset(pVM);
2896
2897 /*
2898 * Re-init various other members and clear the FFs that PGM owns.
2899 */
2900 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2901 {
2902 PVMCPU pVCpu = &pVM->aCpus[i];
2903
2904 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2905 PGMNotifyNxeChanged(pVCpu, false);
2906
2907 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2908 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2909
2910 if (!pVCpu->pgm.s.fA20Enabled)
2911 {
2912 pVCpu->pgm.s.fA20Enabled = true;
2913 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2914#ifdef PGM_WITH_A20
2915 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2916 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2917 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2918 HMFlushTLB(pVCpu);
2919#endif
2920 }
2921 }
2922
2923 //pgmLogState(pVM);
2924 pgmUnlock(pVM);
2925}
2926
2927
2928/**
2929 * Memory setup after VM construction or reset.
2930 *
2931 * @param pVM The cross context VM structure.
2932 * @param fAtReset Indicates the context, after reset if @c true or after
2933 * construction if @c false.
2934 */
2935VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2936{
2937 if (fAtReset)
2938 {
2939 pgmLock(pVM);
2940
2941 int rc = pgmR3PhysRamZeroAll(pVM);
2942 AssertReleaseRC(rc);
2943
2944 rc = pgmR3PhysRomReset(pVM);
2945 AssertReleaseRC(rc);
2946
2947 pgmUnlock(pVM);
2948 }
2949}
2950
2951
2952#ifdef VBOX_STRICT
2953/**
2954 * VM state change callback for clearing fNoMorePhysWrites after
2955 * a snapshot has been created.
2956 */
2957static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2958{
2959 if ( enmState == VMSTATE_RUNNING
2960 || enmState == VMSTATE_RESUMING)
2961 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2962 NOREF(enmOldState); NOREF(pvUser);
2963}
2964#endif
2965
2966/**
2967 * Private API to reset fNoMorePhysWrites.
2968 */
2969VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2970{
2971 pVM->pgm.s.fNoMorePhysWrites = false;
2972}
2973
2974/**
2975 * Terminates the PGM.
2976 *
2977 * @returns VBox status code.
2978 * @param pVM The cross context VM structure.
2979 */
2980VMMR3DECL(int) PGMR3Term(PVM pVM)
2981{
2982 /* Must free shared pages here. */
2983 pgmLock(pVM);
2984 pgmR3PhysRamTerm(pVM);
2985 pgmR3PhysRomTerm(pVM);
2986 pgmUnlock(pVM);
2987
2988 PGMDeregisterStringFormatTypes();
2989 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2990}
2991
2992
2993/**
2994 * Show paging mode.
2995 *
2996 * @param pVM The cross context VM structure.
2997 * @param pHlp The info helpers.
2998 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2999 */
3000static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3001{
3002 /* digest argument. */
3003 bool fGuest, fShadow, fHost;
3004 if (pszArgs)
3005 pszArgs = RTStrStripL(pszArgs);
3006 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3007 fShadow = fHost = fGuest = true;
3008 else
3009 {
3010 fShadow = fHost = fGuest = false;
3011 if (strstr(pszArgs, "guest"))
3012 fGuest = true;
3013 if (strstr(pszArgs, "shadow"))
3014 fShadow = true;
3015 if (strstr(pszArgs, "host"))
3016 fHost = true;
3017 }
3018
3019 PVMCPU pVCpu = VMMGetCpu(pVM);
3020 if (!pVCpu)
3021 pVCpu = &pVM->aCpus[0];
3022
3023
3024 /* print info. */
3025 if (fGuest)
3026 pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
3027 pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
3028 pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
3029 if (fShadow)
3030 pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
3031 if (fHost)
3032 {
3033 const char *psz;
3034 switch (pVM->pgm.s.enmHostMode)
3035 {
3036 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3037 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3038 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3039 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3040 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3041 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3042 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3043 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3044 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3045 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3046 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3047 default: psz = "unknown"; break;
3048 }
3049 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3050 }
3051}
3052
3053
3054/**
3055 * Dump registered MMIO ranges to the log.
3056 *
3057 * @param pVM The cross context VM structure.
3058 * @param pHlp The info helpers.
3059 * @param pszArgs Arguments, ignored.
3060 */
3061static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3062{
3063 bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
3064
3065 pHlp->pfnPrintf(pHlp,
3066 "RAM ranges (pVM=%p)\n"
3067 "%.*s %.*s\n",
3068 pVM,
3069 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3070 sizeof(RTHCPTR) * 2, "pvHC ");
3071
3072 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
3073 {
3074 pHlp->pfnPrintf(pHlp,
3075 "%RGp-%RGp %RHv %s\n",
3076 pCur->GCPhys,
3077 pCur->GCPhysLast,
3078 pCur->pvR3,
3079 pCur->pszDesc);
3080 if (fVerbose)
3081 {
3082 RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
3083 RTGCPHYS iPage = 0;
3084 while (iPage < cPages)
3085 {
3086 RTGCPHYS const iFirstPage = iPage;
3087 PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
3088 do
3089 iPage++;
3090 while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
3091 const char *pszType;
3092 const char *pszMore = NULL;
3093 switch (enmType)
3094 {
3095 case PGMPAGETYPE_RAM:
3096 pszType = "RAM";
3097 break;
3098
3099 case PGMPAGETYPE_MMIO2:
3100 pszType = "MMIO2";
3101 break;
3102
3103 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3104 pszType = "MMIO2-alias-MMIO";
3105 break;
3106
3107 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
3108 pszType = "special-alias-MMIO";
3109 break;
3110
3111 case PGMPAGETYPE_ROM_SHADOW:
3112 case PGMPAGETYPE_ROM:
3113 {
3114 pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
3115
3116 RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
3117 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3118 while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
3119 pRom = pRom->pNextR3;
3120 if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
3121 pszMore = pRom->pszDesc;
3122 break;
3123 }
3124
3125 case PGMPAGETYPE_MMIO:
3126 {
3127 pszType = "MMIO";
3128 pgmLock(pVM);
3129 PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE);
3130 if (pHandler)
3131 pszMore = pHandler->pszDesc;
3132 pgmUnlock(pVM);
3133 break;
3134 }
3135
3136 case PGMPAGETYPE_INVALID:
3137 pszType = "invalid";
3138 break;
3139
3140 default:
3141 pszType = "bad";
3142 break;
3143 }
3144 if (pszMore)
3145 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
3146 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
3147 pCur->GCPhys + iPage * X86_PAGE_SIZE,
3148 pszType, pszMore);
3149 else
3150 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
3151 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
3152 pCur->GCPhys + iPage * X86_PAGE_SIZE,
3153 pszType);
3154
3155 }
3156 }
3157 }
3158}
3159
3160
3161/**
3162 * Dump the page directory to the log.
3163 *
3164 * @param pVM The cross context VM structure.
3165 * @param pHlp The info helpers.
3166 * @param pszArgs Arguments, ignored.
3167 */
3168static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3169{
3170 /** @todo SMP support!! */
3171 PVMCPU pVCpu = &pVM->aCpus[0];
3172
3173/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3174 /* Big pages supported? */
3175 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3176
3177 /* Global pages supported? */
3178 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3179
3180 NOREF(pszArgs);
3181
3182 /*
3183 * Get page directory addresses.
3184 */
3185 pgmLock(pVM);
3186 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3187 Assert(pPDSrc);
3188
3189 /*
3190 * Iterate the page directory.
3191 */
3192 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3193 {
3194 X86PDE PdeSrc = pPDSrc->a[iPD];
3195 if (PdeSrc.n.u1Present)
3196 {
3197 if (PdeSrc.b.u1Size && fPSE)
3198 pHlp->pfnPrintf(pHlp,
3199 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3200 iPD,
3201 pgmGstGet4MBPhysPage(pVM, PdeSrc),
3202 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3203 else
3204 pHlp->pfnPrintf(pHlp,
3205 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3206 iPD,
3207 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3208 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3209 }
3210 }
3211 pgmUnlock(pVM);
3212}
3213
3214
3215/**
3216 * Service a VMMCALLRING3_PGM_LOCK call.
3217 *
3218 * @returns VBox status code.
3219 * @param pVM The cross context VM structure.
3220 */
3221VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3222{
3223 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
3224 AssertRC(rc);
3225 return rc;
3226}
3227
3228
3229/**
3230 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3231 *
3232 * @returns PGM_TYPE_*.
3233 * @param pgmMode The mode value to convert.
3234 */
3235DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3236{
3237 switch (pgmMode)
3238 {
3239 case PGMMODE_REAL: return PGM_TYPE_REAL;
3240 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3241 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3242 case PGMMODE_PAE:
3243 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3244 case PGMMODE_AMD64:
3245 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3246 case PGMMODE_NESTED_32BIT: return PGM_TYPE_NESTED_32BIT;
3247 case PGMMODE_NESTED_PAE: return PGM_TYPE_NESTED_PAE;
3248 case PGMMODE_NESTED_AMD64: return PGM_TYPE_NESTED_AMD64;
3249 case PGMMODE_EPT: return PGM_TYPE_EPT;
3250 default:
3251 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3252 }
3253}
3254
3255
3256/**
3257 * Gets the index into the paging mode data array of a SHW+GST mode.
3258 *
3259 * @returns PGM::paPagingData index.
3260 * @param uShwType The shadow paging mode type.
3261 * @param uGstType The guest paging mode type.
3262 */
3263DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3264{
3265 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3266 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3267 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3268 + (uGstType - PGM_TYPE_REAL);
3269}
3270
3271
3272/**
3273 * Gets the index into the paging mode data array of a SHW+GST mode.
3274 *
3275 * @returns PGM::paPagingData index.
3276 * @param enmShw The shadow paging mode.
3277 * @param enmGst The guest paging mode.
3278 */
3279DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3280{
3281 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3282 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3283 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3284}
3285
3286
3287/**
3288 * Calculates the max data index.
3289 * @returns The number of entries in the paging data array.
3290 */
3291DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3292{
3293 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3294}
3295
3296
3297/**
3298 * Switch to different (or relocated in the relocate case) mode data.
3299 *
3300 * @param pVCpu The cross context virtual CPU structure.
3301 * @param enmShw The shadow paging mode.
3302 * @param enmGst The guest paging mode.
3303 */
3304static void pgmR3ModeDataSwitch(PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3305{
3306 /*
3307 * Update the indexes.
3308 */
3309 uintptr_t idxGst = pVCpu->pgm.s.idxGuestModeData = pgmModeToType(enmGst);
3310 Assert(g_aPgmGuestModeData[idxGst].uType == idxGst);
3311 AssertPtr(g_aPgmGuestModeData[idxGst].pfnGetPage);
3312 AssertPtr(g_aPgmGuestModeData[idxGst].pfnModifyPage);
3313 AssertPtr(g_aPgmGuestModeData[idxGst].pfnGetPDE);
3314 AssertPtr(g_aPgmGuestModeData[idxGst].pfnExit);
3315 AssertPtr(g_aPgmGuestModeData[idxGst].pfnEnter);
3316 AssertPtr(g_aPgmGuestModeData[idxGst].pfnRelocate);
3317 NOREF(idxGst);
3318
3319 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData = pgmModeToType(enmShw);
3320 Assert(g_aPgmShadowModeData[idxShw].uType == idxShw);
3321 AssertPtr(g_aPgmShadowModeData[idxShw].pfnGetPage);
3322 AssertPtr(g_aPgmShadowModeData[idxShw].pfnModifyPage);
3323 AssertPtr(g_aPgmShadowModeData[idxShw].pfnExit);
3324 AssertPtr(g_aPgmShadowModeData[idxShw].pfnEnter);
3325 AssertPtr(g_aPgmShadowModeData[idxShw].pfnRelocate);
3326 NOREF(idxShw);
3327
3328 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData = (idxShw - PGM_TYPE_FIRST_SHADOW) * PGM_TYPE_END + idxGst;
3329 Assert(g_aPgmBothModeData[idxBth].uShwType == idxShw);
3330 Assert(g_aPgmBothModeData[idxBth].uGstType == idxGst);
3331 AssertPtr(g_aPgmBothModeData[idxBth].pfnInvalidatePage);
3332 AssertPtr(g_aPgmBothModeData[idxBth].pfnSyncCR3);
3333 AssertPtr(g_aPgmBothModeData[idxBth].pfnPrefetchPage);
3334 AssertPtr(g_aPgmBothModeData[idxBth].pfnVerifyAccessSyncPage);
3335 AssertPtr(g_aPgmBothModeData[idxBth].pfnMapCR3);
3336 AssertPtr(g_aPgmBothModeData[idxBth].pfnUnmapCR3);
3337 AssertPtr(g_aPgmBothModeData[idxBth].pfnEnter);
3338 AssertPtr(g_aPgmBothModeData[idxBth].pfnRelocate);
3339#ifdef VBOX_STRICT
3340 AssertPtr(g_aPgmBothModeData[idxBth].pfnAssertCR3);
3341#endif
3342 NOREF(idxBth);
3343}
3344
3345
3346/**
3347 * Calculates the shadow paging mode.
3348 *
3349 * @returns The shadow paging mode.
3350 * @param pVM The cross context VM structure.
3351 * @param enmGuestMode The guest mode.
3352 * @param enmHostMode The host mode.
3353 * @param enmShadowMode The current shadow mode.
3354 * @param penmSwitcher Where to store the switcher to use.
3355 * VMMSWITCHER_INVALID means no change.
3356 */
3357static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3358{
3359 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3360 switch (enmGuestMode)
3361 {
3362 /*
3363 * When switching to real or protected mode we don't change
3364 * anything since it's likely that we'll switch back pretty soon.
3365 *
3366 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3367 * and is supposed to determine which shadow paging and switcher to
3368 * use during init.
3369 */
3370 case PGMMODE_REAL:
3371 case PGMMODE_PROTECTED:
3372 if ( enmShadowMode != PGMMODE_INVALID
3373 && VM_IS_RAW_MODE_ENABLED(pVM) /* always switch in hm and nem modes! */)
3374 break; /* (no change) */
3375
3376 switch (enmHostMode)
3377 {
3378 case SUPPAGINGMODE_32_BIT:
3379 case SUPPAGINGMODE_32_BIT_GLOBAL:
3380 enmShadowMode = PGMMODE_32_BIT;
3381 enmSwitcher = VMMSWITCHER_32_TO_32;
3382 break;
3383
3384 case SUPPAGINGMODE_PAE:
3385 case SUPPAGINGMODE_PAE_NX:
3386 case SUPPAGINGMODE_PAE_GLOBAL:
3387 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3388 enmShadowMode = PGMMODE_PAE;
3389 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3390#ifdef DEBUG_bird
3391 if (RTEnvExist("VBOX_32BIT"))
3392 {
3393 enmShadowMode = PGMMODE_32_BIT;
3394 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3395 }
3396#endif
3397 break;
3398
3399 case SUPPAGINGMODE_AMD64:
3400 case SUPPAGINGMODE_AMD64_GLOBAL:
3401 case SUPPAGINGMODE_AMD64_NX:
3402 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3403 enmShadowMode = PGMMODE_PAE;
3404 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3405#ifdef DEBUG_bird
3406 if (RTEnvExist("VBOX_32BIT"))
3407 {
3408 enmShadowMode = PGMMODE_32_BIT;
3409 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3410 }
3411#endif
3412 break;
3413
3414 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3415 }
3416 break;
3417
3418 case PGMMODE_32_BIT:
3419 switch (enmHostMode)
3420 {
3421 case SUPPAGINGMODE_32_BIT:
3422 case SUPPAGINGMODE_32_BIT_GLOBAL:
3423 enmShadowMode = PGMMODE_32_BIT;
3424 enmSwitcher = VMMSWITCHER_32_TO_32;
3425 break;
3426
3427 case SUPPAGINGMODE_PAE:
3428 case SUPPAGINGMODE_PAE_NX:
3429 case SUPPAGINGMODE_PAE_GLOBAL:
3430 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3431 enmShadowMode = PGMMODE_PAE;
3432 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3433#ifdef DEBUG_bird
3434 if (RTEnvExist("VBOX_32BIT"))
3435 {
3436 enmShadowMode = PGMMODE_32_BIT;
3437 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3438 }
3439#endif
3440 break;
3441
3442 case SUPPAGINGMODE_AMD64:
3443 case SUPPAGINGMODE_AMD64_GLOBAL:
3444 case SUPPAGINGMODE_AMD64_NX:
3445 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3446 enmShadowMode = PGMMODE_PAE;
3447 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3448#ifdef DEBUG_bird
3449 if (RTEnvExist("VBOX_32BIT"))
3450 {
3451 enmShadowMode = PGMMODE_32_BIT;
3452 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3453 }
3454#endif
3455 break;
3456
3457 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3458 }
3459 break;
3460
3461 case PGMMODE_PAE:
3462 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3463 switch (enmHostMode)
3464 {
3465 case SUPPAGINGMODE_32_BIT:
3466 case SUPPAGINGMODE_32_BIT_GLOBAL:
3467 enmShadowMode = PGMMODE_PAE;
3468 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3469 break;
3470
3471 case SUPPAGINGMODE_PAE:
3472 case SUPPAGINGMODE_PAE_NX:
3473 case SUPPAGINGMODE_PAE_GLOBAL:
3474 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3475 enmShadowMode = PGMMODE_PAE;
3476 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3477 break;
3478
3479 case SUPPAGINGMODE_AMD64:
3480 case SUPPAGINGMODE_AMD64_GLOBAL:
3481 case SUPPAGINGMODE_AMD64_NX:
3482 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3483 enmShadowMode = PGMMODE_PAE;
3484 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3485 break;
3486
3487 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3488 }
3489 break;
3490
3491 case PGMMODE_AMD64:
3492 case PGMMODE_AMD64_NX:
3493 switch (enmHostMode)
3494 {
3495 case SUPPAGINGMODE_32_BIT:
3496 case SUPPAGINGMODE_32_BIT_GLOBAL:
3497 enmShadowMode = PGMMODE_AMD64;
3498 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3499 break;
3500
3501 case SUPPAGINGMODE_PAE:
3502 case SUPPAGINGMODE_PAE_NX:
3503 case SUPPAGINGMODE_PAE_GLOBAL:
3504 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3505 enmShadowMode = PGMMODE_AMD64;
3506 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3507 break;
3508
3509 case SUPPAGINGMODE_AMD64:
3510 case SUPPAGINGMODE_AMD64_GLOBAL:
3511 case SUPPAGINGMODE_AMD64_NX:
3512 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3513 enmShadowMode = PGMMODE_AMD64;
3514 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3515 break;
3516
3517 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3518 }
3519 break;
3520
3521
3522 default:
3523 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3524 *penmSwitcher = VMMSWITCHER_INVALID;
3525 return PGMMODE_INVALID;
3526 }
3527
3528 /*
3529 * Override the shadow mode when NEM or nested paging is active.
3530 */
3531 if (VM_IS_NEM_ENABLED(pVM))
3532 {
3533 pVM->pgm.s.fNestedPaging = true;
3534 enmShadowMode = PGMMODE_EPT; /* whatever harmless... */
3535 }
3536 else
3537 {
3538 bool fNestedPaging = HMIsNestedPagingActive(pVM);
3539 pVM->pgm.s.fNestedPaging = fNestedPaging;
3540 if (fNestedPaging)
3541 {
3542 if (HMIsVmxActive(pVM))
3543 enmShadowMode = PGMMODE_EPT;
3544 else
3545 {
3546 /* The nested SVM paging depends on the host one. */
3547 Assert(HMIsSvmActive(pVM));
3548 if ( enmGuestMode == PGMMODE_AMD64
3549 || enmGuestMode == PGMMODE_AMD64_NX)
3550 enmShadowMode = PGMMODE_NESTED_AMD64;
3551 else
3552 switch (pVM->pgm.s.enmHostMode)
3553 {
3554 case SUPPAGINGMODE_32_BIT:
3555 case SUPPAGINGMODE_32_BIT_GLOBAL:
3556 enmShadowMode = PGMMODE_NESTED_32BIT;
3557 break;
3558
3559 case SUPPAGINGMODE_PAE:
3560 case SUPPAGINGMODE_PAE_GLOBAL:
3561 case SUPPAGINGMODE_PAE_NX:
3562 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3563 enmShadowMode = PGMMODE_NESTED_PAE;
3564 break;
3565
3566#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3567 case SUPPAGINGMODE_AMD64:
3568 case SUPPAGINGMODE_AMD64_GLOBAL:
3569 case SUPPAGINGMODE_AMD64_NX:
3570 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3571 enmShadowMode = PGMMODE_NESTED_AMD64;
3572 break;
3573#endif
3574 default:
3575 AssertLogRelFailedReturn(PGMMODE_INVALID);
3576 }
3577 }
3578 }
3579 }
3580
3581 *penmSwitcher = enmSwitcher;
3582 return enmShadowMode;
3583}
3584
3585
3586/**
3587 * Performs the actual mode change.
3588 * This is called by PGMChangeMode and pgmR3InitPaging().
3589 *
3590 * @returns VBox status code. May suspend or power off the VM on error, but this
3591 * will trigger using FFs and not status codes.
3592 *
3593 * @param pVM The cross context VM structure.
3594 * @param pVCpu The cross context virtual CPU structure.
3595 * @param enmGuestMode The new guest mode. This is assumed to be different from
3596 * the current mode.
3597 */
3598VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3599{
3600 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3601 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3602
3603 /*
3604 * Calc the shadow mode and switcher.
3605 */
3606 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3607 PGMMODE enmShadowMode = PGMMODE_INVALID;
3608 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3609
3610#ifdef VBOX_WITH_RAW_MODE
3611 if ( enmSwitcher != VMMSWITCHER_INVALID
3612 && VM_IS_RAW_MODE_ENABLED(pVM))
3613 {
3614 /*
3615 * Select new switcher.
3616 */
3617 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3618 if (RT_FAILURE(rc))
3619 {
3620 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3621 return rc;
3622 }
3623 }
3624#endif
3625
3626 /*
3627 * Exit old mode(s).
3628 */
3629 /* shadow */
3630 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3631 {
3632 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3633 uintptr_t idxOldShw = pVCpu->pgm.s.idxShadowModeData;
3634 if ( idxOldShw < RT_ELEMENTS(g_aPgmShadowModeData)
3635 && g_aPgmShadowModeData[idxOldShw].pfnExit)
3636 {
3637 int rc = g_aPgmShadowModeData[idxOldShw].pfnExit(pVCpu);
3638 AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
3639 }
3640 }
3641 else
3642 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3643
3644 /* guest */
3645 uintptr_t const idxOldGst = pVCpu->pgm.s.idxGuestModeData;
3646 if ( idxOldGst < RT_ELEMENTS(g_aPgmGuestModeData)
3647 && g_aPgmGuestModeData[idxOldGst].pfnExit)
3648 {
3649 int rc = g_aPgmGuestModeData[idxOldGst].pfnExit(pVCpu);
3650 AssertMsgReturn(RT_SUCCESS(rc), ("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc), rc);
3651 }
3652 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
3653
3654 /*
3655 * Load new paging mode data.
3656 */
3657 pgmR3ModeDataSwitch(pVCpu, enmShadowMode, enmGuestMode);
3658
3659 /*
3660 * Enter new shadow mode (if changed).
3661 */
3662 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3663 {
3664 int rc;
3665 bool const fIsNewGuestPagingMode64Bits = enmGuestMode >= PGMMODE_AMD64;
3666 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3667 switch (enmShadowMode)
3668 {
3669 case PGMMODE_32_BIT:
3670 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3671 break;
3672 case PGMMODE_PAE:
3673 case PGMMODE_PAE_NX:
3674 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3675 break;
3676 case PGMMODE_AMD64:
3677 case PGMMODE_AMD64_NX:
3678 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3679 break;
3680 case PGMMODE_NESTED_32BIT:
3681 rc = PGM_SHW_NAME_NESTED_32BIT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3682 break;
3683 case PGMMODE_NESTED_PAE:
3684 rc = PGM_SHW_NAME_NESTED_PAE(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3685 break;
3686 case PGMMODE_NESTED_AMD64:
3687 rc = PGM_SHW_NAME_NESTED_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3688 break;
3689 case PGMMODE_EPT:
3690 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3691 break;
3692 case PGMMODE_REAL:
3693 case PGMMODE_PROTECTED:
3694 default:
3695 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3696 return VERR_INTERNAL_ERROR;
3697 }
3698 if (RT_FAILURE(rc))
3699 {
3700 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3701 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3702 return rc;
3703 }
3704 }
3705
3706 /*
3707 * Always flag the necessary updates
3708 */
3709 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3710
3711 /*
3712 * Enter the new guest and shadow+guest modes.
3713 */
3714 int rc = -1;
3715 int rc2 = -1;
3716 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3717 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3718 switch (enmGuestMode)
3719 {
3720 case PGMMODE_REAL:
3721 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3722 switch (pVCpu->pgm.s.enmShadowMode)
3723 {
3724 case PGMMODE_32_BIT:
3725 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3726 break;
3727 case PGMMODE_PAE:
3728 case PGMMODE_PAE_NX:
3729 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3730 break;
3731 case PGMMODE_NESTED_32BIT:
3732 rc2 = PGM_BTH_NAME_NESTED_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3733 break;
3734 case PGMMODE_NESTED_PAE:
3735 rc2 = PGM_BTH_NAME_NESTED_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3736 break;
3737 case PGMMODE_NESTED_AMD64:
3738 rc2 = PGM_BTH_NAME_NESTED_AMD64_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3739 break;
3740 case PGMMODE_EPT:
3741 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3742 break;
3743 case PGMMODE_AMD64:
3744 case PGMMODE_AMD64_NX:
3745 AssertMsgFailedBreak(("Should use PAE shadow mode!\n"));
3746 default: AssertFailedBreak();
3747 }
3748 break;
3749
3750 case PGMMODE_PROTECTED:
3751 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3752 switch (pVCpu->pgm.s.enmShadowMode)
3753 {
3754 case PGMMODE_32_BIT:
3755 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3756 break;
3757 case PGMMODE_PAE:
3758 case PGMMODE_PAE_NX:
3759 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3760 break;
3761 case PGMMODE_NESTED_32BIT:
3762 rc2 = PGM_BTH_NAME_NESTED_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3763 break;
3764 case PGMMODE_NESTED_PAE:
3765 rc2 = PGM_BTH_NAME_NESTED_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3766 break;
3767 case PGMMODE_NESTED_AMD64:
3768 rc2 = PGM_BTH_NAME_NESTED_AMD64_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3769 break;
3770 case PGMMODE_EPT:
3771 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3772 break;
3773 case PGMMODE_AMD64:
3774 case PGMMODE_AMD64_NX:
3775 AssertMsgFailedBreak(("Should use PAE shadow mode!\n"));
3776 default: AssertFailedBreak();
3777 }
3778 break;
3779
3780 case PGMMODE_32_BIT:
3781 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3782 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3783 switch (pVCpu->pgm.s.enmShadowMode)
3784 {
3785 case PGMMODE_32_BIT:
3786 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3787 break;
3788 case PGMMODE_PAE:
3789 case PGMMODE_PAE_NX:
3790 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3791 break;
3792 case PGMMODE_NESTED_32BIT:
3793 rc2 = PGM_BTH_NAME_NESTED_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3794 break;
3795 case PGMMODE_NESTED_PAE:
3796 rc2 = PGM_BTH_NAME_NESTED_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3797 break;
3798 case PGMMODE_NESTED_AMD64:
3799 rc2 = PGM_BTH_NAME_NESTED_AMD64_32BIT(Enter)(pVCpu, GCPhysCR3);
3800 break;
3801 case PGMMODE_EPT:
3802 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3803 break;
3804 case PGMMODE_AMD64:
3805 case PGMMODE_AMD64_NX:
3806 AssertMsgFailedBreak(("Should use PAE shadow mode!\n"));
3807 default: AssertFailedBreak();
3808 }
3809 break;
3810
3811 case PGMMODE_PAE_NX:
3812 case PGMMODE_PAE:
3813 {
3814 uint32_t u32Dummy, u32Features;
3815
3816 CPUMGetGuestCpuId(pVCpu, 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3817 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3818 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3819 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (System/Processor)"));
3820
3821 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3822 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3823 switch (pVCpu->pgm.s.enmShadowMode)
3824 {
3825 case PGMMODE_PAE:
3826 case PGMMODE_PAE_NX:
3827 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3828 break;
3829 case PGMMODE_NESTED_32BIT:
3830 rc2 = PGM_BTH_NAME_NESTED_32BIT_PAE(Enter)(pVCpu, GCPhysCR3);
3831 break;
3832 case PGMMODE_NESTED_PAE:
3833 rc2 = PGM_BTH_NAME_NESTED_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3834 break;
3835 case PGMMODE_NESTED_AMD64:
3836 rc2 = PGM_BTH_NAME_NESTED_AMD64_PAE(Enter)(pVCpu, GCPhysCR3);
3837 break;
3838 case PGMMODE_EPT:
3839 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3840 break;
3841 case PGMMODE_32_BIT:
3842 case PGMMODE_AMD64:
3843 case PGMMODE_AMD64_NX:
3844 AssertMsgFailedBreak(("Should use PAE shadow mode!\n"));
3845 default: AssertFailedBreak();
3846 }
3847 break;
3848 }
3849
3850#ifdef VBOX_WITH_64_BITS_GUESTS
3851 case PGMMODE_AMD64_NX:
3852 case PGMMODE_AMD64:
3853 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_AMD64_PAGE_MASK;
3854 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3855 switch (pVCpu->pgm.s.enmShadowMode)
3856 {
3857 case PGMMODE_AMD64:
3858 case PGMMODE_AMD64_NX:
3859 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3860 break;
3861 case PGMMODE_NESTED_32BIT:
3862 rc2 = PGM_BTH_NAME_NESTED_32BIT_AMD64(Enter)(pVCpu, GCPhysCR3);
3863 break;
3864 case PGMMODE_NESTED_PAE:
3865 rc2 = PGM_BTH_NAME_NESTED_PAE_AMD64(Enter)(pVCpu, GCPhysCR3);
3866 break;
3867 case PGMMODE_NESTED_AMD64:
3868 rc2 = PGM_BTH_NAME_NESTED_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3869 break;
3870 case PGMMODE_EPT:
3871 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3872 break;
3873 case PGMMODE_32_BIT:
3874 case PGMMODE_PAE:
3875 case PGMMODE_PAE_NX:
3876 AssertMsgFailedBreak(("Should use AMD64 shadow mode!\n"));
3877 default: AssertFailedBreak();
3878 }
3879 break;
3880#endif
3881
3882 default:
3883 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3884 rc = VERR_NOT_IMPLEMENTED;
3885 break;
3886 }
3887
3888 /* Set the new guest CR3. */
3889 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3890
3891 /* status codes. */
3892 AssertRC(rc);
3893 AssertRC(rc2);
3894 if (RT_SUCCESS(rc))
3895 {
3896 rc = rc2;
3897 if (RT_SUCCESS(rc)) /* no informational status codes. */
3898 rc = VINF_SUCCESS;
3899 }
3900
3901 /* Notify HM as well. */
3902 HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3903 return rc;
3904}
3905
3906
3907/**
3908 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3909 *
3910 * @returns VBox status code, fully asserted.
3911 * @param pVCpu The cross context virtual CPU structure.
3912 */
3913int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3914{
3915 /* Unmap the old CR3 value before flushing everything. */
3916 int rc = VINF_SUCCESS;
3917 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
3918 if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
3919 && g_aPgmBothModeData[idxBth].pfnMapCR3)
3920 {
3921 rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
3922 AssertRC(rc);
3923 }
3924
3925 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3926 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
3927 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
3928 && g_aPgmShadowModeData[idxShw].pfnExit)
3929 {
3930 rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
3931 AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
3932 }
3933
3934 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3935 return rc;
3936}
3937
3938
3939/**
3940 * Called by pgmPoolFlushAllInt after flushing the pool.
3941 *
3942 * @returns VBox status code, fully asserted.
3943 * @param pVM The cross context VM structure.
3944 * @param pVCpu The cross context virtual CPU structure.
3945 */
3946int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3947{
3948 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3949 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3950 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3951 AssertRCReturn(rc, rc);
3952 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3953
3954 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3955 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
3956 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3957 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3958 return rc;
3959}
3960
3961
3962/**
3963 * Called by PGMR3PhysSetA20 after changing the A20 state.
3964 *
3965 * @param pVCpu The cross context virtual CPU structure.
3966 */
3967void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3968{
3969 /** @todo Probably doing a bit too much here. */
3970 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3971 AssertReleaseRC(rc);
3972 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3973 AssertReleaseRC(rc);
3974}
3975
3976
3977#ifdef VBOX_WITH_DEBUGGER
3978
3979/**
3980 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3981 */
3982static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3983{
3984 /*
3985 * Validate input.
3986 */
3987 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3988 PVM pVM = pUVM->pVM;
3989 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3990
3991 if (!cArgs)
3992 {
3993 /*
3994 * Print the list of error injection locations with status.
3995 */
3996 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3997 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3998 }
3999 else
4000 {
4001 /*
4002 * String switch on where to inject the error.
4003 */
4004 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4005 const char *pszWhere = paArgs[0].u.pszString;
4006 if (!strcmp(pszWhere, "handy"))
4007 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4008 else
4009 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
4010 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
4011 }
4012 return VINF_SUCCESS;
4013}
4014
4015
4016/**
4017 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
4018 */
4019static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4020{
4021 /*
4022 * Validate input.
4023 */
4024 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4025 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4026 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
4027 if (!pVCpu)
4028 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
4029
4030 /*
4031 * Force page directory sync.
4032 */
4033 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4034
4035 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
4036 if (RT_FAILURE(rc))
4037 return rc;
4038
4039 return VINF_SUCCESS;
4040}
4041
4042#ifdef VBOX_STRICT
4043
4044/**
4045 * EMT callback for pgmR3CmdAssertCR3.
4046 *
4047 * @returns VBox status code.
4048 * @param pUVM The user mode VM handle.
4049 * @param pcErrors Where to return the error count.
4050 */
4051static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
4052{
4053 PVM pVM = pUVM->pVM;
4054 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
4055 PVMCPU pVCpu = VMMGetCpu(pVM);
4056
4057 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4058
4059 return VINF_SUCCESS;
4060}
4061
4062
4063/**
4064 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
4065 */
4066static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4067{
4068 /*
4069 * Validate input.
4070 */
4071 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4072 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4073
4074 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
4075 if (RT_FAILURE(rc))
4076 return rc;
4077
4078 unsigned cErrors = 0;
4079 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
4080 if (RT_FAILURE(rc))
4081 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
4082 if (cErrors > 0)
4083 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
4084 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
4085}
4086
4087#endif /* VBOX_STRICT */
4088
4089/**
4090 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
4091 */
4092static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4093{
4094 /*
4095 * Validate input.
4096 */
4097 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
4098 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4099 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
4100 if (!pVCpu)
4101 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
4102
4103 /*
4104 * Force page directory sync.
4105 */
4106 int rc;
4107 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4108 {
4109 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4110 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
4111 }
4112 else
4113 {
4114 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4115 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4116 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
4117 }
4118 return rc;
4119}
4120
4121
4122/**
4123 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
4124 */
4125static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
4126{
4127 /*
4128 * Validate input.
4129 */
4130 NOREF(pCmd);
4131 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
4132 PVM pVM = pUVM->pVM;
4133 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
4134 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
4135 if (cArgs == 2)
4136 {
4137 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
4138 if (strcmp(paArgs[1].u.pszString, "nozero"))
4139 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4140 }
4141 bool fIncZeroPgs = cArgs < 2;
4142
4143 /*
4144 * Open the output file and get the ram parameters.
4145 */
4146 RTFILE hFile;
4147 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4148 if (RT_FAILURE(rc))
4149 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4150
4151 uint32_t cbRamHole = 0;
4152 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4153 uint64_t cbRam = 0;
4154 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
4155 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4156
4157 /*
4158 * Dump the physical memory, page by page.
4159 */
4160 RTGCPHYS GCPhys = 0;
4161 char abZeroPg[PAGE_SIZE];
4162 RT_ZERO(abZeroPg);
4163
4164 pgmLock(pVM);
4165 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4166 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4167 pRam = pRam->pNextR3)
4168 {
4169 /* fill the gap */
4170 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4171 {
4172 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4173 {
4174 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4175 GCPhys += PAGE_SIZE;
4176 }
4177 }
4178
4179 PCPGMPAGE pPage = &pRam->aPages[0];
4180 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4181 {
4182 if ( PGM_PAGE_IS_ZERO(pPage)
4183 || PGM_PAGE_IS_BALLOONED(pPage))
4184 {
4185 if (fIncZeroPgs)
4186 {
4187 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4188 if (RT_FAILURE(rc))
4189 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4190 }
4191 }
4192 else
4193 {
4194 switch (PGM_PAGE_GET_TYPE(pPage))
4195 {
4196 case PGMPAGETYPE_RAM:
4197 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4198 case PGMPAGETYPE_ROM:
4199 case PGMPAGETYPE_MMIO2:
4200 {
4201 void const *pvPage;
4202 PGMPAGEMAPLOCK Lock;
4203 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4204 if (RT_SUCCESS(rc))
4205 {
4206 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4207 PGMPhysReleasePageMappingLock(pVM, &Lock);
4208 if (RT_FAILURE(rc))
4209 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4210 }
4211 else
4212 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4213 break;
4214 }
4215
4216 default:
4217 AssertFailed();
4218 RT_FALL_THRU();
4219 case PGMPAGETYPE_MMIO:
4220 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4221 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
4222 if (fIncZeroPgs)
4223 {
4224 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4225 if (RT_FAILURE(rc))
4226 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4227 }
4228 break;
4229 }
4230 }
4231
4232
4233 /* advance */
4234 GCPhys += PAGE_SIZE;
4235 pPage++;
4236 }
4237 }
4238 pgmUnlock(pVM);
4239
4240 RTFileClose(hFile);
4241 if (RT_SUCCESS(rc))
4242 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4243 return VINF_SUCCESS;
4244}
4245
4246#endif /* VBOX_WITH_DEBUGGER */
4247
4248/**
4249 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4250 */
4251typedef struct PGMCHECKINTARGS
4252{
4253 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4254 PPGMPHYSHANDLER pPrevPhys;
4255#ifdef VBOX_WITH_RAW_MODE
4256 PPGMVIRTHANDLER pPrevVirt;
4257 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4258#else
4259 void *pvFiller1, *pvFiller2;
4260#endif
4261 PVM pVM;
4262} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4263
4264/**
4265 * Validate a node in the physical handler tree.
4266 *
4267 * @returns 0 on if ok, other wise 1.
4268 * @param pNode The handler node.
4269 * @param pvUser pVM.
4270 */
4271static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4272{
4273 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4274 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4275 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4276 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
4277 ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4278 AssertReleaseMsg( !pArgs->pPrevPhys
4279 || ( pArgs->fLeftToRight
4280 ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
4281 : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4282 ("pPrevPhys=%p %RGp-%RGp %s\n"
4283 " pCur=%p %RGp-%RGp %s\n",
4284 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4285 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4286 pArgs->pPrevPhys = pCur;
4287 return 0;
4288}
4289
4290#ifdef VBOX_WITH_RAW_MODE
4291
4292/**
4293 * Validate a node in the virtual handler tree.
4294 *
4295 * @returns 0 on if ok, other wise 1.
4296 * @param pNode The handler node.
4297 * @param pvUser pVM.
4298 */
4299static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4300{
4301 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4302 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4303 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4304 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4305 AssertReleaseMsg( !pArgs->pPrevVirt
4306 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4307 ("pPrevVirt=%p %RGv-%RGv %s\n"
4308 " pCur=%p %RGv-%RGv %s\n",
4309 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4310 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4311 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4312 {
4313 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -(intptr_t)RT_UOFFSETOF_DYN(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4314 ("pCur=%p %RGv-%RGv %s\n"
4315 "iPage=%d offVirtHandle=%#x expected %#x\n",
4316 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4317 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -(intptr_t)RT_UOFFSETOF_DYN(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4318 }
4319 pArgs->pPrevVirt = pCur;
4320 return 0;
4321}
4322
4323
4324/**
4325 * Validate a node in the virtual handler tree.
4326 *
4327 * @returns 0 on if ok, other wise 1.
4328 * @param pNode The handler node.
4329 * @param pvUser pVM.
4330 */
4331static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4332{
4333 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4334 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4335 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4336 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4337 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4338 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4339 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4340 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4341 " pCur=%p %RGp-%RGp\n",
4342 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4343 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4344 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4345 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4346 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4347 " pCur=%p %RGp-%RGp\n",
4348 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4349 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4350 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4351 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4352 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4353 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4354 {
4355 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4356 for (;;)
4357 {
4358 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4359 AssertReleaseMsg(pCur2 != pCur,
4360 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4361 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4362 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4363 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4364 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4365 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4366 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4367 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4368 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4369 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4370 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4371 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4372 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4373 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4374 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4375 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4376 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4377 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4378 break;
4379 }
4380 }
4381
4382 pArgs->pPrevPhys2Virt = pCur;
4383 return 0;
4384}
4385
4386#endif /* VBOX_WITH_RAW_MODE */
4387
4388/**
4389 * Perform an integrity check on the PGM component.
4390 *
4391 * @returns VINF_SUCCESS if everything is fine.
4392 * @returns VBox error status after asserting on integrity breach.
4393 * @param pVM The cross context VM structure.
4394 */
4395VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4396{
4397 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4398
4399 /*
4400 * Check the trees.
4401 */
4402 int cErrors = 0;
4403 const PGMCHECKINTARGS LeftToRight = { true, NULL, NULL, NULL, pVM };
4404 const PGMCHECKINTARGS RightToLeft = { false, NULL, NULL, NULL, pVM };
4405 PGMCHECKINTARGS Args = LeftToRight;
4406 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4407 Args = RightToLeft;
4408 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4409#ifdef VBOX_WITH_RAW_MODE
4410 Args = LeftToRight;
4411 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4412 Args = RightToLeft;
4413 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4414 Args = LeftToRight;
4415 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4416 Args = RightToLeft;
4417 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4418 Args = LeftToRight;
4419 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4420 Args = RightToLeft;
4421 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4422#endif /* VBOX_WITH_RAW_MODE */
4423
4424 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4425}
4426
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette