VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 73268

Last change on this file since 73268 was 73268, checked in by vboxsync, 7 years ago

PGM: Working on consolidating templated code... bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 186.8 KB
Line 
1/* $Id: PGM.cpp 73268 2018-07-20 14:49:05Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @sa @ref grp_pgm
22 * @subpage pg_pgm_pool
23 * @subpage pg_pgm_phys
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_phys Physical Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @section sec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @section sec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @section sec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @section sec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @section sec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @section sec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
555 * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
556 * track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613
614/*********************************************************************************************************************************
615* Header Files *
616*********************************************************************************************************************************/
617#define LOG_GROUP LOG_GROUP_PGM
618#include <VBox/vmm/dbgf.h>
619#include <VBox/vmm/pgm.h>
620#include <VBox/vmm/cpum.h>
621#include <VBox/vmm/iom.h>
622#include <VBox/sup.h>
623#include <VBox/vmm/mm.h>
624#include <VBox/vmm/em.h>
625#include <VBox/vmm/stam.h>
626#ifdef VBOX_WITH_REM
627# include <VBox/vmm/rem.h>
628#endif
629#include <VBox/vmm/selm.h>
630#include <VBox/vmm/ssm.h>
631#include <VBox/vmm/hm.h>
632#include "PGMInternal.h"
633#include <VBox/vmm/vm.h>
634#include <VBox/vmm/uvm.h>
635#include "PGMInline.h"
636
637#include <VBox/dbg.h>
638#include <VBox/param.h>
639#include <VBox/err.h>
640
641#include <iprt/asm.h>
642#include <iprt/asm-amd64-x86.h>
643#include <iprt/assert.h>
644#include <iprt/env.h>
645#include <iprt/mem.h>
646#include <iprt/file.h>
647#include <iprt/string.h>
648#include <iprt/thread.h>
649
650
651/*********************************************************************************************************************************
652* Structures and Typedefs *
653*********************************************************************************************************************************/
654/**
655 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
656 * pgmR3RelocateHyperVirtHandler.
657 */
658typedef struct PGMRELOCHANDLERARGS
659{
660 RTGCINTPTR offDelta;
661 PVM pVM;
662} PGMRELOCHANDLERARGS;
663/** Pointer to a page access handlere relocation argument package. */
664typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
665
666
667/*********************************************************************************************************************************
668* Internal Functions *
669*********************************************************************************************************************************/
670static int pgmR3InitPaging(PVM pVM);
671static int pgmR3InitStats(PVM pVM);
672static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
673static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
674static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
675static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
676#ifdef VBOX_WITH_RAW_MODE
677static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
678static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
679#endif /* VBOX_WITH_RAW_MODE */
680#ifdef VBOX_STRICT
681static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
682#endif
683
684#ifdef VBOX_WITH_DEBUGGER
685static FNDBGCCMD pgmR3CmdError;
686static FNDBGCCMD pgmR3CmdSync;
687static FNDBGCCMD pgmR3CmdSyncAlways;
688# ifdef VBOX_STRICT
689static FNDBGCCMD pgmR3CmdAssertCR3;
690# endif
691static FNDBGCCMD pgmR3CmdPhysToFile;
692#endif
693
694
695/*********************************************************************************************************************************
696* Global Variables *
697*********************************************************************************************************************************/
698#ifdef VBOX_WITH_DEBUGGER
699/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
700static const DBGCVARDESC g_aPgmErrorArgs[] =
701{
702 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
703 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
704};
705
706static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
707{
708 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
709 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
710 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
711};
712
713# ifdef DEBUG_sandervl
714static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
715{
716 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
717 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
718 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
719};
720# endif
721
722/** Command descriptors. */
723static const DBGCCMD g_aCmds[] =
724{
725 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
726 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
727 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
728 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
729# ifdef VBOX_STRICT
730 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
731# ifdef VBOX_WITH_PAGE_SHARING
732 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
733 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
734# endif
735# endif
736 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
737 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
738};
739#endif
740
741
742
743
744/*
745 * Shadow - 32-bit mode
746 */
747#define PGM_SHW_TYPE PGM_TYPE_32BIT
748#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
749#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
750#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
751#include "PGMShw.h"
752
753/* Guest - real mode */
754#define PGM_GST_TYPE PGM_TYPE_REAL
755#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
756#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
757#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
758#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
759#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
760#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
761#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
762#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
763#include "PGMBth.h"
764#include "PGMGstDefs.h"
765#include "PGMGst.h"
766#undef BTH_PGMPOOLKIND_PT_FOR_PT
767#undef BTH_PGMPOOLKIND_ROOT
768#undef PGM_BTH_NAME
769#undef PGM_BTH_NAME_RC_STR
770#undef PGM_BTH_NAME_R0_STR
771#undef PGM_GST_TYPE
772#undef PGM_GST_NAME
773#undef PGM_GST_NAME_RC_STR
774#undef PGM_GST_NAME_R0_STR
775
776/* Guest - protected mode */
777#define PGM_GST_TYPE PGM_TYPE_PROT
778#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
779#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
780#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
781#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
782#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
783#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
784#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
785#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
786#include "PGMBth.h"
787#include "PGMGstDefs.h"
788#include "PGMGst.h"
789#undef BTH_PGMPOOLKIND_PT_FOR_PT
790#undef BTH_PGMPOOLKIND_ROOT
791#undef PGM_BTH_NAME
792#undef PGM_BTH_NAME_RC_STR
793#undef PGM_BTH_NAME_R0_STR
794#undef PGM_GST_TYPE
795#undef PGM_GST_NAME
796#undef PGM_GST_NAME_RC_STR
797#undef PGM_GST_NAME_R0_STR
798
799/* Guest - 32-bit mode */
800#define PGM_GST_TYPE PGM_TYPE_32BIT
801#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
802#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
803#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
804#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
805#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
806#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
807#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
808#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
809#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
810#include "PGMBth.h"
811#include "PGMGstDefs.h"
812#include "PGMGst.h"
813#undef BTH_PGMPOOLKIND_PT_FOR_BIG
814#undef BTH_PGMPOOLKIND_PT_FOR_PT
815#undef BTH_PGMPOOLKIND_ROOT
816#undef PGM_BTH_NAME
817#undef PGM_BTH_NAME_RC_STR
818#undef PGM_BTH_NAME_R0_STR
819#undef PGM_GST_TYPE
820#undef PGM_GST_NAME
821#undef PGM_GST_NAME_RC_STR
822#undef PGM_GST_NAME_R0_STR
823
824#undef PGM_SHW_TYPE
825#undef PGM_SHW_NAME
826#undef PGM_SHW_NAME_RC_STR
827#undef PGM_SHW_NAME_R0_STR
828
829
830/*
831 * Shadow - PAE mode
832 */
833#define PGM_SHW_TYPE PGM_TYPE_PAE
834#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
835#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
836#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
837#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
838#include "PGMShw.h"
839
840/* Guest - real mode */
841#define PGM_GST_TYPE PGM_TYPE_REAL
842#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
843#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
844#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
845#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
846#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
847#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
848#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
849#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
850#include "PGMGstDefs.h"
851#include "PGMBth.h"
852#undef BTH_PGMPOOLKIND_PT_FOR_PT
853#undef BTH_PGMPOOLKIND_ROOT
854#undef PGM_BTH_NAME
855#undef PGM_BTH_NAME_RC_STR
856#undef PGM_BTH_NAME_R0_STR
857#undef PGM_GST_TYPE
858#undef PGM_GST_NAME
859#undef PGM_GST_NAME_RC_STR
860#undef PGM_GST_NAME_R0_STR
861
862/* Guest - protected mode */
863#define PGM_GST_TYPE PGM_TYPE_PROT
864#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
865#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
866#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
867#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
868#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
869#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
870#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
871#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
872#include "PGMGstDefs.h"
873#include "PGMBth.h"
874#undef BTH_PGMPOOLKIND_PT_FOR_PT
875#undef BTH_PGMPOOLKIND_ROOT
876#undef PGM_BTH_NAME
877#undef PGM_BTH_NAME_RC_STR
878#undef PGM_BTH_NAME_R0_STR
879#undef PGM_GST_TYPE
880#undef PGM_GST_NAME
881#undef PGM_GST_NAME_RC_STR
882#undef PGM_GST_NAME_R0_STR
883
884/* Guest - 32-bit mode */
885#define PGM_GST_TYPE PGM_TYPE_32BIT
886#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
887#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
888#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
889#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
890#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
891#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
892#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
893#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
894#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
895#include "PGMGstDefs.h"
896#include "PGMBth.h"
897#undef BTH_PGMPOOLKIND_PT_FOR_BIG
898#undef BTH_PGMPOOLKIND_PT_FOR_PT
899#undef BTH_PGMPOOLKIND_ROOT
900#undef PGM_BTH_NAME
901#undef PGM_BTH_NAME_RC_STR
902#undef PGM_BTH_NAME_R0_STR
903#undef PGM_GST_TYPE
904#undef PGM_GST_NAME
905#undef PGM_GST_NAME_RC_STR
906#undef PGM_GST_NAME_R0_STR
907
908/* Guest - PAE mode */
909#define PGM_GST_TYPE PGM_TYPE_PAE
910#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
911#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
912#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
913#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
914#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
915#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
916#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
917#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
918#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
919#include "PGMBth.h"
920#include "PGMGstDefs.h"
921#include "PGMGst.h"
922#undef BTH_PGMPOOLKIND_PT_FOR_BIG
923#undef BTH_PGMPOOLKIND_PT_FOR_PT
924#undef BTH_PGMPOOLKIND_ROOT
925#undef PGM_BTH_NAME
926#undef PGM_BTH_NAME_RC_STR
927#undef PGM_BTH_NAME_R0_STR
928#undef PGM_GST_TYPE
929#undef PGM_GST_NAME
930#undef PGM_GST_NAME_RC_STR
931#undef PGM_GST_NAME_R0_STR
932
933#undef PGM_SHW_TYPE
934#undef PGM_SHW_NAME
935#undef PGM_SHW_NAME_RC_STR
936#undef PGM_SHW_NAME_R0_STR
937
938
939/*
940 * Shadow - AMD64 mode
941 */
942#define PGM_SHW_TYPE PGM_TYPE_AMD64
943#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
944#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
945#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
946#include "PGMShw.h"
947
948#ifdef VBOX_WITH_64_BITS_GUESTS
949/* Guest - AMD64 mode */
950# define PGM_GST_TYPE PGM_TYPE_AMD64
951# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
952# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
953# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
954# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
955# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
956# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
957# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
958# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
959# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
960# include "PGMBth.h"
961# include "PGMGstDefs.h"
962# include "PGMGst.h"
963# undef BTH_PGMPOOLKIND_PT_FOR_BIG
964# undef BTH_PGMPOOLKIND_PT_FOR_PT
965# undef BTH_PGMPOOLKIND_ROOT
966# undef PGM_BTH_NAME
967# undef PGM_BTH_NAME_RC_STR
968# undef PGM_BTH_NAME_R0_STR
969# undef PGM_GST_TYPE
970# undef PGM_GST_NAME
971# undef PGM_GST_NAME_RC_STR
972# undef PGM_GST_NAME_R0_STR
973#endif /* VBOX_WITH_64_BITS_GUESTS */
974
975#undef PGM_SHW_TYPE
976#undef PGM_SHW_NAME
977#undef PGM_SHW_NAME_RC_STR
978#undef PGM_SHW_NAME_R0_STR
979
980
981/*
982 * Shadow - 32-bit nested paging mode
983 */
984#define PGM_SHW_TYPE PGM_TYPE_NESTED_32BIT
985#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED_32BIT(name)
986#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_32BIT_STR(name)
987#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_32BIT_STR(name)
988#include "PGMShw.h"
989
990/* Guest - real mode */
991#define PGM_GST_TYPE PGM_TYPE_REAL
992#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
993#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
994#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
995#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_REAL(name)
996#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_REAL_STR(name)
997#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_REAL_STR(name)
998#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
999#include "PGMGstDefs.h"
1000#include "PGMBth.h"
1001#undef BTH_PGMPOOLKIND_PT_FOR_PT
1002#undef PGM_BTH_NAME
1003#undef PGM_BTH_NAME_RC_STR
1004#undef PGM_BTH_NAME_R0_STR
1005#undef PGM_GST_TYPE
1006#undef PGM_GST_NAME
1007#undef PGM_GST_NAME_RC_STR
1008#undef PGM_GST_NAME_R0_STR
1009
1010/* Guest - protected mode */
1011#define PGM_GST_TYPE PGM_TYPE_PROT
1012#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1013#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1014#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1015#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_PROT(name)
1016#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_PROT_STR(name)
1017#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_PROT_STR(name)
1018#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1019#include "PGMGstDefs.h"
1020#include "PGMBth.h"
1021#undef BTH_PGMPOOLKIND_PT_FOR_PT
1022#undef PGM_BTH_NAME
1023#undef PGM_BTH_NAME_RC_STR
1024#undef PGM_BTH_NAME_R0_STR
1025#undef PGM_GST_TYPE
1026#undef PGM_GST_NAME
1027#undef PGM_GST_NAME_RC_STR
1028#undef PGM_GST_NAME_R0_STR
1029
1030/* Guest - 32-bit mode */
1031#define PGM_GST_TYPE PGM_TYPE_32BIT
1032#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1033#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1034#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1035#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_32BIT(name)
1036#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_32BIT_STR(name)
1037#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_32BIT_STR(name)
1038#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1039#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1040#include "PGMGstDefs.h"
1041#include "PGMBth.h"
1042#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1043#undef BTH_PGMPOOLKIND_PT_FOR_PT
1044#undef PGM_BTH_NAME
1045#undef PGM_BTH_NAME_RC_STR
1046#undef PGM_BTH_NAME_R0_STR
1047#undef PGM_GST_TYPE
1048#undef PGM_GST_NAME
1049#undef PGM_GST_NAME_RC_STR
1050#undef PGM_GST_NAME_R0_STR
1051
1052/* Guest - PAE mode */
1053#define PGM_GST_TYPE PGM_TYPE_PAE
1054#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1055#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1056#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1057#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_PAE(name)
1058#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_PAE_STR(name)
1059#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_PAE_STR(name)
1060#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1061#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1062#include "PGMGstDefs.h"
1063#include "PGMBth.h"
1064#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1065#undef BTH_PGMPOOLKIND_PT_FOR_PT
1066#undef PGM_BTH_NAME
1067#undef PGM_BTH_NAME_RC_STR
1068#undef PGM_BTH_NAME_R0_STR
1069#undef PGM_GST_TYPE
1070#undef PGM_GST_NAME
1071#undef PGM_GST_NAME_RC_STR
1072#undef PGM_GST_NAME_R0_STR
1073
1074#ifdef VBOX_WITH_64_BITS_GUESTS
1075/* Guest - AMD64 mode */
1076# define PGM_GST_TYPE PGM_TYPE_AMD64
1077# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1078# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1079# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1080# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT_AMD64(name)
1081# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_AMD64_STR(name)
1082# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_AMD64_STR(name)
1083# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1084# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1085# include "PGMGstDefs.h"
1086# include "PGMBth.h"
1087# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1088# undef BTH_PGMPOOLKIND_PT_FOR_PT
1089# undef PGM_BTH_NAME
1090# undef PGM_BTH_NAME_RC_STR
1091# undef PGM_BTH_NAME_R0_STR
1092# undef PGM_GST_TYPE
1093# undef PGM_GST_NAME
1094# undef PGM_GST_NAME_RC_STR
1095# undef PGM_GST_NAME_R0_STR
1096#endif /* VBOX_WITH_64_BITS_GUESTS */
1097
1098#undef PGM_SHW_TYPE
1099#undef PGM_SHW_NAME
1100#undef PGM_SHW_NAME_RC_STR
1101#undef PGM_SHW_NAME_R0_STR
1102
1103
1104/*
1105 * Shadow - PAE nested paging mode
1106 */
1107#define PGM_SHW_TYPE PGM_TYPE_NESTED_PAE
1108#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED_PAE(name)
1109#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_PAE_STR(name)
1110#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_PAE_STR(name)
1111#include "PGMShw.h"
1112
1113/* Guest - real mode */
1114#define PGM_GST_TYPE PGM_TYPE_REAL
1115#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1116#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1117#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1118#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_REAL(name)
1119#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_REAL_STR(name)
1120#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_REAL_STR(name)
1121#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1122#include "PGMGstDefs.h"
1123#include "PGMBth.h"
1124#undef BTH_PGMPOOLKIND_PT_FOR_PT
1125#undef PGM_BTH_NAME
1126#undef PGM_BTH_NAME_RC_STR
1127#undef PGM_BTH_NAME_R0_STR
1128#undef PGM_GST_TYPE
1129#undef PGM_GST_NAME
1130#undef PGM_GST_NAME_RC_STR
1131#undef PGM_GST_NAME_R0_STR
1132
1133/* Guest - protected mode */
1134#define PGM_GST_TYPE PGM_TYPE_PROT
1135#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1136#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1137#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1138#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_PROT(name)
1139#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_PROT_STR(name)
1140#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_PROT_STR(name)
1141#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1142#include "PGMGstDefs.h"
1143#include "PGMBth.h"
1144#undef BTH_PGMPOOLKIND_PT_FOR_PT
1145#undef PGM_BTH_NAME
1146#undef PGM_BTH_NAME_RC_STR
1147#undef PGM_BTH_NAME_R0_STR
1148#undef PGM_GST_TYPE
1149#undef PGM_GST_NAME
1150#undef PGM_GST_NAME_RC_STR
1151#undef PGM_GST_NAME_R0_STR
1152
1153/* Guest - 32-bit mode */
1154#define PGM_GST_TYPE PGM_TYPE_32BIT
1155#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1156#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1157#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1158#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_32BIT(name)
1159#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_32BIT_STR(name)
1160#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_32BIT_STR(name)
1161#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1162#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1163#include "PGMGstDefs.h"
1164#include "PGMBth.h"
1165#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1166#undef BTH_PGMPOOLKIND_PT_FOR_PT
1167#undef PGM_BTH_NAME
1168#undef PGM_BTH_NAME_RC_STR
1169#undef PGM_BTH_NAME_R0_STR
1170#undef PGM_GST_TYPE
1171#undef PGM_GST_NAME
1172#undef PGM_GST_NAME_RC_STR
1173#undef PGM_GST_NAME_R0_STR
1174
1175/* Guest - PAE mode */
1176#define PGM_GST_TYPE PGM_TYPE_PAE
1177#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1178#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1179#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1180#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_PAE(name)
1181#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_PAE_STR(name)
1182#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_PAE_STR(name)
1183#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1184#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1185#include "PGMGstDefs.h"
1186#include "PGMBth.h"
1187#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1188#undef BTH_PGMPOOLKIND_PT_FOR_PT
1189#undef PGM_BTH_NAME
1190#undef PGM_BTH_NAME_RC_STR
1191#undef PGM_BTH_NAME_R0_STR
1192#undef PGM_GST_TYPE
1193#undef PGM_GST_NAME
1194#undef PGM_GST_NAME_RC_STR
1195#undef PGM_GST_NAME_R0_STR
1196
1197#ifdef VBOX_WITH_64_BITS_GUESTS
1198/* Guest - AMD64 mode */
1199# define PGM_GST_TYPE PGM_TYPE_AMD64
1200# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1201# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1202# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1203# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE_AMD64(name)
1204# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_AMD64_STR(name)
1205# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_AMD64_STR(name)
1206# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1207# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1208# include "PGMGstDefs.h"
1209# include "PGMBth.h"
1210# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1211# undef BTH_PGMPOOLKIND_PT_FOR_PT
1212# undef PGM_BTH_NAME
1213# undef PGM_BTH_NAME_RC_STR
1214# undef PGM_BTH_NAME_R0_STR
1215# undef PGM_GST_TYPE
1216# undef PGM_GST_NAME
1217# undef PGM_GST_NAME_RC_STR
1218# undef PGM_GST_NAME_R0_STR
1219#endif /* VBOX_WITH_64_BITS_GUESTS */
1220
1221#undef PGM_SHW_TYPE
1222#undef PGM_SHW_NAME
1223#undef PGM_SHW_NAME_RC_STR
1224#undef PGM_SHW_NAME_R0_STR
1225
1226
1227/*
1228 * Shadow - AMD64 nested paging mode
1229 */
1230#define PGM_SHW_TYPE PGM_TYPE_NESTED_AMD64
1231#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED_AMD64(name)
1232#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_AMD64_STR(name)
1233#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_AMD64_STR(name)
1234#include "PGMShw.h"
1235
1236/* Guest - real mode */
1237#define PGM_GST_TYPE PGM_TYPE_REAL
1238#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1239#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1240#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1241#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_REAL(name)
1242#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_REAL_STR(name)
1243#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_REAL_STR(name)
1244#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1245#include "PGMGstDefs.h"
1246#include "PGMBth.h"
1247#undef BTH_PGMPOOLKIND_PT_FOR_PT
1248#undef PGM_BTH_NAME
1249#undef PGM_BTH_NAME_RC_STR
1250#undef PGM_BTH_NAME_R0_STR
1251#undef PGM_GST_TYPE
1252#undef PGM_GST_NAME
1253#undef PGM_GST_NAME_RC_STR
1254#undef PGM_GST_NAME_R0_STR
1255
1256/* Guest - protected mode */
1257#define PGM_GST_TYPE PGM_TYPE_PROT
1258#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1259#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1260#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1261#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_PROT(name)
1262#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_PROT_STR(name)
1263#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_PROT_STR(name)
1264#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1265#include "PGMGstDefs.h"
1266#include "PGMBth.h"
1267#undef BTH_PGMPOOLKIND_PT_FOR_PT
1268#undef PGM_BTH_NAME
1269#undef PGM_BTH_NAME_RC_STR
1270#undef PGM_BTH_NAME_R0_STR
1271#undef PGM_GST_TYPE
1272#undef PGM_GST_NAME
1273#undef PGM_GST_NAME_RC_STR
1274#undef PGM_GST_NAME_R0_STR
1275
1276/* Guest - 32-bit mode */
1277#define PGM_GST_TYPE PGM_TYPE_32BIT
1278#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1279#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1280#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1281#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_32BIT(name)
1282#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_32BIT_STR(name)
1283#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_32BIT_STR(name)
1284#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1285#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1286#include "PGMGstDefs.h"
1287#include "PGMBth.h"
1288#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1289#undef BTH_PGMPOOLKIND_PT_FOR_PT
1290#undef PGM_BTH_NAME
1291#undef PGM_BTH_NAME_RC_STR
1292#undef PGM_BTH_NAME_R0_STR
1293#undef PGM_GST_TYPE
1294#undef PGM_GST_NAME
1295#undef PGM_GST_NAME_RC_STR
1296#undef PGM_GST_NAME_R0_STR
1297
1298/* Guest - PAE mode */
1299#define PGM_GST_TYPE PGM_TYPE_PAE
1300#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1301#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1302#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1303#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_PAE(name)
1304#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_PAE_STR(name)
1305#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_PAE_STR(name)
1306#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1307#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1308#include "PGMGstDefs.h"
1309#include "PGMBth.h"
1310#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1311#undef BTH_PGMPOOLKIND_PT_FOR_PT
1312#undef PGM_BTH_NAME
1313#undef PGM_BTH_NAME_RC_STR
1314#undef PGM_BTH_NAME_R0_STR
1315#undef PGM_GST_TYPE
1316#undef PGM_GST_NAME
1317#undef PGM_GST_NAME_RC_STR
1318#undef PGM_GST_NAME_R0_STR
1319
1320#ifdef VBOX_WITH_64_BITS_GUESTS
1321/* Guest - AMD64 mode */
1322# define PGM_GST_TYPE PGM_TYPE_AMD64
1323# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1324# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1325# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1326# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64_AMD64(name)
1327# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_AMD64_STR(name)
1328# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_AMD64_STR(name)
1329# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1330# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1331# include "PGMGstDefs.h"
1332# include "PGMBth.h"
1333# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1334# undef BTH_PGMPOOLKIND_PT_FOR_PT
1335# undef PGM_BTH_NAME
1336# undef PGM_BTH_NAME_RC_STR
1337# undef PGM_BTH_NAME_R0_STR
1338# undef PGM_GST_TYPE
1339# undef PGM_GST_NAME
1340# undef PGM_GST_NAME_RC_STR
1341# undef PGM_GST_NAME_R0_STR
1342#endif /* VBOX_WITH_64_BITS_GUESTS */
1343
1344#undef PGM_SHW_TYPE
1345#undef PGM_SHW_NAME
1346#undef PGM_SHW_NAME_RC_STR
1347#undef PGM_SHW_NAME_R0_STR
1348
1349
1350/*
1351 * Shadow - EPT
1352 */
1353#define PGM_SHW_TYPE PGM_TYPE_EPT
1354#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1355#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1356#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1357#include "PGMShw.h"
1358
1359/* Guest - real mode */
1360#define PGM_GST_TYPE PGM_TYPE_REAL
1361#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1362#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1363#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1364#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1365#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1366#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1367#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1368#include "PGMGstDefs.h"
1369#include "PGMBth.h"
1370#undef BTH_PGMPOOLKIND_PT_FOR_PT
1371#undef PGM_BTH_NAME
1372#undef PGM_BTH_NAME_RC_STR
1373#undef PGM_BTH_NAME_R0_STR
1374#undef PGM_GST_TYPE
1375#undef PGM_GST_NAME
1376#undef PGM_GST_NAME_RC_STR
1377#undef PGM_GST_NAME_R0_STR
1378
1379/* Guest - protected mode */
1380#define PGM_GST_TYPE PGM_TYPE_PROT
1381#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1382#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1383#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1384#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1385#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1386#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1387#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1388#include "PGMGstDefs.h"
1389#include "PGMBth.h"
1390#undef BTH_PGMPOOLKIND_PT_FOR_PT
1391#undef PGM_BTH_NAME
1392#undef PGM_BTH_NAME_RC_STR
1393#undef PGM_BTH_NAME_R0_STR
1394#undef PGM_GST_TYPE
1395#undef PGM_GST_NAME
1396#undef PGM_GST_NAME_RC_STR
1397#undef PGM_GST_NAME_R0_STR
1398
1399/* Guest - 32-bit mode */
1400#define PGM_GST_TYPE PGM_TYPE_32BIT
1401#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1402#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1403#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1404#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1405#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1406#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1407#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1408#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1409#include "PGMGstDefs.h"
1410#include "PGMBth.h"
1411#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1412#undef BTH_PGMPOOLKIND_PT_FOR_PT
1413#undef PGM_BTH_NAME
1414#undef PGM_BTH_NAME_RC_STR
1415#undef PGM_BTH_NAME_R0_STR
1416#undef PGM_GST_TYPE
1417#undef PGM_GST_NAME
1418#undef PGM_GST_NAME_RC_STR
1419#undef PGM_GST_NAME_R0_STR
1420
1421/* Guest - PAE mode */
1422#define PGM_GST_TYPE PGM_TYPE_PAE
1423#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1424#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1425#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1426#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1427#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1428#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1429#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1430#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1431#include "PGMGstDefs.h"
1432#include "PGMBth.h"
1433#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1434#undef BTH_PGMPOOLKIND_PT_FOR_PT
1435#undef PGM_BTH_NAME
1436#undef PGM_BTH_NAME_RC_STR
1437#undef PGM_BTH_NAME_R0_STR
1438#undef PGM_GST_TYPE
1439#undef PGM_GST_NAME
1440#undef PGM_GST_NAME_RC_STR
1441#undef PGM_GST_NAME_R0_STR
1442
1443#ifdef VBOX_WITH_64_BITS_GUESTS
1444/* Guest - AMD64 mode */
1445# define PGM_GST_TYPE PGM_TYPE_AMD64
1446# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1447# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1448# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1449# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1450# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1451# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1452# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1453# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1454# include "PGMGstDefs.h"
1455# include "PGMBth.h"
1456# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1457# undef BTH_PGMPOOLKIND_PT_FOR_PT
1458# undef PGM_BTH_NAME
1459# undef PGM_BTH_NAME_RC_STR
1460# undef PGM_BTH_NAME_R0_STR
1461# undef PGM_GST_TYPE
1462# undef PGM_GST_NAME
1463# undef PGM_GST_NAME_RC_STR
1464# undef PGM_GST_NAME_R0_STR
1465#endif /* VBOX_WITH_64_BITS_GUESTS */
1466
1467#undef PGM_SHW_TYPE
1468#undef PGM_SHW_NAME
1469#undef PGM_SHW_NAME_RC_STR
1470#undef PGM_SHW_NAME_R0_STR
1471
1472
1473
1474/**
1475 * Initiates the paging of VM.
1476 *
1477 * @returns VBox status code.
1478 * @param pVM The cross context VM structure.
1479 */
1480VMMR3DECL(int) PGMR3Init(PVM pVM)
1481{
1482 LogFlow(("PGMR3Init:\n"));
1483 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1484 int rc;
1485
1486 /*
1487 * Assert alignment and sizes.
1488 */
1489 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1490 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1491 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1492
1493 /*
1494 * Init the structure.
1495 */
1496 pVM->pgm.s.offVM = RT_UOFFSETOF(VM, pgm.s);
1497 pVM->pgm.s.offVCpuPGM = RT_UOFFSETOF(VMCPU, pgm.s);
1498 /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
1499
1500 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1501 {
1502 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1503 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1504 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1505 }
1506
1507 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1508 {
1509 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1510 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1511 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1512 }
1513
1514 /* Init the per-CPU part. */
1515 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1516 {
1517 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1518 PPGMCPU pPGM = &pVCpu->pgm.s;
1519
1520 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1521 pPGM->offVCpu = RT_UOFFSETOF(VMCPU, pgm.s);
1522 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1523
1524 pPGM->enmShadowMode = PGMMODE_INVALID;
1525 pPGM->enmGuestMode = PGMMODE_INVALID;
1526 pPGM->idxGuestModeData = UINT8_MAX;
1527 pPGM->idxShadowModeData = UINT8_MAX;
1528 pPGM->idxBothModeData = UINT8_MAX;
1529
1530 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1531
1532 pPGM->pGst32BitPdR3 = NULL;
1533 pPGM->pGstPaePdptR3 = NULL;
1534 pPGM->pGstAmd64Pml4R3 = NULL;
1535#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1536 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1537 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1538 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1539#endif
1540 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1541 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1542 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1543 {
1544 pPGM->apGstPaePDsR3[i] = NULL;
1545#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1546 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1547#endif
1548 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1549 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1550 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1551 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1552 }
1553
1554 pPGM->fA20Enabled = true;
1555 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1556 }
1557
1558 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1559 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1560 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1561
1562 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1563#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1564 true
1565#else
1566 false
1567#endif
1568 );
1569 AssertLogRelRCReturn(rc, rc);
1570
1571#if HC_ARCH_BITS == 32
1572# ifdef RT_OS_DARWIN
1573 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1574# else
1575 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1576# endif
1577#else
1578 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1579#endif
1580 AssertLogRelRCReturn(rc, rc);
1581 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1582 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1583
1584 /*
1585 * Get the configured RAM size - to estimate saved state size.
1586 */
1587 uint64_t cbRam;
1588 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1589 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1590 cbRam = 0;
1591 else if (RT_SUCCESS(rc))
1592 {
1593 if (cbRam < PAGE_SIZE)
1594 cbRam = 0;
1595 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1596 }
1597 else
1598 {
1599 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1600 return rc;
1601 }
1602
1603 /*
1604 * Check for PCI pass-through and other configurables.
1605 */
1606 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1607 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1608 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1609
1610 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
1611 AssertLogRelRCReturn(rc, rc);
1612
1613 /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
1614 * Whether to clear RAM pages on (hard) reset. */
1615 rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
1616 AssertLogRelRCReturn(rc, rc);
1617
1618#ifdef VBOX_WITH_STATISTICS
1619 /*
1620 * Allocate memory for the statistics before someone tries to use them.
1621 */
1622 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1623 void *pv;
1624 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1625 AssertRCReturn(rc, rc);
1626
1627 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1628 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1629 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1630 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1631
1632 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1633 {
1634 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1635 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1636 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1637
1638 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1639 }
1640#endif /* VBOX_WITH_STATISTICS */
1641
1642 /*
1643 * Register callbacks, string formatters and the saved state data unit.
1644 */
1645#ifdef VBOX_STRICT
1646 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1647#endif
1648 PGMRegisterStringFormatTypes();
1649
1650 rc = pgmR3InitSavedState(pVM, cbRam);
1651 if (RT_FAILURE(rc))
1652 return rc;
1653
1654 /*
1655 * Initialize the PGM critical section and flush the phys TLBs
1656 */
1657 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1658 AssertRCReturn(rc, rc);
1659
1660 PGMR3PhysChunkInvalidateTLB(pVM);
1661 pgmPhysInvalidatePageMapTLB(pVM);
1662
1663 /*
1664 * For the time being we sport a full set of handy pages in addition to the base
1665 * memory to simplify things.
1666 */
1667 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1668 AssertRCReturn(rc, rc);
1669
1670 /*
1671 * Trees
1672 */
1673 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1674 if (RT_SUCCESS(rc))
1675 {
1676 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1677 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1678 }
1679
1680 /*
1681 * Allocate the zero page.
1682 */
1683 if (RT_SUCCESS(rc))
1684 {
1685 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1686 if (RT_SUCCESS(rc))
1687 {
1688 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1689 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1690 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1691 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1692 }
1693 }
1694
1695 /*
1696 * Allocate the invalid MMIO page.
1697 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1698 */
1699 if (RT_SUCCESS(rc))
1700 {
1701 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1702 if (RT_SUCCESS(rc))
1703 {
1704 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1705 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1706 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1707 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1708 }
1709 }
1710
1711 /*
1712 * Register the physical access handler protecting ROMs.
1713 */
1714 if (RT_SUCCESS(rc))
1715 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
1716 pgmPhysRomWriteHandler,
1717 NULL, NULL, "pgmPhysRomWritePfHandler",
1718 NULL, NULL, "pgmPhysRomWritePfHandler",
1719 "ROM write protection",
1720 &pVM->pgm.s.hRomPhysHandlerType);
1721
1722 /*
1723 * Init the paging.
1724 */
1725 if (RT_SUCCESS(rc))
1726 rc = pgmR3InitPaging(pVM);
1727
1728 /*
1729 * Init the page pool.
1730 */
1731 if (RT_SUCCESS(rc))
1732 rc = pgmR3PoolInit(pVM);
1733
1734 if (RT_SUCCESS(rc))
1735 {
1736 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1737 {
1738 PVMCPU pVCpu = &pVM->aCpus[i];
1739 rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1740 if (RT_FAILURE(rc))
1741 break;
1742 }
1743 }
1744
1745 if (RT_SUCCESS(rc))
1746 {
1747 /*
1748 * Info & statistics
1749 */
1750 DBGFR3InfoRegisterInternalEx(pVM, "mode",
1751 "Shows the current paging mode. "
1752 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1753 pgmR3InfoMode,
1754 DBGFINFO_FLAGS_ALL_EMTS);
1755 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1756 "Dumps all the entries in the top level paging table. No arguments.",
1757 pgmR3InfoCr3);
1758 DBGFR3InfoRegisterInternal(pVM, "phys",
1759 "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
1760 pgmR3PhysInfo);
1761 DBGFR3InfoRegisterInternal(pVM, "handlers",
1762 "Dumps physical, virtual and hyper virtual handlers. "
1763 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1764 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1765 pgmR3InfoHandlers);
1766 DBGFR3InfoRegisterInternal(pVM, "mappings",
1767 "Dumps guest mappings.",
1768 pgmR3MapInfo);
1769
1770 pgmR3InitStats(pVM);
1771
1772#ifdef VBOX_WITH_DEBUGGER
1773 /*
1774 * Debugger commands.
1775 */
1776 static bool s_fRegisteredCmds = false;
1777 if (!s_fRegisteredCmds)
1778 {
1779 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1780 if (RT_SUCCESS(rc2))
1781 s_fRegisteredCmds = true;
1782 }
1783#endif
1784 return VINF_SUCCESS;
1785 }
1786
1787 /* Almost no cleanup necessary, MM frees all memory. */
1788 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1789
1790 return rc;
1791}
1792
1793
1794/**
1795 * Init paging.
1796 *
1797 * Since we need to check what mode the host is operating in before we can choose
1798 * the right paging functions for the host we have to delay this until R0 has
1799 * been initialized.
1800 *
1801 * @returns VBox status code.
1802 * @param pVM The cross context VM structure.
1803 */
1804static int pgmR3InitPaging(PVM pVM)
1805{
1806 /*
1807 * Force a recalculation of modes and switcher so everyone gets notified.
1808 */
1809 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1810 {
1811 PVMCPU pVCpu = &pVM->aCpus[i];
1812
1813 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1814 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1815 pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
1816 pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
1817 pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
1818 }
1819
1820 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1821
1822 /*
1823 * Allocate static mapping space for whatever the cr3 register
1824 * points to and in the case of PAE mode to the 4 PDs.
1825 */
1826 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1827 if (RT_FAILURE(rc))
1828 {
1829 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1830 return rc;
1831 }
1832 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1833
1834 /*
1835 * Allocate pages for the three possible intermediate contexts
1836 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1837 * for the sake of simplicity. The AMD64 uses the PAE for the
1838 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1839 *
1840 * We assume that two page tables will be enought for the core code
1841 * mappings (HC virtual and identity).
1842 */
1843 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1844 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1845 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1846 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1847 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1848 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1849 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1850 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1851 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1852 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1853 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1854 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1855
1856 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1857 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1858 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1859 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1860 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1861 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1862
1863 /*
1864 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1865 */
1866 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1867 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1868 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1869
1870 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1871 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1872
1873 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1874 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1875 {
1876 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1877 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1878 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1879 }
1880
1881 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1882 {
1883 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1884 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1885 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1886 }
1887
1888 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1889 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1890 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1891 | HCPhysInterPaePDPT64;
1892
1893 /*
1894 * Initialize paging workers and mode from current host mode
1895 * and the guest running in real mode.
1896 */
1897 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1898 switch (pVM->pgm.s.enmHostMode)
1899 {
1900 case SUPPAGINGMODE_32_BIT:
1901 case SUPPAGINGMODE_32_BIT_GLOBAL:
1902 case SUPPAGINGMODE_PAE:
1903 case SUPPAGINGMODE_PAE_GLOBAL:
1904 case SUPPAGINGMODE_PAE_NX:
1905 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1906 break;
1907
1908 case SUPPAGINGMODE_AMD64:
1909 case SUPPAGINGMODE_AMD64_GLOBAL:
1910 case SUPPAGINGMODE_AMD64_NX:
1911 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1912 if (ARCH_BITS != 64)
1913 {
1914 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1915 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1916 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1917 }
1918 break;
1919 default:
1920 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1921 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1922 }
1923
1924 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1925#if HC_ARCH_BITS == 64
1926 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1927 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1928 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1929 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1930 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1931 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1932 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1933#endif
1934
1935 /*
1936 * Log the host paging mode. It may come in handy.
1937 */
1938 const char *pszHostMode;
1939 switch (pVM->pgm.s.enmHostMode)
1940 {
1941 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1942 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1943 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1944 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1945 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1946 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1947 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1948 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1949 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1950 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1951 default: pszHostMode = "???"; break;
1952 }
1953 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1954
1955 return VINF_SUCCESS;
1956}
1957
1958
1959/**
1960 * Init statistics
1961 * @returns VBox status code.
1962 */
1963static int pgmR3InitStats(PVM pVM)
1964{
1965 PPGM pPGM = &pVM->pgm.s;
1966 int rc;
1967
1968 /*
1969 * Release statistics.
1970 */
1971 /* Common - misc variables */
1972 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1973 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1974 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1975 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1976 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1977 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1978 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1979 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1980 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1981 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1982 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1983 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1984 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1985 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1986 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1987 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1988 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1989 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1990 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1991
1992 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1993 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1994 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1995
1996 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1997
1998 /* Live save */
1999 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
2000 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
2001 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
2002 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
2003 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
2004 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
2005 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
2006 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
2007 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
2008 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
2009 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
2010 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
2011 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
2012 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
2013 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
2014 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
2015 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
2016 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
2017
2018#ifdef VBOX_WITH_STATISTICS
2019
2020# define PGM_REG_COUNTER(a, b, c) \
2021 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
2022 AssertRC(rc);
2023
2024# define PGM_REG_COUNTER_BYTES(a, b, c) \
2025 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
2026 AssertRC(rc);
2027
2028# define PGM_REG_PROFILE(a, b, c) \
2029 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
2030 AssertRC(rc);
2031
2032 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
2033
2034 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
2035 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
2036 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
2037 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
2038 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
2039
2040 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
2041 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
2042 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
2043 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
2044 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
2045 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
2046 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
2047 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
2048 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
2049 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
2050
2051 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
2052 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
2053 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
2054 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
2055 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
2056 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
2057
2058 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
2059 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
2060 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
2061 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
2062 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
2063 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
2064 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
2065 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
2066
2067 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
2068 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
2069 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
2070 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
2071
2072 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
2073 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
2074 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
2075 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
2076
2077 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
2078 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
2079 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
2080 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
2081 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
2082 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
2083 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
2084 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
2085
2086 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
2087 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
2088/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
2089 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
2090 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
2091/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
2092
2093 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
2094 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
2095 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
2096 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
2097 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
2098 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
2099 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
2100 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
2101
2102 /* GC only: */
2103 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
2104 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
2105
2106 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
2107 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
2108 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
2109 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
2110 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
2111 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
2112 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
2113 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
2114
2115 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
2116 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
2117 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
2118 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
2119 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
2120 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
2121 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
2122
2123# undef PGM_REG_COUNTER
2124# undef PGM_REG_PROFILE
2125#endif
2126
2127 /*
2128 * Note! The layout below matches the member layout exactly!
2129 */
2130
2131 /*
2132 * Common - stats
2133 */
2134 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2135 {
2136 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
2137
2138#define PGM_REG_COUNTER(a, b, c) \
2139 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
2140 AssertRC(rc);
2141#define PGM_REG_PROFILE(a, b, c) \
2142 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
2143 AssertRC(rc);
2144
2145 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
2146 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
2147
2148#ifdef VBOX_WITH_STATISTICS
2149 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
2150
2151# if 0 /* rarely useful; leave for debugging. */
2152 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
2153 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
2154 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
2155 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
2156 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
2157 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
2158# endif
2159 /* R0 only: */
2160 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
2161 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
2162
2163 /* RZ only: */
2164 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
2165 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
2166 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
2167 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
2168 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
2169 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
2170 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
2171 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
2172 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
2173 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
2174 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
2175 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
2176 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
2177 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
2178 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
2179 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
2180 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
2181 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
2182 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
2183 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
2184 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
2185 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
2186 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
2187 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
2188 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
2189 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
2190 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
2191 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
2192 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
2193 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
2194 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
2195 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
2196 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
2197 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
2198 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
2199 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
2200 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
2201 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
2202 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
2203 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
2204 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
2205 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
2206 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
2207 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
2208 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
2209 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
2210#if 0 /* rarely useful; leave for debugging. */
2211 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
2212 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
2213 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
2214#endif
2215 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
2216 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
2217 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
2218 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
2219 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
2220
2221 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
2222 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
2223 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
2224 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
2225 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
2226 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
2227 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
2228 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
2229 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
2230 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
2231 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
2232 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
2233 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
2234 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
2235 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
2236 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
2237 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
2238 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
2239 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
2240 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
2241 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
2242 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
2243 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
2244 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
2245 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
2246 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
2247 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
2248 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
2249 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
2250 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
2251 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
2252 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
2253 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
2254 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
2255 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
2256 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
2257
2258 /* HC only: */
2259
2260 /* RZ & R3: */
2261 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2262 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2263 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
2264 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2265 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2266 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2267 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2268 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2269 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2270 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2271 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
2272 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2273 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
2274 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
2275 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2276 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2277 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2278 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2279 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2280 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2281 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2282 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2283 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
2284 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2285 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2286 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2287 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
2288 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2289 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2290 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2291 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2292 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2293 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2294 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2295 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
2296 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2297 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2298 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2299 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2300 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2301 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2302 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2303 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2304 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2305 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2306 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2307 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2308 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2309
2310 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2311 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2312 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2313 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2314 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2315 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2316 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2317 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2318 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2319 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2320 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2321 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2322 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2323 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2324 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2325 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2326 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2327 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2328 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2329 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2330 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2331 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2332 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2333 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2334 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2335 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2336 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2337 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2338 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2339 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2340 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2341 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2342 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2343 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
2344 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2345 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2346 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2347 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2348 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2349 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2350 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2351 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2352 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2353 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2354 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2355#endif /* VBOX_WITH_STATISTICS */
2356
2357#undef PGM_REG_PROFILE
2358#undef PGM_REG_COUNTER
2359
2360 }
2361
2362 return VINF_SUCCESS;
2363}
2364
2365
2366/**
2367 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2368 *
2369 * The dynamic mapping area will also be allocated and initialized at this
2370 * time. We could allocate it during PGMR3Init of course, but the mapping
2371 * wouldn't be allocated at that time preventing us from setting up the
2372 * page table entries with the dummy page.
2373 *
2374 * @returns VBox status code.
2375 * @param pVM The cross context VM structure.
2376 */
2377VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2378{
2379 RTGCPTR GCPtr;
2380 int rc;
2381
2382 /*
2383 * Reserve space for the dynamic mappings.
2384 */
2385 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2386 if (RT_SUCCESS(rc))
2387 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2388
2389 if ( RT_SUCCESS(rc)
2390 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2391 {
2392 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2393 if (RT_SUCCESS(rc))
2394 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2395 }
2396 if (RT_SUCCESS(rc))
2397 {
2398 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2399 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2400 }
2401 return rc;
2402}
2403
2404
2405/**
2406 * Ring-3 init finalizing.
2407 *
2408 * @returns VBox status code.
2409 * @param pVM The cross context VM structure.
2410 */
2411VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2412{
2413 int rc = VERR_IPE_UNINITIALIZED_STATUS; /* (MSC incorrectly thinks it can be usused uninitialized) */
2414
2415 /*
2416 * Reserve space for the dynamic mappings.
2417 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2418 */
2419 /* get the pointer to the page table entries. */
2420 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2421 AssertRelease(pMapping);
2422 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2423 const unsigned iPT = off >> X86_PD_SHIFT;
2424 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2425 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2426 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2427
2428 /* init cache area */
2429 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2430 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2431 {
2432 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2433 AssertRCReturn(rc, rc);
2434 }
2435
2436 /*
2437 * Determine the max physical address width (MAXPHYADDR) and apply it to
2438 * all the mask members and stuff.
2439 */
2440 uint32_t cMaxPhysAddrWidth;
2441 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2442 if ( uMaxExtLeaf >= 0x80000008
2443 && uMaxExtLeaf <= 0x80000fff)
2444 {
2445 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2446 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2447 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2448 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2449 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2450 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2451 }
2452 else
2453 {
2454 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2455 cMaxPhysAddrWidth = 48;
2456 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2457 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2458 }
2459
2460 /** @todo query from CPUM. */
2461 pVM->pgm.s.GCPhysInvAddrMask = 0;
2462 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2463 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2464
2465 /*
2466 * Initialize the invalid paging entry masks, assuming NX is disabled.
2467 */
2468 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2469 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2470 {
2471 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2472
2473 /** @todo The manuals are not entirely clear whether the physical
2474 * address width is relevant. See table 5-9 in the intel
2475 * manual vs the PDE4M descriptions. Write testcase (NP). */
2476 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2477 | X86_PDE4M_MBZ_MASK;
2478
2479 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2480 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2481 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2482 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2483
2484 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2485 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2486 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2487 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2488 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2489 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2490
2491 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2492 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2493 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2494 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2495 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2496 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2497 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2498 }
2499
2500 /*
2501 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2502 * Intel only goes up to 36 bits, so we stick to 36 as well.
2503 * Update: More recent intel manuals specifies 40 bits just like AMD.
2504 */
2505 uint32_t u32Dummy, u32Features;
2506 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2507 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2508 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2509 else
2510 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2511
2512 /*
2513 * Allocate memory if we're supposed to do that.
2514 */
2515 if (pVM->pgm.s.fRamPreAlloc)
2516 rc = pgmR3PhysRamPreAllocate(pVM);
2517
2518 //pgmLogState(pVM);
2519 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2520 return rc;
2521}
2522
2523
2524/**
2525 * Init phase completed callback.
2526 *
2527 * @returns VBox status code.
2528 * @param pVM The cross context VM structure.
2529 * @param enmWhat What has been completed.
2530 * @thread EMT(0)
2531 */
2532VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2533{
2534 switch (enmWhat)
2535 {
2536 case VMINITCOMPLETED_HM:
2537#ifdef VBOX_WITH_PCI_PASSTHROUGH
2538 if (pVM->pgm.s.fPciPassthrough)
2539 {
2540 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2541 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2542 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2543
2544 /*
2545 * Report assignments to the IOMMU (hope that's good enough for now).
2546 */
2547 if (pVM->pgm.s.fPciPassthrough)
2548 {
2549 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2550 AssertRCReturn(rc, rc);
2551 }
2552 }
2553#else
2554 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2555#endif
2556 break;
2557
2558 default:
2559 /* shut up gcc */
2560 break;
2561 }
2562
2563 return VINF_SUCCESS;
2564}
2565
2566
2567/**
2568 * Applies relocations to data and code managed by this component.
2569 *
2570 * This function will be called at init and whenever the VMM need to relocate it
2571 * self inside the GC.
2572 *
2573 * @param pVM The cross context VM structure.
2574 * @param offDelta Relocation delta relative to old location.
2575 */
2576VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2577{
2578 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2579
2580 /*
2581 * Paging stuff.
2582 */
2583 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2584
2585 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2586 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2587 {
2588 PVMCPU pVCpu = &pVM->aCpus[i];
2589
2590 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
2591 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
2592 && g_aPgmShadowModeData[idxShw].pfnRelocate)
2593 g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
2594 else
2595 AssertFailed();
2596
2597 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
2598 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
2599 && g_aPgmGuestModeData[idxGst].pfnRelocate)
2600 g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
2601 else
2602 AssertFailed();
2603 }
2604
2605 /*
2606 * Trees.
2607 */
2608 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2609
2610 /*
2611 * Ram ranges.
2612 */
2613 if (pVM->pgm.s.pRamRangesXR3)
2614 {
2615 /* Update the pSelfRC pointers and relink them. */
2616 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2617 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2618 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2619 pgmR3PhysRelinkRamRanges(pVM);
2620
2621 /* Flush the RC TLB. */
2622 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2623 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2624 }
2625
2626 /*
2627 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2628 * be mapped and thus not included in the above exercise.
2629 */
2630 for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2631 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2632 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2633
2634 /*
2635 * Update the two page directories with all page table mappings.
2636 * (One or more of them have changed, that's why we're here.)
2637 */
2638 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2639 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2640 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2641
2642 /* Relocate GC addresses of Page Tables. */
2643 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2644 {
2645 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2646 {
2647 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2648 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2649 }
2650 }
2651
2652 /*
2653 * Dynamic page mapping area.
2654 */
2655 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2656 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2657 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2658
2659 if (pVM->pgm.s.pRCDynMap)
2660 {
2661 pVM->pgm.s.pRCDynMap += offDelta;
2662 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2663
2664 pDynMap->paPages += offDelta;
2665 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2666
2667 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2668 {
2669 paPages[iPage].pvPage += offDelta;
2670 paPages[iPage].uPte.pLegacy += offDelta;
2671 paPages[iPage].uPte.pPae += offDelta;
2672 }
2673 }
2674
2675 /*
2676 * The Zero page.
2677 */
2678 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2679#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2680 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || VM_IS_RAW_MODE_ENABLED(pVM));
2681#else
2682 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2683#endif
2684
2685 /*
2686 * Physical and virtual handlers.
2687 */
2688 PGMRELOCHANDLERARGS Args = { offDelta, pVM };
2689 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &Args);
2690 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2691
2692 PPGMPHYSHANDLERTYPEINT pCurPhysType;
2693 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadPhysHandlerTypes, pCurPhysType, PGMPHYSHANDLERTYPEINT, ListNode)
2694 {
2695 if (pCurPhysType->pfnHandlerRC != NIL_RTRCPTR)
2696 pCurPhysType->pfnHandlerRC += offDelta;
2697 if (pCurPhysType->pfnPfHandlerRC != NIL_RTRCPTR)
2698 pCurPhysType->pfnPfHandlerRC += offDelta;
2699 }
2700
2701#ifdef VBOX_WITH_RAW_MODE
2702 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &Args);
2703 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &Args);
2704
2705 PPGMVIRTHANDLERTYPEINT pCurVirtType;
2706 RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadVirtHandlerTypes, pCurVirtType, PGMVIRTHANDLERTYPEINT, ListNode)
2707 {
2708 if (pCurVirtType->pfnHandlerRC != NIL_RTRCPTR)
2709 pCurVirtType->pfnHandlerRC += offDelta;
2710 if (pCurVirtType->pfnPfHandlerRC != NIL_RTRCPTR)
2711 pCurVirtType->pfnPfHandlerRC += offDelta;
2712 }
2713#endif
2714
2715 /*
2716 * The page pool.
2717 */
2718 pgmR3PoolRelocate(pVM);
2719
2720#ifdef VBOX_WITH_STATISTICS
2721 /*
2722 * Statistics.
2723 */
2724 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2725 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2726 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2727#endif
2728}
2729
2730
2731/**
2732 * Callback function for relocating a physical access handler.
2733 *
2734 * @returns 0 (continue enum)
2735 * @param pNode Pointer to a PGMPHYSHANDLER node.
2736 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2737 */
2738static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2739{
2740 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2741 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2742 if (pHandler->pvUserRC >= 0x10000)
2743 pHandler->pvUserRC += pArgs->offDelta;
2744 return 0;
2745}
2746
2747#ifdef VBOX_WITH_RAW_MODE
2748
2749/**
2750 * Callback function for relocating a virtual access handler.
2751 *
2752 * @returns 0 (continue enum)
2753 * @param pNode Pointer to a PGMVIRTHANDLER node.
2754 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2755 */
2756static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2757{
2758 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2759 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2760 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind != PGMVIRTHANDLERKIND_HYPERVISOR);
2761
2762 if ( pHandler->pvUserRC != NIL_RTRCPTR
2763 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2764 pHandler->pvUserRC += pArgs->offDelta;
2765 return 0;
2766}
2767
2768
2769/**
2770 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2771 *
2772 * @returns 0 (continue enum)
2773 * @param pNode Pointer to a PGMVIRTHANDLER node.
2774 * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
2775 */
2776static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2777{
2778 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2779 PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
2780 Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind == PGMVIRTHANDLERKIND_HYPERVISOR);
2781
2782 if ( pHandler->pvUserRC != NIL_RTRCPTR
2783 && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
2784 pHandler->pvUserRC += pArgs->offDelta;
2785 return 0;
2786}
2787
2788#endif /* VBOX_WITH_RAW_MODE */
2789
2790/**
2791 * Resets a virtual CPU when unplugged.
2792 *
2793 * @param pVM The cross context VM structure.
2794 * @param pVCpu The cross context virtual CPU structure.
2795 */
2796VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2797{
2798 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
2799 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
2800 && g_aPgmGuestModeData[idxGst].pfnExit)
2801 {
2802 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
2803 AssertReleaseRC(rc);
2804 }
2805 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
2806
2807 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
2808 AssertReleaseRC(rc);
2809
2810 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2811
2812 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2813
2814 /*
2815 * Re-init other members.
2816 */
2817 pVCpu->pgm.s.fA20Enabled = true;
2818 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2819
2820 /*
2821 * Clear the FFs PGM owns.
2822 */
2823 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2824 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2825}
2826
2827
2828/**
2829 * The VM is being reset.
2830 *
2831 * For the PGM component this means that any PD write monitors
2832 * needs to be removed.
2833 *
2834 * @param pVM The cross context VM structure.
2835 */
2836VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2837{
2838 LogFlow(("PGMR3Reset:\n"));
2839 VM_ASSERT_EMT(pVM);
2840
2841 pgmLock(pVM);
2842
2843 /*
2844 * Unfix any fixed mappings and disable CR3 monitoring.
2845 */
2846 pVM->pgm.s.fMappingsFixed = false;
2847 pVM->pgm.s.fMappingsFixedRestored = false;
2848 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2849 pVM->pgm.s.cbMappingFixed = 0;
2850
2851 /*
2852 * Exit the guest paging mode before the pgm pool gets reset.
2853 * Important to clean up the amd64 case.
2854 */
2855 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2856 {
2857 PVMCPU pVCpu = &pVM->aCpus[i];
2858 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
2859 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
2860 && g_aPgmGuestModeData[idxGst].pfnExit)
2861 {
2862 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
2863 AssertReleaseRC(rc);
2864 }
2865 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
2866 }
2867
2868#ifdef DEBUG
2869 DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
2870 DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
2871#endif
2872
2873 /*
2874 * Switch mode back to real mode. (Before resetting the pgm pool!)
2875 */
2876 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2877 {
2878 PVMCPU pVCpu = &pVM->aCpus[i];
2879
2880 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
2881 AssertReleaseRC(rc);
2882
2883 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2884 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2885 }
2886
2887 /*
2888 * Reset the shadow page pool.
2889 */
2890 pgmR3PoolReset(pVM);
2891
2892 /*
2893 * Re-init various other members and clear the FFs that PGM owns.
2894 */
2895 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2896 {
2897 PVMCPU pVCpu = &pVM->aCpus[i];
2898
2899 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2900 PGMNotifyNxeChanged(pVCpu, false);
2901
2902 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2903 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2904
2905 if (!pVCpu->pgm.s.fA20Enabled)
2906 {
2907 pVCpu->pgm.s.fA20Enabled = true;
2908 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2909#ifdef PGM_WITH_A20
2910 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2911 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2912 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2913 HMFlushTLB(pVCpu);
2914#endif
2915 }
2916 }
2917
2918 //pgmLogState(pVM);
2919 pgmUnlock(pVM);
2920}
2921
2922
2923/**
2924 * Memory setup after VM construction or reset.
2925 *
2926 * @param pVM The cross context VM structure.
2927 * @param fAtReset Indicates the context, after reset if @c true or after
2928 * construction if @c false.
2929 */
2930VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2931{
2932 if (fAtReset)
2933 {
2934 pgmLock(pVM);
2935
2936 int rc = pgmR3PhysRamZeroAll(pVM);
2937 AssertReleaseRC(rc);
2938
2939 rc = pgmR3PhysRomReset(pVM);
2940 AssertReleaseRC(rc);
2941
2942 pgmUnlock(pVM);
2943 }
2944}
2945
2946
2947#ifdef VBOX_STRICT
2948/**
2949 * VM state change callback for clearing fNoMorePhysWrites after
2950 * a snapshot has been created.
2951 */
2952static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2953{
2954 if ( enmState == VMSTATE_RUNNING
2955 || enmState == VMSTATE_RESUMING)
2956 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2957 NOREF(enmOldState); NOREF(pvUser);
2958}
2959#endif
2960
2961/**
2962 * Private API to reset fNoMorePhysWrites.
2963 */
2964VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2965{
2966 pVM->pgm.s.fNoMorePhysWrites = false;
2967}
2968
2969/**
2970 * Terminates the PGM.
2971 *
2972 * @returns VBox status code.
2973 * @param pVM The cross context VM structure.
2974 */
2975VMMR3DECL(int) PGMR3Term(PVM pVM)
2976{
2977 /* Must free shared pages here. */
2978 pgmLock(pVM);
2979 pgmR3PhysRamTerm(pVM);
2980 pgmR3PhysRomTerm(pVM);
2981 pgmUnlock(pVM);
2982
2983 PGMDeregisterStringFormatTypes();
2984 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2985}
2986
2987
2988/**
2989 * Show paging mode.
2990 *
2991 * @param pVM The cross context VM structure.
2992 * @param pHlp The info helpers.
2993 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2994 */
2995static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2996{
2997 /* digest argument. */
2998 bool fGuest, fShadow, fHost;
2999 if (pszArgs)
3000 pszArgs = RTStrStripL(pszArgs);
3001 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3002 fShadow = fHost = fGuest = true;
3003 else
3004 {
3005 fShadow = fHost = fGuest = false;
3006 if (strstr(pszArgs, "guest"))
3007 fGuest = true;
3008 if (strstr(pszArgs, "shadow"))
3009 fShadow = true;
3010 if (strstr(pszArgs, "host"))
3011 fHost = true;
3012 }
3013
3014 PVMCPU pVCpu = VMMGetCpu(pVM);
3015 if (!pVCpu)
3016 pVCpu = &pVM->aCpus[0];
3017
3018
3019 /* print info. */
3020 if (fGuest)
3021 pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
3022 pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
3023 pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
3024 if (fShadow)
3025 pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
3026 if (fHost)
3027 {
3028 const char *psz;
3029 switch (pVM->pgm.s.enmHostMode)
3030 {
3031 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3032 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3033 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3034 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3035 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3036 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3037 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3038 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3039 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3040 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3041 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3042 default: psz = "unknown"; break;
3043 }
3044 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3045 }
3046}
3047
3048
3049/**
3050 * Dump registered MMIO ranges to the log.
3051 *
3052 * @param pVM The cross context VM structure.
3053 * @param pHlp The info helpers.
3054 * @param pszArgs Arguments, ignored.
3055 */
3056static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3057{
3058 bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
3059
3060 pHlp->pfnPrintf(pHlp,
3061 "RAM ranges (pVM=%p)\n"
3062 "%.*s %.*s\n",
3063 pVM,
3064 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3065 sizeof(RTHCPTR) * 2, "pvHC ");
3066
3067 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
3068 {
3069 pHlp->pfnPrintf(pHlp,
3070 "%RGp-%RGp %RHv %s\n",
3071 pCur->GCPhys,
3072 pCur->GCPhysLast,
3073 pCur->pvR3,
3074 pCur->pszDesc);
3075 if (fVerbose)
3076 {
3077 RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
3078 RTGCPHYS iPage = 0;
3079 while (iPage < cPages)
3080 {
3081 RTGCPHYS const iFirstPage = iPage;
3082 PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
3083 do
3084 iPage++;
3085 while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
3086 const char *pszType;
3087 const char *pszMore = NULL;
3088 switch (enmType)
3089 {
3090 case PGMPAGETYPE_RAM:
3091 pszType = "RAM";
3092 break;
3093
3094 case PGMPAGETYPE_MMIO2:
3095 pszType = "MMIO2";
3096 break;
3097
3098 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3099 pszType = "MMIO2-alias-MMIO";
3100 break;
3101
3102 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
3103 pszType = "special-alias-MMIO";
3104 break;
3105
3106 case PGMPAGETYPE_ROM_SHADOW:
3107 case PGMPAGETYPE_ROM:
3108 {
3109 pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
3110
3111 RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
3112 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3113 while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
3114 pRom = pRom->pNextR3;
3115 if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
3116 pszMore = pRom->pszDesc;
3117 break;
3118 }
3119
3120 case PGMPAGETYPE_MMIO:
3121 {
3122 pszType = "MMIO";
3123 pgmLock(pVM);
3124 PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE);
3125 if (pHandler)
3126 pszMore = pHandler->pszDesc;
3127 pgmUnlock(pVM);
3128 break;
3129 }
3130
3131 case PGMPAGETYPE_INVALID:
3132 pszType = "invalid";
3133 break;
3134
3135 default:
3136 pszType = "bad";
3137 break;
3138 }
3139 if (pszMore)
3140 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
3141 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
3142 pCur->GCPhys + iPage * X86_PAGE_SIZE,
3143 pszType, pszMore);
3144 else
3145 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
3146 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
3147 pCur->GCPhys + iPage * X86_PAGE_SIZE,
3148 pszType);
3149
3150 }
3151 }
3152 }
3153}
3154
3155
3156/**
3157 * Dump the page directory to the log.
3158 *
3159 * @param pVM The cross context VM structure.
3160 * @param pHlp The info helpers.
3161 * @param pszArgs Arguments, ignored.
3162 */
3163static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3164{
3165 /** @todo SMP support!! */
3166 PVMCPU pVCpu = &pVM->aCpus[0];
3167
3168/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3169 /* Big pages supported? */
3170 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3171
3172 /* Global pages supported? */
3173 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3174
3175 NOREF(pszArgs);
3176
3177 /*
3178 * Get page directory addresses.
3179 */
3180 pgmLock(pVM);
3181 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
3182 Assert(pPDSrc);
3183
3184 /*
3185 * Iterate the page directory.
3186 */
3187 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3188 {
3189 X86PDE PdeSrc = pPDSrc->a[iPD];
3190 if (PdeSrc.n.u1Present)
3191 {
3192 if (PdeSrc.b.u1Size && fPSE)
3193 pHlp->pfnPrintf(pHlp,
3194 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3195 iPD,
3196 pgmGstGet4MBPhysPage(pVM, PdeSrc),
3197 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3198 else
3199 pHlp->pfnPrintf(pHlp,
3200 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3201 iPD,
3202 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3203 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3204 }
3205 }
3206 pgmUnlock(pVM);
3207}
3208
3209
3210/**
3211 * Service a VMMCALLRING3_PGM_LOCK call.
3212 *
3213 * @returns VBox status code.
3214 * @param pVM The cross context VM structure.
3215 */
3216VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3217{
3218 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
3219 AssertRC(rc);
3220 return rc;
3221}
3222
3223
3224/**
3225 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3226 *
3227 * @returns VBox status code, fully asserted.
3228 * @param pVCpu The cross context virtual CPU structure.
3229 */
3230int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3231{
3232 /* Unmap the old CR3 value before flushing everything. */
3233 int rc = VINF_SUCCESS;
3234 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
3235 if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
3236 && g_aPgmBothModeData[idxBth].pfnMapCR3)
3237 {
3238 rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
3239 AssertRC(rc);
3240 }
3241
3242 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3243 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
3244 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
3245 && g_aPgmShadowModeData[idxShw].pfnExit)
3246 {
3247 rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
3248 AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
3249 }
3250
3251 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3252 return rc;
3253}
3254
3255
3256/**
3257 * Called by pgmPoolFlushAllInt after flushing the pool.
3258 *
3259 * @returns VBox status code, fully asserted.
3260 * @param pVM The cross context VM structure.
3261 * @param pVCpu The cross context virtual CPU structure.
3262 */
3263int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3264{
3265 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3266 int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3267 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3268 AssertRCReturn(rc, rc);
3269 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3270
3271 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3272 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
3273 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3274 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3275 return rc;
3276}
3277
3278
3279/**
3280 * Called by PGMR3PhysSetA20 after changing the A20 state.
3281 *
3282 * @param pVCpu The cross context virtual CPU structure.
3283 */
3284void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3285{
3286 /** @todo Probably doing a bit too much here. */
3287 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3288 AssertReleaseRC(rc);
3289 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3290 AssertReleaseRC(rc);
3291}
3292
3293
3294#ifdef VBOX_WITH_DEBUGGER
3295
3296/**
3297 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3298 */
3299static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3300{
3301 /*
3302 * Validate input.
3303 */
3304 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3305 PVM pVM = pUVM->pVM;
3306 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3307
3308 if (!cArgs)
3309 {
3310 /*
3311 * Print the list of error injection locations with status.
3312 */
3313 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3314 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3315 }
3316 else
3317 {
3318 /*
3319 * String switch on where to inject the error.
3320 */
3321 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3322 const char *pszWhere = paArgs[0].u.pszString;
3323 if (!strcmp(pszWhere, "handy"))
3324 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3325 else
3326 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
3327 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
3328 }
3329 return VINF_SUCCESS;
3330}
3331
3332
3333/**
3334 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
3335 */
3336static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3337{
3338 /*
3339 * Validate input.
3340 */
3341 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3342 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3343 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3344 if (!pVCpu)
3345 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3346
3347 /*
3348 * Force page directory sync.
3349 */
3350 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3351
3352 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
3353 if (RT_FAILURE(rc))
3354 return rc;
3355
3356 return VINF_SUCCESS;
3357}
3358
3359#ifdef VBOX_STRICT
3360
3361/**
3362 * EMT callback for pgmR3CmdAssertCR3.
3363 *
3364 * @returns VBox status code.
3365 * @param pUVM The user mode VM handle.
3366 * @param pcErrors Where to return the error count.
3367 */
3368static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
3369{
3370 PVM pVM = pUVM->pVM;
3371 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3372 PVMCPU pVCpu = VMMGetCpu(pVM);
3373
3374 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3375
3376 return VINF_SUCCESS;
3377}
3378
3379
3380/**
3381 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
3382 */
3383static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3384{
3385 /*
3386 * Validate input.
3387 */
3388 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3389 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3390
3391 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
3392 if (RT_FAILURE(rc))
3393 return rc;
3394
3395 unsigned cErrors = 0;
3396 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
3397 if (RT_FAILURE(rc))
3398 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
3399 if (cErrors > 0)
3400 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
3401 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
3402}
3403
3404#endif /* VBOX_STRICT */
3405
3406/**
3407 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
3408 */
3409static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3410{
3411 /*
3412 * Validate input.
3413 */
3414 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3415 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3416 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3417 if (!pVCpu)
3418 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3419
3420 /*
3421 * Force page directory sync.
3422 */
3423 int rc;
3424 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3425 {
3426 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3427 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
3428 }
3429 else
3430 {
3431 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3432 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3433 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
3434 }
3435 return rc;
3436}
3437
3438
3439/**
3440 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
3441 */
3442static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3443{
3444 /*
3445 * Validate input.
3446 */
3447 NOREF(pCmd);
3448 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3449 PVM pVM = pUVM->pVM;
3450 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
3451 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
3452 if (cArgs == 2)
3453 {
3454 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
3455 if (strcmp(paArgs[1].u.pszString, "nozero"))
3456 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3457 }
3458 bool fIncZeroPgs = cArgs < 2;
3459
3460 /*
3461 * Open the output file and get the ram parameters.
3462 */
3463 RTFILE hFile;
3464 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3465 if (RT_FAILURE(rc))
3466 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3467
3468 uint32_t cbRamHole = 0;
3469 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3470 uint64_t cbRam = 0;
3471 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
3472 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3473
3474 /*
3475 * Dump the physical memory, page by page.
3476 */
3477 RTGCPHYS GCPhys = 0;
3478 char abZeroPg[PAGE_SIZE];
3479 RT_ZERO(abZeroPg);
3480
3481 pgmLock(pVM);
3482 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3483 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3484 pRam = pRam->pNextR3)
3485 {
3486 /* fill the gap */
3487 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3488 {
3489 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3490 {
3491 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3492 GCPhys += PAGE_SIZE;
3493 }
3494 }
3495
3496 PCPGMPAGE pPage = &pRam->aPages[0];
3497 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3498 {
3499 if ( PGM_PAGE_IS_ZERO(pPage)
3500 || PGM_PAGE_IS_BALLOONED(pPage))
3501 {
3502 if (fIncZeroPgs)
3503 {
3504 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3505 if (RT_FAILURE(rc))
3506 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3507 }
3508 }
3509 else
3510 {
3511 switch (PGM_PAGE_GET_TYPE(pPage))
3512 {
3513 case PGMPAGETYPE_RAM:
3514 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3515 case PGMPAGETYPE_ROM:
3516 case PGMPAGETYPE_MMIO2:
3517 {
3518 void const *pvPage;
3519 PGMPAGEMAPLOCK Lock;
3520 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3521 if (RT_SUCCESS(rc))
3522 {
3523 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3524 PGMPhysReleasePageMappingLock(pVM, &Lock);
3525 if (RT_FAILURE(rc))
3526 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3527 }
3528 else
3529 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3530 break;
3531 }
3532
3533 default:
3534 AssertFailed();
3535 RT_FALL_THRU();
3536 case PGMPAGETYPE_MMIO:
3537 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3538 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
3539 if (fIncZeroPgs)
3540 {
3541 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3542 if (RT_FAILURE(rc))
3543 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3544 }
3545 break;
3546 }
3547 }
3548
3549
3550 /* advance */
3551 GCPhys += PAGE_SIZE;
3552 pPage++;
3553 }
3554 }
3555 pgmUnlock(pVM);
3556
3557 RTFileClose(hFile);
3558 if (RT_SUCCESS(rc))
3559 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3560 return VINF_SUCCESS;
3561}
3562
3563#endif /* VBOX_WITH_DEBUGGER */
3564
3565/**
3566 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3567 */
3568typedef struct PGMCHECKINTARGS
3569{
3570 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3571 PPGMPHYSHANDLER pPrevPhys;
3572#ifdef VBOX_WITH_RAW_MODE
3573 PPGMVIRTHANDLER pPrevVirt;
3574 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3575#else
3576 void *pvFiller1, *pvFiller2;
3577#endif
3578 PVM pVM;
3579} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3580
3581/**
3582 * Validate a node in the physical handler tree.
3583 *
3584 * @returns 0 on if ok, other wise 1.
3585 * @param pNode The handler node.
3586 * @param pvUser pVM.
3587 */
3588static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3589{
3590 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3591 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3592 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3593 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
3594 ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3595 AssertReleaseMsg( !pArgs->pPrevPhys
3596 || ( pArgs->fLeftToRight
3597 ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
3598 : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3599 ("pPrevPhys=%p %RGp-%RGp %s\n"
3600 " pCur=%p %RGp-%RGp %s\n",
3601 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3602 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3603 pArgs->pPrevPhys = pCur;
3604 return 0;
3605}
3606
3607#ifdef VBOX_WITH_RAW_MODE
3608
3609/**
3610 * Validate a node in the virtual handler tree.
3611 *
3612 * @returns 0 on if ok, other wise 1.
3613 * @param pNode The handler node.
3614 * @param pvUser pVM.
3615 */
3616static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
3617{
3618 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3619 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
3620 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3621 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3622 AssertReleaseMsg( !pArgs->pPrevVirt
3623 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
3624 ("pPrevVirt=%p %RGv-%RGv %s\n"
3625 " pCur=%p %RGv-%RGv %s\n",
3626 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
3627 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3628 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
3629 {
3630 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -(intptr_t)RT_UOFFSETOF_DYN(PGMVIRTHANDLER, aPhysToVirt[iPage]),
3631 ("pCur=%p %RGv-%RGv %s\n"
3632 "iPage=%d offVirtHandle=%#x expected %#x\n",
3633 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
3634 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -(intptr_t)RT_UOFFSETOF_DYN(PGMVIRTHANDLER, aPhysToVirt[iPage])));
3635 }
3636 pArgs->pPrevVirt = pCur;
3637 return 0;
3638}
3639
3640
3641/**
3642 * Validate a node in the virtual handler tree.
3643 *
3644 * @returns 0 on if ok, other wise 1.
3645 * @param pNode The handler node.
3646 * @param pvUser pVM.
3647 */
3648static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3649{
3650 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3651 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
3652 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
3653 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
3654 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
3655 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3656 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3657 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
3658 " pCur=%p %RGp-%RGp\n",
3659 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3660 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3661 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3662 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3663 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
3664 " pCur=%p %RGp-%RGp\n",
3665 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3666 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3667 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
3668 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3669 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3670 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3671 {
3672 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
3673 for (;;)
3674 {
3675 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3676 AssertReleaseMsg(pCur2 != pCur,
3677 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3678 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3679 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
3680 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3681 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3682 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3683 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3684 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
3685 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3686 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3687 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3688 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3689 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
3690 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3691 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3692 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3693 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3694 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3695 break;
3696 }
3697 }
3698
3699 pArgs->pPrevPhys2Virt = pCur;
3700 return 0;
3701}
3702
3703#endif /* VBOX_WITH_RAW_MODE */
3704
3705/**
3706 * Perform an integrity check on the PGM component.
3707 *
3708 * @returns VINF_SUCCESS if everything is fine.
3709 * @returns VBox error status after asserting on integrity breach.
3710 * @param pVM The cross context VM structure.
3711 */
3712VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
3713{
3714 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
3715
3716 /*
3717 * Check the trees.
3718 */
3719 int cErrors = 0;
3720 const PGMCHECKINTARGS LeftToRight = { true, NULL, NULL, NULL, pVM };
3721 const PGMCHECKINTARGS RightToLeft = { false, NULL, NULL, NULL, pVM };
3722 PGMCHECKINTARGS Args = LeftToRight;
3723 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3724 Args = RightToLeft;
3725 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3726#ifdef VBOX_WITH_RAW_MODE
3727 Args = LeftToRight;
3728 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3729 Args = RightToLeft;
3730 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3731 Args = LeftToRight;
3732 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3733 Args = RightToLeft;
3734 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3735 Args = LeftToRight;
3736 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
3737 Args = RightToLeft;
3738 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
3739#endif /* VBOX_WITH_RAW_MODE */
3740
3741 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
3742}
3743
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette