VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 92046

Last change on this file since 92046 was 92046, checked in by vboxsync, 3 years ago

VMM: Nested VMX: bugref:10092 EPT paging PDPTE walk bits.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 136.9 KB
Line 
1/* $Id: PGM.cpp 92046 2021-10-25 16:05:10Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @sa @ref grp_pgm
22 * @subpage pg_pgm_pool
23 * @subpage pg_pgm_phys
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_phys Physical Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers (obsolete)
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @section sec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @section sec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @section sec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @section sec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @section sec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @section sec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
555 * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
556 * track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613
614/*********************************************************************************************************************************
615* Header Files *
616*********************************************************************************************************************************/
617#define LOG_GROUP LOG_GROUP_PGM
618#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
619#include <VBox/vmm/dbgf.h>
620#include <VBox/vmm/pgm.h>
621#include <VBox/vmm/cpum.h>
622#include <VBox/vmm/iom.h>
623#include <VBox/sup.h>
624#include <VBox/vmm/mm.h>
625#include <VBox/vmm/em.h>
626#include <VBox/vmm/stam.h>
627#include <VBox/vmm/selm.h>
628#include <VBox/vmm/ssm.h>
629#include <VBox/vmm/hm.h>
630#include "PGMInternal.h"
631#include <VBox/vmm/vm.h>
632#include <VBox/vmm/uvm.h>
633#include "PGMInline.h"
634
635#include <VBox/dbg.h>
636#include <VBox/param.h>
637#include <VBox/err.h>
638
639#include <iprt/asm.h>
640#include <iprt/asm-amd64-x86.h>
641#include <iprt/assert.h>
642#include <iprt/env.h>
643#include <iprt/mem.h>
644#include <iprt/file.h>
645#include <iprt/string.h>
646#include <iprt/thread.h>
647#ifdef RT_OS_LINUX
648# include <iprt/linux/sysfs.h>
649#endif
650
651
652/*********************************************************************************************************************************
653* Structures and Typedefs *
654*********************************************************************************************************************************/
655/**
656 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
657 * pgmR3RelocateHyperVirtHandler.
658 */
659typedef struct PGMRELOCHANDLERARGS
660{
661 RTGCINTPTR offDelta;
662 PVM pVM;
663} PGMRELOCHANDLERARGS;
664/** Pointer to a page access handlere relocation argument package. */
665typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
666
667
668/*********************************************************************************************************************************
669* Internal Functions *
670*********************************************************************************************************************************/
671static int pgmR3InitPaging(PVM pVM);
672static int pgmR3InitStats(PVM pVM);
673static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
674static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
675static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
676#ifdef VBOX_STRICT
677static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
678#endif
679
680#ifdef VBOX_WITH_DEBUGGER
681static FNDBGCCMD pgmR3CmdError;
682static FNDBGCCMD pgmR3CmdSync;
683static FNDBGCCMD pgmR3CmdSyncAlways;
684# ifdef VBOX_STRICT
685static FNDBGCCMD pgmR3CmdAssertCR3;
686# endif
687static FNDBGCCMD pgmR3CmdPhysToFile;
688#endif
689
690
691/*********************************************************************************************************************************
692* Global Variables *
693*********************************************************************************************************************************/
694#ifdef VBOX_WITH_DEBUGGER
695/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
696static const DBGCVARDESC g_aPgmErrorArgs[] =
697{
698 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
699 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
700};
701
702static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
703{
704 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
705 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
706 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
707};
708
709# ifdef DEBUG_sandervl
710static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
711{
712 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
713 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
714 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
715};
716# endif
717
718/** Command descriptors. */
719static const DBGCCMD g_aCmds[] =
720{
721 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
722 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
723 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
724 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
725# ifdef VBOX_STRICT
726 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
727# ifdef VBOX_WITH_PAGE_SHARING
728 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
729 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
730# endif
731# endif
732 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
733 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
734};
735#endif
736
737
738#ifdef VBOX_WITH_PGM_NEM_MODE
739/**
740 * Interface that NEM uses to switch PGM into simplified memory managment mode.
741 *
742 * This call occurs before PGMR3Init.
743 *
744 * @param pVM The cross context VM structure.
745 */
746VMMR3_INT_DECL(void) PGMR3EnableNemMode(PVM pVM)
747{
748 AssertFatal(!PDMCritSectIsInitialized(&pVM->pgm.s.CritSectX));
749 pVM->pgm.s.fNemMode = true;
750}
751#endif
752
753
754/**
755 * Initiates the paging of VM.
756 *
757 * @returns VBox status code.
758 * @param pVM The cross context VM structure.
759 */
760VMMR3DECL(int) PGMR3Init(PVM pVM)
761{
762 LogFlow(("PGMR3Init:\n"));
763 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
764 int rc;
765
766 /*
767 * Assert alignment and sizes.
768 */
769 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
770 AssertCompile(sizeof(pVM->apCpusR3[0]->pgm.s) <= sizeof(pVM->apCpusR3[0]->pgm.padding));
771 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
772
773 /*
774 * Init the structure.
775 */
776 /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
777
778 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
779 {
780 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
781 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
782 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
783 }
784
785 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
786 {
787 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
788 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
789 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
790 }
791
792 /* Init the per-CPU part. */
793 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
794 {
795 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
796 PPGMCPU pPGM = &pVCpu->pgm.s;
797
798 pPGM->enmShadowMode = PGMMODE_INVALID;
799 pPGM->enmGuestMode = PGMMODE_INVALID;
800 pPGM->idxGuestModeData = UINT8_MAX;
801 pPGM->idxShadowModeData = UINT8_MAX;
802 pPGM->idxBothModeData = UINT8_MAX;
803
804 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
805
806 pPGM->pGst32BitPdR3 = NULL;
807 pPGM->pGstPaePdptR3 = NULL;
808 pPGM->pGstAmd64Pml4R3 = NULL;
809 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
810 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
811 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
812 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
813 {
814 pPGM->apGstPaePDsR3[i] = NULL;
815 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
816 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
817 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
818 }
819
820 pPGM->fA20Enabled = true;
821 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
822 }
823
824 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
825 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
826
827 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
828#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
829 true
830#else
831 false
832#endif
833 );
834 AssertLogRelRCReturn(rc, rc);
835
836#if HC_ARCH_BITS == 32
837# ifdef RT_OS_DARWIN
838 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
839# else
840 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
841# endif
842#else
843 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
844#endif
845 AssertLogRelRCReturn(rc, rc);
846 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
847 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
848
849 /*
850 * Get the configured RAM size - to estimate saved state size.
851 */
852 uint64_t cbRam;
853 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
854 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
855 cbRam = 0;
856 else if (RT_SUCCESS(rc))
857 {
858 if (cbRam < PAGE_SIZE)
859 cbRam = 0;
860 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
861 }
862 else
863 {
864 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
865 return rc;
866 }
867
868 /*
869 * Check for PCI pass-through and other configurables.
870 */
871 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
872 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
873 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
874
875 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
876 AssertLogRelRCReturn(rc, rc);
877
878 /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
879 * Whether to clear RAM pages on (hard) reset. */
880 rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
881 AssertLogRelRCReturn(rc, rc);
882
883 /*
884 * Register callbacks, string formatters and the saved state data unit.
885 */
886#ifdef VBOX_STRICT
887 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
888#endif
889 PGMRegisterStringFormatTypes();
890
891 rc = pgmR3InitSavedState(pVM, cbRam);
892 if (RT_FAILURE(rc))
893 return rc;
894
895 /*
896 * Initialize the PGM critical section and flush the phys TLBs
897 */
898 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
899 AssertRCReturn(rc, rc);
900
901 PGMR3PhysChunkInvalidateTLB(pVM);
902 pgmPhysInvalidatePageMapTLB(pVM);
903
904 /*
905 * For the time being we sport a full set of handy pages in addition to the base
906 * memory to simplify things.
907 */
908 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
909 AssertRCReturn(rc, rc);
910
911 /*
912 * Trees
913 */
914 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
915 if (RT_SUCCESS(rc))
916 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
917
918 /*
919 * Allocate the zero page.
920 */
921 if (RT_SUCCESS(rc))
922 {
923 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
924 if (RT_SUCCESS(rc))
925 {
926 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
927 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
928 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
929 }
930 }
931
932 /*
933 * Allocate the invalid MMIO page.
934 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
935 */
936 if (RT_SUCCESS(rc))
937 {
938 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
939 if (RT_SUCCESS(rc))
940 {
941 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
942 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
943 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
944 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
945 }
946 }
947
948 /*
949 * Register the physical access handler protecting ROMs.
950 */
951 if (RT_SUCCESS(rc))
952 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
953 pgmPhysRomWriteHandler,
954 NULL, NULL, "pgmPhysRomWritePfHandler",
955 NULL, NULL, "pgmPhysRomWritePfHandler",
956 "ROM write protection",
957 &pVM->pgm.s.hRomPhysHandlerType);
958
959 /*
960 * Init the paging.
961 */
962 if (RT_SUCCESS(rc))
963 rc = pgmR3InitPaging(pVM);
964
965 /*
966 * Init the page pool.
967 */
968 if (RT_SUCCESS(rc))
969 rc = pgmR3PoolInit(pVM);
970
971 if (RT_SUCCESS(rc))
972 {
973 for (VMCPUID i = 0; i < pVM->cCpus; i++)
974 {
975 PVMCPU pVCpu = pVM->apCpusR3[i];
976 rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
977 if (RT_FAILURE(rc))
978 break;
979 }
980 }
981
982 if (RT_SUCCESS(rc))
983 {
984 /*
985 * Info & statistics
986 */
987 DBGFR3InfoRegisterInternalEx(pVM, "mode",
988 "Shows the current paging mode. "
989 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
990 pgmR3InfoMode,
991 DBGFINFO_FLAGS_ALL_EMTS);
992 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
993 "Dumps all the entries in the top level paging table. No arguments.",
994 pgmR3InfoCr3);
995 DBGFR3InfoRegisterInternal(pVM, "phys",
996 "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
997 pgmR3PhysInfo);
998 DBGFR3InfoRegisterInternal(pVM, "handlers",
999 "Dumps physical, virtual and hyper virtual handlers. "
1000 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1001 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1002 pgmR3InfoHandlers);
1003
1004 pgmR3InitStats(pVM);
1005
1006#ifdef VBOX_WITH_DEBUGGER
1007 /*
1008 * Debugger commands.
1009 */
1010 static bool s_fRegisteredCmds = false;
1011 if (!s_fRegisteredCmds)
1012 {
1013 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1014 if (RT_SUCCESS(rc2))
1015 s_fRegisteredCmds = true;
1016 }
1017#endif
1018
1019#ifdef RT_OS_LINUX
1020 /*
1021 * Log the /proc/sys/vm/max_map_count value on linux as that is
1022 * frequently giving us grief when too low.
1023 */
1024 int64_t const cGuessNeeded = MMR3PhysGetRamSize(pVM) / _2M + 16384 /*guesstimate*/;
1025 int64_t cMaxMapCount = 0;
1026 int rc2 = RTLinuxSysFsReadIntFile(10, &cMaxMapCount, "/proc/sys/vm/max_map_count");
1027 LogRel(("PGM: /proc/sys/vm/max_map_count = %RI64 (rc2=%Rrc); cGuessNeeded=%RI64\n", cMaxMapCount, rc2, cGuessNeeded));
1028 if (RT_SUCCESS(rc2) && cMaxMapCount < cGuessNeeded)
1029 LogRel(("PGM: WARNING!!\n"
1030 "PGM: WARNING!! Please increase /proc/sys/vm/max_map_count to at least %RI64 (or reduce the amount of RAM assigned to the VM)!\n"
1031 "PGM: WARNING!!\n", cMaxMapCount));
1032
1033#endif
1034
1035 return VINF_SUCCESS;
1036 }
1037
1038 /* Almost no cleanup necessary, MM frees all memory. */
1039 PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
1040
1041 return rc;
1042}
1043
1044
1045/**
1046 * Init paging.
1047 *
1048 * Since we need to check what mode the host is operating in before we can choose
1049 * the right paging functions for the host we have to delay this until R0 has
1050 * been initialized.
1051 *
1052 * @returns VBox status code.
1053 * @param pVM The cross context VM structure.
1054 */
1055static int pgmR3InitPaging(PVM pVM)
1056{
1057 /*
1058 * Force a recalculation of modes and switcher so everyone gets notified.
1059 */
1060 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1061 {
1062 PVMCPU pVCpu = pVM->apCpusR3[i];
1063
1064 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1065 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1066 pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
1067 pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
1068 pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
1069 }
1070
1071 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1072
1073 /*
1074 * Initialize paging workers and mode from current host mode
1075 * and the guest running in real mode.
1076 */
1077 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1078 switch (pVM->pgm.s.enmHostMode)
1079 {
1080 case SUPPAGINGMODE_32_BIT:
1081 case SUPPAGINGMODE_32_BIT_GLOBAL:
1082 case SUPPAGINGMODE_PAE:
1083 case SUPPAGINGMODE_PAE_GLOBAL:
1084 case SUPPAGINGMODE_PAE_NX:
1085 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1086 break;
1087
1088 case SUPPAGINGMODE_AMD64:
1089 case SUPPAGINGMODE_AMD64_GLOBAL:
1090 case SUPPAGINGMODE_AMD64_NX:
1091 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1092 if (ARCH_BITS != 64)
1093 {
1094 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1095 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1096 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1097 }
1098 break;
1099 default:
1100 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1101 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1102 }
1103
1104 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1105#if HC_ARCH_BITS == 64 && 0
1106 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1107 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1108 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1109 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1110 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1111 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1112 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1113#endif
1114
1115 /*
1116 * Log the host paging mode. It may come in handy.
1117 */
1118 const char *pszHostMode;
1119 switch (pVM->pgm.s.enmHostMode)
1120 {
1121 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1122 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1123 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1124 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1125 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1126 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1127 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1128 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1129 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1130 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1131 default: pszHostMode = "???"; break;
1132 }
1133 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1134
1135 return VINF_SUCCESS;
1136}
1137
1138
1139/**
1140 * Init statistics
1141 * @returns VBox status code.
1142 */
1143static int pgmR3InitStats(PVM pVM)
1144{
1145 PPGM pPGM = &pVM->pgm.s;
1146 int rc;
1147
1148 /*
1149 * Release statistics.
1150 */
1151 /* Common - misc variables */
1152 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1153 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1154 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1155 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1156 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1157 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1158 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1159 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1160 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1161 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1162 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1163 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1164 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1165 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1166 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1167 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1168 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1169 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1170 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1171
1172 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1173 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1174 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1175
1176 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1177
1178 /* Live save */
1179 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1180 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1181 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1182 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1183 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1184 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1185 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1186 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1187 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1188 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1189 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1190 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1191 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1192 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1193 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1194 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1195 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1196 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1197
1198#ifdef VBOX_WITH_STATISTICS
1199
1200# define PGM_REG_COUNTER(a, b, c) \
1201 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1202 AssertRC(rc);
1203
1204# define PGM_REG_COUNTER_BYTES(a, b, c) \
1205 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1206 AssertRC(rc);
1207
1208# define PGM_REG_PROFILE(a, b, c) \
1209 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1210 AssertRC(rc);
1211
1212 PGMSTATS *pStats = &pVM->pgm.s.Stats;
1213
1214 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Alloc", "Time spent by the host OS for large page allocation.");
1215 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Clear", "Time spent clearing the newly allocated large pages.");
1216 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1217 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/IsValidR3", "pgmPhysIsValidLargePage profiling - R3.");
1218 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/IsValidRZ", "pgmPhysIsValidLargePage profiling - RZ.");
1219
1220 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1221 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1222 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1223 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1224 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1225 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1226 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1227 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1228 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1229 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1230
1231 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1232 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1233 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1234 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1235 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1236 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1237
1238 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1239 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1240 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1241 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1242 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1243 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1244 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1245 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1246
1247 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1248 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1249 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1250 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1251
1252 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1253 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1254 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1255 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1256 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1257 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1258
1259 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1260 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1261/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1262 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1263 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1264/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1265
1266 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1267 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1268 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1269 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1270 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1271 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1272 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1273 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1274
1275 /* GC only: */
1276 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1277 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1278
1279 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1280 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1281 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1282 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1283 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1284 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1285 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1286 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1287
1288 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1289 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1290 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1291 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1292 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1293 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1294 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1295
1296# undef PGM_REG_COUNTER
1297# undef PGM_REG_PROFILE
1298#endif
1299
1300 /*
1301 * Note! The layout below matches the member layout exactly!
1302 */
1303
1304 /*
1305 * Common - stats
1306 */
1307 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1308 {
1309 PPGMCPU pPgmCpu = &pVM->apCpusR3[idCpu]->pgm.s;
1310
1311#define PGM_REG_COUNTER(a, b, c) \
1312 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1313 AssertRC(rc);
1314#define PGM_REG_PROFILE(a, b, c) \
1315 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1316 AssertRC(rc);
1317
1318 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1319 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1320
1321#ifdef VBOX_WITH_STATISTICS
1322 PGMCPUSTATS *pCpuStats = &pVM->apCpusR3[idCpu]->pgm.s.Stats;
1323
1324# if 0 /* rarely useful; leave for debugging. */
1325 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1326 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1327 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1328 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1329 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1330 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1331# endif
1332 /* R0 only: */
1333 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1334 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1335
1336 /* RZ only: */
1337 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1338 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1339 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1340 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1341 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1342 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1343 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1344 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1345 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1346 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1347 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1348 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1349 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1350 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1351 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1352 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1353 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1354 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1355 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1356 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1357 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1358 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1359 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1360 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1361 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1362 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1363 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1364 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1365 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1366 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1367 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1368 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1369 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1370 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1371 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1372 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1373 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1374 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1375#if 0 /* rarely useful; leave for debugging. */
1376 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1377 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1378 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1379#endif
1380 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1381 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1382 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1383 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1384 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1385
1386 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1387 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1388 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1389 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1390 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1391 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1392 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1393 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1394 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1395 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1396 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1397 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1398 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1399 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1400 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1401 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1402 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1403 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1404 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1405 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1406 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1407 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1408 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1409 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1410 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1411 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1412 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1413 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1414 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1415 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1416 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1417 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1418 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1419 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1420 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1421 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1422
1423 /* HC only: */
1424
1425 /* RZ & R3: */
1426 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1427 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1428 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1429 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1430 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1431 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1432 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1433 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1434 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1435 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1436 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1437 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1438 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1439 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1440 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1441 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1442 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1443 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1444 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1445 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1446 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1447 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1448 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1449 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1450 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1451 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1452 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1453 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1454 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1455 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1456 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1457 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1458 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1459 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1460 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1461 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1462 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1463 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1464 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1465 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1466 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1467 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1468 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1469 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1470 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1471 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1472 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1473
1474 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1475 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1476 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1477 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1478 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1479 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1480 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1481 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1482 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1483 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1484 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1485 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1486 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1487 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1488 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1489 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1490 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1491 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1492 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1493 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1494 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1495 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1496 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1497 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1498 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1499 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1500 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1501 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1502 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1503 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1504 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1505 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1506 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1507 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1508 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1509 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1510 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1511 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1512 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1513 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1514 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1515 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1516 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1517 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1518#endif /* VBOX_WITH_STATISTICS */
1519
1520#undef PGM_REG_PROFILE
1521#undef PGM_REG_COUNTER
1522
1523 }
1524
1525 return VINF_SUCCESS;
1526}
1527
1528
1529/**
1530 * Ring-3 init finalizing.
1531 *
1532 * @returns VBox status code.
1533 * @param pVM The cross context VM structure.
1534 */
1535VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1536{
1537 /*
1538 * Determine the max physical address width (MAXPHYADDR) and apply it to
1539 * all the mask members and stuff.
1540 */
1541 uint32_t cMaxPhysAddrWidth;
1542 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
1543 if ( uMaxExtLeaf >= 0x80000008
1544 && uMaxExtLeaf <= 0x80000fff)
1545 {
1546 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
1547 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
1548 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
1549 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
1550 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
1551 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
1552 }
1553 else
1554 {
1555 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
1556 cMaxPhysAddrWidth = 48;
1557 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
1558 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
1559 }
1560 Assert(pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth == cMaxPhysAddrWidth);
1561
1562 /** @todo query from CPUM. */
1563 pVM->pgm.s.GCPhysInvAddrMask = 0;
1564 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
1565 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
1566
1567 /*
1568 * Initialize the invalid paging entry masks, assuming NX is disabled.
1569 */
1570 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
1571#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1572 uint64_t const fEptVpidCap = CPUMGetGuestIa32VmxEptVpidCap(pVM->apCpusR3[0]); /* should be identical for all VCPUs. */
1573 uint64_t const fGstEptMbzBigPdeMask = EPT_PDE2M_MBZ_MASK
1574 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDE_2M) ^ 1) << EPT_E_BIT_LEAF;
1575 uint64_t const fGstEptMbzBigPdpteMask = EPT_PDPTE1G_MBZ_MASK
1576 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDPTE_1G) ^ 1) << EPT_E_BIT_LEAF;
1577#endif
1578 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1579 {
1580 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1581
1582 /** @todo The manuals are not entirely clear whether the physical
1583 * address width is relevant. See table 5-9 in the intel
1584 * manual vs the PDE4M descriptions. Write testcase (NP). */
1585 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
1586 | X86_PDE4M_MBZ_MASK;
1587
1588 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
1589 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
1590 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
1591 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
1592
1593 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
1594 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
1595 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
1596 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
1597 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
1598 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
1599
1600 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
1601 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
1602 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
1603 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
1604 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
1605 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
1606 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
1607
1608#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1609 pVCpu->pgm.s.fGstEptMbzPteMask = fMbzPageFrameMask | EPT_PTE_MBZ_MASK;
1610 pVCpu->pgm.s.fGstEptMbzPdeMask = fMbzPageFrameMask | EPT_PDE_MBZ_MASK;
1611 pVCpu->pgm.s.fGstEptMbzBigPdeMask = fMbzPageFrameMask | fGstEptMbzBigPdeMask;
1612 pVCpu->pgm.s.fGstEptMbzPdpteMask = fMbzPageFrameMask | EPT_PDPTE_MBZ_MASK;
1613 pVCpu->pgm.s.fGstEptMbzBigPdpteMask = fMbzPageFrameMask | fGstEptMbzBigPdpteMask;
1614 pVCpu->pgm.s.fGstEptMbzPml4eMask = fMbzPageFrameMask | EPT_PML4E_MBZ_MASK;
1615
1616 /* If any of the features (in the assert below) are enabled, we might have to shadow the relevant bits. */
1617 Assert( !pVM->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt
1618 && !pVM->cpum.ro.GuestFeatures.fVmxSppEpt
1619 && !pVM->cpum.ro.GuestFeatures.fVmxEptXcptVe);
1620 pVCpu->pgm.s.fGstEptPresentMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE;
1621 pVCpu->pgm.s.fGstEptShadowedPml4eMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_ACCESSED;
1622 pVCpu->pgm.s.fGstEptShadowedPdpeMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_ACCESSED;
1623 pVCpu->pgm.s.fGstEptShadowedBigPdpeMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_ACCESSED | EPT_E_DIRTY;
1624 pVCpu->pgm.s.fGstEptShadowedPdeMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_ACCESSED;
1625 pVCpu->pgm.s.fGstEptShadowedBigPdeMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_ACCESSED | EPT_E_DIRTY;
1626 pVCpu->pgm.s.fGstEptShadowedPteMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE | EPT_E_ACCESSED | EPT_E_DIRTY;
1627#endif
1628 }
1629
1630 /*
1631 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1632 * Intel only goes up to 36 bits, so we stick to 36 as well.
1633 * Update: More recent intel manuals specifies 40 bits just like AMD.
1634 */
1635 uint32_t u32Dummy, u32Features;
1636 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1637 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1638 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
1639 else
1640 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1641
1642 /*
1643 * Allocate memory if we're supposed to do that.
1644 */
1645 int rc = VINF_SUCCESS;
1646 if (pVM->pgm.s.fRamPreAlloc)
1647 rc = pgmR3PhysRamPreAllocate(pVM);
1648
1649 //pgmLogState(pVM);
1650 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp -> %Rrc\n", pVM->pgm.s.GCPhys4MBPSEMask, rc));
1651 return rc;
1652}
1653
1654
1655/**
1656 * Init phase completed callback.
1657 *
1658 * @returns VBox status code.
1659 * @param pVM The cross context VM structure.
1660 * @param enmWhat What has been completed.
1661 * @thread EMT(0)
1662 */
1663VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1664{
1665 switch (enmWhat)
1666 {
1667 case VMINITCOMPLETED_HM:
1668#ifdef VBOX_WITH_PCI_PASSTHROUGH
1669 if (pVM->pgm.s.fPciPassthrough)
1670 {
1671 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
1672 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
1673 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
1674
1675 /*
1676 * Report assignments to the IOMMU (hope that's good enough for now).
1677 */
1678 if (pVM->pgm.s.fPciPassthrough)
1679 {
1680 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
1681 AssertRCReturn(rc, rc);
1682 }
1683 }
1684#else
1685 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
1686#endif
1687 break;
1688
1689 default:
1690 /* shut up gcc */
1691 break;
1692 }
1693
1694 return VINF_SUCCESS;
1695}
1696
1697
1698/**
1699 * Applies relocations to data and code managed by this component.
1700 *
1701 * This function will be called at init and whenever the VMM need to relocate it
1702 * self inside the GC.
1703 *
1704 * @param pVM The cross context VM structure.
1705 * @param offDelta Relocation delta relative to old location.
1706 */
1707VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1708{
1709 LogFlow(("PGMR3Relocate: offDelta=%RGv\n", offDelta));
1710
1711 /*
1712 * Paging stuff.
1713 */
1714
1715 /* Shadow, guest and both mode switch & relocation for each VCPU. */
1716 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1717 {
1718 PVMCPU pVCpu = pVM->apCpusR3[i];
1719
1720 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
1721 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
1722 && g_aPgmShadowModeData[idxShw].pfnRelocate)
1723 g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
1724 else
1725 AssertFailed();
1726
1727 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1728 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1729 && g_aPgmGuestModeData[idxGst].pfnRelocate)
1730 g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
1731 else
1732 AssertFailed();
1733 }
1734
1735 /*
1736 * Ram ranges.
1737 */
1738 if (pVM->pgm.s.pRamRangesXR3)
1739 pgmR3PhysRelinkRamRanges(pVM);
1740
1741 /*
1742 * The Zero page.
1743 */
1744 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1745 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
1746
1747 /*
1748 * The page pool.
1749 */
1750 pgmR3PoolRelocate(pVM);
1751}
1752
1753
1754/**
1755 * Resets a virtual CPU when unplugged.
1756 *
1757 * @param pVM The cross context VM structure.
1758 * @param pVCpu The cross context virtual CPU structure.
1759 */
1760VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1761{
1762 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1763 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1764 && g_aPgmGuestModeData[idxGst].pfnExit)
1765 {
1766 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1767 AssertReleaseRC(rc);
1768 }
1769 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1770
1771 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1772 AssertReleaseRC(rc);
1773
1774 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1775
1776 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
1777
1778 /*
1779 * Re-init other members.
1780 */
1781 pVCpu->pgm.s.fA20Enabled = true;
1782 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1783
1784 /*
1785 * Clear the FFs PGM owns.
1786 */
1787 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1788 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1789}
1790
1791
1792/**
1793 * The VM is being reset.
1794 *
1795 * For the PGM component this means that any PD write monitors
1796 * needs to be removed.
1797 *
1798 * @param pVM The cross context VM structure.
1799 */
1800VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
1801{
1802 LogFlow(("PGMR3Reset:\n"));
1803 VM_ASSERT_EMT(pVM);
1804
1805 PGM_LOCK_VOID(pVM);
1806
1807 /*
1808 * Exit the guest paging mode before the pgm pool gets reset.
1809 * Important to clean up the amd64 case.
1810 */
1811 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1812 {
1813 PVMCPU pVCpu = pVM->apCpusR3[i];
1814 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1815 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1816 && g_aPgmGuestModeData[idxGst].pfnExit)
1817 {
1818 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1819 AssertReleaseRC(rc);
1820 }
1821 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1822 }
1823
1824#ifdef DEBUG
1825 DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
1826 DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
1827#endif
1828
1829 /*
1830 * Switch mode back to real mode. (Before resetting the pgm pool!)
1831 */
1832 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1833 {
1834 PVMCPU pVCpu = pVM->apCpusR3[i];
1835
1836 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1837 AssertReleaseRC(rc);
1838
1839 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1840 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
1841 }
1842
1843 /*
1844 * Reset the shadow page pool.
1845 */
1846 pgmR3PoolReset(pVM);
1847
1848 /*
1849 * Re-init various other members and clear the FFs that PGM owns.
1850 */
1851 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1852 {
1853 PVMCPU pVCpu = pVM->apCpusR3[i];
1854
1855 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
1856 PGMNotifyNxeChanged(pVCpu, false);
1857
1858 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1859 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1860
1861 if (!pVCpu->pgm.s.fA20Enabled)
1862 {
1863 pVCpu->pgm.s.fA20Enabled = true;
1864 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1865#ifdef PGM_WITH_A20
1866 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1867 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
1868 HMFlushTlb(pVCpu);
1869#endif
1870 }
1871 }
1872
1873 //pgmLogState(pVM);
1874 PGM_UNLOCK(pVM);
1875}
1876
1877
1878/**
1879 * Memory setup after VM construction or reset.
1880 *
1881 * @param pVM The cross context VM structure.
1882 * @param fAtReset Indicates the context, after reset if @c true or after
1883 * construction if @c false.
1884 */
1885VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
1886{
1887 if (fAtReset)
1888 {
1889 PGM_LOCK_VOID(pVM);
1890
1891 int rc = pgmR3PhysRamZeroAll(pVM);
1892 AssertReleaseRC(rc);
1893
1894 rc = pgmR3PhysRomReset(pVM);
1895 AssertReleaseRC(rc);
1896
1897 PGM_UNLOCK(pVM);
1898 }
1899}
1900
1901
1902#ifdef VBOX_STRICT
1903/**
1904 * VM state change callback for clearing fNoMorePhysWrites after
1905 * a snapshot has been created.
1906 */
1907static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
1908{
1909 if ( enmState == VMSTATE_RUNNING
1910 || enmState == VMSTATE_RESUMING)
1911 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
1912 NOREF(enmOldState); NOREF(pvUser);
1913}
1914#endif
1915
1916/**
1917 * Private API to reset fNoMorePhysWrites.
1918 */
1919VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
1920{
1921 pVM->pgm.s.fNoMorePhysWrites = false;
1922}
1923
1924/**
1925 * Terminates the PGM.
1926 *
1927 * @returns VBox status code.
1928 * @param pVM The cross context VM structure.
1929 */
1930VMMR3DECL(int) PGMR3Term(PVM pVM)
1931{
1932 /* Must free shared pages here. */
1933 PGM_LOCK_VOID(pVM);
1934 pgmR3PhysRamTerm(pVM);
1935 pgmR3PhysRomTerm(pVM);
1936 PGM_UNLOCK(pVM);
1937
1938 PGMDeregisterStringFormatTypes();
1939 return PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
1940}
1941
1942
1943/**
1944 * Show paging mode.
1945 *
1946 * @param pVM The cross context VM structure.
1947 * @param pHlp The info helpers.
1948 * @param pszArgs "all" (default), "guest", "shadow" or "host".
1949 */
1950static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1951{
1952 /* digest argument. */
1953 bool fGuest, fShadow, fHost;
1954 if (pszArgs)
1955 pszArgs = RTStrStripL(pszArgs);
1956 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
1957 fShadow = fHost = fGuest = true;
1958 else
1959 {
1960 fShadow = fHost = fGuest = false;
1961 if (strstr(pszArgs, "guest"))
1962 fGuest = true;
1963 if (strstr(pszArgs, "shadow"))
1964 fShadow = true;
1965 if (strstr(pszArgs, "host"))
1966 fHost = true;
1967 }
1968
1969 PVMCPU pVCpu = VMMGetCpu(pVM);
1970 if (!pVCpu)
1971 pVCpu = pVM->apCpusR3[0];
1972
1973
1974 /* print info. */
1975 if (fGuest)
1976 pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
1977 pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
1978 pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
1979 if (fShadow)
1980 pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
1981 if (fHost)
1982 {
1983 const char *psz;
1984 switch (pVM->pgm.s.enmHostMode)
1985 {
1986 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
1987 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
1988 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
1989 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
1990 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
1991 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
1992 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
1993 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
1994 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
1995 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
1996 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
1997 default: psz = "unknown"; break;
1998 }
1999 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2000 }
2001}
2002
2003
2004/**
2005 * Dump registered MMIO ranges to the log.
2006 *
2007 * @param pVM The cross context VM structure.
2008 * @param pHlp The info helpers.
2009 * @param pszArgs Arguments, ignored.
2010 */
2011static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2012{
2013 bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
2014
2015 pHlp->pfnPrintf(pHlp,
2016 "RAM ranges (pVM=%p)\n"
2017 "%.*s %.*s\n",
2018 pVM,
2019 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2020 sizeof(RTHCPTR) * 2, "pvHC ");
2021
2022 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2023 {
2024 pHlp->pfnPrintf(pHlp,
2025 "%RGp-%RGp %RHv %s\n",
2026 pCur->GCPhys,
2027 pCur->GCPhysLast,
2028 pCur->pvR3,
2029 pCur->pszDesc);
2030 if (fVerbose)
2031 {
2032 RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
2033 RTGCPHYS iPage = 0;
2034 while (iPage < cPages)
2035 {
2036 RTGCPHYS const iFirstPage = iPage;
2037 PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
2038 do
2039 iPage++;
2040 while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
2041 const char *pszType;
2042 const char *pszMore = NULL;
2043 switch (enmType)
2044 {
2045 case PGMPAGETYPE_RAM:
2046 pszType = "RAM";
2047 break;
2048
2049 case PGMPAGETYPE_MMIO2:
2050 pszType = "MMIO2";
2051 break;
2052
2053 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2054 pszType = "MMIO2-alias-MMIO";
2055 break;
2056
2057 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2058 pszType = "special-alias-MMIO";
2059 break;
2060
2061 case PGMPAGETYPE_ROM_SHADOW:
2062 case PGMPAGETYPE_ROM:
2063 {
2064 pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
2065
2066 RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
2067 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2068 while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
2069 pRom = pRom->pNextR3;
2070 if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
2071 pszMore = pRom->pszDesc;
2072 break;
2073 }
2074
2075 case PGMPAGETYPE_MMIO:
2076 {
2077 pszType = "MMIO";
2078 PGM_LOCK_VOID(pVM);
2079 PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE);
2080 if (pHandler)
2081 pszMore = pHandler->pszDesc;
2082 PGM_UNLOCK(pVM);
2083 break;
2084 }
2085
2086 case PGMPAGETYPE_INVALID:
2087 pszType = "invalid";
2088 break;
2089
2090 default:
2091 pszType = "bad";
2092 break;
2093 }
2094 if (pszMore)
2095 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
2096 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2097 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2098 pszType, pszMore);
2099 else
2100 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
2101 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2102 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2103 pszType);
2104
2105 }
2106 }
2107 }
2108}
2109
2110
2111/**
2112 * Dump the page directory to the log.
2113 *
2114 * @param pVM The cross context VM structure.
2115 * @param pHlp The info helpers.
2116 * @param pszArgs Arguments, ignored.
2117 */
2118static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2119{
2120 /** @todo SMP support!! */
2121 PVMCPU pVCpu = pVM->apCpusR3[0];
2122
2123/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2124 /* Big pages supported? */
2125 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2126
2127 /* Global pages supported? */
2128 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2129
2130 NOREF(pszArgs);
2131
2132 /*
2133 * Get page directory addresses.
2134 */
2135 PGM_LOCK_VOID(pVM);
2136 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2137 Assert(pPDSrc);
2138
2139 /*
2140 * Iterate the page directory.
2141 */
2142 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2143 {
2144 X86PDE PdeSrc = pPDSrc->a[iPD];
2145 if (PdeSrc.u & X86_PDE_P)
2146 {
2147 if ((PdeSrc.u & X86_PDE_PS) && fPSE)
2148 pHlp->pfnPrintf(pHlp,
2149 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2150 iPD,
2151 pgmGstGet4MBPhysPage(pVM, PdeSrc), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2152 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2153 else
2154 pHlp->pfnPrintf(pHlp,
2155 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2156 iPD,
2157 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2158 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2159 }
2160 }
2161 PGM_UNLOCK(pVM);
2162}
2163
2164
2165/**
2166 * Called by pgmPoolFlushAllInt prior to flushing the pool.
2167 *
2168 * @returns VBox status code, fully asserted.
2169 * @param pVCpu The cross context virtual CPU structure.
2170 */
2171int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
2172{
2173 /* Unmap the old CR3 value before flushing everything. */
2174 int rc = VINF_SUCCESS;
2175 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
2176 if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
2177 && g_aPgmBothModeData[idxBth].pfnUnmapCR3)
2178 {
2179 rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
2180 AssertRC(rc);
2181 }
2182
2183 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
2184 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
2185 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
2186 && g_aPgmShadowModeData[idxShw].pfnExit)
2187 {
2188 rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
2189 AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
2190 }
2191
2192 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
2193 return rc;
2194}
2195
2196
2197/**
2198 * Called by pgmPoolFlushAllInt after flushing the pool.
2199 *
2200 * @returns VBox status code, fully asserted.
2201 * @param pVM The cross context VM structure.
2202 * @param pVCpu The cross context virtual CPU structure.
2203 */
2204int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
2205{
2206 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
2207 int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
2208 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2209 AssertRCReturn(rc, rc);
2210 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
2211
2212 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE);
2213 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
2214 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
2215 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
2216 return rc;
2217}
2218
2219
2220/**
2221 * Called by PGMR3PhysSetA20 after changing the A20 state.
2222 *
2223 * @param pVCpu The cross context virtual CPU structure.
2224 */
2225void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
2226{
2227 /** @todo Probably doing a bit too much here. */
2228 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
2229 AssertReleaseRC(rc);
2230 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
2231 AssertReleaseRC(rc);
2232}
2233
2234
2235#ifdef VBOX_WITH_DEBUGGER
2236
2237/**
2238 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
2239 */
2240static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2241{
2242 /*
2243 * Validate input.
2244 */
2245 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2246 PVM pVM = pUVM->pVM;
2247 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
2248
2249 if (!cArgs)
2250 {
2251 /*
2252 * Print the list of error injection locations with status.
2253 */
2254 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
2255 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
2256 }
2257 else
2258 {
2259 /*
2260 * String switch on where to inject the error.
2261 */
2262 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
2263 const char *pszWhere = paArgs[0].u.pszString;
2264 if (!strcmp(pszWhere, "handy"))
2265 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
2266 else
2267 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
2268 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
2269 }
2270 return VINF_SUCCESS;
2271}
2272
2273
2274/**
2275 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
2276 */
2277static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2278{
2279 /*
2280 * Validate input.
2281 */
2282 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2283 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2284 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2285 if (!pVCpu)
2286 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2287
2288 /*
2289 * Force page directory sync.
2290 */
2291 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2292
2293 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
2294 if (RT_FAILURE(rc))
2295 return rc;
2296
2297 return VINF_SUCCESS;
2298}
2299
2300#ifdef VBOX_STRICT
2301
2302/**
2303 * EMT callback for pgmR3CmdAssertCR3.
2304 *
2305 * @returns VBox status code.
2306 * @param pUVM The user mode VM handle.
2307 * @param pcErrors Where to return the error count.
2308 */
2309static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
2310{
2311 PVM pVM = pUVM->pVM;
2312 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
2313 PVMCPU pVCpu = VMMGetCpu(pVM);
2314
2315 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
2316
2317 return VINF_SUCCESS;
2318}
2319
2320
2321/**
2322 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
2323 */
2324static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2325{
2326 /*
2327 * Validate input.
2328 */
2329 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2330 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2331
2332 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
2333 if (RT_FAILURE(rc))
2334 return rc;
2335
2336 unsigned cErrors = 0;
2337 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
2338 if (RT_FAILURE(rc))
2339 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
2340 if (cErrors > 0)
2341 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
2342 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
2343}
2344
2345#endif /* VBOX_STRICT */
2346
2347/**
2348 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
2349 */
2350static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2351{
2352 /*
2353 * Validate input.
2354 */
2355 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2356 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2357 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2358 if (!pVCpu)
2359 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2360
2361 /*
2362 * Force page directory sync.
2363 */
2364 int rc;
2365 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
2366 {
2367 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
2368 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
2369 }
2370 else
2371 {
2372 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
2373 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2374 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
2375 }
2376 return rc;
2377}
2378
2379
2380/**
2381 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
2382 */
2383static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2384{
2385 /*
2386 * Validate input.
2387 */
2388 NOREF(pCmd);
2389 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2390 PVM pVM = pUVM->pVM;
2391 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
2392 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
2393 if (cArgs == 2)
2394 {
2395 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2396 if (strcmp(paArgs[1].u.pszString, "nozero"))
2397 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
2398 }
2399 bool fIncZeroPgs = cArgs < 2;
2400
2401 /*
2402 * Open the output file and get the ram parameters.
2403 */
2404 RTFILE hFile;
2405 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
2406 if (RT_FAILURE(rc))
2407 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
2408
2409 uint32_t cbRamHole = 0;
2410 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
2411 uint64_t cbRam = 0;
2412 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
2413 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
2414
2415 /*
2416 * Dump the physical memory, page by page.
2417 */
2418 RTGCPHYS GCPhys = 0;
2419 char abZeroPg[PAGE_SIZE];
2420 RT_ZERO(abZeroPg);
2421
2422 PGM_LOCK_VOID(pVM);
2423 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2424 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
2425 pRam = pRam->pNextR3)
2426 {
2427 /* fill the gap */
2428 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
2429 {
2430 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
2431 {
2432 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
2433 GCPhys += PAGE_SIZE;
2434 }
2435 }
2436
2437 PCPGMPAGE pPage = &pRam->aPages[0];
2438 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
2439 {
2440 if ( PGM_PAGE_IS_ZERO(pPage)
2441 || PGM_PAGE_IS_BALLOONED(pPage))
2442 {
2443 if (fIncZeroPgs)
2444 {
2445 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
2446 if (RT_FAILURE(rc))
2447 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2448 }
2449 }
2450 else
2451 {
2452 switch (PGM_PAGE_GET_TYPE(pPage))
2453 {
2454 case PGMPAGETYPE_RAM:
2455 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
2456 case PGMPAGETYPE_ROM:
2457 case PGMPAGETYPE_MMIO2:
2458 {
2459 void const *pvPage;
2460 PGMPAGEMAPLOCK Lock;
2461 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
2462 if (RT_SUCCESS(rc))
2463 {
2464 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
2465 PGMPhysReleasePageMappingLock(pVM, &Lock);
2466 if (RT_FAILURE(rc))
2467 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2468 }
2469 else
2470 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2471 break;
2472 }
2473
2474 default:
2475 AssertFailed();
2476 RT_FALL_THRU();
2477 case PGMPAGETYPE_MMIO:
2478 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2479 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2480 if (fIncZeroPgs)
2481 {
2482 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
2483 if (RT_FAILURE(rc))
2484 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2485 }
2486 break;
2487 }
2488 }
2489
2490
2491 /* advance */
2492 GCPhys += PAGE_SIZE;
2493 pPage++;
2494 }
2495 }
2496 PGM_UNLOCK(pVM);
2497
2498 RTFileClose(hFile);
2499 if (RT_SUCCESS(rc))
2500 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
2501 return VINF_SUCCESS;
2502}
2503
2504#endif /* VBOX_WITH_DEBUGGER */
2505
2506/**
2507 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
2508 */
2509typedef struct PGMCHECKINTARGS
2510{
2511 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
2512 PPGMPHYSHANDLER pPrevPhys;
2513 PVM pVM;
2514} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
2515
2516/**
2517 * Validate a node in the physical handler tree.
2518 *
2519 * @returns 0 on if ok, other wise 1.
2520 * @param pNode The handler node.
2521 * @param pvUser pVM.
2522 */
2523static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2524{
2525 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
2526 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
2527 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
2528 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
2529 ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
2530 AssertReleaseMsg( !pArgs->pPrevPhys
2531 || ( pArgs->fLeftToRight
2532 ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
2533 : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
2534 ("pPrevPhys=%p %RGp-%RGp %s\n"
2535 " pCur=%p %RGp-%RGp %s\n",
2536 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
2537 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
2538 pArgs->pPrevPhys = pCur;
2539 return 0;
2540}
2541
2542
2543/**
2544 * Perform an integrity check on the PGM component.
2545 *
2546 * @returns VINF_SUCCESS if everything is fine.
2547 * @returns VBox error status after asserting on integrity breach.
2548 * @param pVM The cross context VM structure.
2549 */
2550VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
2551{
2552 /*
2553 * Check the trees.
2554 */
2555 int cErrors = 0;
2556 const PGMCHECKINTARGS LeftToRight = { true, NULL, pVM };
2557 const PGMCHECKINTARGS RightToLeft = { false, NULL, pVM };
2558 PGMCHECKINTARGS Args = LeftToRight;
2559 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
2560 Args = RightToLeft;
2561 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
2562
2563 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
2564}
2565
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette