VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 93444

Last change on this file since 93444 was 93444, checked in by vboxsync, 3 years ago

VMM,Main,HostServices: Use a function table for accessing the VBoxVMM.dll/so/dylib functionality, and load it dynamically when the Console object is initialized. Also converted a few drivers in Main to use device helpers to get config values and such. bugref:10074

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 138.8 KB
Line 
1/* $Id: PGM.cpp 93444 2022-01-26 18:01:15Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @sa @ref grp_pgm
22 * @subpage pg_pgm_pool
23 * @subpage pg_pgm_phys
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_phys Physical Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers (obsolete)
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @section sec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC or RTR0MemObjAllocPhys allocate
254 * memory object and the tracking machinery associated with it.
255 *
256 *
257 *
258 *
259 * @section sec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @section sec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @section sec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @section sec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @section sec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
555 * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
556 * track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Changes Changes
586 *
587 * Breakdown of the changes involved?
588 */
589
590
591/*********************************************************************************************************************************
592* Header Files *
593*********************************************************************************************************************************/
594#define LOG_GROUP LOG_GROUP_PGM
595#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
596#include <VBox/vmm/dbgf.h>
597#include <VBox/vmm/pgm.h>
598#include <VBox/vmm/cpum.h>
599#include <VBox/vmm/iom.h>
600#include <VBox/sup.h>
601#include <VBox/vmm/mm.h>
602#include <VBox/vmm/em.h>
603#include <VBox/vmm/stam.h>
604#include <VBox/vmm/selm.h>
605#include <VBox/vmm/ssm.h>
606#include <VBox/vmm/hm.h>
607#include "PGMInternal.h"
608#include <VBox/vmm/vm.h>
609#include <VBox/vmm/uvm.h>
610#include "PGMInline.h"
611
612#include <VBox/dbg.h>
613#include <VBox/param.h>
614#include <VBox/err.h>
615
616#include <iprt/asm.h>
617#include <iprt/asm-amd64-x86.h>
618#include <iprt/assert.h>
619#include <iprt/env.h>
620#include <iprt/mem.h>
621#include <iprt/file.h>
622#include <iprt/string.h>
623#include <iprt/thread.h>
624#ifdef RT_OS_LINUX
625# include <iprt/linux/sysfs.h>
626#endif
627
628
629/*********************************************************************************************************************************
630* Structures and Typedefs *
631*********************************************************************************************************************************/
632/**
633 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
634 * pgmR3RelocateHyperVirtHandler.
635 */
636typedef struct PGMRELOCHANDLERARGS
637{
638 RTGCINTPTR offDelta;
639 PVM pVM;
640} PGMRELOCHANDLERARGS;
641/** Pointer to a page access handlere relocation argument package. */
642typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
643
644
645/*********************************************************************************************************************************
646* Internal Functions *
647*********************************************************************************************************************************/
648static int pgmR3InitPaging(PVM pVM);
649static int pgmR3InitStats(PVM pVM);
650static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
651static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
652static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
653#ifdef VBOX_STRICT
654static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
655#endif
656
657#ifdef VBOX_WITH_DEBUGGER
658static FNDBGCCMD pgmR3CmdError;
659static FNDBGCCMD pgmR3CmdSync;
660static FNDBGCCMD pgmR3CmdSyncAlways;
661# ifdef VBOX_STRICT
662static FNDBGCCMD pgmR3CmdAssertCR3;
663# endif
664static FNDBGCCMD pgmR3CmdPhysToFile;
665#endif
666
667
668/*********************************************************************************************************************************
669* Global Variables *
670*********************************************************************************************************************************/
671#ifdef VBOX_WITH_DEBUGGER
672/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
673static const DBGCVARDESC g_aPgmErrorArgs[] =
674{
675 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
676 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
677};
678
679static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
680{
681 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
682 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
683 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
684};
685
686# ifdef DEBUG_sandervl
687static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
688{
689 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
690 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
691 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
692};
693# endif
694
695/** Command descriptors. */
696static const DBGCCMD g_aCmds[] =
697{
698 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
699 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
700 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
701 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
702# ifdef VBOX_STRICT
703 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
704# ifdef VBOX_WITH_PAGE_SHARING
705 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
706 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
707# endif
708# endif
709 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
710 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
711};
712#endif
713
714#ifdef VBOX_WITH_PGM_NEM_MODE
715
716/**
717 * Interface that NEM uses to switch PGM into simplified memory managment mode.
718 *
719 * This call occurs before PGMR3Init.
720 *
721 * @param pVM The cross context VM structure.
722 */
723VMMR3_INT_DECL(void) PGMR3EnableNemMode(PVM pVM)
724{
725 AssertFatal(!PDMCritSectIsInitialized(&pVM->pgm.s.CritSectX));
726 pVM->pgm.s.fNemMode = true;
727}
728
729
730/**
731 * Checks whether the simplificed memory management mode for NEM is enabled.
732 *
733 * @returns true if enabled, false if not.
734 * @param pVM The cross context VM structure.
735 */
736VMMR3_INT_DECL(bool) PGMR3IsNemModeEnabled(PVM pVM)
737{
738 return pVM->pgm.s.fNemMode;
739}
740
741#endif /* VBOX_WITH_PGM_NEM_MODE */
742
743/**
744 * Initiates the paging of VM.
745 *
746 * @returns VBox status code.
747 * @param pVM The cross context VM structure.
748 */
749VMMR3DECL(int) PGMR3Init(PVM pVM)
750{
751 LogFlow(("PGMR3Init:\n"));
752 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
753 int rc;
754
755 /*
756 * Assert alignment and sizes.
757 */
758 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
759 AssertCompile(sizeof(pVM->apCpusR3[0]->pgm.s) <= sizeof(pVM->apCpusR3[0]->pgm.padding));
760 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
761
762 /*
763 * If we're in driveless mode we have to use the simplified memory mode.
764 */
765 bool const fDriverless = SUPR3IsDriverless();
766 if (fDriverless)
767 {
768#ifdef VBOX_WITH_PGM_NEM_MODE
769 if (!pVM->pgm.s.fNemMode)
770 pVM->pgm.s.fNemMode = true;
771#else
772 return VMR3SetError(pVM->pUVM, VERR_SUP_DRIVERLESS, RT_SRC_POS,
773 "Driverless requires that VBox is built with VBOX_WITH_PGM_NEM_MODE defined");
774#endif
775 }
776
777 /*
778 * Init the structure.
779 */
780 /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
781
782 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
783 {
784 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
785 pVM->pgm.s.aHandyPages[i].fZeroed = false;
786 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
787 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
788 }
789
790 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
791 {
792 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
793 pVM->pgm.s.aLargeHandyPage[i].fZeroed = false;
794 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
795 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
796 }
797
798 /* Init the per-CPU part. */
799 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
800 {
801 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
802 PPGMCPU pPGM = &pVCpu->pgm.s;
803
804 pPGM->enmShadowMode = PGMMODE_INVALID;
805 pPGM->enmGuestMode = PGMMODE_INVALID;
806 pPGM->enmGuestSlatMode = PGMSLAT_INVALID;
807 pPGM->idxGuestModeData = UINT8_MAX;
808 pPGM->idxShadowModeData = UINT8_MAX;
809 pPGM->idxBothModeData = UINT8_MAX;
810
811 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
812 pPGM->GCPhysNstGstCR3 = NIL_RTGCPHYS;
813
814 pPGM->pGst32BitPdR3 = NULL;
815 pPGM->pGstPaePdptR3 = NULL;
816 pPGM->pGstAmd64Pml4R3 = NULL;
817 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
818 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
819 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
820#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
821 pPGM->pGstEptPml4R3 = NULL;
822 pPGM->pGstEptPml4R0 = NIL_RTR0PTR;
823 pPGM->uEptPtr = 0;
824#endif
825 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
826 {
827 pPGM->apGstPaePDsR3[i] = NULL;
828 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
829 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
830 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
831 }
832
833 pPGM->fA20Enabled = true;
834 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
835 }
836
837 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
838 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
839
840 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
841#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
842 true
843#else
844 false
845#endif
846 );
847 AssertLogRelRCReturn(rc, rc);
848
849#if HC_ARCH_BITS == 32
850# ifdef RT_OS_DARWIN
851 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
852# else
853 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
854# endif
855#else
856 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
857#endif
858 AssertLogRelRCReturn(rc, rc);
859 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
860 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
861
862 /*
863 * Get the configured RAM size - to estimate saved state size.
864 */
865 uint64_t cbRam;
866 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
867 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
868 cbRam = 0;
869 else if (RT_SUCCESS(rc))
870 {
871 if (cbRam < PAGE_SIZE)
872 cbRam = 0;
873 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
874 }
875 else
876 {
877 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
878 return rc;
879 }
880
881 /*
882 * Check for PCI pass-through and other configurables.
883 */
884 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
885 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
886 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
887
888 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
889 AssertLogRelRCReturn(rc, rc);
890
891 /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
892 * Whether to clear RAM pages on (hard) reset. */
893 rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
894 AssertLogRelRCReturn(rc, rc);
895
896 /*
897 * Register callbacks, string formatters and the saved state data unit.
898 */
899#ifdef VBOX_STRICT
900 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
901#endif
902 PGMRegisterStringFormatTypes();
903
904 rc = pgmR3InitSavedState(pVM, cbRam);
905 if (RT_FAILURE(rc))
906 return rc;
907
908 /*
909 * Initialize the PGM critical section and flush the phys TLBs
910 */
911 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
912 AssertRCReturn(rc, rc);
913
914 PGMR3PhysChunkInvalidateTLB(pVM);
915 pgmPhysInvalidatePageMapTLB(pVM);
916
917 /*
918 * For the time being we sport a full set of handy pages in addition to the base
919 * memory to simplify things.
920 */
921 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
922 AssertRCReturn(rc, rc);
923
924 /*
925 * Trees
926 */
927 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
928 if (RT_SUCCESS(rc))
929 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
930
931 /*
932 * Allocate the zero page.
933 */
934 if (RT_SUCCESS(rc))
935 {
936 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
937 if (RT_SUCCESS(rc))
938 {
939 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
940 pVM->pgm.s.HCPhysZeroPg = !fDriverless ? MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3)
941 : _4G - PAGE_SIZE * 2 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
942 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
943 }
944 }
945
946 /*
947 * Allocate the invalid MMIO page.
948 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
949 */
950 if (RT_SUCCESS(rc))
951 {
952 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
953 if (RT_SUCCESS(rc))
954 {
955 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
956 pVM->pgm.s.HCPhysMmioPg = !fDriverless ? MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3)
957 : _4G - PAGE_SIZE * 3 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
958 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
959 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
960 }
961 }
962
963 /*
964 * Register the physical access handler protecting ROMs.
965 */
966 if (RT_SUCCESS(rc))
967 /** @todo why isn't pgmPhysRomWriteHandler registered for ring-0? */
968 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, false /*fKeepPgmLock*/,
969 pgmPhysRomWriteHandler,
970 NULL, NULL, "pgmPhysRomWritePfHandler",
971 NULL, NULL, "pgmPhysRomWritePfHandler",
972 "ROM write protection",
973 &pVM->pgm.s.hRomPhysHandlerType);
974
975 /*
976 * Register the physical access handler doing dirty MMIO2 tracing.
977 */
978 if (RT_SUCCESS(rc))
979 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, true /*fKeepPgmLock*/,
980 pgmPhysMmio2WriteHandler,
981 NULL, "pgmPhysMmio2WriteHandler", "pgmPhysMmio2WritePfHandler",
982 NULL, "pgmPhysMmio2WriteHandler", "pgmPhysMmio2WritePfHandler",
983 "MMIO2 dirty page tracing",
984 &pVM->pgm.s.hMmio2DirtyPhysHandlerType);
985
986 /*
987 * Init the paging.
988 */
989 if (RT_SUCCESS(rc))
990 rc = pgmR3InitPaging(pVM);
991
992 /*
993 * Init the page pool.
994 */
995 if (RT_SUCCESS(rc))
996 rc = pgmR3PoolInit(pVM);
997
998 if (RT_SUCCESS(rc))
999 {
1000 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1001 {
1002 PVMCPU pVCpu = pVM->apCpusR3[i];
1003 rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1004 if (RT_FAILURE(rc))
1005 break;
1006 }
1007 }
1008
1009 if (RT_SUCCESS(rc))
1010 {
1011 /*
1012 * Info & statistics
1013 */
1014 DBGFR3InfoRegisterInternalEx(pVM, "mode",
1015 "Shows the current paging mode. "
1016 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1017 pgmR3InfoMode,
1018 DBGFINFO_FLAGS_ALL_EMTS);
1019 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1020 "Dumps all the entries in the top level paging table. No arguments.",
1021 pgmR3InfoCr3);
1022 DBGFR3InfoRegisterInternal(pVM, "phys",
1023 "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
1024 pgmR3PhysInfo);
1025 DBGFR3InfoRegisterInternal(pVM, "handlers",
1026 "Dumps physical, virtual and hyper virtual handlers. "
1027 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1028 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1029 pgmR3InfoHandlers);
1030
1031 pgmR3InitStats(pVM);
1032
1033#ifdef VBOX_WITH_DEBUGGER
1034 /*
1035 * Debugger commands.
1036 */
1037 static bool s_fRegisteredCmds = false;
1038 if (!s_fRegisteredCmds)
1039 {
1040 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1041 if (RT_SUCCESS(rc2))
1042 s_fRegisteredCmds = true;
1043 }
1044#endif
1045
1046#ifdef RT_OS_LINUX
1047 /*
1048 * Log the /proc/sys/vm/max_map_count value on linux as that is
1049 * frequently giving us grief when too low.
1050 */
1051 int64_t const cGuessNeeded = MMR3PhysGetRamSize(pVM) / _2M + 16384 /*guesstimate*/;
1052 int64_t cMaxMapCount = 0;
1053 int rc2 = RTLinuxSysFsReadIntFile(10, &cMaxMapCount, "/proc/sys/vm/max_map_count");
1054 LogRel(("PGM: /proc/sys/vm/max_map_count = %RI64 (rc2=%Rrc); cGuessNeeded=%RI64\n", cMaxMapCount, rc2, cGuessNeeded));
1055 if (RT_SUCCESS(rc2) && cMaxMapCount < cGuessNeeded)
1056 LogRel(("PGM: WARNING!!\n"
1057 "PGM: WARNING!! Please increase /proc/sys/vm/max_map_count to at least %RI64 (or reduce the amount of RAM assigned to the VM)!\n"
1058 "PGM: WARNING!!\n", cMaxMapCount));
1059
1060#endif
1061
1062 return VINF_SUCCESS;
1063 }
1064
1065 /* Almost no cleanup necessary, MM frees all memory. */
1066 PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
1067
1068 return rc;
1069}
1070
1071
1072/**
1073 * Init paging.
1074 *
1075 * Since we need to check what mode the host is operating in before we can choose
1076 * the right paging functions for the host we have to delay this until R0 has
1077 * been initialized.
1078 *
1079 * @returns VBox status code.
1080 * @param pVM The cross context VM structure.
1081 */
1082static int pgmR3InitPaging(PVM pVM)
1083{
1084 /*
1085 * Force a recalculation of modes and switcher so everyone gets notified.
1086 */
1087 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1088 {
1089 PVMCPU pVCpu = pVM->apCpusR3[i];
1090
1091 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1092 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1093 pVCpu->pgm.s.enmGuestSlatMode = PGMSLAT_INVALID;
1094 pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
1095 pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
1096 pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
1097 }
1098
1099 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1100
1101 /*
1102 * Initialize paging workers and mode from current host mode
1103 * and the guest running in real mode.
1104 */
1105 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1106 switch (pVM->pgm.s.enmHostMode)
1107 {
1108 case SUPPAGINGMODE_32_BIT:
1109 case SUPPAGINGMODE_32_BIT_GLOBAL:
1110 case SUPPAGINGMODE_PAE:
1111 case SUPPAGINGMODE_PAE_GLOBAL:
1112 case SUPPAGINGMODE_PAE_NX:
1113 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1114 break;
1115
1116 case SUPPAGINGMODE_AMD64:
1117 case SUPPAGINGMODE_AMD64_GLOBAL:
1118 case SUPPAGINGMODE_AMD64_NX:
1119 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1120 if (ARCH_BITS != 64)
1121 {
1122 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1123 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1124 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1125 }
1126 break;
1127 default:
1128 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1129 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1130 }
1131
1132 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1133#if HC_ARCH_BITS == 64 && 0
1134 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1135 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1136 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1137 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1138 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1139 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1140 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1141#endif
1142
1143 /*
1144 * Log the host paging mode. It may come in handy.
1145 */
1146 const char *pszHostMode;
1147 switch (pVM->pgm.s.enmHostMode)
1148 {
1149 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1150 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1151 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1152 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1153 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1154 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1155 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1156 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1157 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1158 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1159 default: pszHostMode = "???"; break;
1160 }
1161 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1162
1163 return VINF_SUCCESS;
1164}
1165
1166
1167/**
1168 * Init statistics
1169 * @returns VBox status code.
1170 */
1171static int pgmR3InitStats(PVM pVM)
1172{
1173 PPGM pPGM = &pVM->pgm.s;
1174 int rc;
1175
1176 /*
1177 * Release statistics.
1178 */
1179 /* Common - misc variables */
1180 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1181 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1182 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1183 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1184 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1185 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1186 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1187 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1188 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1189 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1190 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1191 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1192 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1193 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1194 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1195 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1196 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1197 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1198
1199 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1200 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1201 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1202
1203 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1204 STAM_REL_REG(pVM, &pPGM->StatMmio2QueryAndResetDirtyBitmap, STAMTYPE_PROFILE, "/PGM/Mmio2QueryAndResetDirtyBitmap", STAMUNIT_TICKS_PER_CALL, "Profiles calls to PGMR3PhysMmio2QueryAndResetDirtyBitmap (sans locking).");
1205
1206 /* Live save */
1207 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1208 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1209 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1210 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1211 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1212 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1213 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1214 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1215 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1216 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1217 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1218 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1219 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1220 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1221 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1222 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1223 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1224 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1225
1226#define PGM_REG_COUNTER(a, b, c) \
1227 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1228 AssertRC(rc);
1229
1230#define PGM_REG_COUNTER_BYTES(a, b, c) \
1231 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1232 AssertRC(rc);
1233
1234#define PGM_REG_PROFILE(a, b, c) \
1235 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1236 AssertRC(rc);
1237#define PGM_REG_PROFILE_NS(a, b, c) \
1238 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, c, b); \
1239 AssertRC(rc);
1240
1241#ifdef VBOX_WITH_STATISTICS
1242 PGMSTATS *pStats = &pPGM->Stats;
1243#endif
1244
1245 PGM_REG_PROFILE_NS(&pPGM->StatLargePageAlloc, "/PGM/LargePage/Alloc", "Time spent by the host OS for large page allocation.");
1246 PGM_REG_COUNTER(&pPGM->StatLargePageAllocFailed, "/PGM/LargePage/AllocFailed", "Number of allocation failures.");
1247 PGM_REG_COUNTER(&pPGM->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1248 PGM_REG_COUNTER(&pPGM->StatLargePageTlbFlush, "/PGM/LargePage/TlbFlush", "The number of times a full VCPU TLB flush was required after a large allocation.");
1249 PGM_REG_COUNTER(&pPGM->StatLargePageZeroEvict, "/PGM/LargePage/ZeroEvict", "The number of zero page mappings we had to evict when allocating a large page.");
1250#ifdef VBOX_WITH_STATISTICS
1251 PGM_REG_PROFILE(&pStats->StatLargePageAlloc2, "/PGM/LargePage/Alloc2", "Time spent allocating large pages.");
1252 PGM_REG_PROFILE(&pStats->StatLargePageSetup, "/PGM/LargePage/Setup", "Time spent setting up the newly allocated large pages.");
1253 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/IsValidR3", "pgmPhysIsValidLargePage profiling - R3.");
1254 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/IsValidRZ", "pgmPhysIsValidLargePage profiling - RZ.");
1255
1256 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1257 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1258 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1259 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1260 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1261 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1262 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1263 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1264 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1265 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1266
1267 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1268 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1269 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1270 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1271 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1272 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1273
1274 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1275 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1276 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1277 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1278 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1279 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1280 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1281 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1282
1283 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1284 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1285 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1286 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1287
1288 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1289 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1290 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1291 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1292 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1293 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1294
1295 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1296 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1297/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1298 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1299 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1300/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1301
1302 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1303 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1304 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1305 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1306 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1307 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1308 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1309 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1310
1311 /* GC only: */
1312 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1313 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1314
1315 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1316 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1317 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1318 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1319 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1320 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1321 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1322 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1323
1324 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1325 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1326 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1327 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1328 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1329 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1330 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1331#endif
1332
1333#undef PGM_REG_COUNTER
1334#undef PGM_REG_PROFILE
1335#undef PGM_REG_PROFILE_NS
1336
1337 /*
1338 * Note! The layout below matches the member layout exactly!
1339 */
1340
1341 /*
1342 * Common - stats
1343 */
1344 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1345 {
1346 PPGMCPU pPgmCpu = &pVM->apCpusR3[idCpu]->pgm.s;
1347
1348#define PGM_REG_COUNTER(a, b, c) \
1349 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1350 AssertRC(rc);
1351#define PGM_REG_PROFILE(a, b, c) \
1352 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1353 AssertRC(rc);
1354
1355 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1356 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1357
1358#ifdef VBOX_WITH_STATISTICS
1359 PGMCPUSTATS *pCpuStats = &pVM->apCpusR3[idCpu]->pgm.s.Stats;
1360
1361# if 0 /* rarely useful; leave for debugging. */
1362 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1363 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1364 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1365 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1366 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1367 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1368# endif
1369 /* R0 only: */
1370 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1371 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1372
1373 /* RZ only: */
1374 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1375 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1376 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1377 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1378 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1379 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1380 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1381 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1382 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1383 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1384 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1385 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1386 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1387 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1388 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1389 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1390 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1391 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1392 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1393 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1394 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1395 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1396 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1397 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1398 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1399 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1400 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1401 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1402 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1403 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1404 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1405 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1406 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1407 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1408 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1409 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1410 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1411 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1412#if 0 /* rarely useful; leave for debugging. */
1413 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1414 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1415 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1416#endif
1417 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1418 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1419 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1420 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1421 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1422
1423 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1424 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1425 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1426 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1427 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1428 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1429 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1430 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1431 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1432 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1433 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1434 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1435 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1436 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1437 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1438 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1439 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1440 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1441 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1442 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1443 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1444 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1445 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1446 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1447 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1448 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1449 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1450 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1451 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1452 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1453 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1454 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1455 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1456 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1457 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1458 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1459
1460 /* HC only: */
1461
1462 /* RZ & R3: */
1463 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1464 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1465 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1466 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1467 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1468 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1469 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1470 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1471 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1472 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1473 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1474 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1475 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1476 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1477 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1478 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1479 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1480 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1481 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1482 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1483 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1484 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1485 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1486 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1487 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1488 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1489 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1490 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1491 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1492 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1493 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1494 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1495 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1496 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1497 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1498 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1499 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1500 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1501 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1502 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1503 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1504 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1505 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1506 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1507 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1508 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1509 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1510
1511 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1512 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1513 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1514 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1515 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1516 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1517 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1518 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1519 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1520 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1521 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1522 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1523 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1524 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1525 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1526 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1527 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1528 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1529 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1530 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1531 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1532 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1533 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1534 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1535 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1536 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1537 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1538 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1539 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1540 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1541 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1542 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1543 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1544 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1545 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1546 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1547 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1548 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1549 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1550 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1551 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1552 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1553 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1554 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1555#endif /* VBOX_WITH_STATISTICS */
1556
1557#undef PGM_REG_PROFILE
1558#undef PGM_REG_COUNTER
1559
1560 }
1561
1562 return VINF_SUCCESS;
1563}
1564
1565
1566/**
1567 * Ring-3 init finalizing.
1568 *
1569 * @returns VBox status code.
1570 * @param pVM The cross context VM structure.
1571 */
1572VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1573{
1574 /*
1575 * Determine the max physical address width (MAXPHYADDR) and apply it to
1576 * all the mask members and stuff.
1577 */
1578 uint32_t cMaxPhysAddrWidth;
1579 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
1580 if ( uMaxExtLeaf >= 0x80000008
1581 && uMaxExtLeaf <= 0x80000fff)
1582 {
1583 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
1584 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
1585 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
1586 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
1587 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
1588 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
1589 }
1590 else
1591 {
1592 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
1593 cMaxPhysAddrWidth = 48;
1594 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
1595 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
1596 }
1597 Assert(pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth == cMaxPhysAddrWidth);
1598
1599 /** @todo query from CPUM. */
1600 pVM->pgm.s.GCPhysInvAddrMask = 0;
1601 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
1602 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
1603
1604 /*
1605 * Initialize the invalid paging entry masks, assuming NX is disabled.
1606 */
1607 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
1608#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1609 uint64_t const fEptVpidCap = CPUMGetGuestIa32VmxEptVpidCap(pVM->apCpusR3[0]); /* should be identical for all VCPUs. */
1610 uint64_t const fGstEptMbzBigPdeMask = EPT_PDE2M_MBZ_MASK
1611 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDE_2M) ^ 1) << EPT_E_BIT_LEAF;
1612 uint64_t const fGstEptMbzBigPdpteMask = EPT_PDPTE1G_MBZ_MASK
1613 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDPTE_1G) ^ 1) << EPT_E_BIT_LEAF;
1614#endif
1615 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1616 {
1617 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1618
1619 /** @todo The manuals are not entirely clear whether the physical
1620 * address width is relevant. See table 5-9 in the intel
1621 * manual vs the PDE4M descriptions. Write testcase (NP). */
1622 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
1623 | X86_PDE4M_MBZ_MASK;
1624
1625 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
1626 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
1627 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
1628 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
1629
1630 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
1631 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
1632 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
1633 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
1634 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
1635 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
1636
1637 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
1638 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
1639 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
1640 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
1641 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
1642 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
1643 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
1644
1645#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1646 pVCpu->pgm.s.uEptVpidCapMsr = fEptVpidCap;
1647 pVCpu->pgm.s.fGstEptMbzPteMask = fMbzPageFrameMask | EPT_PTE_MBZ_MASK;
1648 pVCpu->pgm.s.fGstEptMbzPdeMask = fMbzPageFrameMask | EPT_PDE_MBZ_MASK;
1649 pVCpu->pgm.s.fGstEptMbzBigPdeMask = fMbzPageFrameMask | fGstEptMbzBigPdeMask;
1650 pVCpu->pgm.s.fGstEptMbzPdpteMask = fMbzPageFrameMask | EPT_PDPTE_MBZ_MASK;
1651 pVCpu->pgm.s.fGstEptMbzBigPdpteMask = fMbzPageFrameMask | fGstEptMbzBigPdpteMask;
1652 pVCpu->pgm.s.fGstEptMbzPml4eMask = fMbzPageFrameMask | EPT_PML4E_MBZ_MASK;
1653
1654 /* If any of the features (in the assert below) are enabled, we might have to shadow the relevant bits. */
1655 Assert( !pVM->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt
1656 && !pVM->cpum.ro.GuestFeatures.fVmxSppEpt
1657 && !pVM->cpum.ro.GuestFeatures.fVmxEptXcptVe);
1658 pVCpu->pgm.s.fGstEptPresentMask = EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE;
1659#endif
1660 }
1661
1662 /*
1663 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1664 * Intel only goes up to 36 bits, so we stick to 36 as well.
1665 * Update: More recent intel manuals specifies 40 bits just like AMD.
1666 */
1667 uint32_t u32Dummy, u32Features;
1668 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1669 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1670 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
1671 else
1672 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1673
1674 /*
1675 * Allocate memory if we're supposed to do that.
1676 */
1677 int rc = VINF_SUCCESS;
1678 if (pVM->pgm.s.fRamPreAlloc)
1679 rc = pgmR3PhysRamPreAllocate(pVM);
1680
1681 //pgmLogState(pVM);
1682 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp -> %Rrc\n", pVM->pgm.s.GCPhys4MBPSEMask, rc));
1683 return rc;
1684}
1685
1686
1687/**
1688 * Init phase completed callback.
1689 *
1690 * @returns VBox status code.
1691 * @param pVM The cross context VM structure.
1692 * @param enmWhat What has been completed.
1693 * @thread EMT(0)
1694 */
1695VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1696{
1697 switch (enmWhat)
1698 {
1699 case VMINITCOMPLETED_HM:
1700#ifdef VBOX_WITH_PCI_PASSTHROUGH
1701 if (pVM->pgm.s.fPciPassthrough)
1702 {
1703 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
1704 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
1705 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
1706
1707 /*
1708 * Report assignments to the IOMMU (hope that's good enough for now).
1709 */
1710 if (pVM->pgm.s.fPciPassthrough)
1711 {
1712 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
1713 AssertRCReturn(rc, rc);
1714 }
1715 }
1716#else
1717 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
1718#endif
1719 break;
1720
1721 default:
1722 /* shut up gcc */
1723 break;
1724 }
1725
1726 return VINF_SUCCESS;
1727}
1728
1729
1730/**
1731 * Applies relocations to data and code managed by this component.
1732 *
1733 * This function will be called at init and whenever the VMM need to relocate it
1734 * self inside the GC.
1735 *
1736 * @param pVM The cross context VM structure.
1737 * @param offDelta Relocation delta relative to old location.
1738 */
1739VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1740{
1741 LogFlow(("PGMR3Relocate: offDelta=%RGv\n", offDelta));
1742
1743 /*
1744 * Paging stuff.
1745 */
1746
1747 /* Shadow, guest and both mode switch & relocation for each VCPU. */
1748 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1749 {
1750 PVMCPU pVCpu = pVM->apCpusR3[i];
1751
1752 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
1753 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
1754 && g_aPgmShadowModeData[idxShw].pfnRelocate)
1755 g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
1756 else
1757 AssertFailed();
1758
1759 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1760 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1761 && g_aPgmGuestModeData[idxGst].pfnRelocate)
1762 g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
1763 else
1764 AssertFailed();
1765 }
1766
1767 /*
1768 * Ram ranges.
1769 */
1770 if (pVM->pgm.s.pRamRangesXR3)
1771 pgmR3PhysRelinkRamRanges(pVM);
1772
1773 /*
1774 * The Zero page.
1775 */
1776 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1777 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || SUPR3IsDriverless());
1778
1779 /*
1780 * The page pool.
1781 */
1782 pgmR3PoolRelocate(pVM);
1783}
1784
1785
1786/**
1787 * Resets a virtual CPU when unplugged.
1788 *
1789 * @param pVM The cross context VM structure.
1790 * @param pVCpu The cross context virtual CPU structure.
1791 */
1792VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1793{
1794 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1795 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1796 && g_aPgmGuestModeData[idxGst].pfnExit)
1797 {
1798 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1799 AssertReleaseRC(rc);
1800 }
1801 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1802 pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
1803
1804 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1805 AssertReleaseRC(rc);
1806
1807 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1808
1809 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
1810
1811 /*
1812 * Re-init other members.
1813 */
1814 pVCpu->pgm.s.fA20Enabled = true;
1815 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1816
1817 /*
1818 * Clear the FFs PGM owns.
1819 */
1820 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1821 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1822}
1823
1824
1825/**
1826 * The VM is being reset.
1827 *
1828 * For the PGM component this means that any PD write monitors
1829 * needs to be removed.
1830 *
1831 * @param pVM The cross context VM structure.
1832 */
1833VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
1834{
1835 LogFlow(("PGMR3Reset:\n"));
1836 VM_ASSERT_EMT(pVM);
1837
1838 PGM_LOCK_VOID(pVM);
1839
1840 /*
1841 * Exit the guest paging mode before the pgm pool gets reset.
1842 * Important to clean up the amd64 case.
1843 */
1844 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1845 {
1846 PVMCPU pVCpu = pVM->apCpusR3[i];
1847 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1848 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1849 && g_aPgmGuestModeData[idxGst].pfnExit)
1850 {
1851 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1852 AssertReleaseRC(rc);
1853 }
1854 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1855 pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
1856 }
1857
1858#ifdef DEBUG
1859 DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
1860 DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
1861#endif
1862
1863 /*
1864 * Switch mode back to real mode. (Before resetting the pgm pool!)
1865 */
1866 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1867 {
1868 PVMCPU pVCpu = pVM->apCpusR3[i];
1869
1870 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
1871 AssertReleaseRC(rc);
1872
1873 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1874 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
1875 }
1876
1877 /*
1878 * Reset the shadow page pool.
1879 */
1880 pgmR3PoolReset(pVM);
1881
1882 /*
1883 * Re-init various other members and clear the FFs that PGM owns.
1884 */
1885 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1886 {
1887 PVMCPU pVCpu = pVM->apCpusR3[i];
1888
1889 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
1890 PGMNotifyNxeChanged(pVCpu, false);
1891
1892 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1893 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1894
1895 if (!pVCpu->pgm.s.fA20Enabled)
1896 {
1897 pVCpu->pgm.s.fA20Enabled = true;
1898 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1899#ifdef PGM_WITH_A20
1900 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1901 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
1902 HMFlushTlb(pVCpu);
1903#endif
1904 }
1905 }
1906
1907 //pgmLogState(pVM);
1908 PGM_UNLOCK(pVM);
1909}
1910
1911
1912/**
1913 * Memory setup after VM construction or reset.
1914 *
1915 * @param pVM The cross context VM structure.
1916 * @param fAtReset Indicates the context, after reset if @c true or after
1917 * construction if @c false.
1918 */
1919VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
1920{
1921 if (fAtReset)
1922 {
1923 PGM_LOCK_VOID(pVM);
1924
1925 int rc = pgmR3PhysRamZeroAll(pVM);
1926 AssertReleaseRC(rc);
1927
1928 rc = pgmR3PhysRomReset(pVM);
1929 AssertReleaseRC(rc);
1930
1931 PGM_UNLOCK(pVM);
1932 }
1933}
1934
1935
1936#ifdef VBOX_STRICT
1937/**
1938 * VM state change callback for clearing fNoMorePhysWrites after
1939 * a snapshot has been created.
1940 */
1941static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, PCVMMR3VTABLE pVMM, VMSTATE enmState,
1942 VMSTATE enmOldState, void *pvUser)
1943{
1944 if ( enmState == VMSTATE_RUNNING
1945 || enmState == VMSTATE_RESUMING)
1946 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
1947 RT_NOREF(pVMM, enmOldState, pvUser);
1948}
1949#endif
1950
1951/**
1952 * Private API to reset fNoMorePhysWrites.
1953 */
1954VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
1955{
1956 pVM->pgm.s.fNoMorePhysWrites = false;
1957}
1958
1959/**
1960 * Terminates the PGM.
1961 *
1962 * @returns VBox status code.
1963 * @param pVM The cross context VM structure.
1964 */
1965VMMR3DECL(int) PGMR3Term(PVM pVM)
1966{
1967 /* Must free shared pages here. */
1968 PGM_LOCK_VOID(pVM);
1969 pgmR3PhysRamTerm(pVM);
1970 pgmR3PhysRomTerm(pVM);
1971 PGM_UNLOCK(pVM);
1972
1973 PGMDeregisterStringFormatTypes();
1974 return PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
1975}
1976
1977
1978/**
1979 * Show paging mode.
1980 *
1981 * @param pVM The cross context VM structure.
1982 * @param pHlp The info helpers.
1983 * @param pszArgs "all" (default), "guest", "shadow" or "host".
1984 */
1985static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1986{
1987 /* digest argument. */
1988 bool fGuest, fShadow, fHost;
1989 if (pszArgs)
1990 pszArgs = RTStrStripL(pszArgs);
1991 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
1992 fShadow = fHost = fGuest = true;
1993 else
1994 {
1995 fShadow = fHost = fGuest = false;
1996 if (strstr(pszArgs, "guest"))
1997 fGuest = true;
1998 if (strstr(pszArgs, "shadow"))
1999 fShadow = true;
2000 if (strstr(pszArgs, "host"))
2001 fHost = true;
2002 }
2003
2004 PVMCPU pVCpu = VMMGetCpu(pVM);
2005 if (!pVCpu)
2006 pVCpu = pVM->apCpusR3[0];
2007
2008
2009 /* print info. */
2010 if (fGuest)
2011 {
2012 pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2013 pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
2014 pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
2015#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
2016 if (pVCpu->pgm.s.enmGuestSlatMode != PGMSLAT_INVALID)
2017 pHlp->pfnPrintf(pHlp, "Guest SLAT mode (VCPU #%u): %s\n", pVCpu->idCpu,
2018 PGMGetSlatModeName(pVCpu->pgm.s.enmGuestSlatMode));
2019#endif
2020 }
2021 if (fShadow)
2022 pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
2023 if (fHost)
2024 {
2025 const char *psz;
2026 switch (pVM->pgm.s.enmHostMode)
2027 {
2028 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2029 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2030 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2031 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2032 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2033 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2034 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2035 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2036 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2037 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2038 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2039 default: psz = "unknown"; break;
2040 }
2041 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2042 }
2043}
2044
2045
2046/**
2047 * Dump registered MMIO ranges to the log.
2048 *
2049 * @param pVM The cross context VM structure.
2050 * @param pHlp The info helpers.
2051 * @param pszArgs Arguments, ignored.
2052 */
2053static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2054{
2055 bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
2056
2057 pHlp->pfnPrintf(pHlp,
2058 "RAM ranges (pVM=%p)\n"
2059 "%.*s %.*s\n",
2060 pVM,
2061 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2062 sizeof(RTHCPTR) * 2, "pvHC ");
2063
2064 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2065 {
2066 pHlp->pfnPrintf(pHlp,
2067 "%RGp-%RGp %RHv %s\n",
2068 pCur->GCPhys,
2069 pCur->GCPhysLast,
2070 pCur->pvR3,
2071 pCur->pszDesc);
2072 if (fVerbose)
2073 {
2074 RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
2075 RTGCPHYS iPage = 0;
2076 while (iPage < cPages)
2077 {
2078 RTGCPHYS const iFirstPage = iPage;
2079 PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
2080 do
2081 iPage++;
2082 while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
2083 const char *pszType;
2084 const char *pszMore = NULL;
2085 switch (enmType)
2086 {
2087 case PGMPAGETYPE_RAM:
2088 pszType = "RAM";
2089 break;
2090
2091 case PGMPAGETYPE_MMIO2:
2092 pszType = "MMIO2";
2093 break;
2094
2095 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2096 pszType = "MMIO2-alias-MMIO";
2097 break;
2098
2099 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2100 pszType = "special-alias-MMIO";
2101 break;
2102
2103 case PGMPAGETYPE_ROM_SHADOW:
2104 case PGMPAGETYPE_ROM:
2105 {
2106 pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
2107
2108 RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
2109 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2110 while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
2111 pRom = pRom->pNextR3;
2112 if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
2113 pszMore = pRom->pszDesc;
2114 break;
2115 }
2116
2117 case PGMPAGETYPE_MMIO:
2118 {
2119 pszType = "MMIO";
2120 PGM_LOCK_VOID(pVM);
2121 PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE);
2122 if (pHandler)
2123 pszMore = pHandler->pszDesc;
2124 PGM_UNLOCK(pVM);
2125 break;
2126 }
2127
2128 case PGMPAGETYPE_INVALID:
2129 pszType = "invalid";
2130 break;
2131
2132 default:
2133 pszType = "bad";
2134 break;
2135 }
2136 if (pszMore)
2137 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
2138 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2139 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2140 pszType, pszMore);
2141 else
2142 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
2143 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2144 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2145 pszType);
2146
2147 }
2148 }
2149 }
2150}
2151
2152
2153/**
2154 * Dump the page directory to the log.
2155 *
2156 * @param pVM The cross context VM structure.
2157 * @param pHlp The info helpers.
2158 * @param pszArgs Arguments, ignored.
2159 */
2160static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2161{
2162 /** @todo SMP support!! */
2163 PVMCPU pVCpu = pVM->apCpusR3[0];
2164
2165/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2166 /* Big pages supported? */
2167 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2168
2169 /* Global pages supported? */
2170 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2171
2172 NOREF(pszArgs);
2173
2174 /*
2175 * Get page directory addresses.
2176 */
2177 PGM_LOCK_VOID(pVM);
2178 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2179 Assert(pPDSrc);
2180
2181 /*
2182 * Iterate the page directory.
2183 */
2184 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2185 {
2186 X86PDE PdeSrc = pPDSrc->a[iPD];
2187 if (PdeSrc.u & X86_PDE_P)
2188 {
2189 if ((PdeSrc.u & X86_PDE_PS) && fPSE)
2190 pHlp->pfnPrintf(pHlp,
2191 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2192 iPD,
2193 pgmGstGet4MBPhysPage(pVM, PdeSrc), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2194 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2195 else
2196 pHlp->pfnPrintf(pHlp,
2197 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2198 iPD,
2199 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2200 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2201 }
2202 }
2203 PGM_UNLOCK(pVM);
2204}
2205
2206
2207/**
2208 * Called by pgmPoolFlushAllInt prior to flushing the pool.
2209 *
2210 * @returns VBox status code, fully asserted.
2211 * @param pVCpu The cross context virtual CPU structure.
2212 */
2213int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
2214{
2215 /* Unmap the old CR3 value before flushing everything. */
2216 int rc = VINF_SUCCESS;
2217 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
2218 if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
2219 && g_aPgmBothModeData[idxBth].pfnUnmapCR3)
2220 {
2221 rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
2222 AssertRC(rc);
2223 }
2224
2225 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
2226 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
2227 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
2228 && g_aPgmShadowModeData[idxShw].pfnExit)
2229 {
2230 rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
2231 AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
2232 }
2233
2234 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
2235 return rc;
2236}
2237
2238
2239/**
2240 * Called by pgmPoolFlushAllInt after flushing the pool.
2241 *
2242 * @returns VBox status code, fully asserted.
2243 * @param pVM The cross context VM structure.
2244 * @param pVCpu The cross context virtual CPU structure.
2245 */
2246int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
2247{
2248 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
2249 int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
2250 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2251 AssertRCReturn(rc, rc);
2252 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
2253
2254 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE);
2255 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
2256 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
2257 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
2258 return rc;
2259}
2260
2261
2262/**
2263 * Called by PGMR3PhysSetA20 after changing the A20 state.
2264 *
2265 * @param pVCpu The cross context virtual CPU structure.
2266 */
2267void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
2268{
2269 /** @todo Probably doing a bit too much here. */
2270 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
2271 AssertReleaseRC(rc);
2272 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
2273 AssertReleaseRC(rc);
2274}
2275
2276
2277#ifdef VBOX_WITH_DEBUGGER
2278
2279/**
2280 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
2281 */
2282static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2283{
2284 /*
2285 * Validate input.
2286 */
2287 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2288 PVM pVM = pUVM->pVM;
2289 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
2290
2291 if (!cArgs)
2292 {
2293 /*
2294 * Print the list of error injection locations with status.
2295 */
2296 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
2297 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
2298 }
2299 else
2300 {
2301 /*
2302 * String switch on where to inject the error.
2303 */
2304 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
2305 const char *pszWhere = paArgs[0].u.pszString;
2306 if (!strcmp(pszWhere, "handy"))
2307 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
2308 else
2309 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
2310 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
2311 }
2312 return VINF_SUCCESS;
2313}
2314
2315
2316/**
2317 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
2318 */
2319static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2320{
2321 /*
2322 * Validate input.
2323 */
2324 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2325 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2326 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2327 if (!pVCpu)
2328 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2329
2330 /*
2331 * Force page directory sync.
2332 */
2333 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2334
2335 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
2336 if (RT_FAILURE(rc))
2337 return rc;
2338
2339 return VINF_SUCCESS;
2340}
2341
2342#ifdef VBOX_STRICT
2343
2344/**
2345 * EMT callback for pgmR3CmdAssertCR3.
2346 *
2347 * @returns VBox status code.
2348 * @param pUVM The user mode VM handle.
2349 * @param pcErrors Where to return the error count.
2350 */
2351static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
2352{
2353 PVM pVM = pUVM->pVM;
2354 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
2355 PVMCPU pVCpu = VMMGetCpu(pVM);
2356
2357 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
2358
2359 return VINF_SUCCESS;
2360}
2361
2362
2363/**
2364 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
2365 */
2366static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2367{
2368 /*
2369 * Validate input.
2370 */
2371 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2372 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2373
2374 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
2375 if (RT_FAILURE(rc))
2376 return rc;
2377
2378 unsigned cErrors = 0;
2379 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
2380 if (RT_FAILURE(rc))
2381 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
2382 if (cErrors > 0)
2383 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
2384 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
2385}
2386
2387#endif /* VBOX_STRICT */
2388
2389/**
2390 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
2391 */
2392static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2393{
2394 /*
2395 * Validate input.
2396 */
2397 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2398 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2399 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2400 if (!pVCpu)
2401 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2402
2403 /*
2404 * Force page directory sync.
2405 */
2406 int rc;
2407 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
2408 {
2409 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
2410 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
2411 }
2412 else
2413 {
2414 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
2415 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2416 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
2417 }
2418 return rc;
2419}
2420
2421
2422/**
2423 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
2424 */
2425static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2426{
2427 /*
2428 * Validate input.
2429 */
2430 NOREF(pCmd);
2431 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2432 PVM pVM = pUVM->pVM;
2433 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
2434 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
2435 if (cArgs == 2)
2436 {
2437 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2438 if (strcmp(paArgs[1].u.pszString, "nozero"))
2439 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
2440 }
2441 bool fIncZeroPgs = cArgs < 2;
2442
2443 /*
2444 * Open the output file and get the ram parameters.
2445 */
2446 RTFILE hFile;
2447 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
2448 if (RT_FAILURE(rc))
2449 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
2450
2451 uint32_t cbRamHole = 0;
2452 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
2453 uint64_t cbRam = 0;
2454 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
2455 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
2456
2457 /*
2458 * Dump the physical memory, page by page.
2459 */
2460 RTGCPHYS GCPhys = 0;
2461 char abZeroPg[PAGE_SIZE];
2462 RT_ZERO(abZeroPg);
2463
2464 PGM_LOCK_VOID(pVM);
2465 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2466 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
2467 pRam = pRam->pNextR3)
2468 {
2469 /* fill the gap */
2470 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
2471 {
2472 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
2473 {
2474 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
2475 GCPhys += PAGE_SIZE;
2476 }
2477 }
2478
2479 PCPGMPAGE pPage = &pRam->aPages[0];
2480 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
2481 {
2482 if ( PGM_PAGE_IS_ZERO(pPage)
2483 || PGM_PAGE_IS_BALLOONED(pPage))
2484 {
2485 if (fIncZeroPgs)
2486 {
2487 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
2488 if (RT_FAILURE(rc))
2489 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2490 }
2491 }
2492 else
2493 {
2494 switch (PGM_PAGE_GET_TYPE(pPage))
2495 {
2496 case PGMPAGETYPE_RAM:
2497 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
2498 case PGMPAGETYPE_ROM:
2499 case PGMPAGETYPE_MMIO2:
2500 {
2501 void const *pvPage;
2502 PGMPAGEMAPLOCK Lock;
2503 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
2504 if (RT_SUCCESS(rc))
2505 {
2506 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
2507 PGMPhysReleasePageMappingLock(pVM, &Lock);
2508 if (RT_FAILURE(rc))
2509 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2510 }
2511 else
2512 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2513 break;
2514 }
2515
2516 default:
2517 AssertFailed();
2518 RT_FALL_THRU();
2519 case PGMPAGETYPE_MMIO:
2520 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2521 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2522 if (fIncZeroPgs)
2523 {
2524 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
2525 if (RT_FAILURE(rc))
2526 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2527 }
2528 break;
2529 }
2530 }
2531
2532
2533 /* advance */
2534 GCPhys += PAGE_SIZE;
2535 pPage++;
2536 }
2537 }
2538 PGM_UNLOCK(pVM);
2539
2540 RTFileClose(hFile);
2541 if (RT_SUCCESS(rc))
2542 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
2543 return VINF_SUCCESS;
2544}
2545
2546#endif /* VBOX_WITH_DEBUGGER */
2547
2548/**
2549 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
2550 */
2551typedef struct PGMCHECKINTARGS
2552{
2553 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
2554 PPGMPHYSHANDLER pPrevPhys;
2555 PVM pVM;
2556} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
2557
2558/**
2559 * Validate a node in the physical handler tree.
2560 *
2561 * @returns 0 on if ok, other wise 1.
2562 * @param pNode The handler node.
2563 * @param pvUser pVM.
2564 */
2565static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2566{
2567 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
2568 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
2569 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
2570 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
2571 ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
2572 AssertReleaseMsg( !pArgs->pPrevPhys
2573 || ( pArgs->fLeftToRight
2574 ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
2575 : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
2576 ("pPrevPhys=%p %RGp-%RGp %s\n"
2577 " pCur=%p %RGp-%RGp %s\n",
2578 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
2579 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
2580 pArgs->pPrevPhys = pCur;
2581 return 0;
2582}
2583
2584
2585/**
2586 * Perform an integrity check on the PGM component.
2587 *
2588 * @returns VINF_SUCCESS if everything is fine.
2589 * @returns VBox error status after asserting on integrity breach.
2590 * @param pVM The cross context VM structure.
2591 */
2592VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
2593{
2594 /*
2595 * Check the trees.
2596 */
2597 int cErrors = 0;
2598 const PGMCHECKINTARGS LeftToRight = { true, NULL, pVM };
2599 const PGMCHECKINTARGS RightToLeft = { false, NULL, pVM };
2600 PGMCHECKINTARGS Args = LeftToRight;
2601 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
2602 Args = RightToLeft;
2603 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
2604
2605 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
2606}
2607
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette