VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 36944

Last change on this file since 36944 was 36911, checked in by vboxsync, 14 years ago

pgmR3PhysChangeMemBalloonRendezvous: Use the PGM_PAGE_GET_TYPE macro, never access PGMPAGE members directly.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 160.2 KB
Line 
1/* $Id: PGMPhys.cpp 36911 2011-05-02 14:21:18Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iom.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/stam.h>
27#include <VBox/vmm/rem.h>
28#include <VBox/vmm/pdmdev.h>
29#include "PGMInternal.h"
30#include <VBox/vmm/vm.h>
31#include "PGMInline.h"
32#include <VBox/sup.h>
33#include <VBox/param.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <iprt/assert.h>
37#include <iprt/alloc.h>
38#include <iprt/asm.h>
39#include <iprt/thread.h>
40#include <iprt/string.h>
41#include <iprt/system.h>
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47/** The number of pages to free in one batch. */
48#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
49
50
51/*******************************************************************************
52* Internal Functions *
53*******************************************************************************/
54static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
55
56
57/*
58 * PGMR3PhysReadU8-64
59 * PGMR3PhysWriteU8-64
60 */
61#define PGMPHYSFN_READNAME PGMR3PhysReadU8
62#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
63#define PGMPHYS_DATASIZE 1
64#define PGMPHYS_DATATYPE uint8_t
65#include "PGMPhysRWTmpl.h"
66
67#define PGMPHYSFN_READNAME PGMR3PhysReadU16
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
69#define PGMPHYS_DATASIZE 2
70#define PGMPHYS_DATATYPE uint16_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU32
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
75#define PGMPHYS_DATASIZE 4
76#define PGMPHYS_DATATYPE uint32_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU64
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
81#define PGMPHYS_DATASIZE 8
82#define PGMPHYS_DATATYPE uint64_t
83#include "PGMPhysRWTmpl.h"
84
85
86/**
87 * EMT worker for PGMR3PhysReadExternal.
88 */
89static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
90{
91 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
92 return VINF_SUCCESS;
93}
94
95
96/**
97 * Read from physical memory, external users.
98 *
99 * @returns VBox status code.
100 * @retval VINF_SUCCESS.
101 *
102 * @param pVM VM Handle.
103 * @param GCPhys Physical address to read from.
104 * @param pvBuf Where to read into.
105 * @param cbRead How many bytes to read.
106 *
107 * @thread Any but EMTs.
108 */
109VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
110{
111 VM_ASSERT_OTHER_THREAD(pVM);
112
113 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
114 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
115
116 pgmLock(pVM);
117
118 /*
119 * Copy loop on ram ranges.
120 */
121 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
122 for (;;)
123 {
124 /* Inside range or not? */
125 if (pRam && GCPhys >= pRam->GCPhys)
126 {
127 /*
128 * Must work our way thru this page by page.
129 */
130 RTGCPHYS off = GCPhys - pRam->GCPhys;
131 while (off < pRam->cb)
132 {
133 unsigned iPage = off >> PAGE_SHIFT;
134 PPGMPAGE pPage = &pRam->aPages[iPage];
135
136 /*
137 * If the page has an ALL access handler, we'll have to
138 * delegate the job to EMT.
139 */
140 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
141 {
142 pgmUnlock(pVM);
143
144 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
145 pVM, &GCPhys, pvBuf, cbRead);
146 }
147 Assert(!PGM_PAGE_IS_MMIO(pPage));
148
149 /*
150 * Simple stuff, go ahead.
151 */
152 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
153 if (cb > cbRead)
154 cb = cbRead;
155 const void *pvSrc;
156 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
157 if (RT_SUCCESS(rc))
158 memcpy(pvBuf, pvSrc, cb);
159 else
160 {
161 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
162 pRam->GCPhys + off, pPage, rc));
163 memset(pvBuf, 0xff, cb);
164 }
165
166 /* next page */
167 if (cb >= cbRead)
168 {
169 pgmUnlock(pVM);
170 return VINF_SUCCESS;
171 }
172 cbRead -= cb;
173 off += cb;
174 GCPhys += cb;
175 pvBuf = (char *)pvBuf + cb;
176 } /* walk pages in ram range. */
177 }
178 else
179 {
180 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
181
182 /*
183 * Unassigned address space.
184 */
185 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
186 if (cb >= cbRead)
187 {
188 memset(pvBuf, 0xff, cbRead);
189 break;
190 }
191 memset(pvBuf, 0xff, cb);
192
193 cbRead -= cb;
194 pvBuf = (char *)pvBuf + cb;
195 GCPhys += cb;
196 }
197
198 /* Advance range if necessary. */
199 while (pRam && GCPhys > pRam->GCPhysLast)
200 pRam = pRam->CTX_SUFF(pNext);
201 } /* Ram range walk */
202
203 pgmUnlock(pVM);
204
205 return VINF_SUCCESS;
206}
207
208
209/**
210 * EMT worker for PGMR3PhysWriteExternal.
211 */
212static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
213{
214 /** @todo VERR_EM_NO_MEMORY */
215 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
216 return VINF_SUCCESS;
217}
218
219
220/**
221 * Write to physical memory, external users.
222 *
223 * @returns VBox status code.
224 * @retval VINF_SUCCESS.
225 * @retval VERR_EM_NO_MEMORY.
226 *
227 * @param pVM VM Handle.
228 * @param GCPhys Physical address to write to.
229 * @param pvBuf What to write.
230 * @param cbWrite How many bytes to write.
231 * @param pszWho Who is writing. For tracking down who is writing
232 * after we've saved the state.
233 *
234 * @thread Any but EMTs.
235 */
236VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
237{
238 VM_ASSERT_OTHER_THREAD(pVM);
239
240 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
241 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
242 GCPhys, cbWrite, pszWho));
243 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
244 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
245
246 pgmLock(pVM);
247
248 /*
249 * Copy loop on ram ranges, stop when we hit something difficult.
250 */
251 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
252 for (;;)
253 {
254 /* Inside range or not? */
255 if (pRam && GCPhys >= pRam->GCPhys)
256 {
257 /*
258 * Must work our way thru this page by page.
259 */
260 RTGCPTR off = GCPhys - pRam->GCPhys;
261 while (off < pRam->cb)
262 {
263 RTGCPTR iPage = off >> PAGE_SHIFT;
264 PPGMPAGE pPage = &pRam->aPages[iPage];
265
266 /*
267 * Is the page problematic, we have to do the work on the EMT.
268 *
269 * Allocating writable pages and access handlers are
270 * problematic, write monitored pages are simple and can be
271 * dealt with here.
272 */
273 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
274 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
275 {
276 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
277 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
278 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
279 else
280 {
281 pgmUnlock(pVM);
282
283 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
284 pVM, &GCPhys, pvBuf, cbWrite);
285 }
286 }
287 Assert(!PGM_PAGE_IS_MMIO(pPage));
288
289 /*
290 * Simple stuff, go ahead.
291 */
292 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
293 if (cb > cbWrite)
294 cb = cbWrite;
295 void *pvDst;
296 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
297 if (RT_SUCCESS(rc))
298 memcpy(pvDst, pvBuf, cb);
299 else
300 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
301 pRam->GCPhys + off, pPage, rc));
302
303 /* next page */
304 if (cb >= cbWrite)
305 {
306 pgmUnlock(pVM);
307 return VINF_SUCCESS;
308 }
309
310 cbWrite -= cb;
311 off += cb;
312 GCPhys += cb;
313 pvBuf = (const char *)pvBuf + cb;
314 } /* walk pages in ram range */
315 }
316 else
317 {
318 /*
319 * Unassigned address space, skip it.
320 */
321 if (!pRam)
322 break;
323 size_t cb = pRam->GCPhys - GCPhys;
324 if (cb >= cbWrite)
325 break;
326 cbWrite -= cb;
327 pvBuf = (const char *)pvBuf + cb;
328 GCPhys += cb;
329 }
330
331 /* Advance range if necessary. */
332 while (pRam && GCPhys > pRam->GCPhysLast)
333 pRam = pRam->CTX_SUFF(pNext);
334 } /* Ram range walk */
335
336 pgmUnlock(pVM);
337 return VINF_SUCCESS;
338}
339
340
341/**
342 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
343 *
344 * @returns see PGMR3PhysGCPhys2CCPtrExternal
345 * @param pVM The VM handle.
346 * @param pGCPhys Pointer to the guest physical address.
347 * @param ppv Where to store the mapping address.
348 * @param pLock Where to store the lock.
349 */
350static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
351{
352 /*
353 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
354 * an access handler after it succeeds.
355 */
356 int rc = pgmLock(pVM);
357 AssertRCReturn(rc, rc);
358
359 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
360 if (RT_SUCCESS(rc))
361 {
362 PPGMPAGEMAPTLBE pTlbe;
363 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
364 AssertFatalRC(rc2);
365 PPGMPAGE pPage = pTlbe->pPage;
366 if (PGM_PAGE_IS_MMIO(pPage))
367 {
368 PGMPhysReleasePageMappingLock(pVM, pLock);
369 rc = VERR_PGM_PHYS_PAGE_RESERVED;
370 }
371 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
372#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
373 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
374#endif
375 )
376 {
377 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
378 * not be informed about writes and keep bogus gst->shw mappings around.
379 */
380 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
381 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
382 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
383 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
384 }
385 }
386
387 pgmUnlock(pVM);
388 return rc;
389}
390
391
392/**
393 * Requests the mapping of a guest page into ring-3, external threads.
394 *
395 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
396 * release it.
397 *
398 * This API will assume your intention is to write to the page, and will
399 * therefore replace shared and zero pages. If you do not intend to modify the
400 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
401 *
402 * @returns VBox status code.
403 * @retval VINF_SUCCESS on success.
404 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
405 * backing or if the page has any active access handlers. The caller
406 * must fall back on using PGMR3PhysWriteExternal.
407 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
408 *
409 * @param pVM The VM handle.
410 * @param GCPhys The guest physical address of the page that should be mapped.
411 * @param ppv Where to store the address corresponding to GCPhys.
412 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
413 *
414 * @remark Avoid calling this API from within critical sections (other than the
415 * PGM one) because of the deadlock risk when we have to delegating the
416 * task to an EMT.
417 * @thread Any.
418 */
419VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
420{
421 AssertPtr(ppv);
422 AssertPtr(pLock);
423
424 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
425
426 int rc = pgmLock(pVM);
427 AssertRCReturn(rc, rc);
428
429 /*
430 * Query the Physical TLB entry for the page (may fail).
431 */
432 PPGMPAGEMAPTLBE pTlbe;
433 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
434 if (RT_SUCCESS(rc))
435 {
436 PPGMPAGE pPage = pTlbe->pPage;
437 if (PGM_PAGE_IS_MMIO(pPage))
438 rc = VERR_PGM_PHYS_PAGE_RESERVED;
439 else
440 {
441 /*
442 * If the page is shared, the zero page, or being write monitored
443 * it must be converted to an page that's writable if possible.
444 * We can only deal with write monitored pages here, the rest have
445 * to be on an EMT.
446 */
447 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
448 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
449#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
450 || pgmPoolIsDirtyPage(pVM, GCPhys)
451#endif
452 )
453 {
454 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
455 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
456#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
457 && !pgmPoolIsDirtyPage(pVM, GCPhys)
458#endif
459 )
460 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
461 else
462 {
463 pgmUnlock(pVM);
464
465 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
466 pVM, &GCPhys, ppv, pLock);
467 }
468 }
469
470 /*
471 * Now, just perform the locking and calculate the return address.
472 */
473 PPGMPAGEMAP pMap = pTlbe->pMap;
474 if (pMap)
475 pMap->cRefs++;
476
477 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
478 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
479 {
480 if (cLocks == 0)
481 pVM->pgm.s.cWriteLockedPages++;
482 PGM_PAGE_INC_WRITE_LOCKS(pPage);
483 }
484 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
485 {
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
488 if (pMap)
489 pMap->cRefs++; /* Extra ref to prevent it from going away. */
490 }
491
492 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
493 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
494 pLock->pvMap = pMap;
495 }
496 }
497
498 pgmUnlock(pVM);
499 return rc;
500}
501
502
503/**
504 * Requests the mapping of a guest page into ring-3, external threads.
505 *
506 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
507 * release it.
508 *
509 * @returns VBox status code.
510 * @retval VINF_SUCCESS on success.
511 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
512 * backing or if the page as an active ALL access handler. The caller
513 * must fall back on using PGMPhysRead.
514 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
515 *
516 * @param pVM The VM handle.
517 * @param GCPhys The guest physical address of the page that should be mapped.
518 * @param ppv Where to store the address corresponding to GCPhys.
519 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
520 *
521 * @remark Avoid calling this API from within critical sections (other than
522 * the PGM one) because of the deadlock risk.
523 * @thread Any.
524 */
525VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
526{
527 int rc = pgmLock(pVM);
528 AssertRCReturn(rc, rc);
529
530 /*
531 * Query the Physical TLB entry for the page (may fail).
532 */
533 PPGMPAGEMAPTLBE pTlbe;
534 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
535 if (RT_SUCCESS(rc))
536 {
537 PPGMPAGE pPage = pTlbe->pPage;
538#if 1
539 /* MMIO pages doesn't have any readable backing. */
540 if (PGM_PAGE_IS_MMIO(pPage))
541 rc = VERR_PGM_PHYS_PAGE_RESERVED;
542#else
543 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
544 rc = VERR_PGM_PHYS_PAGE_RESERVED;
545#endif
546 else
547 {
548 /*
549 * Now, just perform the locking and calculate the return address.
550 */
551 PPGMPAGEMAP pMap = pTlbe->pMap;
552 if (pMap)
553 pMap->cRefs++;
554
555 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
556 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
557 {
558 if (cLocks == 0)
559 pVM->pgm.s.cReadLockedPages++;
560 PGM_PAGE_INC_READ_LOCKS(pPage);
561 }
562 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
563 {
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
566 if (pMap)
567 pMap->cRefs++; /* Extra ref to prevent it from going away. */
568 }
569
570 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
571 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
572 pLock->pvMap = pMap;
573 }
574 }
575
576 pgmUnlock(pVM);
577 return rc;
578}
579
580#ifdef PGM_USE_RAMRANGE_SEARCH_TREES
581
582#define MAKE_LEAF(a_pNode) \
583 do { \
584 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
585 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
586 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
587 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
588 (a_pNode)->pLeftRC = NIL_RTRCPTR; \
589 (a_pNode)->pRightRC = NIL_RTRCPTR; \
590 } while (0)
591
592#define INSERT_LEFT(a_pParent, a_pNode) \
593 do { \
594 (a_pParent)->pLeftR3 = (a_pNode); \
595 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
596 (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
597 } while (0)
598#define INSERT_RIGHT(a_pParent, a_pNode) \
599 do { \
600 (a_pParent)->pRightR3 = (a_pNode); \
601 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
602 (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
603 } while (0)
604
605
606/**
607 * Recursive tree builder.
608 *
609 * @param ppRam Pointer to the iterator variable.
610 * @param iHeight The hight about normal leaf nodes. Inserts a leaf
611 * node if 0.
612 */
613static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
614{
615 PPGMRAMRANGE pRam;
616 if (iDepth <= 0)
617 {
618 /*
619 * Leaf node.
620 */
621 pRam = *ppRam;
622 if (pRam)
623 {
624 *ppRam = pRam->pNextR3;
625 MAKE_LEAF(pRam);
626 }
627 }
628 else
629 {
630
631 /*
632 * Intermediate node.
633 */
634 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
635
636 pRam = *ppRam;
637 if (!pRam)
638 return pLeft;
639 *ppRam = pRam->pNextR3;
640 MAKE_LEAF(pRam);
641 INSERT_LEFT(pRam, pLeft);
642
643 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
644 if (pRight)
645 INSERT_RIGHT(pRam, pRight);
646 }
647 return pRam;
648}
649
650
651/**
652 * Rebuilds the RAM range search trees.
653 *
654 * @param pVM The VM handle.
655 */
656static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
657{
658
659 /*
660 * Create the reasonably balanced tree in a sequential fashion.
661 * For simplicity (laziness) we use standard recursion here.
662 */
663 int iDepth = 0;
664 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
665 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
666 while (pRam)
667 {
668 PPGMRAMRANGE pLeft = pRoot;
669
670 pRoot = pRam;
671 pRam = pRam->pNextR3;
672 MAKE_LEAF(pRoot);
673 INSERT_LEFT(pRoot, pLeft);
674
675 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
676 if (pRight)
677 INSERT_RIGHT(pRoot, pRight);
678 /** @todo else: rotate the tree. */
679
680 iDepth++;
681 }
682
683 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
684 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
685 pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;
686
687#ifdef VBOX_STRICT
688 /*
689 * Verify that the above code works.
690 */
691 unsigned cRanges = 0;
692 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
693 cRanges++;
694 Assert(cRanges > 0);
695
696 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
697 if ((1U << cMaxDepth) < cRanges)
698 cMaxDepth++;
699
700 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
701 {
702 unsigned cDepth = 0;
703 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
704 for (;;)
705 {
706 if (pRam == pRam2)
707 break;
708 Assert(pRam2);
709 if (pRam->GCPhys < pRam2->GCPhys)
710 pRam2 = pRam2->pLeftR3;
711 else
712 pRam2 = pRam2->pRightR3;
713 }
714 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
715 }
716#endif /* VBOX_STRICT */
717}
718
719#undef MAKE_LEAF
720#undef INSERT_LEFT
721#undef INSERT_RIGHT
722#endif /* PGM_USE_RAMRANGE_SEARCH_TREES */
723
724/**
725 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
726 *
727 * Called when anything was relocated.
728 *
729 * @param pVM Pointer to the shared VM structure.
730 */
731void pgmR3PhysRelinkRamRanges(PVM pVM)
732{
733 PPGMRAMRANGE pCur;
734
735#ifdef VBOX_STRICT
736 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
737 {
738 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
739 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
740 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
741 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
742 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
743 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
744 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
745 Assert( pCur2 == pCur
746 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
747 }
748#endif
749
750 pCur = pVM->pgm.s.pRamRangesXR3;
751 if (pCur)
752 {
753 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
754 pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;
755
756 for (; pCur->pNextR3; pCur = pCur->pNextR3)
757 {
758 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
759 pCur->pNextRC = pCur->pNextR3->pSelfRC;
760 }
761
762 Assert(pCur->pNextR0 == NIL_RTR0PTR);
763 Assert(pCur->pNextRC == NIL_RTRCPTR);
764 }
765 else
766 {
767 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
768 Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
769 }
770 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
771
772#ifdef PGM_USE_RAMRANGE_SEARCH_TREES
773 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
774#endif
775}
776
777
778/**
779 * Links a new RAM range into the list.
780 *
781 * @param pVM Pointer to the shared VM structure.
782 * @param pNew Pointer to the new list entry.
783 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
784 */
785static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
786{
787 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
788 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
789 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
790
791 pgmLock(pVM);
792
793 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
794 pNew->pNextR3 = pRam;
795 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
796 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
797
798 if (pPrev)
799 {
800 pPrev->pNextR3 = pNew;
801 pPrev->pNextR0 = pNew->pSelfR0;
802 pPrev->pNextRC = pNew->pSelfRC;
803 }
804 else
805 {
806 pVM->pgm.s.pRamRangesXR3 = pNew;
807 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
808 pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
809 }
810 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
811
812#ifdef PGM_USE_RAMRANGE_SEARCH_TREES
813 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
814#endif
815 pgmUnlock(pVM);
816}
817
818
819/**
820 * Unlink an existing RAM range from the list.
821 *
822 * @param pVM Pointer to the shared VM structure.
823 * @param pRam Pointer to the new list entry.
824 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
825 */
826static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
827{
828 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
829 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
830 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
831
832 pgmLock(pVM);
833
834 PPGMRAMRANGE pNext = pRam->pNextR3;
835 if (pPrev)
836 {
837 pPrev->pNextR3 = pNext;
838 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
839 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
840 }
841 else
842 {
843 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
844 pVM->pgm.s.pRamRangesXR3 = pNext;
845 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
846 pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
847 }
848 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
849
850#ifdef PGM_USE_RAMRANGE_SEARCH_TREES
851 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
852#endif
853 pgmUnlock(pVM);
854}
855
856
857/**
858 * Unlink an existing RAM range from the list.
859 *
860 * @param pVM Pointer to the shared VM structure.
861 * @param pRam Pointer to the new list entry.
862 */
863static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
864{
865 pgmLock(pVM);
866
867 /* find prev. */
868 PPGMRAMRANGE pPrev = NULL;
869 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
870 while (pCur != pRam)
871 {
872 pPrev = pCur;
873 pCur = pCur->pNextR3;
874 }
875 AssertFatal(pCur);
876
877 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
878 pgmUnlock(pVM);
879}
880
881
882/**
883 * Frees a range of pages, replacing them with ZERO pages of the specified type.
884 *
885 * @returns VBox status code.
886 * @param pVM The VM handle.
887 * @param pRam The RAM range in which the pages resides.
888 * @param GCPhys The address of the first page.
889 * @param GCPhysLast The address of the last page.
890 * @param uType The page type to replace then with.
891 */
892static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
893{
894 Assert(PGMIsLockOwner(pVM));
895 uint32_t cPendingPages = 0;
896 PGMMFREEPAGESREQ pReq;
897 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
898 AssertLogRelRCReturn(rc, rc);
899
900 /* Iterate the pages. */
901 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
902 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
903 while (cPagesLeft-- > 0)
904 {
905 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
906 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
907
908 PGM_PAGE_SET_TYPE(pPageDst, uType);
909
910 GCPhys += PAGE_SIZE;
911 pPageDst++;
912 }
913
914 if (cPendingPages)
915 {
916 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
917 AssertLogRelRCReturn(rc, rc);
918 }
919 GMMR3FreePagesCleanup(pReq);
920
921 return rc;
922}
923
924#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
925/**
926 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
927 *
928 * This is only called on one of the EMTs while the other ones are waiting for
929 * it to complete this function.
930 *
931 * @returns VINF_SUCCESS (VBox strict status code).
932 * @param pVM The VM handle.
933 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
934 * @param pvUser User parameter
935 */
936static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
937{
938 uintptr_t *paUser = (uintptr_t *)pvUser;
939 bool fInflate = !!paUser[0];
940 unsigned cPages = paUser[1];
941 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
942 uint32_t cPendingPages = 0;
943 PGMMFREEPAGESREQ pReq;
944 int rc;
945
946 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
947 pgmLock(pVM);
948
949 if (fInflate)
950 {
951 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
952 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
953
954 /* Replace pages with ZERO pages. */
955 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
956 if (RT_FAILURE(rc))
957 {
958 pgmUnlock(pVM);
959 AssertLogRelRC(rc);
960 return rc;
961 }
962
963 /* Iterate the pages. */
964 for (unsigned i = 0; i < cPages; i++)
965 {
966 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
967 if ( pPage == NULL
968 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
969 {
970 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
971 break;
972 }
973
974 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
975
976 /* Flush the shadow PT if this page was previously used as a guest page table. */
977 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
978
979 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
980 if (RT_FAILURE(rc))
981 {
982 pgmUnlock(pVM);
983 AssertLogRelRC(rc);
984 return rc;
985 }
986 Assert(PGM_PAGE_IS_ZERO(pPage));
987 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
988 }
989
990 if (cPendingPages)
991 {
992 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
993 if (RT_FAILURE(rc))
994 {
995 pgmUnlock(pVM);
996 AssertLogRelRC(rc);
997 return rc;
998 }
999 }
1000 GMMR3FreePagesCleanup(pReq);
1001 }
1002 else
1003 {
1004 /* Iterate the pages. */
1005 for (unsigned i = 0; i < cPages; i++)
1006 {
1007 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1008 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1009
1010 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1011
1012 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1013
1014 /* Change back to zero page. */
1015 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1016 }
1017
1018 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1019 }
1020
1021 /* Notify GMM about the balloon change. */
1022 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1023 if (RT_SUCCESS(rc))
1024 {
1025 if (!fInflate)
1026 {
1027 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1028 pVM->pgm.s.cBalloonedPages -= cPages;
1029 }
1030 else
1031 pVM->pgm.s.cBalloonedPages += cPages;
1032 }
1033
1034 pgmUnlock(pVM);
1035
1036 /* Flush the recompiler's TLB as well. */
1037 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1038 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1039
1040 AssertLogRelRC(rc);
1041 return rc;
1042}
1043
1044/**
1045 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1046 *
1047 * @returns VBox status code.
1048 * @param pVM The VM handle.
1049 * @param fInflate Inflate or deflate memory balloon
1050 * @param cPages Number of pages to free
1051 * @param paPhysPage Array of guest physical addresses
1052 */
1053static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1054{
1055 uintptr_t paUser[3];
1056
1057 paUser[0] = fInflate;
1058 paUser[1] = cPages;
1059 paUser[2] = (uintptr_t)paPhysPage;
1060 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1061 AssertRC(rc);
1062
1063 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1064 RTMemFree(paPhysPage);
1065}
1066#endif
1067
1068/**
1069 * Inflate or deflate a memory balloon
1070 *
1071 * @returns VBox status code.
1072 * @param pVM The VM handle.
1073 * @param fInflate Inflate or deflate memory balloon
1074 * @param cPages Number of pages to free
1075 * @param paPhysPage Array of guest physical addresses
1076 */
1077VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1078{
1079 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1080#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1081 int rc;
1082
1083 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1084 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1085
1086 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1087 * In the SMP case we post a request packet to postpone the job.
1088 */
1089 if (pVM->cCpus > 1)
1090 {
1091 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1092 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1093 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1094
1095 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1096
1097 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1098 AssertRC(rc);
1099 }
1100 else
1101 {
1102 uintptr_t paUser[3];
1103
1104 paUser[0] = fInflate;
1105 paUser[1] = cPages;
1106 paUser[2] = (uintptr_t)paPhysPage;
1107 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1108 AssertRC(rc);
1109 }
1110 return rc;
1111#else
1112 return VERR_NOT_IMPLEMENTED;
1113#endif
1114}
1115
1116/**
1117 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1118 * physical RAM.
1119 *
1120 * This is only called on one of the EMTs while the other ones are waiting for
1121 * it to complete this function.
1122 *
1123 * @returns VINF_SUCCESS (VBox strict status code).
1124 * @param pVM The VM handle.
1125 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
1126 * @param pvUser User parameter, unused.
1127 */
1128static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1129{
1130 int rc = VINF_SUCCESS;
1131 NOREF(pvUser);
1132
1133 pgmLock(pVM);
1134#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1135 pgmPoolResetDirtyPages(pVM);
1136#endif
1137
1138 /** @todo pointless to write protect the physical page pointed to by RSP. */
1139
1140 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1141 pRam;
1142 pRam = pRam->CTX_SUFF(pNext))
1143 {
1144 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1145 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1146 {
1147 PPGMPAGE pPage = &pRam->aPages[iPage];
1148 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1149
1150 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1151 || enmPageType == PGMPAGETYPE_MMIO2)
1152 {
1153 /*
1154 * A RAM page.
1155 */
1156 switch (PGM_PAGE_GET_STATE(pPage))
1157 {
1158 case PGM_PAGE_STATE_ALLOCATED:
1159 /** @todo Optimize this: Don't always re-enable write
1160 * monitoring if the page is known to be very busy. */
1161 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1162 {
1163 PGM_PAGE_CLEAR_WRITTEN_TO(pPage);
1164 /* Remember this dirty page for the next (memory) sync. */
1165 PGM_PAGE_SET_FT_DIRTY(pPage);
1166 }
1167
1168 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1169 break;
1170
1171 case PGM_PAGE_STATE_SHARED:
1172 AssertFailed();
1173 break;
1174
1175 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1176 default:
1177 break;
1178 }
1179 }
1180 }
1181 }
1182 pgmR3PoolWriteProtectPages(pVM);
1183 PGM_INVL_ALL_VCPU_TLBS(pVM);
1184 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1185 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1186
1187 pgmUnlock(pVM);
1188 return rc;
1189}
1190
1191/**
1192 * Protect all physical RAM to monitor writes
1193 *
1194 * @returns VBox status code.
1195 * @param pVM The VM handle.
1196 */
1197VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1198{
1199 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1200
1201 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1202 AssertRC(rc);
1203 return rc;
1204}
1205
1206/**
1207 * Enumerate all dirty FT pages.
1208 *
1209 * @returns VBox status code.
1210 * @param pVM The VM handle.
1211 * @param pfnEnum Enumerate callback handler.
1212 * @param pvUser Enumerate callback handler parameter.
1213 */
1214VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
1215{
1216 int rc = VINF_SUCCESS;
1217
1218 pgmLock(pVM);
1219 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1220 pRam;
1221 pRam = pRam->CTX_SUFF(pNext))
1222 {
1223 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1224 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1225 {
1226 PPGMPAGE pPage = &pRam->aPages[iPage];
1227 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1228
1229 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1230 || enmPageType == PGMPAGETYPE_MMIO2)
1231 {
1232 /*
1233 * A RAM page.
1234 */
1235 switch (PGM_PAGE_GET_STATE(pPage))
1236 {
1237 case PGM_PAGE_STATE_ALLOCATED:
1238 case PGM_PAGE_STATE_WRITE_MONITORED:
1239 if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */
1240 && PGM_PAGE_IS_FT_DIRTY(pPage))
1241 {
1242 unsigned cbPageRange = PAGE_SIZE;
1243 unsigned iPageClean = iPage + 1;
1244 RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE;
1245 uint8_t *pu8Page = NULL;
1246 PGMPAGEMAPLOCK Lock;
1247
1248 /* Find the next clean page, so we can merge adjacent dirty pages. */
1249 for (; iPageClean < cPages; iPageClean++)
1250 {
1251 PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
1252 if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
1253 || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
1254 || PGM_PAGE_IS_WRITTEN_TO(pPageNext)
1255 || !PGM_PAGE_IS_FT_DIRTY(pPageNext)
1256 /* Crossing a chunk boundary? */
1257 || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
1258 )
1259 break;
1260
1261 cbPageRange += PAGE_SIZE;
1262 }
1263
1264 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
1265 if (RT_SUCCESS(rc))
1266 {
1267 /** @todo this is risky; the range might be changed, but little choice as the sync
1268 * costs a lot of time. */
1269 pgmUnlock(pVM);
1270 pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
1271 pgmLock(pVM);
1272 PGMPhysReleasePageMappingLock(pVM, &Lock);
1273 }
1274
1275 for (iPage; iPage < iPageClean; iPage++)
1276 PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iPage]);
1277
1278 iPage = iPageClean - 1;
1279 }
1280 break;
1281 }
1282 }
1283 }
1284 }
1285 pgmUnlock(pVM);
1286 return rc;
1287}
1288
1289
1290/**
1291 * Gets the number of ram ranges.
1292 *
1293 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1294 * @param pVM The VM handle.
1295 */
1296VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1297{
1298 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1299
1300 pgmLock(pVM);
1301 uint32_t cRamRanges = 0;
1302 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1303 cRamRanges++;
1304 pgmUnlock(pVM);
1305 return cRamRanges;
1306}
1307
1308
1309/**
1310 * Get information about a range.
1311 *
1312 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1313 * @param pVM The VM handle
1314 * @param iRange The ordinal of the range.
1315 * @param pGCPhysStart Where to return the start of the range. Optional.
1316 * @param pGCPhysLast Where to return the address of the last byte in the
1317 * range. Optional.
1318 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1319 * Optional.
1320 */
1321VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1322 const char **ppszDesc, bool *pfIsMmio)
1323{
1324 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1325
1326 pgmLock(pVM);
1327 uint32_t iCurRange = 0;
1328 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1329 if (iCurRange == iRange)
1330 {
1331 if (pGCPhysStart)
1332 *pGCPhysStart = pCur->GCPhys;
1333 if (pGCPhysLast)
1334 *pGCPhysLast = pCur->GCPhysLast;
1335 if (pfIsMmio)
1336 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1337
1338 pgmUnlock(pVM);
1339 return VINF_SUCCESS;
1340 }
1341 pgmUnlock(pVM);
1342 return VERR_OUT_OF_RANGE;
1343}
1344
1345
1346/**
1347 * Query the amount of free memory inside VMMR0
1348 *
1349 * @returns VBox status code.
1350 * @param pVM The VM handle.
1351 * @param pcbAllocMem Where to return the amount of memory allocated
1352 * by VMs.
1353 * @param pcbFreeMem Where to return the amount of memory that is
1354 * allocated from the host but not currently used
1355 * by any VMs.
1356 * @param pcbBallonedMem Where to return the sum of memory that is
1357 * currently ballooned by the VMs.
1358 * @param pcbSharedMem Where to return the amount of memory that is
1359 * currently shared.
1360 */
1361VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PVM pVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1362 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1363{
1364 uint64_t cAllocPages = 0;
1365 uint64_t cFreePages = 0;
1366 uint64_t cBalloonPages = 0;
1367 uint64_t cSharedPages = 0;
1368 int rc = GMMR3QueryHypervisorMemoryStats(pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1369 AssertRCReturn(rc, rc);
1370
1371 if (pcbAllocMem)
1372 *pcbAllocMem = cAllocPages * _4K;
1373
1374 if (pcbFreeMem)
1375 *pcbFreeMem = cFreePages * _4K;
1376
1377 if (pcbBallonedMem)
1378 *pcbBallonedMem = cBalloonPages * _4K;
1379
1380 if (pcbSharedMem)
1381 *pcbSharedMem = cSharedPages * _4K;
1382
1383 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1384 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1385 return VINF_SUCCESS;
1386}
1387
1388
1389/**
1390 * Query memory stats for the VM.
1391 *
1392 * @returns VBox status code.
1393 * @param pVM The VM handle.
1394 * @param pcbTotalMem Where to return total amount memory the VM may
1395 * possibly use.
1396 * @param pcbPrivateMem Where to return the amount of private memory
1397 * currently allocated.
1398 * @param pcbSharedMem Where to return the amount of actually shared
1399 * memory currently used by the VM.
1400 * @param pcbZeroMem Where to return the amount of memory backed by
1401 * zero pages.
1402 *
1403 * @remarks The total mem is normally larger than the sum of the three
1404 * components. There are two reasons for this, first the amount of
1405 * shared memory is what we're sure is shared instead of what could
1406 * possibly be shared with someone. Secondly, because the total may
1407 * include some pure MMIO pages that doesn't go into any of the three
1408 * sub-counts.
1409 *
1410 * @todo Why do we return reused shared pages instead of anything that could
1411 * potentially be shared? Doesn't this mean the first VM gets a much
1412 * lower number of shared pages?
1413 */
1414VMMR3DECL(int) PGMR3QueryMemoryStats(PVM pVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1415 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1416{
1417 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1418
1419 if (pcbTotalMem)
1420 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1421
1422 if (pcbPrivateMem)
1423 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1424
1425 if (pcbSharedMem)
1426 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1427
1428 if (pcbZeroMem)
1429 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1430
1431 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1432 return VINF_SUCCESS;
1433}
1434
1435
1436/**
1437 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1438 *
1439 * @param pVM The VM handle.
1440 * @param pNew The new RAM range.
1441 * @param GCPhys The address of the RAM range.
1442 * @param GCPhysLast The last address of the RAM range.
1443 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1444 * if in HMA.
1445 * @param R0PtrNew Ditto for R0.
1446 * @param pszDesc The description.
1447 * @param pPrev The previous RAM range (for linking).
1448 */
1449static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1450 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1451{
1452 /*
1453 * Initialize the range.
1454 */
1455 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1456 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1457 pNew->GCPhys = GCPhys;
1458 pNew->GCPhysLast = GCPhysLast;
1459 pNew->cb = GCPhysLast - GCPhys + 1;
1460 pNew->pszDesc = pszDesc;
1461 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1462 pNew->pvR3 = NULL;
1463 pNew->paLSPages = NULL;
1464
1465 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1466 RTGCPHYS iPage = cPages;
1467 while (iPage-- > 0)
1468 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1469
1470 /* Update the page count stats. */
1471 pVM->pgm.s.cZeroPages += cPages;
1472 pVM->pgm.s.cAllPages += cPages;
1473
1474 /*
1475 * Link it.
1476 */
1477 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1478}
1479
1480
1481/**
1482 * Relocate a floating RAM range.
1483 *
1484 * @copydoc FNPGMRELOCATE.
1485 */
1486static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1487{
1488 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1489 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1490 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1491
1492 switch (enmMode)
1493 {
1494 case PGMRELOCATECALL_SUGGEST:
1495 return true;
1496
1497 case PGMRELOCATECALL_RELOCATE:
1498 {
1499 /*
1500 * Update myself, then relink all the ranges and flush the RC TLB.
1501 */
1502 pgmLock(pVM);
1503
1504 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1505
1506 pgmR3PhysRelinkRamRanges(pVM);
1507 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1508 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1509
1510 pgmUnlock(pVM);
1511 return true;
1512 }
1513
1514 default:
1515 AssertFailedReturn(false);
1516 }
1517}
1518
1519
1520/**
1521 * PGMR3PhysRegisterRam worker that registers a high chunk.
1522 *
1523 * @returns VBox status code.
1524 * @param pVM The VM handle.
1525 * @param GCPhys The address of the RAM.
1526 * @param cRamPages The number of RAM pages to register.
1527 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1528 * @param iChunk The chunk number.
1529 * @param pszDesc The RAM range description.
1530 * @param ppPrev Previous RAM range pointer. In/Out.
1531 */
1532static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1533 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1534 PPGMRAMRANGE *ppPrev)
1535{
1536 const char *pszDescChunk = iChunk == 0
1537 ? pszDesc
1538 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1539 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1540
1541 /*
1542 * Allocate memory for the new chunk.
1543 */
1544 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1545 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1546 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1547 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1548 void *pvChunk = NULL;
1549 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1550#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1551 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1552#else
1553 NULL,
1554#endif
1555 paChunkPages);
1556 if (RT_SUCCESS(rc))
1557 {
1558#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1559 if (!VMMIsHwVirtExtForced(pVM))
1560 R0PtrChunk = NIL_RTR0PTR;
1561#else
1562 R0PtrChunk = (uintptr_t)pvChunk;
1563#endif
1564 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1565
1566 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1567
1568 /*
1569 * Create a mapping and map the pages into it.
1570 * We push these in below the HMA.
1571 */
1572 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1573 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1574 if (RT_SUCCESS(rc))
1575 {
1576 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1577
1578 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1579 RTGCPTR GCPtrPage = GCPtrChunk;
1580 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1581 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1582 if (RT_SUCCESS(rc))
1583 {
1584 /*
1585 * Ok, init and link the range.
1586 */
1587 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1588 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1589 *ppPrev = pNew;
1590 }
1591 }
1592
1593 if (RT_FAILURE(rc))
1594 SUPR3PageFreeEx(pvChunk, cChunkPages);
1595 }
1596
1597 RTMemTmpFree(paChunkPages);
1598 return rc;
1599}
1600
1601
1602/**
1603 * Sets up a range RAM.
1604 *
1605 * This will check for conflicting registrations, make a resource
1606 * reservation for the memory (with GMM), and setup the per-page
1607 * tracking structures (PGMPAGE).
1608 *
1609 * @returns VBox status code.
1610 * @param pVM Pointer to the shared VM structure.
1611 * @param GCPhys The physical address of the RAM.
1612 * @param cb The size of the RAM.
1613 * @param pszDesc The description - not copied, so, don't free or change it.
1614 */
1615VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1616{
1617 /*
1618 * Validate input.
1619 */
1620 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1621 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1622 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1623 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1624 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1625 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1626 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1627 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1628
1629 pgmLock(pVM);
1630
1631 /*
1632 * Find range location and check for conflicts.
1633 * (We don't lock here because the locking by EMT is only required on update.)
1634 */
1635 PPGMRAMRANGE pPrev = NULL;
1636 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1637 while (pRam && GCPhysLast >= pRam->GCPhys)
1638 {
1639 if ( GCPhysLast >= pRam->GCPhys
1640 && GCPhys <= pRam->GCPhysLast)
1641 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1642 GCPhys, GCPhysLast, pszDesc,
1643 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1644 VERR_PGM_RAM_CONFLICT);
1645
1646 /* next */
1647 pPrev = pRam;
1648 pRam = pRam->pNextR3;
1649 }
1650
1651 /*
1652 * Register it with GMM (the API bitches).
1653 */
1654 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1655 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1656 if (RT_FAILURE(rc))
1657 {
1658 pgmUnlock(pVM);
1659 return rc;
1660 }
1661
1662 if ( GCPhys >= _4G
1663 && cPages > 256)
1664 {
1665 /*
1666 * The PGMRAMRANGE structures for the high memory can get very big.
1667 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1668 * allocation size limit there and also to avoid being unable to find
1669 * guest mapping space for them, we split this memory up into 4MB in
1670 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1671 * mode.
1672 *
1673 * The first and last page of each mapping are guard pages and marked
1674 * not-present. So, we've got 4186112 and 16769024 bytes available for
1675 * the PGMRAMRANGE structure.
1676 *
1677 * Note! The sizes used here will influence the saved state.
1678 */
1679 uint32_t cbChunk;
1680 uint32_t cPagesPerChunk;
1681 if (VMMIsHwVirtExtForced(pVM))
1682 {
1683 cbChunk = 16U*_1M;
1684 cPagesPerChunk = 1048048; /* max ~1048059 */
1685 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1686 }
1687 else
1688 {
1689 cbChunk = 4U*_1M;
1690 cPagesPerChunk = 261616; /* max ~261627 */
1691 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1692 }
1693 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1694
1695 RTGCPHYS cPagesLeft = cPages;
1696 RTGCPHYS GCPhysChunk = GCPhys;
1697 uint32_t iChunk = 0;
1698 while (cPagesLeft > 0)
1699 {
1700 uint32_t cPagesInChunk = cPagesLeft;
1701 if (cPagesInChunk > cPagesPerChunk)
1702 cPagesInChunk = cPagesPerChunk;
1703
1704 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1705 AssertRCReturn(rc, rc);
1706
1707 /* advance */
1708 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1709 cPagesLeft -= cPagesInChunk;
1710 iChunk++;
1711 }
1712 }
1713 else
1714 {
1715 /*
1716 * Allocate, initialize and link the new RAM range.
1717 */
1718 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1719 PPGMRAMRANGE pNew;
1720 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1721 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1722
1723 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1724 }
1725 PGMPhysInvalidatePageMapTLB(pVM);
1726 pgmUnlock(pVM);
1727
1728 /*
1729 * Notify REM.
1730 */
1731 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1732
1733 return VINF_SUCCESS;
1734}
1735
1736
1737/**
1738 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1739 *
1740 * We do this late in the init process so that all the ROM and MMIO ranges have
1741 * been registered already and we don't go wasting memory on them.
1742 *
1743 * @returns VBox status code.
1744 *
1745 * @param pVM Pointer to the shared VM structure.
1746 */
1747int pgmR3PhysRamPreAllocate(PVM pVM)
1748{
1749 Assert(pVM->pgm.s.fRamPreAlloc);
1750 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1751
1752 /*
1753 * Walk the RAM ranges and allocate all RAM pages, halt at
1754 * the first allocation error.
1755 */
1756 uint64_t cPages = 0;
1757 uint64_t NanoTS = RTTimeNanoTS();
1758 pgmLock(pVM);
1759 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1760 {
1761 PPGMPAGE pPage = &pRam->aPages[0];
1762 RTGCPHYS GCPhys = pRam->GCPhys;
1763 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1764 while (cLeft-- > 0)
1765 {
1766 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1767 {
1768 switch (PGM_PAGE_GET_STATE(pPage))
1769 {
1770 case PGM_PAGE_STATE_ZERO:
1771 {
1772 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1773 if (RT_FAILURE(rc))
1774 {
1775 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1776 pgmUnlock(pVM);
1777 return rc;
1778 }
1779 cPages++;
1780 break;
1781 }
1782
1783 case PGM_PAGE_STATE_BALLOONED:
1784 case PGM_PAGE_STATE_ALLOCATED:
1785 case PGM_PAGE_STATE_WRITE_MONITORED:
1786 case PGM_PAGE_STATE_SHARED:
1787 /* nothing to do here. */
1788 break;
1789 }
1790 }
1791
1792 /* next */
1793 pPage++;
1794 GCPhys += PAGE_SIZE;
1795 }
1796 }
1797 pgmUnlock(pVM);
1798 NanoTS = RTTimeNanoTS() - NanoTS;
1799
1800 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1801 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1802 return VINF_SUCCESS;
1803}
1804
1805
1806/**
1807 * Resets (zeros) the RAM.
1808 *
1809 * ASSUMES that the caller owns the PGM lock.
1810 *
1811 * @returns VBox status code.
1812 * @param pVM Pointer to the shared VM structure.
1813 */
1814int pgmR3PhysRamReset(PVM pVM)
1815{
1816 Assert(PGMIsLockOwner(pVM));
1817
1818 /* Reset the memory balloon. */
1819 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1820 AssertRC(rc);
1821
1822#ifdef VBOX_WITH_PAGE_SHARING
1823 /* Clear all registered shared modules. */
1824 rc = GMMR3ResetSharedModules(pVM);
1825 AssertRC(rc);
1826#endif
1827 /* Reset counters. */
1828 pVM->pgm.s.cReusedSharedPages = 0;
1829 pVM->pgm.s.cBalloonedPages = 0;
1830
1831 /*
1832 * We batch up pages that should be freed instead of calling GMM for
1833 * each and every one of them.
1834 */
1835 uint32_t cPendingPages = 0;
1836 PGMMFREEPAGESREQ pReq;
1837 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1838 AssertLogRelRCReturn(rc, rc);
1839
1840 /*
1841 * Walk the ram ranges.
1842 */
1843 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1844 {
1845 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1846 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1847
1848 if (!pVM->pgm.s.fRamPreAlloc)
1849 {
1850 /* Replace all RAM pages by ZERO pages. */
1851 while (iPage-- > 0)
1852 {
1853 PPGMPAGE pPage = &pRam->aPages[iPage];
1854 switch (PGM_PAGE_GET_TYPE(pPage))
1855 {
1856 case PGMPAGETYPE_RAM:
1857 /* Do not replace pages part of a 2 MB continuous range
1858 with zero pages, but zero them instead. */
1859 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
1860 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
1861 {
1862 void *pvPage;
1863 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1864 AssertLogRelRCReturn(rc, rc);
1865 ASMMemZeroPage(pvPage);
1866 }
1867 else if (PGM_PAGE_IS_BALLOONED(pPage))
1868 {
1869 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1870 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1871 }
1872 else if (!PGM_PAGE_IS_ZERO(pPage))
1873 {
1874 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1875 AssertLogRelRCReturn(rc, rc);
1876 }
1877 break;
1878
1879 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1880 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1881 true /*fDoAccounting*/);
1882 break;
1883
1884 case PGMPAGETYPE_MMIO2:
1885 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1886 case PGMPAGETYPE_ROM:
1887 case PGMPAGETYPE_MMIO:
1888 break;
1889 default:
1890 AssertFailed();
1891 }
1892 } /* for each page */
1893 }
1894 else
1895 {
1896 /* Zero the memory. */
1897 while (iPage-- > 0)
1898 {
1899 PPGMPAGE pPage = &pRam->aPages[iPage];
1900 switch (PGM_PAGE_GET_TYPE(pPage))
1901 {
1902 case PGMPAGETYPE_RAM:
1903 switch (PGM_PAGE_GET_STATE(pPage))
1904 {
1905 case PGM_PAGE_STATE_ZERO:
1906 break;
1907
1908 case PGM_PAGE_STATE_BALLOONED:
1909 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1910 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1911 break;
1912
1913 case PGM_PAGE_STATE_SHARED:
1914 case PGM_PAGE_STATE_WRITE_MONITORED:
1915 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1916 AssertLogRelRCReturn(rc, rc);
1917 /* no break */
1918
1919 case PGM_PAGE_STATE_ALLOCATED:
1920 {
1921 void *pvPage;
1922 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1923 AssertLogRelRCReturn(rc, rc);
1924 ASMMemZeroPage(pvPage);
1925 break;
1926 }
1927 }
1928 break;
1929
1930 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1931 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1932 true /*fDoAccounting*/);
1933 break;
1934
1935 case PGMPAGETYPE_MMIO2:
1936 case PGMPAGETYPE_ROM_SHADOW:
1937 case PGMPAGETYPE_ROM:
1938 case PGMPAGETYPE_MMIO:
1939 break;
1940 default:
1941 AssertFailed();
1942
1943 }
1944 } /* for each page */
1945 }
1946
1947 }
1948
1949 /*
1950 * Finish off any pages pending freeing.
1951 */
1952 if (cPendingPages)
1953 {
1954 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1955 AssertLogRelRCReturn(rc, rc);
1956 }
1957 GMMR3FreePagesCleanup(pReq);
1958
1959 return VINF_SUCCESS;
1960}
1961
1962/**
1963 * Frees all RAM during VM termination
1964 *
1965 * ASSUMES that the caller owns the PGM lock.
1966 *
1967 * @returns VBox status code.
1968 * @param pVM Pointer to the shared VM structure.
1969 */
1970int pgmR3PhysRamTerm(PVM pVM)
1971{
1972 Assert(PGMIsLockOwner(pVM));
1973
1974 /* Reset the memory balloon. */
1975 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1976 AssertRC(rc);
1977
1978#ifdef VBOX_WITH_PAGE_SHARING
1979 /* Clear all registered shared modules. */
1980 rc = GMMR3ResetSharedModules(pVM);
1981 AssertRC(rc);
1982#endif
1983
1984 /*
1985 * We batch up pages that should be freed instead of calling GMM for
1986 * each and every one of them.
1987 */
1988 uint32_t cPendingPages = 0;
1989 PGMMFREEPAGESREQ pReq;
1990 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1991 AssertLogRelRCReturn(rc, rc);
1992
1993 /*
1994 * Walk the ram ranges.
1995 */
1996 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1997 {
1998 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1999 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2000
2001 /* Replace all RAM pages by ZERO pages. */
2002 while (iPage-- > 0)
2003 {
2004 PPGMPAGE pPage = &pRam->aPages[iPage];
2005 switch (PGM_PAGE_GET_TYPE(pPage))
2006 {
2007 case PGMPAGETYPE_RAM:
2008 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2009 if (PGM_PAGE_IS_SHARED(pPage))
2010 {
2011 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2012 AssertLogRelRCReturn(rc, rc);
2013 }
2014 break;
2015
2016 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2017 case PGMPAGETYPE_MMIO2:
2018 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2019 case PGMPAGETYPE_ROM:
2020 case PGMPAGETYPE_MMIO:
2021 break;
2022 default:
2023 AssertFailed();
2024 }
2025 } /* for each page */
2026 }
2027
2028 /*
2029 * Finish off any pages pending freeing.
2030 */
2031 if (cPendingPages)
2032 {
2033 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2034 AssertLogRelRCReturn(rc, rc);
2035 }
2036 GMMR3FreePagesCleanup(pReq);
2037 return VINF_SUCCESS;
2038}
2039
2040/**
2041 * This is the interface IOM is using to register an MMIO region.
2042 *
2043 * It will check for conflicts and ensure that a RAM range structure
2044 * is present before calling the PGMR3HandlerPhysicalRegister API to
2045 * register the callbacks.
2046 *
2047 * @returns VBox status code.
2048 *
2049 * @param pVM Pointer to the shared VM structure.
2050 * @param GCPhys The start of the MMIO region.
2051 * @param cb The size of the MMIO region.
2052 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
2053 * @param pvUserR3 The user argument for R3.
2054 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
2055 * @param pvUserR0 The user argument for R0.
2056 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
2057 * @param pvUserRC The user argument for RC.
2058 * @param pszDesc The description of the MMIO region.
2059 */
2060VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
2061 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
2062 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
2063 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
2064 R3PTRTYPE(const char *) pszDesc)
2065{
2066 /*
2067 * Assert on some assumption.
2068 */
2069 VM_ASSERT_EMT(pVM);
2070 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2071 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2072 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2073 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2074
2075 /*
2076 * Make sure there's a RAM range structure for the region.
2077 */
2078 int rc;
2079 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2080 bool fRamExists = false;
2081 PPGMRAMRANGE pRamPrev = NULL;
2082 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2083 while (pRam && GCPhysLast >= pRam->GCPhys)
2084 {
2085 if ( GCPhysLast >= pRam->GCPhys
2086 && GCPhys <= pRam->GCPhysLast)
2087 {
2088 /* Simplification: all within the same range. */
2089 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2090 && GCPhysLast <= pRam->GCPhysLast,
2091 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2092 GCPhys, GCPhysLast, pszDesc,
2093 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2094 VERR_PGM_RAM_CONFLICT);
2095
2096 /* Check that it's all RAM or MMIO pages. */
2097 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2098 uint32_t cLeft = cb >> PAGE_SHIFT;
2099 while (cLeft-- > 0)
2100 {
2101 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2102 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2103 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2104 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2105 VERR_PGM_RAM_CONFLICT);
2106 pPage++;
2107 }
2108
2109 /* Looks good. */
2110 fRamExists = true;
2111 break;
2112 }
2113
2114 /* next */
2115 pRamPrev = pRam;
2116 pRam = pRam->pNextR3;
2117 }
2118 PPGMRAMRANGE pNew;
2119 if (fRamExists)
2120 {
2121 pNew = NULL;
2122
2123 /*
2124 * Make all the pages in the range MMIO/ZERO pages, freeing any
2125 * RAM pages currently mapped here. This might not be 100% correct
2126 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2127 */
2128 rc = pgmLock(pVM);
2129 if (RT_SUCCESS(rc))
2130 {
2131 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2132 pgmUnlock(pVM);
2133 }
2134 AssertRCReturn(rc, rc);
2135
2136 /* Force a PGM pool flush as guest ram references have been changed. */
2137 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
2138 PVMCPU pVCpu = VMMGetCpu(pVM);
2139 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2140 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2141 }
2142 else
2143 {
2144 pgmLock(pVM);
2145
2146 /*
2147 * No RAM range, insert an ad hoc one.
2148 *
2149 * Note that we don't have to tell REM about this range because
2150 * PGMHandlerPhysicalRegisterEx will do that for us.
2151 */
2152 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2153
2154 const uint32_t cPages = cb >> PAGE_SHIFT;
2155 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
2156 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2157 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
2158
2159 /* Initialize the range. */
2160 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2161 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
2162 pNew->GCPhys = GCPhys;
2163 pNew->GCPhysLast = GCPhysLast;
2164 pNew->cb = cb;
2165 pNew->pszDesc = pszDesc;
2166 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2167 pNew->pvR3 = NULL;
2168 pNew->paLSPages = NULL;
2169
2170 uint32_t iPage = cPages;
2171 while (iPage-- > 0)
2172 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2173 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2174
2175 /* update the page count stats. */
2176 pVM->pgm.s.cPureMmioPages += cPages;
2177 pVM->pgm.s.cAllPages += cPages;
2178
2179 /* link it */
2180 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2181
2182 pgmUnlock(pVM);
2183 }
2184
2185 /*
2186 * Register the access handler.
2187 */
2188 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
2189 pfnHandlerR3, pvUserR3,
2190 pfnHandlerR0, pvUserR0,
2191 pfnHandlerRC, pvUserRC, pszDesc);
2192 if ( RT_FAILURE(rc)
2193 && !fRamExists)
2194 {
2195 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2196 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2197
2198 /* remove the ad hoc range. */
2199 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2200 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2201 MMHyperFree(pVM, pRam);
2202 }
2203 PGMPhysInvalidatePageMapTLB(pVM);
2204
2205 return rc;
2206}
2207
2208
2209/**
2210 * This is the interface IOM is using to register an MMIO region.
2211 *
2212 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2213 * any ad hoc PGMRAMRANGE left behind.
2214 *
2215 * @returns VBox status code.
2216 * @param pVM Pointer to the shared VM structure.
2217 * @param GCPhys The start of the MMIO region.
2218 * @param cb The size of the MMIO region.
2219 */
2220VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2221{
2222 VM_ASSERT_EMT(pVM);
2223
2224/** @todo this needs to own the PGM lock! */
2225 /*
2226 * First deregister the handler, then check if we should remove the ram range.
2227 */
2228 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2229 if (RT_SUCCESS(rc))
2230 {
2231 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2232 PPGMRAMRANGE pRamPrev = NULL;
2233 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2234 while (pRam && GCPhysLast >= pRam->GCPhys)
2235 {
2236 /** @todo We're being a bit too careful here. rewrite. */
2237 if ( GCPhysLast == pRam->GCPhysLast
2238 && GCPhys == pRam->GCPhys)
2239 {
2240 Assert(pRam->cb == cb);
2241
2242 /*
2243 * See if all the pages are dead MMIO pages.
2244 */
2245 uint32_t const cPages = cb >> PAGE_SHIFT;
2246 bool fAllMMIO = true;
2247 uint32_t iPage = 0;
2248 uint32_t cLeft = cPages;
2249 while (cLeft-- > 0)
2250 {
2251 PPGMPAGE pPage = &pRam->aPages[iPage];
2252 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
2253 /*|| not-out-of-action later */)
2254 {
2255 fAllMMIO = false;
2256 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
2257 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2258 break;
2259 }
2260 Assert(PGM_PAGE_IS_ZERO(pPage));
2261 pPage++;
2262 }
2263 if (fAllMMIO)
2264 {
2265 /*
2266 * Ad-hoc range, unlink and free it.
2267 */
2268 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2269 GCPhys, GCPhysLast, pRam->pszDesc));
2270
2271 pVM->pgm.s.cAllPages -= cPages;
2272 pVM->pgm.s.cPureMmioPages -= cPages;
2273
2274 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2275 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2276 MMHyperFree(pVM, pRam);
2277 break;
2278 }
2279 }
2280
2281 /*
2282 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2283 */
2284 if ( GCPhysLast >= pRam->GCPhys
2285 && GCPhys <= pRam->GCPhysLast)
2286 {
2287 Assert(GCPhys >= pRam->GCPhys);
2288 Assert(GCPhysLast <= pRam->GCPhysLast);
2289
2290 /*
2291 * Turn the pages back into RAM pages.
2292 */
2293 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2294 uint32_t cLeft = cb >> PAGE_SHIFT;
2295 while (cLeft--)
2296 {
2297 PPGMPAGE pPage = &pRam->aPages[iPage];
2298 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2299 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2300 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2301 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
2302 }
2303 break;
2304 }
2305
2306 /* next */
2307 pRamPrev = pRam;
2308 pRam = pRam->pNextR3;
2309 }
2310 }
2311
2312 /* Force a PGM pool flush as guest ram references have been changed. */
2313 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
2314 PVMCPU pVCpu = VMMGetCpu(pVM);
2315 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2316 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2317
2318 PGMPhysInvalidatePageMapTLB(pVM);
2319 pgmPhysInvalidRamRangeTlbs(pVM);
2320 return rc;
2321}
2322
2323
2324/**
2325 * Locate a MMIO2 range.
2326 *
2327 * @returns Pointer to the MMIO2 range.
2328 * @param pVM Pointer to the shared VM structure.
2329 * @param pDevIns The device instance owning the region.
2330 * @param iRegion The region.
2331 */
2332DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2333{
2334 /*
2335 * Search the list.
2336 */
2337 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2338 if ( pCur->pDevInsR3 == pDevIns
2339 && pCur->iRegion == iRegion)
2340 return pCur;
2341 return NULL;
2342}
2343
2344
2345/**
2346 * Allocate and register an MMIO2 region.
2347 *
2348 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2349 * associated with a device. It is also non-shared memory with a permanent
2350 * ring-3 mapping and page backing (presently).
2351 *
2352 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2353 * the VM, in which case we'll drop the base memory pages. Presently we will
2354 * make no attempt to preserve anything that happens to be present in the base
2355 * memory that is replaced, this is of course incorrectly but it's too much
2356 * effort.
2357 *
2358 * @returns VBox status code.
2359 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2360 * memory.
2361 * @retval VERR_ALREADY_EXISTS if the region already exists.
2362 *
2363 * @param pVM Pointer to the shared VM structure.
2364 * @param pDevIns The device instance owning the region.
2365 * @param iRegion The region number. If the MMIO2 memory is a PCI
2366 * I/O region this number has to be the number of that
2367 * region. Otherwise it can be any number safe
2368 * UINT8_MAX.
2369 * @param cb The size of the region. Must be page aligned.
2370 * @param fFlags Reserved for future use, must be zero.
2371 * @param ppv Where to store the pointer to the ring-3 mapping of
2372 * the memory.
2373 * @param pszDesc The description.
2374 */
2375VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
2376{
2377 /*
2378 * Validate input.
2379 */
2380 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2381 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2382 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2383 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2384 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2385 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2386 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
2387 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2388 AssertReturn(cb, VERR_INVALID_PARAMETER);
2389 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2390
2391 const uint32_t cPages = cb >> PAGE_SHIFT;
2392 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
2393 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
2394
2395 /*
2396 * For the 2nd+ instance, mangle the description string so it's unique.
2397 */
2398 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
2399 {
2400 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
2401 if (!pszDesc)
2402 return VERR_NO_MEMORY;
2403 }
2404
2405 /*
2406 * Try reserve and allocate the backing memory first as this is what is
2407 * most likely to fail.
2408 */
2409 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
2410 if (RT_SUCCESS(rc))
2411 {
2412 void *pvPages;
2413 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
2414 if (RT_SUCCESS(rc))
2415 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
2416 if (RT_SUCCESS(rc))
2417 {
2418 memset(pvPages, 0, cPages * PAGE_SIZE);
2419
2420 /*
2421 * Create the MMIO2 range record for it.
2422 */
2423 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
2424 PPGMMMIO2RANGE pNew;
2425 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2426 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
2427 if (RT_SUCCESS(rc))
2428 {
2429 pNew->pDevInsR3 = pDevIns;
2430 pNew->pvR3 = pvPages;
2431 //pNew->pNext = NULL;
2432 //pNew->fMapped = false;
2433 //pNew->fOverlapping = false;
2434 pNew->iRegion = iRegion;
2435 pNew->idSavedState = UINT8_MAX;
2436 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2437 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2438 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2439 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2440 pNew->RamRange.pszDesc = pszDesc;
2441 pNew->RamRange.cb = cb;
2442 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
2443 pNew->RamRange.pvR3 = pvPages;
2444 //pNew->RamRange.paLSPages = NULL;
2445
2446 uint32_t iPage = cPages;
2447 while (iPage-- > 0)
2448 {
2449 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
2450 paPages[iPage].Phys, NIL_GMM_PAGEID,
2451 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
2452 }
2453
2454 /* update page count stats */
2455 pVM->pgm.s.cAllPages += cPages;
2456 pVM->pgm.s.cPrivatePages += cPages;
2457
2458 /*
2459 * Link it into the list.
2460 * Since there is no particular order, just push it.
2461 */
2462 pgmLock(pVM);
2463 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
2464 pVM->pgm.s.pMmio2RangesR3 = pNew;
2465 pgmUnlock(pVM);
2466
2467 *ppv = pvPages;
2468 RTMemTmpFree(paPages);
2469 PGMPhysInvalidatePageMapTLB(pVM);
2470 return VINF_SUCCESS;
2471 }
2472
2473 SUPR3PageFreeEx(pvPages, cPages);
2474 }
2475 RTMemTmpFree(paPages);
2476 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
2477 }
2478 if (pDevIns->iInstance > 0)
2479 MMR3HeapFree((void *)pszDesc);
2480 return rc;
2481}
2482
2483
2484/**
2485 * Deregisters and frees an MMIO2 region.
2486 *
2487 * Any physical (and virtual) access handlers registered for the region must
2488 * be deregistered before calling this function.
2489 *
2490 * @returns VBox status code.
2491 * @param pVM Pointer to the shared VM structure.
2492 * @param pDevIns The device instance owning the region.
2493 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
2494 */
2495VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2496{
2497 /*
2498 * Validate input.
2499 */
2500 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2501 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2502 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
2503
2504 pgmLock(pVM);
2505 int rc = VINF_SUCCESS;
2506 unsigned cFound = 0;
2507 PPGMMMIO2RANGE pPrev = NULL;
2508 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
2509 while (pCur)
2510 {
2511 if ( pCur->pDevInsR3 == pDevIns
2512 && ( iRegion == UINT32_MAX
2513 || pCur->iRegion == iRegion))
2514 {
2515 cFound++;
2516
2517 /*
2518 * Unmap it if it's mapped.
2519 */
2520 if (pCur->fMapped)
2521 {
2522 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
2523 AssertRC(rc2);
2524 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2525 rc = rc2;
2526 }
2527
2528 /*
2529 * Unlink it
2530 */
2531 PPGMMMIO2RANGE pNext = pCur->pNextR3;
2532 if (pPrev)
2533 pPrev->pNextR3 = pNext;
2534 else
2535 pVM->pgm.s.pMmio2RangesR3 = pNext;
2536 pCur->pNextR3 = NULL;
2537
2538 /*
2539 * Free the memory.
2540 */
2541 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
2542 AssertRC(rc2);
2543 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2544 rc = rc2;
2545
2546 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
2547 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
2548 AssertRC(rc2);
2549 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2550 rc = rc2;
2551
2552 /* we're leaking hyper memory here if done at runtime. */
2553#ifdef VBOX_STRICT
2554 VMSTATE const enmState = VMR3GetState(pVM);
2555 AssertMsg( enmState == VMSTATE_POWERING_OFF
2556 || enmState == VMSTATE_POWERING_OFF_LS
2557 || enmState == VMSTATE_OFF
2558 || enmState == VMSTATE_OFF_LS
2559 || enmState == VMSTATE_DESTROYING
2560 || enmState == VMSTATE_TERMINATED
2561 || enmState == VMSTATE_CREATING
2562 , ("%s\n", VMR3GetStateName(enmState)));
2563#endif
2564 /*rc = MMHyperFree(pVM, pCur);
2565 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
2566
2567
2568 /* update page count stats */
2569 pVM->pgm.s.cAllPages -= cPages;
2570 pVM->pgm.s.cPrivatePages -= cPages;
2571
2572 /* next */
2573 pCur = pNext;
2574 }
2575 else
2576 {
2577 pPrev = pCur;
2578 pCur = pCur->pNextR3;
2579 }
2580 }
2581 PGMPhysInvalidatePageMapTLB(pVM);
2582 pgmUnlock(pVM);
2583 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2584}
2585
2586
2587/**
2588 * Maps a MMIO2 region.
2589 *
2590 * This is done when a guest / the bios / state loading changes the
2591 * PCI config. The replacing of base memory has the same restrictions
2592 * as during registration, of course.
2593 *
2594 * @returns VBox status code.
2595 *
2596 * @param pVM Pointer to the shared VM structure.
2597 * @param pDevIns The
2598 */
2599VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2600{
2601 /*
2602 * Validate input
2603 */
2604 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2605 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2606 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2607 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2608 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2609 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2610
2611 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2612 AssertReturn(pCur, VERR_NOT_FOUND);
2613 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2614 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2615 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2616
2617 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2618 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2619
2620 /*
2621 * Find our location in the ram range list, checking for
2622 * restriction we don't bother implementing yet (partially overlapping).
2623 */
2624 bool fRamExists = false;
2625 PPGMRAMRANGE pRamPrev = NULL;
2626 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2627 while (pRam && GCPhysLast >= pRam->GCPhys)
2628 {
2629 if ( GCPhys <= pRam->GCPhysLast
2630 && GCPhysLast >= pRam->GCPhys)
2631 {
2632 /* completely within? */
2633 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2634 && GCPhysLast <= pRam->GCPhysLast,
2635 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2636 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2637 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2638 VERR_PGM_RAM_CONFLICT);
2639 fRamExists = true;
2640 break;
2641 }
2642
2643 /* next */
2644 pRamPrev = pRam;
2645 pRam = pRam->pNextR3;
2646 }
2647 if (fRamExists)
2648 {
2649 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2650 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2651 while (cPagesLeft-- > 0)
2652 {
2653 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2654 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2655 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2656 VERR_PGM_RAM_CONFLICT);
2657 pPage++;
2658 }
2659 }
2660 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2661 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2662
2663 /*
2664 * Make the changes.
2665 */
2666 pgmLock(pVM);
2667
2668 pCur->RamRange.GCPhys = GCPhys;
2669 pCur->RamRange.GCPhysLast = GCPhysLast;
2670 pCur->fMapped = true;
2671 pCur->fOverlapping = fRamExists;
2672
2673 if (fRamExists)
2674 {
2675/** @todo use pgmR3PhysFreePageRange here. */
2676 uint32_t cPendingPages = 0;
2677 PGMMFREEPAGESREQ pReq;
2678 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2679 AssertLogRelRCReturn(rc, rc);
2680
2681 /* replace the pages, freeing all present RAM pages. */
2682 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2683 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2684 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2685 while (cPagesLeft-- > 0)
2686 {
2687 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2688 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2689
2690 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2691 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2692 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2693 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2694 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2695 PGM_PAGE_SET_PTE_INDEX(pPageDst, 0);
2696 PGM_PAGE_SET_TRACKING(pPageDst, 0);
2697
2698 pVM->pgm.s.cZeroPages--;
2699 GCPhys += PAGE_SIZE;
2700 pPageSrc++;
2701 pPageDst++;
2702 }
2703
2704 /* Flush physical page map TLB. */
2705 PGMPhysInvalidatePageMapTLB(pVM);
2706
2707 if (cPendingPages)
2708 {
2709 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2710 AssertLogRelRCReturn(rc, rc);
2711 }
2712 GMMR3FreePagesCleanup(pReq);
2713
2714 /* Force a PGM pool flush as guest ram references have been changed. */
2715 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
2716 PVMCPU pVCpu = VMMGetCpu(pVM);
2717 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2718 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2719
2720 pgmUnlock(pVM);
2721 }
2722 else
2723 {
2724 RTGCPHYS cb = pCur->RamRange.cb;
2725
2726 /* Clear the tracking data of pages we're going to reactivate. */
2727 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2728 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2729 while (cPagesLeft-- > 0)
2730 {
2731 PGM_PAGE_SET_TRACKING(pPageSrc, 0);
2732 PGM_PAGE_SET_PTE_INDEX(pPageSrc, 0);
2733 pPageSrc++;
2734 }
2735
2736 /* link in the ram range */
2737 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2738 pgmUnlock(pVM);
2739
2740 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2741 }
2742
2743 PGMPhysInvalidatePageMapTLB(pVM);
2744 return VINF_SUCCESS;
2745}
2746
2747
2748/**
2749 * Unmaps a MMIO2 region.
2750 *
2751 * This is done when a guest / the bios / state loading changes the
2752 * PCI config. The replacing of base memory has the same restrictions
2753 * as during registration, of course.
2754 */
2755VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2756{
2757 /*
2758 * Validate input
2759 */
2760 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2761 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2762 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2763 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2764 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2765 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2766
2767 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2768 AssertReturn(pCur, VERR_NOT_FOUND);
2769 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2770 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2771 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2772
2773 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2774 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2775
2776 /*
2777 * Unmap it.
2778 */
2779 pgmLock(pVM);
2780
2781 RTGCPHYS GCPhysRangeREM;
2782 RTGCPHYS cbRangeREM;
2783 bool fInformREM;
2784 if (pCur->fOverlapping)
2785 {
2786 /* Restore the RAM pages we've replaced. */
2787 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2788 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2789 pRam = pRam->pNextR3;
2790
2791 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2792 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2793 while (cPagesLeft-- > 0)
2794 {
2795 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
2796 pVM->pgm.s.cZeroPages++;
2797 pPageDst++;
2798 }
2799
2800 /* Flush physical page map TLB. */
2801 PGMPhysInvalidatePageMapTLB(pVM);
2802
2803 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2804 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2805 fInformREM = false;
2806 }
2807 else
2808 {
2809 GCPhysRangeREM = pCur->RamRange.GCPhys;
2810 cbRangeREM = pCur->RamRange.cb;
2811 fInformREM = true;
2812
2813 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2814 }
2815
2816 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2817 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2818 pCur->fOverlapping = false;
2819 pCur->fMapped = false;
2820
2821 /* Force a PGM pool flush as guest ram references have been changed. */
2822 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
2823 PVMCPU pVCpu = VMMGetCpu(pVM);
2824 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2825 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2826
2827 PGMPhysInvalidatePageMapTLB(pVM);
2828 pgmPhysInvalidRamRangeTlbs(pVM);
2829 pgmUnlock(pVM);
2830
2831 if (fInformREM)
2832 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2833
2834 return VINF_SUCCESS;
2835}
2836
2837
2838/**
2839 * Checks if the given address is an MMIO2 base address or not.
2840 *
2841 * @returns true/false accordingly.
2842 * @param pVM Pointer to the shared VM structure.
2843 * @param pDevIns The owner of the memory, optional.
2844 * @param GCPhys The address to check.
2845 */
2846VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2847{
2848 /*
2849 * Validate input
2850 */
2851 VM_ASSERT_EMT_RETURN(pVM, false);
2852 AssertPtrReturn(pDevIns, false);
2853 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2854 AssertReturn(GCPhys != 0, false);
2855 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2856
2857 /*
2858 * Search the list.
2859 */
2860 pgmLock(pVM);
2861 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2862 if (pCur->RamRange.GCPhys == GCPhys)
2863 {
2864 Assert(pCur->fMapped);
2865 pgmUnlock(pVM);
2866 return true;
2867 }
2868 pgmUnlock(pVM);
2869 return false;
2870}
2871
2872
2873/**
2874 * Gets the HC physical address of a page in the MMIO2 region.
2875 *
2876 * This is API is intended for MMHyper and shouldn't be called
2877 * by anyone else...
2878 *
2879 * @returns VBox status code.
2880 * @param pVM Pointer to the shared VM structure.
2881 * @param pDevIns The owner of the memory, optional.
2882 * @param iRegion The region.
2883 * @param off The page expressed an offset into the MMIO2 region.
2884 * @param pHCPhys Where to store the result.
2885 */
2886VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2887{
2888 /*
2889 * Validate input
2890 */
2891 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2892 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2893 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2894
2895 pgmLock(pVM);
2896 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2897 AssertReturn(pCur, VERR_NOT_FOUND);
2898 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2899
2900 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2901 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2902 pgmUnlock(pVM);
2903 return VINF_SUCCESS;
2904}
2905
2906
2907/**
2908 * Maps a portion of an MMIO2 region into kernel space (host).
2909 *
2910 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2911 * or the VM is terminated.
2912 *
2913 * @return VBox status code.
2914 *
2915 * @param pVM Pointer to the shared VM structure.
2916 * @param pDevIns The device owning the MMIO2 memory.
2917 * @param iRegion The region.
2918 * @param off The offset into the region. Must be page aligned.
2919 * @param cb The number of bytes to map. Must be page aligned.
2920 * @param pszDesc Mapping description.
2921 * @param pR0Ptr Where to store the R0 address.
2922 */
2923VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2924 const char *pszDesc, PRTR0PTR pR0Ptr)
2925{
2926 /*
2927 * Validate input.
2928 */
2929 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2930 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2931 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2932
2933 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2934 AssertReturn(pCur, VERR_NOT_FOUND);
2935 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2936 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2937 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2938
2939 /*
2940 * Pass the request on to the support library/driver.
2941 */
2942 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2943
2944 return rc;
2945}
2946
2947
2948/**
2949 * Registers a ROM image.
2950 *
2951 * Shadowed ROM images requires double the amount of backing memory, so,
2952 * don't use that unless you have to. Shadowing of ROM images is process
2953 * where we can select where the reads go and where the writes go. On real
2954 * hardware the chipset provides means to configure this. We provide
2955 * PGMR3PhysProtectROM() for this purpose.
2956 *
2957 * A read-only copy of the ROM image will always be kept around while we
2958 * will allocate RAM pages for the changes on demand (unless all memory
2959 * is configured to be preallocated).
2960 *
2961 * @returns VBox status.
2962 * @param pVM VM Handle.
2963 * @param pDevIns The device instance owning the ROM.
2964 * @param GCPhys First physical address in the range.
2965 * Must be page aligned!
2966 * @param cb The size of the range (in bytes).
2967 * Must be page aligned!
2968 * @param pvBinary Pointer to the binary data backing the ROM image.
2969 * @param cbBinary The size of the binary data pvBinary points to.
2970 * This must be less or equal to @a cb.
2971 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2972 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2973 * @param pszDesc Pointer to description string. This must not be freed.
2974 *
2975 * @remark There is no way to remove the rom, automatically on device cleanup or
2976 * manually from the device yet. This isn't difficult in any way, it's
2977 * just not something we expect to be necessary for a while.
2978 */
2979VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2980 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
2981{
2982 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
2983 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
2984
2985 /*
2986 * Validate input.
2987 */
2988 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2989 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2990 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2991 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2992 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2993 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2994 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2995 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2996 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2997
2998 const uint32_t cPages = cb >> PAGE_SHIFT;
2999
3000 /*
3001 * Find the ROM location in the ROM list first.
3002 */
3003 PPGMROMRANGE pRomPrev = NULL;
3004 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3005 while (pRom && GCPhysLast >= pRom->GCPhys)
3006 {
3007 if ( GCPhys <= pRom->GCPhysLast
3008 && GCPhysLast >= pRom->GCPhys)
3009 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
3010 GCPhys, GCPhysLast, pszDesc,
3011 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
3012 VERR_PGM_RAM_CONFLICT);
3013 /* next */
3014 pRomPrev = pRom;
3015 pRom = pRom->pNextR3;
3016 }
3017
3018 /*
3019 * Find the RAM location and check for conflicts.
3020 *
3021 * Conflict detection is a bit different than for RAM
3022 * registration since a ROM can be located within a RAM
3023 * range. So, what we have to check for is other memory
3024 * types (other than RAM that is) and that we don't span
3025 * more than one RAM range (layz).
3026 */
3027 bool fRamExists = false;
3028 PPGMRAMRANGE pRamPrev = NULL;
3029 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3030 while (pRam && GCPhysLast >= pRam->GCPhys)
3031 {
3032 if ( GCPhys <= pRam->GCPhysLast
3033 && GCPhysLast >= pRam->GCPhys)
3034 {
3035 /* completely within? */
3036 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
3037 && GCPhysLast <= pRam->GCPhysLast,
3038 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
3039 GCPhys, GCPhysLast, pszDesc,
3040 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3041 VERR_PGM_RAM_CONFLICT);
3042 fRamExists = true;
3043 break;
3044 }
3045
3046 /* next */
3047 pRamPrev = pRam;
3048 pRam = pRam->pNextR3;
3049 }
3050 if (fRamExists)
3051 {
3052 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3053 uint32_t cPagesLeft = cPages;
3054 while (cPagesLeft-- > 0)
3055 {
3056 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3057 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
3058 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
3059 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
3060 Assert(PGM_PAGE_IS_ZERO(pPage));
3061 pPage++;
3062 }
3063 }
3064
3065 /*
3066 * Update the base memory reservation if necessary.
3067 */
3068 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
3069 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3070 cExtraBaseCost += cPages;
3071 if (cExtraBaseCost)
3072 {
3073 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
3074 if (RT_FAILURE(rc))
3075 return rc;
3076 }
3077
3078 /*
3079 * Allocate memory for the virgin copy of the RAM.
3080 */
3081 PGMMALLOCATEPAGESREQ pReq;
3082 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
3083 AssertRCReturn(rc, rc);
3084
3085 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3086 {
3087 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
3088 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
3089 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
3090 }
3091
3092 pgmLock(pVM);
3093 rc = GMMR3AllocatePagesPerform(pVM, pReq);
3094 pgmUnlock(pVM);
3095 if (RT_FAILURE(rc))
3096 {
3097 GMMR3AllocatePagesCleanup(pReq);
3098 return rc;
3099 }
3100
3101 /*
3102 * Allocate the new ROM range and RAM range (if necessary).
3103 */
3104 PPGMROMRANGE pRomNew;
3105 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
3106 if (RT_SUCCESS(rc))
3107 {
3108 PPGMRAMRANGE pRamNew = NULL;
3109 if (!fRamExists)
3110 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
3111 if (RT_SUCCESS(rc))
3112 {
3113 pgmLock(pVM);
3114
3115 /*
3116 * Initialize and insert the RAM range (if required).
3117 */
3118 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
3119 if (!fRamExists)
3120 {
3121 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
3122 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
3123 pRamNew->GCPhys = GCPhys;
3124 pRamNew->GCPhysLast = GCPhysLast;
3125 pRamNew->cb = cb;
3126 pRamNew->pszDesc = pszDesc;
3127 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
3128 pRamNew->pvR3 = NULL;
3129 pRamNew->paLSPages = NULL;
3130
3131 PPGMPAGE pPage = &pRamNew->aPages[0];
3132 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3133 {
3134 PGM_PAGE_INIT(pPage,
3135 pReq->aPages[iPage].HCPhysGCPhys,
3136 pReq->aPages[iPage].idPage,
3137 PGMPAGETYPE_ROM,
3138 PGM_PAGE_STATE_ALLOCATED);
3139
3140 pRomPage->Virgin = *pPage;
3141 }
3142
3143 pVM->pgm.s.cAllPages += cPages;
3144 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
3145 }
3146 else
3147 {
3148 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3149 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3150 {
3151 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
3152 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
3153 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3154 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
3155 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3156 PGM_PAGE_SET_PTE_INDEX(pPage, 0);
3157 PGM_PAGE_SET_TRACKING(pPage, 0);
3158
3159 pRomPage->Virgin = *pPage;
3160 }
3161
3162 pRamNew = pRam;
3163
3164 pVM->pgm.s.cZeroPages -= cPages;
3165 }
3166 pVM->pgm.s.cPrivatePages += cPages;
3167
3168 /* Flush physical page map TLB. */
3169 PGMPhysInvalidatePageMapTLB(pVM);
3170
3171 pgmUnlock(pVM);
3172
3173
3174 /*
3175 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
3176 *
3177 * If it's shadowed we'll register the handler after the ROM notification
3178 * so we get the access handler callbacks that we should. If it isn't
3179 * shadowed we'll do it the other way around to make REM use the built-in
3180 * ROM behavior and not the handler behavior (which is to route all access
3181 * to PGM atm).
3182 */
3183 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3184 {
3185 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
3186 rc = PGMR3HandlerPhysicalRegister(pVM,
3187 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
3188 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
3189 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
3190 GCPhys, GCPhysLast,
3191 pgmR3PhysRomWriteHandler, pRomNew,
3192 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
3193 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
3194 }
3195 else
3196 {
3197 rc = PGMR3HandlerPhysicalRegister(pVM,
3198 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
3199 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
3200 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
3201 GCPhys, GCPhysLast,
3202 pgmR3PhysRomWriteHandler, pRomNew,
3203 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
3204 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
3205 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
3206 }
3207 if (RT_SUCCESS(rc))
3208 {
3209 pgmLock(pVM);
3210
3211 /*
3212 * Copy the image over to the virgin pages.
3213 * This must be done after linking in the RAM range.
3214 */
3215 size_t cbBinaryLeft = cbBinary;
3216 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
3217 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
3218 {
3219 void *pvDstPage;
3220 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
3221 if (RT_FAILURE(rc))
3222 {
3223 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
3224 break;
3225 }
3226 if (cbBinaryLeft >= PAGE_SIZE)
3227 {
3228 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
3229 cbBinaryLeft -= PAGE_SIZE;
3230 }
3231 else
3232 {
3233 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
3234 if (cbBinaryLeft > 0)
3235 {
3236 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
3237 cbBinaryLeft = 0;
3238 }
3239 }
3240 }
3241 if (RT_SUCCESS(rc))
3242 {
3243 /*
3244 * Initialize the ROM range.
3245 * Note that the Virgin member of the pages has already been initialized above.
3246 */
3247 pRomNew->GCPhys = GCPhys;
3248 pRomNew->GCPhysLast = GCPhysLast;
3249 pRomNew->cb = cb;
3250 pRomNew->fFlags = fFlags;
3251 pRomNew->idSavedState = UINT8_MAX;
3252 pRomNew->cbOriginal = cbBinary;
3253#ifdef VBOX_STRICT
3254 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
3255 ? pvBinary : RTMemDup(pvBinary, cbBinary);
3256#else
3257 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
3258#endif
3259 pRomNew->pszDesc = pszDesc;
3260
3261 for (unsigned iPage = 0; iPage < cPages; iPage++)
3262 {
3263 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
3264 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
3265 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
3266 }
3267
3268 /* update the page count stats for the shadow pages. */
3269 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3270 {
3271 pVM->pgm.s.cZeroPages += cPages;
3272 pVM->pgm.s.cAllPages += cPages;
3273 }
3274
3275 /*
3276 * Insert the ROM range, tell REM and return successfully.
3277 */
3278 pRomNew->pNextR3 = pRom;
3279 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
3280 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
3281
3282 if (pRomPrev)
3283 {
3284 pRomPrev->pNextR3 = pRomNew;
3285 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
3286 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
3287 }
3288 else
3289 {
3290 pVM->pgm.s.pRomRangesR3 = pRomNew;
3291 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
3292 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
3293 }
3294
3295 PGMPhysInvalidatePageMapTLB(pVM);
3296 GMMR3AllocatePagesCleanup(pReq);
3297 pgmUnlock(pVM);
3298 return VINF_SUCCESS;
3299 }
3300
3301 /* bail out */
3302
3303 pgmUnlock(pVM);
3304 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
3305 AssertRC(rc2);
3306 pgmLock(pVM);
3307 }
3308
3309 if (!fRamExists)
3310 {
3311 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
3312 MMHyperFree(pVM, pRamNew);
3313 }
3314 }
3315 MMHyperFree(pVM, pRomNew);
3316 }
3317
3318 /** @todo Purge the mapping cache or something... */
3319 GMMR3FreeAllocatedPages(pVM, pReq);
3320 GMMR3AllocatePagesCleanup(pReq);
3321 pgmUnlock(pVM);
3322 return rc;
3323}
3324
3325
3326/**
3327 * \#PF Handler callback for ROM write accesses.
3328 *
3329 * @returns VINF_SUCCESS if the handler have carried out the operation.
3330 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
3331 * @param pVM VM Handle.
3332 * @param GCPhys The physical address the guest is writing to.
3333 * @param pvPhys The HC mapping of that address.
3334 * @param pvBuf What the guest is reading/writing.
3335 * @param cbBuf How much it's reading/writing.
3336 * @param enmAccessType The access type.
3337 * @param pvUser User argument.
3338 */
3339static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
3340 PGMACCESSTYPE enmAccessType, void *pvUser)
3341{
3342 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
3343 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3344 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
3345 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3346 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
3347
3348 if (enmAccessType == PGMACCESSTYPE_READ)
3349 {
3350 switch (pRomPage->enmProt)
3351 {
3352 /*
3353 * Take the default action.
3354 */
3355 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3356 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3357 case PGMROMPROT_READ_ROM_WRITE_RAM:
3358 case PGMROMPROT_READ_RAM_WRITE_RAM:
3359 return VINF_PGM_HANDLER_DO_DEFAULT;
3360
3361 default:
3362 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3363 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3364 VERR_INTERNAL_ERROR);
3365 }
3366 }
3367 else
3368 {
3369 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
3370 switch (pRomPage->enmProt)
3371 {
3372 /*
3373 * Ignore writes.
3374 */
3375 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3376 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3377 return VINF_SUCCESS;
3378
3379 /*
3380 * Write to the RAM page.
3381 */
3382 case PGMROMPROT_READ_ROM_WRITE_RAM:
3383 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
3384 {
3385 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
3386 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
3387
3388 /*
3389 * Take the lock, do lazy allocation, map the page and copy the data.
3390 *
3391 * Note that we have to bypass the mapping TLB since it works on
3392 * guest physical addresses and entering the shadow page would
3393 * kind of screw things up...
3394 */
3395 int rc = pgmLock(pVM);
3396 AssertRC(rc);
3397
3398 PPGMPAGE pShadowPage = &pRomPage->Shadow;
3399 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
3400 {
3401 pShadowPage = pgmPhysGetPage(pVM, GCPhys);
3402 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
3403 }
3404
3405 void *pvDstPage;
3406 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
3407 if (RT_SUCCESS(rc))
3408 {
3409 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
3410 pRomPage->LiveSave.fWrittenTo = true;
3411 }
3412
3413 pgmUnlock(pVM);
3414 return rc;
3415 }
3416
3417 default:
3418 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3419 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3420 VERR_INTERNAL_ERROR);
3421 }
3422 }
3423}
3424
3425
3426/**
3427 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
3428 * and verify that the virgin part is untouched.
3429 *
3430 * This is done after the normal memory has been cleared.
3431 *
3432 * ASSUMES that the caller owns the PGM lock.
3433 *
3434 * @param pVM The VM handle.
3435 */
3436int pgmR3PhysRomReset(PVM pVM)
3437{
3438 Assert(PGMIsLockOwner(pVM));
3439 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3440 {
3441 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
3442
3443 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3444 {
3445 /*
3446 * Reset the physical handler.
3447 */
3448 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
3449 AssertRCReturn(rc, rc);
3450
3451 /*
3452 * What we do with the shadow pages depends on the memory
3453 * preallocation option. If not enabled, we'll just throw
3454 * out all the dirty pages and replace them by the zero page.
3455 */
3456 if (!pVM->pgm.s.fRamPreAlloc)
3457 {
3458 /* Free the dirty pages. */
3459 uint32_t cPendingPages = 0;
3460 PGMMFREEPAGESREQ pReq;
3461 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3462 AssertRCReturn(rc, rc);
3463
3464 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3465 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
3466 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
3467 {
3468 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
3469 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
3470 pRom->GCPhys + (iPage << PAGE_SHIFT));
3471 AssertLogRelRCReturn(rc, rc);
3472 }
3473
3474 if (cPendingPages)
3475 {
3476 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
3477 AssertLogRelRCReturn(rc, rc);
3478 }
3479 GMMR3FreePagesCleanup(pReq);
3480 }
3481 else
3482 {
3483 /* clear all the shadow pages. */
3484 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3485 {
3486 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
3487 continue;
3488 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
3489 void *pvDstPage;
3490 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3491 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
3492 if (RT_FAILURE(rc))
3493 break;
3494 ASMMemZeroPage(pvDstPage);
3495 }
3496 AssertRCReturn(rc, rc);
3497 }
3498 }
3499
3500#ifdef VBOX_STRICT
3501 /*
3502 * Verify that the virgin page is unchanged if possible.
3503 */
3504 if (pRom->pvOriginal)
3505 {
3506 size_t cbSrcLeft = pRom->cbOriginal;
3507 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
3508 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
3509 {
3510 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3511 void const *pvDstPage;
3512 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
3513 if (RT_FAILURE(rc))
3514 break;
3515
3516 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
3517 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
3518 GCPhys, pRom->pszDesc));
3519 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
3520 }
3521 }
3522#endif
3523 }
3524
3525 return VINF_SUCCESS;
3526}
3527
3528
3529/**
3530 * Called by PGMR3Term to free resources.
3531 *
3532 * ASSUMES that the caller owns the PGM lock.
3533 *
3534 * @param pVM The VM handle.
3535 */
3536void pgmR3PhysRomTerm(PVM pVM)
3537{
3538#ifdef RT_STRICT
3539 /*
3540 * Free the heap copy of the original bits.
3541 */
3542 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3543 {
3544 if ( pRom->pvOriginal
3545 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
3546 {
3547 RTMemFree((void *)pRom->pvOriginal);
3548 pRom->pvOriginal = NULL;
3549 }
3550 }
3551#endif
3552}
3553
3554
3555/**
3556 * Change the shadowing of a range of ROM pages.
3557 *
3558 * This is intended for implementing chipset specific memory registers
3559 * and will not be very strict about the input. It will silently ignore
3560 * any pages that are not the part of a shadowed ROM.
3561 *
3562 * @returns VBox status code.
3563 * @retval VINF_PGM_SYNC_CR3
3564 *
3565 * @param pVM Pointer to the shared VM structure.
3566 * @param GCPhys Where to start. Page aligned.
3567 * @param cb How much to change. Page aligned.
3568 * @param enmProt The new ROM protection.
3569 */
3570VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
3571{
3572 /*
3573 * Check input
3574 */
3575 if (!cb)
3576 return VINF_SUCCESS;
3577 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3578 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3579 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3580 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3581 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
3582
3583 /*
3584 * Process the request.
3585 */
3586 pgmLock(pVM);
3587 int rc = VINF_SUCCESS;
3588 bool fFlushTLB = false;
3589 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3590 {
3591 if ( GCPhys <= pRom->GCPhysLast
3592 && GCPhysLast >= pRom->GCPhys
3593 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
3594 {
3595 /*
3596 * Iterate the relevant pages and make necessary the changes.
3597 */
3598 bool fChanges = false;
3599 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
3600 ? pRom->cb >> PAGE_SHIFT
3601 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
3602 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3603 iPage < cPages;
3604 iPage++)
3605 {
3606 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3607 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
3608 {
3609 fChanges = true;
3610
3611 /* flush references to the page. */
3612 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
3613 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
3614 true /*fFlushPTEs*/, &fFlushTLB);
3615 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
3616 rc = rc2;
3617
3618 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
3619 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
3620
3621 *pOld = *pRamPage;
3622 *pRamPage = *pNew;
3623 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
3624 }
3625 pRomPage->enmProt = enmProt;
3626 }
3627
3628 /*
3629 * Reset the access handler if we made changes, no need
3630 * to optimize this.
3631 */
3632 if (fChanges)
3633 {
3634 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
3635 if (RT_FAILURE(rc2))
3636 {
3637 pgmUnlock(pVM);
3638 AssertRC(rc);
3639 return rc2;
3640 }
3641 }
3642
3643 /* Advance - cb isn't updated. */
3644 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3645 }
3646 }
3647 pgmUnlock(pVM);
3648 if (fFlushTLB)
3649 PGM_INVL_ALL_VCPU_TLBS(pVM);
3650
3651 return rc;
3652}
3653
3654
3655/**
3656 * Sets the Address Gate 20 state.
3657 *
3658 * @param pVCpu The VCPU to operate on.
3659 * @param fEnable True if the gate should be enabled.
3660 * False if the gate should be disabled.
3661 */
3662VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3663{
3664 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3665 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3666 {
3667 pVCpu->pgm.s.fA20Enabled = fEnable;
3668 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
3669 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3670 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
3671 }
3672}
3673
3674#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
3675/**
3676 * Tree enumeration callback for dealing with age rollover.
3677 * It will perform a simple compression of the current age.
3678 */
3679static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3680{
3681 Assert(PGMIsLockOwner((PVM)pvUser));
3682 /* Age compression - ASSUMES iNow == 4. */
3683 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3684 if (pChunk->iAge >= UINT32_C(0xffffff00))
3685 pChunk->iAge = 3;
3686 else if (pChunk->iAge >= UINT32_C(0xfffff000))
3687 pChunk->iAge = 2;
3688 else if (pChunk->iAge)
3689 pChunk->iAge = 1;
3690 else /* iAge = 0 */
3691 pChunk->iAge = 4;
3692 return 0;
3693}
3694
3695
3696/**
3697 * Tree enumeration callback that updates the chunks that have
3698 * been used since the last
3699 */
3700static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3701{
3702 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3703 if (!pChunk->iAge)
3704 {
3705 PVM pVM = (PVM)pvUser;
3706 pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3707 }
3708 return 0;
3709}
3710
3711
3712/**
3713 * Performs ageing of the ring-3 chunk mappings.
3714 *
3715 * @param pVM The VM handle.
3716 */
3717VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3718{
3719 pgmLock(pVM);
3720 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3721 pVM->pgm.s.ChunkR3Map.iNow++;
3722 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3723 {
3724 pVM->pgm.s.ChunkR3Map.iNow = 4;
3725 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3726 }
3727 else
3728 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3729 pgmUnlock(pVM);
3730}
3731
3732
3733/**
3734 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3735 */
3736typedef struct PGMR3PHYSCHUNKUNMAPCB
3737{
3738 PVM pVM; /**< The VM handle. */
3739 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3740 uint32_t iLastAge; /**< Highest age found so far. */
3741} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3742
3743
3744/**
3745 * Callback used to find the mapping that's been unused for
3746 * the longest time.
3747 */
3748static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
3749{
3750 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3751 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
3752
3753 if ( pChunk->iAge
3754 && !pChunk->cRefs
3755 && pArg->iLastAge < pChunk->iAge)
3756 {
3757 /*
3758 * Check that it's not in any of the TLBs.
3759 */
3760 PVM pVM = pArg->pVM;
3761 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3762 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3763 {
3764 pChunk = NULL;
3765 break;
3766 }
3767 if (pChunk)
3768 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3769 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3770 {
3771 pChunk = NULL;
3772 break;
3773 }
3774 if (pChunk)
3775 {
3776 pArg->pChunk = pChunk;
3777 pArg->iLastAge = pChunk->iAge;
3778 }
3779 }
3780 return 0;
3781}
3782
3783
3784/**
3785 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3786 *
3787 * The candidate will not be part of any TLBs, so no need to flush
3788 * anything afterwards.
3789 *
3790 * @returns Chunk id.
3791 * @param pVM The VM handle.
3792 */
3793static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3794{
3795 Assert(PGMIsLockOwner(pVM));
3796
3797 /*
3798 * Do tree ageing first?
3799 */
3800 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3801 {
3802 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkAging, a);
3803 PGMR3PhysChunkAgeing(pVM);
3804 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkAging, a);
3805 }
3806
3807 /*
3808 * Enumerate the age tree starting with the left most node.
3809 */
3810 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3811 PGMR3PHYSCHUNKUNMAPCB Args;
3812 Args.pVM = pVM;
3813 Args.pChunk = NULL;
3814 Args.iLastAge = 0;
3815 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
3816 Assert(Args.pChunk);
3817 if (Args.pChunk)
3818 {
3819 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3820 return Args.pChunk->Core.Key;
3821 }
3822
3823 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3824 return INT32_MAX;
3825}
3826
3827/**
3828 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
3829 *
3830 * This is only called on one of the EMTs while the other ones are waiting for
3831 * it to complete this function.
3832 *
3833 * @returns VINF_SUCCESS (VBox strict status code).
3834 * @param pVM The VM handle.
3835 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
3836 * @param pvUser User pointer. Unused
3837 *
3838 */
3839DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
3840{
3841 int rc = VINF_SUCCESS;
3842 pgmLock(pVM);
3843
3844 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3845 {
3846 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
3847 /* todo: also not really efficient to unmap a chunk that contains PD or PT pages. */
3848 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
3849
3850 /*
3851 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
3852 */
3853 GMMMAPUNMAPCHUNKREQ Req;
3854 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3855 Req.Hdr.cbReq = sizeof(Req);
3856 Req.pvR3 = NULL;
3857 Req.idChunkMap = NIL_GMM_CHUNKID;
3858 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3859
3860 if (Req.idChunkUnmap != INT32_MAX)
3861 {
3862 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3863 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3864 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3865 if (RT_SUCCESS(rc))
3866 {
3867 /* remove the unmapped one. */
3868 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3869 AssertRelease(pUnmappedChunk);
3870 pUnmappedChunk->pv = NULL;
3871 pUnmappedChunk->Core.Key = UINT32_MAX;
3872#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3873 MMR3HeapFree(pUnmappedChunk);
3874#else
3875 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3876#endif
3877 pVM->pgm.s.ChunkR3Map.c--;
3878 pVM->pgm.s.cUnmappedChunks++;
3879
3880 /* Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses) */
3881 /* todo: we should not flush chunks which include cr3 mappings. */
3882 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3883 {
3884 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
3885
3886 pPGM->pGst32BitPdR3 = NULL;
3887 pPGM->pGstPaePdptR3 = NULL;
3888 pPGM->pGstAmd64Pml4R3 = NULL;
3889#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3890 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
3891 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
3892 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
3893#endif
3894 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
3895 {
3896 pPGM->apGstPaePDsR3[i] = NULL;
3897#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3898 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
3899#endif
3900 }
3901
3902 /* Flush REM TLBs. */
3903 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3904 }
3905
3906 /* Flush REM translation blocks. */
3907 REMFlushTBs(pVM);
3908 }
3909 }
3910 }
3911 pgmUnlock(pVM);
3912 return rc;
3913}
3914
3915/**
3916 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
3917 *
3918 * @returns VBox status code.
3919 * @param pVM The VM to operate on.
3920 */
3921void pgmR3PhysUnmapChunk(PVM pVM)
3922{
3923 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
3924 AssertRC(rc);
3925}
3926#endif /* PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST */
3927
3928/**
3929 * Maps the given chunk into the ring-3 mapping cache.
3930 *
3931 * This will call ring-0.
3932 *
3933 * @returns VBox status code.
3934 * @param pVM The VM handle.
3935 * @param idChunk The chunk in question.
3936 * @param ppChunk Where to store the chunk tracking structure.
3937 *
3938 * @remarks Called from within the PGM critical section.
3939 * @remarks Can be called from any thread!
3940 */
3941int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3942{
3943 int rc;
3944
3945 Assert(PGMIsLockOwner(pVM));
3946 /*
3947 * Allocate a new tracking structure first.
3948 */
3949#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3950 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3951#else
3952 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3953#endif
3954 AssertReturn(pChunk, VERR_NO_MEMORY);
3955 pChunk->Core.Key = idChunk;
3956
3957 /*
3958 * Request the ring-0 part to map the chunk in question.
3959 */
3960 GMMMAPUNMAPCHUNKREQ Req;
3961 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3962 Req.Hdr.cbReq = sizeof(Req);
3963 Req.pvR3 = NULL;
3964 Req.idChunkMap = idChunk;
3965 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3966
3967 /* Must be callable from any thread, so can't use VMMR3CallR0. */
3968 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
3969 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3970 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
3971 if (RT_SUCCESS(rc))
3972 {
3973 /*
3974 * Update the tree.
3975 */
3976 /* insert the new one. */
3977 AssertPtr(Req.pvR3);
3978 pChunk->pv = Req.pvR3;
3979 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3980 AssertRelease(fRc);
3981 pVM->pgm.s.ChunkR3Map.c++;
3982 pVM->pgm.s.cMappedChunks++;
3983
3984 /* If we're running out of virtual address space, then we should unmap another chunk. */
3985 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3986 {
3987#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
3988 /* Postpone the unmap operation (which requires a rendezvous operation) as we own the PGM lock here. */
3989 rc = VMR3ReqCallNoWaitU(pVM->pUVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
3990 AssertRC(rc);
3991#else
3992 AssertFatalFailed(); /* can't happen */
3993#endif
3994 }
3995 }
3996 else
3997 {
3998 AssertRC(rc);
3999#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4000 MMR3HeapFree(pChunk);
4001#else
4002 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
4003#endif
4004 pChunk = NULL;
4005 }
4006
4007 *ppChunk = pChunk;
4008 return rc;
4009}
4010
4011
4012/**
4013 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
4014 *
4015 * @returns see pgmR3PhysChunkMap.
4016 * @param pVM The VM handle.
4017 * @param idChunk The chunk to map.
4018 */
4019VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
4020{
4021 PPGMCHUNKR3MAP pChunk;
4022 int rc;
4023
4024 pgmLock(pVM);
4025 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
4026 pgmUnlock(pVM);
4027 return rc;
4028}
4029
4030
4031/**
4032 * Invalidates the TLB for the ring-3 mapping cache.
4033 *
4034 * @param pVM The VM handle.
4035 */
4036VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
4037{
4038 pgmLock(pVM);
4039 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4040 {
4041 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
4042 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
4043 }
4044 /* The page map TLB references chunks, so invalidate that one too. */
4045 PGMPhysInvalidatePageMapTLB(pVM);
4046 pgmUnlock(pVM);
4047}
4048
4049
4050/**
4051 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
4052 * for use with a nested paging PDE.
4053 *
4054 * @returns The following VBox status codes.
4055 * @retval VINF_SUCCESS on success.
4056 * @retval VINF_EM_NO_MEMORY if we're out of memory.
4057 *
4058 * @param pVM The VM handle.
4059 * @param GCPhys GC physical start address of the 2 MB range
4060 */
4061VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
4062{
4063#ifdef PGM_WITH_LARGE_PAGES
4064 uint64_t u64TimeStamp1, u64TimeStamp2;
4065
4066 pgmLock(pVM);
4067
4068 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4069 u64TimeStamp1 = RTTimeMilliTS();
4070 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
4071 u64TimeStamp2 = RTTimeMilliTS();
4072 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4073 if (RT_SUCCESS(rc))
4074 {
4075 Assert(pVM->pgm.s.cLargeHandyPages == 1);
4076
4077 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
4078 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
4079
4080 void *pv;
4081
4082 /* Map the large page into our address space.
4083 *
4084 * Note: assuming that within the 2 MB range:
4085 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
4086 * - user space mapping is continuous as well
4087 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
4088 */
4089 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
4090 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
4091
4092 if (RT_SUCCESS(rc))
4093 {
4094 /*
4095 * Clear the pages.
4096 */
4097 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4098 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
4099 {
4100 ASMMemZeroPage(pv);
4101
4102 PPGMPAGE pPage;
4103 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
4104 AssertRC(rc);
4105
4106 Assert(PGM_PAGE_IS_ZERO(pPage));
4107 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
4108 pVM->pgm.s.cZeroPages--;
4109
4110 /*
4111 * Do the PGMPAGE modifications.
4112 */
4113 pVM->pgm.s.cPrivatePages++;
4114 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
4115 PGM_PAGE_SET_PAGEID(pPage, idPage);
4116 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
4117 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
4118 PGM_PAGE_SET_PTE_INDEX(pPage, 0);
4119 PGM_PAGE_SET_TRACKING(pPage, 0);
4120
4121 /* Somewhat dirty assumption that page ids are increasing. */
4122 idPage++;
4123
4124 HCPhys += PAGE_SIZE;
4125 GCPhys += PAGE_SIZE;
4126
4127 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
4128
4129 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
4130 }
4131 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4132
4133 /* Flush all TLBs. */
4134 PGM_INVL_ALL_VCPU_TLBS(pVM);
4135 PGMPhysInvalidatePageMapTLB(pVM);
4136 }
4137 pVM->pgm.s.cLargeHandyPages = 0;
4138 }
4139
4140 if (RT_SUCCESS(rc))
4141 {
4142 static uint32_t cTimeOut = 0;
4143 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
4144
4145 if (u64TimeStampDelta > 100)
4146 {
4147 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
4148 if ( ++cTimeOut > 10
4149 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
4150 {
4151 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
4152 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
4153 */
4154 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
4155 PGMSetLargePageUsage(pVM, false);
4156 }
4157 }
4158 else
4159 if (cTimeOut > 0)
4160 cTimeOut--;
4161 }
4162
4163 pgmUnlock(pVM);
4164 return rc;
4165#else
4166 return VERR_NOT_IMPLEMENTED;
4167#endif /* PGM_WITH_LARGE_PAGES */
4168}
4169
4170
4171/**
4172 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
4173 *
4174 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
4175 * signal and clear the out of memory condition. When contracted, this API is
4176 * used to try clear the condition when the user wants to resume.
4177 *
4178 * @returns The following VBox status codes.
4179 * @retval VINF_SUCCESS on success. FFs cleared.
4180 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
4181 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
4182 *
4183 * @param pVM The VM handle.
4184 *
4185 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
4186 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
4187 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
4188 * handler.
4189 */
4190VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
4191{
4192 pgmLock(pVM);
4193
4194 /*
4195 * Allocate more pages, noting down the index of the first new page.
4196 */
4197 uint32_t iClear = pVM->pgm.s.cHandyPages;
4198 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
4199 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
4200 int rcAlloc = VINF_SUCCESS;
4201 int rcSeed = VINF_SUCCESS;
4202 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4203 while (rc == VERR_GMM_SEED_ME)
4204 {
4205 void *pvChunk;
4206 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
4207 if (RT_SUCCESS(rc))
4208 {
4209 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
4210 if (RT_FAILURE(rc))
4211 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
4212 }
4213 if (RT_SUCCESS(rc))
4214 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4215 }
4216
4217 /* todo: we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
4218 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
4219 && pVM->pgm.s.cHandyPages > 0)
4220 {
4221 /* Still handy pages left, so don't panic. */
4222 rc = VINF_SUCCESS;
4223 }
4224
4225 if (RT_SUCCESS(rc))
4226 {
4227 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
4228 Assert(pVM->pgm.s.cHandyPages > 0);
4229 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4230 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
4231
4232 /*
4233 * Clear the pages.
4234 */
4235 while (iClear < pVM->pgm.s.cHandyPages)
4236 {
4237 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
4238 void *pv;
4239 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
4240 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", pPage->idPage, pPage->HCPhysGCPhys, rc));
4241 ASMMemZeroPage(pv);
4242 iClear++;
4243 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
4244 }
4245 }
4246 else
4247 {
4248 uint64_t cAllocPages, cMaxPages, cBalloonPages;
4249
4250 /*
4251 * We should never get here unless there is a genuine shortage of
4252 * memory (or some internal error). Flag the error so the VM can be
4253 * suspended ASAP and the user informed. If we're totally out of
4254 * handy pages we will return failure.
4255 */
4256 /* Report the failure. */
4257 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
4258 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
4259 rc, rcAlloc, rcSeed,
4260 pVM->pgm.s.cHandyPages,
4261 pVM->pgm.s.cAllPages,
4262 pVM->pgm.s.cPrivatePages,
4263 pVM->pgm.s.cSharedPages,
4264 pVM->pgm.s.cZeroPages));
4265
4266 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
4267 {
4268 LogRel(("GMM: Statistics:\n"
4269 " Allocated pages: %RX64\n"
4270 " Maximum pages: %RX64\n"
4271 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
4272 }
4273
4274 if ( rc != VERR_NO_MEMORY
4275 && rc != VERR_LOCK_FAILED)
4276 {
4277 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4278 {
4279 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
4280 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
4281 pVM->pgm.s.aHandyPages[i].idSharedPage));
4282 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
4283 if (idPage != NIL_GMM_PAGEID)
4284 {
4285 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4286 pRam;
4287 pRam = pRam->pNextR3)
4288 {
4289 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
4290 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4291 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
4292 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
4293 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
4294 }
4295 }
4296 }
4297 }
4298
4299 /* Set the FFs and adjust rc. */
4300 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4301 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
4302 if ( rc == VERR_NO_MEMORY
4303 || rc == VERR_LOCK_FAILED)
4304 rc = VINF_EM_NO_MEMORY;
4305 }
4306
4307 pgmUnlock(pVM);
4308 return rc;
4309}
4310
4311
4312/**
4313 * Frees the specified RAM page and replaces it with the ZERO page.
4314 *
4315 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
4316 *
4317 * @param pVM Pointer to the shared VM structure.
4318 * @param pReq Pointer to the request.
4319 * @param pcPendingPages Where the number of pages waiting to be freed are
4320 * kept. This will normally be incremented.
4321 * @param pPage Pointer to the page structure.
4322 * @param GCPhys The guest physical address of the page, if applicable.
4323 *
4324 * @remarks The caller must own the PGM lock.
4325 */
4326int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
4327{
4328 /*
4329 * Assert sanity.
4330 */
4331 Assert(PGMIsLockOwner(pVM));
4332 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
4333 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
4334 {
4335 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4336 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
4337 }
4338
4339 /** @todo What about ballooning of large pages??! */
4340 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
4341 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
4342
4343 if ( PGM_PAGE_IS_ZERO(pPage)
4344 || PGM_PAGE_IS_BALLOONED(pPage))
4345 return VINF_SUCCESS;
4346
4347 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
4348 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
4349 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
4350 || idPage > GMM_PAGEID_LAST
4351 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
4352 {
4353 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4354 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
4355 }
4356
4357 /* update page count stats. */
4358 if (PGM_PAGE_IS_SHARED(pPage))
4359 pVM->pgm.s.cSharedPages--;
4360 else
4361 pVM->pgm.s.cPrivatePages--;
4362 pVM->pgm.s.cZeroPages++;
4363
4364 /* Deal with write monitored pages. */
4365 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
4366 {
4367 PGM_PAGE_SET_WRITTEN_TO(pPage);
4368 pVM->pgm.s.cWrittenToPages++;
4369 }
4370
4371 /*
4372 * pPage = ZERO page.
4373 */
4374 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
4375 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
4376 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
4377 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4378 PGM_PAGE_SET_PTE_INDEX(pPage, 0);
4379 PGM_PAGE_SET_TRACKING(pPage, 0);
4380
4381 /* Flush physical page map TLB entry. */
4382 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
4383
4384 /*
4385 * Make sure it's not in the handy page array.
4386 */
4387 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4388 {
4389 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
4390 {
4391 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
4392 break;
4393 }
4394 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
4395 {
4396 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
4397 break;
4398 }
4399 }
4400
4401 /*
4402 * Push it onto the page array.
4403 */
4404 uint32_t iPage = *pcPendingPages;
4405 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
4406 *pcPendingPages += 1;
4407
4408 pReq->aPages[iPage].idPage = idPage;
4409
4410 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
4411 return VINF_SUCCESS;
4412
4413 /*
4414 * Flush the pages.
4415 */
4416 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
4417 if (RT_SUCCESS(rc))
4418 {
4419 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4420 *pcPendingPages = 0;
4421 }
4422 return rc;
4423}
4424
4425
4426/**
4427 * Converts a GC physical address to a HC ring-3 pointer, with some
4428 * additional checks.
4429 *
4430 * @returns VBox status code.
4431 * @retval VINF_SUCCESS on success.
4432 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4433 * access handler of some kind.
4434 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4435 * accesses or is odd in any way.
4436 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4437 *
4438 * @param pVM The VM handle.
4439 * @param GCPhys The GC physical address to convert.
4440 * @param fWritable Whether write access is required.
4441 * @param ppv Where to store the pointer corresponding to GCPhys on
4442 * success.
4443 */
4444VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
4445{
4446 pgmLock(pVM);
4447
4448 PPGMRAMRANGE pRam;
4449 PPGMPAGE pPage;
4450 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4451 if (RT_SUCCESS(rc))
4452 {
4453 if (PGM_PAGE_IS_BALLOONED(pPage))
4454 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4455 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
4456 rc = VINF_SUCCESS;
4457 else
4458 {
4459 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4460 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4461 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
4462 {
4463 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
4464 * in -norawr0 mode. */
4465 if (fWritable)
4466 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4467 }
4468 else
4469 {
4470 /* Temporarily disabled physical handler(s), since the recompiler
4471 doesn't get notified when it's reset we'll have to pretend it's
4472 operating normally. */
4473 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
4474 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4475 else
4476 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4477 }
4478 }
4479 if (RT_SUCCESS(rc))
4480 {
4481 int rc2;
4482
4483 /* Make sure what we return is writable. */
4484 if (fWritable)
4485 switch (PGM_PAGE_GET_STATE(pPage))
4486 {
4487 case PGM_PAGE_STATE_ALLOCATED:
4488 break;
4489 case PGM_PAGE_STATE_BALLOONED:
4490 AssertFailed();
4491 break;
4492 case PGM_PAGE_STATE_ZERO:
4493 case PGM_PAGE_STATE_SHARED:
4494 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
4495 break;
4496 case PGM_PAGE_STATE_WRITE_MONITORED:
4497 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4498 AssertLogRelRCReturn(rc2, rc2);
4499 break;
4500 }
4501
4502 /* Get a ring-3 mapping of the address. */
4503 PPGMPAGER3MAPTLBE pTlbe;
4504 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
4505 AssertLogRelRCReturn(rc2, rc2);
4506 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4507 /** @todo mapping/locking hell; this isn't horribly efficient since
4508 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
4509
4510 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4511 }
4512 else
4513 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4514
4515 /* else: handler catching all access, no pointer returned. */
4516 }
4517 else
4518 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4519
4520 pgmUnlock(pVM);
4521 return rc;
4522}
4523
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette