VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 57066

Last change on this file since 57066 was 56287, checked in by vboxsync, 10 years ago

VMM: Updated (C) year.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 165.3 KB
Line 
1/* $Id: PGMPhys.cpp 56287 2015-06-09 11:15:22Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iom.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/stam.h>
27#ifdef VBOX_WITH_REM
28# include <VBox/vmm/rem.h>
29#endif
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vm.h>
33#include <VBox/vmm/uvm.h>
34#include "PGMInline.h"
35#include <VBox/sup.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/alloc.h>
41#include <iprt/asm.h>
42#ifdef VBOX_STRICT
43# include <iprt/crc.h>
44#endif
45#include <iprt/thread.h>
46#include <iprt/string.h>
47#include <iprt/system.h>
48
49
50/*******************************************************************************
51* Defined Constants And Macros *
52*******************************************************************************/
53/** The number of pages to free in one batch. */
54#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
55
56
57/*
58 * PGMR3PhysReadU8-64
59 * PGMR3PhysWriteU8-64
60 */
61#define PGMPHYSFN_READNAME PGMR3PhysReadU8
62#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
63#define PGMPHYS_DATASIZE 1
64#define PGMPHYS_DATATYPE uint8_t
65#include "PGMPhysRWTmpl.h"
66
67#define PGMPHYSFN_READNAME PGMR3PhysReadU16
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
69#define PGMPHYS_DATASIZE 2
70#define PGMPHYS_DATATYPE uint16_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU32
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
75#define PGMPHYS_DATASIZE 4
76#define PGMPHYS_DATATYPE uint32_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU64
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
81#define PGMPHYS_DATASIZE 8
82#define PGMPHYS_DATATYPE uint64_t
83#include "PGMPhysRWTmpl.h"
84
85
86/**
87 * EMT worker for PGMR3PhysReadExternal.
88 */
89static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
90 PGMACCESSORIGIN enmOrigin)
91{
92 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
93 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
94 return VINF_SUCCESS;
95}
96
97
98/**
99 * Read from physical memory, external users.
100 *
101 * @returns VBox status code.
102 * @retval VINF_SUCCESS.
103 *
104 * @param pVM Pointer to the VM.
105 * @param GCPhys Physical address to read from.
106 * @param pvBuf Where to read into.
107 * @param cbRead How many bytes to read.
108 * @param enmOrigin Who is calling.
109 *
110 * @thread Any but EMTs.
111 */
112VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
113{
114 VM_ASSERT_OTHER_THREAD(pVM);
115
116 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
117 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
118
119 pgmLock(pVM);
120
121 /*
122 * Copy loop on ram ranges.
123 */
124 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
125 for (;;)
126 {
127 /* Inside range or not? */
128 if (pRam && GCPhys >= pRam->GCPhys)
129 {
130 /*
131 * Must work our way thru this page by page.
132 */
133 RTGCPHYS off = GCPhys - pRam->GCPhys;
134 while (off < pRam->cb)
135 {
136 unsigned iPage = off >> PAGE_SHIFT;
137 PPGMPAGE pPage = &pRam->aPages[iPage];
138
139 /*
140 * If the page has an ALL access handler, we'll have to
141 * delegate the job to EMT.
142 */
143 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
144 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
145 {
146 pgmUnlock(pVM);
147
148 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
149 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
150 }
151 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
152
153 /*
154 * Simple stuff, go ahead.
155 */
156 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
157 if (cb > cbRead)
158 cb = cbRead;
159 PGMPAGEMAPLOCK PgMpLck;
160 const void *pvSrc;
161 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
162 if (RT_SUCCESS(rc))
163 {
164 memcpy(pvBuf, pvSrc, cb);
165 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
166 }
167 else
168 {
169 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
170 pRam->GCPhys + off, pPage, rc));
171 memset(pvBuf, 0xff, cb);
172 }
173
174 /* next page */
175 if (cb >= cbRead)
176 {
177 pgmUnlock(pVM);
178 return VINF_SUCCESS;
179 }
180 cbRead -= cb;
181 off += cb;
182 GCPhys += cb;
183 pvBuf = (char *)pvBuf + cb;
184 } /* walk pages in ram range. */
185 }
186 else
187 {
188 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
189
190 /*
191 * Unassigned address space.
192 */
193 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
194 if (cb >= cbRead)
195 {
196 memset(pvBuf, 0xff, cbRead);
197 break;
198 }
199 memset(pvBuf, 0xff, cb);
200
201 cbRead -= cb;
202 pvBuf = (char *)pvBuf + cb;
203 GCPhys += cb;
204 }
205
206 /* Advance range if necessary. */
207 while (pRam && GCPhys > pRam->GCPhysLast)
208 pRam = pRam->CTX_SUFF(pNext);
209 } /* Ram range walk */
210
211 pgmUnlock(pVM);
212
213 return VINF_SUCCESS;
214}
215
216
217/**
218 * EMT worker for PGMR3PhysWriteExternal.
219 */
220static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
221 PGMACCESSORIGIN enmOrigin)
222{
223 /** @todo VERR_EM_NO_MEMORY */
224 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
225 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
226 return VINF_SUCCESS;
227}
228
229
230/**
231 * Write to physical memory, external users.
232 *
233 * @returns VBox status code.
234 * @retval VINF_SUCCESS.
235 * @retval VERR_EM_NO_MEMORY.
236 *
237 * @param pVM Pointer to the VM.
238 * @param GCPhys Physical address to write to.
239 * @param pvBuf What to write.
240 * @param cbWrite How many bytes to write.
241 * @param enmOrigin Who is calling.
242 *
243 * @thread Any but EMTs.
244 */
245VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
246{
247 VM_ASSERT_OTHER_THREAD(pVM);
248
249 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
250 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
251 GCPhys, cbWrite, enmOrigin));
252 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
253 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
254
255 pgmLock(pVM);
256
257 /*
258 * Copy loop on ram ranges, stop when we hit something difficult.
259 */
260 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
261 for (;;)
262 {
263 /* Inside range or not? */
264 if (pRam && GCPhys >= pRam->GCPhys)
265 {
266 /*
267 * Must work our way thru this page by page.
268 */
269 RTGCPTR off = GCPhys - pRam->GCPhys;
270 while (off < pRam->cb)
271 {
272 RTGCPTR iPage = off >> PAGE_SHIFT;
273 PPGMPAGE pPage = &pRam->aPages[iPage];
274
275 /*
276 * Is the page problematic, we have to do the work on the EMT.
277 *
278 * Allocating writable pages and access handlers are
279 * problematic, write monitored pages are simple and can be
280 * dealt with here.
281 */
282 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
283 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
284 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
285 {
286 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
287 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
288 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
289 else
290 {
291 pgmUnlock(pVM);
292
293 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
294 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
295 }
296 }
297 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
298
299 /*
300 * Simple stuff, go ahead.
301 */
302 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
303 if (cb > cbWrite)
304 cb = cbWrite;
305 PGMPAGEMAPLOCK PgMpLck;
306 void *pvDst;
307 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
308 if (RT_SUCCESS(rc))
309 {
310 memcpy(pvDst, pvBuf, cb);
311 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
312 }
313 else
314 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
315 pRam->GCPhys + off, pPage, rc));
316
317 /* next page */
318 if (cb >= cbWrite)
319 {
320 pgmUnlock(pVM);
321 return VINF_SUCCESS;
322 }
323
324 cbWrite -= cb;
325 off += cb;
326 GCPhys += cb;
327 pvBuf = (const char *)pvBuf + cb;
328 } /* walk pages in ram range */
329 }
330 else
331 {
332 /*
333 * Unassigned address space, skip it.
334 */
335 if (!pRam)
336 break;
337 size_t cb = pRam->GCPhys - GCPhys;
338 if (cb >= cbWrite)
339 break;
340 cbWrite -= cb;
341 pvBuf = (const char *)pvBuf + cb;
342 GCPhys += cb;
343 }
344
345 /* Advance range if necessary. */
346 while (pRam && GCPhys > pRam->GCPhysLast)
347 pRam = pRam->CTX_SUFF(pNext);
348 } /* Ram range walk */
349
350 pgmUnlock(pVM);
351 return VINF_SUCCESS;
352}
353
354
355/**
356 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
357 *
358 * @returns see PGMR3PhysGCPhys2CCPtrExternal
359 * @param pVM Pointer to the VM.
360 * @param pGCPhys Pointer to the guest physical address.
361 * @param ppv Where to store the mapping address.
362 * @param pLock Where to store the lock.
363 */
364static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
365{
366 /*
367 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
368 * an access handler after it succeeds.
369 */
370 int rc = pgmLock(pVM);
371 AssertRCReturn(rc, rc);
372
373 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
374 if (RT_SUCCESS(rc))
375 {
376 PPGMPAGEMAPTLBE pTlbe;
377 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
378 AssertFatalRC(rc2);
379 PPGMPAGE pPage = pTlbe->pPage;
380 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
381 {
382 PGMPhysReleasePageMappingLock(pVM, pLock);
383 rc = VERR_PGM_PHYS_PAGE_RESERVED;
384 }
385 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
386#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
387 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
388#endif
389 )
390 {
391 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
392 * not be informed about writes and keep bogus gst->shw mappings around.
393 */
394 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
395 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
396 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
397 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
398 }
399 }
400
401 pgmUnlock(pVM);
402 return rc;
403}
404
405
406/**
407 * Requests the mapping of a guest page into ring-3, external threads.
408 *
409 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
410 * release it.
411 *
412 * This API will assume your intention is to write to the page, and will
413 * therefore replace shared and zero pages. If you do not intend to modify the
414 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
415 *
416 * @returns VBox status code.
417 * @retval VINF_SUCCESS on success.
418 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
419 * backing or if the page has any active access handlers. The caller
420 * must fall back on using PGMR3PhysWriteExternal.
421 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
422 *
423 * @param pVM Pointer to the VM.
424 * @param GCPhys The guest physical address of the page that should be mapped.
425 * @param ppv Where to store the address corresponding to GCPhys.
426 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
427 *
428 * @remark Avoid calling this API from within critical sections (other than the
429 * PGM one) because of the deadlock risk when we have to delegating the
430 * task to an EMT.
431 * @thread Any.
432 */
433VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
434{
435 AssertPtr(ppv);
436 AssertPtr(pLock);
437
438 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
439
440 int rc = pgmLock(pVM);
441 AssertRCReturn(rc, rc);
442
443 /*
444 * Query the Physical TLB entry for the page (may fail).
445 */
446 PPGMPAGEMAPTLBE pTlbe;
447 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
448 if (RT_SUCCESS(rc))
449 {
450 PPGMPAGE pPage = pTlbe->pPage;
451 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
452 rc = VERR_PGM_PHYS_PAGE_RESERVED;
453 else
454 {
455 /*
456 * If the page is shared, the zero page, or being write monitored
457 * it must be converted to an page that's writable if possible.
458 * We can only deal with write monitored pages here, the rest have
459 * to be on an EMT.
460 */
461 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
462 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
463#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
464 || pgmPoolIsDirtyPage(pVM, GCPhys)
465#endif
466 )
467 {
468 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
469 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
470#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
471 && !pgmPoolIsDirtyPage(pVM, GCPhys)
472#endif
473 )
474 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
475 else
476 {
477 pgmUnlock(pVM);
478
479 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
480 pVM, &GCPhys, ppv, pLock);
481 }
482 }
483
484 /*
485 * Now, just perform the locking and calculate the return address.
486 */
487 PPGMPAGEMAP pMap = pTlbe->pMap;
488 if (pMap)
489 pMap->cRefs++;
490
491 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
492 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
493 {
494 if (cLocks == 0)
495 pVM->pgm.s.cWriteLockedPages++;
496 PGM_PAGE_INC_WRITE_LOCKS(pPage);
497 }
498 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
499 {
500 PGM_PAGE_INC_WRITE_LOCKS(pPage);
501 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
502 if (pMap)
503 pMap->cRefs++; /* Extra ref to prevent it from going away. */
504 }
505
506 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
507 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
508 pLock->pvMap = pMap;
509 }
510 }
511
512 pgmUnlock(pVM);
513 return rc;
514}
515
516
517/**
518 * Requests the mapping of a guest page into ring-3, external threads.
519 *
520 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
521 * release it.
522 *
523 * @returns VBox status code.
524 * @retval VINF_SUCCESS on success.
525 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
526 * backing or if the page as an active ALL access handler. The caller
527 * must fall back on using PGMPhysRead.
528 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
529 *
530 * @param pVM Pointer to the VM.
531 * @param GCPhys The guest physical address of the page that should be mapped.
532 * @param ppv Where to store the address corresponding to GCPhys.
533 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
534 *
535 * @remark Avoid calling this API from within critical sections (other than
536 * the PGM one) because of the deadlock risk.
537 * @thread Any.
538 */
539VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
540{
541 int rc = pgmLock(pVM);
542 AssertRCReturn(rc, rc);
543
544 /*
545 * Query the Physical TLB entry for the page (may fail).
546 */
547 PPGMPAGEMAPTLBE pTlbe;
548 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
549 if (RT_SUCCESS(rc))
550 {
551 PPGMPAGE pPage = pTlbe->pPage;
552#if 1
553 /* MMIO pages doesn't have any readable backing. */
554 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
555 rc = VERR_PGM_PHYS_PAGE_RESERVED;
556#else
557 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
558 rc = VERR_PGM_PHYS_PAGE_RESERVED;
559#endif
560 else
561 {
562 /*
563 * Now, just perform the locking and calculate the return address.
564 */
565 PPGMPAGEMAP pMap = pTlbe->pMap;
566 if (pMap)
567 pMap->cRefs++;
568
569 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
570 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
571 {
572 if (cLocks == 0)
573 pVM->pgm.s.cReadLockedPages++;
574 PGM_PAGE_INC_READ_LOCKS(pPage);
575 }
576 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
577 {
578 PGM_PAGE_INC_READ_LOCKS(pPage);
579 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
580 if (pMap)
581 pMap->cRefs++; /* Extra ref to prevent it from going away. */
582 }
583
584 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
585 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
586 pLock->pvMap = pMap;
587 }
588 }
589
590 pgmUnlock(pVM);
591 return rc;
592}
593
594
595#define MAKE_LEAF(a_pNode) \
596 do { \
597 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
598 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
599 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
600 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
601 (a_pNode)->pLeftRC = NIL_RTRCPTR; \
602 (a_pNode)->pRightRC = NIL_RTRCPTR; \
603 } while (0)
604
605#define INSERT_LEFT(a_pParent, a_pNode) \
606 do { \
607 (a_pParent)->pLeftR3 = (a_pNode); \
608 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
609 (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
610 } while (0)
611#define INSERT_RIGHT(a_pParent, a_pNode) \
612 do { \
613 (a_pParent)->pRightR3 = (a_pNode); \
614 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
615 (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
616 } while (0)
617
618
619/**
620 * Recursive tree builder.
621 *
622 * @param ppRam Pointer to the iterator variable.
623 * @param iHeight The hight about normal leaf nodes. Inserts a leaf
624 * node if 0.
625 */
626static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
627{
628 PPGMRAMRANGE pRam;
629 if (iDepth <= 0)
630 {
631 /*
632 * Leaf node.
633 */
634 pRam = *ppRam;
635 if (pRam)
636 {
637 *ppRam = pRam->pNextR3;
638 MAKE_LEAF(pRam);
639 }
640 }
641 else
642 {
643
644 /*
645 * Intermediate node.
646 */
647 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
648
649 pRam = *ppRam;
650 if (!pRam)
651 return pLeft;
652 *ppRam = pRam->pNextR3;
653 MAKE_LEAF(pRam);
654 INSERT_LEFT(pRam, pLeft);
655
656 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
657 if (pRight)
658 INSERT_RIGHT(pRam, pRight);
659 }
660 return pRam;
661}
662
663
664/**
665 * Rebuilds the RAM range search trees.
666 *
667 * @param pVM Pointer to the VM.
668 */
669static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
670{
671
672 /*
673 * Create the reasonably balanced tree in a sequential fashion.
674 * For simplicity (laziness) we use standard recursion here.
675 */
676 int iDepth = 0;
677 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
678 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
679 while (pRam)
680 {
681 PPGMRAMRANGE pLeft = pRoot;
682
683 pRoot = pRam;
684 pRam = pRam->pNextR3;
685 MAKE_LEAF(pRoot);
686 INSERT_LEFT(pRoot, pLeft);
687
688 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
689 if (pRight)
690 INSERT_RIGHT(pRoot, pRight);
691 /** @todo else: rotate the tree. */
692
693 iDepth++;
694 }
695
696 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
697 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
698 pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;
699
700#ifdef VBOX_STRICT
701 /*
702 * Verify that the above code works.
703 */
704 unsigned cRanges = 0;
705 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
706 cRanges++;
707 Assert(cRanges > 0);
708
709 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
710 if ((1U << cMaxDepth) < cRanges)
711 cMaxDepth++;
712
713 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
714 {
715 unsigned cDepth = 0;
716 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
717 for (;;)
718 {
719 if (pRam == pRam2)
720 break;
721 Assert(pRam2);
722 if (pRam->GCPhys < pRam2->GCPhys)
723 pRam2 = pRam2->pLeftR3;
724 else
725 pRam2 = pRam2->pRightR3;
726 }
727 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
728 }
729#endif /* VBOX_STRICT */
730}
731
732#undef MAKE_LEAF
733#undef INSERT_LEFT
734#undef INSERT_RIGHT
735
736/**
737 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
738 *
739 * Called when anything was relocated.
740 *
741 * @param pVM Pointer to the VM.
742 */
743void pgmR3PhysRelinkRamRanges(PVM pVM)
744{
745 PPGMRAMRANGE pCur;
746
747#ifdef VBOX_STRICT
748 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
749 {
750 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
751 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
752 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
753 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
754 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
755 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
756 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
757 Assert( pCur2 == pCur
758 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
759 }
760#endif
761
762 pCur = pVM->pgm.s.pRamRangesXR3;
763 if (pCur)
764 {
765 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
766 pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;
767
768 for (; pCur->pNextR3; pCur = pCur->pNextR3)
769 {
770 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
771 pCur->pNextRC = pCur->pNextR3->pSelfRC;
772 }
773
774 Assert(pCur->pNextR0 == NIL_RTR0PTR);
775 Assert(pCur->pNextRC == NIL_RTRCPTR);
776 }
777 else
778 {
779 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
780 Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
781 }
782 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
783
784 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
785}
786
787
788/**
789 * Links a new RAM range into the list.
790 *
791 * @param pVM Pointer to the VM.
792 * @param pNew Pointer to the new list entry.
793 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
794 */
795static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
796{
797 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
798 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
799 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
800
801 pgmLock(pVM);
802
803 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
804 pNew->pNextR3 = pRam;
805 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
806 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
807
808 if (pPrev)
809 {
810 pPrev->pNextR3 = pNew;
811 pPrev->pNextR0 = pNew->pSelfR0;
812 pPrev->pNextRC = pNew->pSelfRC;
813 }
814 else
815 {
816 pVM->pgm.s.pRamRangesXR3 = pNew;
817 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
818 pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
819 }
820 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
821
822 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
823 pgmUnlock(pVM);
824}
825
826
827/**
828 * Unlink an existing RAM range from the list.
829 *
830 * @param pVM Pointer to the VM.
831 * @param pRam Pointer to the new list entry.
832 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
833 */
834static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
835{
836 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
837 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
838 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
839
840 pgmLock(pVM);
841
842 PPGMRAMRANGE pNext = pRam->pNextR3;
843 if (pPrev)
844 {
845 pPrev->pNextR3 = pNext;
846 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
847 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
848 }
849 else
850 {
851 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
852 pVM->pgm.s.pRamRangesXR3 = pNext;
853 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
854 pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
855 }
856 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
857
858 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
859 pgmUnlock(pVM);
860}
861
862
863/**
864 * Unlink an existing RAM range from the list.
865 *
866 * @param pVM Pointer to the VM.
867 * @param pRam Pointer to the new list entry.
868 */
869static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
870{
871 pgmLock(pVM);
872
873 /* find prev. */
874 PPGMRAMRANGE pPrev = NULL;
875 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
876 while (pCur != pRam)
877 {
878 pPrev = pCur;
879 pCur = pCur->pNextR3;
880 }
881 AssertFatal(pCur);
882
883 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
884 pgmUnlock(pVM);
885}
886
887
888/**
889 * Frees a range of pages, replacing them with ZERO pages of the specified type.
890 *
891 * @returns VBox status code.
892 * @param pVM Pointer to the VM.
893 * @param pRam The RAM range in which the pages resides.
894 * @param GCPhys The address of the first page.
895 * @param GCPhysLast The address of the last page.
896 * @param uType The page type to replace then with.
897 */
898static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
899{
900 PGM_LOCK_ASSERT_OWNER(pVM);
901 uint32_t cPendingPages = 0;
902 PGMMFREEPAGESREQ pReq;
903 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
904 AssertLogRelRCReturn(rc, rc);
905
906 /* Iterate the pages. */
907 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
908 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
909 while (cPagesLeft-- > 0)
910 {
911 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
912 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
913
914 PGM_PAGE_SET_TYPE(pVM, pPageDst, uType);
915
916 GCPhys += PAGE_SIZE;
917 pPageDst++;
918 }
919
920 if (cPendingPages)
921 {
922 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
923 AssertLogRelRCReturn(rc, rc);
924 }
925 GMMR3FreePagesCleanup(pReq);
926
927 return rc;
928}
929
930#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
931
932/**
933 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
934 *
935 * This is only called on one of the EMTs while the other ones are waiting for
936 * it to complete this function.
937 *
938 * @returns VINF_SUCCESS (VBox strict status code).
939 * @param pVM Pointer to the VM.
940 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
941 * @param pvUser User parameter
942 */
943static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
944{
945 uintptr_t *paUser = (uintptr_t *)pvUser;
946 bool fInflate = !!paUser[0];
947 unsigned cPages = paUser[1];
948 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
949 uint32_t cPendingPages = 0;
950 PGMMFREEPAGESREQ pReq;
951 int rc;
952
953 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
954 pgmLock(pVM);
955
956 if (fInflate)
957 {
958 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
959 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
960
961 /* Replace pages with ZERO pages. */
962 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
963 if (RT_FAILURE(rc))
964 {
965 pgmUnlock(pVM);
966 AssertLogRelRC(rc);
967 return rc;
968 }
969
970 /* Iterate the pages. */
971 for (unsigned i = 0; i < cPages; i++)
972 {
973 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
974 if ( pPage == NULL
975 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
976 {
977 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
978 break;
979 }
980
981 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
982
983 /* Flush the shadow PT if this page was previously used as a guest page table. */
984 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
985
986 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
987 if (RT_FAILURE(rc))
988 {
989 pgmUnlock(pVM);
990 AssertLogRelRC(rc);
991 return rc;
992 }
993 Assert(PGM_PAGE_IS_ZERO(pPage));
994 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
995 }
996
997 if (cPendingPages)
998 {
999 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1000 if (RT_FAILURE(rc))
1001 {
1002 pgmUnlock(pVM);
1003 AssertLogRelRC(rc);
1004 return rc;
1005 }
1006 }
1007 GMMR3FreePagesCleanup(pReq);
1008 }
1009 else
1010 {
1011 /* Iterate the pages. */
1012 for (unsigned i = 0; i < cPages; i++)
1013 {
1014 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1015 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1016
1017 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1018
1019 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1020
1021 /* Change back to zero page. */
1022 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1023 }
1024
1025 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1026 }
1027
1028 /* Notify GMM about the balloon change. */
1029 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1030 if (RT_SUCCESS(rc))
1031 {
1032 if (!fInflate)
1033 {
1034 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1035 pVM->pgm.s.cBalloonedPages -= cPages;
1036 }
1037 else
1038 pVM->pgm.s.cBalloonedPages += cPages;
1039 }
1040
1041 pgmUnlock(pVM);
1042
1043 /* Flush the recompiler's TLB as well. */
1044 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1045 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1046
1047 AssertLogRelRC(rc);
1048 return rc;
1049}
1050
1051
1052/**
1053 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1054 *
1055 * @returns VBox status code.
1056 * @param pVM Pointer to the VM.
1057 * @param fInflate Inflate or deflate memory balloon
1058 * @param cPages Number of pages to free
1059 * @param paPhysPage Array of guest physical addresses
1060 */
1061static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1062{
1063 uintptr_t paUser[3];
1064
1065 paUser[0] = fInflate;
1066 paUser[1] = cPages;
1067 paUser[2] = (uintptr_t)paPhysPage;
1068 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1069 AssertRC(rc);
1070
1071 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1072 RTMemFree(paPhysPage);
1073}
1074
1075#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1076
1077/**
1078 * Inflate or deflate a memory balloon
1079 *
1080 * @returns VBox status code.
1081 * @param pVM Pointer to the VM.
1082 * @param fInflate Inflate or deflate memory balloon
1083 * @param cPages Number of pages to free
1084 * @param paPhysPage Array of guest physical addresses
1085 */
1086VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1087{
1088 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1089#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1090 int rc;
1091
1092 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1093 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1094
1095 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1096 * In the SMP case we post a request packet to postpone the job.
1097 */
1098 if (pVM->cCpus > 1)
1099 {
1100 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1101 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1102 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1103
1104 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1105
1106 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1107 AssertRC(rc);
1108 }
1109 else
1110 {
1111 uintptr_t paUser[3];
1112
1113 paUser[0] = fInflate;
1114 paUser[1] = cPages;
1115 paUser[2] = (uintptr_t)paPhysPage;
1116 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1117 AssertRC(rc);
1118 }
1119 return rc;
1120
1121#else
1122 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1123 return VERR_NOT_IMPLEMENTED;
1124#endif
1125}
1126
1127
1128/**
1129 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1130 * physical RAM.
1131 *
1132 * This is only called on one of the EMTs while the other ones are waiting for
1133 * it to complete this function.
1134 *
1135 * @returns VINF_SUCCESS (VBox strict status code).
1136 * @param pVM Pointer to the VM.
1137 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
1138 * @param pvUser User parameter, unused.
1139 */
1140static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1141{
1142 int rc = VINF_SUCCESS;
1143 NOREF(pvUser); NOREF(pVCpu);
1144
1145 pgmLock(pVM);
1146#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1147 pgmPoolResetDirtyPages(pVM);
1148#endif
1149
1150 /** @todo pointless to write protect the physical page pointed to by RSP. */
1151
1152 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1153 pRam;
1154 pRam = pRam->CTX_SUFF(pNext))
1155 {
1156 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1157 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1158 {
1159 PPGMPAGE pPage = &pRam->aPages[iPage];
1160 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1161
1162 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1163 || enmPageType == PGMPAGETYPE_MMIO2)
1164 {
1165 /*
1166 * A RAM page.
1167 */
1168 switch (PGM_PAGE_GET_STATE(pPage))
1169 {
1170 case PGM_PAGE_STATE_ALLOCATED:
1171 /** @todo Optimize this: Don't always re-enable write
1172 * monitoring if the page is known to be very busy. */
1173 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1174 {
1175 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1176 /* Remember this dirty page for the next (memory) sync. */
1177 PGM_PAGE_SET_FT_DIRTY(pPage);
1178 }
1179
1180 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1181 break;
1182
1183 case PGM_PAGE_STATE_SHARED:
1184 AssertFailed();
1185 break;
1186
1187 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1188 default:
1189 break;
1190 }
1191 }
1192 }
1193 }
1194 pgmR3PoolWriteProtectPages(pVM);
1195 PGM_INVL_ALL_VCPU_TLBS(pVM);
1196 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1197 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1198
1199 pgmUnlock(pVM);
1200 return rc;
1201}
1202
1203/**
1204 * Protect all physical RAM to monitor writes
1205 *
1206 * @returns VBox status code.
1207 * @param pVM Pointer to the VM.
1208 */
1209VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1210{
1211 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1212
1213 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1214 AssertRC(rc);
1215 return rc;
1216}
1217
1218/**
1219 * Enumerate all dirty FT pages.
1220 *
1221 * @returns VBox status code.
1222 * @param pVM Pointer to the VM.
1223 * @param pfnEnum Enumerate callback handler.
1224 * @param pvUser Enumerate callback handler parameter.
1225 */
1226VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
1227{
1228 int rc = VINF_SUCCESS;
1229
1230 pgmLock(pVM);
1231 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1232 pRam;
1233 pRam = pRam->CTX_SUFF(pNext))
1234 {
1235 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1236 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1237 {
1238 PPGMPAGE pPage = &pRam->aPages[iPage];
1239 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1240
1241 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1242 || enmPageType == PGMPAGETYPE_MMIO2)
1243 {
1244 /*
1245 * A RAM page.
1246 */
1247 switch (PGM_PAGE_GET_STATE(pPage))
1248 {
1249 case PGM_PAGE_STATE_ALLOCATED:
1250 case PGM_PAGE_STATE_WRITE_MONITORED:
1251 if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */
1252 && PGM_PAGE_IS_FT_DIRTY(pPage))
1253 {
1254 unsigned cbPageRange = PAGE_SIZE;
1255 unsigned iPageClean = iPage + 1;
1256 RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE;
1257 uint8_t *pu8Page = NULL;
1258 PGMPAGEMAPLOCK Lock;
1259
1260 /* Find the next clean page, so we can merge adjacent dirty pages. */
1261 for (; iPageClean < cPages; iPageClean++)
1262 {
1263 PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
1264 if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
1265 || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
1266 || PGM_PAGE_IS_WRITTEN_TO(pPageNext)
1267 || !PGM_PAGE_IS_FT_DIRTY(pPageNext)
1268 /* Crossing a chunk boundary? */
1269 || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
1270 )
1271 break;
1272
1273 cbPageRange += PAGE_SIZE;
1274 }
1275
1276 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
1277 if (RT_SUCCESS(rc))
1278 {
1279 /** @todo this is risky; the range might be changed, but little choice as the sync
1280 * costs a lot of time. */
1281 pgmUnlock(pVM);
1282 pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
1283 pgmLock(pVM);
1284 PGMPhysReleasePageMappingLock(pVM, &Lock);
1285 }
1286
1287 for (iPage; iPage < iPageClean; iPage++)
1288 PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iPage]);
1289
1290 iPage = iPageClean - 1;
1291 }
1292 break;
1293 }
1294 }
1295 }
1296 }
1297 pgmUnlock(pVM);
1298 return rc;
1299}
1300
1301
1302/**
1303 * Gets the number of ram ranges.
1304 *
1305 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1306 * @param pVM Pointer to the VM.
1307 */
1308VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1309{
1310 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1311
1312 pgmLock(pVM);
1313 uint32_t cRamRanges = 0;
1314 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1315 cRamRanges++;
1316 pgmUnlock(pVM);
1317 return cRamRanges;
1318}
1319
1320
1321/**
1322 * Get information about a range.
1323 *
1324 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1325 * @param pVM Pointer to the VM.
1326 * @param iRange The ordinal of the range.
1327 * @param pGCPhysStart Where to return the start of the range. Optional.
1328 * @param pGCPhysLast Where to return the address of the last byte in the
1329 * range. Optional.
1330 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1331 * Optional.
1332 */
1333VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1334 const char **ppszDesc, bool *pfIsMmio)
1335{
1336 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1337
1338 pgmLock(pVM);
1339 uint32_t iCurRange = 0;
1340 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1341 if (iCurRange == iRange)
1342 {
1343 if (pGCPhysStart)
1344 *pGCPhysStart = pCur->GCPhys;
1345 if (pGCPhysLast)
1346 *pGCPhysLast = pCur->GCPhysLast;
1347 if (ppszDesc)
1348 *ppszDesc = pCur->pszDesc;
1349 if (pfIsMmio)
1350 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1351
1352 pgmUnlock(pVM);
1353 return VINF_SUCCESS;
1354 }
1355 pgmUnlock(pVM);
1356 return VERR_OUT_OF_RANGE;
1357}
1358
1359
1360/**
1361 * Query the amount of free memory inside VMMR0
1362 *
1363 * @returns VBox status code.
1364 * @param pUVM The user mode VM handle.
1365 * @param pcbAllocMem Where to return the amount of memory allocated
1366 * by VMs.
1367 * @param pcbFreeMem Where to return the amount of memory that is
1368 * allocated from the host but not currently used
1369 * by any VMs.
1370 * @param pcbBallonedMem Where to return the sum of memory that is
1371 * currently ballooned by the VMs.
1372 * @param pcbSharedMem Where to return the amount of memory that is
1373 * currently shared.
1374 */
1375VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1376 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1377{
1378 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1379 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1380
1381 uint64_t cAllocPages = 0;
1382 uint64_t cFreePages = 0;
1383 uint64_t cBalloonPages = 0;
1384 uint64_t cSharedPages = 0;
1385 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1386 AssertRCReturn(rc, rc);
1387
1388 if (pcbAllocMem)
1389 *pcbAllocMem = cAllocPages * _4K;
1390
1391 if (pcbFreeMem)
1392 *pcbFreeMem = cFreePages * _4K;
1393
1394 if (pcbBallonedMem)
1395 *pcbBallonedMem = cBalloonPages * _4K;
1396
1397 if (pcbSharedMem)
1398 *pcbSharedMem = cSharedPages * _4K;
1399
1400 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1401 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1402 return VINF_SUCCESS;
1403}
1404
1405
1406/**
1407 * Query memory stats for the VM.
1408 *
1409 * @returns VBox status code.
1410 * @param pUVM The user mode VM handle.
1411 * @param pcbTotalMem Where to return total amount memory the VM may
1412 * possibly use.
1413 * @param pcbPrivateMem Where to return the amount of private memory
1414 * currently allocated.
1415 * @param pcbSharedMem Where to return the amount of actually shared
1416 * memory currently used by the VM.
1417 * @param pcbZeroMem Where to return the amount of memory backed by
1418 * zero pages.
1419 *
1420 * @remarks The total mem is normally larger than the sum of the three
1421 * components. There are two reasons for this, first the amount of
1422 * shared memory is what we're sure is shared instead of what could
1423 * possibly be shared with someone. Secondly, because the total may
1424 * include some pure MMIO pages that doesn't go into any of the three
1425 * sub-counts.
1426 *
1427 * @todo Why do we return reused shared pages instead of anything that could
1428 * potentially be shared? Doesn't this mean the first VM gets a much
1429 * lower number of shared pages?
1430 */
1431VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1432 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1433{
1434 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1435 PVM pVM = pUVM->pVM;
1436 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1437
1438 if (pcbTotalMem)
1439 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1440
1441 if (pcbPrivateMem)
1442 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1443
1444 if (pcbSharedMem)
1445 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1446
1447 if (pcbZeroMem)
1448 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1449
1450 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1451 return VINF_SUCCESS;
1452}
1453
1454
1455/**
1456 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1457 *
1458 * @param pVM Pointer to the VM.
1459 * @param pNew The new RAM range.
1460 * @param GCPhys The address of the RAM range.
1461 * @param GCPhysLast The last address of the RAM range.
1462 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1463 * if in HMA.
1464 * @param R0PtrNew Ditto for R0.
1465 * @param pszDesc The description.
1466 * @param pPrev The previous RAM range (for linking).
1467 */
1468static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1469 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1470{
1471 /*
1472 * Initialize the range.
1473 */
1474 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1475 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1476 pNew->GCPhys = GCPhys;
1477 pNew->GCPhysLast = GCPhysLast;
1478 pNew->cb = GCPhysLast - GCPhys + 1;
1479 pNew->pszDesc = pszDesc;
1480 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1481 pNew->pvR3 = NULL;
1482 pNew->paLSPages = NULL;
1483
1484 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1485 RTGCPHYS iPage = cPages;
1486 while (iPage-- > 0)
1487 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1488
1489 /* Update the page count stats. */
1490 pVM->pgm.s.cZeroPages += cPages;
1491 pVM->pgm.s.cAllPages += cPages;
1492
1493 /*
1494 * Link it.
1495 */
1496 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1497}
1498
1499
1500/**
1501 * Relocate a floating RAM range.
1502 *
1503 * @copydoc FNPGMRELOCATE.
1504 */
1505static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1506{
1507 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1508 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1509 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1510
1511 switch (enmMode)
1512 {
1513 case PGMRELOCATECALL_SUGGEST:
1514 return true;
1515
1516 case PGMRELOCATECALL_RELOCATE:
1517 {
1518 /*
1519 * Update myself, then relink all the ranges and flush the RC TLB.
1520 */
1521 pgmLock(pVM);
1522
1523 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1524
1525 pgmR3PhysRelinkRamRanges(pVM);
1526 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1527 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1528
1529 pgmUnlock(pVM);
1530 return true;
1531 }
1532
1533 default:
1534 AssertFailedReturn(false);
1535 }
1536}
1537
1538
1539/**
1540 * PGMR3PhysRegisterRam worker that registers a high chunk.
1541 *
1542 * @returns VBox status code.
1543 * @param pVM Pointer to the VM.
1544 * @param GCPhys The address of the RAM.
1545 * @param cRamPages The number of RAM pages to register.
1546 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1547 * @param iChunk The chunk number.
1548 * @param pszDesc The RAM range description.
1549 * @param ppPrev Previous RAM range pointer. In/Out.
1550 */
1551static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1552 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1553 PPGMRAMRANGE *ppPrev)
1554{
1555 const char *pszDescChunk = iChunk == 0
1556 ? pszDesc
1557 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1558 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1559
1560 /*
1561 * Allocate memory for the new chunk.
1562 */
1563 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1564 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1565 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1566 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1567 void *pvChunk = NULL;
1568 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1569#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1570 &R0PtrChunk,
1571#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1572 HMIsEnabled(pVM) ? &R0PtrChunk : NULL,
1573#else
1574 NULL,
1575#endif
1576 paChunkPages);
1577 if (RT_SUCCESS(rc))
1578 {
1579#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1580 Assert(R0PtrChunk != NIL_RTR0PTR);
1581#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1582 if (!HMIsEnabled(pVM))
1583 R0PtrChunk = NIL_RTR0PTR;
1584#else
1585 R0PtrChunk = (uintptr_t)pvChunk;
1586#endif
1587 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1588
1589 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1590
1591 /*
1592 * Create a mapping and map the pages into it.
1593 * We push these in below the HMA.
1594 */
1595 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1596 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1597 if (RT_SUCCESS(rc))
1598 {
1599 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1600
1601 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1602 RTGCPTR GCPtrPage = GCPtrChunk;
1603 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1604 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1605 if (RT_SUCCESS(rc))
1606 {
1607 /*
1608 * Ok, init and link the range.
1609 */
1610 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1611 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1612 *ppPrev = pNew;
1613 }
1614 }
1615
1616 if (RT_FAILURE(rc))
1617 SUPR3PageFreeEx(pvChunk, cChunkPages);
1618 }
1619
1620 RTMemTmpFree(paChunkPages);
1621 return rc;
1622}
1623
1624
1625/**
1626 * Sets up a range RAM.
1627 *
1628 * This will check for conflicting registrations, make a resource
1629 * reservation for the memory (with GMM), and setup the per-page
1630 * tracking structures (PGMPAGE).
1631 *
1632 * @returns VBox status code.
1633 * @param pVM Pointer to the VM.
1634 * @param GCPhys The physical address of the RAM.
1635 * @param cb The size of the RAM.
1636 * @param pszDesc The description - not copied, so, don't free or change it.
1637 */
1638VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1639{
1640 /*
1641 * Validate input.
1642 */
1643 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1644 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1645 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1646 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1647 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1648 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1649 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1650 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1651
1652 pgmLock(pVM);
1653
1654 /*
1655 * Find range location and check for conflicts.
1656 * (We don't lock here because the locking by EMT is only required on update.)
1657 */
1658 PPGMRAMRANGE pPrev = NULL;
1659 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1660 while (pRam && GCPhysLast >= pRam->GCPhys)
1661 {
1662 if ( GCPhysLast >= pRam->GCPhys
1663 && GCPhys <= pRam->GCPhysLast)
1664 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1665 GCPhys, GCPhysLast, pszDesc,
1666 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1667 VERR_PGM_RAM_CONFLICT);
1668
1669 /* next */
1670 pPrev = pRam;
1671 pRam = pRam->pNextR3;
1672 }
1673
1674 /*
1675 * Register it with GMM (the API bitches).
1676 */
1677 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1678 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1679 if (RT_FAILURE(rc))
1680 {
1681 pgmUnlock(pVM);
1682 return rc;
1683 }
1684
1685 if ( GCPhys >= _4G
1686 && cPages > 256)
1687 {
1688 /*
1689 * The PGMRAMRANGE structures for the high memory can get very big.
1690 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1691 * allocation size limit there and also to avoid being unable to find
1692 * guest mapping space for them, we split this memory up into 4MB in
1693 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1694 * mode.
1695 *
1696 * The first and last page of each mapping are guard pages and marked
1697 * not-present. So, we've got 4186112 and 16769024 bytes available for
1698 * the PGMRAMRANGE structure.
1699 *
1700 * Note! The sizes used here will influence the saved state.
1701 */
1702 uint32_t cbChunk;
1703 uint32_t cPagesPerChunk;
1704 if (HMIsEnabled(pVM))
1705 {
1706 cbChunk = 16U*_1M;
1707 cPagesPerChunk = 1048048; /* max ~1048059 */
1708 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1709 }
1710 else
1711 {
1712 cbChunk = 4U*_1M;
1713 cPagesPerChunk = 261616; /* max ~261627 */
1714 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1715 }
1716 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1717
1718 RTGCPHYS cPagesLeft = cPages;
1719 RTGCPHYS GCPhysChunk = GCPhys;
1720 uint32_t iChunk = 0;
1721 while (cPagesLeft > 0)
1722 {
1723 uint32_t cPagesInChunk = cPagesLeft;
1724 if (cPagesInChunk > cPagesPerChunk)
1725 cPagesInChunk = cPagesPerChunk;
1726
1727 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1728 AssertRCReturn(rc, rc);
1729
1730 /* advance */
1731 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1732 cPagesLeft -= cPagesInChunk;
1733 iChunk++;
1734 }
1735 }
1736 else
1737 {
1738 /*
1739 * Allocate, initialize and link the new RAM range.
1740 */
1741 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1742 PPGMRAMRANGE pNew;
1743 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1744 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1745
1746 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1747 }
1748 pgmPhysInvalidatePageMapTLB(pVM);
1749 pgmUnlock(pVM);
1750
1751#ifdef VBOX_WITH_REM
1752 /*
1753 * Notify REM.
1754 */
1755 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1756#endif
1757
1758 return VINF_SUCCESS;
1759}
1760
1761
1762/**
1763 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1764 *
1765 * We do this late in the init process so that all the ROM and MMIO ranges have
1766 * been registered already and we don't go wasting memory on them.
1767 *
1768 * @returns VBox status code.
1769 *
1770 * @param pVM Pointer to the VM.
1771 */
1772int pgmR3PhysRamPreAllocate(PVM pVM)
1773{
1774 Assert(pVM->pgm.s.fRamPreAlloc);
1775 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1776
1777 /*
1778 * Walk the RAM ranges and allocate all RAM pages, halt at
1779 * the first allocation error.
1780 */
1781 uint64_t cPages = 0;
1782 uint64_t NanoTS = RTTimeNanoTS();
1783 pgmLock(pVM);
1784 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1785 {
1786 PPGMPAGE pPage = &pRam->aPages[0];
1787 RTGCPHYS GCPhys = pRam->GCPhys;
1788 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1789 while (cLeft-- > 0)
1790 {
1791 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1792 {
1793 switch (PGM_PAGE_GET_STATE(pPage))
1794 {
1795 case PGM_PAGE_STATE_ZERO:
1796 {
1797 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1798 if (RT_FAILURE(rc))
1799 {
1800 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1801 pgmUnlock(pVM);
1802 return rc;
1803 }
1804 cPages++;
1805 break;
1806 }
1807
1808 case PGM_PAGE_STATE_BALLOONED:
1809 case PGM_PAGE_STATE_ALLOCATED:
1810 case PGM_PAGE_STATE_WRITE_MONITORED:
1811 case PGM_PAGE_STATE_SHARED:
1812 /* nothing to do here. */
1813 break;
1814 }
1815 }
1816
1817 /* next */
1818 pPage++;
1819 GCPhys += PAGE_SIZE;
1820 }
1821 }
1822 pgmUnlock(pVM);
1823 NanoTS = RTTimeNanoTS() - NanoTS;
1824
1825 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1826 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1827 return VINF_SUCCESS;
1828}
1829
1830
1831/**
1832 * Checks shared page checksums.
1833 *
1834 * @param pVM Pointer to the shared VM structure.
1835 */
1836void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1837{
1838#ifdef VBOX_STRICT
1839 pgmLock(pVM);
1840
1841 if (pVM->pgm.s.cSharedPages > 0)
1842 {
1843 /*
1844 * Walk the ram ranges.
1845 */
1846 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1847 {
1848 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1849 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1850
1851 while (iPage-- > 0)
1852 {
1853 PPGMPAGE pPage = &pRam->aPages[iPage];
1854 if (PGM_PAGE_IS_SHARED(pPage))
1855 {
1856 uint32_t u32Checksum = pPage->s.u2Unused0 | ((uint32_t)pPage->s.u2Unused1 << 8);
1857 if (!u32Checksum)
1858 {
1859 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1860 void const *pvPage;
1861 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1862 if (RT_SUCCESS(rc))
1863 {
1864 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1865# if 0
1866 AssertMsg((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1867# else
1868 if ((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum)
1869 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1870 else
1871 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1872# endif
1873 }
1874 else
1875 AssertRC(rc);
1876 }
1877 }
1878
1879 } /* for each page */
1880
1881 } /* for each ram range */
1882 }
1883
1884 pgmUnlock(pVM);
1885#endif /* VBOX_STRICT */
1886 NOREF(pVM);
1887}
1888
1889
1890/**
1891 * Resets the physical memory state.
1892 *
1893 * ASSUMES that the caller owns the PGM lock.
1894 *
1895 * @returns VBox status code.
1896 * @param pVM Pointer to the VM.
1897 */
1898int pgmR3PhysRamReset(PVM pVM)
1899{
1900 PGM_LOCK_ASSERT_OWNER(pVM);
1901
1902 /* Reset the memory balloon. */
1903 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1904 AssertRC(rc);
1905
1906#ifdef VBOX_WITH_PAGE_SHARING
1907 /* Clear all registered shared modules. */
1908 pgmR3PhysAssertSharedPageChecksums(pVM);
1909 rc = GMMR3ResetSharedModules(pVM);
1910 AssertRC(rc);
1911#endif
1912 /* Reset counters. */
1913 pVM->pgm.s.cReusedSharedPages = 0;
1914 pVM->pgm.s.cBalloonedPages = 0;
1915
1916 return VINF_SUCCESS;
1917}
1918
1919
1920/**
1921 * Resets (zeros) the RAM after all devices and components have been reset.
1922 *
1923 * ASSUMES that the caller owns the PGM lock.
1924 *
1925 * @returns VBox status code.
1926 * @param pVM Pointer to the VM.
1927 */
1928int pgmR3PhysRamZeroAll(PVM pVM)
1929{
1930 PGM_LOCK_ASSERT_OWNER(pVM);
1931
1932 /*
1933 * We batch up pages that should be freed instead of calling GMM for
1934 * each and every one of them.
1935 */
1936 uint32_t cPendingPages = 0;
1937 PGMMFREEPAGESREQ pReq;
1938 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1939 AssertLogRelRCReturn(rc, rc);
1940
1941 /*
1942 * Walk the ram ranges.
1943 */
1944 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1945 {
1946 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1947 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1948
1949#ifndef NO_RAM_RESET
1950 if (!pVM->pgm.s.fRamPreAlloc)
1951#else
1952 if (0)
1953#endif
1954 {
1955 /* Replace all RAM pages by ZERO pages. */
1956 while (iPage-- > 0)
1957 {
1958 PPGMPAGE pPage = &pRam->aPages[iPage];
1959 switch (PGM_PAGE_GET_TYPE(pPage))
1960 {
1961 case PGMPAGETYPE_RAM:
1962 /* Do not replace pages part of a 2 MB continuous range
1963 with zero pages, but zero them instead. */
1964 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
1965 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
1966 {
1967 void *pvPage;
1968 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1969 AssertLogRelRCReturn(rc, rc);
1970 ASMMemZeroPage(pvPage);
1971 }
1972 else if (PGM_PAGE_IS_BALLOONED(pPage))
1973 {
1974 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1975 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1976 }
1977 else if (!PGM_PAGE_IS_ZERO(pPage))
1978 {
1979 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1980 AssertLogRelRCReturn(rc, rc);
1981 }
1982 break;
1983
1984 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1985 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
1986 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1987 true /*fDoAccounting*/);
1988 break;
1989
1990 case PGMPAGETYPE_MMIO2:
1991 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1992 case PGMPAGETYPE_ROM:
1993 case PGMPAGETYPE_MMIO:
1994 break;
1995 default:
1996 AssertFailed();
1997 }
1998 } /* for each page */
1999 }
2000 else
2001 {
2002 /* Zero the memory. */
2003 while (iPage-- > 0)
2004 {
2005 PPGMPAGE pPage = &pRam->aPages[iPage];
2006 switch (PGM_PAGE_GET_TYPE(pPage))
2007 {
2008 case PGMPAGETYPE_RAM:
2009 switch (PGM_PAGE_GET_STATE(pPage))
2010 {
2011 case PGM_PAGE_STATE_ZERO:
2012 break;
2013
2014 case PGM_PAGE_STATE_BALLOONED:
2015 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2016 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2017 break;
2018
2019 case PGM_PAGE_STATE_SHARED:
2020 case PGM_PAGE_STATE_WRITE_MONITORED:
2021 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2022 AssertLogRelRCReturn(rc, rc);
2023 /* no break */
2024
2025 case PGM_PAGE_STATE_ALLOCATED:
2026 {
2027 void *pvPage;
2028 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2029 AssertLogRelRCReturn(rc, rc);
2030#ifndef NO_RAM_RESET
2031 ASMMemZeroPage(pvPage);
2032#endif
2033 break;
2034 }
2035 }
2036 break;
2037
2038 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2039 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2040 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2041 true /*fDoAccounting*/);
2042 break;
2043
2044 case PGMPAGETYPE_MMIO2:
2045 case PGMPAGETYPE_ROM_SHADOW:
2046 case PGMPAGETYPE_ROM:
2047 case PGMPAGETYPE_MMIO:
2048 break;
2049 default:
2050 AssertFailed();
2051
2052 }
2053 } /* for each page */
2054 }
2055
2056 }
2057
2058 /*
2059 * Finish off any pages pending freeing.
2060 */
2061 if (cPendingPages)
2062 {
2063 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2064 AssertLogRelRCReturn(rc, rc);
2065 }
2066 GMMR3FreePagesCleanup(pReq);
2067 return VINF_SUCCESS;
2068}
2069
2070
2071/**
2072 * Frees all RAM during VM termination
2073 *
2074 * ASSUMES that the caller owns the PGM lock.
2075 *
2076 * @returns VBox status code.
2077 * @param pVM Pointer to the VM.
2078 */
2079int pgmR3PhysRamTerm(PVM pVM)
2080{
2081 PGM_LOCK_ASSERT_OWNER(pVM);
2082
2083 /* Reset the memory balloon. */
2084 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2085 AssertRC(rc);
2086
2087#ifdef VBOX_WITH_PAGE_SHARING
2088 /*
2089 * Clear all registered shared modules.
2090 */
2091 pgmR3PhysAssertSharedPageChecksums(pVM);
2092 rc = GMMR3ResetSharedModules(pVM);
2093 AssertRC(rc);
2094
2095 /*
2096 * Flush the handy pages updates to make sure no shared pages are hiding
2097 * in there. (No unlikely if the VM shuts down, apparently.)
2098 */
2099 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2100#endif
2101
2102 /*
2103 * We batch up pages that should be freed instead of calling GMM for
2104 * each and every one of them.
2105 */
2106 uint32_t cPendingPages = 0;
2107 PGMMFREEPAGESREQ pReq;
2108 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2109 AssertLogRelRCReturn(rc, rc);
2110
2111 /*
2112 * Walk the ram ranges.
2113 */
2114 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2115 {
2116 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2117 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2118
2119 while (iPage-- > 0)
2120 {
2121 PPGMPAGE pPage = &pRam->aPages[iPage];
2122 switch (PGM_PAGE_GET_TYPE(pPage))
2123 {
2124 case PGMPAGETYPE_RAM:
2125 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2126 /** @todo change this to explicitly free private pages here. */
2127 if (PGM_PAGE_IS_SHARED(pPage))
2128 {
2129 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2130 AssertLogRelRCReturn(rc, rc);
2131 }
2132 break;
2133
2134 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2135 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2136 case PGMPAGETYPE_MMIO2:
2137 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2138 case PGMPAGETYPE_ROM:
2139 case PGMPAGETYPE_MMIO:
2140 break;
2141 default:
2142 AssertFailed();
2143 }
2144 } /* for each page */
2145 }
2146
2147 /*
2148 * Finish off any pages pending freeing.
2149 */
2150 if (cPendingPages)
2151 {
2152 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2153 AssertLogRelRCReturn(rc, rc);
2154 }
2155 GMMR3FreePagesCleanup(pReq);
2156 return VINF_SUCCESS;
2157}
2158
2159
2160/**
2161 * This is the interface IOM is using to register an MMIO region.
2162 *
2163 * It will check for conflicts and ensure that a RAM range structure
2164 * is present before calling the PGMR3HandlerPhysicalRegister API to
2165 * register the callbacks.
2166 *
2167 * @returns VBox status code.
2168 *
2169 * @param pVM Pointer to the VM.
2170 * @param GCPhys The start of the MMIO region.
2171 * @param cb The size of the MMIO region.
2172 * @param hType The physical access handler type registration.
2173 * @param pvUserR3 The user argument for R3.
2174 * @param pvUserR0 The user argument for R0.
2175 * @param pvUserRC The user argument for RC.
2176 * @param pszDesc The description of the MMIO region.
2177 */
2178VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2179 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2180{
2181 /*
2182 * Assert on some assumption.
2183 */
2184 VM_ASSERT_EMT(pVM);
2185 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2186 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2187 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2188 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2189 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2190
2191 int rc = pgmLock(pVM);
2192 AssertRCReturn(rc, rc);
2193
2194 /*
2195 * Make sure there's a RAM range structure for the region.
2196 */
2197 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2198 bool fRamExists = false;
2199 PPGMRAMRANGE pRamPrev = NULL;
2200 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2201 while (pRam && GCPhysLast >= pRam->GCPhys)
2202 {
2203 if ( GCPhysLast >= pRam->GCPhys
2204 && GCPhys <= pRam->GCPhysLast)
2205 {
2206 /* Simplification: all within the same range. */
2207 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2208 && GCPhysLast <= pRam->GCPhysLast,
2209 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2210 GCPhys, GCPhysLast, pszDesc,
2211 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2212 pgmUnlock(pVM),
2213 VERR_PGM_RAM_CONFLICT);
2214
2215 /* Check that it's all RAM or MMIO pages. */
2216 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2217 uint32_t cLeft = cb >> PAGE_SHIFT;
2218 while (cLeft-- > 0)
2219 {
2220 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2221 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2222 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2223 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2224 pgmUnlock(pVM),
2225 VERR_PGM_RAM_CONFLICT);
2226 pPage++;
2227 }
2228
2229 /* Looks good. */
2230 fRamExists = true;
2231 break;
2232 }
2233
2234 /* next */
2235 pRamPrev = pRam;
2236 pRam = pRam->pNextR3;
2237 }
2238 PPGMRAMRANGE pNew;
2239 if (fRamExists)
2240 {
2241 pNew = NULL;
2242
2243 /*
2244 * Make all the pages in the range MMIO/ZERO pages, freeing any
2245 * RAM pages currently mapped here. This might not be 100% correct
2246 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2247 */
2248 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2249 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2250
2251 /* Force a PGM pool flush as guest ram references have been changed. */
2252 /** @todo not entirely SMP safe; assuming for now the guest takes
2253 * care of this internally (not touch mapped mmio while changing the
2254 * mapping). */
2255 PVMCPU pVCpu = VMMGetCpu(pVM);
2256 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2257 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2258 }
2259 else
2260 {
2261
2262 /*
2263 * No RAM range, insert an ad hoc one.
2264 *
2265 * Note that we don't have to tell REM about this range because
2266 * PGMHandlerPhysicalRegisterEx will do that for us.
2267 */
2268 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2269
2270 const uint32_t cPages = cb >> PAGE_SHIFT;
2271 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
2272 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2273 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2274
2275 /* Initialize the range. */
2276 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2277 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
2278 pNew->GCPhys = GCPhys;
2279 pNew->GCPhysLast = GCPhysLast;
2280 pNew->cb = cb;
2281 pNew->pszDesc = pszDesc;
2282 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2283 pNew->pvR3 = NULL;
2284 pNew->paLSPages = NULL;
2285
2286 uint32_t iPage = cPages;
2287 while (iPage-- > 0)
2288 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2289 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2290
2291 /* update the page count stats. */
2292 pVM->pgm.s.cPureMmioPages += cPages;
2293 pVM->pgm.s.cAllPages += cPages;
2294
2295 /* link it */
2296 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2297 }
2298
2299 /*
2300 * Register the access handler.
2301 */
2302 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2303 if ( RT_FAILURE(rc)
2304 && !fRamExists)
2305 {
2306 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2307 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2308
2309 /* remove the ad hoc range. */
2310 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2311 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2312 MMHyperFree(pVM, pRam);
2313 }
2314 pgmPhysInvalidatePageMapTLB(pVM);
2315
2316 pgmUnlock(pVM);
2317 return rc;
2318}
2319
2320
2321/**
2322 * This is the interface IOM is using to register an MMIO region.
2323 *
2324 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2325 * any ad hoc PGMRAMRANGE left behind.
2326 *
2327 * @returns VBox status code.
2328 * @param pVM Pointer to the VM.
2329 * @param GCPhys The start of the MMIO region.
2330 * @param cb The size of the MMIO region.
2331 */
2332VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2333{
2334 VM_ASSERT_EMT(pVM);
2335
2336 int rc = pgmLock(pVM);
2337 AssertRCReturn(rc, rc);
2338
2339 /*
2340 * First deregister the handler, then check if we should remove the ram range.
2341 */
2342 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2343 if (RT_SUCCESS(rc))
2344 {
2345 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2346 PPGMRAMRANGE pRamPrev = NULL;
2347 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2348 while (pRam && GCPhysLast >= pRam->GCPhys)
2349 {
2350 /** @todo We're being a bit too careful here. rewrite. */
2351 if ( GCPhysLast == pRam->GCPhysLast
2352 && GCPhys == pRam->GCPhys)
2353 {
2354 Assert(pRam->cb == cb);
2355
2356 /*
2357 * See if all the pages are dead MMIO pages.
2358 */
2359 uint32_t const cPages = cb >> PAGE_SHIFT;
2360 bool fAllMMIO = true;
2361 uint32_t iPage = 0;
2362 uint32_t cLeft = cPages;
2363 while (cLeft-- > 0)
2364 {
2365 PPGMPAGE pPage = &pRam->aPages[iPage];
2366 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2367 /*|| not-out-of-action later */)
2368 {
2369 fAllMMIO = false;
2370 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2371 break;
2372 }
2373 Assert( PGM_PAGE_IS_ZERO(pPage)
2374 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2375 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2376 pPage++;
2377 }
2378 if (fAllMMIO)
2379 {
2380 /*
2381 * Ad-hoc range, unlink and free it.
2382 */
2383 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2384 GCPhys, GCPhysLast, pRam->pszDesc));
2385
2386 pVM->pgm.s.cAllPages -= cPages;
2387 pVM->pgm.s.cPureMmioPages -= cPages;
2388
2389 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2390 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2391 MMHyperFree(pVM, pRam);
2392 break;
2393 }
2394 }
2395
2396 /*
2397 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2398 */
2399 if ( GCPhysLast >= pRam->GCPhys
2400 && GCPhys <= pRam->GCPhysLast)
2401 {
2402 Assert(GCPhys >= pRam->GCPhys);
2403 Assert(GCPhysLast <= pRam->GCPhysLast);
2404
2405 /*
2406 * Turn the pages back into RAM pages.
2407 */
2408 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2409 uint32_t cLeft = cb >> PAGE_SHIFT;
2410 while (cLeft--)
2411 {
2412 PPGMPAGE pPage = &pRam->aPages[iPage];
2413 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2414 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2415 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2416 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2417 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2418 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2419 }
2420 break;
2421 }
2422
2423 /* next */
2424 pRamPrev = pRam;
2425 pRam = pRam->pNextR3;
2426 }
2427 }
2428
2429 /* Force a PGM pool flush as guest ram references have been changed. */
2430 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2431 * this internally (not touch mapped mmio while changing the mapping). */
2432 PVMCPU pVCpu = VMMGetCpu(pVM);
2433 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2434 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2435
2436 pgmPhysInvalidatePageMapTLB(pVM);
2437 pgmPhysInvalidRamRangeTlbs(pVM);
2438 pgmUnlock(pVM);
2439 return rc;
2440}
2441
2442
2443/**
2444 * Locate a MMIO2 range.
2445 *
2446 * @returns Pointer to the MMIO2 range.
2447 * @param pVM Pointer to the VM.
2448 * @param pDevIns The device instance owning the region.
2449 * @param iRegion The region.
2450 */
2451DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2452{
2453 /*
2454 * Search the list.
2455 */
2456 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2457 if ( pCur->pDevInsR3 == pDevIns
2458 && pCur->iRegion == iRegion)
2459 return pCur;
2460 return NULL;
2461}
2462
2463
2464/**
2465 * Allocate and register an MMIO2 region.
2466 *
2467 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2468 * associated with a device. It is also non-shared memory with a permanent
2469 * ring-3 mapping and page backing (presently).
2470 *
2471 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2472 * the VM, in which case we'll drop the base memory pages. Presently we will
2473 * make no attempt to preserve anything that happens to be present in the base
2474 * memory that is replaced, this is of course incorrect but it's too much
2475 * effort.
2476 *
2477 * @returns VBox status code.
2478 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2479 * memory.
2480 * @retval VERR_ALREADY_EXISTS if the region already exists.
2481 *
2482 * @param pVM Pointer to the VM.
2483 * @param pDevIns The device instance owning the region.
2484 * @param iRegion The region number. If the MMIO2 memory is a PCI
2485 * I/O region this number has to be the number of that
2486 * region. Otherwise it can be any number safe
2487 * UINT8_MAX.
2488 * @param cb The size of the region. Must be page aligned.
2489 * @param fFlags Reserved for future use, must be zero.
2490 * @param ppv Where to store the pointer to the ring-3 mapping of
2491 * the memory.
2492 * @param pszDesc The description.
2493 */
2494VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags,
2495 void **ppv, const char *pszDesc)
2496{
2497 /*
2498 * Validate input.
2499 */
2500 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2501 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2502 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2503 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2504 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2505 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2506 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
2507 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2508 AssertReturn(cb, VERR_INVALID_PARAMETER);
2509 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2510
2511 const uint32_t cPages = cb >> PAGE_SHIFT;
2512 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
2513 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_NO_MEMORY);
2514
2515 /*
2516 * For the 2nd+ instance, mangle the description string so it's unique.
2517 */
2518 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
2519 {
2520 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
2521 if (!pszDesc)
2522 return VERR_NO_MEMORY;
2523 }
2524
2525 /*
2526 * Allocate an MMIO2 range ID (not freed on failure).
2527 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID.
2528 */
2529 pgmLock(pVM);
2530 uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
2531 if (idMmio2 > PGM_MMIO2_MAX_RANGES)
2532 {
2533 pgmUnlock(pVM);
2534 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
2535 }
2536 pVM->pgm.s.cMmio2Regions = idMmio2;
2537 pgmUnlock(pVM);
2538
2539 /*
2540 * Try reserve and allocate the backing memory first as this is what is
2541 * most likely to fail.
2542 */
2543 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
2544 if (RT_SUCCESS(rc))
2545 {
2546 void *pvPages;
2547 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
2548 if (RT_SUCCESS(rc))
2549 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
2550 if (RT_SUCCESS(rc))
2551 {
2552 memset(pvPages, 0, cPages * PAGE_SIZE);
2553
2554 /*
2555 * Create the MMIO2 range record for it.
2556 */
2557 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
2558 PPGMMMIO2RANGE pNew;
2559 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2560 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
2561 if (RT_SUCCESS(rc))
2562 {
2563 pNew->pDevInsR3 = pDevIns;
2564 pNew->pvR3 = pvPages;
2565 //pNew->pNext = NULL;
2566 //pNew->fMapped = false;
2567 //pNew->fOverlapping = false;
2568 pNew->iRegion = iRegion;
2569 pNew->idSavedState = UINT8_MAX;
2570 pNew->idMmio2 = idMmio2;
2571 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2572 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2573 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2574 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2575 pNew->RamRange.pszDesc = pszDesc;
2576 pNew->RamRange.cb = cb;
2577 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
2578 pNew->RamRange.pvR3 = pvPages;
2579 //pNew->RamRange.paLSPages = NULL;
2580
2581 uint32_t iPage = cPages;
2582 while (iPage-- > 0)
2583 {
2584 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
2585 paPages[iPage].Phys,
2586 PGM_MMIO2_PAGEID_MAKE(idMmio2, iPage),
2587 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
2588 }
2589
2590 /* update page count stats */
2591 pVM->pgm.s.cAllPages += cPages;
2592 pVM->pgm.s.cPrivatePages += cPages;
2593
2594 /*
2595 * Link it into the list.
2596 * Since there is no particular order, just push it.
2597 */
2598 /** @todo we can save us the linked list now, just search the lookup table... */
2599 pgmLock(pVM);
2600 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2601 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2602 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
2603 pVM->pgm.s.pMmio2RangesR3 = pNew;
2604 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2605 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = MMHyperCCToR0(pVM, pNew);
2606 pgmUnlock(pVM);
2607
2608 *ppv = pvPages;
2609 RTMemTmpFree(paPages);
2610 pgmPhysInvalidatePageMapTLB(pVM);
2611 return VINF_SUCCESS;
2612 }
2613
2614 SUPR3PageFreeEx(pvPages, cPages);
2615 }
2616 RTMemTmpFree(paPages);
2617 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
2618 }
2619 if (pDevIns->iInstance > 0)
2620 MMR3HeapFree((void *)pszDesc);
2621 return rc;
2622}
2623
2624
2625/**
2626 * Deregisters and frees an MMIO2 region.
2627 *
2628 * Any physical (and virtual) access handlers registered for the region must
2629 * be deregistered before calling this function.
2630 *
2631 * @returns VBox status code.
2632 * @param pVM Pointer to the VM.
2633 * @param pDevIns The device instance owning the region.
2634 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
2635 */
2636VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2637{
2638 /*
2639 * Validate input.
2640 */
2641 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2642 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2643 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
2644
2645 pgmLock(pVM);
2646 int rc = VINF_SUCCESS;
2647 unsigned cFound = 0;
2648 PPGMMMIO2RANGE pPrev = NULL;
2649 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
2650 while (pCur)
2651 {
2652 if ( pCur->pDevInsR3 == pDevIns
2653 && ( iRegion == UINT32_MAX
2654 || pCur->iRegion == iRegion))
2655 {
2656 cFound++;
2657
2658 /*
2659 * Unmap it if it's mapped.
2660 */
2661 if (pCur->fMapped)
2662 {
2663 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
2664 AssertRC(rc2);
2665 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2666 rc = rc2;
2667 }
2668
2669 /*
2670 * Unlink it
2671 */
2672 PPGMMMIO2RANGE pNext = pCur->pNextR3;
2673 if (pPrev)
2674 pPrev->pNextR3 = pNext;
2675 else
2676 pVM->pgm.s.pMmio2RangesR3 = pNext;
2677 pCur->pNextR3 = NULL;
2678
2679 uint8_t idMmio2 = pCur->idMmio2;
2680 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
2681 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
2682 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
2683
2684 /*
2685 * Free the memory.
2686 */
2687 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
2688 AssertRC(rc2);
2689 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2690 rc = rc2;
2691
2692 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
2693 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
2694 AssertRC(rc2);
2695 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2696 rc = rc2;
2697
2698 /* we're leaking hyper memory here if done at runtime. */
2699#ifdef VBOX_STRICT
2700 VMSTATE const enmState = VMR3GetState(pVM);
2701 AssertMsg( enmState == VMSTATE_POWERING_OFF
2702 || enmState == VMSTATE_POWERING_OFF_LS
2703 || enmState == VMSTATE_OFF
2704 || enmState == VMSTATE_OFF_LS
2705 || enmState == VMSTATE_DESTROYING
2706 || enmState == VMSTATE_TERMINATED
2707 || enmState == VMSTATE_CREATING
2708 , ("%s\n", VMR3GetStateName(enmState)));
2709#endif
2710 /*rc = MMHyperFree(pVM, pCur);
2711 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
2712
2713
2714 /* update page count stats */
2715 pVM->pgm.s.cAllPages -= cPages;
2716 pVM->pgm.s.cPrivatePages -= cPages;
2717
2718 /* next */
2719 pCur = pNext;
2720 }
2721 else
2722 {
2723 pPrev = pCur;
2724 pCur = pCur->pNextR3;
2725 }
2726 }
2727 pgmPhysInvalidatePageMapTLB(pVM);
2728 pgmUnlock(pVM);
2729 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2730}
2731
2732
2733/**
2734 * Maps a MMIO2 region.
2735 *
2736 * This is done when a guest / the bios / state loading changes the
2737 * PCI config. The replacing of base memory has the same restrictions
2738 * as during registration, of course.
2739 *
2740 * @returns VBox status code.
2741 *
2742 * @param pVM Pointer to the VM.
2743 * @param pDevIns The device instance owning the region.
2744 * @param iRegion The index of the registered region.
2745 * @param GCPhys The guest-physical address to be remapped.
2746 */
2747VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2748{
2749 /*
2750 * Validate input
2751 */
2752 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2753 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2754 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2755 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2756 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2757 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2758
2759 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2760 AssertReturn(pCur, VERR_NOT_FOUND);
2761 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2762 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2763 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2764
2765 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2766 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2767
2768 /*
2769 * Find our location in the ram range list, checking for
2770 * restriction we don't bother implementing yet (partially overlapping).
2771 */
2772 bool fRamExists = false;
2773 PPGMRAMRANGE pRamPrev = NULL;
2774 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2775 while (pRam && GCPhysLast >= pRam->GCPhys)
2776 {
2777 if ( GCPhys <= pRam->GCPhysLast
2778 && GCPhysLast >= pRam->GCPhys)
2779 {
2780 /* completely within? */
2781 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2782 && GCPhysLast <= pRam->GCPhysLast,
2783 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2784 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2785 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2786 VERR_PGM_RAM_CONFLICT);
2787 fRamExists = true;
2788 break;
2789 }
2790
2791 /* next */
2792 pRamPrev = pRam;
2793 pRam = pRam->pNextR3;
2794 }
2795 if (fRamExists)
2796 {
2797 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2798 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2799 while (cPagesLeft-- > 0)
2800 {
2801 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2802 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2803 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2804 VERR_PGM_RAM_CONFLICT);
2805 pPage++;
2806 }
2807 }
2808 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2809 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2810
2811 /*
2812 * Make the changes.
2813 */
2814 pgmLock(pVM);
2815
2816 pCur->RamRange.GCPhys = GCPhys;
2817 pCur->RamRange.GCPhysLast = GCPhysLast;
2818 pCur->fMapped = true;
2819 pCur->fOverlapping = fRamExists;
2820
2821 if (fRamExists)
2822 {
2823/** @todo use pgmR3PhysFreePageRange here. */
2824 uint32_t cPendingPages = 0;
2825 PGMMFREEPAGESREQ pReq;
2826 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2827 AssertLogRelRCReturn(rc, rc);
2828
2829 /* replace the pages, freeing all present RAM pages. */
2830 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2831 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2832 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2833 while (cPagesLeft-- > 0)
2834 {
2835 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2836 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2837
2838 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2839 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
2840 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
2841 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
2842 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
2843 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
2844 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2845 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
2846 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
2847
2848 pVM->pgm.s.cZeroPages--;
2849 GCPhys += PAGE_SIZE;
2850 pPageSrc++;
2851 pPageDst++;
2852 }
2853
2854 /* Flush physical page map TLB. */
2855 pgmPhysInvalidatePageMapTLB(pVM);
2856
2857 if (cPendingPages)
2858 {
2859 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2860 AssertLogRelRCReturn(rc, rc);
2861 }
2862 GMMR3FreePagesCleanup(pReq);
2863
2864 /* Force a PGM pool flush as guest ram references have been changed. */
2865 /** @todo not entirely SMP safe; assuming for now the guest takes care of
2866 * this internally (not touch mapped mmio while changing the mapping). */
2867 PVMCPU pVCpu = VMMGetCpu(pVM);
2868 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2869 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2870
2871 pgmUnlock(pVM);
2872 }
2873 else
2874 {
2875 RTGCPHYS cb = pCur->RamRange.cb;
2876
2877 /* Clear the tracking data of pages we're going to reactivate. */
2878 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2879 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2880 while (cPagesLeft-- > 0)
2881 {
2882 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
2883 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
2884 pPageSrc++;
2885 }
2886
2887 /* link in the ram range */
2888 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2889 pgmUnlock(pVM);
2890
2891#ifdef VBOX_WITH_REM
2892 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2893#endif
2894 }
2895
2896 pgmPhysInvalidatePageMapTLB(pVM);
2897 return VINF_SUCCESS;
2898}
2899
2900
2901/**
2902 * Unmaps a MMIO2 region.
2903 *
2904 * This is done when a guest / the bios / state loading changes the
2905 * PCI config. The replacing of base memory has the same restrictions
2906 * as during registration, of course.
2907 */
2908VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2909{
2910 /*
2911 * Validate input
2912 */
2913 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2914 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2915 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2916 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2917 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2918 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2919
2920 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2921 AssertReturn(pCur, VERR_NOT_FOUND);
2922 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2923 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2924 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2925
2926 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2927 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2928
2929 /*
2930 * Unmap it.
2931 */
2932 pgmLock(pVM);
2933
2934#ifdef VBOX_WITH_REM
2935 RTGCPHYS GCPhysRangeREM;
2936 RTGCPHYS cbRangeREM;
2937 bool fInformREM;
2938#endif
2939 if (pCur->fOverlapping)
2940 {
2941 /* Restore the RAM pages we've replaced. */
2942 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2943 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2944 pRam = pRam->pNextR3;
2945
2946 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2947 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2948 while (cPagesLeft-- > 0)
2949 {
2950 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
2951 pVM->pgm.s.cZeroPages++;
2952 pPageDst++;
2953 }
2954
2955 /* Flush physical page map TLB. */
2956 pgmPhysInvalidatePageMapTLB(pVM);
2957#ifdef VBOX_WITH_REM
2958 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2959 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2960 fInformREM = false;
2961#endif
2962 }
2963 else
2964 {
2965#ifdef VBOX_WITH_REM
2966 GCPhysRangeREM = pCur->RamRange.GCPhys;
2967 cbRangeREM = pCur->RamRange.cb;
2968 fInformREM = true;
2969#endif
2970 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2971 }
2972
2973 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2974 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2975 pCur->fOverlapping = false;
2976 pCur->fMapped = false;
2977
2978 /* Force a PGM pool flush as guest ram references have been changed. */
2979 /** @todo not entirely SMP safe; assuming for now the guest takes care
2980 * of this internally (not touch mapped mmio while changing the
2981 * mapping). */
2982 PVMCPU pVCpu = VMMGetCpu(pVM);
2983 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2984 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2985
2986 pgmPhysInvalidatePageMapTLB(pVM);
2987 pgmPhysInvalidRamRangeTlbs(pVM);
2988 pgmUnlock(pVM);
2989
2990#ifdef VBOX_WITH_REM
2991 if (fInformREM)
2992 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2993#endif
2994
2995 return VINF_SUCCESS;
2996}
2997
2998
2999/**
3000 * Checks if the given address is an MMIO2 base address or not.
3001 *
3002 * @returns true/false accordingly.
3003 * @param pVM Pointer to the VM.
3004 * @param pDevIns The owner of the memory, optional.
3005 * @param GCPhys The address to check.
3006 */
3007VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
3008{
3009 /*
3010 * Validate input
3011 */
3012 VM_ASSERT_EMT_RETURN(pVM, false);
3013 AssertPtrReturn(pDevIns, false);
3014 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
3015 AssertReturn(GCPhys != 0, false);
3016 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
3017
3018 /*
3019 * Search the list.
3020 */
3021 pgmLock(pVM);
3022 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
3023 if (pCur->RamRange.GCPhys == GCPhys)
3024 {
3025 Assert(pCur->fMapped);
3026 pgmUnlock(pVM);
3027 return true;
3028 }
3029 pgmUnlock(pVM);
3030 return false;
3031}
3032
3033
3034/**
3035 * Gets the HC physical address of a page in the MMIO2 region.
3036 *
3037 * This is API is intended for MMHyper and shouldn't be called
3038 * by anyone else...
3039 *
3040 * @returns VBox status code.
3041 * @param pVM Pointer to the VM.
3042 * @param pDevIns The owner of the memory, optional.
3043 * @param iRegion The region.
3044 * @param off The page expressed an offset into the MMIO2 region.
3045 * @param pHCPhys Where to store the result.
3046 */
3047VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
3048{
3049 /*
3050 * Validate input
3051 */
3052 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3053 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3054 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3055
3056 pgmLock(pVM);
3057 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3058 AssertReturn(pCur, VERR_NOT_FOUND);
3059 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3060
3061 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
3062 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3063 pgmUnlock(pVM);
3064 return VINF_SUCCESS;
3065}
3066
3067
3068/**
3069 * Maps a portion of an MMIO2 region into kernel space (host).
3070 *
3071 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
3072 * or the VM is terminated.
3073 *
3074 * @return VBox status code.
3075 *
3076 * @param pVM Pointer to the VM.
3077 * @param pDevIns The device owning the MMIO2 memory.
3078 * @param iRegion The region.
3079 * @param off The offset into the region. Must be page aligned.
3080 * @param cb The number of bytes to map. Must be page aligned.
3081 * @param pszDesc Mapping description.
3082 * @param pR0Ptr Where to store the R0 address.
3083 */
3084VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
3085 const char *pszDesc, PRTR0PTR pR0Ptr)
3086{
3087 /*
3088 * Validate input.
3089 */
3090 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3091 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3092 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3093
3094 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3095 AssertReturn(pCur, VERR_NOT_FOUND);
3096 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3097 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3098 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3099 NOREF(pszDesc);
3100
3101 /*
3102 * Pass the request on to the support library/driver.
3103 */
3104 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
3105
3106 return rc;
3107}
3108
3109
3110/**
3111 * Worker for PGMR3PhysRomRegister.
3112 *
3113 * This is here to simplify lock management, i.e. the caller does all the
3114 * locking and we can simply return without needing to remember to unlock
3115 * anything first.
3116 *
3117 * @returns VBox status.
3118 * @param pVM Pointer to the VM.
3119 * @param pDevIns The device instance owning the ROM.
3120 * @param GCPhys First physical address in the range.
3121 * Must be page aligned!
3122 * @param cb The size of the range (in bytes).
3123 * Must be page aligned!
3124 * @param pvBinary Pointer to the binary data backing the ROM image.
3125 * @param cbBinary The size of the binary data pvBinary points to.
3126 * This must be less or equal to @a cb.
3127 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3128 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3129 * @param pszDesc Pointer to description string. This must not be freed.
3130 */
3131static int pgmR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3132 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3133{
3134 /*
3135 * Validate input.
3136 */
3137 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3138 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
3139 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
3140 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3141 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3142 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
3143 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3144 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
3145 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
3146
3147 const uint32_t cPages = cb >> PAGE_SHIFT;
3148
3149 /*
3150 * Find the ROM location in the ROM list first.
3151 */
3152 PPGMROMRANGE pRomPrev = NULL;
3153 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3154 while (pRom && GCPhysLast >= pRom->GCPhys)
3155 {
3156 if ( GCPhys <= pRom->GCPhysLast
3157 && GCPhysLast >= pRom->GCPhys)
3158 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
3159 GCPhys, GCPhysLast, pszDesc,
3160 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
3161 VERR_PGM_RAM_CONFLICT);
3162 /* next */
3163 pRomPrev = pRom;
3164 pRom = pRom->pNextR3;
3165 }
3166
3167 /*
3168 * Find the RAM location and check for conflicts.
3169 *
3170 * Conflict detection is a bit different than for RAM
3171 * registration since a ROM can be located within a RAM
3172 * range. So, what we have to check for is other memory
3173 * types (other than RAM that is) and that we don't span
3174 * more than one RAM range (layz).
3175 */
3176 bool fRamExists = false;
3177 PPGMRAMRANGE pRamPrev = NULL;
3178 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3179 while (pRam && GCPhysLast >= pRam->GCPhys)
3180 {
3181 if ( GCPhys <= pRam->GCPhysLast
3182 && GCPhysLast >= pRam->GCPhys)
3183 {
3184 /* completely within? */
3185 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
3186 && GCPhysLast <= pRam->GCPhysLast,
3187 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
3188 GCPhys, GCPhysLast, pszDesc,
3189 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3190 VERR_PGM_RAM_CONFLICT);
3191 fRamExists = true;
3192 break;
3193 }
3194
3195 /* next */
3196 pRamPrev = pRam;
3197 pRam = pRam->pNextR3;
3198 }
3199 if (fRamExists)
3200 {
3201 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3202 uint32_t cPagesLeft = cPages;
3203 while (cPagesLeft-- > 0)
3204 {
3205 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3206 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
3207 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
3208 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
3209 Assert(PGM_PAGE_IS_ZERO(pPage));
3210 pPage++;
3211 }
3212 }
3213
3214 /*
3215 * Update the base memory reservation if necessary.
3216 */
3217 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
3218 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3219 cExtraBaseCost += cPages;
3220 if (cExtraBaseCost)
3221 {
3222 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
3223 if (RT_FAILURE(rc))
3224 return rc;
3225 }
3226
3227 /*
3228 * Allocate memory for the virgin copy of the RAM.
3229 */
3230 PGMMALLOCATEPAGESREQ pReq;
3231 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
3232 AssertRCReturn(rc, rc);
3233
3234 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3235 {
3236 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
3237 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
3238 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
3239 }
3240
3241 rc = GMMR3AllocatePagesPerform(pVM, pReq);
3242 if (RT_FAILURE(rc))
3243 {
3244 GMMR3AllocatePagesCleanup(pReq);
3245 return rc;
3246 }
3247
3248 /*
3249 * Allocate the new ROM range and RAM range (if necessary).
3250 */
3251 PPGMROMRANGE pRomNew;
3252 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
3253 if (RT_SUCCESS(rc))
3254 {
3255 PPGMRAMRANGE pRamNew = NULL;
3256 if (!fRamExists)
3257 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
3258 if (RT_SUCCESS(rc))
3259 {
3260 /*
3261 * Initialize and insert the RAM range (if required).
3262 */
3263 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
3264 if (!fRamExists)
3265 {
3266 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
3267 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
3268 pRamNew->GCPhys = GCPhys;
3269 pRamNew->GCPhysLast = GCPhysLast;
3270 pRamNew->cb = cb;
3271 pRamNew->pszDesc = pszDesc;
3272 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
3273 pRamNew->pvR3 = NULL;
3274 pRamNew->paLSPages = NULL;
3275
3276 PPGMPAGE pPage = &pRamNew->aPages[0];
3277 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3278 {
3279 PGM_PAGE_INIT(pPage,
3280 pReq->aPages[iPage].HCPhysGCPhys,
3281 pReq->aPages[iPage].idPage,
3282 PGMPAGETYPE_ROM,
3283 PGM_PAGE_STATE_ALLOCATED);
3284
3285 pRomPage->Virgin = *pPage;
3286 }
3287
3288 pVM->pgm.s.cAllPages += cPages;
3289 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
3290 }
3291 else
3292 {
3293 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3294 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3295 {
3296 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
3297 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
3298 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
3299 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
3300 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3301 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
3302 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
3303
3304 pRomPage->Virgin = *pPage;
3305 }
3306
3307 pRamNew = pRam;
3308
3309 pVM->pgm.s.cZeroPages -= cPages;
3310 }
3311 pVM->pgm.s.cPrivatePages += cPages;
3312
3313 /* Flush physical page map TLB. */
3314 pgmPhysInvalidatePageMapTLB(pVM);
3315
3316
3317 /*
3318 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
3319 *
3320 * If it's shadowed we'll register the handler after the ROM notification
3321 * so we get the access handler callbacks that we should. If it isn't
3322 * shadowed we'll do it the other way around to make REM use the built-in
3323 * ROM behavior and not the handler behavior (which is to route all access
3324 * to PGM atm).
3325 */
3326 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3327 {
3328#ifdef VBOX_WITH_REM
3329 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
3330#endif
3331 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
3332 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
3333 pszDesc);
3334 }
3335 else
3336 {
3337 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
3338 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
3339 pszDesc);
3340#ifdef VBOX_WITH_REM
3341 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
3342#endif
3343 }
3344 if (RT_SUCCESS(rc))
3345 {
3346 /*
3347 * Copy the image over to the virgin pages.
3348 * This must be done after linking in the RAM range.
3349 */
3350 size_t cbBinaryLeft = cbBinary;
3351 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
3352 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
3353 {
3354 void *pvDstPage;
3355 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
3356 if (RT_FAILURE(rc))
3357 {
3358 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
3359 break;
3360 }
3361 if (cbBinaryLeft >= PAGE_SIZE)
3362 {
3363 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
3364 cbBinaryLeft -= PAGE_SIZE;
3365 }
3366 else
3367 {
3368 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
3369 if (cbBinaryLeft > 0)
3370 {
3371 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
3372 cbBinaryLeft = 0;
3373 }
3374 }
3375 }
3376 if (RT_SUCCESS(rc))
3377 {
3378 /*
3379 * Initialize the ROM range.
3380 * Note that the Virgin member of the pages has already been initialized above.
3381 */
3382 pRomNew->GCPhys = GCPhys;
3383 pRomNew->GCPhysLast = GCPhysLast;
3384 pRomNew->cb = cb;
3385 pRomNew->fFlags = fFlags;
3386 pRomNew->idSavedState = UINT8_MAX;
3387 pRomNew->cbOriginal = cbBinary;
3388#ifdef VBOX_STRICT
3389 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
3390 ? pvBinary : RTMemDup(pvBinary, cbBinary);
3391#else
3392 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
3393#endif
3394 pRomNew->pszDesc = pszDesc;
3395
3396 for (unsigned iPage = 0; iPage < cPages; iPage++)
3397 {
3398 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
3399 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
3400 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
3401 }
3402
3403 /* update the page count stats for the shadow pages. */
3404 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3405 {
3406 pVM->pgm.s.cZeroPages += cPages;
3407 pVM->pgm.s.cAllPages += cPages;
3408 }
3409
3410 /*
3411 * Insert the ROM range, tell REM and return successfully.
3412 */
3413 pRomNew->pNextR3 = pRom;
3414 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
3415 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
3416
3417 if (pRomPrev)
3418 {
3419 pRomPrev->pNextR3 = pRomNew;
3420 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
3421 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
3422 }
3423 else
3424 {
3425 pVM->pgm.s.pRomRangesR3 = pRomNew;
3426 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
3427 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
3428 }
3429
3430 pgmPhysInvalidatePageMapTLB(pVM);
3431 GMMR3AllocatePagesCleanup(pReq);
3432 return VINF_SUCCESS;
3433 }
3434
3435 /* bail out */
3436
3437 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
3438 AssertRC(rc2);
3439 }
3440
3441 if (!fRamExists)
3442 {
3443 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
3444 MMHyperFree(pVM, pRamNew);
3445 }
3446 }
3447 MMHyperFree(pVM, pRomNew);
3448 }
3449
3450 /** @todo Purge the mapping cache or something... */
3451 GMMR3FreeAllocatedPages(pVM, pReq);
3452 GMMR3AllocatePagesCleanup(pReq);
3453 return rc;
3454}
3455
3456
3457/**
3458 * Registers a ROM image.
3459 *
3460 * Shadowed ROM images requires double the amount of backing memory, so,
3461 * don't use that unless you have to. Shadowing of ROM images is process
3462 * where we can select where the reads go and where the writes go. On real
3463 * hardware the chipset provides means to configure this. We provide
3464 * PGMR3PhysProtectROM() for this purpose.
3465 *
3466 * A read-only copy of the ROM image will always be kept around while we
3467 * will allocate RAM pages for the changes on demand (unless all memory
3468 * is configured to be preallocated).
3469 *
3470 * @returns VBox status.
3471 * @param pVM Pointer to the VM.
3472 * @param pDevIns The device instance owning the ROM.
3473 * @param GCPhys First physical address in the range.
3474 * Must be page aligned!
3475 * @param cb The size of the range (in bytes).
3476 * Must be page aligned!
3477 * @param pvBinary Pointer to the binary data backing the ROM image.
3478 * @param cbBinary The size of the binary data pvBinary points to.
3479 * This must be less or equal to @a cb.
3480 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3481 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3482 * @param pszDesc Pointer to description string. This must not be freed.
3483 *
3484 * @remark There is no way to remove the rom, automatically on device cleanup or
3485 * manually from the device yet. This isn't difficult in any way, it's
3486 * just not something we expect to be necessary for a while.
3487 */
3488VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3489 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3490{
3491 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
3492 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
3493 pgmLock(pVM);
3494 int rc = pgmR3PhysRomRegister(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
3495 pgmUnlock(pVM);
3496 return rc;
3497}
3498
3499
3500/**
3501 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
3502 * that the virgin part is untouched.
3503 *
3504 * This is done after the normal memory has been cleared.
3505 *
3506 * ASSUMES that the caller owns the PGM lock.
3507 *
3508 * @param pVM Pointer to the VM.
3509 */
3510int pgmR3PhysRomReset(PVM pVM)
3511{
3512 PGM_LOCK_ASSERT_OWNER(pVM);
3513 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3514 {
3515 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
3516
3517 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3518 {
3519 /*
3520 * Reset the physical handler.
3521 */
3522 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
3523 AssertRCReturn(rc, rc);
3524
3525 /*
3526 * What we do with the shadow pages depends on the memory
3527 * preallocation option. If not enabled, we'll just throw
3528 * out all the dirty pages and replace them by the zero page.
3529 */
3530 if (!pVM->pgm.s.fRamPreAlloc)
3531 {
3532 /* Free the dirty pages. */
3533 uint32_t cPendingPages = 0;
3534 PGMMFREEPAGESREQ pReq;
3535 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3536 AssertRCReturn(rc, rc);
3537
3538 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3539 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
3540 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
3541 {
3542 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
3543 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
3544 pRom->GCPhys + (iPage << PAGE_SHIFT));
3545 AssertLogRelRCReturn(rc, rc);
3546 }
3547
3548 if (cPendingPages)
3549 {
3550 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
3551 AssertLogRelRCReturn(rc, rc);
3552 }
3553 GMMR3FreePagesCleanup(pReq);
3554 }
3555 else
3556 {
3557 /* clear all the shadow pages. */
3558 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3559 {
3560 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
3561 continue;
3562 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
3563 void *pvDstPage;
3564 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3565 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
3566 if (RT_FAILURE(rc))
3567 break;
3568 ASMMemZeroPage(pvDstPage);
3569 }
3570 AssertRCReturn(rc, rc);
3571 }
3572 }
3573
3574#ifdef VBOX_STRICT
3575 /*
3576 * Verify that the virgin page is unchanged if possible.
3577 */
3578 if (pRom->pvOriginal)
3579 {
3580 size_t cbSrcLeft = pRom->cbOriginal;
3581 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
3582 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
3583 {
3584 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3585 void const *pvDstPage;
3586 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
3587 if (RT_FAILURE(rc))
3588 break;
3589
3590 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
3591 {
3592# ifdef DEBUG_bird /* This is darn handy for EFI debugging w/ snapshots, should be made default later. */
3593 void *pvDstPageW;
3594 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
3595 AssertRCReturn(rc, rc);
3596 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
3597# else
3598 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
3599 GCPhys, pRom->pszDesc));
3600# endif
3601 }
3602 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
3603 }
3604 }
3605#endif
3606 }
3607
3608 return VINF_SUCCESS;
3609}
3610
3611
3612/**
3613 * Called by PGMR3Term to free resources.
3614 *
3615 * ASSUMES that the caller owns the PGM lock.
3616 *
3617 * @param pVM Pointer to the VM.
3618 */
3619void pgmR3PhysRomTerm(PVM pVM)
3620{
3621#ifdef RT_STRICT
3622 /*
3623 * Free the heap copy of the original bits.
3624 */
3625 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3626 {
3627 if ( pRom->pvOriginal
3628 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
3629 {
3630 RTMemFree((void *)pRom->pvOriginal);
3631 pRom->pvOriginal = NULL;
3632 }
3633 }
3634#endif
3635}
3636
3637
3638/**
3639 * Change the shadowing of a range of ROM pages.
3640 *
3641 * This is intended for implementing chipset specific memory registers
3642 * and will not be very strict about the input. It will silently ignore
3643 * any pages that are not the part of a shadowed ROM.
3644 *
3645 * @returns VBox status code.
3646 * @retval VINF_PGM_SYNC_CR3
3647 *
3648 * @param pVM Pointer to the VM.
3649 * @param GCPhys Where to start. Page aligned.
3650 * @param cb How much to change. Page aligned.
3651 * @param enmProt The new ROM protection.
3652 */
3653VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
3654{
3655 /*
3656 * Check input
3657 */
3658 if (!cb)
3659 return VINF_SUCCESS;
3660 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3661 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3662 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3663 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3664 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
3665
3666 /*
3667 * Process the request.
3668 */
3669 pgmLock(pVM);
3670 int rc = VINF_SUCCESS;
3671 bool fFlushTLB = false;
3672 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3673 {
3674 if ( GCPhys <= pRom->GCPhysLast
3675 && GCPhysLast >= pRom->GCPhys
3676 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
3677 {
3678 /*
3679 * Iterate the relevant pages and make necessary the changes.
3680 */
3681 bool fChanges = false;
3682 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
3683 ? pRom->cb >> PAGE_SHIFT
3684 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
3685 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3686 iPage < cPages;
3687 iPage++)
3688 {
3689 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3690 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
3691 {
3692 fChanges = true;
3693
3694 /* flush references to the page. */
3695 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
3696 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
3697 true /*fFlushPTEs*/, &fFlushTLB);
3698 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
3699 rc = rc2;
3700
3701 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
3702 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
3703
3704 *pOld = *pRamPage;
3705 *pRamPage = *pNew;
3706 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
3707 }
3708 pRomPage->enmProt = enmProt;
3709 }
3710
3711 /*
3712 * Reset the access handler if we made changes, no need
3713 * to optimize this.
3714 */
3715 if (fChanges)
3716 {
3717 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
3718 if (RT_FAILURE(rc2))
3719 {
3720 pgmUnlock(pVM);
3721 AssertRC(rc);
3722 return rc2;
3723 }
3724 }
3725
3726 /* Advance - cb isn't updated. */
3727 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3728 }
3729 }
3730 pgmUnlock(pVM);
3731 if (fFlushTLB)
3732 PGM_INVL_ALL_VCPU_TLBS(pVM);
3733
3734 return rc;
3735}
3736
3737
3738/**
3739 * Sets the Address Gate 20 state.
3740 *
3741 * @param pVCpu Pointer to the VMCPU.
3742 * @param fEnable True if the gate should be enabled.
3743 * False if the gate should be disabled.
3744 */
3745VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3746{
3747 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3748 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3749 {
3750 pVCpu->pgm.s.fA20Enabled = fEnable;
3751 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
3752#ifdef VBOX_WITH_REM
3753 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3754#endif
3755#ifdef PGM_WITH_A20
3756 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3757 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3758 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
3759 HMFlushTLB(pVCpu);
3760#endif
3761 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
3762 }
3763}
3764
3765
3766/**
3767 * Tree enumeration callback for dealing with age rollover.
3768 * It will perform a simple compression of the current age.
3769 */
3770static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3771{
3772 /* Age compression - ASSUMES iNow == 4. */
3773 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3774 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
3775 pChunk->iLastUsed = 3;
3776 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
3777 pChunk->iLastUsed = 2;
3778 else if (pChunk->iLastUsed)
3779 pChunk->iLastUsed = 1;
3780 else /* iLastUsed = 0 */
3781 pChunk->iLastUsed = 4;
3782
3783 NOREF(pvUser);
3784 return 0;
3785}
3786
3787
3788/**
3789 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3790 */
3791typedef struct PGMR3PHYSCHUNKUNMAPCB
3792{
3793 PVM pVM; /**< Pointer to the VM. */
3794 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3795} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3796
3797
3798/**
3799 * Callback used to find the mapping that's been unused for
3800 * the longest time.
3801 */
3802static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
3803{
3804 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3805 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
3806
3807 /*
3808 * Check for locks and compare when last used.
3809 */
3810 if (pChunk->cRefs)
3811 return 0;
3812 if (pChunk->cPermRefs)
3813 return 0;
3814 if ( pArg->pChunk
3815 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
3816 return 0;
3817
3818 /*
3819 * Check that it's not in any of the TLBs.
3820 */
3821 PVM pVM = pArg->pVM;
3822 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
3823 == pChunk->Core.Key)
3824 {
3825 pChunk = NULL;
3826 return 0;
3827 }
3828#ifdef VBOX_STRICT
3829 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3830 {
3831 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
3832 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
3833 }
3834#endif
3835
3836 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3837 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3838 return 0;
3839
3840 pArg->pChunk = pChunk;
3841 return 0;
3842}
3843
3844
3845/**
3846 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3847 *
3848 * The candidate will not be part of any TLBs, so no need to flush
3849 * anything afterwards.
3850 *
3851 * @returns Chunk id.
3852 * @param pVM Pointer to the VM.
3853 */
3854static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3855{
3856 PGM_LOCK_ASSERT_OWNER(pVM);
3857
3858 /*
3859 * Enumerate the age tree starting with the left most node.
3860 */
3861 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3862 PGMR3PHYSCHUNKUNMAPCB Args;
3863 Args.pVM = pVM;
3864 Args.pChunk = NULL;
3865 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
3866 Assert(Args.pChunk);
3867 if (Args.pChunk)
3868 {
3869 Assert(Args.pChunk->cRefs == 0);
3870 Assert(Args.pChunk->cPermRefs == 0);
3871 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3872 return Args.pChunk->Core.Key;
3873 }
3874
3875 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3876 return INT32_MAX;
3877}
3878
3879
3880/**
3881 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
3882 *
3883 * This is only called on one of the EMTs while the other ones are waiting for
3884 * it to complete this function.
3885 *
3886 * @returns VINF_SUCCESS (VBox strict status code).
3887 * @param pVM Pointer to the VM.
3888 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
3889 * @param pvUser User pointer. Unused
3890 *
3891 */
3892static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
3893{
3894 int rc = VINF_SUCCESS;
3895 pgmLock(pVM);
3896 NOREF(pVCpu); NOREF(pvUser);
3897
3898 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3899 {
3900 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
3901 /** @todo also not really efficient to unmap a chunk that contains PD
3902 * or PT pages. */
3903 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
3904
3905 /*
3906 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
3907 */
3908 GMMMAPUNMAPCHUNKREQ Req;
3909 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3910 Req.Hdr.cbReq = sizeof(Req);
3911 Req.pvR3 = NULL;
3912 Req.idChunkMap = NIL_GMM_CHUNKID;
3913 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3914 if (Req.idChunkUnmap != INT32_MAX)
3915 {
3916 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3917 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3918 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3919 if (RT_SUCCESS(rc))
3920 {
3921 /*
3922 * Remove the unmapped one.
3923 */
3924 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3925 AssertRelease(pUnmappedChunk);
3926 AssertRelease(!pUnmappedChunk->cRefs);
3927 AssertRelease(!pUnmappedChunk->cPermRefs);
3928 pUnmappedChunk->pv = NULL;
3929 pUnmappedChunk->Core.Key = UINT32_MAX;
3930#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3931 MMR3HeapFree(pUnmappedChunk);
3932#else
3933 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3934#endif
3935 pVM->pgm.s.ChunkR3Map.c--;
3936 pVM->pgm.s.cUnmappedChunks++;
3937
3938 /*
3939 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
3940 */
3941 /** @todo We should not flush chunks which include cr3 mappings. */
3942 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3943 {
3944 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
3945
3946 pPGM->pGst32BitPdR3 = NULL;
3947 pPGM->pGstPaePdptR3 = NULL;
3948 pPGM->pGstAmd64Pml4R3 = NULL;
3949#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3950 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
3951 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
3952 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
3953#endif
3954 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
3955 {
3956 pPGM->apGstPaePDsR3[i] = NULL;
3957#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3958 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
3959#endif
3960 }
3961
3962 /* Flush REM TLBs. */
3963 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3964 }
3965#ifdef VBOX_WITH_REM
3966 /* Flush REM translation blocks. */
3967 REMFlushTBs(pVM);
3968#endif
3969 }
3970 }
3971 }
3972 pgmUnlock(pVM);
3973 return rc;
3974}
3975
3976/**
3977 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
3978 *
3979 * @returns VBox status code.
3980 * @param pVM Pointer to the VM.
3981 */
3982void pgmR3PhysUnmapChunk(PVM pVM)
3983{
3984 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
3985 AssertRC(rc);
3986}
3987
3988
3989/**
3990 * Maps the given chunk into the ring-3 mapping cache.
3991 *
3992 * This will call ring-0.
3993 *
3994 * @returns VBox status code.
3995 * @param pVM Pointer to the VM.
3996 * @param idChunk The chunk in question.
3997 * @param ppChunk Where to store the chunk tracking structure.
3998 *
3999 * @remarks Called from within the PGM critical section.
4000 * @remarks Can be called from any thread!
4001 */
4002int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
4003{
4004 int rc;
4005
4006 PGM_LOCK_ASSERT_OWNER(pVM);
4007
4008 /*
4009 * Move the chunk time forward.
4010 */
4011 pVM->pgm.s.ChunkR3Map.iNow++;
4012 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
4013 {
4014 pVM->pgm.s.ChunkR3Map.iNow = 4;
4015 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
4016 }
4017
4018 /*
4019 * Allocate a new tracking structure first.
4020 */
4021#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4022 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
4023#else
4024 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
4025#endif
4026 AssertReturn(pChunk, VERR_NO_MEMORY);
4027 pChunk->Core.Key = idChunk;
4028 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
4029
4030 /*
4031 * Request the ring-0 part to map the chunk in question.
4032 */
4033 GMMMAPUNMAPCHUNKREQ Req;
4034 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4035 Req.Hdr.cbReq = sizeof(Req);
4036 Req.pvR3 = NULL;
4037 Req.idChunkMap = idChunk;
4038 Req.idChunkUnmap = NIL_GMM_CHUNKID;
4039
4040 /* Must be callable from any thread, so can't use VMMR3CallR0. */
4041 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4042 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4043 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4044 if (RT_SUCCESS(rc))
4045 {
4046 pChunk->pv = Req.pvR3;
4047
4048 /*
4049 * If we're running out of virtual address space, then we should
4050 * unmap another chunk.
4051 *
4052 * Currently, an unmap operation requires that all other virtual CPUs
4053 * are idling and not by chance making use of the memory we're
4054 * unmapping. So, we create an async unmap operation here.
4055 *
4056 * Now, when creating or restoring a saved state this wont work very
4057 * well since we may want to restore all guest RAM + a little something.
4058 * So, we have to do the unmap synchronously. Fortunately for us
4059 * though, during these operations the other virtual CPUs are inactive
4060 * and it should be safe to do this.
4061 */
4062 /** @todo Eventually we should lock all memory when used and do
4063 * map+unmap as one kernel call without any rendezvous or
4064 * other precautions. */
4065 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
4066 {
4067 switch (VMR3GetState(pVM))
4068 {
4069 case VMSTATE_LOADING:
4070 case VMSTATE_SAVING:
4071 {
4072 PVMCPU pVCpu = VMMGetCpu(pVM);
4073 if ( pVCpu
4074 && pVM->pgm.s.cDeprecatedPageLocks == 0)
4075 {
4076 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
4077 break;
4078 }
4079 /* fall thru */
4080 }
4081 default:
4082 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
4083 AssertRC(rc);
4084 break;
4085 }
4086 }
4087
4088 /*
4089 * Update the tree. We must do this after any unmapping to make sure
4090 * the chunk we're going to return isn't unmapped by accident.
4091 */
4092 AssertPtr(Req.pvR3);
4093 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
4094 AssertRelease(fRc);
4095 pVM->pgm.s.ChunkR3Map.c++;
4096 pVM->pgm.s.cMappedChunks++;
4097 }
4098 else
4099 {
4100 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
4101 * should probably restrict ourselves on linux. */
4102 AssertRC(rc);
4103#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4104 MMR3HeapFree(pChunk);
4105#else
4106 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
4107#endif
4108 pChunk = NULL;
4109 }
4110
4111 *ppChunk = pChunk;
4112 return rc;
4113}
4114
4115
4116/**
4117 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
4118 *
4119 * @returns see pgmR3PhysChunkMap.
4120 * @param pVM Pointer to the VM.
4121 * @param idChunk The chunk to map.
4122 */
4123VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
4124{
4125 PPGMCHUNKR3MAP pChunk;
4126 int rc;
4127
4128 pgmLock(pVM);
4129 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
4130 pgmUnlock(pVM);
4131 return rc;
4132}
4133
4134
4135/**
4136 * Invalidates the TLB for the ring-3 mapping cache.
4137 *
4138 * @param pVM Pointer to the VM.
4139 */
4140VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
4141{
4142 pgmLock(pVM);
4143 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4144 {
4145 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
4146 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
4147 }
4148 /* The page map TLB references chunks, so invalidate that one too. */
4149 pgmPhysInvalidatePageMapTLB(pVM);
4150 pgmUnlock(pVM);
4151}
4152
4153
4154/**
4155 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
4156 * (2MB) page for use with a nested paging PDE.
4157 *
4158 * @returns The following VBox status codes.
4159 * @retval VINF_SUCCESS on success.
4160 * @retval VINF_EM_NO_MEMORY if we're out of memory.
4161 *
4162 * @param pVM Pointer to the VM.
4163 * @param GCPhys GC physical start address of the 2 MB range
4164 */
4165VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
4166{
4167#ifdef PGM_WITH_LARGE_PAGES
4168 uint64_t u64TimeStamp1, u64TimeStamp2;
4169
4170 pgmLock(pVM);
4171
4172 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4173 u64TimeStamp1 = RTTimeMilliTS();
4174 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
4175 u64TimeStamp2 = RTTimeMilliTS();
4176 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4177 if (RT_SUCCESS(rc))
4178 {
4179 Assert(pVM->pgm.s.cLargeHandyPages == 1);
4180
4181 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
4182 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
4183
4184 void *pv;
4185
4186 /* Map the large page into our address space.
4187 *
4188 * Note: assuming that within the 2 MB range:
4189 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
4190 * - user space mapping is continuous as well
4191 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
4192 */
4193 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
4194 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
4195
4196 if (RT_SUCCESS(rc))
4197 {
4198 /*
4199 * Clear the pages.
4200 */
4201 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4202 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
4203 {
4204 ASMMemZeroPage(pv);
4205
4206 PPGMPAGE pPage;
4207 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
4208 AssertRC(rc);
4209
4210 Assert(PGM_PAGE_IS_ZERO(pPage));
4211 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
4212 pVM->pgm.s.cZeroPages--;
4213
4214 /*
4215 * Do the PGMPAGE modifications.
4216 */
4217 pVM->pgm.s.cPrivatePages++;
4218 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
4219 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
4220 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4221 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
4222 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4223 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4224
4225 /* Somewhat dirty assumption that page ids are increasing. */
4226 idPage++;
4227
4228 HCPhys += PAGE_SIZE;
4229 GCPhys += PAGE_SIZE;
4230
4231 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
4232
4233 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
4234 }
4235 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4236
4237 /* Flush all TLBs. */
4238 PGM_INVL_ALL_VCPU_TLBS(pVM);
4239 pgmPhysInvalidatePageMapTLB(pVM);
4240 }
4241 pVM->pgm.s.cLargeHandyPages = 0;
4242 }
4243
4244 if (RT_SUCCESS(rc))
4245 {
4246 static uint32_t cTimeOut = 0;
4247 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
4248
4249 if (u64TimeStampDelta > 100)
4250 {
4251 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
4252 if ( ++cTimeOut > 10
4253 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
4254 {
4255 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
4256 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
4257 */
4258 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
4259 PGMSetLargePageUsage(pVM, false);
4260 }
4261 }
4262 else
4263 if (cTimeOut > 0)
4264 cTimeOut--;
4265 }
4266
4267 pgmUnlock(pVM);
4268 return rc;
4269#else
4270 return VERR_NOT_IMPLEMENTED;
4271#endif /* PGM_WITH_LARGE_PAGES */
4272}
4273
4274
4275/**
4276 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
4277 *
4278 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
4279 * signal and clear the out of memory condition. When contracted, this API is
4280 * used to try clear the condition when the user wants to resume.
4281 *
4282 * @returns The following VBox status codes.
4283 * @retval VINF_SUCCESS on success. FFs cleared.
4284 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
4285 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
4286 *
4287 * @param pVM Pointer to the VM.
4288 *
4289 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
4290 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
4291 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
4292 * handler.
4293 */
4294VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
4295{
4296 pgmLock(pVM);
4297
4298 /*
4299 * Allocate more pages, noting down the index of the first new page.
4300 */
4301 uint32_t iClear = pVM->pgm.s.cHandyPages;
4302 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
4303 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
4304 int rcAlloc = VINF_SUCCESS;
4305 int rcSeed = VINF_SUCCESS;
4306 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4307 while (rc == VERR_GMM_SEED_ME)
4308 {
4309 void *pvChunk;
4310 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
4311 if (RT_SUCCESS(rc))
4312 {
4313 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
4314 if (RT_FAILURE(rc))
4315 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
4316 }
4317 if (RT_SUCCESS(rc))
4318 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4319 }
4320
4321 /* todo: we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
4322 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
4323 && pVM->pgm.s.cHandyPages > 0)
4324 {
4325 /* Still handy pages left, so don't panic. */
4326 rc = VINF_SUCCESS;
4327 }
4328
4329 if (RT_SUCCESS(rc))
4330 {
4331 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
4332 Assert(pVM->pgm.s.cHandyPages > 0);
4333 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4334 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
4335
4336#ifdef VBOX_STRICT
4337 uint32_t i;
4338 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
4339 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
4340 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
4341 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
4342 break;
4343 if (i != pVM->pgm.s.cHandyPages)
4344 {
4345 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
4346 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
4347 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
4348 RTAssertMsg2Add(("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
4349 pVM->pgm.s.aHandyPages[j].idPage,
4350 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
4351 pVM->pgm.s.aHandyPages[j].idSharedPage,
4352 j == i ? " <---" : ""));
4353 RTAssertPanic();
4354 }
4355#endif
4356 /*
4357 * Clear the pages.
4358 */
4359 while (iClear < pVM->pgm.s.cHandyPages)
4360 {
4361 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
4362 void *pv;
4363 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
4364 AssertLogRelMsgBreak(RT_SUCCESS(rc),
4365 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
4366 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
4367 ASMMemZeroPage(pv);
4368 iClear++;
4369 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
4370 }
4371 }
4372 else
4373 {
4374 uint64_t cAllocPages, cMaxPages, cBalloonPages;
4375
4376 /*
4377 * We should never get here unless there is a genuine shortage of
4378 * memory (or some internal error). Flag the error so the VM can be
4379 * suspended ASAP and the user informed. If we're totally out of
4380 * handy pages we will return failure.
4381 */
4382 /* Report the failure. */
4383 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
4384 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
4385 rc, rcAlloc, rcSeed,
4386 pVM->pgm.s.cHandyPages,
4387 pVM->pgm.s.cAllPages,
4388 pVM->pgm.s.cPrivatePages,
4389 pVM->pgm.s.cSharedPages,
4390 pVM->pgm.s.cZeroPages));
4391
4392 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
4393 {
4394 LogRel(("GMM: Statistics:\n"
4395 " Allocated pages: %RX64\n"
4396 " Maximum pages: %RX64\n"
4397 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
4398 }
4399
4400 if ( rc != VERR_NO_MEMORY
4401 && rc != VERR_NO_PHYS_MEMORY
4402 && rc != VERR_LOCK_FAILED)
4403 {
4404 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4405 {
4406 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
4407 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
4408 pVM->pgm.s.aHandyPages[i].idSharedPage));
4409 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
4410 if (idPage != NIL_GMM_PAGEID)
4411 {
4412 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4413 pRam;
4414 pRam = pRam->pNextR3)
4415 {
4416 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
4417 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4418 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
4419 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
4420 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
4421 }
4422 }
4423 }
4424 }
4425
4426 /* Set the FFs and adjust rc. */
4427 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4428 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
4429 if ( rc == VERR_NO_MEMORY
4430 || rc == VERR_NO_PHYS_MEMORY
4431 || rc == VERR_LOCK_FAILED)
4432 rc = VINF_EM_NO_MEMORY;
4433 }
4434
4435 pgmUnlock(pVM);
4436 return rc;
4437}
4438
4439
4440/**
4441 * Frees the specified RAM page and replaces it with the ZERO page.
4442 *
4443 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
4444 *
4445 * @param pVM Pointer to the VM.
4446 * @param pReq Pointer to the request.
4447 * @param pcPendingPages Where the number of pages waiting to be freed are
4448 * kept. This will normally be incremented.
4449 * @param pPage Pointer to the page structure.
4450 * @param GCPhys The guest physical address of the page, if applicable.
4451 *
4452 * @remarks The caller must own the PGM lock.
4453 */
4454int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
4455{
4456 /*
4457 * Assert sanity.
4458 */
4459 PGM_LOCK_ASSERT_OWNER(pVM);
4460 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
4461 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
4462 {
4463 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4464 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
4465 }
4466
4467 /** @todo What about ballooning of large pages??! */
4468 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
4469 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
4470
4471 if ( PGM_PAGE_IS_ZERO(pPage)
4472 || PGM_PAGE_IS_BALLOONED(pPage))
4473 return VINF_SUCCESS;
4474
4475 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
4476 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
4477 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
4478 || idPage > GMM_PAGEID_LAST
4479 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
4480 {
4481 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4482 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
4483 }
4484
4485 /* update page count stats. */
4486 if (PGM_PAGE_IS_SHARED(pPage))
4487 pVM->pgm.s.cSharedPages--;
4488 else
4489 pVM->pgm.s.cPrivatePages--;
4490 pVM->pgm.s.cZeroPages++;
4491
4492 /* Deal with write monitored pages. */
4493 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
4494 {
4495 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
4496 pVM->pgm.s.cWrittenToPages++;
4497 }
4498
4499 /*
4500 * pPage = ZERO page.
4501 */
4502 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
4503 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
4504 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
4505 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4506 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4507 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4508
4509 /* Flush physical page map TLB entry. */
4510 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
4511
4512 /*
4513 * Make sure it's not in the handy page array.
4514 */
4515 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4516 {
4517 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
4518 {
4519 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
4520 break;
4521 }
4522 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
4523 {
4524 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
4525 break;
4526 }
4527 }
4528
4529 /*
4530 * Push it onto the page array.
4531 */
4532 uint32_t iPage = *pcPendingPages;
4533 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
4534 *pcPendingPages += 1;
4535
4536 pReq->aPages[iPage].idPage = idPage;
4537
4538 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
4539 return VINF_SUCCESS;
4540
4541 /*
4542 * Flush the pages.
4543 */
4544 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
4545 if (RT_SUCCESS(rc))
4546 {
4547 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4548 *pcPendingPages = 0;
4549 }
4550 return rc;
4551}
4552
4553
4554/**
4555 * Converts a GC physical address to a HC ring-3 pointer, with some
4556 * additional checks.
4557 *
4558 * @returns VBox status code.
4559 * @retval VINF_SUCCESS on success.
4560 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4561 * access handler of some kind.
4562 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4563 * accesses or is odd in any way.
4564 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4565 *
4566 * @param pVM Pointer to the VM.
4567 * @param GCPhys The GC physical address to convert. Since this is only
4568 * used for filling the REM TLB, the A20 mask must be
4569 * applied before calling this API.
4570 * @param fWritable Whether write access is required.
4571 * @param ppv Where to store the pointer corresponding to GCPhys on
4572 * success.
4573 */
4574VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
4575{
4576 pgmLock(pVM);
4577 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
4578
4579 PPGMRAMRANGE pRam;
4580 PPGMPAGE pPage;
4581 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4582 if (RT_SUCCESS(rc))
4583 {
4584 if (PGM_PAGE_IS_BALLOONED(pPage))
4585 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4586 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
4587 rc = VINF_SUCCESS;
4588 else
4589 {
4590 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4591 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4592 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
4593 {
4594 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
4595 * in -norawr0 mode. */
4596 if (fWritable)
4597 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4598 }
4599 else
4600 {
4601 /* Temporarily disabled physical handler(s), since the recompiler
4602 doesn't get notified when it's reset we'll have to pretend it's
4603 operating normally. */
4604 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
4605 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4606 else
4607 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4608 }
4609 }
4610 if (RT_SUCCESS(rc))
4611 {
4612 int rc2;
4613
4614 /* Make sure what we return is writable. */
4615 if (fWritable)
4616 switch (PGM_PAGE_GET_STATE(pPage))
4617 {
4618 case PGM_PAGE_STATE_ALLOCATED:
4619 break;
4620 case PGM_PAGE_STATE_BALLOONED:
4621 AssertFailed();
4622 break;
4623 case PGM_PAGE_STATE_ZERO:
4624 case PGM_PAGE_STATE_SHARED:
4625 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
4626 break;
4627 case PGM_PAGE_STATE_WRITE_MONITORED:
4628 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4629 AssertLogRelRCReturn(rc2, rc2);
4630 break;
4631 }
4632
4633 /* Get a ring-3 mapping of the address. */
4634 PPGMPAGER3MAPTLBE pTlbe;
4635 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
4636 AssertLogRelRCReturn(rc2, rc2);
4637 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4638 /** @todo mapping/locking hell; this isn't horribly efficient since
4639 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
4640
4641 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4642 }
4643 else
4644 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4645
4646 /* else: handler catching all access, no pointer returned. */
4647 }
4648 else
4649 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4650
4651 pgmUnlock(pVM);
4652 return rc;
4653}
4654
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette