VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 80090

Last change on this file since 80090 was 80074, checked in by vboxsync, 6 years ago

VMM,Main,++: Retired the unfinished FTM component.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 210.8 KB
Line 
1/* $Id: PGMPhys.cpp 80074 2019-07-31 14:18:34Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iem.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/mm.h>
27#include <VBox/vmm/nem.h>
28#include <VBox/vmm/stam.h>
29#ifdef VBOX_WITH_REM
30# include <VBox/vmm/rem.h>
31#endif
32#include <VBox/vmm/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vmm/vm.h>
35#include <VBox/vmm/uvm.h>
36#include "PGMInline.h"
37#include <VBox/sup.h>
38#include <VBox/param.h>
39#include <VBox/err.h>
40#include <VBox/log.h>
41#include <iprt/assert.h>
42#include <iprt/alloc.h>
43#include <iprt/asm.h>
44#ifdef VBOX_STRICT
45# include <iprt/crc.h>
46#endif
47#include <iprt/thread.h>
48#include <iprt/string.h>
49#include <iprt/system.h>
50
51
52/*********************************************************************************************************************************
53* Defined Constants And Macros *
54*********************************************************************************************************************************/
55/** The number of pages to free in one batch. */
56#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
57
58
59/*
60 * PGMR3PhysReadU8-64
61 * PGMR3PhysWriteU8-64
62 */
63#define PGMPHYSFN_READNAME PGMR3PhysReadU8
64#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
65#define PGMPHYS_DATASIZE 1
66#define PGMPHYS_DATATYPE uint8_t
67#include "PGMPhysRWTmpl.h"
68
69#define PGMPHYSFN_READNAME PGMR3PhysReadU16
70#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
71#define PGMPHYS_DATASIZE 2
72#define PGMPHYS_DATATYPE uint16_t
73#include "PGMPhysRWTmpl.h"
74
75#define PGMPHYSFN_READNAME PGMR3PhysReadU32
76#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
77#define PGMPHYS_DATASIZE 4
78#define PGMPHYS_DATATYPE uint32_t
79#include "PGMPhysRWTmpl.h"
80
81#define PGMPHYSFN_READNAME PGMR3PhysReadU64
82#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
83#define PGMPHYS_DATASIZE 8
84#define PGMPHYS_DATATYPE uint64_t
85#include "PGMPhysRWTmpl.h"
86
87
88/**
89 * EMT worker for PGMR3PhysReadExternal.
90 */
91static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
92 PGMACCESSORIGIN enmOrigin)
93{
94 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
95 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Read from physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM The cross context VM structure.
107 * @param GCPhys Physical address to read from.
108 * @param pvBuf Where to read into.
109 * @param cbRead How many bytes to read.
110 * @param enmOrigin Who is calling.
111 *
112 * @thread Any but EMTs.
113 */
114VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
115{
116 VM_ASSERT_OTHER_THREAD(pVM);
117
118 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
119 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
120
121 pgmLock(pVM);
122
123 /*
124 * Copy loop on ram ranges.
125 */
126 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
127 for (;;)
128 {
129 /* Inside range or not? */
130 if (pRam && GCPhys >= pRam->GCPhys)
131 {
132 /*
133 * Must work our way thru this page by page.
134 */
135 RTGCPHYS off = GCPhys - pRam->GCPhys;
136 while (off < pRam->cb)
137 {
138 unsigned iPage = off >> PAGE_SHIFT;
139 PPGMPAGE pPage = &pRam->aPages[iPage];
140
141 /*
142 * If the page has an ALL access handler, we'll have to
143 * delegate the job to EMT.
144 */
145 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
146 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
147 {
148 pgmUnlock(pVM);
149
150 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
151 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
152 }
153 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
154
155 /*
156 * Simple stuff, go ahead.
157 */
158 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
159 if (cb > cbRead)
160 cb = cbRead;
161 PGMPAGEMAPLOCK PgMpLck;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
164 if (RT_SUCCESS(rc))
165 {
166 memcpy(pvBuf, pvSrc, cb);
167 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
168 }
169 else
170 {
171 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
172 pRam->GCPhys + off, pPage, rc));
173 memset(pvBuf, 0xff, cb);
174 }
175
176 /* next page */
177 if (cb >= cbRead)
178 {
179 pgmUnlock(pVM);
180 return VINF_SUCCESS;
181 }
182 cbRead -= cb;
183 off += cb;
184 GCPhys += cb;
185 pvBuf = (char *)pvBuf + cb;
186 } /* walk pages in ram range. */
187 }
188 else
189 {
190 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
191
192 /*
193 * Unassigned address space.
194 */
195 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
196 if (cb >= cbRead)
197 {
198 memset(pvBuf, 0xff, cbRead);
199 break;
200 }
201 memset(pvBuf, 0xff, cb);
202
203 cbRead -= cb;
204 pvBuf = (char *)pvBuf + cb;
205 GCPhys += cb;
206 }
207
208 /* Advance range if necessary. */
209 while (pRam && GCPhys > pRam->GCPhysLast)
210 pRam = pRam->CTX_SUFF(pNext);
211 } /* Ram range walk */
212
213 pgmUnlock(pVM);
214
215 return VINF_SUCCESS;
216}
217
218
219/**
220 * EMT worker for PGMR3PhysWriteExternal.
221 */
222static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
223 PGMACCESSORIGIN enmOrigin)
224{
225 /** @todo VERR_EM_NO_MEMORY */
226 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
227 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
228 return VINF_SUCCESS;
229}
230
231
232/**
233 * Write to physical memory, external users.
234 *
235 * @returns VBox status code.
236 * @retval VINF_SUCCESS.
237 * @retval VERR_EM_NO_MEMORY.
238 *
239 * @param pVM The cross context VM structure.
240 * @param GCPhys Physical address to write to.
241 * @param pvBuf What to write.
242 * @param cbWrite How many bytes to write.
243 * @param enmOrigin Who is calling.
244 *
245 * @thread Any but EMTs.
246 */
247VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
248{
249 VM_ASSERT_OTHER_THREAD(pVM);
250
251 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
252 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
253 GCPhys, cbWrite, enmOrigin));
254 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
255 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
256
257 pgmLock(pVM);
258
259 /*
260 * Copy loop on ram ranges, stop when we hit something difficult.
261 */
262 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
263 for (;;)
264 {
265 /* Inside range or not? */
266 if (pRam && GCPhys >= pRam->GCPhys)
267 {
268 /*
269 * Must work our way thru this page by page.
270 */
271 RTGCPTR off = GCPhys - pRam->GCPhys;
272 while (off < pRam->cb)
273 {
274 RTGCPTR iPage = off >> PAGE_SHIFT;
275 PPGMPAGE pPage = &pRam->aPages[iPage];
276
277 /*
278 * Is the page problematic, we have to do the work on the EMT.
279 *
280 * Allocating writable pages and access handlers are
281 * problematic, write monitored pages are simple and can be
282 * dealt with here.
283 */
284 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
285 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
286 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
287 {
288 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
289 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
290 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
291 else
292 {
293 pgmUnlock(pVM);
294
295 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
296 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
297 }
298 }
299 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
300
301 /*
302 * Simple stuff, go ahead.
303 */
304 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
305 if (cb > cbWrite)
306 cb = cbWrite;
307 PGMPAGEMAPLOCK PgMpLck;
308 void *pvDst;
309 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
310 if (RT_SUCCESS(rc))
311 {
312 memcpy(pvDst, pvBuf, cb);
313 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
314 }
315 else
316 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
317 pRam->GCPhys + off, pPage, rc));
318
319 /* next page */
320 if (cb >= cbWrite)
321 {
322 pgmUnlock(pVM);
323 return VINF_SUCCESS;
324 }
325
326 cbWrite -= cb;
327 off += cb;
328 GCPhys += cb;
329 pvBuf = (const char *)pvBuf + cb;
330 } /* walk pages in ram range */
331 }
332 else
333 {
334 /*
335 * Unassigned address space, skip it.
336 */
337 if (!pRam)
338 break;
339 size_t cb = pRam->GCPhys - GCPhys;
340 if (cb >= cbWrite)
341 break;
342 cbWrite -= cb;
343 pvBuf = (const char *)pvBuf + cb;
344 GCPhys += cb;
345 }
346
347 /* Advance range if necessary. */
348 while (pRam && GCPhys > pRam->GCPhysLast)
349 pRam = pRam->CTX_SUFF(pNext);
350 } /* Ram range walk */
351
352 pgmUnlock(pVM);
353 return VINF_SUCCESS;
354}
355
356
357/**
358 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
359 *
360 * @returns see PGMR3PhysGCPhys2CCPtrExternal
361 * @param pVM The cross context VM structure.
362 * @param pGCPhys Pointer to the guest physical address.
363 * @param ppv Where to store the mapping address.
364 * @param pLock Where to store the lock.
365 */
366static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
367{
368 /*
369 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
370 * an access handler after it succeeds.
371 */
372 int rc = pgmLock(pVM);
373 AssertRCReturn(rc, rc);
374
375 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
376 if (RT_SUCCESS(rc))
377 {
378 PPGMPAGEMAPTLBE pTlbe;
379 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
380 AssertFatalRC(rc2);
381 PPGMPAGE pPage = pTlbe->pPage;
382 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
383 {
384 PGMPhysReleasePageMappingLock(pVM, pLock);
385 rc = VERR_PGM_PHYS_PAGE_RESERVED;
386 }
387 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
388#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
389 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
390#endif
391 )
392 {
393 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
394 * not be informed about writes and keep bogus gst->shw mappings around.
395 */
396 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
397 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
398 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
399 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
400 }
401 }
402
403 pgmUnlock(pVM);
404 return rc;
405}
406
407
408/**
409 * Requests the mapping of a guest page into ring-3, external threads.
410 *
411 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
412 * release it.
413 *
414 * This API will assume your intention is to write to the page, and will
415 * therefore replace shared and zero pages. If you do not intend to modify the
416 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
417 *
418 * @returns VBox status code.
419 * @retval VINF_SUCCESS on success.
420 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
421 * backing or if the page has any active access handlers. The caller
422 * must fall back on using PGMR3PhysWriteExternal.
423 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
424 *
425 * @param pVM The cross context VM structure.
426 * @param GCPhys The guest physical address of the page that should be mapped.
427 * @param ppv Where to store the address corresponding to GCPhys.
428 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
429 *
430 * @remark Avoid calling this API from within critical sections (other than the
431 * PGM one) because of the deadlock risk when we have to delegating the
432 * task to an EMT.
433 * @thread Any.
434 */
435VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
436{
437 AssertPtr(ppv);
438 AssertPtr(pLock);
439
440 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
441
442 int rc = pgmLock(pVM);
443 AssertRCReturn(rc, rc);
444
445 /*
446 * Query the Physical TLB entry for the page (may fail).
447 */
448 PPGMPAGEMAPTLBE pTlbe;
449 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
450 if (RT_SUCCESS(rc))
451 {
452 PPGMPAGE pPage = pTlbe->pPage;
453 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
454 rc = VERR_PGM_PHYS_PAGE_RESERVED;
455 else
456 {
457 /*
458 * If the page is shared, the zero page, or being write monitored
459 * it must be converted to an page that's writable if possible.
460 * We can only deal with write monitored pages here, the rest have
461 * to be on an EMT.
462 */
463 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
464 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
465#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
466 || pgmPoolIsDirtyPage(pVM, GCPhys)
467#endif
468 )
469 {
470 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
471 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
472#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
473 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
474#endif
475 )
476 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
477 else
478 {
479 pgmUnlock(pVM);
480
481 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
482 pVM, &GCPhys, ppv, pLock);
483 }
484 }
485
486 /*
487 * Now, just perform the locking and calculate the return address.
488 */
489 PPGMPAGEMAP pMap = pTlbe->pMap;
490 if (pMap)
491 pMap->cRefs++;
492
493 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
494 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
495 {
496 if (cLocks == 0)
497 pVM->pgm.s.cWriteLockedPages++;
498 PGM_PAGE_INC_WRITE_LOCKS(pPage);
499 }
500 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
501 {
502 PGM_PAGE_INC_WRITE_LOCKS(pPage);
503 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
504 if (pMap)
505 pMap->cRefs++; /* Extra ref to prevent it from going away. */
506 }
507
508 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
509 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
510 pLock->pvMap = pMap;
511 }
512 }
513
514 pgmUnlock(pVM);
515 return rc;
516}
517
518
519/**
520 * Requests the mapping of a guest page into ring-3, external threads.
521 *
522 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
523 * release it.
524 *
525 * @returns VBox status code.
526 * @retval VINF_SUCCESS on success.
527 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
528 * backing or if the page as an active ALL access handler. The caller
529 * must fall back on using PGMPhysRead.
530 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
531 *
532 * @param pVM The cross context VM structure.
533 * @param GCPhys The guest physical address of the page that should be mapped.
534 * @param ppv Where to store the address corresponding to GCPhys.
535 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
536 *
537 * @remark Avoid calling this API from within critical sections (other than
538 * the PGM one) because of the deadlock risk.
539 * @thread Any.
540 */
541VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
542{
543 int rc = pgmLock(pVM);
544 AssertRCReturn(rc, rc);
545
546 /*
547 * Query the Physical TLB entry for the page (may fail).
548 */
549 PPGMPAGEMAPTLBE pTlbe;
550 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
551 if (RT_SUCCESS(rc))
552 {
553 PPGMPAGE pPage = pTlbe->pPage;
554#if 1
555 /* MMIO pages doesn't have any readable backing. */
556 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
557 rc = VERR_PGM_PHYS_PAGE_RESERVED;
558#else
559 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
560 rc = VERR_PGM_PHYS_PAGE_RESERVED;
561#endif
562 else
563 {
564 /*
565 * Now, just perform the locking and calculate the return address.
566 */
567 PPGMPAGEMAP pMap = pTlbe->pMap;
568 if (pMap)
569 pMap->cRefs++;
570
571 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
572 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
573 {
574 if (cLocks == 0)
575 pVM->pgm.s.cReadLockedPages++;
576 PGM_PAGE_INC_READ_LOCKS(pPage);
577 }
578 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
579 {
580 PGM_PAGE_INC_READ_LOCKS(pPage);
581 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
582 if (pMap)
583 pMap->cRefs++; /* Extra ref to prevent it from going away. */
584 }
585
586 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
587 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
588 pLock->pvMap = pMap;
589 }
590 }
591
592 pgmUnlock(pVM);
593 return rc;
594}
595
596
597/**
598 * Requests the mapping of multiple guest page into ring-3, external threads.
599 *
600 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
601 * ASAP to release them.
602 *
603 * This API will assume your intention is to write to the pages, and will
604 * therefore replace shared and zero pages. If you do not intend to modify the
605 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
606 *
607 * @returns VBox status code.
608 * @retval VINF_SUCCESS on success.
609 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
610 * backing or if any of the pages the page has any active access
611 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
612 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
613 * an invalid physical address.
614 *
615 * @param pVM The cross context VM structure.
616 * @param cPages Number of pages to lock.
617 * @param paGCPhysPages The guest physical address of the pages that
618 * should be mapped (@a cPages entries).
619 * @param papvPages Where to store the ring-3 mapping addresses
620 * corresponding to @a paGCPhysPages.
621 * @param paLocks Where to store the locking information that
622 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
623 * in length).
624 *
625 * @remark Avoid calling this API from within critical sections (other than the
626 * PGM one) because of the deadlock risk when we have to delegating the
627 * task to an EMT.
628 * @thread Any.
629 */
630VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
631 void **papvPages, PPGMPAGEMAPLOCK paLocks)
632{
633 Assert(cPages > 0);
634 AssertPtr(papvPages);
635 AssertPtr(paLocks);
636
637 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
638
639 int rc = pgmLock(pVM);
640 AssertRCReturn(rc, rc);
641
642 /*
643 * Lock the pages one by one.
644 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
645 */
646 int32_t cNextYield = 128;
647 uint32_t iPage;
648 for (iPage = 0; iPage < cPages; iPage++)
649 {
650 if (--cNextYield > 0)
651 { /* likely */ }
652 else
653 {
654 pgmUnlock(pVM);
655 ASMNopPause();
656 pgmLock(pVM);
657 cNextYield = 128;
658 }
659
660 /*
661 * Query the Physical TLB entry for the page (may fail).
662 */
663 PPGMPAGEMAPTLBE pTlbe;
664 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
665 if (RT_SUCCESS(rc))
666 { }
667 else
668 break;
669 PPGMPAGE pPage = pTlbe->pPage;
670
671 /*
672 * No MMIO or active access handlers.
673 */
674 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
675 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
676 { }
677 else
678 {
679 rc = VERR_PGM_PHYS_PAGE_RESERVED;
680 break;
681 }
682
683 /*
684 * The page must be in the allocated state and not be a dirty pool page.
685 * We can handle converting a write monitored page to an allocated one, but
686 * anything more complicated must be delegated to an EMT.
687 */
688 bool fDelegateToEmt = false;
689 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
690#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
691 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
692#else
693 fDelegateToEmt = false;
694#endif
695 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
696 {
697#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
698 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
699 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
700 else
701 fDelegateToEmt = true;
702#endif
703 }
704 else
705 fDelegateToEmt = true;
706 if (!fDelegateToEmt)
707 { }
708 else
709 {
710 /* We could do this delegation in bulk, but considered too much work vs gain. */
711 pgmUnlock(pVM);
712 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
713 pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
714 pgmLock(pVM);
715 if (RT_FAILURE(rc))
716 break;
717 cNextYield = 128;
718 }
719
720 /*
721 * Now, just perform the locking and address calculation.
722 */
723 PPGMPAGEMAP pMap = pTlbe->pMap;
724 if (pMap)
725 pMap->cRefs++;
726
727 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
728 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
729 {
730 if (cLocks == 0)
731 pVM->pgm.s.cWriteLockedPages++;
732 PGM_PAGE_INC_WRITE_LOCKS(pPage);
733 }
734 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
735 {
736 PGM_PAGE_INC_WRITE_LOCKS(pPage);
737 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
738 if (pMap)
739 pMap->cRefs++; /* Extra ref to prevent it from going away. */
740 }
741
742 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
743 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
744 paLocks[iPage].pvMap = pMap;
745 }
746
747 pgmUnlock(pVM);
748
749 /*
750 * On failure we must unlock any pages we managed to get already.
751 */
752 if (RT_FAILURE(rc) && iPage > 0)
753 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
754
755 return rc;
756}
757
758
759/**
760 * Requests the mapping of multiple guest page into ring-3, for reading only,
761 * external threads.
762 *
763 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
764 * to release them.
765 *
766 * @returns VBox status code.
767 * @retval VINF_SUCCESS on success.
768 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
769 * backing or if any of the pages the page has an active ALL access
770 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
771 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
772 * an invalid physical address.
773 *
774 * @param pVM The cross context VM structure.
775 * @param cPages Number of pages to lock.
776 * @param paGCPhysPages The guest physical address of the pages that
777 * should be mapped (@a cPages entries).
778 * @param papvPages Where to store the ring-3 mapping addresses
779 * corresponding to @a paGCPhysPages.
780 * @param paLocks Where to store the lock information that
781 * pfnPhysReleasePageMappingLock needs (@a cPages
782 * in length).
783 *
784 * @remark Avoid calling this API from within critical sections (other than
785 * the PGM one) because of the deadlock risk.
786 * @thread Any.
787 */
788VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
789 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
790{
791 Assert(cPages > 0);
792 AssertPtr(papvPages);
793 AssertPtr(paLocks);
794
795 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
796
797 int rc = pgmLock(pVM);
798 AssertRCReturn(rc, rc);
799
800 /*
801 * Lock the pages one by one.
802 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
803 */
804 int32_t cNextYield = 256;
805 uint32_t iPage;
806 for (iPage = 0; iPage < cPages; iPage++)
807 {
808 if (--cNextYield > 0)
809 { /* likely */ }
810 else
811 {
812 pgmUnlock(pVM);
813 ASMNopPause();
814 pgmLock(pVM);
815 cNextYield = 256;
816 }
817
818 /*
819 * Query the Physical TLB entry for the page (may fail).
820 */
821 PPGMPAGEMAPTLBE pTlbe;
822 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
823 if (RT_SUCCESS(rc))
824 { }
825 else
826 break;
827 PPGMPAGE pPage = pTlbe->pPage;
828
829 /*
830 * No MMIO or active all access handlers, everything else can be accessed.
831 */
832 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
833 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
834 { }
835 else
836 {
837 rc = VERR_PGM_PHYS_PAGE_RESERVED;
838 break;
839 }
840
841 /*
842 * Now, just perform the locking and address calculation.
843 */
844 PPGMPAGEMAP pMap = pTlbe->pMap;
845 if (pMap)
846 pMap->cRefs++;
847
848 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
849 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
850 {
851 if (cLocks == 0)
852 pVM->pgm.s.cReadLockedPages++;
853 PGM_PAGE_INC_READ_LOCKS(pPage);
854 }
855 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
856 {
857 PGM_PAGE_INC_READ_LOCKS(pPage);
858 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
859 if (pMap)
860 pMap->cRefs++; /* Extra ref to prevent it from going away. */
861 }
862
863 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
864 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
865 paLocks[iPage].pvMap = pMap;
866 }
867
868 pgmUnlock(pVM);
869
870 /*
871 * On failure we must unlock any pages we managed to get already.
872 */
873 if (RT_FAILURE(rc) && iPage > 0)
874 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
875
876 return rc;
877}
878
879
880#define MAKE_LEAF(a_pNode) \
881 do { \
882 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
883 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
884 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
885 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
886 (a_pNode)->pLeftRC = NIL_RTRCPTR; \
887 (a_pNode)->pRightRC = NIL_RTRCPTR; \
888 } while (0)
889
890#define INSERT_LEFT(a_pParent, a_pNode) \
891 do { \
892 (a_pParent)->pLeftR3 = (a_pNode); \
893 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
894 (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
895 } while (0)
896#define INSERT_RIGHT(a_pParent, a_pNode) \
897 do { \
898 (a_pParent)->pRightR3 = (a_pNode); \
899 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
900 (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
901 } while (0)
902
903
904/**
905 * Recursive tree builder.
906 *
907 * @param ppRam Pointer to the iterator variable.
908 * @param iDepth The current depth. Inserts a leaf node if 0.
909 */
910static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
911{
912 PPGMRAMRANGE pRam;
913 if (iDepth <= 0)
914 {
915 /*
916 * Leaf node.
917 */
918 pRam = *ppRam;
919 if (pRam)
920 {
921 *ppRam = pRam->pNextR3;
922 MAKE_LEAF(pRam);
923 }
924 }
925 else
926 {
927
928 /*
929 * Intermediate node.
930 */
931 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
932
933 pRam = *ppRam;
934 if (!pRam)
935 return pLeft;
936 *ppRam = pRam->pNextR3;
937 MAKE_LEAF(pRam);
938 INSERT_LEFT(pRam, pLeft);
939
940 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
941 if (pRight)
942 INSERT_RIGHT(pRam, pRight);
943 }
944 return pRam;
945}
946
947
948/**
949 * Rebuilds the RAM range search trees.
950 *
951 * @param pVM The cross context VM structure.
952 */
953static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
954{
955
956 /*
957 * Create the reasonably balanced tree in a sequential fashion.
958 * For simplicity (laziness) we use standard recursion here.
959 */
960 int iDepth = 0;
961 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
962 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
963 while (pRam)
964 {
965 PPGMRAMRANGE pLeft = pRoot;
966
967 pRoot = pRam;
968 pRam = pRam->pNextR3;
969 MAKE_LEAF(pRoot);
970 INSERT_LEFT(pRoot, pLeft);
971
972 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
973 if (pRight)
974 INSERT_RIGHT(pRoot, pRight);
975 /** @todo else: rotate the tree. */
976
977 iDepth++;
978 }
979
980 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
981 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
982 pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;
983
984#ifdef VBOX_STRICT
985 /*
986 * Verify that the above code works.
987 */
988 unsigned cRanges = 0;
989 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
990 cRanges++;
991 Assert(cRanges > 0);
992
993 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
994 if ((1U << cMaxDepth) < cRanges)
995 cMaxDepth++;
996
997 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
998 {
999 unsigned cDepth = 0;
1000 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
1001 for (;;)
1002 {
1003 if (pRam == pRam2)
1004 break;
1005 Assert(pRam2);
1006 if (pRam->GCPhys < pRam2->GCPhys)
1007 pRam2 = pRam2->pLeftR3;
1008 else
1009 pRam2 = pRam2->pRightR3;
1010 }
1011 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1012 }
1013#endif /* VBOX_STRICT */
1014}
1015
1016#undef MAKE_LEAF
1017#undef INSERT_LEFT
1018#undef INSERT_RIGHT
1019
1020/**
1021 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1022 *
1023 * Called when anything was relocated.
1024 *
1025 * @param pVM The cross context VM structure.
1026 */
1027void pgmR3PhysRelinkRamRanges(PVM pVM)
1028{
1029 PPGMRAMRANGE pCur;
1030
1031#ifdef VBOX_STRICT
1032 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1033 {
1034 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1035 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
1036 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1037 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1038 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1039 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1040 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1041 Assert( pCur2 == pCur
1042 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1043 }
1044#endif
1045
1046 pCur = pVM->pgm.s.pRamRangesXR3;
1047 if (pCur)
1048 {
1049 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1050 pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;
1051
1052 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1053 {
1054 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1055 pCur->pNextRC = pCur->pNextR3->pSelfRC;
1056 }
1057
1058 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1059 Assert(pCur->pNextRC == NIL_RTRCPTR);
1060 }
1061 else
1062 {
1063 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1064 Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
1065 }
1066 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1067
1068 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1069}
1070
1071
1072/**
1073 * Links a new RAM range into the list.
1074 *
1075 * @param pVM The cross context VM structure.
1076 * @param pNew Pointer to the new list entry.
1077 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1078 */
1079static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1080{
1081 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1082 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1083 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
1084
1085 pgmLock(pVM);
1086
1087 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1088 pNew->pNextR3 = pRam;
1089 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1090 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
1091
1092 if (pPrev)
1093 {
1094 pPrev->pNextR3 = pNew;
1095 pPrev->pNextR0 = pNew->pSelfR0;
1096 pPrev->pNextRC = pNew->pSelfRC;
1097 }
1098 else
1099 {
1100 pVM->pgm.s.pRamRangesXR3 = pNew;
1101 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1102 pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
1103 }
1104 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1105
1106 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1107 pgmUnlock(pVM);
1108}
1109
1110
1111/**
1112 * Unlink an existing RAM range from the list.
1113 *
1114 * @param pVM The cross context VM structure.
1115 * @param pRam Pointer to the new list entry.
1116 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1117 */
1118static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1119{
1120 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1121 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1122 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
1123
1124 pgmLock(pVM);
1125
1126 PPGMRAMRANGE pNext = pRam->pNextR3;
1127 if (pPrev)
1128 {
1129 pPrev->pNextR3 = pNext;
1130 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1131 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
1132 }
1133 else
1134 {
1135 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1136 pVM->pgm.s.pRamRangesXR3 = pNext;
1137 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1138 pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
1139 }
1140 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1141
1142 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1143 pgmUnlock(pVM);
1144}
1145
1146
1147/**
1148 * Unlink an existing RAM range from the list.
1149 *
1150 * @param pVM The cross context VM structure.
1151 * @param pRam Pointer to the new list entry.
1152 */
1153static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1154{
1155 pgmLock(pVM);
1156
1157 /* find prev. */
1158 PPGMRAMRANGE pPrev = NULL;
1159 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1160 while (pCur != pRam)
1161 {
1162 pPrev = pCur;
1163 pCur = pCur->pNextR3;
1164 }
1165 AssertFatal(pCur);
1166
1167 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1168 pgmUnlock(pVM);
1169}
1170
1171
1172/**
1173 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1174 *
1175 * @returns VBox status code.
1176 * @param pVM The cross context VM structure.
1177 * @param pRam The RAM range in which the pages resides.
1178 * @param GCPhys The address of the first page.
1179 * @param GCPhysLast The address of the last page.
1180 * @param enmType The page type to replace then with.
1181 */
1182static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType)
1183{
1184 PGM_LOCK_ASSERT_OWNER(pVM);
1185 uint32_t cPendingPages = 0;
1186 PGMMFREEPAGESREQ pReq;
1187 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1188 AssertLogRelRCReturn(rc, rc);
1189
1190 /* Iterate the pages. */
1191 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1192 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1193 while (cPagesLeft-- > 0)
1194 {
1195 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType);
1196 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1197
1198 PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType);
1199
1200 GCPhys += PAGE_SIZE;
1201 pPageDst++;
1202 }
1203
1204 if (cPendingPages)
1205 {
1206 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1207 AssertLogRelRCReturn(rc, rc);
1208 }
1209 GMMR3FreePagesCleanup(pReq);
1210
1211 return rc;
1212}
1213
1214#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1215
1216/**
1217 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
1218 *
1219 * This is only called on one of the EMTs while the other ones are waiting for
1220 * it to complete this function.
1221 *
1222 * @returns VINF_SUCCESS (VBox strict status code).
1223 * @param pVM The cross context VM structure.
1224 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1225 * @param pvUser User parameter
1226 */
1227static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1228{
1229 uintptr_t *paUser = (uintptr_t *)pvUser;
1230 bool fInflate = !!paUser[0];
1231 unsigned cPages = paUser[1];
1232 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
1233 uint32_t cPendingPages = 0;
1234 PGMMFREEPAGESREQ pReq;
1235 int rc;
1236
1237 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
1238 pgmLock(pVM);
1239
1240 if (fInflate)
1241 {
1242 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
1243 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
1244
1245 /* Replace pages with ZERO pages. */
1246 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1247 if (RT_FAILURE(rc))
1248 {
1249 pgmUnlock(pVM);
1250 AssertLogRelRC(rc);
1251 return rc;
1252 }
1253
1254 /* Iterate the pages. */
1255 for (unsigned i = 0; i < cPages; i++)
1256 {
1257 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1258 if ( pPage == NULL
1259 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
1260 {
1261 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
1262 break;
1263 }
1264
1265 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
1266
1267 /* Flush the shadow PT if this page was previously used as a guest page table. */
1268 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
1269
1270 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
1271 if (RT_FAILURE(rc))
1272 {
1273 pgmUnlock(pVM);
1274 AssertLogRelRC(rc);
1275 return rc;
1276 }
1277 Assert(PGM_PAGE_IS_ZERO(pPage));
1278 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
1279 }
1280
1281 if (cPendingPages)
1282 {
1283 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1284 if (RT_FAILURE(rc))
1285 {
1286 pgmUnlock(pVM);
1287 AssertLogRelRC(rc);
1288 return rc;
1289 }
1290 }
1291 GMMR3FreePagesCleanup(pReq);
1292 }
1293 else
1294 {
1295 /* Iterate the pages. */
1296 for (unsigned i = 0; i < cPages; i++)
1297 {
1298 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1299 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1300
1301 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1302
1303 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1304
1305 /* Change back to zero page. (NEM does not need to be informed.) */
1306 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1307 }
1308
1309 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1310 }
1311
1312 /* Notify GMM about the balloon change. */
1313 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1314 if (RT_SUCCESS(rc))
1315 {
1316 if (!fInflate)
1317 {
1318 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1319 pVM->pgm.s.cBalloonedPages -= cPages;
1320 }
1321 else
1322 pVM->pgm.s.cBalloonedPages += cPages;
1323 }
1324
1325 pgmUnlock(pVM);
1326
1327 /* Flush the recompiler's TLB as well. */
1328 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1329 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1330
1331 AssertLogRelRC(rc);
1332 return rc;
1333}
1334
1335
1336/**
1337 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1338 *
1339 * @returns VBox status code.
1340 * @param pVM The cross context VM structure.
1341 * @param fInflate Inflate or deflate memory balloon
1342 * @param cPages Number of pages to free
1343 * @param paPhysPage Array of guest physical addresses
1344 */
1345static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1346{
1347 uintptr_t paUser[3];
1348
1349 paUser[0] = fInflate;
1350 paUser[1] = cPages;
1351 paUser[2] = (uintptr_t)paPhysPage;
1352 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1353 AssertRC(rc);
1354
1355 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1356 RTMemFree(paPhysPage);
1357}
1358
1359#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1360
1361/**
1362 * Inflate or deflate a memory balloon
1363 *
1364 * @returns VBox status code.
1365 * @param pVM The cross context VM structure.
1366 * @param fInflate Inflate or deflate memory balloon
1367 * @param cPages Number of pages to free
1368 * @param paPhysPage Array of guest physical addresses
1369 */
1370VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1371{
1372 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1373#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1374 int rc;
1375
1376 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1377 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1378
1379 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1380 * In the SMP case we post a request packet to postpone the job.
1381 */
1382 if (pVM->cCpus > 1)
1383 {
1384 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1385 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1386 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1387
1388 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1389
1390 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1391 AssertRC(rc);
1392 }
1393 else
1394 {
1395 uintptr_t paUser[3];
1396
1397 paUser[0] = fInflate;
1398 paUser[1] = cPages;
1399 paUser[2] = (uintptr_t)paPhysPage;
1400 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1401 AssertRC(rc);
1402 }
1403 return rc;
1404
1405#else
1406 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1407 return VERR_NOT_IMPLEMENTED;
1408#endif
1409}
1410
1411
1412/**
1413 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1414 * physical RAM.
1415 *
1416 * This is only called on one of the EMTs while the other ones are waiting for
1417 * it to complete this function.
1418 *
1419 * @returns VINF_SUCCESS (VBox strict status code).
1420 * @param pVM The cross context VM structure.
1421 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1422 * @param pvUser User parameter, unused.
1423 */
1424static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1425{
1426 int rc = VINF_SUCCESS;
1427 NOREF(pvUser); NOREF(pVCpu);
1428
1429 pgmLock(pVM);
1430#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1431 pgmPoolResetDirtyPages(pVM);
1432#endif
1433
1434 /** @todo pointless to write protect the physical page pointed to by RSP. */
1435
1436 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1437 pRam;
1438 pRam = pRam->CTX_SUFF(pNext))
1439 {
1440 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1441 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1442 {
1443 PPGMPAGE pPage = &pRam->aPages[iPage];
1444 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1445
1446 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1447 || enmPageType == PGMPAGETYPE_MMIO2)
1448 {
1449 /*
1450 * A RAM page.
1451 */
1452 switch (PGM_PAGE_GET_STATE(pPage))
1453 {
1454 case PGM_PAGE_STATE_ALLOCATED:
1455 /** @todo Optimize this: Don't always re-enable write
1456 * monitoring if the page is known to be very busy. */
1457 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1458 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1459
1460 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1461 break;
1462
1463 case PGM_PAGE_STATE_SHARED:
1464 AssertFailed();
1465 break;
1466
1467 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1468 default:
1469 break;
1470 }
1471 }
1472 }
1473 }
1474 pgmR3PoolWriteProtectPages(pVM);
1475 PGM_INVL_ALL_VCPU_TLBS(pVM);
1476 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1477 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1478
1479 pgmUnlock(pVM);
1480 return rc;
1481}
1482
1483/**
1484 * Protect all physical RAM to monitor writes
1485 *
1486 * @returns VBox status code.
1487 * @param pVM The cross context VM structure.
1488 */
1489VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1490{
1491 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1492
1493 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1494 AssertRC(rc);
1495 return rc;
1496}
1497
1498
1499/**
1500 * Gets the number of ram ranges.
1501 *
1502 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1503 * @param pVM The cross context VM structure.
1504 */
1505VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1506{
1507 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1508
1509 pgmLock(pVM);
1510 uint32_t cRamRanges = 0;
1511 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1512 cRamRanges++;
1513 pgmUnlock(pVM);
1514 return cRamRanges;
1515}
1516
1517
1518/**
1519 * Get information about a range.
1520 *
1521 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1522 * @param pVM The cross context VM structure.
1523 * @param iRange The ordinal of the range.
1524 * @param pGCPhysStart Where to return the start of the range. Optional.
1525 * @param pGCPhysLast Where to return the address of the last byte in the
1526 * range. Optional.
1527 * @param ppszDesc Where to return the range description. Optional.
1528 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1529 * Optional.
1530 */
1531VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1532 const char **ppszDesc, bool *pfIsMmio)
1533{
1534 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1535
1536 pgmLock(pVM);
1537 uint32_t iCurRange = 0;
1538 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1539 if (iCurRange == iRange)
1540 {
1541 if (pGCPhysStart)
1542 *pGCPhysStart = pCur->GCPhys;
1543 if (pGCPhysLast)
1544 *pGCPhysLast = pCur->GCPhysLast;
1545 if (ppszDesc)
1546 *ppszDesc = pCur->pszDesc;
1547 if (pfIsMmio)
1548 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1549
1550 pgmUnlock(pVM);
1551 return VINF_SUCCESS;
1552 }
1553 pgmUnlock(pVM);
1554 return VERR_OUT_OF_RANGE;
1555}
1556
1557
1558/**
1559 * Query the amount of free memory inside VMMR0
1560 *
1561 * @returns VBox status code.
1562 * @param pUVM The user mode VM handle.
1563 * @param pcbAllocMem Where to return the amount of memory allocated
1564 * by VMs.
1565 * @param pcbFreeMem Where to return the amount of memory that is
1566 * allocated from the host but not currently used
1567 * by any VMs.
1568 * @param pcbBallonedMem Where to return the sum of memory that is
1569 * currently ballooned by the VMs.
1570 * @param pcbSharedMem Where to return the amount of memory that is
1571 * currently shared.
1572 */
1573VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1574 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1575{
1576 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1577 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1578
1579 uint64_t cAllocPages = 0;
1580 uint64_t cFreePages = 0;
1581 uint64_t cBalloonPages = 0;
1582 uint64_t cSharedPages = 0;
1583 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1584 AssertRCReturn(rc, rc);
1585
1586 if (pcbAllocMem)
1587 *pcbAllocMem = cAllocPages * _4K;
1588
1589 if (pcbFreeMem)
1590 *pcbFreeMem = cFreePages * _4K;
1591
1592 if (pcbBallonedMem)
1593 *pcbBallonedMem = cBalloonPages * _4K;
1594
1595 if (pcbSharedMem)
1596 *pcbSharedMem = cSharedPages * _4K;
1597
1598 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1599 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1600 return VINF_SUCCESS;
1601}
1602
1603
1604/**
1605 * Query memory stats for the VM.
1606 *
1607 * @returns VBox status code.
1608 * @param pUVM The user mode VM handle.
1609 * @param pcbTotalMem Where to return total amount memory the VM may
1610 * possibly use.
1611 * @param pcbPrivateMem Where to return the amount of private memory
1612 * currently allocated.
1613 * @param pcbSharedMem Where to return the amount of actually shared
1614 * memory currently used by the VM.
1615 * @param pcbZeroMem Where to return the amount of memory backed by
1616 * zero pages.
1617 *
1618 * @remarks The total mem is normally larger than the sum of the three
1619 * components. There are two reasons for this, first the amount of
1620 * shared memory is what we're sure is shared instead of what could
1621 * possibly be shared with someone. Secondly, because the total may
1622 * include some pure MMIO pages that doesn't go into any of the three
1623 * sub-counts.
1624 *
1625 * @todo Why do we return reused shared pages instead of anything that could
1626 * potentially be shared? Doesn't this mean the first VM gets a much
1627 * lower number of shared pages?
1628 */
1629VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1630 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1631{
1632 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1633 PVM pVM = pUVM->pVM;
1634 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1635
1636 if (pcbTotalMem)
1637 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1638
1639 if (pcbPrivateMem)
1640 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1641
1642 if (pcbSharedMem)
1643 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1644
1645 if (pcbZeroMem)
1646 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1647
1648 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1649 return VINF_SUCCESS;
1650}
1651
1652
1653/**
1654 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1655 *
1656 * @param pVM The cross context VM structure.
1657 * @param pNew The new RAM range.
1658 * @param GCPhys The address of the RAM range.
1659 * @param GCPhysLast The last address of the RAM range.
1660 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1661 * if in HMA.
1662 * @param R0PtrNew Ditto for R0.
1663 * @param pszDesc The description.
1664 * @param pPrev The previous RAM range (for linking).
1665 */
1666static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1667 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1668{
1669 /*
1670 * Initialize the range.
1671 */
1672 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1673 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1674 pNew->GCPhys = GCPhys;
1675 pNew->GCPhysLast = GCPhysLast;
1676 pNew->cb = GCPhysLast - GCPhys + 1;
1677 pNew->pszDesc = pszDesc;
1678 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1679 pNew->pvR3 = NULL;
1680 pNew->paLSPages = NULL;
1681
1682 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1683 RTGCPHYS iPage = cPages;
1684 while (iPage-- > 0)
1685 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1686
1687 /* Update the page count stats. */
1688 pVM->pgm.s.cZeroPages += cPages;
1689 pVM->pgm.s.cAllPages += cPages;
1690
1691 /*
1692 * Link it.
1693 */
1694 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1695}
1696
1697
1698/**
1699 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.}
1700 * @sa pgmR3PhysMMIO2ExRangeRelocate
1701 */
1702static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
1703 PGMRELOCATECALL enmMode, void *pvUser)
1704{
1705 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1706 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1707 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld);
1708
1709 switch (enmMode)
1710 {
1711 case PGMRELOCATECALL_SUGGEST:
1712 return true;
1713
1714 case PGMRELOCATECALL_RELOCATE:
1715 {
1716 /*
1717 * Update myself, then relink all the ranges and flush the RC TLB.
1718 */
1719 pgmLock(pVM);
1720
1721 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1722
1723 pgmR3PhysRelinkRamRanges(pVM);
1724 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1725 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1726
1727 pgmUnlock(pVM);
1728 return true;
1729 }
1730
1731 default:
1732 AssertFailedReturn(false);
1733 }
1734}
1735
1736
1737/**
1738 * PGMR3PhysRegisterRam worker that registers a high chunk.
1739 *
1740 * @returns VBox status code.
1741 * @param pVM The cross context VM structure.
1742 * @param GCPhys The address of the RAM.
1743 * @param cRamPages The number of RAM pages to register.
1744 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1745 * @param iChunk The chunk number.
1746 * @param pszDesc The RAM range description.
1747 * @param ppPrev Previous RAM range pointer. In/Out.
1748 */
1749static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1750 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1751 PPGMRAMRANGE *ppPrev)
1752{
1753 const char *pszDescChunk = iChunk == 0
1754 ? pszDesc
1755 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1756 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1757
1758 /*
1759 * Allocate memory for the new chunk.
1760 */
1761 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1762 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1763 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1764 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1765 void *pvChunk = NULL;
1766 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1767#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1768 &R0PtrChunk,
1769#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1770 VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL,
1771#else
1772 NULL,
1773#endif
1774 paChunkPages);
1775 if (RT_SUCCESS(rc))
1776 {
1777#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1778 Assert(R0PtrChunk != NIL_RTR0PTR);
1779#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1780 if (!VM_IS_HM_OR_NEM_ENABLED(pVM))
1781 R0PtrChunk = NIL_RTR0PTR;
1782#else
1783 R0PtrChunk = (uintptr_t)pvChunk;
1784#endif
1785 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1786
1787 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1788
1789 /*
1790 * Create a mapping and map the pages into it.
1791 * We push these in below the HMA.
1792 */
1793 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1794 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1795 if (RT_SUCCESS(rc))
1796 {
1797 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1798
1799 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1800 RTGCPTR GCPtrPage = GCPtrChunk;
1801 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1802 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1803 if (RT_SUCCESS(rc))
1804 {
1805 /*
1806 * Ok, init and link the range.
1807 */
1808 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1809 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1810 *ppPrev = pNew;
1811 }
1812 }
1813
1814 if (RT_FAILURE(rc))
1815 SUPR3PageFreeEx(pvChunk, cChunkPages);
1816 }
1817
1818 RTMemTmpFree(paChunkPages);
1819 return rc;
1820}
1821
1822
1823/**
1824 * Sets up a range RAM.
1825 *
1826 * This will check for conflicting registrations, make a resource
1827 * reservation for the memory (with GMM), and setup the per-page
1828 * tracking structures (PGMPAGE).
1829 *
1830 * @returns VBox status code.
1831 * @param pVM The cross context VM structure.
1832 * @param GCPhys The physical address of the RAM.
1833 * @param cb The size of the RAM.
1834 * @param pszDesc The description - not copied, so, don't free or change it.
1835 */
1836VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1837{
1838 /*
1839 * Validate input.
1840 */
1841 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1842 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1843 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1844 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1845 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1846 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1847 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1848 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1849
1850 pgmLock(pVM);
1851
1852 /*
1853 * Find range location and check for conflicts.
1854 * (We don't lock here because the locking by EMT is only required on update.)
1855 */
1856 PPGMRAMRANGE pPrev = NULL;
1857 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1858 while (pRam && GCPhysLast >= pRam->GCPhys)
1859 {
1860 if ( GCPhysLast >= pRam->GCPhys
1861 && GCPhys <= pRam->GCPhysLast)
1862 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1863 GCPhys, GCPhysLast, pszDesc,
1864 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1865 VERR_PGM_RAM_CONFLICT);
1866
1867 /* next */
1868 pPrev = pRam;
1869 pRam = pRam->pNextR3;
1870 }
1871
1872 /*
1873 * Register it with GMM (the API bitches).
1874 */
1875 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1876 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1877 if (RT_FAILURE(rc))
1878 {
1879 pgmUnlock(pVM);
1880 return rc;
1881 }
1882
1883 if ( GCPhys >= _4G
1884 && cPages > 256)
1885 {
1886 /*
1887 * The PGMRAMRANGE structures for the high memory can get very big.
1888 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1889 * allocation size limit there and also to avoid being unable to find
1890 * guest mapping space for them, we split this memory up into 4MB in
1891 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1892 * mode.
1893 *
1894 * The first and last page of each mapping are guard pages and marked
1895 * not-present. So, we've got 4186112 and 16769024 bytes available for
1896 * the PGMRAMRANGE structure.
1897 *
1898 * Note! The sizes used here will influence the saved state.
1899 */
1900 uint32_t cbChunk;
1901 uint32_t cPagesPerChunk;
1902 if (!VM_IS_RAW_MODE_ENABLED(pVM))
1903 {
1904 cbChunk = 16U*_1M;
1905 cPagesPerChunk = 1048048; /* max ~1048059 */
1906 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1907 }
1908 else
1909 {
1910 cbChunk = 4U*_1M;
1911 cPagesPerChunk = 261616; /* max ~261627 */
1912 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1913 }
1914 AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1915
1916 RTGCPHYS cPagesLeft = cPages;
1917 RTGCPHYS GCPhysChunk = GCPhys;
1918 uint32_t iChunk = 0;
1919 while (cPagesLeft > 0)
1920 {
1921 uint32_t cPagesInChunk = cPagesLeft;
1922 if (cPagesInChunk > cPagesPerChunk)
1923 cPagesInChunk = cPagesPerChunk;
1924
1925 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1926 AssertRCReturn(rc, rc);
1927
1928 /* advance */
1929 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1930 cPagesLeft -= cPagesInChunk;
1931 iChunk++;
1932 }
1933 }
1934 else
1935 {
1936 /*
1937 * Allocate, initialize and link the new RAM range.
1938 */
1939 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
1940 PPGMRAMRANGE pNew;
1941 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1942 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1943
1944 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1945 }
1946 pgmPhysInvalidatePageMapTLB(pVM);
1947
1948 /*
1949 * Notify NEM while holding the lock (experimental) and REM without (like always).
1950 */
1951 rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb);
1952 pgmUnlock(pVM);
1953#ifdef VBOX_WITH_REM
1954 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1955#endif
1956 return rc;
1957}
1958
1959
1960/**
1961 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1962 *
1963 * We do this late in the init process so that all the ROM and MMIO ranges have
1964 * been registered already and we don't go wasting memory on them.
1965 *
1966 * @returns VBox status code.
1967 *
1968 * @param pVM The cross context VM structure.
1969 */
1970int pgmR3PhysRamPreAllocate(PVM pVM)
1971{
1972 Assert(pVM->pgm.s.fRamPreAlloc);
1973 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1974
1975 /*
1976 * Walk the RAM ranges and allocate all RAM pages, halt at
1977 * the first allocation error.
1978 */
1979 uint64_t cPages = 0;
1980 uint64_t NanoTS = RTTimeNanoTS();
1981 pgmLock(pVM);
1982 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1983 {
1984 PPGMPAGE pPage = &pRam->aPages[0];
1985 RTGCPHYS GCPhys = pRam->GCPhys;
1986 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1987 while (cLeft-- > 0)
1988 {
1989 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1990 {
1991 switch (PGM_PAGE_GET_STATE(pPage))
1992 {
1993 case PGM_PAGE_STATE_ZERO:
1994 {
1995 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1996 if (RT_FAILURE(rc))
1997 {
1998 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1999 pgmUnlock(pVM);
2000 return rc;
2001 }
2002 cPages++;
2003 break;
2004 }
2005
2006 case PGM_PAGE_STATE_BALLOONED:
2007 case PGM_PAGE_STATE_ALLOCATED:
2008 case PGM_PAGE_STATE_WRITE_MONITORED:
2009 case PGM_PAGE_STATE_SHARED:
2010 /* nothing to do here. */
2011 break;
2012 }
2013 }
2014
2015 /* next */
2016 pPage++;
2017 GCPhys += PAGE_SIZE;
2018 }
2019 }
2020 pgmUnlock(pVM);
2021 NanoTS = RTTimeNanoTS() - NanoTS;
2022
2023 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
2024 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
2025 return VINF_SUCCESS;
2026}
2027
2028
2029/**
2030 * Checks shared page checksums.
2031 *
2032 * @param pVM The cross context VM structure.
2033 */
2034void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
2035{
2036#ifdef VBOX_STRICT
2037 pgmLock(pVM);
2038
2039 if (pVM->pgm.s.cSharedPages > 0)
2040 {
2041 /*
2042 * Walk the ram ranges.
2043 */
2044 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2045 {
2046 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2047 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2048
2049 while (iPage-- > 0)
2050 {
2051 PPGMPAGE pPage = &pRam->aPages[iPage];
2052 if (PGM_PAGE_IS_SHARED(pPage))
2053 {
2054 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
2055 if (!u32Checksum)
2056 {
2057 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2058 void const *pvPage;
2059 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
2060 if (RT_SUCCESS(rc))
2061 {
2062 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
2063# if 0
2064 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
2065# else
2066 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
2067 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2068 else
2069 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2070# endif
2071 }
2072 else
2073 AssertRC(rc);
2074 }
2075 }
2076
2077 } /* for each page */
2078
2079 } /* for each ram range */
2080 }
2081
2082 pgmUnlock(pVM);
2083#endif /* VBOX_STRICT */
2084 NOREF(pVM);
2085}
2086
2087
2088/**
2089 * Resets the physical memory state.
2090 *
2091 * ASSUMES that the caller owns the PGM lock.
2092 *
2093 * @returns VBox status code.
2094 * @param pVM The cross context VM structure.
2095 */
2096int pgmR3PhysRamReset(PVM pVM)
2097{
2098 PGM_LOCK_ASSERT_OWNER(pVM);
2099
2100 /* Reset the memory balloon. */
2101 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2102 AssertRC(rc);
2103
2104#ifdef VBOX_WITH_PAGE_SHARING
2105 /* Clear all registered shared modules. */
2106 pgmR3PhysAssertSharedPageChecksums(pVM);
2107 rc = GMMR3ResetSharedModules(pVM);
2108 AssertRC(rc);
2109#endif
2110 /* Reset counters. */
2111 pVM->pgm.s.cReusedSharedPages = 0;
2112 pVM->pgm.s.cBalloonedPages = 0;
2113
2114 return VINF_SUCCESS;
2115}
2116
2117
2118/**
2119 * Resets (zeros) the RAM after all devices and components have been reset.
2120 *
2121 * ASSUMES that the caller owns the PGM lock.
2122 *
2123 * @returns VBox status code.
2124 * @param pVM The cross context VM structure.
2125 */
2126int pgmR3PhysRamZeroAll(PVM pVM)
2127{
2128 PGM_LOCK_ASSERT_OWNER(pVM);
2129
2130 /*
2131 * We batch up pages that should be freed instead of calling GMM for
2132 * each and every one of them.
2133 */
2134 uint32_t cPendingPages = 0;
2135 PGMMFREEPAGESREQ pReq;
2136 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2137 AssertLogRelRCReturn(rc, rc);
2138
2139 /*
2140 * Walk the ram ranges.
2141 */
2142 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2143 {
2144 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2145 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2146
2147 if ( !pVM->pgm.s.fRamPreAlloc
2148 && pVM->pgm.s.fZeroRamPagesOnReset)
2149 {
2150 /* Replace all RAM pages by ZERO pages. */
2151 while (iPage-- > 0)
2152 {
2153 PPGMPAGE pPage = &pRam->aPages[iPage];
2154 switch (PGM_PAGE_GET_TYPE(pPage))
2155 {
2156 case PGMPAGETYPE_RAM:
2157 /* Do not replace pages part of a 2 MB continuous range
2158 with zero pages, but zero them instead. */
2159 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2160 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2161 {
2162 void *pvPage;
2163 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2164 AssertLogRelRCReturn(rc, rc);
2165 ASMMemZeroPage(pvPage);
2166 }
2167 else if (PGM_PAGE_IS_BALLOONED(pPage))
2168 {
2169 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2170 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2171 }
2172 else if (!PGM_PAGE_IS_ZERO(pPage))
2173 {
2174 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2175 PGMPAGETYPE_RAM);
2176 AssertLogRelRCReturn(rc, rc);
2177 }
2178 break;
2179
2180 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2181 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2182 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2183 true /*fDoAccounting*/);
2184 break;
2185
2186 case PGMPAGETYPE_MMIO2:
2187 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2188 case PGMPAGETYPE_ROM:
2189 case PGMPAGETYPE_MMIO:
2190 break;
2191 default:
2192 AssertFailed();
2193 }
2194 } /* for each page */
2195 }
2196 else
2197 {
2198 /* Zero the memory. */
2199 while (iPage-- > 0)
2200 {
2201 PPGMPAGE pPage = &pRam->aPages[iPage];
2202 switch (PGM_PAGE_GET_TYPE(pPage))
2203 {
2204 case PGMPAGETYPE_RAM:
2205 switch (PGM_PAGE_GET_STATE(pPage))
2206 {
2207 case PGM_PAGE_STATE_ZERO:
2208 break;
2209
2210 case PGM_PAGE_STATE_BALLOONED:
2211 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2212 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2213 break;
2214
2215 case PGM_PAGE_STATE_SHARED:
2216 case PGM_PAGE_STATE_WRITE_MONITORED:
2217 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2218 AssertLogRelRCReturn(rc, rc);
2219 RT_FALL_THRU();
2220
2221 case PGM_PAGE_STATE_ALLOCATED:
2222 if (pVM->pgm.s.fZeroRamPagesOnReset)
2223 {
2224 void *pvPage;
2225 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2226 AssertLogRelRCReturn(rc, rc);
2227 ASMMemZeroPage(pvPage);
2228 }
2229 break;
2230 }
2231 break;
2232
2233 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2234 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2235 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2236 true /*fDoAccounting*/);
2237 break;
2238
2239 case PGMPAGETYPE_MMIO2:
2240 case PGMPAGETYPE_ROM_SHADOW:
2241 case PGMPAGETYPE_ROM:
2242 case PGMPAGETYPE_MMIO:
2243 break;
2244 default:
2245 AssertFailed();
2246
2247 }
2248 } /* for each page */
2249 }
2250
2251 }
2252
2253 /*
2254 * Finish off any pages pending freeing.
2255 */
2256 if (cPendingPages)
2257 {
2258 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2259 AssertLogRelRCReturn(rc, rc);
2260 }
2261 GMMR3FreePagesCleanup(pReq);
2262 return VINF_SUCCESS;
2263}
2264
2265
2266/**
2267 * Frees all RAM during VM termination
2268 *
2269 * ASSUMES that the caller owns the PGM lock.
2270 *
2271 * @returns VBox status code.
2272 * @param pVM The cross context VM structure.
2273 */
2274int pgmR3PhysRamTerm(PVM pVM)
2275{
2276 PGM_LOCK_ASSERT_OWNER(pVM);
2277
2278 /* Reset the memory balloon. */
2279 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2280 AssertRC(rc);
2281
2282#ifdef VBOX_WITH_PAGE_SHARING
2283 /*
2284 * Clear all registered shared modules.
2285 */
2286 pgmR3PhysAssertSharedPageChecksums(pVM);
2287 rc = GMMR3ResetSharedModules(pVM);
2288 AssertRC(rc);
2289
2290 /*
2291 * Flush the handy pages updates to make sure no shared pages are hiding
2292 * in there. (No unlikely if the VM shuts down, apparently.)
2293 */
2294 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2295#endif
2296
2297 /*
2298 * We batch up pages that should be freed instead of calling GMM for
2299 * each and every one of them.
2300 */
2301 uint32_t cPendingPages = 0;
2302 PGMMFREEPAGESREQ pReq;
2303 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2304 AssertLogRelRCReturn(rc, rc);
2305
2306 /*
2307 * Walk the ram ranges.
2308 */
2309 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2310 {
2311 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2312 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2313
2314 while (iPage-- > 0)
2315 {
2316 PPGMPAGE pPage = &pRam->aPages[iPage];
2317 switch (PGM_PAGE_GET_TYPE(pPage))
2318 {
2319 case PGMPAGETYPE_RAM:
2320 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2321 /** @todo change this to explicitly free private pages here. */
2322 if (PGM_PAGE_IS_SHARED(pPage))
2323 {
2324 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2325 PGMPAGETYPE_RAM);
2326 AssertLogRelRCReturn(rc, rc);
2327 }
2328 break;
2329
2330 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2331 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2332 case PGMPAGETYPE_MMIO2:
2333 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2334 case PGMPAGETYPE_ROM:
2335 case PGMPAGETYPE_MMIO:
2336 break;
2337 default:
2338 AssertFailed();
2339 }
2340 } /* for each page */
2341 }
2342
2343 /*
2344 * Finish off any pages pending freeing.
2345 */
2346 if (cPendingPages)
2347 {
2348 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2349 AssertLogRelRCReturn(rc, rc);
2350 }
2351 GMMR3FreePagesCleanup(pReq);
2352 return VINF_SUCCESS;
2353}
2354
2355
2356/**
2357 * This is the interface IOM is using to register an MMIO region.
2358 *
2359 * It will check for conflicts and ensure that a RAM range structure
2360 * is present before calling the PGMR3HandlerPhysicalRegister API to
2361 * register the callbacks.
2362 *
2363 * @returns VBox status code.
2364 *
2365 * @param pVM The cross context VM structure.
2366 * @param GCPhys The start of the MMIO region.
2367 * @param cb The size of the MMIO region.
2368 * @param hType The physical access handler type registration.
2369 * @param pvUserR3 The user argument for R3.
2370 * @param pvUserR0 The user argument for R0.
2371 * @param pvUserRC The user argument for RC.
2372 * @param pszDesc The description of the MMIO region.
2373 */
2374VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2375 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2376{
2377 /*
2378 * Assert on some assumption.
2379 */
2380 VM_ASSERT_EMT(pVM);
2381 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2382 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2383 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2384 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2385 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2386
2387 int rc = pgmLock(pVM);
2388 AssertRCReturn(rc, rc);
2389
2390 /*
2391 * Make sure there's a RAM range structure for the region.
2392 */
2393 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2394 bool fRamExists = false;
2395 PPGMRAMRANGE pRamPrev = NULL;
2396 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2397 while (pRam && GCPhysLast >= pRam->GCPhys)
2398 {
2399 if ( GCPhysLast >= pRam->GCPhys
2400 && GCPhys <= pRam->GCPhysLast)
2401 {
2402 /* Simplification: all within the same range. */
2403 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2404 && GCPhysLast <= pRam->GCPhysLast,
2405 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2406 GCPhys, GCPhysLast, pszDesc,
2407 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2408 pgmUnlock(pVM),
2409 VERR_PGM_RAM_CONFLICT);
2410
2411 /* Check that it's all RAM or MMIO pages. */
2412 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2413 uint32_t cLeft = cb >> PAGE_SHIFT;
2414 while (cLeft-- > 0)
2415 {
2416 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2417 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2418 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2419 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2420 pgmUnlock(pVM),
2421 VERR_PGM_RAM_CONFLICT);
2422 pPage++;
2423 }
2424
2425 /* Looks good. */
2426 fRamExists = true;
2427 break;
2428 }
2429
2430 /* next */
2431 pRamPrev = pRam;
2432 pRam = pRam->pNextR3;
2433 }
2434 PPGMRAMRANGE pNew;
2435 if (fRamExists)
2436 {
2437 pNew = NULL;
2438
2439 /*
2440 * Make all the pages in the range MMIO/ZERO pages, freeing any
2441 * RAM pages currently mapped here. This might not be 100% correct
2442 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2443 */
2444 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2445 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2446
2447 /* Force a PGM pool flush as guest ram references have been changed. */
2448 /** @todo not entirely SMP safe; assuming for now the guest takes
2449 * care of this internally (not touch mapped mmio while changing the
2450 * mapping). */
2451 PVMCPU pVCpu = VMMGetCpu(pVM);
2452 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2453 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2454 }
2455 else
2456 {
2457
2458 /*
2459 * No RAM range, insert an ad hoc one.
2460 *
2461 * Note that we don't have to tell REM about this range because
2462 * PGMHandlerPhysicalRegisterEx will do that for us.
2463 */
2464 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2465
2466 const uint32_t cPages = cb >> PAGE_SHIFT;
2467 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2468 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2469 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2470
2471 /* Initialize the range. */
2472 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2473 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
2474 pNew->GCPhys = GCPhys;
2475 pNew->GCPhysLast = GCPhysLast;
2476 pNew->cb = cb;
2477 pNew->pszDesc = pszDesc;
2478 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2479 pNew->pvR3 = NULL;
2480 pNew->paLSPages = NULL;
2481
2482 uint32_t iPage = cPages;
2483 while (iPage-- > 0)
2484 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2485 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2486
2487 /* update the page count stats. */
2488 pVM->pgm.s.cPureMmioPages += cPages;
2489 pVM->pgm.s.cAllPages += cPages;
2490
2491 /* link it */
2492 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2493 }
2494
2495 /*
2496 * Register the access handler.
2497 */
2498 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2499 if ( RT_FAILURE(rc)
2500 && !fRamExists)
2501 {
2502 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2503 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2504
2505 /* remove the ad hoc range. */
2506 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2507 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2508 MMHyperFree(pVM, pRam);
2509 }
2510 pgmPhysInvalidatePageMapTLB(pVM);
2511
2512 pgmUnlock(pVM);
2513 return rc;
2514}
2515
2516
2517/**
2518 * This is the interface IOM is using to register an MMIO region.
2519 *
2520 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2521 * any ad hoc PGMRAMRANGE left behind.
2522 *
2523 * @returns VBox status code.
2524 * @param pVM The cross context VM structure.
2525 * @param GCPhys The start of the MMIO region.
2526 * @param cb The size of the MMIO region.
2527 */
2528VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2529{
2530 VM_ASSERT_EMT(pVM);
2531
2532 int rc = pgmLock(pVM);
2533 AssertRCReturn(rc, rc);
2534
2535 /*
2536 * First deregister the handler, then check if we should remove the ram range.
2537 */
2538 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2539 if (RT_SUCCESS(rc))
2540 {
2541 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2542 PPGMRAMRANGE pRamPrev = NULL;
2543 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2544 while (pRam && GCPhysLast >= pRam->GCPhys)
2545 {
2546 /** @todo We're being a bit too careful here. rewrite. */
2547 if ( GCPhysLast == pRam->GCPhysLast
2548 && GCPhys == pRam->GCPhys)
2549 {
2550 Assert(pRam->cb == cb);
2551
2552 /*
2553 * See if all the pages are dead MMIO pages.
2554 */
2555 uint32_t const cPages = cb >> PAGE_SHIFT;
2556 bool fAllMMIO = true;
2557 uint32_t iPage = 0;
2558 uint32_t cLeft = cPages;
2559 while (cLeft-- > 0)
2560 {
2561 PPGMPAGE pPage = &pRam->aPages[iPage];
2562 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2563 /*|| not-out-of-action later */)
2564 {
2565 fAllMMIO = false;
2566 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2567 break;
2568 }
2569 Assert( PGM_PAGE_IS_ZERO(pPage)
2570 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2571 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2572 pPage++;
2573 }
2574 if (fAllMMIO)
2575 {
2576 /*
2577 * Ad-hoc range, unlink and free it.
2578 */
2579 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2580 GCPhys, GCPhysLast, pRam->pszDesc));
2581
2582 pVM->pgm.s.cAllPages -= cPages;
2583 pVM->pgm.s.cPureMmioPages -= cPages;
2584
2585 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2586 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2587 MMHyperFree(pVM, pRam);
2588 break;
2589 }
2590 }
2591
2592 /*
2593 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2594 */
2595 if ( GCPhysLast >= pRam->GCPhys
2596 && GCPhys <= pRam->GCPhysLast)
2597 {
2598 Assert(GCPhys >= pRam->GCPhys);
2599 Assert(GCPhysLast <= pRam->GCPhysLast);
2600
2601 /*
2602 * Turn the pages back into RAM pages.
2603 */
2604 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2605 uint32_t cLeft = cb >> PAGE_SHIFT;
2606 while (cLeft--)
2607 {
2608 PPGMPAGE pPage = &pRam->aPages[iPage];
2609 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2610 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2611 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2612 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2613 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2614 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2615 }
2616 break;
2617 }
2618
2619 /* next */
2620 pRamPrev = pRam;
2621 pRam = pRam->pNextR3;
2622 }
2623 }
2624
2625 /* Force a PGM pool flush as guest ram references have been changed. */
2626 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2627 * this internally (not touch mapped mmio while changing the mapping). */
2628 PVMCPU pVCpu = VMMGetCpu(pVM);
2629 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2630 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2631
2632 pgmPhysInvalidatePageMapTLB(pVM);
2633 pgmPhysInvalidRamRangeTlbs(pVM);
2634 pgmUnlock(pVM);
2635 return rc;
2636}
2637
2638
2639/**
2640 * Locate a MMIO2 range.
2641 *
2642 * @returns Pointer to the MMIO2 range.
2643 * @param pVM The cross context VM structure.
2644 * @param pDevIns The device instance owning the region.
2645 * @param iSubDev The sub-device number.
2646 * @param iRegion The region.
2647 */
2648DECLINLINE(PPGMREGMMIORANGE) pgmR3PhysMMIOExFind(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
2649{
2650 /*
2651 * Search the list. There shouldn't be many entries.
2652 */
2653 /** @todo Optimize this lookup! There may now be many entries and it'll
2654 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2655 for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2656 if ( pCur->pDevInsR3 == pDevIns
2657 && pCur->iRegion == iRegion
2658 && pCur->iSubDev == iSubDev)
2659 return pCur;
2660 return NULL;
2661}
2662
2663
2664/**
2665 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.}
2666 * @sa pgmR3PhysRamRangeRelocate
2667 */
2668static DECLCALLBACK(bool) pgmR3PhysMMIOExRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
2669 PGMRELOCATECALL enmMode, void *pvUser)
2670{
2671 PPGMREGMMIORANGE pMmio = (PPGMREGMMIORANGE)pvUser;
2672 Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
2673 Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange)); RT_NOREF_PV(GCPtrOld);
2674
2675 switch (enmMode)
2676 {
2677 case PGMRELOCATECALL_SUGGEST:
2678 return true;
2679
2680 case PGMRELOCATECALL_RELOCATE:
2681 {
2682 /*
2683 * Update myself, then relink all the ranges and flush the RC TLB.
2684 */
2685 pgmLock(pVM);
2686
2687 pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange));
2688
2689 pgmR3PhysRelinkRamRanges(pVM);
2690 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2691 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2692
2693 pgmUnlock(pVM);
2694 return true;
2695 }
2696
2697 default:
2698 AssertFailedReturn(false);
2699 }
2700}
2701
2702
2703/**
2704 * Calculates the number of chunks
2705 *
2706 * @returns Number of registration chunk needed.
2707 * @param pVM The cross context VM structure.
2708 * @param cb The size of the MMIO/MMIO2 range.
2709 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2710 * chunk. Optional.
2711 * @param pcbChunk Where to return the guest mapping size for a chunk.
2712 */
2713static uint16_t pgmR3PhysMMIOExCalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2714{
2715 RT_NOREF_PV(pVM); /* without raw mode */
2716
2717 /*
2718 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2719 * needing a few bytes extra the PGMREGMMIORANGE structure.
2720 *
2721 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2722 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2723 */
2724 uint32_t cbChunk;
2725 uint32_t cPagesPerChunk;
2726 if (!VM_IS_RAW_MODE_ENABLED(pVM))
2727 {
2728 cbChunk = 16U*_1M;
2729 cPagesPerChunk = 1048048; /* max ~1048059 */
2730 AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
2731 }
2732 else
2733 {
2734 cbChunk = 4U*_1M;
2735 cPagesPerChunk = 261616; /* max ~261627 */
2736 AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
2737 }
2738 AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
2739 AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
2740 if (pcbChunk)
2741 *pcbChunk = cbChunk;
2742 if (pcPagesPerChunk)
2743 *pcPagesPerChunk = cPagesPerChunk;
2744
2745 /* Calc the number of chunks we need. */
2746 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2747 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2748 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2749 return cChunks;
2750}
2751
2752
2753/**
2754 * Worker for PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that allocates
2755 * and the PGMREGMMIORANGE structures and does basic initialization.
2756 *
2757 * Caller must set type specfic members and initialize the PGMPAGE structures.
2758 *
2759 * @returns VBox status code.
2760 * @param pVM The cross context VM structure.
2761 * @param pDevIns The device instance owning the region.
2762 * @param iSubDev The sub-device number (internal PCI config number).
2763 * @param iRegion The region number. If the MMIO2 memory is a PCI
2764 * I/O region this number has to be the number of that
2765 * region. Otherwise it can be any number safe
2766 * UINT8_MAX.
2767 * @param cb The size of the region. Must be page aligned.
2768 * @param pszDesc The description.
2769 * @param ppHeadRet Where to return the pointer to the first
2770 * registration chunk.
2771 *
2772 * @thread EMT
2773 */
2774static int pgmR3PhysMMIOExCreate(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2775 const char *pszDesc, PPGMREGMMIORANGE *ppHeadRet)
2776{
2777 /*
2778 * Figure out how many chunks we need and of which size.
2779 */
2780 uint32_t cPagesPerChunk;
2781 uint16_t cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2782 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2783
2784 /*
2785 * Allocate the chunks.
2786 */
2787 PPGMREGMMIORANGE *ppNext = ppHeadRet;
2788 *ppNext = NULL;
2789
2790 int rc = VINF_SUCCESS;
2791 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2792 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++)
2793 {
2794 /*
2795 * We currently do a single RAM range for the whole thing. This will
2796 * probably have to change once someone needs really large MMIO regions,
2797 * as we will be running into SUPR3PageAllocEx limitations and such.
2798 */
2799 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2800 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesTrackedByChunk]);
2801 PPGMREGMMIORANGE pNew = NULL;
2802 if ( iChunk + 1 < cChunks
2803 || cbRange >= _1M)
2804 {
2805 /*
2806 * Allocate memory for the registration structure.
2807 */
2808 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2809 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2810 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2811 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2812 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2813 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2814 void *pvChunk = NULL;
2815 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
2816#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
2817 &R0PtrChunk,
2818#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
2819 VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL,
2820#else
2821 NULL,
2822#endif
2823 paChunkPages);
2824 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2825
2826#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
2827 Assert(R0PtrChunk != NIL_RTR0PTR);
2828#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
2829 if (!VM_IS_HM_OR_NEM_ENABLED(pVM))
2830 R0PtrChunk = NIL_RTR0PTR;
2831#else
2832 R0PtrChunk = (uintptr_t)pvChunk;
2833#endif
2834 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2835
2836 pNew = (PPGMREGMMIORANGE)pvChunk;
2837 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2838 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
2839
2840 /*
2841 * If we might end up in raw-mode, make a HMA mapping of the range,
2842 * just like we do for memory above 4GB.
2843 */
2844 if (!VM_IS_RAW_MODE_ENABLED(pVM))
2845 pNew->RamRange.pSelfRC = NIL_RTRCPTR;
2846 else
2847 {
2848 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - RT_ALIGN_Z(cbChunk, _4M);
2849 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
2850 rc = PGMR3MapPT(pVM, GCPtrChunkMap, (uint32_t)cbChunk, 0 /*fFlags*/, pgmR3PhysMMIOExRangeRelocate, pNew, pszDesc);
2851 if (RT_SUCCESS(rc))
2852 {
2853 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
2854
2855 RTGCPTR GCPtrPage = GCPtrChunk;
2856 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
2857 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
2858 }
2859 if (RT_FAILURE(rc))
2860 {
2861 SUPR3PageFreeEx(pvChunk, cChunkPages);
2862 RTMemTmpFree(paChunkPages);
2863 break;
2864 }
2865 pNew->RamRange.pSelfRC = GCPtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
2866 }
2867 RTMemTmpFree(paChunkPages);
2868 }
2869 /*
2870 * Not so big, do a one time hyper allocation.
2871 */
2872 else
2873 {
2874 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2875 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2876
2877 /*
2878 * Initialize allocation specific items.
2879 */
2880 //pNew->RamRange.fFlags = 0;
2881 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2882 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2883 }
2884
2885 /*
2886 * Initialize the registration structure (caller does specific bits).
2887 */
2888 pNew->pDevInsR3 = pDevIns;
2889 //pNew->pvR3 = NULL;
2890 //pNew->pNext = NULL;
2891 //pNew->fFlags = 0;
2892 if (iChunk == 0)
2893 pNew->fFlags |= PGMREGMMIORANGE_F_FIRST_CHUNK;
2894 if (iChunk + 1 == cChunks)
2895 pNew->fFlags |= PGMREGMMIORANGE_F_LAST_CHUNK;
2896 pNew->iSubDev = iSubDev;
2897 pNew->iRegion = iRegion;
2898 pNew->idSavedState = UINT8_MAX;
2899 pNew->idMmio2 = UINT8_MAX;
2900 //pNew->pPhysHandlerR3 = NULL;
2901 //pNew->paLSPages = NULL;
2902 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2903 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2904 pNew->RamRange.pszDesc = pszDesc;
2905 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2906 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2907 //pNew->RamRange.pvR3 = NULL;
2908 //pNew->RamRange.paLSPages = NULL;
2909
2910 *ppNext = pNew;
2911 ASMCompilerBarrier();
2912 cPagesLeft -= cPagesTrackedByChunk;
2913 ppNext = &pNew->pNextR3;
2914 }
2915 Assert(cPagesLeft == 0);
2916
2917 if (RT_SUCCESS(rc))
2918 {
2919 Assert((*ppHeadRet)->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
2920 return VINF_SUCCESS;
2921 }
2922
2923 /*
2924 * Free floating ranges.
2925 */
2926 while (*ppHeadRet)
2927 {
2928 PPGMREGMMIORANGE pFree = *ppHeadRet;
2929 *ppHeadRet = pFree->pNextR3;
2930
2931 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
2932 {
2933 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
2934 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2935 SUPR3PageFreeEx(pFree, cChunkPages);
2936 }
2937 }
2938
2939 return rc;
2940}
2941
2942
2943/**
2944 * Common worker PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that links
2945 * a complete registration entry into the lists and lookup tables.
2946 *
2947 * @param pVM The cross context VM structure.
2948 * @param pNew The new MMIO / MMIO2 registration to link.
2949 */
2950static void pgmR3PhysMMIOExLink(PVM pVM, PPGMREGMMIORANGE pNew)
2951{
2952 /*
2953 * Link it into the list (order doesn't matter, so insert it at the head).
2954 *
2955 * Note! The range we're link may consist of multiple chunks, so we have to
2956 * find the last one.
2957 */
2958 PPGMREGMMIORANGE pLast = pNew;
2959 for (pLast = pNew; ; pLast = pLast->pNextR3)
2960 {
2961 if (pLast->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
2962 break;
2963 Assert(pLast->pNextR3);
2964 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
2965 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
2966 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
2967 Assert((pLast->pNextR3->fFlags & PGMREGMMIORANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
2968 Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIORANGE_F_MMIO2 ? pNew->idMmio2 + 1 : UINT8_MAX));
2969 }
2970
2971 pgmLock(pVM);
2972
2973 /* Link in the chain of ranges at the head of the list. */
2974 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
2975 pVM->pgm.s.pRegMmioRangesR3 = pNew;
2976
2977 /* If MMIO, insert the MMIO2 range/page IDs. */
2978 uint8_t idMmio2 = pNew->idMmio2;
2979 if (idMmio2 != UINT8_MAX)
2980 {
2981 for (;;)
2982 {
2983 Assert(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2);
2984 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2985 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2986 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2987 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
2988 if (pNew->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
2989 break;
2990 pNew = pNew->pNextR3;
2991 }
2992 }
2993 else
2994 Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
2995
2996 pgmPhysInvalidatePageMapTLB(pVM);
2997 pgmUnlock(pVM);
2998}
2999
3000
3001/**
3002 * Allocate and pre-register an MMIO region.
3003 *
3004 * This is currently the way to deal with large MMIO regions. It may in the
3005 * future be extended to be the way we deal with all MMIO regions, but that
3006 * means we'll have to do something about the simple list based approach we take
3007 * to tracking the registrations.
3008 *
3009 * @returns VBox status code.
3010 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
3011 * memory.
3012 * @retval VERR_ALREADY_EXISTS if the region already exists.
3013 *
3014 * @param pVM The cross context VM structure.
3015 * @param pDevIns The device instance owning the region.
3016 * @param iSubDev The sub-device number.
3017 * @param iRegion The region number. If the MMIO2 memory is a PCI
3018 * I/O region this number has to be the number of that
3019 * region. Otherwise it can be any number safe
3020 * UINT8_MAX.
3021 * @param cbRegion The size of the region. Must be page aligned.
3022 * @param hType The physical handler callback type.
3023 * @param pvUserR3 User parameter for ring-3 context callbacks.
3024 * @param pvUserR0 User parameter for ring-0 context callbacks.
3025 * @param pvUserRC User parameter for raw-mode context callbacks.
3026 * @param pszDesc The description.
3027 *
3028 * @thread EMT
3029 *
3030 * @sa PGMR3PhysMMIORegister, PGMR3PhysMMIO2Register,
3031 * PGMR3PhysMMIOExMap, PGMR3PhysMMIOExUnmap, PGMR3PhysMMIOExDeregister.
3032 */
3033VMMR3DECL(int) PGMR3PhysMMIOExPreRegister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion,
3034 PGMPHYSHANDLERTYPE hType, RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC,
3035 const char *pszDesc)
3036{
3037 /*
3038 * Validate input.
3039 */
3040 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3041 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3042 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3043 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3044 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3045 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3046 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
3047 AssertReturn(!(cbRegion & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3048 AssertReturn(cbRegion, VERR_INVALID_PARAMETER);
3049
3050 const uint32_t cPages = cbRegion >> PAGE_SHIFT;
3051 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cbRegion, VERR_INVALID_PARAMETER);
3052 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3053
3054 /*
3055 * For the 2nd+ instance, mangle the description string so it's unique.
3056 */
3057 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3058 {
3059 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3060 if (!pszDesc)
3061 return VERR_NO_MEMORY;
3062 }
3063
3064 /*
3065 * Register the MMIO callbacks.
3066 */
3067 PPGMPHYSHANDLER pPhysHandler;
3068 int rc = pgmHandlerPhysicalExCreate(pVM, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc, &pPhysHandler);
3069 if (RT_SUCCESS(rc))
3070 {
3071 /*
3072 * Create the registered MMIO range record for it.
3073 */
3074 PPGMREGMMIORANGE pNew;
3075 rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cbRegion, pszDesc, &pNew);
3076 if (RT_SUCCESS(rc))
3077 {
3078 Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
3079
3080 /*
3081 * Intialize the page structures and set up physical handlers (one for each chunk).
3082 */
3083 for (PPGMREGMMIORANGE pCur = pNew; pCur != NULL && RT_SUCCESS(rc); pCur = pCur->pNextR3)
3084 {
3085 if (pCur == pNew)
3086 pCur->pPhysHandlerR3 = pPhysHandler;
3087 else
3088 rc = pgmHandlerPhysicalExDup(pVM, pPhysHandler, &pCur->pPhysHandlerR3);
3089
3090 uint32_t iPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3091 while (iPage-- > 0)
3092 PGM_PAGE_INIT_ZERO(&pCur->RamRange.aPages[iPage], pVM, PGMPAGETYPE_MMIO);
3093 }
3094 if (RT_SUCCESS(rc))
3095 {
3096 /*
3097 * Update the page count stats, link the registration and we're done.
3098 */
3099 pVM->pgm.s.cAllPages += cPages;
3100 pVM->pgm.s.cPureMmioPages += cPages;
3101
3102 pgmR3PhysMMIOExLink(pVM, pNew);
3103 return VINF_SUCCESS;
3104 }
3105
3106 /*
3107 * Clean up in case we're out of memory for extra access handlers.
3108 */
3109 while (pNew != NULL)
3110 {
3111 PPGMREGMMIORANGE pFree = pNew;
3112 pNew = pFree->pNextR3;
3113
3114 if (pFree->pPhysHandlerR3)
3115 {
3116 pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
3117 pFree->pPhysHandlerR3 = NULL;
3118 }
3119
3120 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3121 {
3122 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
3123 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3124 SUPR3PageFreeEx(pFree, cChunkPages);
3125 }
3126 }
3127 }
3128 else
3129 pgmHandlerPhysicalExDestroy(pVM, pPhysHandler);
3130 }
3131 return rc;
3132}
3133
3134
3135/**
3136 * Allocate and register an MMIO2 region.
3137 *
3138 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
3139 * associated with a device. It is also non-shared memory with a permanent
3140 * ring-3 mapping and page backing (presently).
3141 *
3142 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
3143 * the VM, in which case we'll drop the base memory pages. Presently we will
3144 * make no attempt to preserve anything that happens to be present in the base
3145 * memory that is replaced, this is of course incorrect but it's too much
3146 * effort.
3147 *
3148 * @returns VBox status code.
3149 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
3150 * memory.
3151 * @retval VERR_ALREADY_EXISTS if the region already exists.
3152 *
3153 * @param pVM The cross context VM structure.
3154 * @param pDevIns The device instance owning the region.
3155 * @param iSubDev The sub-device number.
3156 * @param iRegion The region number. If the MMIO2 memory is a PCI
3157 * I/O region this number has to be the number of that
3158 * region. Otherwise it can be any number safe
3159 * UINT8_MAX.
3160 * @param cb The size of the region. Must be page aligned.
3161 * @param fFlags Reserved for future use, must be zero.
3162 * @param ppv Where to store the pointer to the ring-3 mapping of
3163 * the memory.
3164 * @param pszDesc The description.
3165 * @thread EMT
3166 */
3167VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
3168 uint32_t fFlags, void **ppv, const char *pszDesc)
3169{
3170 /*
3171 * Validate input.
3172 */
3173 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3174 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3175 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3176 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3177 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
3178 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3179 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3180 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
3181 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3182 AssertReturn(cb, VERR_INVALID_PARAMETER);
3183 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
3184
3185 const uint32_t cPages = cb >> PAGE_SHIFT;
3186 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
3187 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3188
3189 /*
3190 * For the 2nd+ instance, mangle the description string so it's unique.
3191 */
3192 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3193 {
3194 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3195 if (!pszDesc)
3196 return VERR_NO_MEMORY;
3197 }
3198
3199 /*
3200 * Allocate an MMIO2 range ID (not freed on failure).
3201 *
3202 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3203 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3204 */
3205 unsigned cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, NULL, NULL);
3206 pgmLock(pVM);
3207 uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3208 unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3209 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3210 {
3211 pgmUnlock(pVM);
3212 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3213 }
3214 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3215 pgmUnlock(pVM);
3216
3217 /*
3218 * Try reserve and allocate the backing memory first as this is what is
3219 * most likely to fail.
3220 */
3221 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3222 if (RT_SUCCESS(rc))
3223 {
3224 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3225 if (RT_SUCCESS(rc))
3226 {
3227 void *pvPages;
3228 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3229 if (RT_SUCCESS(rc))
3230 {
3231 memset(pvPages, 0, cPages * PAGE_SIZE);
3232
3233 /*
3234 * Create the registered MMIO range record for it.
3235 */
3236 PPGMREGMMIORANGE pNew;
3237 rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew);
3238 if (RT_SUCCESS(rc))
3239 {
3240 uint32_t iSrcPage = 0;
3241 uint8_t *pbCurPages = (uint8_t *)pvPages;
3242 for (PPGMREGMMIORANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3243 {
3244 pCur->pvR3 = pbCurPages;
3245 pCur->RamRange.pvR3 = pbCurPages;
3246 pCur->idMmio2 = idMmio2;
3247 pCur->fFlags |= PGMREGMMIORANGE_F_MMIO2;
3248
3249 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3250 while (iDstPage-- > 0)
3251 {
3252 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3253 paPages[iDstPage + iSrcPage].Phys,
3254 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3255 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3256 }
3257
3258 /* advance. */
3259 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3260 pbCurPages += pCur->RamRange.cb;
3261 idMmio2++;
3262 }
3263
3264 RTMemTmpFree(paPages);
3265
3266 /*
3267 * Update the page count stats, link the registration and we're done.
3268 */
3269 pVM->pgm.s.cAllPages += cPages;
3270 pVM->pgm.s.cPrivatePages += cPages;
3271
3272 pgmR3PhysMMIOExLink(pVM, pNew);
3273
3274 *ppv = pvPages;
3275 return VINF_SUCCESS;
3276 }
3277
3278 SUPR3PageFreeEx(pvPages, cPages);
3279 }
3280 }
3281 RTMemTmpFree(paPages);
3282 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3283 }
3284 if (pDevIns->iInstance > 0)
3285 MMR3HeapFree((void *)pszDesc);
3286 return rc;
3287}
3288
3289
3290/**
3291 * Deregisters and frees an MMIO2 region or a pre-registered MMIO region
3292 *
3293 * Any physical (and virtual) access handlers registered for the region must
3294 * be deregistered before calling this function.
3295 *
3296 * @returns VBox status code.
3297 * @param pVM The cross context VM structure.
3298 * @param pDevIns The device instance owning the region.
3299 * @param iSubDev The sub-device number. Pass UINT32_MAX for wildcard
3300 * matching.
3301 * @param iRegion The region. Pass UINT32_MAX for wildcard matching.
3302 */
3303VMMR3DECL(int) PGMR3PhysMMIOExDeregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
3304{
3305 /*
3306 * Validate input.
3307 */
3308 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3309 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3310 AssertReturn(iSubDev <= UINT8_MAX || iSubDev == UINT32_MAX, VERR_INVALID_PARAMETER);
3311 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
3312
3313 /*
3314 * The loop here scanning all registrations will make sure that multi-chunk ranges
3315 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3316 */
3317 pgmLock(pVM);
3318 int rc = VINF_SUCCESS;
3319 unsigned cFound = 0;
3320 PPGMREGMMIORANGE pPrev = NULL;
3321 PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3322 while (pCur)
3323 {
3324 if ( pCur->pDevInsR3 == pDevIns
3325 && ( iRegion == UINT32_MAX
3326 || pCur->iRegion == iRegion)
3327 && ( iSubDev == UINT32_MAX
3328 || pCur->iSubDev == iSubDev) )
3329 {
3330 cFound++;
3331
3332 /*
3333 * Unmap it if it's mapped.
3334 */
3335 if (pCur->fFlags & PGMREGMMIORANGE_F_MAPPED)
3336 {
3337 int rc2 = PGMR3PhysMMIOExUnmap(pVM, pCur->pDevInsR3, pCur->iSubDev, pCur->iRegion, pCur->RamRange.GCPhys);
3338 AssertRC(rc2);
3339 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3340 rc = rc2;
3341 }
3342
3343 /*
3344 * Must tell IOM about MMIO (first one only).
3345 */
3346 if ((pCur->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK)) == PGMREGMMIORANGE_F_MMIO2)
3347 IOMR3MmioExNotifyDeregistered(pVM, pCur->pPhysHandlerR3->pvUserR3);
3348
3349 /*
3350 * Unlink it
3351 */
3352 PPGMREGMMIORANGE pNext = pCur->pNextR3;
3353 if (pPrev)
3354 pPrev->pNextR3 = pNext;
3355 else
3356 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3357 pCur->pNextR3 = NULL;
3358
3359 uint8_t idMmio2 = pCur->idMmio2;
3360 if (idMmio2 != UINT8_MAX)
3361 {
3362 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3363 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3364 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3365 }
3366
3367 /*
3368 * Free the memory.
3369 */
3370 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3371 if (pCur->fFlags & PGMREGMMIORANGE_F_MMIO2)
3372 {
3373 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3374 AssertRC(rc2);
3375 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3376 rc = rc2;
3377
3378 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3379 AssertRC(rc2);
3380 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3381 rc = rc2;
3382 }
3383
3384 /* we're leaking hyper memory here if done at runtime. */
3385#ifdef VBOX_STRICT
3386 VMSTATE const enmState = VMR3GetState(pVM);
3387 AssertMsg( enmState == VMSTATE_POWERING_OFF
3388 || enmState == VMSTATE_POWERING_OFF_LS
3389 || enmState == VMSTATE_OFF
3390 || enmState == VMSTATE_OFF_LS
3391 || enmState == VMSTATE_DESTROYING
3392 || enmState == VMSTATE_TERMINATED
3393 || enmState == VMSTATE_CREATING
3394 , ("%s\n", VMR3GetStateName(enmState)));
3395#endif
3396
3397 const bool fIsMmio2 = RT_BOOL(pCur->fFlags & PGMREGMMIORANGE_F_MMIO2);
3398 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3399 {
3400 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPages]);
3401 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3402 SUPR3PageFreeEx(pCur, cChunkPages);
3403 }
3404 /*else
3405 {
3406 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3407 AssertRCReturn(rc, rc);
3408 } */
3409
3410
3411 /* update page count stats */
3412 pVM->pgm.s.cAllPages -= cPages;
3413 if (fIsMmio2)
3414 pVM->pgm.s.cPrivatePages -= cPages;
3415 else
3416 pVM->pgm.s.cPureMmioPages -= cPages;
3417
3418 /* next */
3419 pCur = pNext;
3420 }
3421 else
3422 {
3423 pPrev = pCur;
3424 pCur = pCur->pNextR3;
3425 }
3426 }
3427 pgmPhysInvalidatePageMapTLB(pVM);
3428 pgmUnlock(pVM);
3429 return !cFound && iRegion != UINT32_MAX && iSubDev != UINT32_MAX ? VERR_NOT_FOUND : rc;
3430}
3431
3432
3433/**
3434 * Maps a MMIO2 region or a pre-registered MMIO region.
3435 *
3436 * This is done when a guest / the bios / state loading changes the
3437 * PCI config. The replacing of base memory has the same restrictions
3438 * as during registration, of course.
3439 *
3440 * @returns VBox status code.
3441 *
3442 * @param pVM The cross context VM structure.
3443 * @param pDevIns The device instance owning the region.
3444 * @param iSubDev The sub-device number of the registered region.
3445 * @param iRegion The index of the registered region.
3446 * @param GCPhys The guest-physical address to be remapped.
3447 */
3448VMMR3DECL(int) PGMR3PhysMMIOExMap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
3449{
3450 /*
3451 * Validate input.
3452 *
3453 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3454 * happens during VM construction.
3455 */
3456 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3457 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3458 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3459 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3460 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3461 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3462 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3463
3464 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3465 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3466 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3467
3468 PPGMREGMMIORANGE pLastMmio = pFirstMmio;
3469 RTGCPHYS cbRange = 0;
3470 for (;;)
3471 {
3472 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), VERR_WRONG_ORDER);
3473 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3474 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3475 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3476 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3477 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3478 cbRange += pLastMmio->RamRange.cb;
3479 if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3480 break;
3481 pLastMmio = pLastMmio->pNextR3;
3482 }
3483
3484 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3485 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3486
3487 /*
3488 * Find our location in the ram range list, checking for restriction
3489 * we don't bother implementing yet (partially overlapping, multiple
3490 * ram ranges).
3491 */
3492 pgmLock(pVM);
3493
3494 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER);
3495
3496 bool fRamExists = false;
3497 PPGMRAMRANGE pRamPrev = NULL;
3498 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3499 while (pRam && GCPhysLast >= pRam->GCPhys)
3500 {
3501 if ( GCPhys <= pRam->GCPhysLast
3502 && GCPhysLast >= pRam->GCPhys)
3503 {
3504 /* Completely within? */
3505 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3506 && GCPhysLast <= pRam->GCPhysLast,
3507 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3508 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3509 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3510 pgmUnlock(pVM),
3511 VERR_PGM_RAM_CONFLICT);
3512
3513 /* Check that all the pages are RAM pages. */
3514 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3515 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3516 while (cPagesLeft-- > 0)
3517 {
3518 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3519 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3520 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3521 pgmUnlock(pVM),
3522 VERR_PGM_RAM_CONFLICT);
3523 pPage++;
3524 }
3525
3526 /* There can only be one MMIO/MMIO2 chunk matching here! */
3527 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
3528 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3529 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3530 pgmUnlock(pVM),
3531 VERR_PGM_PHYS_MMIO_EX_IPE);
3532
3533 fRamExists = true;
3534 break;
3535 }
3536
3537 /* next */
3538 pRamPrev = pRam;
3539 pRam = pRam->pNextR3;
3540 }
3541 Log(("PGMR3PhysMMIOExMap: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3542
3543
3544 /*
3545 * Make the changes.
3546 */
3547 RTGCPHYS GCPhysCur = GCPhys;
3548 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3549 {
3550 pCurMmio->RamRange.GCPhys = GCPhysCur;
3551 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3552 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3553 {
3554 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3555 break;
3556 }
3557 GCPhysCur += pCurMmio->RamRange.cb;
3558 }
3559
3560 if (fRamExists)
3561 {
3562 /*
3563 * Make all the pages in the range MMIO/ZERO pages, freeing any
3564 * RAM pages currently mapped here. This might not be 100% correct
3565 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3566 *
3567 * We replace this MMIO/ZERO pages with real pages in the MMIO2 case.
3568 */
3569 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */
3570
3571 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
3572 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3573
3574 if (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
3575 {
3576 /* replace the pages, freeing all present RAM pages. */
3577 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3578 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3579 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3580 while (cPagesLeft-- > 0)
3581 {
3582 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3583
3584 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3585 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3586 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3587 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3588 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3589 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3590 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3591 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3592 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3593 /* (We tell NEM at the end of the function.) */
3594
3595 pVM->pgm.s.cZeroPages--;
3596 GCPhys += PAGE_SIZE;
3597 pPageSrc++;
3598 pPageDst++;
3599 }
3600 }
3601
3602 /* Flush physical page map TLB. */
3603 pgmPhysInvalidatePageMapTLB(pVM);
3604
3605 /* Force a PGM pool flush as guest ram references have been changed. */
3606 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3607 * this internally (not touch mapped mmio while changing the mapping). */
3608 PVMCPU pVCpu = VMMGetCpu(pVM);
3609 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3610 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3611 }
3612 else
3613 {
3614 /*
3615 * No RAM range, insert the ones prepared during registration.
3616 */
3617 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3618 {
3619 /* Clear the tracking data of pages we're going to reactivate. */
3620 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3621 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3622 while (cPagesLeft-- > 0)
3623 {
3624 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3625 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3626 pPageSrc++;
3627 }
3628
3629 /* link in the ram range */
3630 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3631
3632 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3633 {
3634 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3635 break;
3636 }
3637 pRamPrev = &pCurMmio->RamRange;
3638 }
3639 }
3640
3641 /*
3642 * Register the access handler if plain MMIO.
3643 *
3644 * We must register access handlers for each range since the access handler
3645 * code refuses to deal with multiple ranges (and we can).
3646 */
3647 if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2))
3648 {
3649 int rc = VINF_SUCCESS;
3650 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3651 {
3652 Assert(!(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED));
3653 rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys,
3654 pCurMmio->RamRange.GCPhysLast);
3655 if (RT_FAILURE(rc))
3656 break;
3657 pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED; /* Use this to mark that the handler is registered. */
3658 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3659 {
3660 rc = IOMR3MmioExNotifyMapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
3661 break;
3662 }
3663 }
3664 if (RT_FAILURE(rc))
3665 {
3666 /* Almost impossible, but try clean up properly and get out of here. */
3667 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3668 {
3669 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED)
3670 {
3671 pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_MAPPED;
3672 pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists);
3673 }
3674
3675 if (!fRamExists)
3676 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3677 else
3678 {
3679 Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */
3680
3681 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3682 PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3683 while (cPagesLeft-- > 0)
3684 {
3685 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3686 pPageDst++;
3687 }
3688 }
3689
3690 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3691 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3692 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3693 break;
3694 }
3695
3696 pgmUnlock(pVM);
3697 return rc;
3698 }
3699 }
3700
3701 /*
3702 * We're good, set the flags and invalid the mapping TLB.
3703 */
3704 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3705 {
3706 pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED;
3707 if (fRamExists)
3708 pCurMmio->fFlags |= PGMREGMMIORANGE_F_OVERLAPPING;
3709 else
3710 pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_OVERLAPPING;
3711 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3712 break;
3713 }
3714 pgmPhysInvalidatePageMapTLB(pVM);
3715
3716 /*
3717 * Notify NEM while holding the lock (experimental) and REM without (like always).
3718 */
3719 uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3720 | (pFirstMmio->fFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3721 int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3);
3722
3723 pgmUnlock(pVM);
3724
3725#ifdef VBOX_WITH_REM
3726 if (!fRamExists && (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)) /** @todo this doesn't look right. */
3727 REMR3NotifyPhysRamRegister(pVM, GCPhys, cbRange, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
3728#endif
3729 return rc;
3730}
3731
3732
3733/**
3734 * Unmaps a MMIO2 or a pre-registered MMIO region.
3735 *
3736 * This is done when a guest / the bios / state loading changes the
3737 * PCI config. The replacing of base memory has the same restrictions
3738 * as during registration, of course.
3739 */
3740VMMR3DECL(int) PGMR3PhysMMIOExUnmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
3741{
3742 /*
3743 * Validate input
3744 */
3745 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3746 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3747 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3748 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3749 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3750 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3751 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3752
3753 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3754 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3755 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3756
3757 PPGMREGMMIORANGE pLastMmio = pFirstMmio;
3758 RTGCPHYS cbRange = 0;
3759 for (;;)
3760 {
3761 AssertReturn(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED, VERR_WRONG_ORDER);
3762 AssertReturn(pLastMmio->RamRange.GCPhys == GCPhys + cbRange, VERR_INVALID_PARAMETER);
3763 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3764 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3765 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3766 cbRange += pLastMmio->RamRange.cb;
3767 if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3768 break;
3769 pLastMmio = pLastMmio->pNextR3;
3770 }
3771
3772 Log(("PGMR3PhysMMIOExUnmap: %RGp-%RGp %s\n",
3773 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3774
3775 int rc = pgmLock(pVM);
3776 AssertRCReturn(rc, rc);
3777 uint16_t const fOldFlags = pFirstMmio->fFlags;
3778 AssertReturnStmt(fOldFlags & PGMREGMMIORANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
3779
3780 /*
3781 * If plain MMIO, we must deregister the handlers first.
3782 */
3783 if (!(fOldFlags & PGMREGMMIORANGE_F_MMIO2))
3784 {
3785 PPGMREGMMIORANGE pCurMmio = pFirstMmio;
3786 rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
3787 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3788 while (!(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
3789 {
3790 pCurMmio = pCurMmio->pNextR3;
3791 rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
3792 AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE);
3793 }
3794
3795 IOMR3MmioExNotifyUnmapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
3796 }
3797
3798 /*
3799 * Unmap it.
3800 */
3801 RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys;
3802 if (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING)
3803 {
3804 /*
3805 * We've replaced RAM, replace with zero pages.
3806 *
3807 * Note! This is where we might differ a little from a real system, because
3808 * it's likely to just show the RAM pages as they were before the
3809 * MMIO/MMIO2 region was mapped here.
3810 */
3811 /* Only one chunk allowed when overlapping! */
3812 Assert(fOldFlags & PGMREGMMIORANGE_F_LAST_CHUNK);
3813
3814 /* Restore the RAM pages we've replaced. */
3815 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3816 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3817 pRam = pRam->pNextR3;
3818
3819 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3820 if (fOldFlags & PGMREGMMIORANGE_F_MMIO2)
3821 pVM->pgm.s.cZeroPages += cPagesLeft;
3822
3823 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3824 while (cPagesLeft-- > 0)
3825 {
3826 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3827 pPageDst++;
3828 }
3829
3830 /* Flush physical page map TLB. */
3831 pgmPhysInvalidatePageMapTLB(pVM);
3832
3833 /* Update range state. */
3834 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3835 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3836 pFirstMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
3837 }
3838 else
3839 {
3840 /*
3841 * Unlink the chunks related to the MMIO/MMIO2 region.
3842 */
3843 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3844 {
3845 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3846 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3847 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3848 pCurMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
3849 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3850 break;
3851 }
3852 }
3853
3854 /* Force a PGM pool flush as guest ram references have been changed. */
3855 /** @todo not entirely SMP safe; assuming for now the guest takes care
3856 * of this internally (not touch mapped mmio while changing the
3857 * mapping). */
3858 PVMCPU pVCpu = VMMGetCpu(pVM);
3859 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3860 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3861
3862 pgmPhysInvalidatePageMapTLB(pVM);
3863 pgmPhysInvalidRamRangeTlbs(pVM);
3864
3865 /*
3866 * Notify NEM while holding the lock (experimental) and REM without (like always).
3867 */
3868 uint32_t const fNemFlags = (fOldFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3869 | (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3870 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags);
3871 pgmUnlock(pVM);
3872#ifdef VBOX_WITH_REM
3873 if ((fOldFlags & (PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MMIO2)) == PGMREGMMIORANGE_F_MMIO2)
3874 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeNotify, cbRange);
3875#endif
3876 return rc;
3877}
3878
3879
3880/**
3881 * Reduces the mapping size of a MMIO2 or pre-registered MMIO region.
3882 *
3883 * This is mainly for dealing with old saved states after changing the default
3884 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3885 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3886 *
3887 * The region must not currently be mapped when making this call. The VM state
3888 * must be state restore or VM construction.
3889 *
3890 * @returns VBox status code.
3891 * @param pVM The cross context VM structure.
3892 * @param pDevIns The device instance owning the region.
3893 * @param iSubDev The sub-device number of the registered region.
3894 * @param iRegion The index of the registered region.
3895 * @param cbRegion The new mapping size.
3896 */
3897VMMR3_INT_DECL(int) PGMR3PhysMMIOExReduce(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion)
3898{
3899 /*
3900 * Validate input
3901 */
3902 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3903 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3904 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3905 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3906 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3907 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3908 VMSTATE enmVmState = VMR3GetState(pVM);
3909 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3910 || enmVmState == VMSTATE_LOADING,
3911 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3912 VERR_VM_INVALID_VM_STATE);
3913
3914 int rc = pgmLock(pVM);
3915 AssertRCReturn(rc, rc);
3916
3917 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3918 if (pFirstMmio)
3919 {
3920 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3921 if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED))
3922 {
3923 /*
3924 * NOTE! Current implementation does not support multiple ranges.
3925 * Implement when there is a real world need and thus a testcase.
3926 */
3927 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
3928 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3929 rc = VERR_NOT_SUPPORTED);
3930 if (RT_SUCCESS(rc))
3931 {
3932 /*
3933 * Make the change.
3934 */
3935 Log(("PGMR3PhysMMIOExReduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
3936 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
3937
3938 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
3939 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
3940 rc = VERR_OUT_OF_RANGE);
3941 if (RT_SUCCESS(rc))
3942 {
3943 pFirstMmio->RamRange.cb = cbRegion;
3944 }
3945 }
3946 }
3947 else
3948 rc = VERR_WRONG_ORDER;
3949 }
3950 else
3951 rc = VERR_NOT_FOUND;
3952
3953 pgmUnlock(pVM);
3954 return rc;
3955}
3956
3957
3958/**
3959 * Checks if the given address is an MMIO2 or pre-registered MMIO base address
3960 * or not.
3961 *
3962 * @returns true/false accordingly.
3963 * @param pVM The cross context VM structure.
3964 * @param pDevIns The owner of the memory, optional.
3965 * @param GCPhys The address to check.
3966 */
3967VMMR3DECL(bool) PGMR3PhysMMIOExIsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
3968{
3969 /*
3970 * Validate input
3971 */
3972 VM_ASSERT_EMT_RETURN(pVM, false);
3973 AssertPtrReturn(pDevIns, false);
3974 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
3975 AssertReturn(GCPhys != 0, false);
3976 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
3977
3978 /*
3979 * Search the list.
3980 */
3981 pgmLock(pVM);
3982 for (PPGMREGMMIORANGE pCurMmio = pVM->pgm.s.pRegMmioRangesR3; pCurMmio; pCurMmio = pCurMmio->pNextR3)
3983 if (pCurMmio->RamRange.GCPhys == GCPhys)
3984 {
3985 Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED);
3986 bool fRet = RT_BOOL(pCurMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3987 pgmUnlock(pVM);
3988 return fRet;
3989 }
3990 pgmUnlock(pVM);
3991 return false;
3992}
3993
3994
3995/**
3996 * Gets the HC physical address of a page in the MMIO2 region.
3997 *
3998 * This is API is intended for MMHyper and shouldn't be called
3999 * by anyone else...
4000 *
4001 * @returns VBox status code.
4002 * @param pVM The cross context VM structure.
4003 * @param pDevIns The owner of the memory, optional.
4004 * @param iSubDev Sub-device number.
4005 * @param iRegion The region.
4006 * @param off The page expressed an offset into the MMIO2 region.
4007 * @param pHCPhys Where to store the result.
4008 */
4009VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
4010 RTGCPHYS off, PRTHCPHYS pHCPhys)
4011{
4012 /*
4013 * Validate input
4014 */
4015 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4016 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4017 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
4018 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4019
4020 pgmLock(pVM);
4021 PPGMREGMMIORANGE pCurMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
4022 AssertReturn(pCurMmio, VERR_NOT_FOUND);
4023 AssertReturn(pCurMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
4024
4025 while ( off >= pCurMmio->RamRange.cb
4026 && !(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
4027 {
4028 off -= pCurMmio->RamRange.cb;
4029 pCurMmio = pCurMmio->pNextR3;
4030 }
4031 AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4032
4033 PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT];
4034 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4035 pgmUnlock(pVM);
4036 return VINF_SUCCESS;
4037}
4038
4039
4040/**
4041 * Maps a portion of an MMIO2 region into kernel space (host).
4042 *
4043 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
4044 * or the VM is terminated.
4045 *
4046 * @return VBox status code.
4047 *
4048 * @param pVM The cross context VM structure.
4049 * @param pDevIns The device owning the MMIO2 memory.
4050 * @param iSubDev The sub-device number.
4051 * @param iRegion The region.
4052 * @param off The offset into the region. Must be page aligned.
4053 * @param cb The number of bytes to map. Must be page aligned.
4054 * @param pszDesc Mapping description.
4055 * @param pR0Ptr Where to store the R0 address.
4056 */
4057VMMR3_INT_DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
4058 RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTR0PTR pR0Ptr)
4059{
4060 /*
4061 * Validate input.
4062 */
4063 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4064 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4065 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
4066 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4067
4068 PPGMREGMMIORANGE pFirstRegMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
4069 AssertReturn(pFirstRegMmio, VERR_NOT_FOUND);
4070 AssertReturn(pFirstRegMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
4071 AssertReturn(off < pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4072 AssertReturn(cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4073 AssertReturn(off + cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4074 NOREF(pszDesc);
4075
4076 /*
4077 * Pass the request on to the support library/driver.
4078 */
4079#if defined(RT_OS_WINDOWS) || defined(RT_OS_LINUX) || defined(RT_OS_OS2) /** @todo Fully implement RTR0MemObjMapKernelEx everywhere. */
4080 AssertLogRelReturn(off == 0, VERR_NOT_SUPPORTED);
4081 AssertLogRelReturn(pFirstRegMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK, VERR_NOT_SUPPORTED);
4082 int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, 0 /*off*/, pFirstRegMmio->RamRange.cb, 0 /*fFlags*/, pR0Ptr);
4083#else
4084 int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, off, cb, 0 /*fFlags*/, pR0Ptr);
4085#endif
4086
4087 return rc;
4088}
4089
4090
4091/**
4092 * Changes the region number of an MMIO2 or pre-registered MMIO region.
4093 *
4094 * This is only for dealing with save state issues, nothing else.
4095 *
4096 * @return VBox status code.
4097 *
4098 * @param pVM The cross context VM structure.
4099 * @param pDevIns The device owning the MMIO2 memory.
4100 * @param iSubDev The sub-device number.
4101 * @param iRegion The region.
4102 * @param iNewRegion The new region index.
4103 *
4104 * @sa @bugref{9359}
4105 */
4106VMMR3_INT_DECL(int) PGMR3PhysMMIOExChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
4107 uint32_t iNewRegion)
4108{
4109 /*
4110 * Validate input.
4111 */
4112 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4113 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4114 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
4115 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4116 AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4117
4118 AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
4119
4120 PPGMREGMMIORANGE pFirstRegMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
4121 AssertReturn(pFirstRegMmio, VERR_NOT_FOUND);
4122 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iNewRegion) == NULL, VERR_RESOURCE_IN_USE);
4123
4124 /*
4125 * Make the change.
4126 */
4127 pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
4128
4129 return VINF_SUCCESS;
4130}
4131
4132
4133/**
4134 * Worker for PGMR3PhysRomRegister.
4135 *
4136 * This is here to simplify lock management, i.e. the caller does all the
4137 * locking and we can simply return without needing to remember to unlock
4138 * anything first.
4139 *
4140 * @returns VBox status code.
4141 * @param pVM The cross context VM structure.
4142 * @param pDevIns The device instance owning the ROM.
4143 * @param GCPhys First physical address in the range.
4144 * Must be page aligned!
4145 * @param cb The size of the range (in bytes).
4146 * Must be page aligned!
4147 * @param pvBinary Pointer to the binary data backing the ROM image.
4148 * @param cbBinary The size of the binary data pvBinary points to.
4149 * This must be less or equal to @a cb.
4150 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4151 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4152 * @param pszDesc Pointer to description string. This must not be freed.
4153 */
4154static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4155 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
4156{
4157 /*
4158 * Validate input.
4159 */
4160 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4161 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
4162 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
4163 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4164 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4165 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
4166 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
4167 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
4168 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
4169
4170 const uint32_t cPages = cb >> PAGE_SHIFT;
4171
4172 /*
4173 * Find the ROM location in the ROM list first.
4174 */
4175 PPGMROMRANGE pRomPrev = NULL;
4176 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
4177 while (pRom && GCPhysLast >= pRom->GCPhys)
4178 {
4179 if ( GCPhys <= pRom->GCPhysLast
4180 && GCPhysLast >= pRom->GCPhys)
4181 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
4182 GCPhys, GCPhysLast, pszDesc,
4183 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
4184 VERR_PGM_RAM_CONFLICT);
4185 /* next */
4186 pRomPrev = pRom;
4187 pRom = pRom->pNextR3;
4188 }
4189
4190 /*
4191 * Find the RAM location and check for conflicts.
4192 *
4193 * Conflict detection is a bit different than for RAM
4194 * registration since a ROM can be located within a RAM
4195 * range. So, what we have to check for is other memory
4196 * types (other than RAM that is) and that we don't span
4197 * more than one RAM range (layz).
4198 */
4199 bool fRamExists = false;
4200 PPGMRAMRANGE pRamPrev = NULL;
4201 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4202 while (pRam && GCPhysLast >= pRam->GCPhys)
4203 {
4204 if ( GCPhys <= pRam->GCPhysLast
4205 && GCPhysLast >= pRam->GCPhys)
4206 {
4207 /* completely within? */
4208 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
4209 && GCPhysLast <= pRam->GCPhysLast,
4210 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
4211 GCPhys, GCPhysLast, pszDesc,
4212 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
4213 VERR_PGM_RAM_CONFLICT);
4214 fRamExists = true;
4215 break;
4216 }
4217
4218 /* next */
4219 pRamPrev = pRam;
4220 pRam = pRam->pNextR3;
4221 }
4222 if (fRamExists)
4223 {
4224 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4225 uint32_t cPagesLeft = cPages;
4226 while (cPagesLeft-- > 0)
4227 {
4228 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4229 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4230 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4231 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4232 Assert(PGM_PAGE_IS_ZERO(pPage));
4233 pPage++;
4234 }
4235 }
4236
4237 /*
4238 * Update the base memory reservation if necessary.
4239 */
4240 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4241 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4242 cExtraBaseCost += cPages;
4243 if (cExtraBaseCost)
4244 {
4245 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4246 if (RT_FAILURE(rc))
4247 return rc;
4248 }
4249
4250 /*
4251 * Allocate memory for the virgin copy of the RAM.
4252 */
4253 PGMMALLOCATEPAGESREQ pReq;
4254 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4255 AssertRCReturn(rc, rc);
4256
4257 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4258 {
4259 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4260 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4261 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4262 }
4263
4264 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4265 if (RT_FAILURE(rc))
4266 {
4267 GMMR3AllocatePagesCleanup(pReq);
4268 return rc;
4269 }
4270
4271 /*
4272 * Allocate the new ROM range and RAM range (if necessary).
4273 */
4274 PPGMROMRANGE pRomNew;
4275 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4276 if (RT_SUCCESS(rc))
4277 {
4278 PPGMRAMRANGE pRamNew = NULL;
4279 if (!fRamExists)
4280 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4281 if (RT_SUCCESS(rc))
4282 {
4283 /*
4284 * Initialize and insert the RAM range (if required).
4285 */
4286 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4287 if (!fRamExists)
4288 {
4289 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4290 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
4291 pRamNew->GCPhys = GCPhys;
4292 pRamNew->GCPhysLast = GCPhysLast;
4293 pRamNew->cb = cb;
4294 pRamNew->pszDesc = pszDesc;
4295 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4296 pRamNew->pvR3 = NULL;
4297 pRamNew->paLSPages = NULL;
4298
4299 PPGMPAGE pPage = &pRamNew->aPages[0];
4300 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4301 {
4302 PGM_PAGE_INIT(pPage,
4303 pReq->aPages[iPage].HCPhysGCPhys,
4304 pReq->aPages[iPage].idPage,
4305 PGMPAGETYPE_ROM,
4306 PGM_PAGE_STATE_ALLOCATED);
4307
4308 pRomPage->Virgin = *pPage;
4309 }
4310
4311 pVM->pgm.s.cAllPages += cPages;
4312 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4313 }
4314 else
4315 {
4316 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4317 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4318 {
4319 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
4320 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
4321 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4322 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
4323 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4324 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4325 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4326
4327 pRomPage->Virgin = *pPage;
4328 }
4329
4330 pRamNew = pRam;
4331
4332 pVM->pgm.s.cZeroPages -= cPages;
4333 }
4334 pVM->pgm.s.cPrivatePages += cPages;
4335
4336 /* Flush physical page map TLB. */
4337 pgmPhysInvalidatePageMapTLB(pVM);
4338
4339
4340 /* Notify NEM before we register handlers. */
4341 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4342 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4343 rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify);
4344
4345 /*
4346 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
4347 *
4348 * If it's shadowed we'll register the handler after the ROM notification
4349 * so we get the access handler callbacks that we should. If it isn't
4350 * shadowed we'll do it the other way around to make REM use the built-in
4351 * ROM behavior and not the handler behavior (which is to route all access
4352 * to PGM atm).
4353 */
4354 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4355 {
4356#ifdef VBOX_WITH_REM
4357 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
4358#endif
4359 if (RT_SUCCESS(rc))
4360 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4361 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
4362 pszDesc);
4363 }
4364 else
4365 {
4366 if (RT_SUCCESS(rc))
4367 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4368 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
4369 pszDesc);
4370#ifdef VBOX_WITH_REM
4371 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
4372#endif
4373 }
4374 if (RT_SUCCESS(rc))
4375 {
4376 /*
4377 * Copy the image over to the virgin pages.
4378 * This must be done after linking in the RAM range.
4379 */
4380 size_t cbBinaryLeft = cbBinary;
4381 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
4382 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4383 {
4384 void *pvDstPage;
4385 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4386 if (RT_FAILURE(rc))
4387 {
4388 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4389 break;
4390 }
4391 if (cbBinaryLeft >= PAGE_SIZE)
4392 {
4393 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4394 cbBinaryLeft -= PAGE_SIZE;
4395 }
4396 else
4397 {
4398 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4399 if (cbBinaryLeft > 0)
4400 {
4401 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4402 cbBinaryLeft = 0;
4403 }
4404 }
4405 }
4406 if (RT_SUCCESS(rc))
4407 {
4408 /*
4409 * Initialize the ROM range.
4410 * Note that the Virgin member of the pages has already been initialized above.
4411 */
4412 pRomNew->GCPhys = GCPhys;
4413 pRomNew->GCPhysLast = GCPhysLast;
4414 pRomNew->cb = cb;
4415 pRomNew->fFlags = fFlags;
4416 pRomNew->idSavedState = UINT8_MAX;
4417 pRomNew->cbOriginal = cbBinary;
4418 pRomNew->pszDesc = pszDesc;
4419 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4420 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4421 if (pRomNew->pvOriginal)
4422 {
4423 for (unsigned iPage = 0; iPage < cPages; iPage++)
4424 {
4425 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4426 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4427 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4428 }
4429
4430 /* update the page count stats for the shadow pages. */
4431 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4432 {
4433 pVM->pgm.s.cZeroPages += cPages;
4434 pVM->pgm.s.cAllPages += cPages;
4435 }
4436
4437 /*
4438 * Insert the ROM range, tell REM and return successfully.
4439 */
4440 pRomNew->pNextR3 = pRom;
4441 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4442 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
4443
4444 if (pRomPrev)
4445 {
4446 pRomPrev->pNextR3 = pRomNew;
4447 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4448 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
4449 }
4450 else
4451 {
4452 pVM->pgm.s.pRomRangesR3 = pRomNew;
4453 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4454 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
4455 }
4456
4457 pgmPhysInvalidatePageMapTLB(pVM);
4458 GMMR3AllocatePagesCleanup(pReq);
4459
4460 /* Notify NEM again. */
4461 return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify);
4462 }
4463
4464 /* bail out */
4465 rc = VERR_NO_MEMORY;
4466 }
4467
4468 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4469 AssertRC(rc2);
4470 }
4471
4472 if (!fRamExists)
4473 {
4474 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4475 MMHyperFree(pVM, pRamNew);
4476 }
4477 }
4478 MMHyperFree(pVM, pRomNew);
4479 }
4480
4481 /** @todo Purge the mapping cache or something... */
4482 GMMR3FreeAllocatedPages(pVM, pReq);
4483 GMMR3AllocatePagesCleanup(pReq);
4484 return rc;
4485}
4486
4487
4488/**
4489 * Registers a ROM image.
4490 *
4491 * Shadowed ROM images requires double the amount of backing memory, so,
4492 * don't use that unless you have to. Shadowing of ROM images is process
4493 * where we can select where the reads go and where the writes go. On real
4494 * hardware the chipset provides means to configure this. We provide
4495 * PGMR3PhysProtectROM() for this purpose.
4496 *
4497 * A read-only copy of the ROM image will always be kept around while we
4498 * will allocate RAM pages for the changes on demand (unless all memory
4499 * is configured to be preallocated).
4500 *
4501 * @returns VBox status code.
4502 * @param pVM The cross context VM structure.
4503 * @param pDevIns The device instance owning the ROM.
4504 * @param GCPhys First physical address in the range.
4505 * Must be page aligned!
4506 * @param cb The size of the range (in bytes).
4507 * Must be page aligned!
4508 * @param pvBinary Pointer to the binary data backing the ROM image.
4509 * @param cbBinary The size of the binary data pvBinary points to.
4510 * This must be less or equal to @a cb.
4511 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4512 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4513 * @param pszDesc Pointer to description string. This must not be freed.
4514 *
4515 * @remark There is no way to remove the rom, automatically on device cleanup or
4516 * manually from the device yet. This isn't difficult in any way, it's
4517 * just not something we expect to be necessary for a while.
4518 */
4519VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4520 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
4521{
4522 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4523 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4524 pgmLock(pVM);
4525 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4526 pgmUnlock(pVM);
4527 return rc;
4528}
4529
4530
4531/**
4532 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4533 * that the virgin part is untouched.
4534 *
4535 * This is done after the normal memory has been cleared.
4536 *
4537 * ASSUMES that the caller owns the PGM lock.
4538 *
4539 * @param pVM The cross context VM structure.
4540 */
4541int pgmR3PhysRomReset(PVM pVM)
4542{
4543 PGM_LOCK_ASSERT_OWNER(pVM);
4544 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4545 {
4546 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4547
4548 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4549 {
4550 /*
4551 * Reset the physical handler.
4552 */
4553 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4554 AssertRCReturn(rc, rc);
4555
4556 /*
4557 * What we do with the shadow pages depends on the memory
4558 * preallocation option. If not enabled, we'll just throw
4559 * out all the dirty pages and replace them by the zero page.
4560 */
4561 if (!pVM->pgm.s.fRamPreAlloc)
4562 {
4563 /* Free the dirty pages. */
4564 uint32_t cPendingPages = 0;
4565 PGMMFREEPAGESREQ pReq;
4566 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4567 AssertRCReturn(rc, rc);
4568
4569 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4570 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4571 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4572 {
4573 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4574 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4575 pRom->GCPhys + (iPage << PAGE_SHIFT),
4576 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4577 AssertLogRelRCReturn(rc, rc);
4578 }
4579
4580 if (cPendingPages)
4581 {
4582 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4583 AssertLogRelRCReturn(rc, rc);
4584 }
4585 GMMR3FreePagesCleanup(pReq);
4586 }
4587 else
4588 {
4589 /* clear all the shadow pages. */
4590 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4591 {
4592 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4593 continue;
4594 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4595 void *pvDstPage;
4596 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4597 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4598 if (RT_FAILURE(rc))
4599 break;
4600 ASMMemZeroPage(pvDstPage);
4601 }
4602 AssertRCReturn(rc, rc);
4603 }
4604 }
4605
4606 /*
4607 * Restore the original ROM pages after a saved state load.
4608 * Also, in strict builds check that ROM pages remain unmodified.
4609 */
4610#ifndef VBOX_STRICT
4611 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4612#endif
4613 {
4614 size_t cbSrcLeft = pRom->cbOriginal;
4615 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4616 uint32_t cRestored = 0;
4617 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4618 {
4619 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4620 void const *pvDstPage;
4621 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
4622 if (RT_FAILURE(rc))
4623 break;
4624
4625 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4626 {
4627 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4628 {
4629 void *pvDstPageW;
4630 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
4631 AssertLogRelRCReturn(rc, rc);
4632 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4633 cRestored++;
4634 }
4635 else
4636 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4637 }
4638 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4639 }
4640 if (cRestored > 0)
4641 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4642 }
4643 }
4644
4645 /* Clear the ROM restore flag now as we only need to do this once after
4646 loading saved state. */
4647 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4648
4649 return VINF_SUCCESS;
4650}
4651
4652
4653/**
4654 * Called by PGMR3Term to free resources.
4655 *
4656 * ASSUMES that the caller owns the PGM lock.
4657 *
4658 * @param pVM The cross context VM structure.
4659 */
4660void pgmR3PhysRomTerm(PVM pVM)
4661{
4662 /*
4663 * Free the heap copy of the original bits.
4664 */
4665 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4666 {
4667 if ( pRom->pvOriginal
4668 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4669 {
4670 RTMemFree((void *)pRom->pvOriginal);
4671 pRom->pvOriginal = NULL;
4672 }
4673 }
4674}
4675
4676
4677/**
4678 * Change the shadowing of a range of ROM pages.
4679 *
4680 * This is intended for implementing chipset specific memory registers
4681 * and will not be very strict about the input. It will silently ignore
4682 * any pages that are not the part of a shadowed ROM.
4683 *
4684 * @returns VBox status code.
4685 * @retval VINF_PGM_SYNC_CR3
4686 *
4687 * @param pVM The cross context VM structure.
4688 * @param GCPhys Where to start. Page aligned.
4689 * @param cb How much to change. Page aligned.
4690 * @param enmProt The new ROM protection.
4691 */
4692VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4693{
4694 /*
4695 * Check input
4696 */
4697 if (!cb)
4698 return VINF_SUCCESS;
4699 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4700 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4701 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4702 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4703 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4704
4705 /*
4706 * Process the request.
4707 */
4708 pgmLock(pVM);
4709 int rc = VINF_SUCCESS;
4710 bool fFlushTLB = false;
4711 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4712 {
4713 if ( GCPhys <= pRom->GCPhysLast
4714 && GCPhysLast >= pRom->GCPhys
4715 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4716 {
4717 /*
4718 * Iterate the relevant pages and make necessary the changes.
4719 */
4720 bool fChanges = false;
4721 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4722 ? pRom->cb >> PAGE_SHIFT
4723 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4724 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4725 iPage < cPages;
4726 iPage++)
4727 {
4728 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4729 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
4730 {
4731 fChanges = true;
4732
4733 /* flush references to the page. */
4734 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
4735 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
4736 true /*fFlushPTEs*/, &fFlushTLB);
4737 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
4738 rc = rc2;
4739 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
4740
4741 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
4742 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
4743
4744 *pOld = *pRamPage;
4745 *pRamPage = *pNew;
4746 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
4747
4748 /* Tell NEM about the backing and protection change. */
4749 if (VM_IS_NEM_ENABLED(pVM))
4750 {
4751 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
4752 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
4753 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
4754 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
4755 }
4756 }
4757 pRomPage->enmProt = enmProt;
4758 }
4759
4760 /*
4761 * Reset the access handler if we made changes, no need
4762 * to optimize this.
4763 */
4764 if (fChanges)
4765 {
4766 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
4767 if (RT_FAILURE(rc2))
4768 {
4769 pgmUnlock(pVM);
4770 AssertRC(rc);
4771 return rc2;
4772 }
4773 }
4774
4775 /* Advance - cb isn't updated. */
4776 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
4777 }
4778 }
4779 pgmUnlock(pVM);
4780 if (fFlushTLB)
4781 PGM_INVL_ALL_VCPU_TLBS(pVM);
4782
4783 return rc;
4784}
4785
4786
4787/**
4788 * Sets the Address Gate 20 state.
4789 *
4790 * @param pVCpu The cross context virtual CPU structure.
4791 * @param fEnable True if the gate should be enabled.
4792 * False if the gate should be disabled.
4793 */
4794VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
4795{
4796 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
4797 if (pVCpu->pgm.s.fA20Enabled != fEnable)
4798 {
4799#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4800 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
4801 if ( CPUMIsGuestInVmxRootMode(pCtx)
4802 && !fEnable)
4803 {
4804 Log(("Cannot enter A20M mode while in VMX root mode\n"));
4805 return;
4806 }
4807#endif
4808 pVCpu->pgm.s.fA20Enabled = fEnable;
4809 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
4810#ifdef VBOX_WITH_REM
4811 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
4812#endif
4813 NEMR3NotifySetA20(pVCpu, fEnable);
4814#ifdef PGM_WITH_A20
4815 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
4816 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4817 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
4818 HMFlushTlb(pVCpu);
4819#endif
4820 IEMTlbInvalidateAllPhysical(pVCpu);
4821 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
4822 }
4823}
4824
4825
4826/**
4827 * Tree enumeration callback for dealing with age rollover.
4828 * It will perform a simple compression of the current age.
4829 */
4830static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
4831{
4832 /* Age compression - ASSUMES iNow == 4. */
4833 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4834 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
4835 pChunk->iLastUsed = 3;
4836 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
4837 pChunk->iLastUsed = 2;
4838 else if (pChunk->iLastUsed)
4839 pChunk->iLastUsed = 1;
4840 else /* iLastUsed = 0 */
4841 pChunk->iLastUsed = 4;
4842
4843 NOREF(pvUser);
4844 return 0;
4845}
4846
4847
4848/**
4849 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
4850 */
4851typedef struct PGMR3PHYSCHUNKUNMAPCB
4852{
4853 PVM pVM; /**< Pointer to the VM. */
4854 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
4855} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
4856
4857
4858/**
4859 * Callback used to find the mapping that's been unused for
4860 * the longest time.
4861 */
4862static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
4863{
4864 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4865 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
4866
4867 /*
4868 * Check for locks and compare when last used.
4869 */
4870 if (pChunk->cRefs)
4871 return 0;
4872 if (pChunk->cPermRefs)
4873 return 0;
4874 if ( pArg->pChunk
4875 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
4876 return 0;
4877
4878 /*
4879 * Check that it's not in any of the TLBs.
4880 */
4881 PVM pVM = pArg->pVM;
4882 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
4883 == pChunk->Core.Key)
4884 {
4885 pChunk = NULL;
4886 return 0;
4887 }
4888#ifdef VBOX_STRICT
4889 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4890 {
4891 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
4892 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
4893 }
4894#endif
4895
4896 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
4897 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
4898 return 0;
4899
4900 pArg->pChunk = pChunk;
4901 return 0;
4902}
4903
4904
4905/**
4906 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
4907 *
4908 * The candidate will not be part of any TLBs, so no need to flush
4909 * anything afterwards.
4910 *
4911 * @returns Chunk id.
4912 * @param pVM The cross context VM structure.
4913 */
4914static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
4915{
4916 PGM_LOCK_ASSERT_OWNER(pVM);
4917
4918 /*
4919 * Enumerate the age tree starting with the left most node.
4920 */
4921 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4922 PGMR3PHYSCHUNKUNMAPCB Args;
4923 Args.pVM = pVM;
4924 Args.pChunk = NULL;
4925 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
4926 Assert(Args.pChunk);
4927 if (Args.pChunk)
4928 {
4929 Assert(Args.pChunk->cRefs == 0);
4930 Assert(Args.pChunk->cPermRefs == 0);
4931 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4932 return Args.pChunk->Core.Key;
4933 }
4934
4935 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4936 return INT32_MAX;
4937}
4938
4939
4940/**
4941 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
4942 *
4943 * This is only called on one of the EMTs while the other ones are waiting for
4944 * it to complete this function.
4945 *
4946 * @returns VINF_SUCCESS (VBox strict status code).
4947 * @param pVM The cross context VM structure.
4948 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
4949 * @param pvUser User pointer. Unused
4950 *
4951 */
4952static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
4953{
4954 int rc = VINF_SUCCESS;
4955 pgmLock(pVM);
4956 NOREF(pVCpu); NOREF(pvUser);
4957
4958 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
4959 {
4960 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
4961 /** @todo also not really efficient to unmap a chunk that contains PD
4962 * or PT pages. */
4963 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
4964
4965 /*
4966 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
4967 */
4968 GMMMAPUNMAPCHUNKREQ Req;
4969 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4970 Req.Hdr.cbReq = sizeof(Req);
4971 Req.pvR3 = NULL;
4972 Req.idChunkMap = NIL_GMM_CHUNKID;
4973 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
4974 if (Req.idChunkUnmap != INT32_MAX)
4975 {
4976 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4977 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4978 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4979 if (RT_SUCCESS(rc))
4980 {
4981 /*
4982 * Remove the unmapped one.
4983 */
4984 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
4985 AssertRelease(pUnmappedChunk);
4986 AssertRelease(!pUnmappedChunk->cRefs);
4987 AssertRelease(!pUnmappedChunk->cPermRefs);
4988 pUnmappedChunk->pv = NULL;
4989 pUnmappedChunk->Core.Key = UINT32_MAX;
4990#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4991 MMR3HeapFree(pUnmappedChunk);
4992#else
4993 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
4994#endif
4995 pVM->pgm.s.ChunkR3Map.c--;
4996 pVM->pgm.s.cUnmappedChunks++;
4997
4998 /*
4999 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
5000 */
5001 /** @todo We should not flush chunks which include cr3 mappings. */
5002 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5003 {
5004 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
5005
5006 pPGM->pGst32BitPdR3 = NULL;
5007 pPGM->pGstPaePdptR3 = NULL;
5008 pPGM->pGstAmd64Pml4R3 = NULL;
5009#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
5010 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
5011 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
5012 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
5013#endif
5014 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
5015 {
5016 pPGM->apGstPaePDsR3[i] = NULL;
5017#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
5018 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
5019#endif
5020 }
5021
5022 /* Flush REM TLBs. */
5023 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5024 }
5025#ifdef VBOX_WITH_REM
5026 /* Flush REM translation blocks. */
5027 REMFlushTBs(pVM);
5028#endif
5029 }
5030 }
5031 }
5032 pgmUnlock(pVM);
5033 return rc;
5034}
5035
5036/**
5037 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
5038 *
5039 * @returns VBox status code.
5040 * @param pVM The cross context VM structure.
5041 */
5042void pgmR3PhysUnmapChunk(PVM pVM)
5043{
5044 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
5045 AssertRC(rc);
5046}
5047
5048
5049/**
5050 * Maps the given chunk into the ring-3 mapping cache.
5051 *
5052 * This will call ring-0.
5053 *
5054 * @returns VBox status code.
5055 * @param pVM The cross context VM structure.
5056 * @param idChunk The chunk in question.
5057 * @param ppChunk Where to store the chunk tracking structure.
5058 *
5059 * @remarks Called from within the PGM critical section.
5060 * @remarks Can be called from any thread!
5061 */
5062int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
5063{
5064 int rc;
5065
5066 PGM_LOCK_ASSERT_OWNER(pVM);
5067
5068 /*
5069 * Move the chunk time forward.
5070 */
5071 pVM->pgm.s.ChunkR3Map.iNow++;
5072 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
5073 {
5074 pVM->pgm.s.ChunkR3Map.iNow = 4;
5075 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
5076 }
5077
5078 /*
5079 * Allocate a new tracking structure first.
5080 */
5081#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
5082 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
5083#else
5084 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
5085#endif
5086 AssertReturn(pChunk, VERR_NO_MEMORY);
5087 pChunk->Core.Key = idChunk;
5088 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
5089
5090 /*
5091 * Request the ring-0 part to map the chunk in question.
5092 */
5093 GMMMAPUNMAPCHUNKREQ Req;
5094 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5095 Req.Hdr.cbReq = sizeof(Req);
5096 Req.pvR3 = NULL;
5097 Req.idChunkMap = idChunk;
5098 Req.idChunkUnmap = NIL_GMM_CHUNKID;
5099
5100 /* Must be callable from any thread, so can't use VMMR3CallR0. */
5101 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
5102 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5103 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
5104 if (RT_SUCCESS(rc))
5105 {
5106 pChunk->pv = Req.pvR3;
5107
5108 /*
5109 * If we're running out of virtual address space, then we should
5110 * unmap another chunk.
5111 *
5112 * Currently, an unmap operation requires that all other virtual CPUs
5113 * are idling and not by chance making use of the memory we're
5114 * unmapping. So, we create an async unmap operation here.
5115 *
5116 * Now, when creating or restoring a saved state this wont work very
5117 * well since we may want to restore all guest RAM + a little something.
5118 * So, we have to do the unmap synchronously. Fortunately for us
5119 * though, during these operations the other virtual CPUs are inactive
5120 * and it should be safe to do this.
5121 */
5122 /** @todo Eventually we should lock all memory when used and do
5123 * map+unmap as one kernel call without any rendezvous or
5124 * other precautions. */
5125 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
5126 {
5127 switch (VMR3GetState(pVM))
5128 {
5129 case VMSTATE_LOADING:
5130 case VMSTATE_SAVING:
5131 {
5132 PVMCPU pVCpu = VMMGetCpu(pVM);
5133 if ( pVCpu
5134 && pVM->pgm.s.cDeprecatedPageLocks == 0)
5135 {
5136 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
5137 break;
5138 }
5139 }
5140 RT_FALL_THRU();
5141 default:
5142 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
5143 AssertRC(rc);
5144 break;
5145 }
5146 }
5147
5148 /*
5149 * Update the tree. We must do this after any unmapping to make sure
5150 * the chunk we're going to return isn't unmapped by accident.
5151 */
5152 AssertPtr(Req.pvR3);
5153 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
5154 AssertRelease(fRc);
5155 pVM->pgm.s.ChunkR3Map.c++;
5156 pVM->pgm.s.cMappedChunks++;
5157 }
5158 else
5159 {
5160 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
5161 * should probably restrict ourselves on linux. */
5162 AssertRC(rc);
5163#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
5164 MMR3HeapFree(pChunk);
5165#else
5166 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
5167#endif
5168 pChunk = NULL;
5169 }
5170
5171 *ppChunk = pChunk;
5172 return rc;
5173}
5174
5175
5176/**
5177 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
5178 *
5179 * @returns see pgmR3PhysChunkMap.
5180 * @param pVM The cross context VM structure.
5181 * @param idChunk The chunk to map.
5182 */
5183VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
5184{
5185 PPGMCHUNKR3MAP pChunk;
5186 int rc;
5187
5188 pgmLock(pVM);
5189 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
5190 pgmUnlock(pVM);
5191 return rc;
5192}
5193
5194
5195/**
5196 * Invalidates the TLB for the ring-3 mapping cache.
5197 *
5198 * @param pVM The cross context VM structure.
5199 */
5200VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
5201{
5202 pgmLock(pVM);
5203 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5204 {
5205 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
5206 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
5207 }
5208 /* The page map TLB references chunks, so invalidate that one too. */
5209 pgmPhysInvalidatePageMapTLB(pVM);
5210 pgmUnlock(pVM);
5211}
5212
5213
5214/**
5215 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
5216 * (2MB) page for use with a nested paging PDE.
5217 *
5218 * @returns The following VBox status codes.
5219 * @retval VINF_SUCCESS on success.
5220 * @retval VINF_EM_NO_MEMORY if we're out of memory.
5221 *
5222 * @param pVM The cross context VM structure.
5223 * @param GCPhys GC physical start address of the 2 MB range
5224 */
5225VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
5226{
5227#ifdef PGM_WITH_LARGE_PAGES
5228 uint64_t u64TimeStamp1, u64TimeStamp2;
5229
5230 pgmLock(pVM);
5231
5232 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
5233 u64TimeStamp1 = RTTimeMilliTS();
5234 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
5235 u64TimeStamp2 = RTTimeMilliTS();
5236 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
5237 if (RT_SUCCESS(rc))
5238 {
5239 Assert(pVM->pgm.s.cLargeHandyPages == 1);
5240
5241 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
5242 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
5243
5244 void *pv;
5245
5246 /* Map the large page into our address space.
5247 *
5248 * Note: assuming that within the 2 MB range:
5249 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
5250 * - user space mapping is continuous as well
5251 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
5252 */
5253 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
5254 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
5255
5256 if (RT_SUCCESS(rc))
5257 {
5258 /*
5259 * Clear the pages.
5260 */
5261 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5262 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
5263 {
5264 ASMMemZeroPage(pv);
5265
5266 PPGMPAGE pPage;
5267 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
5268 AssertRC(rc);
5269
5270 Assert(PGM_PAGE_IS_ZERO(pPage));
5271 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
5272 pVM->pgm.s.cZeroPages--;
5273
5274 /*
5275 * Do the PGMPAGE modifications.
5276 */
5277 pVM->pgm.s.cPrivatePages++;
5278 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
5279 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
5280 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
5281 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
5282 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5283 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5284
5285 /* Somewhat dirty assumption that page ids are increasing. */
5286 idPage++;
5287
5288 HCPhys += PAGE_SIZE;
5289 GCPhys += PAGE_SIZE;
5290
5291 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
5292
5293 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
5294 }
5295 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5296
5297 /* Flush all TLBs. */
5298 PGM_INVL_ALL_VCPU_TLBS(pVM);
5299 pgmPhysInvalidatePageMapTLB(pVM);
5300 }
5301 pVM->pgm.s.cLargeHandyPages = 0;
5302 }
5303
5304 if (RT_SUCCESS(rc))
5305 {
5306 static uint32_t cTimeOut = 0;
5307 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
5308
5309 if (u64TimeStampDelta > 100)
5310 {
5311 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
5312 if ( ++cTimeOut > 10
5313 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
5314 {
5315 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
5316 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
5317 */
5318 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
5319 PGMSetLargePageUsage(pVM, false);
5320 }
5321 }
5322 else
5323 if (cTimeOut > 0)
5324 cTimeOut--;
5325 }
5326
5327 pgmUnlock(pVM);
5328 return rc;
5329#else
5330 RT_NOREF(pVM, GCPhys);
5331 return VERR_NOT_IMPLEMENTED;
5332#endif /* PGM_WITH_LARGE_PAGES */
5333}
5334
5335
5336/**
5337 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
5338 *
5339 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5340 * signal and clear the out of memory condition. When contracted, this API is
5341 * used to try clear the condition when the user wants to resume.
5342 *
5343 * @returns The following VBox status codes.
5344 * @retval VINF_SUCCESS on success. FFs cleared.
5345 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5346 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5347 *
5348 * @param pVM The cross context VM structure.
5349 *
5350 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5351 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5352 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5353 * handler.
5354 */
5355VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5356{
5357 pgmLock(pVM);
5358
5359 /*
5360 * Allocate more pages, noting down the index of the first new page.
5361 */
5362 uint32_t iClear = pVM->pgm.s.cHandyPages;
5363 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5364 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5365 int rcAlloc = VINF_SUCCESS;
5366 int rcSeed = VINF_SUCCESS;
5367 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5368 while (rc == VERR_GMM_SEED_ME)
5369 {
5370 void *pvChunk;
5371 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
5372 if (RT_SUCCESS(rc))
5373 {
5374 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
5375 if (RT_FAILURE(rc))
5376 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
5377 }
5378 if (RT_SUCCESS(rc))
5379 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5380 }
5381
5382 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5383 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5384 && pVM->pgm.s.cHandyPages > 0)
5385 {
5386 /* Still handy pages left, so don't panic. */
5387 rc = VINF_SUCCESS;
5388 }
5389
5390 if (RT_SUCCESS(rc))
5391 {
5392 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5393 Assert(pVM->pgm.s.cHandyPages > 0);
5394 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5395 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
5396
5397#ifdef VBOX_STRICT
5398 uint32_t i;
5399 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5400 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5401 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5402 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5403 break;
5404 if (i != pVM->pgm.s.cHandyPages)
5405 {
5406 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5407 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5408 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5409 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
5410 pVM->pgm.s.aHandyPages[j].idPage,
5411 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5412 pVM->pgm.s.aHandyPages[j].idSharedPage,
5413 j == i ? " <---" : "");
5414 RTAssertPanic();
5415 }
5416#endif
5417 /*
5418 * Clear the pages.
5419 */
5420 while (iClear < pVM->pgm.s.cHandyPages)
5421 {
5422 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
5423 void *pv;
5424 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
5425 AssertLogRelMsgBreak(RT_SUCCESS(rc),
5426 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
5427 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
5428 ASMMemZeroPage(pv);
5429 iClear++;
5430 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
5431 }
5432 }
5433 else
5434 {
5435 uint64_t cAllocPages, cMaxPages, cBalloonPages;
5436
5437 /*
5438 * We should never get here unless there is a genuine shortage of
5439 * memory (or some internal error). Flag the error so the VM can be
5440 * suspended ASAP and the user informed. If we're totally out of
5441 * handy pages we will return failure.
5442 */
5443 /* Report the failure. */
5444 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
5445 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5446 rc, rcAlloc, rcSeed,
5447 pVM->pgm.s.cHandyPages,
5448 pVM->pgm.s.cAllPages,
5449 pVM->pgm.s.cPrivatePages,
5450 pVM->pgm.s.cSharedPages,
5451 pVM->pgm.s.cZeroPages));
5452
5453 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
5454 {
5455 LogRel(("GMM: Statistics:\n"
5456 " Allocated pages: %RX64\n"
5457 " Maximum pages: %RX64\n"
5458 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
5459 }
5460
5461 if ( rc != VERR_NO_MEMORY
5462 && rc != VERR_NO_PHYS_MEMORY
5463 && rc != VERR_LOCK_FAILED)
5464 {
5465 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5466 {
5467 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5468 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5469 pVM->pgm.s.aHandyPages[i].idSharedPage));
5470 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5471 if (idPage != NIL_GMM_PAGEID)
5472 {
5473 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5474 pRam;
5475 pRam = pRam->pNextR3)
5476 {
5477 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5478 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5479 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5480 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5481 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5482 }
5483 }
5484 }
5485 }
5486
5487 if (rc == VERR_NO_MEMORY)
5488 {
5489 uint64_t cbHostRamAvail = 0;
5490 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5491 if (RT_SUCCESS(rc2))
5492 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5493 else
5494 LogRel(("Cannot determine the amount of available host memory\n"));
5495 }
5496
5497 /* Set the FFs and adjust rc. */
5498 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5499 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5500 if ( rc == VERR_NO_MEMORY
5501 || rc == VERR_NO_PHYS_MEMORY
5502 || rc == VERR_LOCK_FAILED)
5503 rc = VINF_EM_NO_MEMORY;
5504 }
5505
5506 pgmUnlock(pVM);
5507 return rc;
5508}
5509
5510
5511/**
5512 * Frees the specified RAM page and replaces it with the ZERO page.
5513 *
5514 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
5515 *
5516 * @param pVM The cross context VM structure.
5517 * @param pReq Pointer to the request.
5518 * @param pcPendingPages Where the number of pages waiting to be freed are
5519 * kept. This will normally be incremented.
5520 * @param pPage Pointer to the page structure.
5521 * @param GCPhys The guest physical address of the page, if applicable.
5522 * @param enmNewType New page type for NEM notification, since several
5523 * callers will change the type upon successful return.
5524 *
5525 * @remarks The caller must own the PGM lock.
5526 */
5527int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
5528 PGMPAGETYPE enmNewType)
5529{
5530 /*
5531 * Assert sanity.
5532 */
5533 PGM_LOCK_ASSERT_OWNER(pVM);
5534 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
5535 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
5536 {
5537 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5538 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
5539 }
5540
5541 /** @todo What about ballooning of large pages??! */
5542 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
5543 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
5544
5545 if ( PGM_PAGE_IS_ZERO(pPage)
5546 || PGM_PAGE_IS_BALLOONED(pPage))
5547 return VINF_SUCCESS;
5548
5549 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
5550 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
5551 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
5552 || idPage > GMM_PAGEID_LAST
5553 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
5554 {
5555 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5556 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
5557 }
5558 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
5559
5560 /* update page count stats. */
5561 if (PGM_PAGE_IS_SHARED(pPage))
5562 pVM->pgm.s.cSharedPages--;
5563 else
5564 pVM->pgm.s.cPrivatePages--;
5565 pVM->pgm.s.cZeroPages++;
5566
5567 /* Deal with write monitored pages. */
5568 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
5569 {
5570 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
5571 pVM->pgm.s.cWrittenToPages++;
5572 }
5573
5574 /*
5575 * pPage = ZERO page.
5576 */
5577 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
5578 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5579 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
5580 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
5581 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5582 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5583
5584 /* Flush physical page map TLB entry. */
5585 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
5586
5587 /* Notify NEM. */
5588 /** @todo consider doing batch NEM notifications. */
5589 if (VM_IS_NEM_ENABLED(pVM))
5590 {
5591 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
5592 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg,
5593 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
5594 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
5595 }
5596
5597 /*
5598 * Make sure it's not in the handy page array.
5599 */
5600 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5601 {
5602 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
5603 {
5604 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
5605 break;
5606 }
5607 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
5608 {
5609 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
5610 break;
5611 }
5612 }
5613
5614 /*
5615 * Push it onto the page array.
5616 */
5617 uint32_t iPage = *pcPendingPages;
5618 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
5619 *pcPendingPages += 1;
5620
5621 pReq->aPages[iPage].idPage = idPage;
5622
5623 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
5624 return VINF_SUCCESS;
5625
5626 /*
5627 * Flush the pages.
5628 */
5629 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
5630 if (RT_SUCCESS(rc))
5631 {
5632 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5633 *pcPendingPages = 0;
5634 }
5635 return rc;
5636}
5637
5638
5639/**
5640 * Converts a GC physical address to a HC ring-3 pointer, with some
5641 * additional checks.
5642 *
5643 * @returns VBox status code.
5644 * @retval VINF_SUCCESS on success.
5645 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
5646 * access handler of some kind.
5647 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
5648 * accesses or is odd in any way.
5649 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
5650 *
5651 * @param pVM The cross context VM structure.
5652 * @param GCPhys The GC physical address to convert. Since this is only
5653 * used for filling the REM TLB, the A20 mask must be
5654 * applied before calling this API.
5655 * @param fWritable Whether write access is required.
5656 * @param ppv Where to store the pointer corresponding to GCPhys on
5657 * success.
5658 */
5659VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
5660{
5661 pgmLock(pVM);
5662 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
5663
5664 PPGMRAMRANGE pRam;
5665 PPGMPAGE pPage;
5666 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
5667 if (RT_SUCCESS(rc))
5668 {
5669 if (PGM_PAGE_IS_BALLOONED(pPage))
5670 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5671 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
5672 rc = VINF_SUCCESS;
5673 else
5674 {
5675 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
5676 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5677 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
5678 {
5679 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
5680 * in -norawr0 mode. */
5681 if (fWritable)
5682 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5683 }
5684 else
5685 {
5686 /* Temporarily disabled physical handler(s), since the recompiler
5687 doesn't get notified when it's reset we'll have to pretend it's
5688 operating normally. */
5689 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
5690 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5691 else
5692 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5693 }
5694 }
5695 if (RT_SUCCESS(rc))
5696 {
5697 int rc2;
5698
5699 /* Make sure what we return is writable. */
5700 if (fWritable)
5701 switch (PGM_PAGE_GET_STATE(pPage))
5702 {
5703 case PGM_PAGE_STATE_ALLOCATED:
5704 break;
5705 case PGM_PAGE_STATE_BALLOONED:
5706 AssertFailed();
5707 break;
5708 case PGM_PAGE_STATE_ZERO:
5709 case PGM_PAGE_STATE_SHARED:
5710 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
5711 break;
5712 RT_FALL_THRU();
5713 case PGM_PAGE_STATE_WRITE_MONITORED:
5714 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
5715 AssertLogRelRCReturn(rc2, rc2);
5716 break;
5717 }
5718
5719 /* Get a ring-3 mapping of the address. */
5720 PPGMPAGER3MAPTLBE pTlbe;
5721 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
5722 AssertLogRelRCReturn(rc2, rc2);
5723 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
5724 /** @todo mapping/locking hell; this isn't horribly efficient since
5725 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
5726
5727 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
5728 }
5729 else
5730 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
5731
5732 /* else: handler catching all access, no pointer returned. */
5733 }
5734 else
5735 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
5736
5737 pgmUnlock(pVM);
5738 return rc;
5739}
5740
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette