/* $Id: PGMPhys.cpp 73606 2018-08-10 07:38:56Z vboxsync $ */ /** @file * PGM - Page Manager and Monitor, Physical Memory Addressing. */ /* * Copyright (C) 2006-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_PHYS #include #include #include #include #include #include #ifdef VBOX_WITH_REM # include #endif #include #include "PGMInternal.h" #include #include #include "PGMInline.h" #include #include #include #include #include #include #include #ifdef VBOX_STRICT # include #endif #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The number of pages to free in one batch. */ #define PGMPHYS_FREE_PAGE_BATCH_SIZE 128 /* * PGMR3PhysReadU8-64 * PGMR3PhysWriteU8-64 */ #define PGMPHYSFN_READNAME PGMR3PhysReadU8 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8 #define PGMPHYS_DATASIZE 1 #define PGMPHYS_DATATYPE uint8_t #include "PGMPhysRWTmpl.h" #define PGMPHYSFN_READNAME PGMR3PhysReadU16 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16 #define PGMPHYS_DATASIZE 2 #define PGMPHYS_DATATYPE uint16_t #include "PGMPhysRWTmpl.h" #define PGMPHYSFN_READNAME PGMR3PhysReadU32 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32 #define PGMPHYS_DATASIZE 4 #define PGMPHYS_DATATYPE uint32_t #include "PGMPhysRWTmpl.h" #define PGMPHYSFN_READNAME PGMR3PhysReadU64 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64 #define PGMPHYS_DATASIZE 8 #define PGMPHYS_DATATYPE uint64_t #include "PGMPhysRWTmpl.h" /** * EMT worker for PGMR3PhysReadExternal. */ static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin) { VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin); AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict); return VINF_SUCCESS; } /** * Read from physical memory, external users. * * @returns VBox status code. * @retval VINF_SUCCESS. * * @param pVM The cross context VM structure. * @param GCPhys Physical address to read from. * @param pvBuf Where to read into. * @param cbRead How many bytes to read. * @param enmOrigin Who is calling. * * @thread Any but EMTs. */ VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin) { VM_ASSERT_OTHER_THREAD(pVM); AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS); LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead)); pgmLock(pVM); /* * Copy loop on ram ranges. */ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); for (;;) { /* Inside range or not? */ if (pRam && GCPhys >= pRam->GCPhys) { /* * Must work our way thru this page by page. */ RTGCPHYS off = GCPhys - pRam->GCPhys; while (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; PPGMPAGE pPage = &pRam->aPages[iPage]; /* * If the page has an ALL access handler, we'll have to * delegate the job to EMT. */ if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage)) { pgmUnlock(pVM); return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5, pVM, &GCPhys, pvBuf, cbRead, enmOrigin); } Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)); /* * Simple stuff, go ahead. */ size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb > cbRead) cb = cbRead; PGMPAGEMAPLOCK PgMpLck; const void *pvSrc; int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck); if (RT_SUCCESS(rc)) { memcpy(pvBuf, pvSrc, cb); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); } else { AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n", pRam->GCPhys + off, pPage, rc)); memset(pvBuf, 0xff, cb); } /* next page */ if (cb >= cbRead) { pgmUnlock(pVM); return VINF_SUCCESS; } cbRead -= cb; off += cb; GCPhys += cb; pvBuf = (char *)pvBuf + cb; } /* walk pages in ram range. */ } else { LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead)); /* * Unassigned address space. */ size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0; if (cb >= cbRead) { memset(pvBuf, 0xff, cbRead); break; } memset(pvBuf, 0xff, cb); cbRead -= cb; pvBuf = (char *)pvBuf + cb; GCPhys += cb; } /* Advance range if necessary. */ while (pRam && GCPhys > pRam->GCPhysLast) pRam = pRam->CTX_SUFF(pNext); } /* Ram range walk */ pgmUnlock(pVM); return VINF_SUCCESS; } /** * EMT worker for PGMR3PhysWriteExternal. */ static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin) { /** @todo VERR_EM_NO_MEMORY */ VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin); AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict); return VINF_SUCCESS; } /** * Write to physical memory, external users. * * @returns VBox status code. * @retval VINF_SUCCESS. * @retval VERR_EM_NO_MEMORY. * * @param pVM The cross context VM structure. * @param GCPhys Physical address to write to. * @param pvBuf What to write. * @param cbWrite How many bytes to write. * @param enmOrigin Who is calling. * * @thread Any but EMTs. */ VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin) { VM_ASSERT_OTHER_THREAD(pVM); AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n", GCPhys, cbWrite, enmOrigin)); AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS); LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite)); pgmLock(pVM); /* * Copy loop on ram ranges, stop when we hit something difficult. */ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); for (;;) { /* Inside range or not? */ if (pRam && GCPhys >= pRam->GCPhys) { /* * Must work our way thru this page by page. */ RTGCPTR off = GCPhys - pRam->GCPhys; while (off < pRam->cb) { RTGCPTR iPage = off >> PAGE_SHIFT; PPGMPAGE pPage = &pRam->aPages[iPage]; /* * Is the page problematic, we have to do the work on the EMT. * * Allocating writable pages and access handlers are * problematic, write monitored pages are simple and can be * dealt with here. */ if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage)) { if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys); else { pgmUnlock(pVM); return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5, pVM, &GCPhys, pvBuf, cbWrite, enmOrigin); } } Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)); /* * Simple stuff, go ahead. */ size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK); if (cb > cbWrite) cb = cbWrite; PGMPAGEMAPLOCK PgMpLck; void *pvDst; int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck); if (RT_SUCCESS(rc)) { memcpy(pvDst, pvBuf, cb); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); } else AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", pRam->GCPhys + off, pPage, rc)); /* next page */ if (cb >= cbWrite) { pgmUnlock(pVM); return VINF_SUCCESS; } cbWrite -= cb; off += cb; GCPhys += cb; pvBuf = (const char *)pvBuf + cb; } /* walk pages in ram range */ } else { /* * Unassigned address space, skip it. */ if (!pRam) break; size_t cb = pRam->GCPhys - GCPhys; if (cb >= cbWrite) break; cbWrite -= cb; pvBuf = (const char *)pvBuf + cb; GCPhys += cb; } /* Advance range if necessary. */ while (pRam && GCPhys > pRam->GCPhysLast) pRam = pRam->CTX_SUFF(pNext); } /* Ram range walk */ pgmUnlock(pVM); return VINF_SUCCESS; } /** * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable. * * @returns see PGMR3PhysGCPhys2CCPtrExternal * @param pVM The cross context VM structure. * @param pGCPhys Pointer to the guest physical address. * @param ppv Where to store the mapping address. * @param pLock Where to store the lock. */ static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) { /* * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with * an access handler after it succeeds. */ int rc = pgmLock(pVM); AssertRCReturn(rc, rc); rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock); if (RT_SUCCESS(rc)) { PPGMPAGEMAPTLBE pTlbe; int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe); AssertFatalRC(rc2); PPGMPAGE pPage = pTlbe->pPage; if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) { PGMPhysReleasePageMappingLock(pVM, pLock); rc = VERR_PGM_PHYS_PAGE_RESERVED; } else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT || pgmPoolIsDirtyPage(pVM, *pGCPhys) #endif ) { /* We *must* flush any corresponding pgm pool page here, otherwise we'll * not be informed about writes and keep bogus gst->shw mappings around. */ pgmPoolFlushPageByGCPhys(pVM, *pGCPhys); Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)); /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */ } } pgmUnlock(pVM); return rc; } /** * Requests the mapping of a guest page into ring-3, external threads. * * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to * release it. * * This API will assume your intention is to write to the page, and will * therefore replace shared and zero pages. If you do not intend to modify the * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical * backing or if the page has any active access handlers. The caller * must fall back on using PGMR3PhysWriteExternal. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The cross context VM structure. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than the * PGM one) because of the deadlock risk when we have to delegating the * task to an EMT. * @thread Any. */ VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) { AssertPtr(ppv); AssertPtr(pLock); Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM)); int rc = pgmLock(pVM); AssertRCReturn(rc, rc); /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); if (RT_SUCCESS(rc)) { PPGMPAGE pPage = pTlbe->pPage; if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) rc = VERR_PGM_PHYS_PAGE_RESERVED; else { /* * If the page is shared, the zero page, or being write monitored * it must be converted to an page that's writable if possible. * We can only deal with write monitored pages here, the rest have * to be on an EMT. */ if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT || pgmPoolIsDirtyPage(pVM, GCPhys) #endif ) { if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && !pgmPoolIsDirtyPage(pVM, GCPhys) #endif ) pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys); else { pgmUnlock(pVM); return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4, pVM, &GCPhys, ppv, pLock); } } /* * Now, just perform the locking and calculate the return address. */ PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cWriteLockedPages++; PGM_PAGE_INC_WRITE_LOCKS(pPage); } else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage)) { PGM_PAGE_INC_WRITE_LOCKS(pPage); AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE; pLock->pvMap = pMap; } } pgmUnlock(pVM); return rc; } /** * Requests the mapping of a guest page into ring-3, external threads. * * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to * release it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical * backing or if the page as an active ALL access handler. The caller * must fall back on using PGMPhysRead. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The cross context VM structure. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread Any. */ VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock) { int rc = pgmLock(pVM); AssertRCReturn(rc, rc); /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); if (RT_SUCCESS(rc)) { PPGMPAGE pPage = pTlbe->pPage; #if 1 /* MMIO pages doesn't have any readable backing. */ if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) rc = VERR_PGM_PHYS_PAGE_RESERVED; #else if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) rc = VERR_PGM_PHYS_PAGE_RESERVED; #endif else { /* * Now, just perform the locking and calculate the return address. */ PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cReadLockedPages++; PGM_PAGE_INC_READ_LOCKS(pPage); } else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage)) { PGM_PAGE_INC_READ_LOCKS(pPage); AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ; pLock->pvMap = pMap; } } pgmUnlock(pVM); return rc; } #define MAKE_LEAF(a_pNode) \ do { \ (a_pNode)->pLeftR3 = NIL_RTR3PTR; \ (a_pNode)->pRightR3 = NIL_RTR3PTR; \ (a_pNode)->pLeftR0 = NIL_RTR0PTR; \ (a_pNode)->pRightR0 = NIL_RTR0PTR; \ (a_pNode)->pLeftRC = NIL_RTRCPTR; \ (a_pNode)->pRightRC = NIL_RTRCPTR; \ } while (0) #define INSERT_LEFT(a_pParent, a_pNode) \ do { \ (a_pParent)->pLeftR3 = (a_pNode); \ (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \ (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \ } while (0) #define INSERT_RIGHT(a_pParent, a_pNode) \ do { \ (a_pParent)->pRightR3 = (a_pNode); \ (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \ (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \ } while (0) /** * Recursive tree builder. * * @param ppRam Pointer to the iterator variable. * @param iDepth The current depth. Inserts a leaf node if 0. */ static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth) { PPGMRAMRANGE pRam; if (iDepth <= 0) { /* * Leaf node. */ pRam = *ppRam; if (pRam) { *ppRam = pRam->pNextR3; MAKE_LEAF(pRam); } } else { /* * Intermediate node. */ PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1); pRam = *ppRam; if (!pRam) return pLeft; *ppRam = pRam->pNextR3; MAKE_LEAF(pRam); INSERT_LEFT(pRam, pLeft); PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1); if (pRight) INSERT_RIGHT(pRam, pRight); } return pRam; } /** * Rebuilds the RAM range search trees. * * @param pVM The cross context VM structure. */ static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM) { /* * Create the reasonably balanced tree in a sequential fashion. * For simplicity (laziness) we use standard recursion here. */ int iDepth = 0; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0); while (pRam) { PPGMRAMRANGE pLeft = pRoot; pRoot = pRam; pRam = pRam->pNextR3; MAKE_LEAF(pRoot); INSERT_LEFT(pRoot, pLeft); PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth); if (pRight) INSERT_RIGHT(pRoot, pRight); /** @todo else: rotate the tree. */ iDepth++; } pVM->pgm.s.pRamRangeTreeR3 = pRoot; pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR; pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR; #ifdef VBOX_STRICT /* * Verify that the above code works. */ unsigned cRanges = 0; for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) cRanges++; Assert(cRanges > 0); unsigned cMaxDepth = ASMBitLastSetU32(cRanges); if ((1U << cMaxDepth) < cRanges) cMaxDepth++; for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { unsigned cDepth = 0; PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3; for (;;) { if (pRam == pRam2) break; Assert(pRam2); if (pRam->GCPhys < pRam2->GCPhys) pRam2 = pRam2->pLeftR3; else pRam2 = pRam2->pRightR3; } AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth)); } #endif /* VBOX_STRICT */ } #undef MAKE_LEAF #undef INSERT_LEFT #undef INSERT_RIGHT /** * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers. * * Called when anything was relocated. * * @param pVM The cross context VM structure. */ void pgmR3PhysRelinkRamRanges(PVM pVM) { PPGMRAMRANGE pCur; #ifdef VBOX_STRICT for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3) { Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur)); Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur)); Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0); Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK); Assert((pCur->cb & PAGE_OFFSET_MASK) == 0); Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1); for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3) Assert( pCur2 == pCur || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */ } #endif pCur = pVM->pgm.s.pRamRangesXR3; if (pCur) { pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0; pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC; for (; pCur->pNextR3; pCur = pCur->pNextR3) { pCur->pNextR0 = pCur->pNextR3->pSelfR0; pCur->pNextRC = pCur->pNextR3->pSelfRC; } Assert(pCur->pNextR0 == NIL_RTR0PTR); Assert(pCur->pNextRC == NIL_RTRCPTR); } else { Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR); Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR); } ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); pgmR3PhysRebuildRamRangeSearchTrees(pVM); } /** * Links a new RAM range into the list. * * @param pVM The cross context VM structure. * @param pNew Pointer to the new list entry. * @param pPrev Pointer to the previous list entry. If NULL, insert as head. */ static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev) { AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast)); Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew)); Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew)); pgmLock(pVM); PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3; pNew->pNextR3 = pRam; pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR; pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR; if (pPrev) { pPrev->pNextR3 = pNew; pPrev->pNextR0 = pNew->pSelfR0; pPrev->pNextRC = pNew->pSelfRC; } else { pVM->pgm.s.pRamRangesXR3 = pNew; pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0; pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC; } ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); pgmR3PhysRebuildRamRangeSearchTrees(pVM); pgmUnlock(pVM); } /** * Unlink an existing RAM range from the list. * * @param pVM The cross context VM structure. * @param pRam Pointer to the new list entry. * @param pPrev Pointer to the previous list entry. If NULL, insert as head. */ static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev) { Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam); Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam)); Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam)); pgmLock(pVM); PPGMRAMRANGE pNext = pRam->pNextR3; if (pPrev) { pPrev->pNextR3 = pNext; pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR; pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR; } else { Assert(pVM->pgm.s.pRamRangesXR3 == pRam); pVM->pgm.s.pRamRangesXR3 = pNext; pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR; pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR; } ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); pgmR3PhysRebuildRamRangeSearchTrees(pVM); pgmUnlock(pVM); } /** * Unlink an existing RAM range from the list. * * @param pVM The cross context VM structure. * @param pRam Pointer to the new list entry. */ static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam) { pgmLock(pVM); /* find prev. */ PPGMRAMRANGE pPrev = NULL; PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; while (pCur != pRam) { pPrev = pCur; pCur = pCur->pNextR3; } AssertFatal(pCur); pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev); pgmUnlock(pVM); } /** * Frees a range of pages, replacing them with ZERO pages of the specified type. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pRam The RAM range in which the pages resides. * @param GCPhys The address of the first page. * @param GCPhysLast The address of the last page. * @param enmType The page type to replace then with. */ static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType) { PGM_LOCK_ASSERT_OWNER(pVM); uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertLogRelRCReturn(rc, rc); /* Iterate the pages. */ PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1; while (cPagesLeft-- > 0) { rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType); AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */ PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType); GCPhys += PAGE_SIZE; pPageDst++; } if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); return rc; } #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD)) /** * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. * @param pvUser User parameter */ static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) { uintptr_t *paUser = (uintptr_t *)pvUser; bool fInflate = !!paUser[0]; unsigned cPages = paUser[1]; RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2]; uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; int rc; Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages)); pgmLock(pVM); if (fInflate) { /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */ pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL); /* Replace pages with ZERO pages. */ rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); if (RT_FAILURE(rc)) { pgmUnlock(pVM); AssertLogRelRC(rc); return rc; } /* Iterate the pages. */ for (unsigned i = 0; i < cPages; i++) { PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]); if ( pPage == NULL || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM) { Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0)); break; } LogFlow(("balloon page: %RGp\n", paPhysPage[i])); /* Flush the shadow PT if this page was previously used as a guest page table. */ pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]); rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage)); if (RT_FAILURE(rc)) { pgmUnlock(pVM); AssertLogRelRC(rc); return rc; } Assert(PGM_PAGE_IS_ZERO(pPage)); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED); } if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); if (RT_FAILURE(rc)) { pgmUnlock(pVM); AssertLogRelRC(rc); return rc; } } GMMR3FreePagesCleanup(pReq); } else { /* Iterate the pages. */ for (unsigned i = 0; i < cPages; i++) { PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]); AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM); LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i])); Assert(PGM_PAGE_IS_BALLOONED(pPage)); /* Change back to zero page. (NEM does not need to be informed.) */ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); } /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */ } /* Notify GMM about the balloon change. */ rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages); if (RT_SUCCESS(rc)) { if (!fInflate) { Assert(pVM->pgm.s.cBalloonedPages >= cPages); pVM->pgm.s.cBalloonedPages -= cPages; } else pVM->pgm.s.cBalloonedPages += cPages; } pgmUnlock(pVM); /* Flush the recompiler's TLB as well. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH); AssertLogRelRC(rc); return rc; } /** * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages * * @returns VBox status code. * @param pVM The cross context VM structure. * @param fInflate Inflate or deflate memory balloon * @param cPages Number of pages to free * @param paPhysPage Array of guest physical addresses */ static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage) { uintptr_t paUser[3]; paUser[0] = fInflate; paUser[1] = cPages; paUser[2] = (uintptr_t)paPhysPage; int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser); AssertRC(rc); /* Made a copy in PGMR3PhysFreeRamPages; free it here. */ RTMemFree(paPhysPage); } #endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */ /** * Inflate or deflate a memory balloon * * @returns VBox status code. * @param pVM The cross context VM structure. * @param fInflate Inflate or deflate memory balloon * @param cPages Number of pages to free * @param paPhysPage Array of guest physical addresses */ VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage) { /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */ #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD)) int rc; /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */ AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER); /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock. * In the SMP case we post a request packet to postpone the job. */ if (pVM->cCpus > 1) { unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]); RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage); AssertReturn(paPhysPageCopy, VERR_NO_MEMORY); memcpy(paPhysPageCopy, paPhysPage, cbPhysPage); rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy); AssertRC(rc); } else { uintptr_t paUser[3]; paUser[0] = fInflate; paUser[1] = cPages; paUser[2] = (uintptr_t)paPhysPage; rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser); AssertRC(rc); } return rc; #else NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage); return VERR_NOT_IMPLEMENTED; #endif } /** * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all * physical RAM. * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. * @param pvUser User parameter, unused. */ static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) { int rc = VINF_SUCCESS; NOREF(pvUser); NOREF(pVCpu); pgmLock(pVM); #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT pgmPoolResetDirtyPages(pVM); #endif /** @todo pointless to write protect the physical page pointed to by RSP. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); pRam; pRam = pRam->CTX_SUFF(pNext)) { uint32_t cPages = pRam->cb >> PAGE_SHIFT; for (uint32_t iPage = 0; iPage < cPages; iPage++) { PPGMPAGE pPage = &pRam->aPages[iPage]; PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage); if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM) || enmPageType == PGMPAGETYPE_MMIO2) { /* * A RAM page. */ switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ALLOCATED: /** @todo Optimize this: Don't always re-enable write * monitoring if the page is known to be very busy. */ if (PGM_PAGE_IS_WRITTEN_TO(pPage)) { PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage); /* Remember this dirty page for the next (memory) sync. */ PGM_PAGE_SET_FT_DIRTY(pPage); } pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT)); break; case PGM_PAGE_STATE_SHARED: AssertFailed(); break; case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */ default: break; } } } } pgmR3PoolWriteProtectPages(pVM); PGM_INVL_ALL_VCPU_TLBS(pVM); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); pgmUnlock(pVM); return rc; } /** * Protect all physical RAM to monitor writes * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM) { VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL); AssertRC(rc); return rc; } /** * Enumerate all dirty FT pages. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pfnEnum Enumerate callback handler. * @param pvUser Enumerate callback handler parameter. */ VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser) { int rc = VINF_SUCCESS; pgmLock(pVM); for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); pRam; pRam = pRam->CTX_SUFF(pNext)) { uint32_t cPages = pRam->cb >> PAGE_SHIFT; for (uint32_t iPage = 0; iPage < cPages; iPage++) { PPGMPAGE pPage = &pRam->aPages[iPage]; PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage); if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM) || enmPageType == PGMPAGETYPE_MMIO2) { /* * A RAM page. */ switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ALLOCATED: case PGM_PAGE_STATE_WRITE_MONITORED: if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */ && PGM_PAGE_IS_FT_DIRTY(pPage)) { uint32_t cbPageRange = PAGE_SIZE; uint32_t iPageClean = iPage + 1; RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE; uint8_t *pu8Page = NULL; PGMPAGEMAPLOCK Lock; /* Find the next clean page, so we can merge adjacent dirty pages. */ for (; iPageClean < cPages; iPageClean++) { PPGMPAGE pPageNext = &pRam->aPages[iPageClean]; if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM) || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED || PGM_PAGE_IS_WRITTEN_TO(pPageNext) || !PGM_PAGE_IS_FT_DIRTY(pPageNext) /* Crossing a chunk boundary? */ || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK) ) break; cbPageRange += PAGE_SIZE; } rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock); if (RT_SUCCESS(rc)) { /** @todo this is risky; the range might be changed, but little choice as the sync * costs a lot of time. */ pgmUnlock(pVM); pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser); pgmLock(pVM); PGMPhysReleasePageMappingLock(pVM, &Lock); } for (uint32_t iTmp = iPage; iTmp < iPageClean; iTmp++) PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iTmp]); } break; } } } } pgmUnlock(pVM); return rc; } /** * Gets the number of ram ranges. * * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid. * @param pVM The cross context VM structure. */ VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM) { VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX); pgmLock(pVM); uint32_t cRamRanges = 0; for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext)) cRamRanges++; pgmUnlock(pVM); return cRamRanges; } /** * Get information about a range. * * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE. * @param pVM The cross context VM structure. * @param iRange The ordinal of the range. * @param pGCPhysStart Where to return the start of the range. Optional. * @param pGCPhysLast Where to return the address of the last byte in the * range. Optional. * @param ppszDesc Where to return the range description. Optional. * @param pfIsMmio Where to indicate that this is a pure MMIO range. * Optional. */ VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast, const char **ppszDesc, bool *pfIsMmio) { VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); pgmLock(pVM); uint32_t iCurRange = 0; for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++) if (iCurRange == iRange) { if (pGCPhysStart) *pGCPhysStart = pCur->GCPhys; if (pGCPhysLast) *pGCPhysLast = pCur->GCPhysLast; if (ppszDesc) *ppszDesc = pCur->pszDesc; if (pfIsMmio) *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO); pgmUnlock(pVM); return VINF_SUCCESS; } pgmUnlock(pVM); return VERR_OUT_OF_RANGE; } /** * Query the amount of free memory inside VMMR0 * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param pcbAllocMem Where to return the amount of memory allocated * by VMs. * @param pcbFreeMem Where to return the amount of memory that is * allocated from the host but not currently used * by any VMs. * @param pcbBallonedMem Where to return the sum of memory that is * currently ballooned by the VMs. * @param pcbSharedMem Where to return the amount of memory that is * currently shared. */ VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem, uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE); uint64_t cAllocPages = 0; uint64_t cFreePages = 0; uint64_t cBalloonPages = 0; uint64_t cSharedPages = 0; int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages); AssertRCReturn(rc, rc); if (pcbAllocMem) *pcbAllocMem = cAllocPages * _4K; if (pcbFreeMem) *pcbFreeMem = cFreePages * _4K; if (pcbBallonedMem) *pcbBallonedMem = cBalloonPages * _4K; if (pcbSharedMem) *pcbSharedMem = cSharedPages * _4K; Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n", cAllocPages, cFreePages, cBalloonPages, cSharedPages)); return VINF_SUCCESS; } /** * Query memory stats for the VM. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param pcbTotalMem Where to return total amount memory the VM may * possibly use. * @param pcbPrivateMem Where to return the amount of private memory * currently allocated. * @param pcbSharedMem Where to return the amount of actually shared * memory currently used by the VM. * @param pcbZeroMem Where to return the amount of memory backed by * zero pages. * * @remarks The total mem is normally larger than the sum of the three * components. There are two reasons for this, first the amount of * shared memory is what we're sure is shared instead of what could * possibly be shared with someone. Secondly, because the total may * include some pure MMIO pages that doesn't go into any of the three * sub-counts. * * @todo Why do we return reused shared pages instead of anything that could * potentially be shared? Doesn't this mean the first VM gets a much * lower number of shared pages? */ VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem, uint64_t *pcbSharedMem, uint64_t *pcbZeroMem) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); if (pcbTotalMem) *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE; if (pcbPrivateMem) *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE; if (pcbSharedMem) *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE; if (pcbZeroMem) *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE; Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages)); return VINF_SUCCESS; } /** * PGMR3PhysRegisterRam worker that initializes and links a RAM range. * * @param pVM The cross context VM structure. * @param pNew The new RAM range. * @param GCPhys The address of the RAM range. * @param GCPhysLast The last address of the RAM range. * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR * if in HMA. * @param R0PtrNew Ditto for R0. * @param pszDesc The description. * @param pPrev The previous RAM range (for linking). */ static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev) { /* * Initialize the range. */ pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew); pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew); pNew->GCPhys = GCPhys; pNew->GCPhysLast = GCPhysLast; pNew->cb = GCPhysLast - GCPhys + 1; pNew->pszDesc = pszDesc; pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0; pNew->pvR3 = NULL; pNew->paLSPages = NULL; uint32_t const cPages = pNew->cb >> PAGE_SHIFT; RTGCPHYS iPage = cPages; while (iPage-- > 0) PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM); /* Update the page count stats. */ pVM->pgm.s.cZeroPages += cPages; pVM->pgm.s.cAllPages += cPages; /* * Link it. */ pgmR3PhysLinkRamRange(pVM, pNew, pPrev); } /** * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.} * @sa pgmR3PhysMMIO2ExRangeRelocate */ static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser) { PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser; Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING); Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld); switch (enmMode) { case PGMRELOCATECALL_SUGGEST: return true; case PGMRELOCATECALL_RELOCATE: { /* * Update myself, then relink all the ranges and flush the RC TLB. */ pgmLock(pVM); pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE); pgmR3PhysRelinkRamRanges(pVM); for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++) pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR; pgmUnlock(pVM); return true; } default: AssertFailedReturn(false); } } /** * PGMR3PhysRegisterRam worker that registers a high chunk. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The address of the RAM. * @param cRamPages The number of RAM pages to register. * @param cbChunk The size of the PGMRAMRANGE guest mapping. * @param iChunk The chunk number. * @param pszDesc The RAM range description. * @param ppPrev Previous RAM range pointer. In/Out. */ static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages, uint32_t cbChunk, uint32_t iChunk, const char *pszDesc, PPGMRAMRANGE *ppPrev) { const char *pszDescChunk = iChunk == 0 ? pszDesc : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1); AssertReturn(pszDescChunk, VERR_NO_MEMORY); /* * Allocate memory for the new chunk. */ size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT; PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages); AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY); RTR0PTR R0PtrChunk = NIL_RTR0PTR; void *pvChunk = NULL; int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, #if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS) &R0PtrChunk, #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE) VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL, #else NULL, #endif paChunkPages); if (RT_SUCCESS(rc)) { #if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS) Assert(R0PtrChunk != NIL_RTR0PTR); #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE) if (!VM_IS_HM_OR_NEM_ENABLED(pVM)) R0PtrChunk = NIL_RTR0PTR; #else R0PtrChunk = (uintptr_t)pvChunk; #endif memset(pvChunk, 0, cChunkPages << PAGE_SHIFT); PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk; /* * Create a mapping and map the pages into it. * We push these in below the HMA. */ RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk; rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk); if (RT_SUCCESS(rc)) { pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap; RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE; RTGCPTR GCPtrPage = GCPtrChunk; for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE) rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0); if (RT_SUCCESS(rc)) { /* * Ok, init and link the range. */ pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1, (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev); *ppPrev = pNew; } } if (RT_FAILURE(rc)) SUPR3PageFreeEx(pvChunk, cChunkPages); } RTMemTmpFree(paChunkPages); return rc; } /** * Sets up a range RAM. * * This will check for conflicting registrations, make a resource * reservation for the memory (with GMM), and setup the per-page * tracking structures (PGMPAGE). * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The physical address of the RAM. * @param cb The size of the RAM. * @param pszDesc The description - not copied, so, don't free or change it. */ VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc) { /* * Validate input. */ Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc)); AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER); AssertReturn(cb > 0, VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cb - 1); AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); pgmLock(pVM); /* * Find range location and check for conflicts. * (We don't lock here because the locking by EMT is only required on update.) */ PPGMRAMRANGE pPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { if ( GCPhysLast >= pRam->GCPhys && GCPhys <= pRam->GCPhysLast) AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), VERR_PGM_RAM_CONFLICT); /* next */ pPrev = pRam; pRam = pRam->pNextR3; } /* * Register it with GMM (the API bitches). */ const RTGCPHYS cPages = cb >> PAGE_SHIFT; int rc = MMR3IncreaseBaseReservation(pVM, cPages); if (RT_FAILURE(rc)) { pgmUnlock(pVM); return rc; } if ( GCPhys >= _4G && cPages > 256) { /* * The PGMRAMRANGE structures for the high memory can get very big. * In order to avoid SUPR3PageAllocEx allocation failures due to the * allocation size limit there and also to avoid being unable to find * guest mapping space for them, we split this memory up into 4MB in * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x * mode. * * The first and last page of each mapping are guard pages and marked * not-present. So, we've got 4186112 and 16769024 bytes available for * the PGMRAMRANGE structure. * * Note! The sizes used here will influence the saved state. */ uint32_t cbChunk; uint32_t cPagesPerChunk; if (!VM_IS_RAW_MODE_ENABLED(pVM)) { cbChunk = 16U*_1M; cPagesPerChunk = 1048048; /* max ~1048059 */ AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2); } else { cbChunk = 4U*_1M; cPagesPerChunk = 261616; /* max ~261627 */ AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2); } AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk); RTGCPHYS cPagesLeft = cPages; RTGCPHYS GCPhysChunk = GCPhys; uint32_t iChunk = 0; while (cPagesLeft > 0) { uint32_t cPagesInChunk = cPagesLeft; if (cPagesInChunk > cPagesPerChunk) cPagesInChunk = cPagesPerChunk; rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev); AssertRCReturn(rc, rc); /* advance */ GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT; cPagesLeft -= cPagesInChunk; iChunk++; } } else { /* * Allocate, initialize and link the new RAM range. */ const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]); PPGMRAMRANGE pNew; rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew); AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc); pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev); } pgmPhysInvalidatePageMapTLB(pVM); /* * Notify NEM while holding the lock (experimental) and REM without (like always). */ rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb); pgmUnlock(pVM); #ifdef VBOX_WITH_REM REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM); #endif return rc; } /** * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM. * * We do this late in the init process so that all the ROM and MMIO ranges have * been registered already and we don't go wasting memory on them. * * @returns VBox status code. * * @param pVM The cross context VM structure. */ int pgmR3PhysRamPreAllocate(PVM pVM) { Assert(pVM->pgm.s.fRamPreAlloc); Log(("pgmR3PhysRamPreAllocate: enter\n")); /* * Walk the RAM ranges and allocate all RAM pages, halt at * the first allocation error. */ uint64_t cPages = 0; uint64_t NanoTS = RTTimeNanoTS(); pgmLock(pVM); for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { PPGMPAGE pPage = &pRam->aPages[0]; RTGCPHYS GCPhys = pRam->GCPhys; uint32_t cLeft = pRam->cb >> PAGE_SHIFT; while (cLeft-- > 0) { if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) { switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ZERO: { int rc = pgmPhysAllocPage(pVM, pPage, GCPhys); if (RT_FAILURE(rc)) { LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc)); pgmUnlock(pVM); return rc; } cPages++; break; } case PGM_PAGE_STATE_BALLOONED: case PGM_PAGE_STATE_ALLOCATED: case PGM_PAGE_STATE_WRITE_MONITORED: case PGM_PAGE_STATE_SHARED: /* nothing to do here. */ break; } } /* next */ pPage++; GCPhys += PAGE_SIZE; } } pgmUnlock(pVM); NanoTS = RTTimeNanoTS() - NanoTS; LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000)); Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Checks shared page checksums. * * @param pVM The cross context VM structure. */ void pgmR3PhysAssertSharedPageChecksums(PVM pVM) { #ifdef VBOX_STRICT pgmLock(pVM); if (pVM->pgm.s.cSharedPages > 0) { /* * Walk the ram ranges. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t iPage = pRam->cb >> PAGE_SHIFT; AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb)); while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; if (PGM_PAGE_IS_SHARED(pPage)) { uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/; if (!u32Checksum) { RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT); void const *pvPage; int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage); if (RT_SUCCESS(rc)) { uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE); # if 0 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage)); # else if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum) LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2)); else AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2)); # endif } else AssertRC(rc); } } } /* for each page */ } /* for each ram range */ } pgmUnlock(pVM); #endif /* VBOX_STRICT */ NOREF(pVM); } /** * Resets the physical memory state. * * ASSUMES that the caller owns the PGM lock. * * @returns VBox status code. * @param pVM The cross context VM structure. */ int pgmR3PhysRamReset(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* Reset the memory balloon. */ int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0); AssertRC(rc); #ifdef VBOX_WITH_PAGE_SHARING /* Clear all registered shared modules. */ pgmR3PhysAssertSharedPageChecksums(pVM); rc = GMMR3ResetSharedModules(pVM); AssertRC(rc); #endif /* Reset counters. */ pVM->pgm.s.cReusedSharedPages = 0; pVM->pgm.s.cBalloonedPages = 0; return VINF_SUCCESS; } /** * Resets (zeros) the RAM after all devices and components have been reset. * * ASSUMES that the caller owns the PGM lock. * * @returns VBox status code. * @param pVM The cross context VM structure. */ int pgmR3PhysRamZeroAll(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* * We batch up pages that should be freed instead of calling GMM for * each and every one of them. */ uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertLogRelRCReturn(rc, rc); /* * Walk the ram ranges. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t iPage = pRam->cb >> PAGE_SHIFT; AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb)); if ( !pVM->pgm.s.fRamPreAlloc && pVM->pgm.s.fZeroRamPagesOnReset) { /* Replace all RAM pages by ZERO pages. */ while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; switch (PGM_PAGE_GET_TYPE(pPage)) { case PGMPAGETYPE_RAM: /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */ if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED) { void *pvPage; rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage); AssertLogRelRCReturn(rc, rc); ASMMemZeroPage(pvPage); } else if (PGM_PAGE_IS_BALLOONED(pPage)) { /* Turn into a zero page; the balloon status is lost when the VM reboots. */ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); } else if (!PGM_PAGE_IS_ZERO(pPage)) { rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), PGMPAGETYPE_RAM); AssertLogRelRCReturn(rc, rc); } break; case PGMPAGETYPE_MMIO2_ALIAS_MMIO: case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */ pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), true /*fDoAccounting*/); break; case PGMPAGETYPE_MMIO2: case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */ case PGMPAGETYPE_ROM: case PGMPAGETYPE_MMIO: break; default: AssertFailed(); } } /* for each page */ } else { /* Zero the memory. */ while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; switch (PGM_PAGE_GET_TYPE(pPage)) { case PGMPAGETYPE_RAM: switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ZERO: break; case PGM_PAGE_STATE_BALLOONED: /* Turn into a zero page; the balloon status is lost when the VM reboots. */ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); break; case PGM_PAGE_STATE_SHARED: case PGM_PAGE_STATE_WRITE_MONITORED: rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT)); AssertLogRelRCReturn(rc, rc); RT_FALL_THRU(); case PGM_PAGE_STATE_ALLOCATED: if (pVM->pgm.s.fZeroRamPagesOnReset) { void *pvPage; rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage); AssertLogRelRCReturn(rc, rc); ASMMemZeroPage(pvPage); } break; } break; case PGMPAGETYPE_MMIO2_ALIAS_MMIO: case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */ pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), true /*fDoAccounting*/); break; case PGMPAGETYPE_MMIO2: case PGMPAGETYPE_ROM_SHADOW: case PGMPAGETYPE_ROM: case PGMPAGETYPE_MMIO: break; default: AssertFailed(); } } /* for each page */ } } /* * Finish off any pages pending freeing. */ if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); return VINF_SUCCESS; } /** * Frees all RAM during VM termination * * ASSUMES that the caller owns the PGM lock. * * @returns VBox status code. * @param pVM The cross context VM structure. */ int pgmR3PhysRamTerm(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* Reset the memory balloon. */ int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0); AssertRC(rc); #ifdef VBOX_WITH_PAGE_SHARING /* * Clear all registered shared modules. */ pgmR3PhysAssertSharedPageChecksums(pVM); rc = GMMR3ResetSharedModules(pVM); AssertRC(rc); /* * Flush the handy pages updates to make sure no shared pages are hiding * in there. (No unlikely if the VM shuts down, apparently.) */ rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL); #endif /* * We batch up pages that should be freed instead of calling GMM for * each and every one of them. */ uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertLogRelRCReturn(rc, rc); /* * Walk the ram ranges. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t iPage = pRam->cb >> PAGE_SHIFT; AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb)); while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; switch (PGM_PAGE_GET_TYPE(pPage)) { case PGMPAGETYPE_RAM: /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */ /** @todo change this to explicitly free private pages here. */ if (PGM_PAGE_IS_SHARED(pPage)) { rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), PGMPAGETYPE_RAM); AssertLogRelRCReturn(rc, rc); } break; case PGMPAGETYPE_MMIO2_ALIAS_MMIO: case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: case PGMPAGETYPE_MMIO2: case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */ case PGMPAGETYPE_ROM: case PGMPAGETYPE_MMIO: break; default: AssertFailed(); } } /* for each page */ } /* * Finish off any pages pending freeing. */ if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); return VINF_SUCCESS; } /** * This is the interface IOM is using to register an MMIO region. * * It will check for conflicts and ensure that a RAM range structure * is present before calling the PGMR3HandlerPhysicalRegister API to * register the callbacks. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param GCPhys The start of the MMIO region. * @param cb The size of the MMIO region. * @param hType The physical access handler type registration. * @param pvUserR3 The user argument for R3. * @param pvUserR0 The user argument for R0. * @param pvUserRC The user argument for RC. * @param pszDesc The description of the MMIO region. */ VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType, RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc) { /* * Assert on some assumption. */ VM_ASSERT_EMT(pVM); AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO); int rc = pgmLock(pVM); AssertRCReturn(rc, rc); /* * Make sure there's a RAM range structure for the region. */ RTGCPHYS GCPhysLast = GCPhys + (cb - 1); bool fRamExists = false; PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { if ( GCPhysLast >= pRam->GCPhys && GCPhys <= pRam->GCPhysLast) { /* Simplification: all within the same range. */ AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys && GCPhysLast <= pRam->GCPhysLast, ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), pgmUnlock(pVM), VERR_PGM_RAM_CONFLICT); /* Check that it's all RAM or MMIO pages. */ PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; uint32_t cLeft = cb >> PAGE_SHIFT; while (cLeft-- > 0) { AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO, ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc), pgmUnlock(pVM), VERR_PGM_RAM_CONFLICT); pPage++; } /* Looks good. */ fRamExists = true; break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } PPGMRAMRANGE pNew; if (fRamExists) { pNew = NULL; /* * Make all the pages in the range MMIO/ZERO pages, freeing any * RAM pages currently mapped here. This might not be 100% correct * for PCI memory, but we're doing the same thing for MMIO2 pages. */ rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO); AssertRCReturnStmt(rc, pgmUnlock(pVM), rc); /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo not entirely SMP safe; assuming for now the guest takes * care of this internally (not touch mapped mmio while changing the * mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); } else { /* * No RAM range, insert an ad hoc one. * * Note that we don't have to tell REM about this range because * PGMHandlerPhysicalRegisterEx will do that for us. */ Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc)); const uint32_t cPages = cb >> PAGE_SHIFT; const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]); rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew); AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc); /* Initialize the range. */ pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew); pNew->pSelfRC = MMHyperCCToRC(pVM, pNew); pNew->GCPhys = GCPhys; pNew->GCPhysLast = GCPhysLast; pNew->cb = cb; pNew->pszDesc = pszDesc; pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO; pNew->pvR3 = NULL; pNew->paLSPages = NULL; uint32_t iPage = cPages; while (iPage-- > 0) PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO); Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO); /* update the page count stats. */ pVM->pgm.s.cPureMmioPages += cPages; pVM->pgm.s.cAllPages += cPages; /* link it */ pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev); } /* * Register the access handler. */ rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc); if ( RT_FAILURE(rc) && !fRamExists) { pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT; pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT; /* remove the ad hoc range. */ pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev); pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS; MMHyperFree(pVM, pRam); } pgmPhysInvalidatePageMapTLB(pVM); pgmUnlock(pVM); return rc; } /** * This is the interface IOM is using to register an MMIO region. * * It will take care of calling PGMHandlerPhysicalDeregister and clean up * any ad hoc PGMRAMRANGE left behind. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The start of the MMIO region. * @param cb The size of the MMIO region. */ VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb) { VM_ASSERT_EMT(pVM); int rc = pgmLock(pVM); AssertRCReturn(rc, rc); /* * First deregister the handler, then check if we should remove the ram range. */ rc = PGMHandlerPhysicalDeregister(pVM, GCPhys); if (RT_SUCCESS(rc)) { RTGCPHYS GCPhysLast = GCPhys + (cb - 1); PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { /** @todo We're being a bit too careful here. rewrite. */ if ( GCPhysLast == pRam->GCPhysLast && GCPhys == pRam->GCPhys) { Assert(pRam->cb == cb); /* * See if all the pages are dead MMIO pages. */ uint32_t const cPages = cb >> PAGE_SHIFT; bool fAllMMIO = true; uint32_t iPage = 0; uint32_t cLeft = cPages; while (cLeft-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage) /*|| not-out-of-action later */) { fAllMMIO = false; AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage)); break; } Assert( PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO); pPage++; } if (fAllMMIO) { /* * Ad-hoc range, unlink and free it. */ Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pRam->pszDesc)); pVM->pgm.s.cAllPages -= cPages; pVM->pgm.s.cPureMmioPages -= cPages; pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev); pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS; MMHyperFree(pVM, pRam); break; } } /* * Range match? It will all be within one range (see PGMAllHandler.cpp). */ if ( GCPhysLast >= pRam->GCPhys && GCPhys <= pRam->GCPhysLast) { Assert(GCPhys >= pRam->GCPhys); Assert(GCPhysLast <= pRam->GCPhysLast); /* * Turn the pages back into RAM pages. */ uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT; uint32_t cLeft = cb >> PAGE_SHIFT; while (cLeft--) { PPGMPAGE pPage = &pRam->aPages[iPage]; AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage)) || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO, ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage)); if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)) PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM); } break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } } /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo Not entirely SMP safe; assuming for now the guest takes care of * this internally (not touch mapped mmio while changing the mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); pgmPhysInvalidatePageMapTLB(pVM); pgmPhysInvalidRamRangeTlbs(pVM); pgmUnlock(pVM); return rc; } /** * Locate a MMIO2 range. * * @returns Pointer to the MMIO2 range. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number. * @param iRegion The region. */ DECLINLINE(PPGMREGMMIORANGE) pgmR3PhysMMIOExFind(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion) { /* * Search the list. There shouldn't be many entries. */ /** @todo Optimize this lookup! There may now be many entries and it'll * become really slow when doing MMR3HyperMapMMIO2 and similar. */ for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3) if ( pCur->pDevInsR3 == pDevIns && pCur->iRegion == iRegion && pCur->iSubDev == iSubDev) return pCur; return NULL; } /** * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.} * @sa pgmR3PhysRamRangeRelocate */ static DECLCALLBACK(bool) pgmR3PhysMMIOExRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser) { PPGMREGMMIORANGE pMmio = (PPGMREGMMIORANGE)pvUser; Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING); Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange)); RT_NOREF_PV(GCPtrOld); switch (enmMode) { case PGMRELOCATECALL_SUGGEST: return true; case PGMRELOCATECALL_RELOCATE: { /* * Update myself, then relink all the ranges and flush the RC TLB. */ pgmLock(pVM); pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange)); pgmR3PhysRelinkRamRanges(pVM); for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++) pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR; pgmUnlock(pVM); return true; } default: AssertFailedReturn(false); } } /** * Calculates the number of chunks * * @returns Number of registration chunk needed. * @param pVM The cross context VM structure. * @param cb The size of the MMIO/MMIO2 range. * @param pcPagesPerChunk Where to return the number of pages tracked by each * chunk. Optional. * @param pcbChunk Where to return the guest mapping size for a chunk. */ static uint16_t pgmR3PhysMMIOExCalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk) { RT_NOREF_PV(pVM); /* without raw mode */ /* * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be * needing a few bytes extra the PGMREGMMIORANGE structure. * * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB). */ uint32_t cbChunk; uint32_t cPagesPerChunk; if (!VM_IS_RAW_MODE_ENABLED(pVM)) { cbChunk = 16U*_1M; cPagesPerChunk = 1048048; /* max ~1048059 */ AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2); } else { cbChunk = 4U*_1M; cPagesPerChunk = 261616; /* max ~261627 */ AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2); } AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */ AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk); if (pcbChunk) *pcbChunk = cbChunk; if (pcPagesPerChunk) *pcPagesPerChunk = cPagesPerChunk; /* Calc the number of chunks we need. */ RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT; uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk); AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages); return cChunks; } /** * Worker for PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that allocates * and the PGMREGMMIORANGE structures and does basic initialization. * * Caller must set type specfic members and initialize the PGMPAGE structures. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number (internal PCI config number). * @param iRegion The region number. If the MMIO2 memory is a PCI * I/O region this number has to be the number of that * region. Otherwise it can be any number safe * UINT8_MAX. * @param cb The size of the region. Must be page aligned. * @param pszDesc The description. * @param ppHeadRet Where to return the pointer to the first * registration chunk. * * @thread EMT */ static int pgmR3PhysMMIOExCreate(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, const char *pszDesc, PPGMREGMMIORANGE *ppHeadRet) { /* * Figure out how many chunks we need and of which size. */ uint32_t cPagesPerChunk; uint16_t cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, &cPagesPerChunk, NULL); AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE); /* * Allocate the chunks. */ PPGMREGMMIORANGE *ppNext = ppHeadRet; *ppNext = NULL; int rc = VINF_SUCCESS; uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT; for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++) { /* * We currently do a single RAM range for the whole thing. This will * probably have to change once someone needs really large MMIO regions, * as we will be running into SUPR3PageAllocEx limitations and such. */ const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk); const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesTrackedByChunk]); PPGMREGMMIORANGE pNew = NULL; if ( iChunk + 1 < cChunks || cbRange >= _1M) { /* * Allocate memory for the registration structure. */ size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT; size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT; AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE); PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages); AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY); RTR0PTR R0PtrChunk = NIL_RTR0PTR; void *pvChunk = NULL; rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, #if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS) &R0PtrChunk, #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE) VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL, #else NULL, #endif paChunkPages); AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages)); #if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS) Assert(R0PtrChunk != NIL_RTR0PTR); #elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE) if (!VM_IS_HM_OR_NEM_ENABLED(pVM)) R0PtrChunk = NIL_RTR0PTR; #else R0PtrChunk = (uintptr_t)pvChunk; #endif memset(pvChunk, 0, cChunkPages << PAGE_SHIFT); pNew = (PPGMREGMMIORANGE)pvChunk; pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING; pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange); /* * If we might end up in raw-mode, make a HMA mapping of the range, * just like we do for memory above 4GB. */ if (!VM_IS_RAW_MODE_ENABLED(pVM)) pNew->RamRange.pSelfRC = NIL_RTRCPTR; else { RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - RT_ALIGN_Z(cbChunk, _4M); RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE; rc = PGMR3MapPT(pVM, GCPtrChunkMap, (uint32_t)cbChunk, 0 /*fFlags*/, pgmR3PhysMMIOExRangeRelocate, pNew, pszDesc); if (RT_SUCCESS(rc)) { pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap; RTGCPTR GCPtrPage = GCPtrChunk; for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE) rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0); } if (RT_FAILURE(rc)) { SUPR3PageFreeEx(pvChunk, cChunkPages); break; } pNew->RamRange.pSelfRC = GCPtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange); } } /* * Not so big, do a one time hyper allocation. */ else { rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew); AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange)); /* * Initialize allocation specific items. */ //pNew->RamRange.fFlags = 0; pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange); pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange); } /* * Initialize the registration structure (caller does specific bits). */ pNew->pDevInsR3 = pDevIns; //pNew->pvR3 = NULL; //pNew->pNext = NULL; //pNew->fFlags = 0; if (iChunk == 0) pNew->fFlags |= PGMREGMMIORANGE_F_FIRST_CHUNK; if (iChunk + 1 == cChunks) pNew->fFlags |= PGMREGMMIORANGE_F_LAST_CHUNK; pNew->iSubDev = iSubDev; pNew->iRegion = iRegion; pNew->idSavedState = UINT8_MAX; pNew->idMmio2 = UINT8_MAX; //pNew->pPhysHandlerR3 = NULL; //pNew->paLSPages = NULL; pNew->RamRange.GCPhys = NIL_RTGCPHYS; pNew->RamRange.GCPhysLast = NIL_RTGCPHYS; pNew->RamRange.pszDesc = pszDesc; pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT; pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX; //pNew->RamRange.pvR3 = NULL; //pNew->RamRange.paLSPages = NULL; *ppNext = pNew; ASMCompilerBarrier(); cPagesLeft -= cPagesTrackedByChunk; ppNext = &pNew->pNextR3; } Assert(cPagesLeft == 0); if (RT_SUCCESS(rc)) { Assert((*ppHeadRet)->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK); return VINF_SUCCESS; } /* * Free floating ranges. */ while (*ppHeadRet) { PPGMREGMMIORANGE pFree = *ppHeadRet; *ppHeadRet = pFree->pNextR3; if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) { const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]); size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT; SUPR3PageFreeEx(pFree, cChunkPages); } } return rc; } /** * Common worker PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that links * a complete registration entry into the lists and lookup tables. * * @param pVM The cross context VM structure. * @param pNew The new MMIO / MMIO2 registration to link. */ static void pgmR3PhysMMIOExLink(PVM pVM, PPGMREGMMIORANGE pNew) { /* * Link it into the list (order doesn't matter, so insert it at the head). * * Note! The range we're link may consist of multiple chunks, so we have to * find the last one. */ PPGMREGMMIORANGE pLast = pNew; for (pLast = pNew; ; pLast = pLast->pNextR3) { if (pLast->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) break; Assert(pLast->pNextR3); Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3); Assert(pLast->pNextR3->iSubDev == pNew->iSubDev); Assert(pLast->pNextR3->iRegion == pNew->iRegion); Assert((pLast->pNextR3->fFlags & PGMREGMMIORANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIORANGE_F_MMIO2)); Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIORANGE_F_MMIO2 ? pNew->idMmio2 + 1 : UINT8_MAX)); } pgmLock(pVM); /* Link in the chain of ranges at the head of the list. */ pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3; pVM->pgm.s.pRegMmioRangesR3 = pNew; /* If MMIO, insert the MMIO2 range/page IDs. */ uint8_t idMmio2 = pNew->idMmio2; if (idMmio2 != UINT8_MAX) { for (;;) { Assert(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2); Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL); Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR); pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew; pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIORANGE, RamRange); if (pNew->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) break; pNew = pNew->pNextR3; } } else Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2)); pgmPhysInvalidatePageMapTLB(pVM); pgmUnlock(pVM); } /** * Allocate and pre-register an MMIO region. * * This is currently the way to deal with large MMIO regions. It may in the * future be extended to be the way we deal with all MMIO regions, but that * means we'll have to do something about the simple list based approach we take * to tracking the registrations. * * @returns VBox status code. * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the * memory. * @retval VERR_ALREADY_EXISTS if the region already exists. * * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number. * @param iRegion The region number. If the MMIO2 memory is a PCI * I/O region this number has to be the number of that * region. Otherwise it can be any number safe * UINT8_MAX. * @param cbRegion The size of the region. Must be page aligned. * @param hType The physical handler callback type. * @param pvUserR3 User parameter for ring-3 context callbacks. * @param pvUserR0 User parameter for ring-0 context callbacks. * @param pvUserRC User parameter for raw-mode context callbacks. * @param pszDesc The description. * * @thread EMT * * @sa PGMR3PhysMMIORegister, PGMR3PhysMMIO2Register, * PGMR3PhysMMIOExMap, PGMR3PhysMMIOExUnmap, PGMR3PhysMMIOExDeregister. */ VMMR3DECL(int) PGMR3PhysMMIOExPreRegister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion, PGMPHYSHANDLERTYPE hType, RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc) { /* * Validate input. */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS); AssertReturn(!(cbRegion & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(cbRegion, VERR_INVALID_PARAMETER); const uint32_t cPages = cbRegion >> PAGE_SHIFT; AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cbRegion, VERR_INVALID_PARAMETER); AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE); /* * For the 2nd+ instance, mangle the description string so it's unique. */ if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */ { pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance); if (!pszDesc) return VERR_NO_MEMORY; } /* * Register the MMIO callbacks. */ PPGMPHYSHANDLER pPhysHandler; int rc = pgmHandlerPhysicalExCreate(pVM, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc, &pPhysHandler); if (RT_SUCCESS(rc)) { /* * Create the registered MMIO range record for it. */ PPGMREGMMIORANGE pNew; rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cbRegion, pszDesc, &pNew); if (RT_SUCCESS(rc)) { Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2)); /* * Intialize the page structures and set up physical handlers (one for each chunk). */ for (PPGMREGMMIORANGE pCur = pNew; pCur != NULL && RT_SUCCESS(rc); pCur = pCur->pNextR3) { if (pCur == pNew) pCur->pPhysHandlerR3 = pPhysHandler; else rc = pgmHandlerPhysicalExDup(pVM, pPhysHandler, &pCur->pPhysHandlerR3); uint32_t iPage = pCur->RamRange.cb >> X86_PAGE_SHIFT; while (iPage-- > 0) PGM_PAGE_INIT_ZERO(&pCur->RamRange.aPages[iPage], pVM, PGMPAGETYPE_MMIO); } if (RT_SUCCESS(rc)) { /* * Update the page count stats, link the registration and we're done. */ pVM->pgm.s.cAllPages += cPages; pVM->pgm.s.cPureMmioPages += cPages; pgmR3PhysMMIOExLink(pVM, pNew); return VINF_SUCCESS; } /* * Clean up in case we're out of memory for extra access handlers. */ while (pNew != NULL) { PPGMREGMMIORANGE pFree = pNew; pNew = pFree->pNextR3; if (pFree->pPhysHandlerR3) { pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3); pFree->pPhysHandlerR3 = NULL; } if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) { const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]); size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT; SUPR3PageFreeEx(pFree, cChunkPages); } } } else pgmHandlerPhysicalExDestroy(pVM, pPhysHandler); } return rc; } /** * Allocate and register an MMIO2 region. * * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM * associated with a device. It is also non-shared memory with a permanent * ring-3 mapping and page backing (presently). * * A MMIO2 range may overlap with base memory if a lot of RAM is configured for * the VM, in which case we'll drop the base memory pages. Presently we will * make no attempt to preserve anything that happens to be present in the base * memory that is replaced, this is of course incorrect but it's too much * effort. * * @returns VBox status code. * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the * memory. * @retval VERR_ALREADY_EXISTS if the region already exists. * * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number. * @param iRegion The region number. If the MMIO2 memory is a PCI * I/O region this number has to be the number of that * region. Otherwise it can be any number safe * UINT8_MAX. * @param cb The size of the region. Must be page aligned. * @param fFlags Reserved for future use, must be zero. * @param ppv Where to store the pointer to the ring-3 mapping of * the memory. * @param pszDesc The description. * @thread EMT */ VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc) { /* * Validate input. */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertPtrReturn(ppv, VERR_INVALID_POINTER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS); AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(cb, VERR_INVALID_PARAMETER); AssertReturn(!fFlags, VERR_INVALID_PARAMETER); const uint32_t cPages = cb >> PAGE_SHIFT; AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER); AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE); /* * For the 2nd+ instance, mangle the description string so it's unique. */ if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */ { pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance); if (!pszDesc) return VERR_NO_MEMORY; } /* * Allocate an MMIO2 range ID (not freed on failure). * * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES. */ unsigned cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, NULL, NULL); pgmLock(pVM); uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1; unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks; if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES) { pgmUnlock(pVM); AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES); } pVM->pgm.s.cMmio2Regions = cNewMmio2Regions; pgmUnlock(pVM); /* * Try reserve and allocate the backing memory first as this is what is * most likely to fail. */ int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc); if (RT_SUCCESS(rc)) { PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE)); if (RT_SUCCESS(rc)) { void *pvPages; rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages); if (RT_SUCCESS(rc)) { memset(pvPages, 0, cPages * PAGE_SIZE); /* * Create the registered MMIO range record for it. */ PPGMREGMMIORANGE pNew; rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew); if (RT_SUCCESS(rc)) { uint32_t iSrcPage = 0; uint8_t *pbCurPages = (uint8_t *)pvPages; for (PPGMREGMMIORANGE pCur = pNew; pCur; pCur = pCur->pNextR3) { pCur->pvR3 = pbCurPages; pCur->RamRange.pvR3 = pbCurPages; pCur->idMmio2 = idMmio2; pCur->fFlags |= PGMREGMMIORANGE_F_MMIO2; uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT; while (iDstPage-- > 0) { PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage], paPages[iDstPage + iSrcPage].Phys, PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage), PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED); } /* advance. */ iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT; pbCurPages += pCur->RamRange.cb; idMmio2++; } RTMemTmpFree(paPages); /* * Update the page count stats, link the registration and we're done. */ pVM->pgm.s.cAllPages += cPages; pVM->pgm.s.cPrivatePages += cPages; pgmR3PhysMMIOExLink(pVM, pNew); *ppv = pvPages; return VINF_SUCCESS; } SUPR3PageFreeEx(pvPages, cPages); } } RTMemTmpFree(paPages); MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc); } if (pDevIns->iInstance > 0) MMR3HeapFree((void *)pszDesc); return rc; } /** * Deregisters and frees an MMIO2 region or a pre-registered MMIO region * * Any physical (and virtual) access handlers registered for the region must * be deregistered before calling this function. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number. Pass UINT32_MAX for wildcard * matching. * @param iRegion The region. Pass UINT32_MAX for wildcard matching. */ VMMR3DECL(int) PGMR3PhysMMIOExDeregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion) { /* * Validate input. */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX || iSubDev == UINT32_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER); /* * The loop here scanning all registrations will make sure that multi-chunk ranges * get properly deregistered, though it's original purpose was the wildcard iRegion. */ pgmLock(pVM); int rc = VINF_SUCCESS; unsigned cFound = 0; PPGMREGMMIORANGE pPrev = NULL; PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; while (pCur) { if ( pCur->pDevInsR3 == pDevIns && ( iRegion == UINT32_MAX || pCur->iRegion == iRegion) && ( iSubDev == UINT32_MAX || pCur->iSubDev == iSubDev) ) { cFound++; /* * Unmap it if it's mapped. */ if (pCur->fFlags & PGMREGMMIORANGE_F_MAPPED) { int rc2 = PGMR3PhysMMIOExUnmap(pVM, pCur->pDevInsR3, pCur->iSubDev, pCur->iRegion, pCur->RamRange.GCPhys); AssertRC(rc2); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; } /* * Must tell IOM about MMIO (first one only). */ if ((pCur->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK)) == PGMREGMMIORANGE_F_MMIO2) IOMR3MmioExNotifyDeregistered(pVM, pCur->pPhysHandlerR3->pvUserR3); /* * Unlink it */ PPGMREGMMIORANGE pNext = pCur->pNextR3; if (pPrev) pPrev->pNextR3 = pNext; else pVM->pgm.s.pRegMmioRangesR3 = pNext; pCur->pNextR3 = NULL; uint8_t idMmio2 = pCur->idMmio2; if (idMmio2 != UINT8_MAX) { Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur); pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL; pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR; } /* * Free the memory. */ uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT; if (pCur->fFlags & PGMREGMMIORANGE_F_MMIO2) { int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages); AssertRC(rc2); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc); AssertRC(rc2); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; } /* we're leaking hyper memory here if done at runtime. */ #ifdef VBOX_STRICT VMSTATE const enmState = VMR3GetState(pVM); AssertMsg( enmState == VMSTATE_POWERING_OFF || enmState == VMSTATE_POWERING_OFF_LS || enmState == VMSTATE_OFF || enmState == VMSTATE_OFF_LS || enmState == VMSTATE_DESTROYING || enmState == VMSTATE_TERMINATED || enmState == VMSTATE_CREATING , ("%s\n", VMR3GetStateName(enmState))); #endif const bool fIsMmio2 = RT_BOOL(pCur->fFlags & PGMREGMMIORANGE_F_MMIO2); if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) { const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPages]); size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT; SUPR3PageFreeEx(pCur, cChunkPages); } /*else { rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call. AssertRCReturn(rc, rc); } */ /* update page count stats */ pVM->pgm.s.cAllPages -= cPages; if (fIsMmio2) pVM->pgm.s.cPrivatePages -= cPages; else pVM->pgm.s.cPureMmioPages -= cPages; /* next */ pCur = pNext; } else { pPrev = pCur; pCur = pCur->pNextR3; } } pgmPhysInvalidatePageMapTLB(pVM); pgmUnlock(pVM); return !cFound && iRegion != UINT32_MAX && iSubDev != UINT32_MAX ? VERR_NOT_FOUND : rc; } /** * Maps a MMIO2 region or a pre-registered MMIO region. * * This is done when a guest / the bios / state loading changes the * PCI config. The replacing of base memory has the same restrictions * as during registration, of course. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number of the registered region. * @param iRegion The index of the registered region. * @param GCPhys The guest-physical address to be remapped. */ VMMR3DECL(int) PGMR3PhysMMIOExMap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys) { /* * Validate input. * * Note! It's safe to walk the MMIO/MMIO2 list since registrations only * happens during VM construction. */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER); AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER); AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion); AssertReturn(pFirstMmio, VERR_NOT_FOUND); Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK); PPGMREGMMIORANGE pLastMmio = pFirstMmio; RTGCPHYS cbRange = 0; for (;;) { AssertReturn(!(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), VERR_WRONG_ORDER); Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS); Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS); Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3); Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev); Assert(pLastMmio->iRegion == pFirstMmio->iRegion); cbRange += pLastMmio->RamRange.cb; if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) break; pLastMmio = pLastMmio->pNextR3; } RTGCPHYS GCPhysLast = GCPhys + cbRange - 1; AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); /* * Find our location in the ram range list, checking for restriction * we don't bother implementing yet (partially overlapping, multiple * ram ranges). */ pgmLock(pVM); AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER); bool fRamExists = false; PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { if ( GCPhys <= pRam->GCPhysLast && GCPhysLast >= pRam->GCPhys) { /* Completely within? */ AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys && GCPhysLast <= pRam->GCPhysLast, ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), pgmUnlock(pVM), VERR_PGM_RAM_CONFLICT); /* Check that all the pages are RAM pages. */ PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; uint32_t cPagesLeft = cbRange >> PAGE_SHIFT; while (cPagesLeft-- > 0) { AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM, ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n", GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc), pgmUnlock(pVM), VERR_PGM_RAM_CONFLICT); pPage++; } /* There can only be one MMIO/MMIO2 chunk matching here! */ AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK, ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n", GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags), pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE); fRamExists = true; break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } Log(("PGMR3PhysMMIOExMap: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc)); /* * Make the changes. */ RTGCPHYS GCPhysCur = GCPhys; for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { pCurMmio->RamRange.GCPhys = GCPhysCur; pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1; if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) { Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast); break; } GCPhysCur += pCurMmio->RamRange.cb; } if (fRamExists) { /* * Make all the pages in the range MMIO/ZERO pages, freeing any * RAM pages currently mapped here. This might not be 100% correct * for PCI memory, but we're doing the same thing for MMIO2 pages. * * We replace this MMIO/ZERO pages with real pages in the MMIO2 case. */ Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */ int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO); AssertRCReturnStmt(rc, pgmUnlock(pVM), rc); if (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2) { /* replace the pages, freeing all present RAM pages. */ PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0]; PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT; while (cPagesLeft-- > 0) { Assert(PGM_PAGE_IS_MMIO(pPageDst)); RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc); uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc); PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage); PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys); PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2); PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE); PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0); PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0); /* (We tell NEM at the end of the function.) */ pVM->pgm.s.cZeroPages--; GCPhys += PAGE_SIZE; pPageSrc++; pPageDst++; } } /* Flush physical page map TLB. */ pgmPhysInvalidatePageMapTLB(pVM); /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo not entirely SMP safe; assuming for now the guest takes care of * this internally (not touch mapped mmio while changing the mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); } else { /* * No RAM range, insert the ones prepared during registration. */ for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { /* Clear the tracking data of pages we're going to reactivate. */ PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0]; uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT; while (cPagesLeft-- > 0) { PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0); PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0); pPageSrc++; } /* link in the ram range */ pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev); if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) { Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast); break; } pRamPrev = &pCurMmio->RamRange; } } /* * Register the access handler if plain MMIO. * * We must register access handlers for each range since the access handler * code refuses to deal with multiple ranges (and we can). */ if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)) { int rc = VINF_SUCCESS; for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { Assert(!(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED)); rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.GCPhysLast); if (RT_FAILURE(rc)) break; pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED; /* Use this to mark that the handler is registered. */ if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) { rc = IOMR3MmioExNotifyMapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys); break; } } if (RT_FAILURE(rc)) { /* Almost impossible, but try clean up properly and get out of here. */ for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { if (pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED) { pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_MAPPED; pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists); } if (!fRamExists) pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange); else { Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */ uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT; PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; while (cPagesLeft-- > 0) { PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM); pPageDst++; } } pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS; pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) break; } pgmUnlock(pVM); return rc; } } /* * We're good, set the flags and invalid the mapping TLB. */ for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED; if (fRamExists) pCurMmio->fFlags |= PGMREGMMIORANGE_F_OVERLAPPING; else pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_OVERLAPPING; if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) break; } pgmPhysInvalidatePageMapTLB(pVM); /* * Notify NEM while holding the lock (experimental) and REM without (like always). */ uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | (pFirstMmio->fFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0); int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3); pgmUnlock(pVM); #ifdef VBOX_WITH_REM if (!fRamExists && (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)) /** @todo this doesn't look right. */ REMR3NotifyPhysRamRegister(pVM, GCPhys, cbRange, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2); #endif return rc; } /** * Unmaps a MMIO2 or a pre-registered MMIO region. * * This is done when a guest / the bios / state loading changes the * PCI config. The replacing of base memory has the same restrictions * as during registration, of course. */ VMMR3DECL(int) PGMR3PhysMMIOExUnmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys) { /* * Validate input */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER); AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER); AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion); AssertReturn(pFirstMmio, VERR_NOT_FOUND); Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK); PPGMREGMMIORANGE pLastMmio = pFirstMmio; RTGCPHYS cbRange = 0; for (;;) { AssertReturn(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED, VERR_WRONG_ORDER); AssertReturn(pLastMmio->RamRange.GCPhys == GCPhys + cbRange, VERR_INVALID_PARAMETER); Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3); Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev); Assert(pLastMmio->iRegion == pFirstMmio->iRegion); cbRange += pLastMmio->RamRange.cb; if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) break; pLastMmio = pLastMmio->pNextR3; } Log(("PGMR3PhysMMIOExUnmap: %RGp-%RGp %s\n", pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc)); int rc = pgmLock(pVM); AssertRCReturn(rc, rc); uint16_t const fOldFlags = pFirstMmio->fFlags; AssertReturnStmt(fOldFlags & PGMREGMMIORANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER); /* * If plain MMIO, we must deregister the handlers first. */ if (!(fOldFlags & PGMREGMMIORANGE_F_MMIO2)) { PPGMREGMMIORANGE pCurMmio = pFirstMmio; rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING)); AssertRCReturnStmt(rc, pgmUnlock(pVM), rc); while (!(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)) { pCurMmio = pCurMmio->pNextR3; rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING)); AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE); } IOMR3MmioExNotifyUnmapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys); } /* * Unmap it. */ RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys; if (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING) { /* * We've replaced RAM, replace with zero pages. * * Note! This is where we might differ a little from a real system, because * it's likely to just show the RAM pages as they were before the * MMIO/MMIO2 region was mapped here. */ /* Only one chunk allowed when overlapping! */ Assert(fOldFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Restore the RAM pages we've replaced. */ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast) pRam = pRam->pNextR3; uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT; if (fOldFlags & PGMREGMMIORANGE_F_MMIO2) pVM->pgm.s.cZeroPages += cPagesLeft; PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; while (cPagesLeft-- > 0) { PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM); pPageDst++; } /* Flush physical page map TLB. */ pgmPhysInvalidatePageMapTLB(pVM); /* Update range state. */ pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS; pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; pFirstMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED); } else { /* * Unlink the chunks related to the MMIO/MMIO2 region. */ for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange); pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS; pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; pCurMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED); if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK) break; } } /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo not entirely SMP safe; assuming for now the guest takes care * of this internally (not touch mapped mmio while changing the * mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); pgmPhysInvalidatePageMapTLB(pVM); pgmPhysInvalidRamRangeTlbs(pVM); /* * Notify NEM while holding the lock (experimental) and REM without (like always). */ uint32_t const fNemFlags = (fOldFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0); rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags); pgmUnlock(pVM); #ifdef VBOX_WITH_REM if ((fOldFlags & (PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MMIO2)) == PGMREGMMIORANGE_F_MMIO2) REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeNotify, cbRange); #endif return rc; } /** * Reduces the mapping size of a MMIO2 or pre-registered MMIO region. * * This is mainly for dealing with old saved states after changing the default * size of a mapping region. See PGMDevHlpMMIOExReduce and * PDMPCIDEV::pfnRegionLoadChangeHookR3. * * The region must not currently be mapped when making this call. The VM state * must be state restore or VM construction. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number of the registered region. * @param iRegion The index of the registered region. * @param cbRegion The new mapping size. */ VMMR3_INT_DECL(int) PGMR3PhysMMIOExReduce(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion) { /* * Validate input */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER); AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT); VMSTATE enmVmState = VMR3GetState(pVM); AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING || enmVmState == VMSTATE_LOADING, ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)), VERR_VM_INVALID_VM_STATE); int rc = pgmLock(pVM); AssertRCReturn(rc, rc); PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion); if (pFirstMmio) { Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK); if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED)) { /* * NOTE! Current implementation does not support multiple ranges. * Implement when there is a real world need and thus a testcase. */ AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK, ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags), rc = VERR_NOT_SUPPORTED); if (RT_SUCCESS(rc)) { /* * Make the change. */ Log(("PGMR3PhysMMIOExReduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion)); AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal, ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal), rc = VERR_OUT_OF_RANGE); if (RT_SUCCESS(rc)) { pFirstMmio->RamRange.cb = cbRegion; } } } else rc = VERR_WRONG_ORDER; } else rc = VERR_NOT_FOUND; pgmUnlock(pVM); return rc; } /** * Checks if the given address is an MMIO2 or pre-registered MMIO base address * or not. * * @returns true/false accordingly. * @param pVM The cross context VM structure. * @param pDevIns The owner of the memory, optional. * @param GCPhys The address to check. */ VMMR3DECL(bool) PGMR3PhysMMIOExIsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys) { /* * Validate input */ VM_ASSERT_EMT_RETURN(pVM, false); AssertPtrReturn(pDevIns, false); AssertReturn(GCPhys != NIL_RTGCPHYS, false); AssertReturn(GCPhys != 0, false); AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false); /* * Search the list. */ pgmLock(pVM); for (PPGMREGMMIORANGE pCurMmio = pVM->pgm.s.pRegMmioRangesR3; pCurMmio; pCurMmio = pCurMmio->pNextR3) if (pCurMmio->RamRange.GCPhys == GCPhys) { Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED); bool fRet = RT_BOOL(pCurMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK); pgmUnlock(pVM); return fRet; } pgmUnlock(pVM); return false; } /** * Gets the HC physical address of a page in the MMIO2 region. * * This is API is intended for MMHyper and shouldn't be called * by anyone else... * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The owner of the memory, optional. * @param iSubDev Sub-device number. * @param iRegion The region. * @param off The page expressed an offset into the MMIO2 region. * @param pHCPhys Where to store the result. */ VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys) { /* * Validate input */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); pgmLock(pVM); PPGMREGMMIORANGE pCurMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion); AssertReturn(pCurMmio, VERR_NOT_FOUND); AssertReturn(pCurMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE); while ( off >= pCurMmio->RamRange.cb && !(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)) { off -= pCurMmio->RamRange.cb; pCurMmio = pCurMmio->pNextR3; } AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER); PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT]; *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage); pgmUnlock(pVM); return VINF_SUCCESS; } /** * Maps a portion of an MMIO2 region into kernel space (host). * * The kernel mapping will become invalid when the MMIO2 memory is deregistered * or the VM is terminated. * * @return VBox status code. * * @param pVM The cross context VM structure. * @param pDevIns The device owning the MMIO2 memory. * @param iSubDev The sub-device number. * @param iRegion The region. * @param off The offset into the region. Must be page aligned. * @param cb The number of bytes to map. Must be page aligned. * @param pszDesc Mapping description. * @param pR0Ptr Where to store the R0 address. */ VMMR3_INT_DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTR0PTR pR0Ptr) { /* * Validate input. */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); PPGMREGMMIORANGE pFirstRegMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion); AssertReturn(pFirstRegMmio, VERR_NOT_FOUND); AssertReturn(pFirstRegMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE); AssertReturn(off < pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER); AssertReturn(cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER); AssertReturn(off + cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER); NOREF(pszDesc); /* * Pass the request on to the support library/driver. */ int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, off, cb, 0, pR0Ptr); return rc; } /** * Worker for PGMR3PhysRomRegister. * * This is here to simplify lock management, i.e. the caller does all the * locking and we can simply return without needing to remember to unlock * anything first. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the ROM. * @param GCPhys First physical address in the range. * Must be page aligned! * @param cb The size of the range (in bytes). * Must be page aligned! * @param pvBinary Pointer to the binary data backing the ROM image. * @param cbBinary The size of the binary data pvBinary points to. * This must be less or equal to @a cb. * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY. * @param pszDesc Pointer to description string. This must not be freed. */ static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb, const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc) { /* * Validate input. */ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cb - 1); AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER); VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); const uint32_t cPages = cb >> PAGE_SHIFT; /* * Find the ROM location in the ROM list first. */ PPGMROMRANGE pRomPrev = NULL; PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; while (pRom && GCPhysLast >= pRom->GCPhys) { if ( GCPhys <= pRom->GCPhysLast && GCPhysLast >= pRom->GCPhys) AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc), VERR_PGM_RAM_CONFLICT); /* next */ pRomPrev = pRom; pRom = pRom->pNextR3; } /* * Find the RAM location and check for conflicts. * * Conflict detection is a bit different than for RAM * registration since a ROM can be located within a RAM * range. So, what we have to check for is other memory * types (other than RAM that is) and that we don't span * more than one RAM range (layz). */ bool fRamExists = false; PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { if ( GCPhys <= pRam->GCPhysLast && GCPhysLast >= pRam->GCPhys) { /* completely within? */ AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys && GCPhysLast <= pRam->GCPhysLast, ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), VERR_PGM_RAM_CONFLICT); fRamExists = true; break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } if (fRamExists) { PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; uint32_t cPagesLeft = cPages; while (cPagesLeft-- > 0) { AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM, ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n", pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT), pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT); Assert(PGM_PAGE_IS_ZERO(pPage)); pPage++; } } /* * Update the base memory reservation if necessary. */ uint32_t cExtraBaseCost = fRamExists ? 0 : cPages; if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) cExtraBaseCost += cPages; if (cExtraBaseCost) { int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost); if (RT_FAILURE(rc)) return rc; } /* * Allocate memory for the virgin copy of the RAM. */ PGMMALLOCATEPAGESREQ pReq; int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE); AssertRCReturn(rc, rc); for (uint32_t iPage = 0; iPage < cPages; iPage++) { pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT); pReq->aPages[iPage].idPage = NIL_GMM_PAGEID; pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID; } rc = GMMR3AllocatePagesPerform(pVM, pReq); if (RT_FAILURE(rc)) { GMMR3AllocatePagesCleanup(pReq); return rc; } /* * Allocate the new ROM range and RAM range (if necessary). */ PPGMROMRANGE pRomNew; rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew); if (RT_SUCCESS(rc)) { PPGMRAMRANGE pRamNew = NULL; if (!fRamExists) rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew); if (RT_SUCCESS(rc)) { /* * Initialize and insert the RAM range (if required). */ PPGMROMPAGE pRomPage = &pRomNew->aPages[0]; if (!fRamExists) { pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew); pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew); pRamNew->GCPhys = GCPhys; pRamNew->GCPhysLast = GCPhysLast; pRamNew->cb = cb; pRamNew->pszDesc = pszDesc; pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM; pRamNew->pvR3 = NULL; pRamNew->paLSPages = NULL; PPGMPAGE pPage = &pRamNew->aPages[0]; for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++) { PGM_PAGE_INIT(pPage, pReq->aPages[iPage].HCPhysGCPhys, pReq->aPages[iPage].idPage, PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED); pRomPage->Virgin = *pPage; } pVM->pgm.s.cAllPages += cPages; pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev); } else { PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++) { PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM); PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage); PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE); PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0); PGM_PAGE_SET_TRACKING(pVM, pPage, 0); pRomPage->Virgin = *pPage; } pRamNew = pRam; pVM->pgm.s.cZeroPages -= cPages; } pVM->pgm.s.cPrivatePages += cPages; /* Flush physical page map TLB. */ pgmPhysInvalidatePageMapTLB(pVM); /* Notify NEM before we register handlers. */ uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0) | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0); rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify); /* * !HACK ALERT! REM + (Shadowed) ROM ==> mess. * * If it's shadowed we'll register the handler after the ROM notification * so we get the access handler callbacks that we should. If it isn't * shadowed we'll do it the other way around to make REM use the built-in * ROM behavior and not the handler behavior (which is to route all access * to PGM atm). */ if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) { #ifdef VBOX_WITH_REM REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */); #endif if (RT_SUCCESS(rc)) rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType, pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew), pszDesc); } else { if (RT_SUCCESS(rc)) rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType, pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew), pszDesc); #ifdef VBOX_WITH_REM REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */); #endif } if (RT_SUCCESS(rc)) { /* * Copy the image over to the virgin pages. * This must be done after linking in the RAM range. */ size_t cbBinaryLeft = cbBinary; PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT]; for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++) { void *pvDstPage; rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage); if (RT_FAILURE(rc)) { VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys); break; } if (cbBinaryLeft >= PAGE_SIZE) { memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE); cbBinaryLeft -= PAGE_SIZE; } else { ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */ if (cbBinaryLeft > 0) { memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft); cbBinaryLeft = 0; } } } if (RT_SUCCESS(rc)) { /* * Initialize the ROM range. * Note that the Virgin member of the pages has already been initialized above. */ pRomNew->GCPhys = GCPhys; pRomNew->GCPhysLast = GCPhysLast; pRomNew->cb = cb; pRomNew->fFlags = fFlags; pRomNew->idSavedState = UINT8_MAX; pRomNew->cbOriginal = cbBinary; pRomNew->pszDesc = pszDesc; pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : RTMemDup(pvBinary, cbBinary); if (pRomNew->pvOriginal) { for (unsigned iPage = 0; iPage < cPages; iPage++) { PPGMROMPAGE pPage = &pRomNew->aPages[iPage]; pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE; PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW); } /* update the page count stats for the shadow pages. */ if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) { pVM->pgm.s.cZeroPages += cPages; pVM->pgm.s.cAllPages += cPages; } /* * Insert the ROM range, tell REM and return successfully. */ pRomNew->pNextR3 = pRom; pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR; pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR; if (pRomPrev) { pRomPrev->pNextR3 = pRomNew; pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew); pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew); } else { pVM->pgm.s.pRomRangesR3 = pRomNew; pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew); pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew); } pgmPhysInvalidatePageMapTLB(pVM); GMMR3AllocatePagesCleanup(pReq); /* Notify NEM again. */ return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify); } /* bail out */ rc = VERR_NO_MEMORY; } int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys); AssertRC(rc2); } if (!fRamExists) { pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev); MMHyperFree(pVM, pRamNew); } } MMHyperFree(pVM, pRomNew); } /** @todo Purge the mapping cache or something... */ GMMR3FreeAllocatedPages(pVM, pReq); GMMR3AllocatePagesCleanup(pReq); return rc; } /** * Registers a ROM image. * * Shadowed ROM images requires double the amount of backing memory, so, * don't use that unless you have to. Shadowing of ROM images is process * where we can select where the reads go and where the writes go. On real * hardware the chipset provides means to configure this. We provide * PGMR3PhysProtectROM() for this purpose. * * A read-only copy of the ROM image will always be kept around while we * will allocate RAM pages for the changes on demand (unless all memory * is configured to be preallocated). * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the ROM. * @param GCPhys First physical address in the range. * Must be page aligned! * @param cb The size of the range (in bytes). * Must be page aligned! * @param pvBinary Pointer to the binary data backing the ROM image. * @param cbBinary The size of the binary data pvBinary points to. * This must be less or equal to @a cb. * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY. * @param pszDesc Pointer to description string. This must not be freed. * * @remark There is no way to remove the rom, automatically on device cleanup or * manually from the device yet. This isn't difficult in any way, it's * just not something we expect to be necessary for a while. */ VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb, const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc) { Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n", pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc)); pgmLock(pVM); int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc); pgmUnlock(pVM); return rc; } /** * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify * that the virgin part is untouched. * * This is done after the normal memory has been cleared. * * ASSUMES that the caller owns the PGM lock. * * @param pVM The cross context VM structure. */ int pgmR3PhysRomReset(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) { const uint32_t cPages = pRom->cb >> PAGE_SHIFT; if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) { /* * Reset the physical handler. */ int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE); AssertRCReturn(rc, rc); /* * What we do with the shadow pages depends on the memory * preallocation option. If not enabled, we'll just throw * out all the dirty pages and replace them by the zero page. */ if (!pVM->pgm.s.fRamPreAlloc) { /* Free the dirty pages. */ uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertRCReturn(rc, rc); for (uint32_t iPage = 0; iPage < cPages; iPage++) if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow)) { Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED); rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT), (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow)); AssertLogRelRCReturn(rc, rc); } if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); } else { /* clear all the shadow pages. */ for (uint32_t iPage = 0; iPage < cPages; iPage++) { if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)) continue; Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow)); void *pvDstPage; const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT); rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage); if (RT_FAILURE(rc)) break; ASMMemZeroPage(pvDstPage); } AssertRCReturn(rc, rc); } } /* * Restore the original ROM pages after a saved state load. * Also, in strict builds check that ROM pages remain unmodified. */ #ifndef VBOX_STRICT if (pVM->pgm.s.fRestoreRomPagesOnReset) #endif { size_t cbSrcLeft = pRom->cbOriginal; uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal; uint32_t cRestored = 0; for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE) { const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT); void const *pvDstPage; int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage); if (RT_FAILURE(rc)) break; if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE))) { if (pVM->pgm.s.fRestoreRomPagesOnReset) { void *pvDstPageW; rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW); AssertLogRelRCReturn(rc, rc); memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)); cRestored++; } else LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc)); } cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE); } if (cRestored > 0) LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages)); } } /* Clear the ROM restore flag now as we only need to do this once after loading saved state. */ pVM->pgm.s.fRestoreRomPagesOnReset = false; return VINF_SUCCESS; } /** * Called by PGMR3Term to free resources. * * ASSUMES that the caller owns the PGM lock. * * @param pVM The cross context VM structure. */ void pgmR3PhysRomTerm(PVM pVM) { /* * Free the heap copy of the original bits. */ for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) { if ( pRom->pvOriginal && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)) { RTMemFree((void *)pRom->pvOriginal); pRom->pvOriginal = NULL; } } } /** * Change the shadowing of a range of ROM pages. * * This is intended for implementing chipset specific memory registers * and will not be very strict about the input. It will silently ignore * any pages that are not the part of a shadowed ROM. * * @returns VBox status code. * @retval VINF_PGM_SYNC_CR3 * * @param pVM The cross context VM structure. * @param GCPhys Where to start. Page aligned. * @param cb How much to change. Page aligned. * @param enmProt The new ROM protection. */ VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt) { /* * Check input */ if (!cb) return VINF_SUCCESS; AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cb - 1); AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER); /* * Process the request. */ pgmLock(pVM); int rc = VINF_SUCCESS; bool fFlushTLB = false; for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) { if ( GCPhys <= pRom->GCPhysLast && GCPhysLast >= pRom->GCPhys && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)) { /* * Iterate the relevant pages and make necessary the changes. */ bool fChanges = false; uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast ? pRom->cb >> PAGE_SHIFT : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT; for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT; iPage < cPages; iPage++) { PPGMROMPAGE pRomPage = &pRom->aPages[iPage]; if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt)) { fChanges = true; /* flush references to the page. */ PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT)); int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, true /*fFlushPTEs*/, &fFlushTLB); if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2))) rc = rc2; uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage); PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow; PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin; *pOld = *pRamPage; *pRamPage = *pNew; /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */ /* Tell NEM about the backing and protection change. */ if (VM_IS_NEM_ENABLED(pVM)) { PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew); NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew), pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State); PGM_PAGE_SET_NEM_STATE(pRamPage, u2State); } } pRomPage->enmProt = enmProt; } /* * Reset the access handler if we made changes, no need * to optimize this. */ if (fChanges) { int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys); if (RT_FAILURE(rc2)) { pgmUnlock(pVM); AssertRC(rc); return rc2; } } /* Advance - cb isn't updated. */ GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT); } } pgmUnlock(pVM); if (fFlushTLB) PGM_INVL_ALL_VCPU_TLBS(pVM); return rc; } /** * Sets the Address Gate 20 state. * * @param pVCpu The cross context virtual CPU structure. * @param fEnable True if the gate should be enabled. * False if the gate should be disabled. */ VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable) { LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled)); if (pVCpu->pgm.s.fA20Enabled != fEnable) { #ifdef VBOX_WITH_NESTED_HWVIRT_VMX PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); if ( CPUMIsGuestInVmxRootMode(pCtx) && !fEnable) { Log(("Cannot enter A20M mode while in VMX root mode\n")); return; } #endif pVCpu->pgm.s.fA20Enabled = fEnable; pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20); #ifdef VBOX_WITH_REM REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable); #endif NEMR3NotifySetA20(pVCpu, fEnable); #ifdef PGM_WITH_A20 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); pgmR3RefreshShadowModeAfterA20Change(pVCpu); HMFlushTLB(pVCpu); #endif IEMTlbInvalidateAllPhysical(pVCpu); STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes); } } /** * Tree enumeration callback for dealing with age rollover. * It will perform a simple compression of the current age. */ static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser) { /* Age compression - ASSUMES iNow == 4. */ PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode; if (pChunk->iLastUsed >= UINT32_C(0xffffff00)) pChunk->iLastUsed = 3; else if (pChunk->iLastUsed >= UINT32_C(0xfffff000)) pChunk->iLastUsed = 2; else if (pChunk->iLastUsed) pChunk->iLastUsed = 1; else /* iLastUsed = 0 */ pChunk->iLastUsed = 4; NOREF(pvUser); return 0; } /** * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback(). */ typedef struct PGMR3PHYSCHUNKUNMAPCB { PVM pVM; /**< Pointer to the VM. */ PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */ } PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB; /** * Callback used to find the mapping that's been unused for * the longest time. */ static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser) { PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode; PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser; /* * Check for locks and compare when last used. */ if (pChunk->cRefs) return 0; if (pChunk->cPermRefs) return 0; if ( pArg->pChunk && pChunk->iLastUsed >= pArg->pChunk->iLastUsed) return 0; /* * Check that it's not in any of the TLBs. */ PVM pVM = pArg->pVM; if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk == pChunk->Core.Key) { pChunk = NULL; return 0; } #ifdef VBOX_STRICT for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++) { Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk); Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key); } #endif for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++) if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk) return 0; pArg->pChunk = pChunk; return 0; } /** * Finds a good candidate for unmapping when the ring-3 mapping cache is full. * * The candidate will not be part of any TLBs, so no need to flush * anything afterwards. * * @returns Chunk id. * @param pVM The cross context VM structure. */ static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* * Enumerate the age tree starting with the left most node. */ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a); PGMR3PHYSCHUNKUNMAPCB Args; Args.pVM = pVM; Args.pChunk = NULL; RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args); Assert(Args.pChunk); if (Args.pChunk) { Assert(Args.pChunk->cRefs == 0); Assert(Args.pChunk->cPermRefs == 0); STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a); return Args.pChunk->Core.Key; } STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a); return INT32_MAX; } /** * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. * @param pvUser User pointer. Unused * */ static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) { int rc = VINF_SUCCESS; pgmLock(pVM); NOREF(pVCpu); NOREF(pvUser); if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax) { /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */ /** @todo also not really efficient to unmap a chunk that contains PD * or PT pages. */ pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */); /* * Request the ring-0 part to unmap a chunk to make space in the mapping cache. */ GMMMAPUNMAPCHUNKREQ Req; Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; Req.Hdr.cbReq = sizeof(Req); Req.pvR3 = NULL; Req.idChunkMap = NIL_GMM_CHUNKID; Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM); if (Req.idChunkUnmap != INT32_MAX) { STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a); rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr); STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a); if (RT_SUCCESS(rc)) { /* * Remove the unmapped one. */ PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap); AssertRelease(pUnmappedChunk); AssertRelease(!pUnmappedChunk->cRefs); AssertRelease(!pUnmappedChunk->cPermRefs); pUnmappedChunk->pv = NULL; pUnmappedChunk->Core.Key = UINT32_MAX; #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE MMR3HeapFree(pUnmappedChunk); #else MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING); #endif pVM->pgm.s.ChunkR3Map.c--; pVM->pgm.s.cUnmappedChunks++; /* * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses). */ /** @todo We should not flush chunks which include cr3 mappings. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s; pPGM->pGst32BitPdR3 = NULL; pPGM->pGstPaePdptR3 = NULL; pPGM->pGstAmd64Pml4R3 = NULL; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pPGM->pGst32BitPdR0 = NIL_RTR0PTR; pPGM->pGstPaePdptR0 = NIL_RTR0PTR; pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR; #endif for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++) { pPGM->apGstPaePDsR3[i] = NULL; #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR; #endif } /* Flush REM TLBs. */ CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); } #ifdef VBOX_WITH_REM /* Flush REM translation blocks. */ REMFlushTBs(pVM); #endif } } } pgmUnlock(pVM); return rc; } /** * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap) * * @returns VBox status code. * @param pVM The cross context VM structure. */ void pgmR3PhysUnmapChunk(PVM pVM) { int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL); AssertRC(rc); } /** * Maps the given chunk into the ring-3 mapping cache. * * This will call ring-0. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param idChunk The chunk in question. * @param ppChunk Where to store the chunk tracking structure. * * @remarks Called from within the PGM critical section. * @remarks Can be called from any thread! */ int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk) { int rc; PGM_LOCK_ASSERT_OWNER(pVM); /* * Move the chunk time forward. */ pVM->pgm.s.ChunkR3Map.iNow++; if (pVM->pgm.s.ChunkR3Map.iNow == 0) { pVM->pgm.s.ChunkR3Map.iNow = 4; RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL); } /* * Allocate a new tracking structure first. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk)); #else PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL); #endif AssertReturn(pChunk, VERR_NO_MEMORY); pChunk->Core.Key = idChunk; pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow; /* * Request the ring-0 part to map the chunk in question. */ GMMMAPUNMAPCHUNKREQ Req; Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; Req.Hdr.cbReq = sizeof(Req); Req.pvR3 = NULL; Req.idChunkMap = idChunk; Req.idChunkUnmap = NIL_GMM_CHUNKID; /* Must be callable from any thread, so can't use VMMR3CallR0. */ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a); rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr); STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a); if (RT_SUCCESS(rc)) { pChunk->pv = Req.pvR3; /* * If we're running out of virtual address space, then we should * unmap another chunk. * * Currently, an unmap operation requires that all other virtual CPUs * are idling and not by chance making use of the memory we're * unmapping. So, we create an async unmap operation here. * * Now, when creating or restoring a saved state this wont work very * well since we may want to restore all guest RAM + a little something. * So, we have to do the unmap synchronously. Fortunately for us * though, during these operations the other virtual CPUs are inactive * and it should be safe to do this. */ /** @todo Eventually we should lock all memory when used and do * map+unmap as one kernel call without any rendezvous or * other precautions. */ if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax) { switch (VMR3GetState(pVM)) { case VMSTATE_LOADING: case VMSTATE_SAVING: { PVMCPU pVCpu = VMMGetCpu(pVM); if ( pVCpu && pVM->pgm.s.cDeprecatedPageLocks == 0) { pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL); break; } } RT_FALL_THRU(); default: rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM); AssertRC(rc); break; } } /* * Update the tree. We must do this after any unmapping to make sure * the chunk we're going to return isn't unmapped by accident. */ AssertPtr(Req.pvR3); bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core); AssertRelease(fRc); pVM->pgm.s.ChunkR3Map.c++; pVM->pgm.s.cMappedChunks++; } else { /** @todo this may fail because of /proc/sys/vm/max_map_count, so we * should probably restrict ourselves on linux. */ AssertRC(rc); #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE MMR3HeapFree(pChunk); #else MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING); #endif pChunk = NULL; } *ppChunk = pChunk; return rc; } /** * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal. * * @returns see pgmR3PhysChunkMap. * @param pVM The cross context VM structure. * @param idChunk The chunk to map. */ VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk) { PPGMCHUNKR3MAP pChunk; int rc; pgmLock(pVM); rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk); pgmUnlock(pVM); return rc; } /** * Invalidates the TLB for the ring-3 mapping cache. * * @param pVM The cross context VM structure. */ VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM) { pgmLock(pVM); for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++) { pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID; pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL; } /* The page map TLB references chunks, so invalidate that one too. */ pgmPhysInvalidatePageMapTLB(pVM); pgmUnlock(pVM); } /** * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large * (2MB) page for use with a nested paging PDE. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success. * @retval VINF_EM_NO_MEMORY if we're out of memory. * * @param pVM The cross context VM structure. * @param GCPhys GC physical start address of the 2 MB range */ VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys) { #ifdef PGM_WITH_LARGE_PAGES uint64_t u64TimeStamp1, u64TimeStamp2; pgmLock(pVM); STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a); u64TimeStamp1 = RTTimeMilliTS(); int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL); u64TimeStamp2 = RTTimeMilliTS(); STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a); if (RT_SUCCESS(rc)) { Assert(pVM->pgm.s.cLargeHandyPages == 1); uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage; RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys; void *pv; /* Map the large page into our address space. * * Note: assuming that within the 2 MB range: * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise) * - user space mapping is continuous as well * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE) */ rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv); AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc)); if (RT_SUCCESS(rc)) { /* * Clear the pages. */ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b); for (unsigned i = 0; i < _2M/PAGE_SIZE; i++) { ASMMemZeroPage(pv); PPGMPAGE pPage; rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); AssertRC(rc); Assert(PGM_PAGE_IS_ZERO(pPage)); STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero); pVM->pgm.s.cZeroPages--; /* * Do the PGMPAGE modifications. */ pVM->pgm.s.cPrivatePages++; PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys); PGM_PAGE_SET_PAGEID(pVM, pPage, idPage); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE); PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0); PGM_PAGE_SET_TRACKING(pVM, pPage, 0); /* Somewhat dirty assumption that page ids are increasing. */ idPage++; HCPhys += PAGE_SIZE; GCPhys += PAGE_SIZE; pv = (void *)((uintptr_t)pv + PAGE_SIZE); Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys)); } STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b); /* Flush all TLBs. */ PGM_INVL_ALL_VCPU_TLBS(pVM); pgmPhysInvalidatePageMapTLB(pVM); } pVM->pgm.s.cLargeHandyPages = 0; } if (RT_SUCCESS(rc)) { static uint32_t cTimeOut = 0; uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1; if (u64TimeStampDelta > 100) { STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow); if ( ++cTimeOut > 10 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */) { /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages. * E.g. Vista 64 tries to move memory around, which takes a huge amount of time. */ LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut)); PGMSetLargePageUsage(pVM, false); } } else if (cTimeOut > 0) cTimeOut--; } pgmUnlock(pVM); return rc; #else RT_NOREF(pVM, GCPhys); return VERR_NOT_IMPLEMENTED; #endif /* PGM_WITH_LARGE_PAGES */ } /** * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES. * * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to * signal and clear the out of memory condition. When contracted, this API is * used to try clear the condition when the user wants to resume. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success. FFs cleared. * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY. * * @param pVM The cross context VM structure. * * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF * handler. */ VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM) { pgmLock(pVM); /* * Allocate more pages, noting down the index of the first new page. */ uint32_t iClear = pVM->pgm.s.cHandyPages; AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE); Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages))); int rcAlloc = VINF_SUCCESS; int rcSeed = VINF_SUCCESS; int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL); while (rc == VERR_GMM_SEED_ME) { void *pvChunk; rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk); if (RT_SUCCESS(rc)) { rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL); if (RT_FAILURE(rc)) SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT); } if (RT_SUCCESS(rc)) rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL); } /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */ if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT && pVM->pgm.s.cHandyPages > 0) { /* Still handy pages left, so don't panic. */ rc = VINF_SUCCESS; } if (RT_SUCCESS(rc)) { AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); Assert(pVM->pgm.s.cHandyPages > 0); VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES); VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY); #ifdef VBOX_STRICT uint32_t i; for (i = iClear; i < pVM->pgm.s.cHandyPages; i++) if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK)) break; if (i != pVM->pgm.s.cHandyPages) { RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__); RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages); for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++) RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j, pVM->pgm.s.aHandyPages[j].idPage, pVM->pgm.s.aHandyPages[j].HCPhysGCPhys, pVM->pgm.s.aHandyPages[j].idSharedPage, j == i ? " <---" : ""); RTAssertPanic(); } #endif /* * Clear the pages. */ while (iClear < pVM->pgm.s.cHandyPages) { PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear]; void *pv; rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv); AssertLogRelMsgBreak(RT_SUCCESS(rc), ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc)); ASMMemZeroPage(pv); iClear++; Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys)); } } else { uint64_t cAllocPages, cMaxPages, cBalloonPages; /* * We should never get here unless there is a genuine shortage of * memory (or some internal error). Flag the error so the VM can be * suspended ASAP and the user informed. If we're totally out of * handy pages we will return failure. */ /* Report the failure. */ LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n" " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n", rc, rcAlloc, rcSeed, pVM->pgm.s.cHandyPages, pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages)); if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS) { LogRel(("GMM: Statistics:\n" " Allocated pages: %RX64\n" " Maximum pages: %RX64\n" " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages)); } if ( rc != VERR_NO_MEMORY && rc != VERR_NO_PHYS_MEMORY && rc != VERR_LOCK_FAILED) { for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++) { LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n", i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage, pVM->pgm.s.aHandyPages[i].idSharedPage)); uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage; if (idPage != NIL_GMM_PAGEID) { for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t const cPages = pRam->cb >> PAGE_SHIFT; for (uint32_t iPage = 0; iPage < cPages; iPage++) if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage) LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc)); } } } } if (rc == VERR_NO_MEMORY) { uint64_t cbHostRamAvail = 0; int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail); if (RT_SUCCESS(rc2)) LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M)); else LogRel(("Cannot determine the amount of available host memory\n")); } /* Set the FFs and adjust rc. */ VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES); VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY); if ( rc == VERR_NO_MEMORY || rc == VERR_NO_PHYS_MEMORY || rc == VERR_LOCK_FAILED) rc = VINF_EM_NO_MEMORY; } pgmUnlock(pVM); return rc; } /** * Frees the specified RAM page and replaces it with the ZERO page. * * This is used by ballooning, remapping MMIO2, RAM reset and state loading. * * @param pVM The cross context VM structure. * @param pReq Pointer to the request. * @param pcPendingPages Where the number of pages waiting to be freed are * kept. This will normally be incremented. * @param pPage Pointer to the page structure. * @param GCPhys The guest physical address of the page, if applicable. * @param enmNewType New page type for NEM notification, since several * callers will change the type upon successful return. * * @remarks The caller must own the PGM lock. */ int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys, PGMPAGETYPE enmNewType) { /* * Assert sanity. */ PGM_LOCK_ASSERT_OWNER(pVM); if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW)) { AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage)); return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage)); } /** @todo What about ballooning of large pages??! */ Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED); if ( PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage)) return VINF_SUCCESS; const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage); Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage)); if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID || idPage > GMM_PAGEID_LAST || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID)) { AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage)); return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage); } const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage); /* update page count stats. */ if (PGM_PAGE_IS_SHARED(pPage)) pVM->pgm.s.cSharedPages--; else pVM->pgm.s.cPrivatePages--; pVM->pgm.s.cZeroPages++; /* Deal with write monitored pages. */ if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED) { PGM_PAGE_SET_WRITTEN_TO(pVM, pPage); pVM->pgm.s.cWrittenToPages++; } /* * pPage = ZERO page. */ PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID); PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE); PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0); PGM_PAGE_SET_TRACKING(pVM, pPage, 0); /* Flush physical page map TLB entry. */ pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys); /* Notify NEM. */ /** @todo consider doing batch NEM notifications. */ if (VM_IS_NEM_ENABLED(pVM)) { uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage); NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State); PGM_PAGE_SET_NEM_STATE(pPage, u2State); } /* * Make sure it's not in the handy page array. */ for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++) { if (pVM->pgm.s.aHandyPages[i].idPage == idPage) { pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID; break; } if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage) { pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID; break; } } /* * Push it onto the page array. */ uint32_t iPage = *pcPendingPages; Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE); *pcPendingPages += 1; pReq->aPages[iPage].idPage = idPage; if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE) return VINF_SUCCESS; /* * Flush the pages. */ int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE); if (RT_SUCCESS(rc)) { GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); *pcPendingPages = 0; } return rc; } /** * Converts a GC physical address to a HC ring-3 pointer, with some * additional checks. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write * access handler of some kind. * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all * accesses or is odd in any way. * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist. * * @param pVM The cross context VM structure. * @param GCPhys The GC physical address to convert. Since this is only * used for filling the REM TLB, the A20 mask must be * applied before calling this API. * @param fWritable Whether write access is required. * @param ppv Where to store the pointer corresponding to GCPhys on * success. */ VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv) { pgmLock(pVM); PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys); PPGMRAMRANGE pRam; PPGMPAGE pPage; int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam); if (RT_SUCCESS(rc)) { if (PGM_PAGE_IS_BALLOONED(pPage)) rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage)) rc = VINF_SUCCESS; else { if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */ rc = VERR_PGM_PHYS_TLB_CATCH_ALL; else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) { /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work * in -norawr0 mode. */ if (fWritable) rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; } else { /* Temporarily disabled physical handler(s), since the recompiler doesn't get notified when it's reset we'll have to pretend it's operating normally. */ if (pgmHandlerPhysicalIsAll(pVM, GCPhys)) rc = VERR_PGM_PHYS_TLB_CATCH_ALL; else rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; } } if (RT_SUCCESS(rc)) { int rc2; /* Make sure what we return is writable. */ if (fWritable) switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ALLOCATED: break; case PGM_PAGE_STATE_BALLOONED: AssertFailed(); break; case PGM_PAGE_STATE_ZERO: case PGM_PAGE_STATE_SHARED: if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE) break; RT_FALL_THRU(); case PGM_PAGE_STATE_WRITE_MONITORED: rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK); AssertLogRelRCReturn(rc2, rc2); break; } /* Get a ring-3 mapping of the address. */ PPGMPAGER3MAPTLBE pTlbe; rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); AssertLogRelRCReturn(rc2, rc2); *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK)); /** @todo mapping/locking hell; this isn't horribly efficient since * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */ Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv)); } else Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage)); /* else: handler catching all access, no pointer returned. */ } else rc = VERR_PGM_PHYS_TLB_UNASSIGNED; pgmUnlock(pVM); return rc; }