1 | /* $Id: PGMPhys.cpp 104910 2024-06-13 10:31:38Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * PGM - Page Manager and Monitor, Physical Memory Addressing.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*********************************************************************************************************************************
|
---|
30 | * Header Files *
|
---|
31 | *********************************************************************************************************************************/
|
---|
32 | #define LOG_GROUP LOG_GROUP_PGM_PHYS
|
---|
33 | #define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
|
---|
34 | #include <VBox/vmm/pgm.h>
|
---|
35 | #include <VBox/vmm/iem.h>
|
---|
36 | #include <VBox/vmm/iom.h>
|
---|
37 | #include <VBox/vmm/mm.h>
|
---|
38 | #include <VBox/vmm/nem.h>
|
---|
39 | #include <VBox/vmm/stam.h>
|
---|
40 | #include <VBox/vmm/pdmdev.h>
|
---|
41 | #include "PGMInternal.h"
|
---|
42 | #include <VBox/vmm/vmcc.h>
|
---|
43 |
|
---|
44 | #include "PGMInline.h"
|
---|
45 |
|
---|
46 | #include <VBox/sup.h>
|
---|
47 | #include <VBox/param.h>
|
---|
48 | #include <VBox/err.h>
|
---|
49 | #include <VBox/log.h>
|
---|
50 | #include <iprt/assert.h>
|
---|
51 | #include <iprt/alloc.h>
|
---|
52 | #include <iprt/asm.h>
|
---|
53 | #ifdef VBOX_STRICT
|
---|
54 | # include <iprt/crc.h>
|
---|
55 | #endif
|
---|
56 | #include <iprt/thread.h>
|
---|
57 | #include <iprt/string.h>
|
---|
58 | #include <iprt/system.h>
|
---|
59 |
|
---|
60 |
|
---|
61 | /*********************************************************************************************************************************
|
---|
62 | * Defined Constants And Macros *
|
---|
63 | *********************************************************************************************************************************/
|
---|
64 | /** The number of pages to free in one batch. */
|
---|
65 | #define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
|
---|
66 |
|
---|
67 |
|
---|
68 |
|
---|
69 | /*********************************************************************************************************************************
|
---|
70 | * Reading and Writing Guest Pysical Memory *
|
---|
71 | *********************************************************************************************************************************/
|
---|
72 |
|
---|
73 | /*
|
---|
74 | * PGMR3PhysReadU8-64
|
---|
75 | * PGMR3PhysWriteU8-64
|
---|
76 | */
|
---|
77 | #define PGMPHYSFN_READNAME PGMR3PhysReadU8
|
---|
78 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
|
---|
79 | #define PGMPHYS_DATASIZE 1
|
---|
80 | #define PGMPHYS_DATATYPE uint8_t
|
---|
81 | #include "PGMPhysRWTmpl.h"
|
---|
82 |
|
---|
83 | #define PGMPHYSFN_READNAME PGMR3PhysReadU16
|
---|
84 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
|
---|
85 | #define PGMPHYS_DATASIZE 2
|
---|
86 | #define PGMPHYS_DATATYPE uint16_t
|
---|
87 | #include "PGMPhysRWTmpl.h"
|
---|
88 |
|
---|
89 | #define PGMPHYSFN_READNAME PGMR3PhysReadU32
|
---|
90 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
|
---|
91 | #define PGMPHYS_DATASIZE 4
|
---|
92 | #define PGMPHYS_DATATYPE uint32_t
|
---|
93 | #include "PGMPhysRWTmpl.h"
|
---|
94 |
|
---|
95 | #define PGMPHYSFN_READNAME PGMR3PhysReadU64
|
---|
96 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
|
---|
97 | #define PGMPHYS_DATASIZE 8
|
---|
98 | #define PGMPHYS_DATATYPE uint64_t
|
---|
99 | #include "PGMPhysRWTmpl.h"
|
---|
100 |
|
---|
101 |
|
---|
102 | /**
|
---|
103 | * EMT worker for PGMR3PhysReadExternal.
|
---|
104 | */
|
---|
105 | static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
|
---|
106 | PGMACCESSORIGIN enmOrigin)
|
---|
107 | {
|
---|
108 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
|
---|
109 | AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
|
---|
110 | return VINF_SUCCESS;
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | /**
|
---|
115 | * Read from physical memory, external users.
|
---|
116 | *
|
---|
117 | * @returns VBox status code.
|
---|
118 | * @retval VINF_SUCCESS.
|
---|
119 | *
|
---|
120 | * @param pVM The cross context VM structure.
|
---|
121 | * @param GCPhys Physical address to read from.
|
---|
122 | * @param pvBuf Where to read into.
|
---|
123 | * @param cbRead How many bytes to read.
|
---|
124 | * @param enmOrigin Who is calling.
|
---|
125 | *
|
---|
126 | * @thread Any but EMTs.
|
---|
127 | */
|
---|
128 | VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
|
---|
129 | {
|
---|
130 | VM_ASSERT_OTHER_THREAD(pVM);
|
---|
131 |
|
---|
132 | AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
|
---|
133 | LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
|
---|
134 |
|
---|
135 | PGM_LOCK_VOID(pVM);
|
---|
136 |
|
---|
137 | /*
|
---|
138 | * Copy loop on ram ranges.
|
---|
139 | */
|
---|
140 | for (;;)
|
---|
141 | {
|
---|
142 | PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
|
---|
143 |
|
---|
144 | /* Inside range or not? */
|
---|
145 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
146 | {
|
---|
147 | /*
|
---|
148 | * Must work our way thru this page by page.
|
---|
149 | */
|
---|
150 | RTGCPHYS off = GCPhys - pRam->GCPhys;
|
---|
151 | while (off < pRam->cb)
|
---|
152 | {
|
---|
153 | unsigned iPage = off >> GUEST_PAGE_SHIFT;
|
---|
154 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
155 |
|
---|
156 | /*
|
---|
157 | * If the page has an ALL access handler, we'll have to
|
---|
158 | * delegate the job to EMT.
|
---|
159 | */
|
---|
160 | if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
|
---|
161 | || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
|
---|
162 | {
|
---|
163 | PGM_UNLOCK(pVM);
|
---|
164 |
|
---|
165 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
|
---|
166 | pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
|
---|
167 | }
|
---|
168 | Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * Simple stuff, go ahead.
|
---|
172 | */
|
---|
173 | size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK);
|
---|
174 | if (cb > cbRead)
|
---|
175 | cb = cbRead;
|
---|
176 | PGMPAGEMAPLOCK PgMpLck;
|
---|
177 | const void *pvSrc;
|
---|
178 | int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
|
---|
179 | if (RT_SUCCESS(rc))
|
---|
180 | {
|
---|
181 | memcpy(pvBuf, pvSrc, cb);
|
---|
182 | pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
|
---|
183 | }
|
---|
184 | else
|
---|
185 | {
|
---|
186 | AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
|
---|
187 | pRam->GCPhys + off, pPage, rc));
|
---|
188 | memset(pvBuf, 0xff, cb);
|
---|
189 | }
|
---|
190 |
|
---|
191 | /* next page */
|
---|
192 | if (cb >= cbRead)
|
---|
193 | {
|
---|
194 | PGM_UNLOCK(pVM);
|
---|
195 | return VINF_SUCCESS;
|
---|
196 | }
|
---|
197 | cbRead -= cb;
|
---|
198 | off += cb;
|
---|
199 | GCPhys += cb;
|
---|
200 | pvBuf = (char *)pvBuf + cb;
|
---|
201 | } /* walk pages in ram range. */
|
---|
202 | }
|
---|
203 | else
|
---|
204 | {
|
---|
205 | LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
|
---|
206 |
|
---|
207 | /*
|
---|
208 | * Unassigned address space.
|
---|
209 | */
|
---|
210 | size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
|
---|
211 | if (cb >= cbRead)
|
---|
212 | {
|
---|
213 | memset(pvBuf, 0xff, cbRead);
|
---|
214 | break;
|
---|
215 | }
|
---|
216 | memset(pvBuf, 0xff, cb);
|
---|
217 |
|
---|
218 | cbRead -= cb;
|
---|
219 | pvBuf = (char *)pvBuf + cb;
|
---|
220 | GCPhys += cb;
|
---|
221 | }
|
---|
222 | } /* Ram range walk */
|
---|
223 |
|
---|
224 | PGM_UNLOCK(pVM);
|
---|
225 |
|
---|
226 | return VINF_SUCCESS;
|
---|
227 | }
|
---|
228 |
|
---|
229 |
|
---|
230 | /**
|
---|
231 | * EMT worker for PGMR3PhysWriteExternal.
|
---|
232 | */
|
---|
233 | static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
|
---|
234 | PGMACCESSORIGIN enmOrigin)
|
---|
235 | {
|
---|
236 | /** @todo VERR_EM_NO_MEMORY */
|
---|
237 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
|
---|
238 | AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
|
---|
239 | return VINF_SUCCESS;
|
---|
240 | }
|
---|
241 |
|
---|
242 |
|
---|
243 | /**
|
---|
244 | * Write to physical memory, external users.
|
---|
245 | *
|
---|
246 | * @returns VBox status code.
|
---|
247 | * @retval VINF_SUCCESS.
|
---|
248 | * @retval VERR_EM_NO_MEMORY.
|
---|
249 | *
|
---|
250 | * @param pVM The cross context VM structure.
|
---|
251 | * @param GCPhys Physical address to write to.
|
---|
252 | * @param pvBuf What to write.
|
---|
253 | * @param cbWrite How many bytes to write.
|
---|
254 | * @param enmOrigin Who is calling.
|
---|
255 | *
|
---|
256 | * @thread Any but EMTs.
|
---|
257 | */
|
---|
258 | VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
|
---|
259 | {
|
---|
260 | VM_ASSERT_OTHER_THREAD(pVM);
|
---|
261 |
|
---|
262 | AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
|
---|
263 | ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
|
---|
264 | GCPhys, cbWrite, enmOrigin));
|
---|
265 | AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
|
---|
266 | LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
|
---|
267 |
|
---|
268 | PGM_LOCK_VOID(pVM);
|
---|
269 |
|
---|
270 | /*
|
---|
271 | * Copy loop on ram ranges, stop when we hit something difficult.
|
---|
272 | */
|
---|
273 | for (;;)
|
---|
274 | {
|
---|
275 | PPGMRAMRANGE const pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
|
---|
276 |
|
---|
277 | /* Inside range or not? */
|
---|
278 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
279 | {
|
---|
280 | /*
|
---|
281 | * Must work our way thru this page by page.
|
---|
282 | */
|
---|
283 | RTGCPTR off = GCPhys - pRam->GCPhys;
|
---|
284 | while (off < pRam->cb)
|
---|
285 | {
|
---|
286 | RTGCPTR iPage = off >> GUEST_PAGE_SHIFT;
|
---|
287 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
288 |
|
---|
289 | /*
|
---|
290 | * Is the page problematic, we have to do the work on the EMT.
|
---|
291 | *
|
---|
292 | * Allocating writable pages and access handlers are
|
---|
293 | * problematic, write monitored pages are simple and can be
|
---|
294 | * dealt with here.
|
---|
295 | */
|
---|
296 | if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
297 | || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
298 | || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
|
---|
299 | {
|
---|
300 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
301 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
302 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
|
---|
303 | else
|
---|
304 | {
|
---|
305 | PGM_UNLOCK(pVM);
|
---|
306 |
|
---|
307 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
|
---|
308 | pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
|
---|
309 | }
|
---|
310 | }
|
---|
311 | Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
|
---|
312 |
|
---|
313 | /*
|
---|
314 | * Simple stuff, go ahead.
|
---|
315 | */
|
---|
316 | size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK);
|
---|
317 | if (cb > cbWrite)
|
---|
318 | cb = cbWrite;
|
---|
319 | PGMPAGEMAPLOCK PgMpLck;
|
---|
320 | void *pvDst;
|
---|
321 | int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
|
---|
322 | if (RT_SUCCESS(rc))
|
---|
323 | {
|
---|
324 | memcpy(pvDst, pvBuf, cb);
|
---|
325 | pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
|
---|
326 | }
|
---|
327 | else
|
---|
328 | AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
|
---|
329 | pRam->GCPhys + off, pPage, rc));
|
---|
330 |
|
---|
331 | /* next page */
|
---|
332 | if (cb >= cbWrite)
|
---|
333 | {
|
---|
334 | PGM_UNLOCK(pVM);
|
---|
335 | return VINF_SUCCESS;
|
---|
336 | }
|
---|
337 |
|
---|
338 | cbWrite -= cb;
|
---|
339 | off += cb;
|
---|
340 | GCPhys += cb;
|
---|
341 | pvBuf = (const char *)pvBuf + cb;
|
---|
342 | } /* walk pages in ram range */
|
---|
343 | }
|
---|
344 | else
|
---|
345 | {
|
---|
346 | /*
|
---|
347 | * Unassigned address space, skip it.
|
---|
348 | */
|
---|
349 | if (!pRam)
|
---|
350 | break;
|
---|
351 | size_t cb = pRam->GCPhys - GCPhys;
|
---|
352 | if (cb >= cbWrite)
|
---|
353 | break;
|
---|
354 | cbWrite -= cb;
|
---|
355 | pvBuf = (const char *)pvBuf + cb;
|
---|
356 | GCPhys += cb;
|
---|
357 | }
|
---|
358 | } /* Ram range walk */
|
---|
359 |
|
---|
360 | PGM_UNLOCK(pVM);
|
---|
361 | return VINF_SUCCESS;
|
---|
362 | }
|
---|
363 |
|
---|
364 |
|
---|
365 | /*********************************************************************************************************************************
|
---|
366 | * Mapping Guest Physical Memory *
|
---|
367 | *********************************************************************************************************************************/
|
---|
368 |
|
---|
369 | /**
|
---|
370 | * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
|
---|
371 | *
|
---|
372 | * @returns see PGMR3PhysGCPhys2CCPtrExternal
|
---|
373 | * @param pVM The cross context VM structure.
|
---|
374 | * @param pGCPhys Pointer to the guest physical address.
|
---|
375 | * @param ppv Where to store the mapping address.
|
---|
376 | * @param pLock Where to store the lock.
|
---|
377 | */
|
---|
378 | static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
379 | {
|
---|
380 | /*
|
---|
381 | * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
|
---|
382 | * an access handler after it succeeds.
|
---|
383 | */
|
---|
384 | int rc = PGM_LOCK(pVM);
|
---|
385 | AssertRCReturn(rc, rc);
|
---|
386 |
|
---|
387 | rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
|
---|
388 | if (RT_SUCCESS(rc))
|
---|
389 | {
|
---|
390 | PPGMPAGEMAPTLBE pTlbe;
|
---|
391 | int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
|
---|
392 | AssertFatalRC(rc2);
|
---|
393 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
394 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
395 | {
|
---|
396 | PGMPhysReleasePageMappingLock(pVM, pLock);
|
---|
397 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
398 | }
|
---|
399 | else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
400 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
401 | || pgmPoolIsDirtyPage(pVM, *pGCPhys)
|
---|
402 | #endif
|
---|
403 | )
|
---|
404 | {
|
---|
405 | /* We *must* flush any corresponding pgm pool page here, otherwise we'll
|
---|
406 | * not be informed about writes and keep bogus gst->shw mappings around.
|
---|
407 | */
|
---|
408 | pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
|
---|
409 | Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
|
---|
410 | /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
|
---|
411 | * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
|
---|
412 | }
|
---|
413 | }
|
---|
414 |
|
---|
415 | PGM_UNLOCK(pVM);
|
---|
416 | return rc;
|
---|
417 | }
|
---|
418 |
|
---|
419 |
|
---|
420 | /**
|
---|
421 | * Requests the mapping of a guest page into ring-3, external threads.
|
---|
422 | *
|
---|
423 | * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
|
---|
424 | * release it.
|
---|
425 | *
|
---|
426 | * This API will assume your intention is to write to the page, and will
|
---|
427 | * therefore replace shared and zero pages. If you do not intend to modify the
|
---|
428 | * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
|
---|
429 | *
|
---|
430 | * @returns VBox status code.
|
---|
431 | * @retval VINF_SUCCESS on success.
|
---|
432 | * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
|
---|
433 | * backing or if the page has any active access handlers. The caller
|
---|
434 | * must fall back on using PGMR3PhysWriteExternal.
|
---|
435 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
|
---|
436 | *
|
---|
437 | * @param pVM The cross context VM structure.
|
---|
438 | * @param GCPhys The guest physical address of the page that should be mapped.
|
---|
439 | * @param ppv Where to store the address corresponding to GCPhys.
|
---|
440 | * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
|
---|
441 | *
|
---|
442 | * @remark Avoid calling this API from within critical sections (other than the
|
---|
443 | * PGM one) because of the deadlock risk when we have to delegating the
|
---|
444 | * task to an EMT.
|
---|
445 | * @thread Any.
|
---|
446 | */
|
---|
447 | VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
448 | {
|
---|
449 | AssertPtr(ppv);
|
---|
450 | AssertPtr(pLock);
|
---|
451 |
|
---|
452 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
453 |
|
---|
454 | int rc = PGM_LOCK(pVM);
|
---|
455 | AssertRCReturn(rc, rc);
|
---|
456 |
|
---|
457 | /*
|
---|
458 | * Query the Physical TLB entry for the page (may fail).
|
---|
459 | */
|
---|
460 | PPGMPAGEMAPTLBE pTlbe;
|
---|
461 | rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
462 | if (RT_SUCCESS(rc))
|
---|
463 | {
|
---|
464 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
465 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
466 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
467 | else
|
---|
468 | {
|
---|
469 | /*
|
---|
470 | * If the page is shared, the zero page, or being write monitored
|
---|
471 | * it must be converted to an page that's writable if possible.
|
---|
472 | * We can only deal with write monitored pages here, the rest have
|
---|
473 | * to be on an EMT.
|
---|
474 | */
|
---|
475 | if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
476 | || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
477 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
478 | || pgmPoolIsDirtyPage(pVM, GCPhys)
|
---|
479 | #endif
|
---|
480 | )
|
---|
481 | {
|
---|
482 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
483 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
484 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
485 | && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
|
---|
486 | #endif
|
---|
487 | )
|
---|
488 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
|
---|
489 | else
|
---|
490 | {
|
---|
491 | PGM_UNLOCK(pVM);
|
---|
492 |
|
---|
493 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
|
---|
494 | pVM, &GCPhys, ppv, pLock);
|
---|
495 | }
|
---|
496 | }
|
---|
497 |
|
---|
498 | /*
|
---|
499 | * Now, just perform the locking and calculate the return address.
|
---|
500 | */
|
---|
501 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
502 | if (pMap)
|
---|
503 | pMap->cRefs++;
|
---|
504 |
|
---|
505 | unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
|
---|
506 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
507 | {
|
---|
508 | if (cLocks == 0)
|
---|
509 | pVM->pgm.s.cWriteLockedPages++;
|
---|
510 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
511 | }
|
---|
512 | else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
|
---|
513 | {
|
---|
514 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
515 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
|
---|
516 | if (pMap)
|
---|
517 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
518 | }
|
---|
519 |
|
---|
520 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK));
|
---|
521 | pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
|
---|
522 | pLock->pvMap = pMap;
|
---|
523 | }
|
---|
524 | }
|
---|
525 |
|
---|
526 | PGM_UNLOCK(pVM);
|
---|
527 | return rc;
|
---|
528 | }
|
---|
529 |
|
---|
530 |
|
---|
531 | /**
|
---|
532 | * Requests the mapping of a guest page into ring-3, external threads.
|
---|
533 | *
|
---|
534 | * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
|
---|
535 | * release it.
|
---|
536 | *
|
---|
537 | * @returns VBox status code.
|
---|
538 | * @retval VINF_SUCCESS on success.
|
---|
539 | * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
|
---|
540 | * backing or if the page as an active ALL access handler. The caller
|
---|
541 | * must fall back on using PGMPhysRead.
|
---|
542 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
|
---|
543 | *
|
---|
544 | * @param pVM The cross context VM structure.
|
---|
545 | * @param GCPhys The guest physical address of the page that should be mapped.
|
---|
546 | * @param ppv Where to store the address corresponding to GCPhys.
|
---|
547 | * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
|
---|
548 | *
|
---|
549 | * @remark Avoid calling this API from within critical sections (other than
|
---|
550 | * the PGM one) because of the deadlock risk.
|
---|
551 | * @thread Any.
|
---|
552 | */
|
---|
553 | VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
554 | {
|
---|
555 | int rc = PGM_LOCK(pVM);
|
---|
556 | AssertRCReturn(rc, rc);
|
---|
557 |
|
---|
558 | /*
|
---|
559 | * Query the Physical TLB entry for the page (may fail).
|
---|
560 | */
|
---|
561 | PPGMPAGEMAPTLBE pTlbe;
|
---|
562 | rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
563 | if (RT_SUCCESS(rc))
|
---|
564 | {
|
---|
565 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
566 | #if 1
|
---|
567 | /* MMIO pages doesn't have any readable backing. */
|
---|
568 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
569 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
570 | #else
|
---|
571 | if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
572 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
573 | #endif
|
---|
574 | else
|
---|
575 | {
|
---|
576 | /*
|
---|
577 | * Now, just perform the locking and calculate the return address.
|
---|
578 | */
|
---|
579 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
580 | if (pMap)
|
---|
581 | pMap->cRefs++;
|
---|
582 |
|
---|
583 | unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
|
---|
584 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
585 | {
|
---|
586 | if (cLocks == 0)
|
---|
587 | pVM->pgm.s.cReadLockedPages++;
|
---|
588 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
589 | }
|
---|
590 | else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
|
---|
591 | {
|
---|
592 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
593 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
|
---|
594 | if (pMap)
|
---|
595 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
596 | }
|
---|
597 |
|
---|
598 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK));
|
---|
599 | pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
|
---|
600 | pLock->pvMap = pMap;
|
---|
601 | }
|
---|
602 | }
|
---|
603 |
|
---|
604 | PGM_UNLOCK(pVM);
|
---|
605 | return rc;
|
---|
606 | }
|
---|
607 |
|
---|
608 |
|
---|
609 | /**
|
---|
610 | * Requests the mapping of multiple guest page into ring-3, external threads.
|
---|
611 | *
|
---|
612 | * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
|
---|
613 | * ASAP to release them.
|
---|
614 | *
|
---|
615 | * This API will assume your intention is to write to the pages, and will
|
---|
616 | * therefore replace shared and zero pages. If you do not intend to modify the
|
---|
617 | * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
|
---|
618 | *
|
---|
619 | * @returns VBox status code.
|
---|
620 | * @retval VINF_SUCCESS on success.
|
---|
621 | * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
|
---|
622 | * backing or if any of the pages the page has any active access
|
---|
623 | * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
|
---|
624 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
|
---|
625 | * an invalid physical address.
|
---|
626 | *
|
---|
627 | * @param pVM The cross context VM structure.
|
---|
628 | * @param cPages Number of pages to lock.
|
---|
629 | * @param paGCPhysPages The guest physical address of the pages that
|
---|
630 | * should be mapped (@a cPages entries).
|
---|
631 | * @param papvPages Where to store the ring-3 mapping addresses
|
---|
632 | * corresponding to @a paGCPhysPages.
|
---|
633 | * @param paLocks Where to store the locking information that
|
---|
634 | * pfnPhysBulkReleasePageMappingLock needs (@a cPages
|
---|
635 | * in length).
|
---|
636 | *
|
---|
637 | * @remark Avoid calling this API from within critical sections (other than the
|
---|
638 | * PGM one) because of the deadlock risk when we have to delegating the
|
---|
639 | * task to an EMT.
|
---|
640 | * @thread Any.
|
---|
641 | */
|
---|
642 | VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
|
---|
643 | void **papvPages, PPGMPAGEMAPLOCK paLocks)
|
---|
644 | {
|
---|
645 | Assert(cPages > 0);
|
---|
646 | AssertPtr(papvPages);
|
---|
647 | AssertPtr(paLocks);
|
---|
648 |
|
---|
649 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
650 |
|
---|
651 | int rc = PGM_LOCK(pVM);
|
---|
652 | AssertRCReturn(rc, rc);
|
---|
653 |
|
---|
654 | /*
|
---|
655 | * Lock the pages one by one.
|
---|
656 | * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
|
---|
657 | */
|
---|
658 | int32_t cNextYield = 128;
|
---|
659 | uint32_t iPage;
|
---|
660 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
661 | {
|
---|
662 | if (--cNextYield > 0)
|
---|
663 | { /* likely */ }
|
---|
664 | else
|
---|
665 | {
|
---|
666 | PGM_UNLOCK(pVM);
|
---|
667 | ASMNopPause();
|
---|
668 | PGM_LOCK_VOID(pVM);
|
---|
669 | cNextYield = 128;
|
---|
670 | }
|
---|
671 |
|
---|
672 | /*
|
---|
673 | * Query the Physical TLB entry for the page (may fail).
|
---|
674 | */
|
---|
675 | PPGMPAGEMAPTLBE pTlbe;
|
---|
676 | rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
|
---|
677 | if (RT_SUCCESS(rc))
|
---|
678 | { }
|
---|
679 | else
|
---|
680 | break;
|
---|
681 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
682 |
|
---|
683 | /*
|
---|
684 | * No MMIO or active access handlers.
|
---|
685 | */
|
---|
686 | if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
|
---|
687 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
688 | { }
|
---|
689 | else
|
---|
690 | {
|
---|
691 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
692 | break;
|
---|
693 | }
|
---|
694 |
|
---|
695 | /*
|
---|
696 | * The page must be in the allocated state and not be a dirty pool page.
|
---|
697 | * We can handle converting a write monitored page to an allocated one, but
|
---|
698 | * anything more complicated must be delegated to an EMT.
|
---|
699 | */
|
---|
700 | bool fDelegateToEmt = false;
|
---|
701 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
|
---|
702 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
703 | fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
|
---|
704 | #else
|
---|
705 | fDelegateToEmt = false;
|
---|
706 | #endif
|
---|
707 | else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
|
---|
708 | {
|
---|
709 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
710 | if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
|
---|
711 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
|
---|
712 | else
|
---|
713 | fDelegateToEmt = true;
|
---|
714 | #endif
|
---|
715 | }
|
---|
716 | else
|
---|
717 | fDelegateToEmt = true;
|
---|
718 | if (!fDelegateToEmt)
|
---|
719 | { }
|
---|
720 | else
|
---|
721 | {
|
---|
722 | /* We could do this delegation in bulk, but considered too much work vs gain. */
|
---|
723 | PGM_UNLOCK(pVM);
|
---|
724 | rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
|
---|
725 | pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
|
---|
726 | PGM_LOCK_VOID(pVM);
|
---|
727 | if (RT_FAILURE(rc))
|
---|
728 | break;
|
---|
729 | cNextYield = 128;
|
---|
730 | }
|
---|
731 |
|
---|
732 | /*
|
---|
733 | * Now, just perform the locking and address calculation.
|
---|
734 | */
|
---|
735 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
736 | if (pMap)
|
---|
737 | pMap->cRefs++;
|
---|
738 |
|
---|
739 | unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
|
---|
740 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
741 | {
|
---|
742 | if (cLocks == 0)
|
---|
743 | pVM->pgm.s.cWriteLockedPages++;
|
---|
744 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
745 | }
|
---|
746 | else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
|
---|
747 | {
|
---|
748 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
749 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
|
---|
750 | if (pMap)
|
---|
751 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
752 | }
|
---|
753 |
|
---|
754 | papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & GUEST_PAGE_OFFSET_MASK));
|
---|
755 | paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
|
---|
756 | paLocks[iPage].pvMap = pMap;
|
---|
757 | }
|
---|
758 |
|
---|
759 | PGM_UNLOCK(pVM);
|
---|
760 |
|
---|
761 | /*
|
---|
762 | * On failure we must unlock any pages we managed to get already.
|
---|
763 | */
|
---|
764 | if (RT_FAILURE(rc) && iPage > 0)
|
---|
765 | PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
|
---|
766 |
|
---|
767 | return rc;
|
---|
768 | }
|
---|
769 |
|
---|
770 |
|
---|
771 | /**
|
---|
772 | * Requests the mapping of multiple guest page into ring-3, for reading only,
|
---|
773 | * external threads.
|
---|
774 | *
|
---|
775 | * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
|
---|
776 | * to release them.
|
---|
777 | *
|
---|
778 | * @returns VBox status code.
|
---|
779 | * @retval VINF_SUCCESS on success.
|
---|
780 | * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
|
---|
781 | * backing or if any of the pages the page has an active ALL access
|
---|
782 | * handler. The caller must fall back on using PGMR3PhysWriteExternal.
|
---|
783 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
|
---|
784 | * an invalid physical address.
|
---|
785 | *
|
---|
786 | * @param pVM The cross context VM structure.
|
---|
787 | * @param cPages Number of pages to lock.
|
---|
788 | * @param paGCPhysPages The guest physical address of the pages that
|
---|
789 | * should be mapped (@a cPages entries).
|
---|
790 | * @param papvPages Where to store the ring-3 mapping addresses
|
---|
791 | * corresponding to @a paGCPhysPages.
|
---|
792 | * @param paLocks Where to store the lock information that
|
---|
793 | * pfnPhysReleasePageMappingLock needs (@a cPages
|
---|
794 | * in length).
|
---|
795 | *
|
---|
796 | * @remark Avoid calling this API from within critical sections (other than
|
---|
797 | * the PGM one) because of the deadlock risk.
|
---|
798 | * @thread Any.
|
---|
799 | */
|
---|
800 | VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
|
---|
801 | void const **papvPages, PPGMPAGEMAPLOCK paLocks)
|
---|
802 | {
|
---|
803 | Assert(cPages > 0);
|
---|
804 | AssertPtr(papvPages);
|
---|
805 | AssertPtr(paLocks);
|
---|
806 |
|
---|
807 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
808 |
|
---|
809 | int rc = PGM_LOCK(pVM);
|
---|
810 | AssertRCReturn(rc, rc);
|
---|
811 |
|
---|
812 | /*
|
---|
813 | * Lock the pages one by one.
|
---|
814 | * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
|
---|
815 | */
|
---|
816 | int32_t cNextYield = 256;
|
---|
817 | uint32_t iPage;
|
---|
818 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
819 | {
|
---|
820 | if (--cNextYield > 0)
|
---|
821 | { /* likely */ }
|
---|
822 | else
|
---|
823 | {
|
---|
824 | PGM_UNLOCK(pVM);
|
---|
825 | ASMNopPause();
|
---|
826 | PGM_LOCK_VOID(pVM);
|
---|
827 | cNextYield = 256;
|
---|
828 | }
|
---|
829 |
|
---|
830 | /*
|
---|
831 | * Query the Physical TLB entry for the page (may fail).
|
---|
832 | */
|
---|
833 | PPGMPAGEMAPTLBE pTlbe;
|
---|
834 | rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
|
---|
835 | if (RT_SUCCESS(rc))
|
---|
836 | { }
|
---|
837 | else
|
---|
838 | break;
|
---|
839 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
840 |
|
---|
841 | /*
|
---|
842 | * No MMIO or active all access handlers, everything else can be accessed.
|
---|
843 | */
|
---|
844 | if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
|
---|
845 | && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
846 | { }
|
---|
847 | else
|
---|
848 | {
|
---|
849 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
850 | break;
|
---|
851 | }
|
---|
852 |
|
---|
853 | /*
|
---|
854 | * Now, just perform the locking and address calculation.
|
---|
855 | */
|
---|
856 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
857 | if (pMap)
|
---|
858 | pMap->cRefs++;
|
---|
859 |
|
---|
860 | unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
|
---|
861 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
862 | {
|
---|
863 | if (cLocks == 0)
|
---|
864 | pVM->pgm.s.cReadLockedPages++;
|
---|
865 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
866 | }
|
---|
867 | else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
|
---|
868 | {
|
---|
869 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
870 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
|
---|
871 | if (pMap)
|
---|
872 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
873 | }
|
---|
874 |
|
---|
875 | papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & GUEST_PAGE_OFFSET_MASK));
|
---|
876 | paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
|
---|
877 | paLocks[iPage].pvMap = pMap;
|
---|
878 | }
|
---|
879 |
|
---|
880 | PGM_UNLOCK(pVM);
|
---|
881 |
|
---|
882 | /*
|
---|
883 | * On failure we must unlock any pages we managed to get already.
|
---|
884 | */
|
---|
885 | if (RT_FAILURE(rc) && iPage > 0)
|
---|
886 | PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
|
---|
887 |
|
---|
888 | return rc;
|
---|
889 | }
|
---|
890 |
|
---|
891 |
|
---|
892 | /**
|
---|
893 | * Converts a GC physical address to a HC ring-3 pointer, with some
|
---|
894 | * additional checks.
|
---|
895 | *
|
---|
896 | * @returns VBox status code.
|
---|
897 | * @retval VINF_SUCCESS on success.
|
---|
898 | * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
|
---|
899 | * access handler of some kind.
|
---|
900 | * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
|
---|
901 | * accesses or is odd in any way.
|
---|
902 | * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
|
---|
903 | *
|
---|
904 | * @param pVM The cross context VM structure.
|
---|
905 | * @param GCPhys The GC physical address to convert. Since this is only
|
---|
906 | * used for filling the REM TLB, the A20 mask must be
|
---|
907 | * applied before calling this API.
|
---|
908 | * @param fWritable Whether write access is required.
|
---|
909 | * @param ppv Where to store the pointer corresponding to GCPhys on
|
---|
910 | * success.
|
---|
911 | */
|
---|
912 | VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
|
---|
913 | {
|
---|
914 | PGM_LOCK_VOID(pVM);
|
---|
915 | PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
|
---|
916 |
|
---|
917 | PPGMRAMRANGE pRam;
|
---|
918 | PPGMPAGE pPage;
|
---|
919 | int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
|
---|
920 | if (RT_SUCCESS(rc))
|
---|
921 | {
|
---|
922 | if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
923 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
924 | else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
|
---|
925 | rc = VINF_SUCCESS;
|
---|
926 | else
|
---|
927 | {
|
---|
928 | if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
|
---|
929 | rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
930 | else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
931 | {
|
---|
932 | /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
|
---|
933 | * in -norawr0 mode. */
|
---|
934 | if (fWritable)
|
---|
935 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
936 | }
|
---|
937 | else
|
---|
938 | {
|
---|
939 | /* Temporarily disabled physical handler(s), since the recompiler
|
---|
940 | doesn't get notified when it's reset we'll have to pretend it's
|
---|
941 | operating normally. */
|
---|
942 | if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
|
---|
943 | rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
944 | else
|
---|
945 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
946 | }
|
---|
947 | }
|
---|
948 | if (RT_SUCCESS(rc))
|
---|
949 | {
|
---|
950 | int rc2;
|
---|
951 |
|
---|
952 | /* Make sure what we return is writable. */
|
---|
953 | if (fWritable)
|
---|
954 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
955 | {
|
---|
956 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
957 | break;
|
---|
958 | case PGM_PAGE_STATE_BALLOONED:
|
---|
959 | AssertFailed();
|
---|
960 | break;
|
---|
961 | case PGM_PAGE_STATE_ZERO:
|
---|
962 | case PGM_PAGE_STATE_SHARED:
|
---|
963 | if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
|
---|
964 | break;
|
---|
965 | RT_FALL_THRU();
|
---|
966 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
967 | rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
|
---|
968 | AssertLogRelRCReturn(rc2, rc2);
|
---|
969 | break;
|
---|
970 | }
|
---|
971 |
|
---|
972 | /* Get a ring-3 mapping of the address. */
|
---|
973 | PPGMPAGER3MAPTLBE pTlbe;
|
---|
974 | rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
975 | AssertLogRelRCReturn(rc2, rc2);
|
---|
976 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK));
|
---|
977 | /** @todo mapping/locking hell; this isn't horribly efficient since
|
---|
978 | * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
|
---|
979 |
|
---|
980 | Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
|
---|
981 | }
|
---|
982 | else
|
---|
983 | Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
|
---|
984 |
|
---|
985 | /* else: handler catching all access, no pointer returned. */
|
---|
986 | }
|
---|
987 | else
|
---|
988 | rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
989 |
|
---|
990 | PGM_UNLOCK(pVM);
|
---|
991 | return rc;
|
---|
992 | }
|
---|
993 |
|
---|
994 |
|
---|
995 |
|
---|
996 | /*********************************************************************************************************************************
|
---|
997 | * RAM Range Management *
|
---|
998 | *********************************************************************************************************************************/
|
---|
999 |
|
---|
1000 | /**
|
---|
1001 | * Given the range @a GCPhys thru @a GCPhysLast, find overlapping RAM range or
|
---|
1002 | * the correct insertion point.
|
---|
1003 | *
|
---|
1004 | * @returns Pointer to overlapping RAM range if found, NULL if not.
|
---|
1005 | * @param pVM The cross context VM structure.
|
---|
1006 | * @param GCPhys The address of the first byte in the range.
|
---|
1007 | * @param GCPhysLast The address of the last byte in the range.
|
---|
1008 | * @param pidxInsert Where to return the lookup table index to insert the
|
---|
1009 | * range at when returning NULL. Set to UINT32_MAX when
|
---|
1010 | * returning the pointer to an overlapping range.
|
---|
1011 | * @note Caller must own the PGM lock.
|
---|
1012 | */
|
---|
1013 | static PPGMRAMRANGE pgmR3PhysRamRangeFindOverlapping(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint32_t *pidxInsert)
|
---|
1014 | {
|
---|
1015 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1016 | uint32_t iStart = 0;
|
---|
1017 | uint32_t iEnd = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1018 | for (;;)
|
---|
1019 | {
|
---|
1020 | uint32_t idxLookup = iStart + (iEnd - iStart) / 2;
|
---|
1021 | RTGCPHYS const GCPhysEntryFirst = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1022 | if (GCPhysLast < GCPhysEntryFirst)
|
---|
1023 | {
|
---|
1024 | if (idxLookup > iStart)
|
---|
1025 | iEnd = idxLookup;
|
---|
1026 | else
|
---|
1027 | {
|
---|
1028 | *pidxInsert = idxLookup;
|
---|
1029 | return NULL;
|
---|
1030 | }
|
---|
1031 | }
|
---|
1032 | else
|
---|
1033 | {
|
---|
1034 | RTGCPHYS const GCPhysEntryLast = pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast;
|
---|
1035 | if (GCPhys > GCPhysEntryLast)
|
---|
1036 | {
|
---|
1037 | idxLookup += 1;
|
---|
1038 | if (idxLookup < iEnd)
|
---|
1039 | iStart = idxLookup;
|
---|
1040 | else
|
---|
1041 | {
|
---|
1042 | *pidxInsert = idxLookup;
|
---|
1043 | return NULL;
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 | else
|
---|
1047 | {
|
---|
1048 | /* overlap */
|
---|
1049 | Assert(GCPhysEntryLast > GCPhys && GCPhysEntryFirst < GCPhysLast);
|
---|
1050 | *pidxInsert = UINT32_MAX;
|
---|
1051 | return pVM->pgm.s.apRamRanges[PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup])];
|
---|
1052 | }
|
---|
1053 | }
|
---|
1054 | }
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 |
|
---|
1058 | /**
|
---|
1059 | * Given the range @a GCPhys thru @a GCPhysLast, find the lookup table entry
|
---|
1060 | * that's overlapping it.
|
---|
1061 | *
|
---|
1062 | * @returns The lookup table index of the overlapping entry, UINT32_MAX if not
|
---|
1063 | * found.
|
---|
1064 | * @param pVM The cross context VM structure.
|
---|
1065 | * @param GCPhys The address of the first byte in the range.
|
---|
1066 | * @param GCPhysLast The address of the last byte in the range.
|
---|
1067 | * @note Caller must own the PGM lock.
|
---|
1068 | */
|
---|
1069 | static uint32_t pgmR3PhysRamRangeFindOverlappingIndex(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast)
|
---|
1070 | {
|
---|
1071 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1072 | uint32_t iStart = 0;
|
---|
1073 | uint32_t iEnd = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1074 | for (;;)
|
---|
1075 | {
|
---|
1076 | uint32_t idxLookup = iStart + (iEnd - iStart) / 2;
|
---|
1077 | RTGCPHYS const GCPhysEntryFirst = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1078 | if (GCPhysLast < GCPhysEntryFirst)
|
---|
1079 | {
|
---|
1080 | if (idxLookup > iStart)
|
---|
1081 | iEnd = idxLookup;
|
---|
1082 | else
|
---|
1083 | return UINT32_MAX;
|
---|
1084 | }
|
---|
1085 | else
|
---|
1086 | {
|
---|
1087 | RTGCPHYS const GCPhysEntryLast = pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast;
|
---|
1088 | if (GCPhys > GCPhysEntryLast)
|
---|
1089 | {
|
---|
1090 | idxLookup += 1;
|
---|
1091 | if (idxLookup < iEnd)
|
---|
1092 | iStart = idxLookup;
|
---|
1093 | else
|
---|
1094 | return UINT32_MAX;
|
---|
1095 | }
|
---|
1096 | else
|
---|
1097 | {
|
---|
1098 | /* overlap */
|
---|
1099 | Assert(GCPhysEntryLast > GCPhys && GCPhysEntryFirst < GCPhysLast);
|
---|
1100 | return idxLookup;
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | * Insert @a pRam into the lookup table.
|
---|
1109 | *
|
---|
1110 | * @returns VBox status code.
|
---|
1111 | * @param pVM The cross context VM structure.
|
---|
1112 | * @param pRam The RAM range to insert into the lookup table.
|
---|
1113 | * @param GCPhys The new mapping address to assign @a pRam on insertion.
|
---|
1114 | * @param pidxLookup Optional lookup table hint. This is updated.
|
---|
1115 | * @note Caller must own PGM lock.
|
---|
1116 | */
|
---|
1117 | static int pgmR3PhysRamRangeInsertLookup(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, uint32_t *pidxLookup)
|
---|
1118 | {
|
---|
1119 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1120 | #ifdef DEBUG_bird
|
---|
1121 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, true /*fRamRelaxed*/);
|
---|
1122 | #endif
|
---|
1123 | AssertMsg(pRam->pszDesc, ("%RGp-%RGp\n", pRam->GCPhys, pRam->GCPhysLast));
|
---|
1124 | AssertLogRelMsgReturn( pRam->GCPhys == NIL_RTGCPHYS
|
---|
1125 | && pRam->GCPhysLast == NIL_RTGCPHYS,
|
---|
1126 | ("GCPhys=%RGp; range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n",
|
---|
1127 | GCPhys, pRam->GCPhys, pRam->cb, pRam->GCPhysLast, pRam->pszDesc),
|
---|
1128 | VERR_ALREADY_EXISTS);
|
---|
1129 | uint32_t const idRamRange = pRam->idRange;
|
---|
1130 | AssertReturn(pVM->pgm.s.apRamRanges[idRamRange] == pRam, VERR_INTERNAL_ERROR_2);
|
---|
1131 |
|
---|
1132 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INTERNAL_ERROR_3);
|
---|
1133 | RTGCPHYS const GCPhysLast = GCPhys + pRam->cb - 1U;
|
---|
1134 | AssertReturn(GCPhysLast > GCPhys, VERR_INTERNAL_ERROR_4);
|
---|
1135 | LogFlowFunc(("GCPhys=%RGp LB %RGp GCPhysLast=%RGp id=%#x %s\n", GCPhys, pRam->cb, GCPhysLast, idRamRange, pRam->pszDesc));
|
---|
1136 |
|
---|
1137 | /*
|
---|
1138 | * Find the lookup table location if necessary.
|
---|
1139 | */
|
---|
1140 | uint32_t const cLookupEntries = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1141 | AssertLogRelMsgReturn(cLookupEntries + 1 < RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup), /* id=0 is unused, so < is correct. */
|
---|
1142 | ("%#x\n", cLookupEntries), VERR_INTERNAL_ERROR_3);
|
---|
1143 |
|
---|
1144 | uint32_t idxLookup = pidxLookup ? *pidxLookup : UINT32_MAX;
|
---|
1145 | if (cLookupEntries == 0)
|
---|
1146 | idxLookup = 0; /* special case: empty table */
|
---|
1147 | else
|
---|
1148 | {
|
---|
1149 | if ( idxLookup > cLookupEntries
|
---|
1150 | || ( idxLookup != 0
|
---|
1151 | && pVM->pgm.s.aRamRangeLookup[idxLookup - 1].GCPhysLast >= GCPhys)
|
---|
1152 | || ( idxLookup < cLookupEntries
|
---|
1153 | && PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]) < GCPhysLast))
|
---|
1154 | {
|
---|
1155 | PPGMRAMRANGE pOverlapping = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxLookup);
|
---|
1156 | AssertLogRelMsgReturn(!pOverlapping,
|
---|
1157 | ("GCPhys=%RGp; GCPhysLast=%RGp %s - overlaps %RGp...%RGp %s\n",
|
---|
1158 | GCPhys, GCPhysLast, pRam->pszDesc,
|
---|
1159 | pOverlapping->GCPhys, pOverlapping->GCPhysLast, pOverlapping->pszDesc),
|
---|
1160 | VERR_PGM_RAM_CONFLICT);
|
---|
1161 | AssertLogRelMsgReturn(idxLookup <= cLookupEntries, ("%#x vs %#x\n", idxLookup, cLookupEntries), VERR_INTERNAL_ERROR_5);
|
---|
1162 | }
|
---|
1163 | /* else we've got a good hint. */
|
---|
1164 | }
|
---|
1165 |
|
---|
1166 | /*
|
---|
1167 | * Do the actual job.
|
---|
1168 | *
|
---|
1169 | * The moving of existing table entries is done in a way that allows other
|
---|
1170 | * EMTs to perform concurrent lookups with the updating.
|
---|
1171 | */
|
---|
1172 | bool const fUseAtomic = pVM->enmVMState != VMSTATE_CREATING
|
---|
1173 | && pVM->cCpus > 1
|
---|
1174 | #ifdef RT_ARCH_AMD64
|
---|
1175 | && g_CpumHostFeatures.s.fCmpXchg16b
|
---|
1176 | #endif
|
---|
1177 | ;
|
---|
1178 |
|
---|
1179 | /* Signal that we're modifying the lookup table: */
|
---|
1180 | uint32_t const idGeneration = (pVM->pgm.s.RamRangeUnion.idGeneration + 1) | 1; /* paranoia^3 */
|
---|
1181 | ASMAtomicWriteU32(&pVM->pgm.s.RamRangeUnion.idGeneration, idGeneration);
|
---|
1182 |
|
---|
1183 | /* Update the RAM range entry. */
|
---|
1184 | pRam->GCPhys = GCPhys;
|
---|
1185 | pRam->GCPhysLast = GCPhysLast;
|
---|
1186 |
|
---|
1187 | /* Do we need to shift any lookup table entries? */
|
---|
1188 | if (idxLookup != cLookupEntries)
|
---|
1189 | {
|
---|
1190 | /* We do. Make a copy of the final entry first. */
|
---|
1191 | uint32_t cToMove = cLookupEntries - idxLookup;
|
---|
1192 | PGMRAMRANGELOOKUPENTRY *pCur = &pVM->pgm.s.aRamRangeLookup[cLookupEntries];
|
---|
1193 | pCur->GCPhysFirstAndId = pCur[-1].GCPhysFirstAndId;
|
---|
1194 | pCur->GCPhysLast = pCur[-1].GCPhysLast;
|
---|
1195 |
|
---|
1196 | /* Then increase the table size. This will ensure that anyone starting
|
---|
1197 | a search from here on should have consistent data. */
|
---|
1198 | ASMAtomicWriteU32(&pVM->pgm.s.RamRangeUnion.cLookupEntries, cLookupEntries + 1);
|
---|
1199 |
|
---|
1200 | /* Transfer the rest of the entries. */
|
---|
1201 | cToMove -= 1;
|
---|
1202 | if (cToMove > 0)
|
---|
1203 | {
|
---|
1204 | if (!fUseAtomic)
|
---|
1205 | do
|
---|
1206 | {
|
---|
1207 | pCur -= 1;
|
---|
1208 | pCur->GCPhysFirstAndId = pCur[-1].GCPhysFirstAndId;
|
---|
1209 | pCur->GCPhysLast = pCur[-1].GCPhysLast;
|
---|
1210 | cToMove -= 1;
|
---|
1211 | } while (cToMove > 0);
|
---|
1212 | else
|
---|
1213 | {
|
---|
1214 | #if RTASM_HAVE_WRITE_U128 >= 2
|
---|
1215 | do
|
---|
1216 | {
|
---|
1217 | pCur -= 1;
|
---|
1218 | ASMAtomicWriteU128U(&pCur->u128Volatile, pCur[-1].u128Normal);
|
---|
1219 | cToMove -= 1;
|
---|
1220 | } while (cToMove > 0);
|
---|
1221 |
|
---|
1222 | #else
|
---|
1223 | uint64_t u64PrevLo = pCur[-1].u128Normal.s.Lo;
|
---|
1224 | uint64_t u64PrevHi = pCur[-1].u128Normal.s.Hi;
|
---|
1225 | do
|
---|
1226 | {
|
---|
1227 | pCur -= 1;
|
---|
1228 | uint64_t const u64CurLo = pCur[-1].u128Normal.s.Lo;
|
---|
1229 | uint64_t const u64CurHi = pCur[-1].u128Normal.s.Hi;
|
---|
1230 | uint128_t uOldIgn;
|
---|
1231 | AssertStmt(ASMAtomicCmpXchgU128v2(&pCur->u128Volatile.u, u64CurHi, u64CurLo, u64PrevHi, u64PrevLo, &uOldIgn),
|
---|
1232 | (pCur->u128Volatile.s.Lo = u64CurLo, pCur->u128Volatile.s.Hi = u64CurHi));
|
---|
1233 | u64PrevLo = u64CurLo;
|
---|
1234 | u64PrevHi = u64CurHi;
|
---|
1235 | cToMove -= 1;
|
---|
1236 | } while (cToMove > 0);
|
---|
1237 | #endif
|
---|
1238 | }
|
---|
1239 | }
|
---|
1240 | }
|
---|
1241 |
|
---|
1242 | /*
|
---|
1243 | * Write the new entry.
|
---|
1244 | */
|
---|
1245 | PGMRAMRANGELOOKUPENTRY *pInsert = &pVM->pgm.s.aRamRangeLookup[idxLookup];
|
---|
1246 | if (!fUseAtomic)
|
---|
1247 | {
|
---|
1248 | pInsert->GCPhysFirstAndId = idRamRange | GCPhys;
|
---|
1249 | pInsert->GCPhysLast = GCPhysLast;
|
---|
1250 | }
|
---|
1251 | else
|
---|
1252 | {
|
---|
1253 | PGMRAMRANGELOOKUPENTRY NewEntry;
|
---|
1254 | NewEntry.GCPhysFirstAndId = idRamRange | GCPhys;
|
---|
1255 | NewEntry.GCPhysLast = GCPhysLast;
|
---|
1256 | ASMAtomicWriteU128v2(&pInsert->u128Volatile.u, NewEntry.u128Normal.s.Hi, NewEntry.u128Normal.s.Lo);
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 | /*
|
---|
1260 | * Update the generation and count in one go, signaling the end of the updating.
|
---|
1261 | */
|
---|
1262 | PGM::PGMRAMRANGEGENANDLOOKUPCOUNT GenAndCount;
|
---|
1263 | GenAndCount.cLookupEntries = cLookupEntries + 1;
|
---|
1264 | GenAndCount.idGeneration = idGeneration + 1;
|
---|
1265 | ASMAtomicWriteU64(&pVM->pgm.s.RamRangeUnion.u64Combined, GenAndCount.u64Combined);
|
---|
1266 |
|
---|
1267 | if (pidxLookup)
|
---|
1268 | *pidxLookup = idxLookup + 1;
|
---|
1269 |
|
---|
1270 | #ifdef DEBUG_bird
|
---|
1271 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
1272 | #endif
|
---|
1273 | return VINF_SUCCESS;
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 |
|
---|
1277 | /**
|
---|
1278 | * Removes @a pRam from the lookup table.
|
---|
1279 | *
|
---|
1280 | * @returns VBox status code.
|
---|
1281 | * @param pVM The cross context VM structure.
|
---|
1282 | * @param pRam The RAM range to insert into the lookup table.
|
---|
1283 | * @param pidxLookup Optional lookup table hint. This is updated.
|
---|
1284 | * @note Caller must own PGM lock.
|
---|
1285 | */
|
---|
1286 | static int pgmR3PhysRamRangeRemoveLookup(PVM pVM, PPGMRAMRANGE pRam, uint32_t *pidxLookup)
|
---|
1287 | {
|
---|
1288 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1289 | AssertMsg(pRam->pszDesc, ("%RGp-%RGp\n", pRam->GCPhys, pRam->GCPhysLast));
|
---|
1290 |
|
---|
1291 | RTGCPHYS const GCPhys = pRam->GCPhys;
|
---|
1292 | RTGCPHYS const GCPhysLast = pRam->GCPhysLast;
|
---|
1293 | AssertLogRelMsgReturn( GCPhys != NIL_RTGCPHYS
|
---|
1294 | || GCPhysLast != NIL_RTGCPHYS,
|
---|
1295 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n", GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1296 | VERR_NOT_FOUND);
|
---|
1297 | AssertLogRelMsgReturn( GCPhys != NIL_RTGCPHYS
|
---|
1298 | && GCPhysLast == GCPhys + pRam->cb - 1U
|
---|
1299 | && (GCPhys & GUEST_PAGE_OFFSET_MASK) == 0
|
---|
1300 | && (GCPhysLast & GUEST_PAGE_OFFSET_MASK) == GUEST_PAGE_OFFSET_MASK
|
---|
1301 | && GCPhysLast > GCPhys,
|
---|
1302 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n", GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1303 | VERR_INTERNAL_ERROR_5);
|
---|
1304 | uint32_t const idRamRange = pRam->idRange;
|
---|
1305 | AssertReturn(pVM->pgm.s.apRamRanges[idRamRange] == pRam, VERR_INTERNAL_ERROR_4);
|
---|
1306 | LogFlowFunc(("GCPhys=%RGp LB %RGp GCPhysLast=%RGp id=%#x %s\n", GCPhys, pRam->cb, GCPhysLast, idRamRange, pRam->pszDesc));
|
---|
1307 |
|
---|
1308 | /*
|
---|
1309 | * Find the lookup table location.
|
---|
1310 | */
|
---|
1311 | uint32_t const cLookupEntries = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1312 | AssertLogRelMsgReturn( cLookupEntries > 0
|
---|
1313 | && cLookupEntries < RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup), /* id=0 is unused, so < is correct. */
|
---|
1314 | ("%#x\n", cLookupEntries), VERR_INTERNAL_ERROR_3);
|
---|
1315 |
|
---|
1316 | uint32_t idxLookup = pidxLookup ? *pidxLookup : UINT32_MAX;
|
---|
1317 | if ( idxLookup >= cLookupEntries
|
---|
1318 | || pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast != GCPhysLast
|
---|
1319 | || pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysFirstAndId != (GCPhys | idRamRange))
|
---|
1320 | {
|
---|
1321 | uint32_t iStart = 0;
|
---|
1322 | uint32_t iEnd = cLookupEntries;
|
---|
1323 | for (;;)
|
---|
1324 | {
|
---|
1325 | idxLookup = iStart + (iEnd - iStart) / 2;
|
---|
1326 | RTGCPHYS const GCPhysEntryFirst = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1327 | if (GCPhysLast < GCPhysEntryFirst)
|
---|
1328 | {
|
---|
1329 | AssertLogRelMsgReturn(idxLookup > iStart,
|
---|
1330 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n",
|
---|
1331 | GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1332 | VERR_NOT_FOUND);
|
---|
1333 | iEnd = idxLookup;
|
---|
1334 | }
|
---|
1335 | else
|
---|
1336 | {
|
---|
1337 | RTGCPHYS const GCPhysEntryLast = pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast;
|
---|
1338 | if (GCPhys > GCPhysEntryLast)
|
---|
1339 | {
|
---|
1340 | idxLookup += 1;
|
---|
1341 | AssertLogRelMsgReturn(idxLookup < iEnd,
|
---|
1342 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n",
|
---|
1343 | GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1344 | VERR_NOT_FOUND);
|
---|
1345 | iStart = idxLookup;
|
---|
1346 | }
|
---|
1347 | else
|
---|
1348 | {
|
---|
1349 | uint32_t const idEntry = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1350 | AssertLogRelMsgReturn( GCPhysEntryFirst == GCPhys
|
---|
1351 | && GCPhysEntryLast == GCPhysLast
|
---|
1352 | && idEntry == idRamRange,
|
---|
1353 | ("Found: %RGp..%RGp id=%#x; Wanted: GCPhys=%RGp LB %RGp GCPhysLast=%RGp id=%#x %s\n",
|
---|
1354 | GCPhysEntryFirst, GCPhysEntryLast, idEntry,
|
---|
1355 | GCPhys, pRam->cb, GCPhysLast, pRam->idRange, pRam->pszDesc),
|
---|
1356 | VERR_NOT_FOUND);
|
---|
1357 | break;
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 | }
|
---|
1361 | }
|
---|
1362 | /* else we've got a good hint. */
|
---|
1363 |
|
---|
1364 | /*
|
---|
1365 | * Do the actual job.
|
---|
1366 | *
|
---|
1367 | * The moving of existing table entries is done in a way that allows other
|
---|
1368 | * EMTs to perform concurrent lookups with the updating.
|
---|
1369 | */
|
---|
1370 | bool const fUseAtomic = pVM->enmVMState != VMSTATE_CREATING
|
---|
1371 | && pVM->cCpus > 1
|
---|
1372 | #ifdef RT_ARCH_AMD64
|
---|
1373 | && g_CpumHostFeatures.s.fCmpXchg16b
|
---|
1374 | #endif
|
---|
1375 | ;
|
---|
1376 |
|
---|
1377 | /* Signal that we're modifying the lookup table: */
|
---|
1378 | uint32_t const idGeneration = (pVM->pgm.s.RamRangeUnion.idGeneration + 1) | 1; /* paranoia^3 */
|
---|
1379 | ASMAtomicWriteU32(&pVM->pgm.s.RamRangeUnion.idGeneration, idGeneration);
|
---|
1380 |
|
---|
1381 | /* Do we need to shift any lookup table entries? (This is a lot simpler
|
---|
1382 | than insertion.) */
|
---|
1383 | if (idxLookup + 1U < cLookupEntries)
|
---|
1384 | {
|
---|
1385 | uint32_t cToMove = cLookupEntries - idxLookup - 1U;
|
---|
1386 | PGMRAMRANGELOOKUPENTRY *pCur = &pVM->pgm.s.aRamRangeLookup[idxLookup];
|
---|
1387 | if (!fUseAtomic)
|
---|
1388 | do
|
---|
1389 | {
|
---|
1390 | pCur->GCPhysFirstAndId = pCur[1].GCPhysFirstAndId;
|
---|
1391 | pCur->GCPhysLast = pCur[1].GCPhysLast;
|
---|
1392 | pCur += 1;
|
---|
1393 | cToMove -= 1;
|
---|
1394 | } while (cToMove > 0);
|
---|
1395 | else
|
---|
1396 | {
|
---|
1397 | #if RTASM_HAVE_WRITE_U128 >= 2
|
---|
1398 | do
|
---|
1399 | {
|
---|
1400 | ASMAtomicWriteU128U(&pCur->u128Volatile, pCur[1].u128Normal);
|
---|
1401 | pCur += 1;
|
---|
1402 | cToMove -= 1;
|
---|
1403 | } while (cToMove > 0);
|
---|
1404 |
|
---|
1405 | #else
|
---|
1406 | uint64_t u64PrevLo = pCur->u128Normal.s.Lo;
|
---|
1407 | uint64_t u64PrevHi = pCur->u128Normal.s.Hi;
|
---|
1408 | do
|
---|
1409 | {
|
---|
1410 | uint64_t const u64CurLo = pCur[1].u128Normal.s.Lo;
|
---|
1411 | uint64_t const u64CurHi = pCur[1].u128Normal.s.Hi;
|
---|
1412 | uint128_t uOldIgn;
|
---|
1413 | AssertStmt(ASMAtomicCmpXchgU128v2(&pCur->u128Volatile.u, u64CurHi, u64CurLo, u64PrevHi, u64PrevLo, &uOldIgn),
|
---|
1414 | (pCur->u128Volatile.s.Lo = u64CurLo, pCur->u128Volatile.s.Hi = u64CurHi));
|
---|
1415 | u64PrevLo = u64CurLo;
|
---|
1416 | u64PrevHi = u64CurHi;
|
---|
1417 | pCur += 1;
|
---|
1418 | cToMove -= 1;
|
---|
1419 | } while (cToMove > 0);
|
---|
1420 | #endif
|
---|
1421 | }
|
---|
1422 | }
|
---|
1423 |
|
---|
1424 | /* Update the RAM range entry to indicate that it is no longer mapped.
|
---|
1425 | The GCPhys member is accessed by the lockless TLB lookup code, so update
|
---|
1426 | it last and atomically to be on the safe side. */
|
---|
1427 | pRam->GCPhysLast = NIL_RTGCPHYS;
|
---|
1428 | ASMAtomicWriteU64(&pRam->GCPhys, NIL_RTGCPHYS);
|
---|
1429 |
|
---|
1430 | /*
|
---|
1431 | * Update the generation and count in one go, signaling the end of the updating.
|
---|
1432 | */
|
---|
1433 | PGM::PGMRAMRANGEGENANDLOOKUPCOUNT GenAndCount;
|
---|
1434 | GenAndCount.cLookupEntries = cLookupEntries - 1;
|
---|
1435 | GenAndCount.idGeneration = idGeneration + 1;
|
---|
1436 | ASMAtomicWriteU64(&pVM->pgm.s.RamRangeUnion.u64Combined, GenAndCount.u64Combined);
|
---|
1437 |
|
---|
1438 | if (pidxLookup)
|
---|
1439 | *pidxLookup = idxLookup + 1;
|
---|
1440 |
|
---|
1441 | return VINF_SUCCESS;
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 |
|
---|
1445 | /**
|
---|
1446 | * Gets the number of ram ranges.
|
---|
1447 | *
|
---|
1448 | * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
|
---|
1449 | * @param pVM The cross context VM structure.
|
---|
1450 | */
|
---|
1451 | VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
|
---|
1452 | {
|
---|
1453 | VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
|
---|
1454 |
|
---|
1455 | PGM_LOCK_VOID(pVM);
|
---|
1456 | uint32_t const cRamRanges = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
1457 | PGM_UNLOCK(pVM);
|
---|
1458 | return cRamRanges;
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 |
|
---|
1462 | /**
|
---|
1463 | * Get information about a range.
|
---|
1464 | *
|
---|
1465 | * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
|
---|
1466 | * @param pVM The cross context VM structure.
|
---|
1467 | * @param iRange The ordinal of the range.
|
---|
1468 | * @param pGCPhysStart Where to return the start of the range. Optional.
|
---|
1469 | * @param pGCPhysLast Where to return the address of the last byte in the
|
---|
1470 | * range. Optional.
|
---|
1471 | * @param ppszDesc Where to return the range description. Optional.
|
---|
1472 | * @param pfIsMmio Where to indicate that this is a pure MMIO range.
|
---|
1473 | * Optional.
|
---|
1474 | */
|
---|
1475 | VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
|
---|
1476 | const char **ppszDesc, bool *pfIsMmio)
|
---|
1477 | {
|
---|
1478 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
1479 |
|
---|
1480 | PGM_LOCK_VOID(pVM);
|
---|
1481 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
1482 | if (iRange < cLookupEntries)
|
---|
1483 | {
|
---|
1484 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[iRange]);
|
---|
1485 | Assert(idRamRange && idRamRange <= pVM->pgm.s.idRamRangeMax);
|
---|
1486 | PGMRAMRANGE const * const pRamRange = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
1487 | AssertPtr(pRamRange);
|
---|
1488 |
|
---|
1489 | if (pGCPhysStart)
|
---|
1490 | *pGCPhysStart = pRamRange->GCPhys;
|
---|
1491 | if (pGCPhysLast)
|
---|
1492 | *pGCPhysLast = pRamRange->GCPhysLast;
|
---|
1493 | if (ppszDesc)
|
---|
1494 | *ppszDesc = pRamRange->pszDesc;
|
---|
1495 | if (pfIsMmio)
|
---|
1496 | *pfIsMmio = !!(pRamRange->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
|
---|
1497 |
|
---|
1498 | PGM_UNLOCK(pVM);
|
---|
1499 | return VINF_SUCCESS;
|
---|
1500 | }
|
---|
1501 | PGM_UNLOCK(pVM);
|
---|
1502 | return VERR_OUT_OF_RANGE;
|
---|
1503 | }
|
---|
1504 |
|
---|
1505 |
|
---|
1506 | /**
|
---|
1507 | * Gets RAM ranges that are supposed to be zero'ed at boot.
|
---|
1508 | *
|
---|
1509 | * This function gets all RAM ranges that are not ad hoc (ROM, MMIO, MMIO2) memory.
|
---|
1510 | * The RAM hole (if any) is -NOT- included because we don't return 0s when it is
|
---|
1511 | * read anyway.
|
---|
1512 | *
|
---|
1513 | * @returns VBox status code.
|
---|
1514 | * @param pVM The cross context VM structure.
|
---|
1515 | * @param pRanges Where to store the physical RAM ranges.
|
---|
1516 | * @param cMaxRanges The maximum ranges that can be stored.
|
---|
1517 | */
|
---|
1518 | VMMR3_INT_DECL(int) PGMR3PhysGetRamBootZeroedRanges(PVM pVM, PPGMPHYSRANGES pRanges, uint32_t cMaxRanges)
|
---|
1519 | {
|
---|
1520 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
1521 | AssertPtrReturn(pRanges, VERR_INVALID_PARAMETER);
|
---|
1522 | AssertReturn(cMaxRanges > 0, VERR_INVALID_PARAMETER);
|
---|
1523 |
|
---|
1524 | int rc = VINF_SUCCESS;
|
---|
1525 | uint32_t idxRange = 0;
|
---|
1526 | PGM_LOCK_VOID(pVM);
|
---|
1527 |
|
---|
1528 | /*
|
---|
1529 | * The primary purpose of this API is the GIM Hyper-V hypercall which recommends (not
|
---|
1530 | * requires) that the largest ranges are reported earlier. Therefore, here we iterate
|
---|
1531 | * the ranges in reverse because in PGM the largest range is generally at the end.
|
---|
1532 | */
|
---|
1533 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
1534 | for (int32_t idxLookup = cLookupEntries - 1; idxLookup >= 0; idxLookup--)
|
---|
1535 | {
|
---|
1536 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1537 | Assert(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
1538 | PPGMRAMRANGE const pCur = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
1539 | AssertContinue(pCur);
|
---|
1540 |
|
---|
1541 | if (!PGM_RAM_RANGE_IS_AD_HOC(pCur))
|
---|
1542 | {
|
---|
1543 | if (idxRange < cMaxRanges)
|
---|
1544 | {
|
---|
1545 | /* Combine with previous range if it is contiguous, otherwise add it as a new range. */
|
---|
1546 | if ( idxRange > 0
|
---|
1547 | && pRanges->aRanges[idxRange - 1].GCPhysStart == pCur->GCPhysLast + 1U)
|
---|
1548 | {
|
---|
1549 | pRanges->aRanges[idxRange - 1].GCPhysStart = pCur->GCPhys;
|
---|
1550 | pRanges->aRanges[idxRange - 1].cPages += (pCur->cb >> GUEST_PAGE_SHIFT);
|
---|
1551 | }
|
---|
1552 | else
|
---|
1553 | {
|
---|
1554 | pRanges->aRanges[idxRange].GCPhysStart = pCur->GCPhys;
|
---|
1555 | pRanges->aRanges[idxRange].cPages = pCur->cb >> GUEST_PAGE_SHIFT;
|
---|
1556 | ++idxRange;
|
---|
1557 | }
|
---|
1558 | }
|
---|
1559 | else
|
---|
1560 | {
|
---|
1561 | rc = VERR_BUFFER_OVERFLOW;
|
---|
1562 | break;
|
---|
1563 | }
|
---|
1564 | }
|
---|
1565 | }
|
---|
1566 | pRanges->cRanges = idxRange;
|
---|
1567 | PGM_UNLOCK(pVM);
|
---|
1568 | return rc;
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 |
|
---|
1572 | /*********************************************************************************************************************************
|
---|
1573 | * RAM *
|
---|
1574 | *********************************************************************************************************************************/
|
---|
1575 |
|
---|
1576 | /**
|
---|
1577 | * Frees the specified RAM page and replaces it with the ZERO page.
|
---|
1578 | *
|
---|
1579 | * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
|
---|
1580 | *
|
---|
1581 | * @param pVM The cross context VM structure.
|
---|
1582 | * @param pReq Pointer to the request. This is NULL when doing a
|
---|
1583 | * bulk free in NEM memory mode.
|
---|
1584 | * @param pcPendingPages Where the number of pages waiting to be freed are
|
---|
1585 | * kept. This will normally be incremented. This is
|
---|
1586 | * NULL when doing a bulk free in NEM memory mode.
|
---|
1587 | * @param pPage Pointer to the page structure.
|
---|
1588 | * @param GCPhys The guest physical address of the page, if applicable.
|
---|
1589 | * @param enmNewType New page type for NEM notification, since several
|
---|
1590 | * callers will change the type upon successful return.
|
---|
1591 | *
|
---|
1592 | * @remarks The caller must own the PGM lock.
|
---|
1593 | */
|
---|
1594 | int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
|
---|
1595 | PGMPAGETYPE enmNewType)
|
---|
1596 | {
|
---|
1597 | /*
|
---|
1598 | * Assert sanity.
|
---|
1599 | */
|
---|
1600 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1601 | if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
|
---|
1602 | && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
|
---|
1603 | {
|
---|
1604 | AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
|
---|
1605 | return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
|
---|
1606 | }
|
---|
1607 |
|
---|
1608 | /** @todo What about ballooning of large pages??! */
|
---|
1609 | Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
|
---|
1610 | && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
|
---|
1611 |
|
---|
1612 | if ( PGM_PAGE_IS_ZERO(pPage)
|
---|
1613 | || PGM_PAGE_IS_BALLOONED(pPage))
|
---|
1614 | return VINF_SUCCESS;
|
---|
1615 |
|
---|
1616 | const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
|
---|
1617 | Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
|
---|
1618 | if (RT_UNLIKELY(!PGM_IS_IN_NEM_MODE(pVM)
|
---|
1619 | ? idPage == NIL_GMM_PAGEID
|
---|
1620 | || idPage > GMM_PAGEID_LAST
|
---|
1621 | || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID
|
---|
1622 | : idPage != NIL_GMM_PAGEID))
|
---|
1623 | {
|
---|
1624 | AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
|
---|
1625 | return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
|
---|
1626 | }
|
---|
1627 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
1628 | const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1629 | #endif
|
---|
1630 |
|
---|
1631 | /* update page count stats. */
|
---|
1632 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
1633 | pVM->pgm.s.cSharedPages--;
|
---|
1634 | else
|
---|
1635 | pVM->pgm.s.cPrivatePages--;
|
---|
1636 | pVM->pgm.s.cZeroPages++;
|
---|
1637 |
|
---|
1638 | /* Deal with write monitored pages. */
|
---|
1639 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
|
---|
1640 | {
|
---|
1641 | PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
|
---|
1642 | pVM->pgm.s.cWrittenToPages++;
|
---|
1643 | }
|
---|
1644 | PGM_PAGE_CLEAR_CODE_PAGE(pVM, pPage); /* No callback needed, IEMTlbInvalidateAllPhysicalAllCpus is called below. */
|
---|
1645 |
|
---|
1646 | /*
|
---|
1647 | * pPage = ZERO page.
|
---|
1648 | */
|
---|
1649 | PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
|
---|
1650 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
1651 | PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
|
---|
1652 | PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
1653 | PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
|
---|
1654 | PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
|
---|
1655 |
|
---|
1656 | /* Flush physical page map TLB entry. */
|
---|
1657 | pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
|
---|
1658 | IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_FREED); /// @todo move to the perform step.
|
---|
1659 |
|
---|
1660 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
1661 | /*
|
---|
1662 | * Skip the rest if we're doing a bulk free in NEM memory mode.
|
---|
1663 | */
|
---|
1664 | if (!pReq)
|
---|
1665 | return VINF_SUCCESS;
|
---|
1666 | AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
|
---|
1667 | #endif
|
---|
1668 |
|
---|
1669 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
1670 | /* Notify NEM. */
|
---|
1671 | /** @todo Remove this one? */
|
---|
1672 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1673 | {
|
---|
1674 | uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
|
---|
1675 | NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.abZeroPg,
|
---|
1676 | pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
|
---|
1677 | PGM_PAGE_SET_NEM_STATE(pPage, u2State);
|
---|
1678 | }
|
---|
1679 | #else
|
---|
1680 | RT_NOREF(enmNewType);
|
---|
1681 | #endif
|
---|
1682 |
|
---|
1683 | /*
|
---|
1684 | * Make sure it's not in the handy page array.
|
---|
1685 | */
|
---|
1686 | for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
|
---|
1687 | {
|
---|
1688 | if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
|
---|
1689 | {
|
---|
1690 | pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
|
---|
1691 | pVM->pgm.s.aHandyPages[i].fZeroed = false;
|
---|
1692 | pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
|
---|
1693 | break;
|
---|
1694 | }
|
---|
1695 | if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
|
---|
1696 | {
|
---|
1697 | pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
|
---|
1698 | break;
|
---|
1699 | }
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | /*
|
---|
1703 | * Push it onto the page array.
|
---|
1704 | */
|
---|
1705 | uint32_t iPage = *pcPendingPages;
|
---|
1706 | Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
|
---|
1707 | *pcPendingPages += 1;
|
---|
1708 |
|
---|
1709 | pReq->aPages[iPage].idPage = idPage;
|
---|
1710 |
|
---|
1711 | if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
|
---|
1712 | return VINF_SUCCESS;
|
---|
1713 |
|
---|
1714 | /*
|
---|
1715 | * Flush the pages.
|
---|
1716 | */
|
---|
1717 | int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
|
---|
1718 | if (RT_SUCCESS(rc))
|
---|
1719 | {
|
---|
1720 | GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
1721 | *pcPendingPages = 0;
|
---|
1722 | }
|
---|
1723 | return rc;
|
---|
1724 | }
|
---|
1725 |
|
---|
1726 |
|
---|
1727 | /**
|
---|
1728 | * Frees a range of pages, replacing them with ZERO pages of the specified type.
|
---|
1729 | *
|
---|
1730 | * @returns VBox status code.
|
---|
1731 | * @param pVM The cross context VM structure.
|
---|
1732 | * @param pRam The RAM range in which the pages resides.
|
---|
1733 | * @param GCPhys The address of the first page.
|
---|
1734 | * @param GCPhysLast The address of the last page.
|
---|
1735 | * @param pvMmio2 Pointer to the ring-3 mapping of any MMIO2 memory that
|
---|
1736 | * will replace the pages we're freeing up.
|
---|
1737 | */
|
---|
1738 | static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, void *pvMmio2)
|
---|
1739 | {
|
---|
1740 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1741 |
|
---|
1742 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
1743 | /*
|
---|
1744 | * In simplified memory mode we don't actually free the memory,
|
---|
1745 | * we just unmap it and let NEM do any unlocking of it.
|
---|
1746 | */
|
---|
1747 | if (pVM->pgm.s.fNemMode)
|
---|
1748 | {
|
---|
1749 | Assert(VM_IS_NEM_ENABLED(pVM) || VM_IS_EXEC_ENGINE_IEM(pVM));
|
---|
1750 | uint8_t u2State = 0; /* (We don't support UINT8_MAX here.) */
|
---|
1751 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1752 | {
|
---|
1753 | uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
|
---|
1754 | int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
|
---|
1755 | pRam->pbR3 ? pRam->pbR3 + GCPhys - pRam->GCPhys : NULL,
|
---|
1756 | pvMmio2, &u2State, NULL /*puNemRange*/);
|
---|
1757 | AssertLogRelRCReturn(rc, rc);
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 | /* Iterate the pages. */
|
---|
1761 | PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
1762 | uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> GUEST_PAGE_SHIFT) + 1;
|
---|
1763 | while (cPagesLeft-- > 0)
|
---|
1764 | {
|
---|
1765 | int rc = pgmPhysFreePage(pVM, NULL, NULL, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
|
---|
1766 | AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
|
---|
1767 |
|
---|
1768 | PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
|
---|
1769 | PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
|
---|
1770 |
|
---|
1771 | GCPhys += GUEST_PAGE_SIZE;
|
---|
1772 | pPageDst++;
|
---|
1773 | }
|
---|
1774 | return VINF_SUCCESS;
|
---|
1775 | }
|
---|
1776 | #else /* !VBOX_WITH_PGM_NEM_MODE */
|
---|
1777 | RT_NOREF(pvMmio2);
|
---|
1778 | #endif /* !VBOX_WITH_PGM_NEM_MODE */
|
---|
1779 |
|
---|
1780 | /*
|
---|
1781 | * Regular mode.
|
---|
1782 | */
|
---|
1783 | /* Prepare. */
|
---|
1784 | uint32_t cPendingPages = 0;
|
---|
1785 | PGMMFREEPAGESREQ pReq;
|
---|
1786 | int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
1787 | AssertLogRelRCReturn(rc, rc);
|
---|
1788 |
|
---|
1789 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
1790 | /* Tell NEM up-front. */
|
---|
1791 | uint8_t u2State = UINT8_MAX;
|
---|
1792 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1793 | {
|
---|
1794 | uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
|
---|
1795 | rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, NULL, pvMmio2,
|
---|
1796 | &u2State, NULL /*puNemRange*/);
|
---|
1797 | AssertLogRelRCReturnStmt(rc, GMMR3FreePagesCleanup(pReq), rc);
|
---|
1798 | }
|
---|
1799 | #endif
|
---|
1800 |
|
---|
1801 | /* Iterate the pages. */
|
---|
1802 | PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
1803 | uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> GUEST_PAGE_SHIFT) + 1;
|
---|
1804 | while (cPagesLeft-- > 0)
|
---|
1805 | {
|
---|
1806 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
|
---|
1807 | AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
|
---|
1808 |
|
---|
1809 | PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
|
---|
1810 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
1811 | if (u2State != UINT8_MAX)
|
---|
1812 | PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
|
---|
1813 | #endif
|
---|
1814 |
|
---|
1815 | GCPhys += GUEST_PAGE_SIZE;
|
---|
1816 | pPageDst++;
|
---|
1817 | }
|
---|
1818 |
|
---|
1819 | /* Finish pending and cleanup. */
|
---|
1820 | if (cPendingPages)
|
---|
1821 | {
|
---|
1822 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
1823 | AssertLogRelRCReturn(rc, rc);
|
---|
1824 | }
|
---|
1825 | GMMR3FreePagesCleanup(pReq);
|
---|
1826 |
|
---|
1827 | return rc;
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 |
|
---|
1831 | /**
|
---|
1832 | * Wrapper around VMMR0_DO_PGM_PHYS_ALLOCATE_RAM_RANGE.
|
---|
1833 | */
|
---|
1834 | static int pgmR3PhysAllocateRamRange(PVM pVM, PVMCPU pVCpu, uint32_t cGuestPages, uint32_t fFlags, PPGMRAMRANGE *ppRamRange)
|
---|
1835 | {
|
---|
1836 | int rc;
|
---|
1837 | PGMPHYSALLOCATERAMRANGEREQ AllocRangeReq;
|
---|
1838 | AllocRangeReq.idNewRange = UINT32_MAX / 4;
|
---|
1839 | if (SUPR3IsDriverless())
|
---|
1840 | rc = pgmPhysRamRangeAllocCommon(pVM, cGuestPages, fFlags, &AllocRangeReq.idNewRange);
|
---|
1841 | else
|
---|
1842 | {
|
---|
1843 | AllocRangeReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
1844 | AllocRangeReq.Hdr.cbReq = sizeof(AllocRangeReq);
|
---|
1845 | AllocRangeReq.cbGuestPage = GUEST_PAGE_SIZE;
|
---|
1846 | AllocRangeReq.cGuestPages = cGuestPages;
|
---|
1847 | AllocRangeReq.fFlags = fFlags;
|
---|
1848 | rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_ALLOCATE_RAM_RANGE, 0 /*u64Arg*/, &AllocRangeReq.Hdr);
|
---|
1849 | }
|
---|
1850 | if (RT_SUCCESS(rc))
|
---|
1851 | {
|
---|
1852 | Assert(AllocRangeReq.idNewRange != 0);
|
---|
1853 | Assert(AllocRangeReq.idNewRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
1854 | AssertPtr(pVM->pgm.s.apRamRanges[AllocRangeReq.idNewRange]);
|
---|
1855 | *ppRamRange = pVM->pgm.s.apRamRanges[AllocRangeReq.idNewRange];
|
---|
1856 | return VINF_SUCCESS;
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 | *ppRamRange = NULL;
|
---|
1860 | return rc;
|
---|
1861 | }
|
---|
1862 |
|
---|
1863 |
|
---|
1864 | /**
|
---|
1865 | * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
|
---|
1866 | *
|
---|
1867 | * In NEM mode, this will allocate the pages backing the RAM range and this may
|
---|
1868 | * fail. NEM registration may also fail. (In regular HM mode it won't fail.)
|
---|
1869 | *
|
---|
1870 | * @returns VBox status code.
|
---|
1871 | * @param pVM The cross context VM structure.
|
---|
1872 | * @param pNew The new RAM range.
|
---|
1873 | * @param GCPhys The address of the RAM range.
|
---|
1874 | * @param GCPhysLast The last address of the RAM range.
|
---|
1875 | * @param pszDesc The description.
|
---|
1876 | * @param pidxLookup The lookup table insertion point.
|
---|
1877 | */
|
---|
1878 | static int pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
|
---|
1879 | const char *pszDesc, uint32_t *pidxLookup)
|
---|
1880 | {
|
---|
1881 | /*
|
---|
1882 | * Initialize the range.
|
---|
1883 | */
|
---|
1884 | Assert(pNew->cb == GCPhysLast - GCPhys + 1U); RT_NOREF(GCPhysLast);
|
---|
1885 | pNew->pszDesc = pszDesc;
|
---|
1886 | pNew->uNemRange = UINT32_MAX;
|
---|
1887 | pNew->pbR3 = NULL;
|
---|
1888 | pNew->paLSPages = NULL;
|
---|
1889 |
|
---|
1890 | uint32_t const cPages = pNew->cb >> GUEST_PAGE_SHIFT;
|
---|
1891 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
1892 | if (!pVM->pgm.s.fNemMode)
|
---|
1893 | #endif
|
---|
1894 | {
|
---|
1895 | RTGCPHYS iPage = cPages;
|
---|
1896 | while (iPage-- > 0)
|
---|
1897 | PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
|
---|
1898 |
|
---|
1899 | /* Update the page count stats. */
|
---|
1900 | pVM->pgm.s.cZeroPages += cPages;
|
---|
1901 | pVM->pgm.s.cAllPages += cPages;
|
---|
1902 | }
|
---|
1903 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
1904 | else
|
---|
1905 | {
|
---|
1906 | int rc = SUPR3PageAlloc(RT_ALIGN_Z(pNew->cb, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT,
|
---|
1907 | pVM->pgm.s.fUseLargePages ? SUP_PAGE_ALLOC_F_LARGE_PAGES : 0, (void **)&pNew->pbR3);
|
---|
1908 | if (RT_FAILURE(rc))
|
---|
1909 | return rc;
|
---|
1910 |
|
---|
1911 | RTGCPHYS iPage = cPages;
|
---|
1912 | while (iPage-- > 0)
|
---|
1913 | PGM_PAGE_INIT(&pNew->aPages[iPage], UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
|
---|
1914 | PGMPAGETYPE_RAM, PGM_PAGE_STATE_ALLOCATED);
|
---|
1915 |
|
---|
1916 | /* Update the page count stats. */
|
---|
1917 | pVM->pgm.s.cPrivatePages += cPages;
|
---|
1918 | pVM->pgm.s.cAllPages += cPages;
|
---|
1919 | }
|
---|
1920 | #endif
|
---|
1921 |
|
---|
1922 | /*
|
---|
1923 | * Insert it into the lookup table.
|
---|
1924 | */
|
---|
1925 | int rc = pgmR3PhysRamRangeInsertLookup(pVM, pNew, GCPhys, pidxLookup);
|
---|
1926 | AssertRCReturn(rc, rc);
|
---|
1927 |
|
---|
1928 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
1929 | /*
|
---|
1930 | * Notify NEM now that it has been linked.
|
---|
1931 | *
|
---|
1932 | * As above, it is assumed that on failure the VM creation will fail, so
|
---|
1933 | * no extra cleanup is needed here.
|
---|
1934 | */
|
---|
1935 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1936 | {
|
---|
1937 | uint8_t u2State = UINT8_MAX;
|
---|
1938 | rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, pNew->cb, pNew->pbR3, &u2State, &pNew->uNemRange);
|
---|
1939 | if (RT_SUCCESS(rc) && u2State != UINT8_MAX)
|
---|
1940 | pgmPhysSetNemStateForPages(&pNew->aPages[0], cPages, u2State);
|
---|
1941 | return rc;
|
---|
1942 | }
|
---|
1943 | #endif
|
---|
1944 | return VINF_SUCCESS;
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 |
|
---|
1948 | /**
|
---|
1949 | * Worker for PGMR3PhysRegisterRam called with the PGM lock.
|
---|
1950 | *
|
---|
1951 | * The caller releases the lock.
|
---|
1952 | */
|
---|
1953 | static int pgmR3PhysRegisterRamWorker(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc,
|
---|
1954 | uint32_t const cRamRanges, RTGCPHYS const GCPhysLast)
|
---|
1955 | {
|
---|
1956 | #ifdef VBOX_STRICT
|
---|
1957 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
1958 | #endif
|
---|
1959 |
|
---|
1960 | /*
|
---|
1961 | * Check that we've got enough free RAM ranges.
|
---|
1962 | */
|
---|
1963 | AssertLogRelMsgReturn((uint64_t)pVM->pgm.s.idRamRangeMax + cRamRanges + 1 <= RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup),
|
---|
1964 | ("idRamRangeMax=%#RX32 vs GCPhys=%RGp cb=%RGp / %#RX32 ranges (%s)\n",
|
---|
1965 | pVM->pgm.s.idRamRangeMax, GCPhys, cb, cRamRanges, pszDesc),
|
---|
1966 | VERR_PGM_TOO_MANY_RAM_RANGES);
|
---|
1967 |
|
---|
1968 | /*
|
---|
1969 | * Check for conflicts via the lookup table. We search it backwards,
|
---|
1970 | * assuming that memory is added in ascending order by address.
|
---|
1971 | */
|
---|
1972 | uint32_t idxLookup = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1973 | while (idxLookup)
|
---|
1974 | {
|
---|
1975 | if (GCPhys > pVM->pgm.s.aRamRangeLookup[idxLookup - 1].GCPhysLast)
|
---|
1976 | break;
|
---|
1977 | idxLookup--;
|
---|
1978 | RTGCPHYS const GCPhysCur = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1979 | AssertLogRelMsgReturn( GCPhysLast < GCPhysCur
|
---|
1980 | || GCPhys > pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast,
|
---|
1981 | ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
|
---|
1982 | GCPhys, GCPhysLast, pszDesc, GCPhysCur, pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast,
|
---|
1983 | pVM->pgm.s.apRamRanges[PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup])]->pszDesc),
|
---|
1984 | VERR_PGM_RAM_CONFLICT);
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 | /*
|
---|
1988 | * Register it with GMM (the API bitches).
|
---|
1989 | */
|
---|
1990 | const RTGCPHYS cPages = cb >> GUEST_PAGE_SHIFT;
|
---|
1991 | int rc = MMR3IncreaseBaseReservation(pVM, cPages);
|
---|
1992 | if (RT_FAILURE(rc))
|
---|
1993 | return rc;
|
---|
1994 |
|
---|
1995 | /*
|
---|
1996 | * Create the required chunks.
|
---|
1997 | */
|
---|
1998 | RTGCPHYS cPagesLeft = cPages;
|
---|
1999 | RTGCPHYS GCPhysChunk = GCPhys;
|
---|
2000 | uint32_t idxChunk = 0;
|
---|
2001 | while (cPagesLeft > 0)
|
---|
2002 | {
|
---|
2003 | uint32_t cPagesInChunk = cPagesLeft;
|
---|
2004 | if (cPagesInChunk > PGM_MAX_PAGES_PER_RAM_RANGE)
|
---|
2005 | cPagesInChunk = PGM_MAX_PAGES_PER_RAM_RANGE;
|
---|
2006 |
|
---|
2007 | const char *pszDescChunk = idxChunk == 0
|
---|
2008 | ? pszDesc
|
---|
2009 | : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, idxChunk + 1);
|
---|
2010 | AssertReturn(pszDescChunk, VERR_NO_MEMORY);
|
---|
2011 |
|
---|
2012 | /*
|
---|
2013 | * Allocate a RAM range.
|
---|
2014 | */
|
---|
2015 | PPGMRAMRANGE pNew = NULL;
|
---|
2016 | rc = pgmR3PhysAllocateRamRange(pVM, pVCpu, cPagesInChunk, 0 /*fFlags*/, &pNew);
|
---|
2017 | AssertLogRelMsgReturn(RT_SUCCESS(rc),
|
---|
2018 | ("pgmR3PhysAllocateRamRange failed: GCPhysChunk=%RGp cPagesInChunk=%#RX32 (%s): %Rrc\n",
|
---|
2019 | GCPhysChunk, cPagesInChunk, pszDescChunk, rc),
|
---|
2020 | rc);
|
---|
2021 |
|
---|
2022 | /*
|
---|
2023 | * Ok, init and link the range.
|
---|
2024 | */
|
---|
2025 | rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhysChunk,
|
---|
2026 | GCPhysChunk + ((RTGCPHYS)cPagesInChunk << GUEST_PAGE_SHIFT) - 1U,
|
---|
2027 | pszDescChunk, &idxLookup);
|
---|
2028 | AssertLogRelMsgReturn(RT_SUCCESS(rc),
|
---|
2029 | ("pgmR3PhysInitAndLinkRamRange failed: GCPhysChunk=%RGp cPagesInChunk=%#RX32 (%s): %Rrc\n",
|
---|
2030 | GCPhysChunk, cPagesInChunk, pszDescChunk, rc),
|
---|
2031 | rc);
|
---|
2032 |
|
---|
2033 | /* advance */
|
---|
2034 | GCPhysChunk += (RTGCPHYS)cPagesInChunk << GUEST_PAGE_SHIFT;
|
---|
2035 | cPagesLeft -= cPagesInChunk;
|
---|
2036 | idxChunk++;
|
---|
2037 | }
|
---|
2038 |
|
---|
2039 | return rc;
|
---|
2040 | }
|
---|
2041 |
|
---|
2042 |
|
---|
2043 | /**
|
---|
2044 | * Sets up a range RAM.
|
---|
2045 | *
|
---|
2046 | * This will check for conflicting registrations, make a resource reservation
|
---|
2047 | * for the memory (with GMM), and setup the per-page tracking structures
|
---|
2048 | * (PGMPAGE).
|
---|
2049 | *
|
---|
2050 | * @returns VBox status code.
|
---|
2051 | * @param pVM The cross context VM structure.
|
---|
2052 | * @param GCPhys The physical address of the RAM.
|
---|
2053 | * @param cb The size of the RAM.
|
---|
2054 | * @param pszDesc The description - not copied, so, don't free or change it.
|
---|
2055 | */
|
---|
2056 | VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
|
---|
2057 | {
|
---|
2058 | /*
|
---|
2059 | * Validate input.
|
---|
2060 | */
|
---|
2061 | Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
|
---|
2062 | AssertReturn(RT_ALIGN_T(GCPhys, GUEST_PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
|
---|
2063 | AssertReturn(RT_ALIGN_T(cb, GUEST_PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
|
---|
2064 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
2065 | RTGCPHYS const GCPhysLast = GCPhys + (cb - 1);
|
---|
2066 | AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
|
---|
2067 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
2068 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
2069 | AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
|
---|
2070 | AssertReturn(pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
2071 |
|
---|
2072 | /*
|
---|
2073 | * Calculate the number of RAM ranges required.
|
---|
2074 | * See also pgmPhysMmio2CalcChunkCount.
|
---|
2075 | */
|
---|
2076 | uint32_t const cPagesPerChunk = PGM_MAX_PAGES_PER_RAM_RANGE;
|
---|
2077 | uint32_t const cRamRanges = (uint32_t)(((cb >> GUEST_PAGE_SHIFT) + cPagesPerChunk - 1) / cPagesPerChunk);
|
---|
2078 | AssertLogRelMsgReturn(cRamRanges * (RTGCPHYS)cPagesPerChunk * GUEST_PAGE_SIZE >= cb,
|
---|
2079 | ("cb=%RGp cRamRanges=%#RX32 cPagesPerChunk=%#RX32\n", cb, cRamRanges, cPagesPerChunk),
|
---|
2080 | VERR_OUT_OF_RANGE);
|
---|
2081 |
|
---|
2082 | PGM_LOCK_VOID(pVM);
|
---|
2083 |
|
---|
2084 | int rc = pgmR3PhysRegisterRamWorker(pVM, pVCpu, GCPhys, cb, pszDesc, cRamRanges, GCPhysLast);
|
---|
2085 | #ifdef VBOX_STRICT
|
---|
2086 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
2087 | #endif
|
---|
2088 |
|
---|
2089 | PGM_UNLOCK(pVM);
|
---|
2090 | return rc;
|
---|
2091 | }
|
---|
2092 |
|
---|
2093 |
|
---|
2094 | /**
|
---|
2095 | * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
|
---|
2096 | *
|
---|
2097 | * We do this late in the init process so that all the ROM and MMIO ranges have
|
---|
2098 | * been registered already and we don't go wasting memory on them.
|
---|
2099 | *
|
---|
2100 | * @returns VBox status code.
|
---|
2101 | *
|
---|
2102 | * @param pVM The cross context VM structure.
|
---|
2103 | */
|
---|
2104 | int pgmR3PhysRamPreAllocate(PVM pVM)
|
---|
2105 | {
|
---|
2106 | Assert(pVM->pgm.s.fRamPreAlloc);
|
---|
2107 | Log(("pgmR3PhysRamPreAllocate: enter\n"));
|
---|
2108 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
2109 | AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
|
---|
2110 | #endif
|
---|
2111 |
|
---|
2112 | /*
|
---|
2113 | * Walk the RAM ranges and allocate all RAM pages, halt at
|
---|
2114 | * the first allocation error.
|
---|
2115 | */
|
---|
2116 | uint64_t cPages = 0;
|
---|
2117 | uint64_t NanoTS = RTTimeNanoTS();
|
---|
2118 | PGM_LOCK_VOID(pVM);
|
---|
2119 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
2120 | for (uint32_t idxLookup = 0; idxLookup < cLookupEntries; idxLookup++)
|
---|
2121 | {
|
---|
2122 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
2123 | AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
2124 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2125 | AssertContinue(pRam);
|
---|
2126 |
|
---|
2127 | PPGMPAGE pPage = &pRam->aPages[0];
|
---|
2128 | RTGCPHYS GCPhys = pRam->GCPhys;
|
---|
2129 | uint32_t cLeft = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2130 | while (cLeft-- > 0)
|
---|
2131 | {
|
---|
2132 | if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
|
---|
2133 | {
|
---|
2134 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
2135 | {
|
---|
2136 | case PGM_PAGE_STATE_ZERO:
|
---|
2137 | {
|
---|
2138 | int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
|
---|
2139 | if (RT_FAILURE(rc))
|
---|
2140 | {
|
---|
2141 | LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
|
---|
2142 | PGM_UNLOCK(pVM);
|
---|
2143 | return rc;
|
---|
2144 | }
|
---|
2145 | cPages++;
|
---|
2146 | break;
|
---|
2147 | }
|
---|
2148 |
|
---|
2149 | case PGM_PAGE_STATE_BALLOONED:
|
---|
2150 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
2151 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
2152 | case PGM_PAGE_STATE_SHARED:
|
---|
2153 | /* nothing to do here. */
|
---|
2154 | break;
|
---|
2155 | }
|
---|
2156 | }
|
---|
2157 |
|
---|
2158 | /* next */
|
---|
2159 | pPage++;
|
---|
2160 | GCPhys += GUEST_PAGE_SIZE;
|
---|
2161 | }
|
---|
2162 | }
|
---|
2163 | PGM_UNLOCK(pVM);
|
---|
2164 | NanoTS = RTTimeNanoTS() - NanoTS;
|
---|
2165 |
|
---|
2166 | LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
|
---|
2167 | Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
|
---|
2168 | return VINF_SUCCESS;
|
---|
2169 | }
|
---|
2170 |
|
---|
2171 |
|
---|
2172 | /**
|
---|
2173 | * Checks shared page checksums.
|
---|
2174 | *
|
---|
2175 | * @param pVM The cross context VM structure.
|
---|
2176 | */
|
---|
2177 | void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
|
---|
2178 | {
|
---|
2179 | #ifdef VBOX_STRICT
|
---|
2180 | PGM_LOCK_VOID(pVM);
|
---|
2181 |
|
---|
2182 | if (pVM->pgm.s.cSharedPages > 0)
|
---|
2183 | {
|
---|
2184 | /*
|
---|
2185 | * Walk the ram ranges.
|
---|
2186 | */
|
---|
2187 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
2188 | for (uint32_t idxLookup = 0; idxLookup < cLookupEntries; idxLookup++)
|
---|
2189 | {
|
---|
2190 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
2191 | AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
2192 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2193 | AssertContinue(pRam);
|
---|
2194 |
|
---|
2195 | uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2196 | AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb,
|
---|
2197 | ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb));
|
---|
2198 |
|
---|
2199 | while (iPage-- > 0)
|
---|
2200 | {
|
---|
2201 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2202 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
2203 | {
|
---|
2204 | uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
|
---|
2205 | if (!u32Checksum)
|
---|
2206 | {
|
---|
2207 | RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
|
---|
2208 | void const *pvPage;
|
---|
2209 | int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
|
---|
2210 | if (RT_SUCCESS(rc))
|
---|
2211 | {
|
---|
2212 | uint32_t u32Checksum2 = RTCrc32(pvPage, GUEST_PAGE_SIZE);
|
---|
2213 | # if 0
|
---|
2214 | AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
|
---|
2215 | # else
|
---|
2216 | if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
|
---|
2217 | LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
|
---|
2218 | else
|
---|
2219 | AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
|
---|
2220 | # endif
|
---|
2221 | }
|
---|
2222 | else
|
---|
2223 | AssertRC(rc);
|
---|
2224 | }
|
---|
2225 | }
|
---|
2226 |
|
---|
2227 | } /* for each page */
|
---|
2228 |
|
---|
2229 | } /* for each ram range */
|
---|
2230 | }
|
---|
2231 |
|
---|
2232 | PGM_UNLOCK(pVM);
|
---|
2233 | #endif /* VBOX_STRICT */
|
---|
2234 | NOREF(pVM);
|
---|
2235 | }
|
---|
2236 |
|
---|
2237 |
|
---|
2238 | /**
|
---|
2239 | * Resets the physical memory state.
|
---|
2240 | *
|
---|
2241 | * ASSUMES that the caller owns the PGM lock.
|
---|
2242 | *
|
---|
2243 | * @returns VBox status code.
|
---|
2244 | * @param pVM The cross context VM structure.
|
---|
2245 | */
|
---|
2246 | int pgmR3PhysRamReset(PVM pVM)
|
---|
2247 | {
|
---|
2248 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2249 |
|
---|
2250 | /* Reset the memory balloon. */
|
---|
2251 | int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
|
---|
2252 | AssertRC(rc);
|
---|
2253 |
|
---|
2254 | #ifdef VBOX_WITH_PAGE_SHARING
|
---|
2255 | /* Clear all registered shared modules. */
|
---|
2256 | pgmR3PhysAssertSharedPageChecksums(pVM);
|
---|
2257 | rc = GMMR3ResetSharedModules(pVM);
|
---|
2258 | AssertRC(rc);
|
---|
2259 | #endif
|
---|
2260 | /* Reset counters. */
|
---|
2261 | pVM->pgm.s.cReusedSharedPages = 0;
|
---|
2262 | pVM->pgm.s.cBalloonedPages = 0;
|
---|
2263 |
|
---|
2264 | return VINF_SUCCESS;
|
---|
2265 | }
|
---|
2266 |
|
---|
2267 |
|
---|
2268 | /**
|
---|
2269 | * Resets (zeros) the RAM after all devices and components have been reset.
|
---|
2270 | *
|
---|
2271 | * ASSUMES that the caller owns the PGM lock.
|
---|
2272 | *
|
---|
2273 | * @returns VBox status code.
|
---|
2274 | * @param pVM The cross context VM structure.
|
---|
2275 | */
|
---|
2276 | int pgmR3PhysRamZeroAll(PVM pVM)
|
---|
2277 | {
|
---|
2278 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2279 |
|
---|
2280 | /*
|
---|
2281 | * We batch up pages that should be freed instead of calling GMM for
|
---|
2282 | * each and every one of them.
|
---|
2283 | */
|
---|
2284 | uint32_t cPendingPages = 0;
|
---|
2285 | PGMMFREEPAGESREQ pReq;
|
---|
2286 | int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
2287 | AssertLogRelRCReturn(rc, rc);
|
---|
2288 |
|
---|
2289 | /*
|
---|
2290 | * Walk the ram ranges.
|
---|
2291 | */
|
---|
2292 | uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U);
|
---|
2293 | for (uint32_t idRamRange = 0; idRamRange <= idRamRangeMax; idRamRange++)
|
---|
2294 | {
|
---|
2295 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2296 | Assert(pRam || idRamRange == 0);
|
---|
2297 | if (!pRam) continue;
|
---|
2298 | Assert(pRam->idRange == idRamRange);
|
---|
2299 |
|
---|
2300 | uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2301 | AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb));
|
---|
2302 |
|
---|
2303 | if ( !pVM->pgm.s.fRamPreAlloc
|
---|
2304 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
2305 | && !pVM->pgm.s.fNemMode
|
---|
2306 | #endif
|
---|
2307 | && pVM->pgm.s.fZeroRamPagesOnReset)
|
---|
2308 | {
|
---|
2309 | /* Replace all RAM pages by ZERO pages. */
|
---|
2310 | while (iPage-- > 0)
|
---|
2311 | {
|
---|
2312 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2313 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2314 | {
|
---|
2315 | case PGMPAGETYPE_RAM:
|
---|
2316 | /* Do not replace pages part of a 2 MB continuous range
|
---|
2317 | with zero pages, but zero them instead. */
|
---|
2318 | if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
|
---|
2319 | || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
|
---|
2320 | {
|
---|
2321 | void *pvPage;
|
---|
2322 | rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pvPage);
|
---|
2323 | AssertLogRelRCReturn(rc, rc);
|
---|
2324 | RT_BZERO(pvPage, GUEST_PAGE_SIZE);
|
---|
2325 | }
|
---|
2326 | else if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
2327 | {
|
---|
2328 | /* Turn into a zero page; the balloon status is lost when the VM reboots. */
|
---|
2329 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
2330 | }
|
---|
2331 | else if (!PGM_PAGE_IS_ZERO(pPage))
|
---|
2332 | {
|
---|
2333 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage,
|
---|
2334 | pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), PGMPAGETYPE_RAM);
|
---|
2335 | AssertLogRelRCReturn(rc, rc);
|
---|
2336 | }
|
---|
2337 | break;
|
---|
2338 |
|
---|
2339 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2340 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
|
---|
2341 | pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT),
|
---|
2342 | pRam, true /*fDoAccounting*/, false /*fFlushIemTlbs*/);
|
---|
2343 | break;
|
---|
2344 |
|
---|
2345 | case PGMPAGETYPE_MMIO2:
|
---|
2346 | case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
|
---|
2347 | case PGMPAGETYPE_ROM:
|
---|
2348 | case PGMPAGETYPE_MMIO:
|
---|
2349 | break;
|
---|
2350 | default:
|
---|
2351 | AssertFailed();
|
---|
2352 | }
|
---|
2353 | } /* for each page */
|
---|
2354 | }
|
---|
2355 | else
|
---|
2356 | {
|
---|
2357 | /* Zero the memory. */
|
---|
2358 | while (iPage-- > 0)
|
---|
2359 | {
|
---|
2360 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2361 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2362 | {
|
---|
2363 | case PGMPAGETYPE_RAM:
|
---|
2364 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
2365 | {
|
---|
2366 | case PGM_PAGE_STATE_ZERO:
|
---|
2367 | break;
|
---|
2368 |
|
---|
2369 | case PGM_PAGE_STATE_BALLOONED:
|
---|
2370 | /* Turn into a zero page; the balloon status is lost when the VM reboots. */
|
---|
2371 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
2372 | break;
|
---|
2373 |
|
---|
2374 | case PGM_PAGE_STATE_SHARED:
|
---|
2375 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
2376 | rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT));
|
---|
2377 | AssertLogRelRCReturn(rc, rc);
|
---|
2378 | RT_FALL_THRU();
|
---|
2379 |
|
---|
2380 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
2381 | if (pVM->pgm.s.fZeroRamPagesOnReset)
|
---|
2382 | {
|
---|
2383 | void *pvPage;
|
---|
2384 | rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pvPage);
|
---|
2385 | AssertLogRelRCReturn(rc, rc);
|
---|
2386 | RT_BZERO(pvPage, GUEST_PAGE_SIZE);
|
---|
2387 | }
|
---|
2388 | break;
|
---|
2389 | }
|
---|
2390 | break;
|
---|
2391 |
|
---|
2392 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2393 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
|
---|
2394 | pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT),
|
---|
2395 | pRam, true /*fDoAccounting*/, false /*fFlushIemTlbs*/);
|
---|
2396 | break;
|
---|
2397 |
|
---|
2398 | case PGMPAGETYPE_MMIO2:
|
---|
2399 | case PGMPAGETYPE_ROM_SHADOW:
|
---|
2400 | case PGMPAGETYPE_ROM:
|
---|
2401 | case PGMPAGETYPE_MMIO:
|
---|
2402 | break;
|
---|
2403 | default:
|
---|
2404 | AssertFailed();
|
---|
2405 |
|
---|
2406 | }
|
---|
2407 | } /* for each page */
|
---|
2408 | }
|
---|
2409 | }
|
---|
2410 |
|
---|
2411 | /*
|
---|
2412 | * Finish off any pages pending freeing.
|
---|
2413 | */
|
---|
2414 | if (cPendingPages)
|
---|
2415 | {
|
---|
2416 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
2417 | AssertLogRelRCReturn(rc, rc);
|
---|
2418 | }
|
---|
2419 | GMMR3FreePagesCleanup(pReq);
|
---|
2420 |
|
---|
2421 | /*
|
---|
2422 | * Flush the IEM TLB, just to be sure it really is done.
|
---|
2423 | */
|
---|
2424 | IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_ZERO_ALL);
|
---|
2425 |
|
---|
2426 | return VINF_SUCCESS;
|
---|
2427 | }
|
---|
2428 |
|
---|
2429 |
|
---|
2430 | /**
|
---|
2431 | * Frees all RAM during VM termination
|
---|
2432 | *
|
---|
2433 | * ASSUMES that the caller owns the PGM lock.
|
---|
2434 | *
|
---|
2435 | * @returns VBox status code.
|
---|
2436 | * @param pVM The cross context VM structure.
|
---|
2437 | */
|
---|
2438 | int pgmR3PhysRamTerm(PVM pVM)
|
---|
2439 | {
|
---|
2440 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2441 |
|
---|
2442 | /* Reset the memory balloon. */
|
---|
2443 | int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
|
---|
2444 | AssertRC(rc);
|
---|
2445 |
|
---|
2446 | #ifdef VBOX_WITH_PAGE_SHARING
|
---|
2447 | /*
|
---|
2448 | * Clear all registered shared modules.
|
---|
2449 | */
|
---|
2450 | pgmR3PhysAssertSharedPageChecksums(pVM);
|
---|
2451 | rc = GMMR3ResetSharedModules(pVM);
|
---|
2452 | AssertRC(rc);
|
---|
2453 |
|
---|
2454 | /*
|
---|
2455 | * Flush the handy pages updates to make sure no shared pages are hiding
|
---|
2456 | * in there. (Not unlikely if the VM shuts down, apparently.)
|
---|
2457 | */
|
---|
2458 | # ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
2459 | if (!pVM->pgm.s.fNemMode)
|
---|
2460 | # endif
|
---|
2461 | rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
|
---|
2462 | #endif
|
---|
2463 |
|
---|
2464 | /*
|
---|
2465 | * We batch up pages that should be freed instead of calling GMM for
|
---|
2466 | * each and every one of them.
|
---|
2467 | */
|
---|
2468 | uint32_t cPendingPages = 0;
|
---|
2469 | PGMMFREEPAGESREQ pReq;
|
---|
2470 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
2471 | AssertLogRelRCReturn(rc, rc);
|
---|
2472 |
|
---|
2473 | /*
|
---|
2474 | * Walk the ram ranges.
|
---|
2475 | */
|
---|
2476 | uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U);
|
---|
2477 | for (uint32_t idRamRange = 0; idRamRange <= idRamRangeMax; idRamRange++)
|
---|
2478 | {
|
---|
2479 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2480 | Assert(pRam || idRamRange == 0);
|
---|
2481 | if (!pRam) continue;
|
---|
2482 | Assert(pRam->idRange == idRamRange);
|
---|
2483 |
|
---|
2484 | uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2485 | AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb));
|
---|
2486 |
|
---|
2487 | while (iPage-- > 0)
|
---|
2488 | {
|
---|
2489 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2490 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2491 | {
|
---|
2492 | case PGMPAGETYPE_RAM:
|
---|
2493 | /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
|
---|
2494 | /** @todo change this to explicitly free private pages here. */
|
---|
2495 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
2496 | {
|
---|
2497 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage,
|
---|
2498 | pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), PGMPAGETYPE_RAM);
|
---|
2499 | AssertLogRelRCReturn(rc, rc);
|
---|
2500 | }
|
---|
2501 | break;
|
---|
2502 |
|
---|
2503 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2504 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
|
---|
2505 | case PGMPAGETYPE_MMIO2:
|
---|
2506 | case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
|
---|
2507 | case PGMPAGETYPE_ROM:
|
---|
2508 | case PGMPAGETYPE_MMIO:
|
---|
2509 | break;
|
---|
2510 | default:
|
---|
2511 | AssertFailed();
|
---|
2512 | }
|
---|
2513 | } /* for each page */
|
---|
2514 | }
|
---|
2515 |
|
---|
2516 | /*
|
---|
2517 | * Finish off any pages pending freeing.
|
---|
2518 | */
|
---|
2519 | if (cPendingPages)
|
---|
2520 | {
|
---|
2521 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
2522 | AssertLogRelRCReturn(rc, rc);
|
---|
2523 | }
|
---|
2524 | GMMR3FreePagesCleanup(pReq);
|
---|
2525 | return VINF_SUCCESS;
|
---|
2526 | }
|
---|
2527 |
|
---|
2528 |
|
---|
2529 |
|
---|
2530 | /*********************************************************************************************************************************
|
---|
2531 | * MMIO *
|
---|
2532 | *********************************************************************************************************************************/
|
---|
2533 |
|
---|
2534 | /**
|
---|
2535 | * This is the interface IOM is using to register an MMIO region (unmapped).
|
---|
2536 | *
|
---|
2537 | *
|
---|
2538 | * @returns VBox status code.
|
---|
2539 | *
|
---|
2540 | * @param pVM The cross context VM structure.
|
---|
2541 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2542 | * @param cb The size of the MMIO region.
|
---|
2543 | * @param pszDesc The description of the MMIO region.
|
---|
2544 | * @param pidRamRange Where to return the RAM range ID for the MMIO region
|
---|
2545 | * on success.
|
---|
2546 | * @thread EMT(0)
|
---|
2547 | */
|
---|
2548 | VMMR3_INT_DECL(int) PGMR3PhysMmioRegister(PVM pVM, PVMCPU pVCpu, RTGCPHYS cb, const char *pszDesc, uint16_t *pidRamRange)
|
---|
2549 | {
|
---|
2550 | /*
|
---|
2551 | * Assert assumptions.
|
---|
2552 | */
|
---|
2553 | AssertPtrReturn(pidRamRange, VERR_INVALID_POINTER);
|
---|
2554 | *pidRamRange = UINT16_MAX;
|
---|
2555 | AssertReturn(pVCpu == VMMGetCpu(pVM) && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
2556 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
|
---|
2557 | /// @todo AssertReturn(!pVM->pgm.s.fRamRangesFrozen, VERR_WRONG_ORDER);
|
---|
2558 | AssertReturn(cb <= ((RTGCPHYS)PGM_MAX_PAGES_PER_RAM_RANGE << GUEST_PAGE_SHIFT), VERR_OUT_OF_RANGE);
|
---|
2559 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2560 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
2561 | AssertReturn(*pszDesc != '\0', VERR_INVALID_POINTER);
|
---|
2562 |
|
---|
2563 | /*
|
---|
2564 | * Take the PGM lock and allocate an ad-hoc MMIO RAM range.
|
---|
2565 | */
|
---|
2566 | int rc = PGM_LOCK(pVM);
|
---|
2567 | AssertRCReturn(rc, rc);
|
---|
2568 |
|
---|
2569 | uint32_t const cPages = cb >> GUEST_PAGE_SHIFT;
|
---|
2570 | PPGMRAMRANGE pNew = NULL;
|
---|
2571 | rc = pgmR3PhysAllocateRamRange(pVM, pVCpu, cPages, PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO, &pNew);
|
---|
2572 | AssertLogRelMsg(RT_SUCCESS(rc), ("pgmR3PhysAllocateRamRange failed: cPages=%#RX32 (%s): %Rrc\n", cPages, pszDesc, rc));
|
---|
2573 | if (RT_SUCCESS(rc))
|
---|
2574 | {
|
---|
2575 | /* Initialize the range. */
|
---|
2576 | pNew->pszDesc = pszDesc;
|
---|
2577 | pNew->uNemRange = UINT32_MAX;
|
---|
2578 | pNew->pbR3 = NULL;
|
---|
2579 | pNew->paLSPages = NULL;
|
---|
2580 | Assert(pNew->fFlags == PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO && pNew->cb == cb);
|
---|
2581 |
|
---|
2582 | uint32_t iPage = cPages;
|
---|
2583 | while (iPage-- > 0)
|
---|
2584 | PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
|
---|
2585 | Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
|
---|
2586 |
|
---|
2587 | /* update the page count stats. */
|
---|
2588 | pVM->pgm.s.cPureMmioPages += cPages;
|
---|
2589 | pVM->pgm.s.cAllPages += cPages;
|
---|
2590 |
|
---|
2591 | /*
|
---|
2592 | * Set the return value, release lock and return to IOM.
|
---|
2593 | */
|
---|
2594 | *pidRamRange = pNew->idRange;
|
---|
2595 | }
|
---|
2596 |
|
---|
2597 | PGM_UNLOCK(pVM);
|
---|
2598 | return rc;
|
---|
2599 | }
|
---|
2600 |
|
---|
2601 |
|
---|
2602 | /**
|
---|
2603 | * Worker for PGMR3PhysMmioMap that's called owning the lock.
|
---|
2604 | */
|
---|
2605 | static int pgmR3PhysMmioMapLocked(PVM pVM, PVMCPU pVCpu, RTGCPHYS const GCPhys, RTGCPHYS const cb, RTGCPHYS const GCPhysLast,
|
---|
2606 | PPGMRAMRANGE const pMmioRamRange, PGMPHYSHANDLERTYPE const hType, uint64_t const uUser)
|
---|
2607 | {
|
---|
2608 | /* Check that the range isn't mapped already. */
|
---|
2609 | AssertLogRelMsgReturn(pMmioRamRange->GCPhys == NIL_RTGCPHYS,
|
---|
2610 | ("desired %RGp mapping for '%s' - already mapped at %RGp!\n",
|
---|
2611 | GCPhys, pMmioRamRange->pszDesc, pMmioRamRange->GCPhys),
|
---|
2612 | VERR_ALREADY_EXISTS);
|
---|
2613 |
|
---|
2614 | /*
|
---|
2615 | * Now, check if this falls into a regular RAM range or if we should use
|
---|
2616 | * the ad-hoc one (idRamRange).
|
---|
2617 | */
|
---|
2618 | int rc;
|
---|
2619 | uint32_t idxInsert = UINT32_MAX;
|
---|
2620 | PPGMRAMRANGE const pOverlappingRange = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxInsert);
|
---|
2621 | if (pOverlappingRange)
|
---|
2622 | {
|
---|
2623 | /* Simplification: all within the same range. */
|
---|
2624 | AssertLogRelMsgReturn( GCPhys >= pOverlappingRange->GCPhys
|
---|
2625 | && GCPhysLast <= pOverlappingRange->GCPhysLast,
|
---|
2626 | ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
2627 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc,
|
---|
2628 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
2629 | VERR_PGM_RAM_CONFLICT);
|
---|
2630 |
|
---|
2631 | /* Check that is isn't an ad hoc range, but a real RAM range. */
|
---|
2632 | AssertLogRelMsgReturn(!PGM_RAM_RANGE_IS_AD_HOC(pOverlappingRange),
|
---|
2633 | ("%RGp-%RGp (MMIO/%s) mapping attempt in non-RAM range: %RGp-%RGp (%s)\n",
|
---|
2634 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc,
|
---|
2635 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
2636 | VERR_PGM_RAM_CONFLICT);
|
---|
2637 |
|
---|
2638 | /* Check that it's all RAM or MMIO pages. */
|
---|
2639 | PCPGMPAGE pPage = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
2640 | uint32_t cLeft = cb >> GUEST_PAGE_SHIFT;
|
---|
2641 | while (cLeft-- > 0)
|
---|
2642 | {
|
---|
2643 | AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
2644 | || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO, /** @todo MMIO type isn't right */
|
---|
2645 | ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
|
---|
2646 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc, pOverlappingRange->GCPhys,
|
---|
2647 | PGM_PAGE_GET_TYPE(pPage), pOverlappingRange->pszDesc),
|
---|
2648 | VERR_PGM_RAM_CONFLICT);
|
---|
2649 | pPage++;
|
---|
2650 | }
|
---|
2651 |
|
---|
2652 | /*
|
---|
2653 | * Make all the pages in the range MMIO/ZERO pages, freeing any
|
---|
2654 | * RAM pages currently mapped here. This might not be 100% correct
|
---|
2655 | * for PCI memory, but we're doing the same thing for MMIO2 pages.
|
---|
2656 | */
|
---|
2657 | rc = pgmR3PhysFreePageRange(pVM, pOverlappingRange, GCPhys, GCPhysLast, NULL);
|
---|
2658 | AssertRCReturn(rc, rc);
|
---|
2659 |
|
---|
2660 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
2661 | /** @todo not entirely SMP safe; assuming for now the guest takes
|
---|
2662 | * care of this internally (not touch mapped mmio while changing the
|
---|
2663 | * mapping). */
|
---|
2664 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
2665 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2666 | }
|
---|
2667 | else
|
---|
2668 | {
|
---|
2669 | /*
|
---|
2670 | * No RAM range, use the ad hoc one (idRamRange).
|
---|
2671 | *
|
---|
2672 | * Note that we don't have to tell REM about this range because
|
---|
2673 | * PGMHandlerPhysicalRegisterEx will do that for us.
|
---|
2674 | */
|
---|
2675 | AssertLogRelReturn(idxInsert <= pVM->pgm.s.RamRangeUnion.cLookupEntries, VERR_INTERNAL_ERROR_4);
|
---|
2676 | Log(("PGMR3PhysMmioMap: Inserting ad hoc MMIO range #%x for %RGp-%RGp %s\n",
|
---|
2677 | pMmioRamRange->idRange, GCPhys, GCPhysLast, pMmioRamRange->pszDesc));
|
---|
2678 |
|
---|
2679 | Assert(PGM_PAGE_GET_TYPE(&pMmioRamRange->aPages[0]) == PGMPAGETYPE_MMIO);
|
---|
2680 |
|
---|
2681 | /* We ASSUME that all the pages in the ad-hoc range are in the proper
|
---|
2682 | state and all that and that we don't need to re-initialize them here. */
|
---|
2683 |
|
---|
2684 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2685 | /* Notify NEM. */
|
---|
2686 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
2687 | {
|
---|
2688 | uint8_t u2State = 0; /* (must have valid state as there can't be anything to preserve) */
|
---|
2689 | rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, cb, 0 /*fFlags*/, NULL, NULL, &u2State, &pMmioRamRange->uNemRange);
|
---|
2690 | AssertLogRelRCReturn(rc, rc);
|
---|
2691 |
|
---|
2692 | uint32_t iPage = cb >> GUEST_PAGE_SHIFT;
|
---|
2693 | while (iPage-- > 0)
|
---|
2694 | PGM_PAGE_SET_NEM_STATE(&pMmioRamRange->aPages[iPage], u2State);
|
---|
2695 | }
|
---|
2696 | #endif
|
---|
2697 | /* Insert it into the lookup table (may in theory fail). */
|
---|
2698 | rc = pgmR3PhysRamRangeInsertLookup(pVM, pMmioRamRange, GCPhys, &idxInsert);
|
---|
2699 | }
|
---|
2700 | if (RT_SUCCESS(rc))
|
---|
2701 | {
|
---|
2702 | /*
|
---|
2703 | * Register the access handler.
|
---|
2704 | */
|
---|
2705 | rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, uUser, pMmioRamRange->pszDesc);
|
---|
2706 | if (RT_SUCCESS(rc))
|
---|
2707 | {
|
---|
2708 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2709 | /* Late NEM notification (currently not used by anyone). */
|
---|
2710 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
2711 | {
|
---|
2712 | if (pOverlappingRange)
|
---|
2713 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, cb, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
|
---|
2714 | pOverlappingRange->pbR3 + (uintptr_t)(GCPhys - pOverlappingRange->GCPhys),
|
---|
2715 | NULL /*pvMmio2*/, NULL /*puNemRange*/);
|
---|
2716 | else
|
---|
2717 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, cb, 0 /*fFlags*/, NULL /*pvRam*/, NULL /*pvMmio2*/,
|
---|
2718 | &pMmioRamRange->uNemRange);
|
---|
2719 | AssertLogRelRC(rc);
|
---|
2720 | }
|
---|
2721 | if (RT_SUCCESS(rc))
|
---|
2722 | #endif
|
---|
2723 | {
|
---|
2724 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
2725 | return VINF_SUCCESS;
|
---|
2726 | }
|
---|
2727 |
|
---|
2728 | /*
|
---|
2729 | * Failed, so revert it all as best as we can (the memory content in
|
---|
2730 | * the overlapping case is gone).
|
---|
2731 | */
|
---|
2732 | PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
2733 | }
|
---|
2734 | }
|
---|
2735 |
|
---|
2736 | if (!pOverlappingRange)
|
---|
2737 | {
|
---|
2738 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2739 | /* Notify NEM about the sudden removal of the RAM range we just told it about. */
|
---|
2740 | NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, cb, 0 /*fFlags*/, NULL /*pvRam*/, NULL /*pvMmio2*/,
|
---|
2741 | NULL /*pu2State*/, &pMmioRamRange->uNemRange);
|
---|
2742 | #endif
|
---|
2743 |
|
---|
2744 | /* Remove the ad hoc range from the lookup table. */
|
---|
2745 | idxInsert -= 1;
|
---|
2746 | pgmR3PhysRamRangeRemoveLookup(pVM, pMmioRamRange, &idxInsert);
|
---|
2747 | }
|
---|
2748 |
|
---|
2749 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
2750 | return rc;
|
---|
2751 | }
|
---|
2752 |
|
---|
2753 |
|
---|
2754 | /**
|
---|
2755 | * This is the interface IOM is using to map an MMIO region.
|
---|
2756 | *
|
---|
2757 | * It will check for conflicts and ensure that a RAM range structure
|
---|
2758 | * is present before calling the PGMR3HandlerPhysicalRegister API to
|
---|
2759 | * register the callbacks.
|
---|
2760 | *
|
---|
2761 | * @returns VBox status code.
|
---|
2762 | *
|
---|
2763 | * @param pVM The cross context VM structure.
|
---|
2764 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2765 | * @param GCPhys The start of the MMIO region.
|
---|
2766 | * @param cb The size of the MMIO region.
|
---|
2767 | * @param idRamRange The RAM range ID for the MMIO region as returned by
|
---|
2768 | * PGMR3PhysMmioRegister().
|
---|
2769 | * @param hType The physical access handler type registration.
|
---|
2770 | * @param uUser The user argument.
|
---|
2771 | * @thread EMT(pVCpu)
|
---|
2772 | */
|
---|
2773 | VMMR3_INT_DECL(int) PGMR3PhysMmioMap(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTGCPHYS cb, uint16_t idRamRange,
|
---|
2774 | PGMPHYSHANDLERTYPE hType, uint64_t uUser)
|
---|
2775 | {
|
---|
2776 | /*
|
---|
2777 | * Assert on some assumption.
|
---|
2778 | */
|
---|
2779 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2780 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2781 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2782 | RTGCPHYS const GCPhysLast = GCPhys + cb - 1U;
|
---|
2783 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
2784 | #ifdef VBOX_STRICT
|
---|
2785 | PCPGMPHYSHANDLERTYPEINT pType = pgmHandlerPhysicalTypeHandleToPtr(pVM, hType);
|
---|
2786 | Assert(pType);
|
---|
2787 | Assert(pType->enmKind == PGMPHYSHANDLERKIND_MMIO);
|
---|
2788 | #endif
|
---|
2789 | AssertReturn(idRamRange <= pVM->pgm.s.idRamRangeMax && idRamRange > 0, VERR_INVALID_HANDLE);
|
---|
2790 | PPGMRAMRANGE const pMmioRamRange = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2791 | AssertReturn(pMmioRamRange, VERR_INVALID_HANDLE);
|
---|
2792 | AssertReturn(pMmioRamRange->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO, VERR_INVALID_HANDLE);
|
---|
2793 | AssertReturn(pMmioRamRange->cb == cb, VERR_OUT_OF_RANGE);
|
---|
2794 |
|
---|
2795 | /*
|
---|
2796 | * Take the PGM lock and do the work.
|
---|
2797 | */
|
---|
2798 | int rc = PGM_LOCK(pVM);
|
---|
2799 | AssertRCReturn(rc, rc);
|
---|
2800 |
|
---|
2801 | rc = pgmR3PhysMmioMapLocked(pVM, pVCpu, GCPhys, cb, GCPhysLast, pMmioRamRange, hType, uUser);
|
---|
2802 | #ifdef VBOX_STRICT
|
---|
2803 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
2804 | #endif
|
---|
2805 |
|
---|
2806 | PGM_UNLOCK(pVM);
|
---|
2807 | return rc;
|
---|
2808 | }
|
---|
2809 |
|
---|
2810 |
|
---|
2811 | /**
|
---|
2812 | * Worker for PGMR3PhysMmioUnmap that's called with the PGM lock held.
|
---|
2813 | */
|
---|
2814 | static int pgmR3PhysMmioUnmapLocked(PVM pVM, PVMCPU pVCpu, RTGCPHYS const GCPhys, RTGCPHYS const cb,
|
---|
2815 | RTGCPHYS const GCPhysLast, PPGMRAMRANGE const pMmioRamRange)
|
---|
2816 | {
|
---|
2817 | /*
|
---|
2818 | * Lookup the RAM range containing the region to make sure it is actually mapped.
|
---|
2819 | */
|
---|
2820 | uint32_t idxLookup = pgmR3PhysRamRangeFindOverlappingIndex(pVM, GCPhys, GCPhysLast);
|
---|
2821 | AssertLogRelMsgReturn(idxLookup < pVM->pgm.s.RamRangeUnion.cLookupEntries,
|
---|
2822 | ("MMIO range not found at %RGp LB %RGp! (%s)\n", GCPhys, cb, pMmioRamRange->pszDesc),
|
---|
2823 | VERR_NOT_FOUND);
|
---|
2824 |
|
---|
2825 | uint32_t const idLookupRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
2826 | AssertLogRelReturn(idLookupRange != 0 && idLookupRange <= pVM->pgm.s.idRamRangeMax, VERR_INTERNAL_ERROR_5);
|
---|
2827 | PPGMRAMRANGE const pLookupRange = pVM->pgm.s.apRamRanges[idLookupRange];
|
---|
2828 | AssertLogRelReturn(pLookupRange, VERR_INTERNAL_ERROR_4);
|
---|
2829 |
|
---|
2830 | AssertLogRelMsgReturn(pLookupRange == pMmioRamRange || !PGM_RAM_RANGE_IS_AD_HOC(pLookupRange),
|
---|
2831 | ("MMIO unmap mixup at %RGp LB %RGp (%s) vs %RGp LB %RGp (%s)\n",
|
---|
2832 | GCPhys, cb, pMmioRamRange->pszDesc, pLookupRange->GCPhys, pLookupRange->cb, pLookupRange->pszDesc),
|
---|
2833 | VERR_NOT_FOUND);
|
---|
2834 |
|
---|
2835 | /*
|
---|
2836 | * Deregister the handler. This should reset any aliases, so an ad hoc
|
---|
2837 | * range will only contain MMIO type pages afterwards.
|
---|
2838 | */
|
---|
2839 | int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
2840 | if (RT_SUCCESS(rc))
|
---|
2841 | {
|
---|
2842 | if (pLookupRange != pMmioRamRange)
|
---|
2843 | {
|
---|
2844 | /*
|
---|
2845 | * Turn the pages back into RAM pages.
|
---|
2846 | */
|
---|
2847 | Log(("pgmR3PhysMmioUnmapLocked: Reverting MMIO range %RGp-%RGp (%s) in %RGp-%RGp (%s) to RAM.\n",
|
---|
2848 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc,
|
---|
2849 | pLookupRange->GCPhys, pLookupRange->GCPhysLast, pLookupRange->pszDesc));
|
---|
2850 |
|
---|
2851 | RTGCPHYS const offRange = GCPhys - pLookupRange->GCPhys;
|
---|
2852 | uint32_t iPage = offRange >> GUEST_PAGE_SHIFT;
|
---|
2853 | uint32_t cLeft = cb >> GUEST_PAGE_SHIFT;
|
---|
2854 | while (cLeft--)
|
---|
2855 | {
|
---|
2856 | PPGMPAGE pPage = &pLookupRange->aPages[iPage];
|
---|
2857 | AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
|
---|
2858 | //|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
|
---|
2859 | //|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO
|
---|
2860 | , ("%RGp %R[pgmpage]\n", pLookupRange->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), pPage));
|
---|
2861 | /** @todo this isn't entirely correct, is it now... aliases must be converted
|
---|
2862 | * to zero pages as they won't be. however, shouldn't
|
---|
2863 | * PGMHandlerPhysicalDeregister deal with this already? */
|
---|
2864 | if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
|
---|
2865 | PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
|
---|
2866 | iPage++;
|
---|
2867 | }
|
---|
2868 |
|
---|
2869 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2870 | /* Notify REM (failure will probably leave things in a non-working state). */
|
---|
2871 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
2872 | {
|
---|
2873 | uint8_t u2State = UINT8_MAX;
|
---|
2874 | rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
|
---|
2875 | pLookupRange->pbR3 ? pLookupRange->pbR3 + GCPhys - pLookupRange->GCPhys : NULL,
|
---|
2876 | NULL, &u2State, &pLookupRange->uNemRange);
|
---|
2877 | AssertLogRelRC(rc);
|
---|
2878 | /** @todo status code propagation here... This is likely fatal, right? */
|
---|
2879 | if (u2State != UINT8_MAX)
|
---|
2880 | pgmPhysSetNemStateForPages(&pLookupRange->aPages[(GCPhys - pLookupRange->GCPhys) >> GUEST_PAGE_SHIFT],
|
---|
2881 | cb >> GUEST_PAGE_SHIFT, u2State);
|
---|
2882 | }
|
---|
2883 | #endif
|
---|
2884 | }
|
---|
2885 | else
|
---|
2886 | {
|
---|
2887 | /*
|
---|
2888 | * Unlink the ad hoc range.
|
---|
2889 | */
|
---|
2890 | #ifdef VBOX_STRICT
|
---|
2891 | uint32_t iPage = cb >> GUEST_PAGE_SHIFT;
|
---|
2892 | while (iPage-- > 0)
|
---|
2893 | {
|
---|
2894 | PPGMPAGE const pPage = &pMmioRamRange->aPages[iPage];
|
---|
2895 | Assert(PGM_PAGE_IS_MMIO(pPage));
|
---|
2896 | }
|
---|
2897 | #endif
|
---|
2898 |
|
---|
2899 | Log(("pgmR3PhysMmioUnmapLocked: Unmapping ad hoc MMIO range for %RGp-%RGp %s\n",
|
---|
2900 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc));
|
---|
2901 |
|
---|
2902 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2903 | if (VM_IS_NEM_ENABLED(pVM)) /* Notify REM before we unlink the range. */
|
---|
2904 | {
|
---|
2905 | rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, 0 /*fFlags*/,
|
---|
2906 | NULL, NULL, NULL, &pMmioRamRange->uNemRange);
|
---|
2907 | AssertLogRelRCReturn(rc, rc); /* we're up the creek if this hits. */
|
---|
2908 | }
|
---|
2909 | #endif
|
---|
2910 |
|
---|
2911 | pgmR3PhysRamRangeRemoveLookup(pVM, pMmioRamRange, &idxLookup);
|
---|
2912 | }
|
---|
2913 | }
|
---|
2914 |
|
---|
2915 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
2916 | /** @todo Not entirely SMP safe; assuming for now the guest takes care of
|
---|
2917 | * this internally (not touch mapped mmio while changing the mapping). */
|
---|
2918 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
2919 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2920 |
|
---|
2921 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
2922 | /*pgmPhysInvalidRamRangeTlbs(pVM); - not necessary */
|
---|
2923 |
|
---|
2924 | return rc;
|
---|
2925 | }
|
---|
2926 |
|
---|
2927 |
|
---|
2928 | /**
|
---|
2929 | * This is the interface IOM is using to register an MMIO region.
|
---|
2930 | *
|
---|
2931 | * It will take care of calling PGMHandlerPhysicalDeregister and clean up
|
---|
2932 | * any ad hoc PGMRAMRANGE left behind.
|
---|
2933 | *
|
---|
2934 | * @returns VBox status code.
|
---|
2935 | * @param pVM The cross context VM structure.
|
---|
2936 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2937 | * @param GCPhys The start of the MMIO region.
|
---|
2938 | * @param cb The size of the MMIO region.
|
---|
2939 | * @param idRamRange The RAM range ID for the MMIO region as returned by
|
---|
2940 | * PGMR3PhysMmioRegister().
|
---|
2941 | * @thread EMT(pVCpu)
|
---|
2942 | */
|
---|
2943 | VMMR3_INT_DECL(int) PGMR3PhysMmioUnmap(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTGCPHYS cb, uint16_t idRamRange)
|
---|
2944 | {
|
---|
2945 | /*
|
---|
2946 | * Input validation.
|
---|
2947 | */
|
---|
2948 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2949 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2950 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2951 | RTGCPHYS const GCPhysLast = GCPhys + cb - 1U;
|
---|
2952 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
2953 | AssertReturn(idRamRange <= pVM->pgm.s.idRamRangeMax && idRamRange > 0, VERR_INVALID_HANDLE);
|
---|
2954 | PPGMRAMRANGE const pMmioRamRange = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2955 | AssertReturn(pMmioRamRange, VERR_INVALID_HANDLE);
|
---|
2956 | AssertReturn(pMmioRamRange->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO, VERR_INVALID_HANDLE);
|
---|
2957 | AssertReturn(pMmioRamRange->cb == cb, VERR_OUT_OF_RANGE);
|
---|
2958 |
|
---|
2959 | /*
|
---|
2960 | * Take the PGM lock and do what's asked.
|
---|
2961 | */
|
---|
2962 | int rc = PGM_LOCK(pVM);
|
---|
2963 | AssertRCReturn(rc, rc);
|
---|
2964 |
|
---|
2965 | rc = pgmR3PhysMmioUnmapLocked(pVM, pVCpu, GCPhys, cb, GCPhysLast, pMmioRamRange);
|
---|
2966 | #ifdef VBOX_STRICT
|
---|
2967 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
2968 | #endif
|
---|
2969 |
|
---|
2970 | PGM_UNLOCK(pVM);
|
---|
2971 | return rc;
|
---|
2972 | }
|
---|
2973 |
|
---|
2974 |
|
---|
2975 |
|
---|
2976 | /*********************************************************************************************************************************
|
---|
2977 | * MMIO2 *
|
---|
2978 | *********************************************************************************************************************************/
|
---|
2979 |
|
---|
2980 | /**
|
---|
2981 | * Validates the claim to an MMIO2 range and returns the pointer to it.
|
---|
2982 | *
|
---|
2983 | * @returns The MMIO2 entry index on success, negative error status on failure.
|
---|
2984 | * @param pVM The cross context VM structure.
|
---|
2985 | * @param pDevIns The device instance owning the region.
|
---|
2986 | * @param hMmio2 Handle to look up.
|
---|
2987 | * @param pcChunks Where to return the number of chunks associated with
|
---|
2988 | * this handle.
|
---|
2989 | */
|
---|
2990 | static int32_t pgmR3PhysMmio2ResolveHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t *pcChunks)
|
---|
2991 | {
|
---|
2992 | *pcChunks = 0;
|
---|
2993 | uint32_t const idxFirst = hMmio2 - 1U;
|
---|
2994 | uint32_t const cMmio2Ranges = RT_MIN(pVM->pgm.s.cMmio2Ranges, RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges));
|
---|
2995 | AssertReturn(idxFirst < cMmio2Ranges, VERR_INVALID_HANDLE);
|
---|
2996 |
|
---|
2997 | PPGMREGMMIO2RANGE const pFirst = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
2998 | AssertReturn(pFirst->idMmio2 == hMmio2, VERR_INVALID_HANDLE);
|
---|
2999 | AssertReturn((pFirst->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK), VERR_INVALID_HANDLE);
|
---|
3000 | AssertReturn(pFirst->pDevInsR3 == pDevIns && RT_VALID_PTR(pDevIns), VERR_NOT_OWNER);
|
---|
3001 |
|
---|
3002 | /* Figure out how many chunks this handle spans. */
|
---|
3003 | if (pFirst->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3004 | *pcChunks = 1;
|
---|
3005 | else
|
---|
3006 | {
|
---|
3007 | uint32_t cChunks = 1;
|
---|
3008 | for (uint32_t idx = idxFirst + 1;; idx++)
|
---|
3009 | {
|
---|
3010 | cChunks++;
|
---|
3011 | AssertReturn(idx < cMmio2Ranges, VERR_INTERNAL_ERROR_2);
|
---|
3012 | PPGMREGMMIO2RANGE const pCur = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3013 | AssertLogRelMsgReturn( pCur->pDevInsR3 == pDevIns
|
---|
3014 | && pCur->idMmio2 == idx + 1
|
---|
3015 | && pCur->iSubDev == pFirst->iSubDev
|
---|
3016 | && pCur->iRegion == pFirst->iRegion
|
---|
3017 | && !(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK),
|
---|
3018 | ("cur: %p/%#x/%#x/%#x/%#x/%s; first: %p/%#x/%#x/%#x/%#x/%s\n",
|
---|
3019 | pCur->pDevInsR3, pCur->idMmio2, pCur->iSubDev, pCur->iRegion, pCur->fFlags,
|
---|
3020 | pVM->pgm.s.apMmio2RamRanges[idx]->pszDesc,
|
---|
3021 | pDevIns, idx + 1, pFirst->iSubDev, pFirst->iRegion, pFirst->fFlags,
|
---|
3022 | pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc),
|
---|
3023 | VERR_INTERNAL_ERROR_3);
|
---|
3024 | if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3025 | break;
|
---|
3026 | }
|
---|
3027 | *pcChunks = cChunks;
|
---|
3028 | }
|
---|
3029 |
|
---|
3030 | return (int32_t)idxFirst;
|
---|
3031 | }
|
---|
3032 |
|
---|
3033 |
|
---|
3034 | /**
|
---|
3035 | * Check if a device has already registered a MMIO2 region.
|
---|
3036 | *
|
---|
3037 | * @returns NULL if not registered, otherwise pointer to the MMIO2.
|
---|
3038 | * @param pVM The cross context VM structure.
|
---|
3039 | * @param pDevIns The device instance owning the region.
|
---|
3040 | * @param iSubDev The sub-device number.
|
---|
3041 | * @param iRegion The region.
|
---|
3042 | */
|
---|
3043 | DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
|
---|
3044 | {
|
---|
3045 | /*
|
---|
3046 | * Search the array. There shouldn't be many entries.
|
---|
3047 | */
|
---|
3048 | uint32_t idx = RT_MIN(pVM->pgm.s.cMmio2Ranges, RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges));
|
---|
3049 | while (idx-- > 0)
|
---|
3050 | if (RT_LIKELY( pVM->pgm.s.aMmio2Ranges[idx].pDevInsR3 != pDevIns
|
---|
3051 | || pVM->pgm.s.aMmio2Ranges[idx].iRegion != iRegion
|
---|
3052 | || pVM->pgm.s.aMmio2Ranges[idx].iSubDev != iSubDev))
|
---|
3053 | { /* likely */ }
|
---|
3054 | else
|
---|
3055 | return &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3056 | return NULL;
|
---|
3057 | }
|
---|
3058 |
|
---|
3059 | /**
|
---|
3060 | * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Map.
|
---|
3061 | */
|
---|
3062 | static int pgmR3PhysMmio2EnableDirtyPageTracing(PVM pVM, uint32_t idx, uint32_t cChunks)
|
---|
3063 | {
|
---|
3064 | int rc = VINF_SUCCESS;
|
---|
3065 | while (cChunks-- > 0)
|
---|
3066 | {
|
---|
3067 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3068 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3069 |
|
---|
3070 | Assert(!(pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING));
|
---|
3071 | int rc2 = pgmHandlerPhysicalExRegister(pVM, pMmio2->pPhysHandlerR3, pRamRange->GCPhys, pRamRange->GCPhysLast);
|
---|
3072 | if (RT_SUCCESS(rc2))
|
---|
3073 | pMmio2->fFlags |= PGMREGMMIO2RANGE_F_IS_TRACKING;
|
---|
3074 | else
|
---|
3075 | AssertLogRelMsgFailedStmt(("%#RGp-%#RGp %s failed -> %Rrc\n",
|
---|
3076 | pRamRange->GCPhys, pRamRange->GCPhysLast, pRamRange->pszDesc, rc2),
|
---|
3077 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3078 |
|
---|
3079 | idx++;
|
---|
3080 | }
|
---|
3081 | return rc;
|
---|
3082 | }
|
---|
3083 |
|
---|
3084 |
|
---|
3085 | /**
|
---|
3086 | * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Unmap.
|
---|
3087 | */
|
---|
3088 | static int pgmR3PhysMmio2DisableDirtyPageTracing(PVM pVM, uint32_t idx, uint32_t cChunks)
|
---|
3089 | {
|
---|
3090 | int rc = VINF_SUCCESS;
|
---|
3091 | while (cChunks-- > 0)
|
---|
3092 | {
|
---|
3093 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3094 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3095 | if (pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING)
|
---|
3096 | {
|
---|
3097 | int rc2 = pgmHandlerPhysicalExDeregister(pVM, pMmio2->pPhysHandlerR3);
|
---|
3098 | AssertLogRelMsgStmt(RT_SUCCESS(rc2),
|
---|
3099 | ("%#RGp-%#RGp %s failed -> %Rrc\n",
|
---|
3100 | pRamRange->GCPhys, pRamRange->GCPhysLast, pRamRange->pszDesc, rc2),
|
---|
3101 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3102 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_TRACKING;
|
---|
3103 | }
|
---|
3104 | idx++;
|
---|
3105 | }
|
---|
3106 | return rc;
|
---|
3107 | }
|
---|
3108 |
|
---|
3109 | #if 0 // temp
|
---|
3110 |
|
---|
3111 | /**
|
---|
3112 | * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
|
---|
3113 | * complete registration entry into the lists and lookup tables.
|
---|
3114 | *
|
---|
3115 | * @param pVM The cross context VM structure.
|
---|
3116 | * @param pNew The new MMIO / MMIO2 registration to link.
|
---|
3117 | */
|
---|
3118 | static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
|
---|
3119 | {
|
---|
3120 | Assert(pNew->idMmio2 != UINT8_MAX);
|
---|
3121 |
|
---|
3122 | /*
|
---|
3123 | * Link it into the list (order doesn't matter, so insert it at the head).
|
---|
3124 | *
|
---|
3125 | * Note! The range we're linking may consist of multiple chunks, so we
|
---|
3126 | * have to find the last one.
|
---|
3127 | */
|
---|
3128 | PPGMREGMMIO2RANGE pLast = pNew;
|
---|
3129 | for (pLast = pNew; ; pLast = pLast->pNextR3)
|
---|
3130 | {
|
---|
3131 | if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3132 | break;
|
---|
3133 | Assert(pLast->pNextR3);
|
---|
3134 | Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
|
---|
3135 | Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
|
---|
3136 | Assert(pLast->pNextR3->iRegion == pNew->iRegion);
|
---|
3137 | Assert(pLast->pNextR3->idMmio2 == pLast->idMmio2 + 1);
|
---|
3138 | }
|
---|
3139 |
|
---|
3140 | PGM_LOCK_VOID(pVM);
|
---|
3141 |
|
---|
3142 | /* Link in the chain of ranges at the head of the list. */
|
---|
3143 | pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
|
---|
3144 | pVM->pgm.s.pRegMmioRangesR3 = pNew;
|
---|
3145 |
|
---|
3146 | /* Insert the MMIO2 range/page IDs. */
|
---|
3147 | uint8_t idMmio2 = pNew->idMmio2;
|
---|
3148 | for (;;)
|
---|
3149 | {
|
---|
3150 | Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
|
---|
3151 | Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
|
---|
3152 | pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
|
---|
3153 | pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
|
---|
3154 | if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3155 | break;
|
---|
3156 | pNew = pNew->pNextR3;
|
---|
3157 | idMmio2++;
|
---|
3158 | }
|
---|
3159 |
|
---|
3160 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
3161 | PGM_UNLOCK(pVM);
|
---|
3162 | }
|
---|
3163 | #endif
|
---|
3164 |
|
---|
3165 |
|
---|
3166 | /**
|
---|
3167 | * Allocate and register an MMIO2 region.
|
---|
3168 | *
|
---|
3169 | * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
|
---|
3170 | * associated with a device. It is also non-shared memory with a permanent
|
---|
3171 | * ring-3 mapping and page backing (presently).
|
---|
3172 | *
|
---|
3173 | * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
|
---|
3174 | * the VM, in which case we'll drop the base memory pages. Presently we will
|
---|
3175 | * make no attempt to preserve anything that happens to be present in the base
|
---|
3176 | * memory that is replaced, this is of course incorrect but it's too much
|
---|
3177 | * effort.
|
---|
3178 | *
|
---|
3179 | * @returns VBox status code.
|
---|
3180 | * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
|
---|
3181 | * memory.
|
---|
3182 | * @retval VERR_ALREADY_EXISTS if the region already exists.
|
---|
3183 | *
|
---|
3184 | * @param pVM The cross context VM structure.
|
---|
3185 | * @param pDevIns The device instance owning the region.
|
---|
3186 | * @param iSubDev The sub-device number.
|
---|
3187 | * @param iRegion The region number. If the MMIO2 memory is a PCI
|
---|
3188 | * I/O region this number has to be the number of that
|
---|
3189 | * region. Otherwise it can be any number save
|
---|
3190 | * UINT8_MAX.
|
---|
3191 | * @param cb The size of the region. Must be page aligned.
|
---|
3192 | * @param fFlags Reserved for future use, must be zero.
|
---|
3193 | * @param pszDesc The description.
|
---|
3194 | * @param ppv Where to store the pointer to the ring-3 mapping of
|
---|
3195 | * the memory.
|
---|
3196 | * @param phRegion Where to return the MMIO2 region handle. Optional.
|
---|
3197 | * @thread EMT(0)
|
---|
3198 | *
|
---|
3199 | * @note Only callable at VM creation time and during VM state loading.
|
---|
3200 | * The latter is for PCNet saved state compatibility with pre 4.3.6
|
---|
3201 | * state.
|
---|
3202 | */
|
---|
3203 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
|
---|
3204 | uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
|
---|
3205 | {
|
---|
3206 | /*
|
---|
3207 | * Validate input.
|
---|
3208 | */
|
---|
3209 | AssertPtrReturn(ppv, VERR_INVALID_POINTER);
|
---|
3210 | *ppv = NULL;
|
---|
3211 | if (phRegion)
|
---|
3212 | {
|
---|
3213 | AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
|
---|
3214 | *phRegion = NIL_PGMMMIO2HANDLE;
|
---|
3215 | }
|
---|
3216 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
3217 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
3218 | VMSTATE const enmVMState = VMR3GetState(pVM);
|
---|
3219 | AssertMsgReturn(enmVMState == VMSTATE_CREATING || enmVMState == VMSTATE_LOADING,
|
---|
3220 | ("state %s, expected CREATING or LOADING\n", VMGetStateName(enmVMState)),
|
---|
3221 | VERR_VM_INVALID_VM_STATE);
|
---|
3222 |
|
---|
3223 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3224 | AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
3225 | AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
3226 |
|
---|
3227 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
3228 | AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
|
---|
3229 |
|
---|
3230 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
3231 | AssertReturn(cb, VERR_INVALID_PARAMETER);
|
---|
3232 | AssertReturn(!(fFlags & ~PGMPHYS_MMIO2_FLAGS_VALID_MASK), VERR_INVALID_FLAGS);
|
---|
3233 |
|
---|
3234 | const uint32_t cGuestPages = cb >> GUEST_PAGE_SHIFT;
|
---|
3235 | AssertLogRelReturn(((RTGCPHYS)cGuestPages << GUEST_PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
|
---|
3236 | AssertLogRelReturn(cGuestPages <= PGM_MAX_PAGES_PER_MMIO2_REGION, VERR_OUT_OF_RANGE);
|
---|
3237 | AssertLogRelReturn(cGuestPages <= (MM_MMIO_64_MAX >> GUEST_PAGE_SHIFT), VERR_OUT_OF_RANGE);
|
---|
3238 |
|
---|
3239 | AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
|
---|
3240 |
|
---|
3241 | /*
|
---|
3242 | * For the 2nd+ instance, mangle the description string so it's unique.
|
---|
3243 | */
|
---|
3244 | if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
|
---|
3245 | {
|
---|
3246 | pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
|
---|
3247 | if (!pszDesc)
|
---|
3248 | return VERR_NO_MEMORY;
|
---|
3249 | }
|
---|
3250 |
|
---|
3251 | /*
|
---|
3252 | * Check that we've got sufficient MMIO2 ID space for this request (the
|
---|
3253 | * allocation will be done later once we've got the backing memory secured,
|
---|
3254 | * but given the EMT0 restriction, that's not going to be a problem).
|
---|
3255 | *
|
---|
3256 | * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
|
---|
3257 | * the IDs goes from 1 thru PGM_MAX_MMIO2_RANGES.
|
---|
3258 | */
|
---|
3259 | unsigned const cChunks = pgmPhysMmio2CalcChunkCount(cb, NULL);
|
---|
3260 |
|
---|
3261 | int rc = PGM_LOCK(pVM);
|
---|
3262 | AssertRCReturn(rc, rc);
|
---|
3263 |
|
---|
3264 | AssertCompile(PGM_MAX_MMIO2_RANGES < 255);
|
---|
3265 | uint8_t const idMmio2 = pVM->pgm.s.cMmio2Ranges + 1;
|
---|
3266 | AssertLogRelReturnStmt(idMmio2 + cChunks <= PGM_MAX_MMIO2_RANGES, PGM_UNLOCK(pVM), VERR_PGM_TOO_MANY_MMIO2_RANGES);
|
---|
3267 |
|
---|
3268 | /*
|
---|
3269 | * Try reserve and allocate the backing memory first as this is what is
|
---|
3270 | * most likely to fail.
|
---|
3271 | */
|
---|
3272 | rc = MMR3AdjustFixedReservation(pVM, cGuestPages, pszDesc);
|
---|
3273 | if (RT_SUCCESS(rc))
|
---|
3274 | {
|
---|
3275 | /*
|
---|
3276 | * If we're in driverless we'll be doing the work here, otherwise we
|
---|
3277 | * must call ring-0 to do the job as we'll need physical addresses
|
---|
3278 | * and maybe a ring-0 mapping address for it all.
|
---|
3279 | */
|
---|
3280 | if (SUPR3IsDriverless())
|
---|
3281 | rc = pgmPhysMmio2RegisterWorker(pVM, cGuestPages, idMmio2, cChunks, pDevIns, iSubDev, iRegion, fFlags);
|
---|
3282 | else
|
---|
3283 | {
|
---|
3284 | PGMPHYSMMIO2REGISTERREQ Mmio2RegReq;
|
---|
3285 | Mmio2RegReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
3286 | Mmio2RegReq.Hdr.cbReq = sizeof(Mmio2RegReq);
|
---|
3287 | Mmio2RegReq.cbGuestPage = GUEST_PAGE_SIZE;
|
---|
3288 | Mmio2RegReq.cGuestPages = cGuestPages;
|
---|
3289 | Mmio2RegReq.idMmio2 = idMmio2;
|
---|
3290 | Mmio2RegReq.cChunks = cChunks;
|
---|
3291 | Mmio2RegReq.iSubDev = (uint8_t)iSubDev;
|
---|
3292 | Mmio2RegReq.iRegion = (uint8_t)iRegion;
|
---|
3293 | Mmio2RegReq.fFlags = fFlags;
|
---|
3294 | Mmio2RegReq.pDevIns = pDevIns;
|
---|
3295 | rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_MMIO2_REGISTER, 0 /*u64Arg*/, &Mmio2RegReq.Hdr);
|
---|
3296 | }
|
---|
3297 | if (RT_SUCCESS(rc))
|
---|
3298 | {
|
---|
3299 | Assert(idMmio2 + cChunks - 1 == pVM->pgm.s.cMmio2Ranges);
|
---|
3300 |
|
---|
3301 | /*
|
---|
3302 | * There are two things left to do:
|
---|
3303 | * 1. Add the description to the associated RAM ranges.
|
---|
3304 | * 2. Pre-allocate access handlers for dirty bit tracking if necessary.
|
---|
3305 | */
|
---|
3306 | bool const fNeedHandler = (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
|
---|
3307 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
3308 | && (!VM_IS_NEM_ENABLED(pVM) || !NEMR3IsMmio2DirtyPageTrackingSupported(pVM))
|
---|
3309 | #endif
|
---|
3310 | ;
|
---|
3311 | for (uint32_t idxChunk = 0; idxChunk < cChunks; idxChunk++)
|
---|
3312 | {
|
---|
3313 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idxChunk + idMmio2 - 1];
|
---|
3314 | Assert(pMmio2->idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
3315 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apRamRanges[pMmio2->idRamRange];
|
---|
3316 | Assert(pRamRange->pbR3 == pMmio2->pbR3);
|
---|
3317 | Assert(pRamRange->cb == pMmio2->cbReal);
|
---|
3318 |
|
---|
3319 | pRamRange->pszDesc = pszDesc; /** @todo mangle this if we got more than one chunk */
|
---|
3320 | if (fNeedHandler)
|
---|
3321 | {
|
---|
3322 | rc = pgmHandlerPhysicalExCreate(pVM, pVM->pgm.s.hMmio2DirtyPhysHandlerType, pMmio2->idMmio2,
|
---|
3323 | pszDesc, &pMmio2->pPhysHandlerR3);
|
---|
3324 | AssertLogRelMsgReturnStmt(RT_SUCCESS(rc),
|
---|
3325 | ("idMmio2=%#x idxChunk=%#x rc=%Rc\n", idMmio2, idxChunk, rc),
|
---|
3326 | PGM_UNLOCK(pVM),
|
---|
3327 | rc); /* PGMR3Term will take care of it all. */
|
---|
3328 | }
|
---|
3329 | }
|
---|
3330 |
|
---|
3331 | /*
|
---|
3332 | * Done!
|
---|
3333 | */
|
---|
3334 | if (phRegion)
|
---|
3335 | *phRegion = idMmio2;
|
---|
3336 | *ppv = pVM->pgm.s.aMmio2Ranges[idMmio2 - 1].pbR3;
|
---|
3337 |
|
---|
3338 | PGM_UNLOCK(pVM);
|
---|
3339 | return VINF_SUCCESS;
|
---|
3340 | }
|
---|
3341 |
|
---|
3342 | MMR3AdjustFixedReservation(pVM, -(int32_t)cGuestPages, pszDesc);
|
---|
3343 | }
|
---|
3344 | if (pDevIns->iInstance > 0)
|
---|
3345 | MMR3HeapFree((void *)pszDesc);
|
---|
3346 | return rc;
|
---|
3347 | }
|
---|
3348 |
|
---|
3349 | /**
|
---|
3350 | * Deregisters and frees an MMIO2 region.
|
---|
3351 | *
|
---|
3352 | * Any physical access handlers registered for the region must be deregistered
|
---|
3353 | * before calling this function.
|
---|
3354 | *
|
---|
3355 | * @returns VBox status code.
|
---|
3356 | * @param pVM The cross context VM structure.
|
---|
3357 | * @param pDevIns The device instance owning the region.
|
---|
3358 | * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
|
---|
3359 | * regions for the given device is to be deregistered.
|
---|
3360 | * @thread EMT(0)
|
---|
3361 | *
|
---|
3362 | * @note Only callable during VM state loading. This is to jettison an unused
|
---|
3363 | * MMIO2 section present in PCNet saved state prior to VBox v4.3.6.
|
---|
3364 | */
|
---|
3365 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
3366 | {
|
---|
3367 | /*
|
---|
3368 | * Validate input.
|
---|
3369 | */
|
---|
3370 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
3371 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
3372 | VMSTATE const enmVMState = VMR3GetState(pVM);
|
---|
3373 | AssertMsgReturn(enmVMState == VMSTATE_LOADING,
|
---|
3374 | ("state %s, expected LOADING\n", VMGetStateName(enmVMState)),
|
---|
3375 | VERR_VM_INVALID_VM_STATE);
|
---|
3376 |
|
---|
3377 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3378 |
|
---|
3379 | /*
|
---|
3380 | * Take the PGM lock and scan for registrations matching the requirements.
|
---|
3381 | * We do this backwards to more easily reduce the cMmio2Ranges count when
|
---|
3382 | * stuff is removed.
|
---|
3383 | */
|
---|
3384 | PGM_LOCK_VOID(pVM);
|
---|
3385 |
|
---|
3386 | int rc = VINF_SUCCESS;
|
---|
3387 | unsigned cFound = 0;
|
---|
3388 | uint32_t const cMmio2Ranges = RT_MIN(pVM->pgm.s.cMmio2Ranges, RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges));
|
---|
3389 | uint32_t idx = cMmio2Ranges;
|
---|
3390 | while (idx-- > 0)
|
---|
3391 | {
|
---|
3392 | PPGMREGMMIO2RANGE pCur = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3393 | if ( pCur->pDevInsR3 == pDevIns
|
---|
3394 | && ( hMmio2 == NIL_PGMMMIO2HANDLE
|
---|
3395 | || pCur->idMmio2 == hMmio2))
|
---|
3396 | {
|
---|
3397 | cFound++;
|
---|
3398 |
|
---|
3399 | /*
|
---|
3400 | * Wind back the first chunk for this registration.
|
---|
3401 | */
|
---|
3402 | AssertLogRelMsgReturnStmt(pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK, ("idx=%u fFlags=%#x\n", idx, pCur->fFlags),
|
---|
3403 | PGM_UNLOCK(pVM), VERR_INTERNAL_ERROR_3);
|
---|
3404 | uint32_t cGuestPages = pCur->cbReal >> GUEST_PAGE_SHIFT;
|
---|
3405 | uint32_t cChunks = 1;
|
---|
3406 | while ( idx > 0
|
---|
3407 | && !(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK))
|
---|
3408 | {
|
---|
3409 | AssertLogRelMsgReturnStmt( pCur[-1].pDevInsR3 == pDevIns
|
---|
3410 | && pCur[-1].iRegion == pCur->iRegion
|
---|
3411 | && pCur[-1].iSubDev == pCur->iSubDev,
|
---|
3412 | ("[%u]: %p/%#x/%#x/fl=%#x; [%u]: %p/%#x/%#x/fl=%#x; cChunks=%#x\n",
|
---|
3413 | idx - 1, pCur[-1].pDevInsR3, pCur[-1].iRegion, pCur[-1].iSubDev, pCur[-1].fFlags,
|
---|
3414 | idx, pCur->pDevInsR3, pCur->iRegion, pCur->iSubDev, pCur->fFlags, cChunks),
|
---|
3415 | PGM_UNLOCK(pVM), VERR_INTERNAL_ERROR_3);
|
---|
3416 | cChunks++;
|
---|
3417 | pCur--;
|
---|
3418 | idx--;
|
---|
3419 | cGuestPages += pCur->cbReal >> GUEST_PAGE_SHIFT;
|
---|
3420 | }
|
---|
3421 | AssertLogRelMsgReturnStmt(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK,
|
---|
3422 | ("idx=%u fFlags=%#x cChunks=%#x\n", idx, pCur->fFlags, cChunks),
|
---|
3423 | PGM_UNLOCK(pVM), VERR_INTERNAL_ERROR_3);
|
---|
3424 |
|
---|
3425 | /*
|
---|
3426 | * Unmap it if it's mapped.
|
---|
3427 | */
|
---|
3428 | if (pCur->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
3429 | {
|
---|
3430 | int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, idx + 1, pCur->GCPhys);
|
---|
3431 | AssertRC(rc2);
|
---|
3432 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
3433 | rc = rc2;
|
---|
3434 | }
|
---|
3435 |
|
---|
3436 | /*
|
---|
3437 | * Destroy access handlers.
|
---|
3438 | */
|
---|
3439 | for (uint32_t iChunk = 0; iChunk < cChunks; iChunk++)
|
---|
3440 | if (pCur[iChunk].pPhysHandlerR3)
|
---|
3441 | {
|
---|
3442 | pgmHandlerPhysicalExDestroy(pVM, pCur[iChunk].pPhysHandlerR3);
|
---|
3443 | pCur[iChunk].pPhysHandlerR3 = NULL;
|
---|
3444 | }
|
---|
3445 |
|
---|
3446 | /*
|
---|
3447 | * Call kernel mode / worker to do the actual deregistration.
|
---|
3448 | */
|
---|
3449 | const char * const pszDesc = pVM->pgm.s.apMmio2RamRanges[idx] ? pVM->pgm.s.apMmio2RamRanges[idx]->pszDesc : NULL;
|
---|
3450 | int rc2;
|
---|
3451 | if (SUPR3IsDriverless())
|
---|
3452 | {
|
---|
3453 | Assert(PGM_IS_IN_NEM_MODE(pVM));
|
---|
3454 | rc2 = pgmPhysMmio2DeregisterWorker(pVM, idx, cChunks, pDevIns);
|
---|
3455 | AssertLogRelMsgStmt(RT_SUCCESS(rc2),
|
---|
3456 | ("pgmPhysMmio2DeregisterWorker: rc=%Rrc idx=%#x cChunks=%#x %s\n",
|
---|
3457 | rc2, idx, cChunks, pszDesc),
|
---|
3458 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3459 | }
|
---|
3460 | else
|
---|
3461 | {
|
---|
3462 | PGMPHYSMMIO2DEREGISTERREQ Mmio2DeregReq;
|
---|
3463 | Mmio2DeregReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
3464 | Mmio2DeregReq.Hdr.cbReq = sizeof(Mmio2DeregReq);
|
---|
3465 | Mmio2DeregReq.idMmio2 = idx + 1;
|
---|
3466 | Mmio2DeregReq.cChunks = cChunks;
|
---|
3467 | Mmio2DeregReq.pDevIns = pDevIns;
|
---|
3468 | rc2 = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_MMIO2_DEREGISTER, 0 /*u64Arg*/, &Mmio2DeregReq.Hdr);
|
---|
3469 | AssertLogRelMsgStmt(RT_SUCCESS(rc2),
|
---|
3470 | ("VMMR0_DO_PGM_PHYS_MMIO2_DEREGISTER: rc=%Rrc idx=%#x cChunks=%#x %s\n",
|
---|
3471 | rc2, idx, cChunks, pszDesc),
|
---|
3472 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3473 | pgmPhysInvalidRamRangeTlbs(pVM); /* Ensure no stale pointers in the ring-3 RAM range TLB. */
|
---|
3474 | }
|
---|
3475 | if (RT_FAILURE(rc2))
|
---|
3476 | {
|
---|
3477 | LogRel(("PGMR3PhysMmio2Deregister: Deregistration failed: %Rrc; cChunks=%u %s\n", rc, cChunks, pszDesc));
|
---|
3478 | if (RT_SUCCESS(rc))
|
---|
3479 | rc = rc2;
|
---|
3480 | }
|
---|
3481 |
|
---|
3482 | /*
|
---|
3483 | * Adjust the memory reservation.
|
---|
3484 | */
|
---|
3485 | if (!PGM_IS_IN_NEM_MODE(pVM) && RT_SUCCESS(rc2))
|
---|
3486 | {
|
---|
3487 | rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cGuestPages, pszDesc);
|
---|
3488 | AssertLogRelMsgStmt(RT_SUCCESS(rc2), ("rc=%Rrc cGuestPages=%#x\n", rc, cGuestPages),
|
---|
3489 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3490 | }
|
---|
3491 |
|
---|
3492 | /* Are we done? */
|
---|
3493 | if (hMmio2 != NIL_PGMMMIO2HANDLE)
|
---|
3494 | break;
|
---|
3495 | }
|
---|
3496 | }
|
---|
3497 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
3498 | PGM_UNLOCK(pVM);
|
---|
3499 | return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
|
---|
3500 | }
|
---|
3501 |
|
---|
3502 |
|
---|
3503 | /**
|
---|
3504 | * Worker form PGMR3PhysMmio2Map.
|
---|
3505 | */
|
---|
3506 | static int pgmR3PhysMmio2MapLocked(PVM pVM, uint32_t const idxFirst, uint32_t const cChunks,
|
---|
3507 | RTGCPHYS const GCPhys, RTGCPHYS const GCPhysLast)
|
---|
3508 | {
|
---|
3509 | /*
|
---|
3510 | * Validate the mapped status now that we've got the lock.
|
---|
3511 | */
|
---|
3512 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3513 | {
|
---|
3514 | AssertReturn( pVM->pgm.s.aMmio2Ranges[idx].GCPhys == NIL_RTGCPHYS
|
---|
3515 | && !(pVM->pgm.s.aMmio2Ranges[idx].fFlags & PGMREGMMIO2RANGE_F_MAPPED),
|
---|
3516 | VERR_WRONG_ORDER);
|
---|
3517 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3518 | AssertReturn(pRamRange->GCPhys == NIL_RTGCPHYS, VERR_INTERNAL_ERROR_3);
|
---|
3519 | AssertReturn(pRamRange->GCPhysLast == NIL_RTGCPHYS, VERR_INTERNAL_ERROR_3);
|
---|
3520 | Assert(pRamRange->pbR3 == pVM->pgm.s.aMmio2Ranges[idx].pbR3);
|
---|
3521 | Assert(pRamRange->idRange == pVM->pgm.s.aMmio2Ranges[idx].idRamRange);
|
---|
3522 | }
|
---|
3523 |
|
---|
3524 | const char * const pszDesc = pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc;
|
---|
3525 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3526 | uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
|
---|
3527 | | (pVM->pgm.s.aMmio2Ranges[idxFirst].fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
|
---|
3528 | ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
|
---|
3529 | #endif
|
---|
3530 |
|
---|
3531 | /*
|
---|
3532 | * Now, check if this falls into a regular RAM range or if we should use
|
---|
3533 | * the ad-hoc one.
|
---|
3534 | *
|
---|
3535 | * Note! For reasons of simplictly, we're considering the whole MMIO2 area
|
---|
3536 | * here rather than individual chunks.
|
---|
3537 | */
|
---|
3538 | int rc = VINF_SUCCESS;
|
---|
3539 | uint32_t idxInsert = UINT32_MAX;
|
---|
3540 | PPGMRAMRANGE const pOverlappingRange = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxInsert);
|
---|
3541 | if (pOverlappingRange)
|
---|
3542 | {
|
---|
3543 | /* Simplification: all within the same range. */
|
---|
3544 | AssertLogRelMsgReturn( GCPhys >= pOverlappingRange->GCPhys
|
---|
3545 | && GCPhysLast <= pOverlappingRange->GCPhysLast,
|
---|
3546 | ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
3547 | GCPhys, GCPhysLast, pszDesc,
|
---|
3548 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
3549 | VERR_PGM_RAM_CONFLICT);
|
---|
3550 |
|
---|
3551 | /* Check that is isn't an ad hoc range, but a real RAM range. */
|
---|
3552 | AssertLogRelMsgReturn(!PGM_RAM_RANGE_IS_AD_HOC(pOverlappingRange),
|
---|
3553 | ("%RGp-%RGp (MMIO2/%s) mapping attempt in non-RAM range: %RGp-%RGp (%s)\n",
|
---|
3554 | GCPhys, GCPhysLast, pszDesc,
|
---|
3555 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
3556 | VERR_PGM_RAM_CONFLICT);
|
---|
3557 |
|
---|
3558 | /* There can only be one MMIO2 chunk matching here! */
|
---|
3559 | AssertLogRelMsgReturn(cChunks == 1,
|
---|
3560 | ("%RGp-%RGp (MMIO2/%s) consists of %u chunks whereas the RAM (%s) somehow doesn't!\n",
|
---|
3561 | GCPhys, GCPhysLast, pszDesc, cChunks, pOverlappingRange->pszDesc),
|
---|
3562 | VERR_PGM_PHYS_MMIO_EX_IPE);
|
---|
3563 |
|
---|
3564 | /* Check that it's all RAM pages. */
|
---|
3565 | PCPGMPAGE pPage = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
3566 | uint32_t const cMmio2Pages = pVM->pgm.s.apMmio2RamRanges[idxFirst]->cb >> GUEST_PAGE_SHIFT;
|
---|
3567 | uint32_t cPagesLeft = cMmio2Pages;
|
---|
3568 | while (cPagesLeft-- > 0)
|
---|
3569 | {
|
---|
3570 | AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
|
---|
3571 | ("%RGp-%RGp (MMIO2/%s): %RGp is not a RAM page - type=%d desc=%s\n", GCPhys, GCPhysLast,
|
---|
3572 | pszDesc, pOverlappingRange->GCPhys, PGM_PAGE_GET_TYPE(pPage), pOverlappingRange->pszDesc),
|
---|
3573 | VERR_PGM_RAM_CONFLICT);
|
---|
3574 | pPage++;
|
---|
3575 | }
|
---|
3576 |
|
---|
3577 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
3578 | /* We cannot mix MMIO2 into a RAM range in simplified memory mode because pOverlappingRange->pbR3 can't point
|
---|
3579 | both at the RAM and MMIO2, so we won't ever write & read from the actual MMIO2 memory if we try. */
|
---|
3580 | AssertLogRelMsgReturn(!VM_IS_NEM_ENABLED(pVM),
|
---|
3581 | ("Putting %s at %RGp-%RGp is not possible in NEM mode because existing %RGp-%RGp (%s) mapping\n",
|
---|
3582 | pszDesc, GCPhys, GCPhysLast,
|
---|
3583 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
3584 | VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
|
---|
3585 | #endif
|
---|
3586 |
|
---|
3587 | /*
|
---|
3588 | * Make all the pages in the range MMIO/ZERO pages, freeing any
|
---|
3589 | * RAM pages currently mapped here. This might not be 100% correct,
|
---|
3590 | * but so what, we do the same from MMIO...
|
---|
3591 | */
|
---|
3592 | rc = pgmR3PhysFreePageRange(pVM, pOverlappingRange, GCPhys, GCPhysLast, NULL);
|
---|
3593 | AssertRCReturn(rc, rc);
|
---|
3594 |
|
---|
3595 | Log(("PGMR3PhysMmio2Map: %RGp-%RGp %s - inside %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc,
|
---|
3596 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc));
|
---|
3597 |
|
---|
3598 | /*
|
---|
3599 | * We're all in for mapping it now. Update the MMIO2 range to reflect it.
|
---|
3600 | */
|
---|
3601 | pVM->pgm.s.aMmio2Ranges[idxFirst].GCPhys = GCPhys;
|
---|
3602 | pVM->pgm.s.aMmio2Ranges[idxFirst].fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3603 |
|
---|
3604 | /*
|
---|
3605 | * Replace the pages in the range.
|
---|
3606 | */
|
---|
3607 | PPGMPAGE pPageSrc = &pVM->pgm.s.apMmio2RamRanges[idxFirst]->aPages[0];
|
---|
3608 | PPGMPAGE pPageDst = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
3609 | cPagesLeft = cMmio2Pages;
|
---|
3610 | while (cPagesLeft-- > 0)
|
---|
3611 | {
|
---|
3612 | Assert(PGM_PAGE_IS_MMIO(pPageDst));
|
---|
3613 |
|
---|
3614 | RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
|
---|
3615 | uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
|
---|
3616 | PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
|
---|
3617 | PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
|
---|
3618 | PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
|
---|
3619 | PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
|
---|
3620 | PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
3621 | PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
|
---|
3622 | PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
|
---|
3623 | /* NEM state is not relevant, see VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE above. */
|
---|
3624 |
|
---|
3625 | pVM->pgm.s.cZeroPages--;
|
---|
3626 | pPageSrc++;
|
---|
3627 | pPageDst++;
|
---|
3628 | }
|
---|
3629 |
|
---|
3630 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
3631 | /** @todo not entirely SMP safe; assuming for now the guest takes
|
---|
3632 | * care of this internally (not touch mapped mmio while changing the
|
---|
3633 | * mapping). */
|
---|
3634 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
3635 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
3636 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
3637 | }
|
---|
3638 | else
|
---|
3639 | {
|
---|
3640 | /*
|
---|
3641 | * No RAM range, insert the ones prepared during registration.
|
---|
3642 | */
|
---|
3643 | Log(("PGMR3PhysMmio2Map: %RGp-%RGp %s - no RAM overlap\n", GCPhys, GCPhysLast, pszDesc));
|
---|
3644 | RTGCPHYS GCPhysCur = GCPhys;
|
---|
3645 | uint32_t iChunk = 0;
|
---|
3646 | uint32_t idx = idxFirst;
|
---|
3647 | for (; iChunk < cChunks; iChunk++, idx++)
|
---|
3648 | {
|
---|
3649 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3650 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3651 | Assert(pRamRange->idRange == pMmio2->idRamRange);
|
---|
3652 | Assert(pMmio2->GCPhys == NIL_RTGCPHYS);
|
---|
3653 |
|
---|
3654 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3655 | /* Tell NEM and get the new NEM state for the pages. */
|
---|
3656 | uint8_t u2NemState = 0;
|
---|
3657 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
3658 | {
|
---|
3659 | rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhysCur, pRamRange->cb, fNemFlags, NULL /*pvRam*/, pRamRange->pbR3,
|
---|
3660 | &u2NemState, &pRamRange->uNemRange);
|
---|
3661 | AssertLogRelMsgBreak(RT_SUCCESS(rc),
|
---|
3662 | ("%RGp LB %RGp fFlags=%#x (%s)\n",
|
---|
3663 | GCPhysCur, pRamRange->cb, pMmio2->fFlags, pRamRange->pszDesc));
|
---|
3664 | pMmio2->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; /* Set this early to indicate that NEM has been notified. */
|
---|
3665 | }
|
---|
3666 | #endif
|
---|
3667 |
|
---|
3668 | /* Clear the tracking data of pages we're going to reactivate. */
|
---|
3669 | PPGMPAGE pPageSrc = &pRamRange->aPages[0];
|
---|
3670 | uint32_t cPagesLeft = pRamRange->cb >> GUEST_PAGE_SHIFT;
|
---|
3671 | while (cPagesLeft-- > 0)
|
---|
3672 | {
|
---|
3673 | PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
|
---|
3674 | PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
|
---|
3675 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3676 | PGM_PAGE_SET_NEM_STATE(pPageSrc, u2NemState);
|
---|
3677 | #endif
|
---|
3678 | pPageSrc++;
|
---|
3679 | }
|
---|
3680 |
|
---|
3681 | /* Insert the RAM range into the lookup table. */
|
---|
3682 | rc = pgmR3PhysRamRangeInsertLookup(pVM, pRamRange, GCPhysCur, &idxInsert);
|
---|
3683 | AssertRCBreak(rc);
|
---|
3684 |
|
---|
3685 | /* Mark the range as fully mapped. */
|
---|
3686 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
|
---|
3687 | pMmio2->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3688 | pMmio2->GCPhys = GCPhysCur;
|
---|
3689 |
|
---|
3690 | /* Advance. */
|
---|
3691 | GCPhysCur += pRamRange->cb;
|
---|
3692 | }
|
---|
3693 | if (RT_FAILURE(rc))
|
---|
3694 | {
|
---|
3695 | /*
|
---|
3696 | * Bail out anything we've done so far.
|
---|
3697 | */
|
---|
3698 | idxInsert -= 1;
|
---|
3699 | do
|
---|
3700 | {
|
---|
3701 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3702 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3703 |
|
---|
3704 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3705 | if ( VM_IS_NEM_ENABLED(pVM)
|
---|
3706 | && (pVM->pgm.s.aMmio2Ranges[idx].fFlags & PGMREGMMIO2RANGE_F_MAPPED))
|
---|
3707 | {
|
---|
3708 | uint8_t u2NemState = UINT8_MAX;
|
---|
3709 | NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysCur, pRamRange->cb, fNemFlags, NULL, pRamRange->pbR3,
|
---|
3710 | &u2NemState, &pRamRange->uNemRange);
|
---|
3711 | if (u2NemState != UINT8_MAX)
|
---|
3712 | pgmPhysSetNemStateForPages(pRamRange->aPages, pRamRange->cb >> GUEST_PAGE_SHIFT, u2NemState);
|
---|
3713 | }
|
---|
3714 | #endif
|
---|
3715 | if (pMmio2->GCPhys != NIL_RTGCPHYS)
|
---|
3716 | pgmR3PhysRamRangeRemoveLookup(pVM, pRamRange, &idxInsert);
|
---|
3717 |
|
---|
3718 | pMmio2->GCPhys = NIL_RTGCPHYS;
|
---|
3719 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3720 |
|
---|
3721 | idx--;
|
---|
3722 | } while (iChunk-- > 0);
|
---|
3723 | return rc;
|
---|
3724 | }
|
---|
3725 | }
|
---|
3726 |
|
---|
3727 | /*
|
---|
3728 | * If the range have dirty page monitoring enabled, enable that.
|
---|
3729 | *
|
---|
3730 | * We ignore failures here for now because if we fail, the whole mapping
|
---|
3731 | * will have to be reversed and we'll end up with nothing at all on the
|
---|
3732 | * screen and a grumpy guest, whereas if we just go on, we'll only have
|
---|
3733 | * visual distortions to gripe about. There will be something in the
|
---|
3734 | * release log.
|
---|
3735 | */
|
---|
3736 | if ( pVM->pgm.s.aMmio2Ranges[idxFirst].pPhysHandlerR3
|
---|
3737 | && (pVM->pgm.s.aMmio2Ranges[idxFirst].fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
3738 | pgmR3PhysMmio2EnableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
3739 |
|
---|
3740 | /* Flush physical page map TLB. */
|
---|
3741 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
3742 |
|
---|
3743 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3744 | /*
|
---|
3745 | * Late NEM notification (currently unused).
|
---|
3746 | */
|
---|
3747 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
3748 | {
|
---|
3749 | if (pOverlappingRange)
|
---|
3750 | {
|
---|
3751 | uint8_t * const pbRam = pOverlappingRange->pbR3 ? &pOverlappingRange->pbR3[GCPhys - pOverlappingRange->GCPhys] : NULL;
|
---|
3752 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1U,
|
---|
3753 | fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE, pbRam,
|
---|
3754 | pVM->pgm.s.aMmio2Ranges[idxFirst].pbR3, NULL /*puNemRange*/);
|
---|
3755 | }
|
---|
3756 | else
|
---|
3757 | {
|
---|
3758 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3759 | {
|
---|
3760 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3761 | Assert(pVM->pgm.s.aMmio2Ranges[idx].GCPhys == pRamRange->GCPhys);
|
---|
3762 |
|
---|
3763 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, pRamRange->GCPhys, pRamRange->cb, fNemFlags, NULL /*pvRam*/,
|
---|
3764 | pRamRange->pbR3, &pRamRange->uNemRange);
|
---|
3765 | AssertRCBreak(rc);
|
---|
3766 | }
|
---|
3767 | }
|
---|
3768 | AssertLogRelRCReturnStmt(rc,
|
---|
3769 | PGMR3PhysMmio2Unmap(pVM, pVM->pgm.s.aMmio2Ranges[idxFirst].pDevInsR3, idxFirst + 1, GCPhys),
|
---|
3770 | rc);
|
---|
3771 | }
|
---|
3772 | #endif
|
---|
3773 |
|
---|
3774 | return VINF_SUCCESS;
|
---|
3775 | }
|
---|
3776 |
|
---|
3777 |
|
---|
3778 | /**
|
---|
3779 | * Maps a MMIO2 region.
|
---|
3780 | *
|
---|
3781 | * This is typically done when a guest / the bios / state loading changes the
|
---|
3782 | * PCI config. The replacing of base memory has the same restrictions as during
|
---|
3783 | * registration, of course.
|
---|
3784 | *
|
---|
3785 | * @returns VBox status code.
|
---|
3786 | *
|
---|
3787 | * @param pVM The cross context VM structure.
|
---|
3788 | * @param pDevIns The device instance owning the region.
|
---|
3789 | * @param hMmio2 The handle of the region to map.
|
---|
3790 | * @param GCPhys The guest-physical address to be remapped.
|
---|
3791 | */
|
---|
3792 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
|
---|
3793 | {
|
---|
3794 | /*
|
---|
3795 | * Validate input.
|
---|
3796 | */
|
---|
3797 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3798 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3799 | AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
|
---|
3800 | AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
|
---|
3801 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
3802 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
3803 |
|
---|
3804 | uint32_t cChunks = 0;
|
---|
3805 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
3806 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
3807 |
|
---|
3808 | /* Gather the full range size so we can validate the mapping address properly. */
|
---|
3809 | RTGCPHYS cbRange = 0;
|
---|
3810 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3811 | cbRange += pVM->pgm.s.apMmio2RamRanges[idx]->cb;
|
---|
3812 |
|
---|
3813 | RTGCPHYS const GCPhysLast = GCPhys + cbRange - 1;
|
---|
3814 | AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
3815 |
|
---|
3816 | /*
|
---|
3817 | * Take the PGM lock and call worker.
|
---|
3818 | */
|
---|
3819 | int rc = PGM_LOCK(pVM);
|
---|
3820 | AssertRCReturn(rc, rc);
|
---|
3821 |
|
---|
3822 | rc = pgmR3PhysMmio2MapLocked(pVM, idxFirst, cChunks, GCPhys, GCPhysLast);
|
---|
3823 | #ifdef VBOX_STRICT
|
---|
3824 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
3825 | #endif
|
---|
3826 |
|
---|
3827 | PGM_UNLOCK(pVM);
|
---|
3828 | return rc;
|
---|
3829 | }
|
---|
3830 |
|
---|
3831 |
|
---|
3832 | /**
|
---|
3833 | * Worker form PGMR3PhysMmio2Map.
|
---|
3834 | */
|
---|
3835 | static int pgmR3PhysMmio2UnmapLocked(PVM pVM, uint32_t const idxFirst, uint32_t const cChunks, RTGCPHYS const GCPhysIn)
|
---|
3836 | {
|
---|
3837 | /*
|
---|
3838 | * Validate input.
|
---|
3839 | */
|
---|
3840 | RTGCPHYS cbRange = 0;
|
---|
3841 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3842 | {
|
---|
3843 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3844 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3845 | AssertReturn(pMmio2->idRamRange == pRamRange->idRange, VERR_INTERNAL_ERROR_3);
|
---|
3846 | AssertReturn(pMmio2->fFlags & PGMREGMMIO2RANGE_F_MAPPED, VERR_WRONG_ORDER);
|
---|
3847 | AssertReturn(pMmio2->GCPhys != NIL_RTGCPHYS, VERR_WRONG_ORDER);
|
---|
3848 | cbRange += pRamRange->cb;
|
---|
3849 | }
|
---|
3850 |
|
---|
3851 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
3852 | PPGMRAMRANGE const pFirstRamRange = pVM->pgm.s.apMmio2RamRanges[idxFirst];
|
---|
3853 | const char * const pszDesc = pFirstRamRange->pszDesc;
|
---|
3854 | AssertLogRelMsgReturn(GCPhysIn == pFirstMmio2->GCPhys || GCPhysIn == NIL_RTGCPHYS,
|
---|
3855 | ("GCPhys=%RGp, actual address is %RGp\n", GCPhysIn, pFirstMmio2->GCPhys),
|
---|
3856 | VERR_MISMATCH);
|
---|
3857 | RTGCPHYS const GCPhys = pFirstMmio2->GCPhys; /* (it's always NIL_RTGCPHYS) */
|
---|
3858 | Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n", GCPhys, GCPhys + cbRange - 1U, pszDesc));
|
---|
3859 |
|
---|
3860 | uint16_t const fOldFlags = pFirstMmio2->fFlags;
|
---|
3861 | Assert(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3862 |
|
---|
3863 | /* Find the first entry in the lookup table and verify the overlapping flag. */
|
---|
3864 | uint32_t idxLookup = pgmR3PhysRamRangeFindOverlappingIndex(pVM, GCPhys, GCPhys + pFirstRamRange->cb - 1U);
|
---|
3865 | AssertLogRelMsgReturn(idxLookup < pVM->pgm.s.RamRangeUnion.cLookupEntries,
|
---|
3866 | ("MMIO2 range not found at %RGp LB %RGp in the lookup table! (%s)\n",
|
---|
3867 | GCPhys, pFirstRamRange->cb, pszDesc),
|
---|
3868 | VERR_INTERNAL_ERROR_2);
|
---|
3869 |
|
---|
3870 | uint32_t const idLookupRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
3871 | AssertLogRelReturn(idLookupRange != 0 && idLookupRange <= pVM->pgm.s.idRamRangeMax, VERR_INTERNAL_ERROR_5);
|
---|
3872 | PPGMRAMRANGE const pLookupRange = pVM->pgm.s.apRamRanges[idLookupRange];
|
---|
3873 | AssertLogRelReturn(pLookupRange, VERR_INTERNAL_ERROR_3);
|
---|
3874 |
|
---|
3875 | AssertLogRelMsgReturn(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING
|
---|
3876 | ? pLookupRange != pFirstRamRange : pLookupRange == pFirstRamRange,
|
---|
3877 | ("MMIO2 unmap mixup at %RGp LB %RGp fl=%#x (%s) vs %RGp LB %RGp (%s)\n",
|
---|
3878 | GCPhys, cbRange, fOldFlags, pszDesc, pLookupRange->GCPhys, pLookupRange->cb, pLookupRange->pszDesc),
|
---|
3879 | VERR_INTERNAL_ERROR_4);
|
---|
3880 |
|
---|
3881 | /*
|
---|
3882 | * If monitoring dirty pages, we must deregister the handlers first.
|
---|
3883 | */
|
---|
3884 | if ( pFirstMmio2->pPhysHandlerR3
|
---|
3885 | && (fOldFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
3886 | pgmR3PhysMmio2DisableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
3887 |
|
---|
3888 | /*
|
---|
3889 | * Unmap it.
|
---|
3890 | */
|
---|
3891 | int rcRet = VINF_SUCCESS;
|
---|
3892 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3893 | uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
|
---|
3894 | | (fOldFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
|
---|
3895 | ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
|
---|
3896 | #endif
|
---|
3897 | if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
|
---|
3898 | {
|
---|
3899 | /*
|
---|
3900 | * We've replaced RAM, replace with zero pages.
|
---|
3901 | *
|
---|
3902 | * Note! This is where we might differ a little from a real system, because
|
---|
3903 | * it's likely to just show the RAM pages as they were before the
|
---|
3904 | * MMIO2 region was mapped here.
|
---|
3905 | */
|
---|
3906 | /* Only one chunk allowed when overlapping! */
|
---|
3907 | Assert(cChunks == 1);
|
---|
3908 | /* No NEM stuff should ever get here, see assertion in the mapping function. */
|
---|
3909 | AssertReturn(!VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
3910 |
|
---|
3911 | /* Restore the RAM pages we've replaced. */
|
---|
3912 | PPGMPAGE pPageDst = &pLookupRange->aPages[(pFirstRamRange->GCPhys - pLookupRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
3913 | uint32_t cPagesLeft = pFirstRamRange->cb >> GUEST_PAGE_SHIFT;
|
---|
3914 | pVM->pgm.s.cZeroPages += cPagesLeft;
|
---|
3915 | while (cPagesLeft-- > 0)
|
---|
3916 | {
|
---|
3917 | PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
|
---|
3918 | pPageDst++;
|
---|
3919 | }
|
---|
3920 |
|
---|
3921 | /* Update range state. */
|
---|
3922 | pFirstMmio2->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3923 | pFirstMmio2->GCPhys = NIL_RTGCPHYS;
|
---|
3924 | Assert(pFirstRamRange->GCPhys == NIL_RTGCPHYS);
|
---|
3925 | Assert(pFirstRamRange->GCPhysLast == NIL_RTGCPHYS);
|
---|
3926 | }
|
---|
3927 | else
|
---|
3928 | {
|
---|
3929 | /*
|
---|
3930 | * Unlink the chunks related to the MMIO/MMIO2 region.
|
---|
3931 | */
|
---|
3932 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3933 | {
|
---|
3934 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3935 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3936 | Assert(pMmio2->idRamRange == pRamRange->idRange);
|
---|
3937 | Assert(pMmio2->GCPhys == pRamRange->GCPhys);
|
---|
3938 |
|
---|
3939 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3940 | if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. */
|
---|
3941 | {
|
---|
3942 | uint8_t u2State = UINT8_MAX;
|
---|
3943 | int rc = NEMR3NotifyPhysMmioExUnmap(pVM, pRamRange->GCPhys, pRamRange->cb, fNemFlags,
|
---|
3944 | NULL, pMmio2->pbR3, &u2State, &pRamRange->uNemRange);
|
---|
3945 | AssertLogRelMsgStmt(RT_SUCCESS(rc),
|
---|
3946 | ("NEMR3NotifyPhysMmioExUnmap failed: %Rrc - GCPhys=RGp LB %RGp fNemFlags=%#x pbR3=%p %s\n",
|
---|
3947 | rc, pRamRange->GCPhys, pRamRange->cb, fNemFlags, pMmio2->pbR3, pRamRange->pszDesc),
|
---|
3948 | rcRet = rc);
|
---|
3949 | if (u2State != UINT8_MAX)
|
---|
3950 | pgmPhysSetNemStateForPages(pRamRange->aPages, pRamRange->cb >> GUEST_PAGE_SHIFT, u2State);
|
---|
3951 | }
|
---|
3952 | #endif
|
---|
3953 |
|
---|
3954 | int rc = pgmR3PhysRamRangeRemoveLookup(pVM, pRamRange, &idxLookup);
|
---|
3955 | AssertLogRelMsgStmt(RT_SUCCESS(rc),
|
---|
3956 | ("pgmR3PhysRamRangeRemoveLookup failed: %Rrc - GCPhys=%RGp LB %RGp %s\n",
|
---|
3957 | rc, pRamRange->GCPhys, pRamRange->cb, pRamRange->pszDesc),
|
---|
3958 | rcRet = rc);
|
---|
3959 |
|
---|
3960 | pMmio2->GCPhys = NIL_RTGCPHYS;
|
---|
3961 | pMmio2->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3962 | Assert(pRamRange->GCPhys == NIL_RTGCPHYS);
|
---|
3963 | Assert(pRamRange->GCPhysLast == NIL_RTGCPHYS);
|
---|
3964 | }
|
---|
3965 | }
|
---|
3966 |
|
---|
3967 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
3968 | /** @todo not entirely SMP safe; assuming for now the guest takes care
|
---|
3969 | * of this internally (not touch mapped mmio while changing the
|
---|
3970 | * mapping). */
|
---|
3971 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
3972 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
3973 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
3974 |
|
---|
3975 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
3976 | /* pgmPhysInvalidRamRangeTlbs(pVM); - not necessary */
|
---|
3977 |
|
---|
3978 | return rcRet;
|
---|
3979 | }
|
---|
3980 |
|
---|
3981 |
|
---|
3982 | /**
|
---|
3983 | * Unmaps an MMIO2 region.
|
---|
3984 | *
|
---|
3985 | * This is typically done when a guest / the bios / state loading changes the
|
---|
3986 | * PCI config. The replacing of base memory has the same restrictions as during
|
---|
3987 | * registration, of course.
|
---|
3988 | */
|
---|
3989 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
|
---|
3990 | {
|
---|
3991 | /*
|
---|
3992 | * Validate input
|
---|
3993 | */
|
---|
3994 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3995 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3996 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
3997 | if (GCPhys != NIL_RTGCPHYS)
|
---|
3998 | {
|
---|
3999 | AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
|
---|
4000 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
4001 | }
|
---|
4002 |
|
---|
4003 | uint32_t cChunks = 0;
|
---|
4004 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4005 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4006 |
|
---|
4007 |
|
---|
4008 | /*
|
---|
4009 | * Take the PGM lock and call worker.
|
---|
4010 | */
|
---|
4011 | int rc = PGM_LOCK(pVM);
|
---|
4012 | AssertRCReturn(rc, rc);
|
---|
4013 |
|
---|
4014 | rc = pgmR3PhysMmio2UnmapLocked(pVM, idxFirst, cChunks, GCPhys);
|
---|
4015 | #ifdef VBOX_STRICT
|
---|
4016 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
4017 | #endif
|
---|
4018 |
|
---|
4019 | PGM_UNLOCK(pVM);
|
---|
4020 | return rc;
|
---|
4021 | }
|
---|
4022 |
|
---|
4023 |
|
---|
4024 | /**
|
---|
4025 | * Reduces the mapping size of a MMIO2 region.
|
---|
4026 | *
|
---|
4027 | * This is mainly for dealing with old saved states after changing the default
|
---|
4028 | * size of a mapping region. See PDMDevHlpMmio2Reduce and
|
---|
4029 | * PDMPCIDEV::pfnRegionLoadChangeHookR3.
|
---|
4030 | *
|
---|
4031 | * The region must not currently be mapped when making this call. The VM state
|
---|
4032 | * must be state restore or VM construction.
|
---|
4033 | *
|
---|
4034 | * @returns VBox status code.
|
---|
4035 | * @param pVM The cross context VM structure.
|
---|
4036 | * @param pDevIns The device instance owning the region.
|
---|
4037 | * @param hMmio2 The handle of the region to reduce.
|
---|
4038 | * @param cbRegion The new mapping size.
|
---|
4039 | */
|
---|
4040 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
|
---|
4041 | {
|
---|
4042 | /*
|
---|
4043 | * Validate input
|
---|
4044 | */
|
---|
4045 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
4046 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE && hMmio2 != 0 && hMmio2 <= RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges),
|
---|
4047 | VERR_INVALID_HANDLE);
|
---|
4048 | AssertReturn(cbRegion >= GUEST_PAGE_SIZE, VERR_INVALID_PARAMETER);
|
---|
4049 | AssertReturn(!(cbRegion & GUEST_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
|
---|
4050 |
|
---|
4051 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
4052 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
4053 |
|
---|
4054 | VMSTATE const enmVmState = VMR3GetState(pVM);
|
---|
4055 | AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
|
---|
4056 | || enmVmState == VMSTATE_LOADING,
|
---|
4057 | ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
|
---|
4058 | VERR_VM_INVALID_VM_STATE);
|
---|
4059 |
|
---|
4060 | /*
|
---|
4061 | * Grab the PGM lock and validate the request properly.
|
---|
4062 | */
|
---|
4063 | int rc = PGM_LOCK(pVM);
|
---|
4064 | AssertRCReturn(rc, rc);
|
---|
4065 |
|
---|
4066 | uint32_t cChunks = 0;
|
---|
4067 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4068 | if ((int32_t)idxFirst >= 0)
|
---|
4069 | {
|
---|
4070 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
4071 | PPGMRAMRANGE const pFirstRamRange = pVM->pgm.s.apMmio2RamRanges[idxFirst];
|
---|
4072 | if ( !(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
4073 | && pFirstMmio2->GCPhys == NIL_RTGCPHYS)
|
---|
4074 | {
|
---|
4075 | /*
|
---|
4076 | * NOTE! Current implementation does not support multiple ranges.
|
---|
4077 | * Implement when there is a real world need and thus a testcase.
|
---|
4078 | */
|
---|
4079 | if (cChunks == 1)
|
---|
4080 | {
|
---|
4081 | /*
|
---|
4082 | * The request has to be within the initial size.
|
---|
4083 | */
|
---|
4084 | if (cbRegion <= pFirstMmio2->cbReal)
|
---|
4085 | {
|
---|
4086 | /*
|
---|
4087 | * All we have to do is modify the size stored in the RAM range,
|
---|
4088 | * as it is the one used when mapping it and such.
|
---|
4089 | * The two page counts stored in PGMR0PERVM remain unchanged.
|
---|
4090 | */
|
---|
4091 | Log(("PGMR3PhysMmio2Reduce: %s changes from %#RGp bytes (%#RGp) to %#RGp bytes.\n",
|
---|
4092 | pFirstRamRange->pszDesc, pFirstRamRange->cb, pFirstMmio2->cbReal, cbRegion));
|
---|
4093 | pFirstRamRange->cb = cbRegion;
|
---|
4094 | rc = VINF_SUCCESS;
|
---|
4095 | }
|
---|
4096 | else
|
---|
4097 | {
|
---|
4098 | AssertLogRelMsgFailed(("MMIO2/%s: cbRegion=%#RGp > cbReal=%#RGp\n",
|
---|
4099 | pFirstRamRange->pszDesc, cbRegion, pFirstMmio2->cbReal));
|
---|
4100 | rc = VERR_OUT_OF_RANGE;
|
---|
4101 | }
|
---|
4102 | }
|
---|
4103 | else
|
---|
4104 | {
|
---|
4105 | AssertLogRelMsgFailed(("MMIO2/%s: more than one chunk: %d (flags=%#x)\n",
|
---|
4106 | pFirstRamRange->pszDesc, cChunks, pFirstMmio2->fFlags));
|
---|
4107 | rc = VERR_NOT_SUPPORTED;
|
---|
4108 | }
|
---|
4109 | }
|
---|
4110 | else
|
---|
4111 | {
|
---|
4112 | AssertLogRelMsgFailed(("MMIO2/%s: cannot change size of mapped range: %RGp..%RGp\n", pFirstRamRange->pszDesc,
|
---|
4113 | pFirstMmio2->GCPhys, pFirstMmio2->GCPhys + pFirstRamRange->cb - 1U));
|
---|
4114 | rc = VERR_WRONG_ORDER;
|
---|
4115 | }
|
---|
4116 | }
|
---|
4117 | else
|
---|
4118 | rc = (int32_t)idxFirst;
|
---|
4119 |
|
---|
4120 | PGM_UNLOCK(pVM);
|
---|
4121 | return rc;
|
---|
4122 | }
|
---|
4123 |
|
---|
4124 |
|
---|
4125 | /**
|
---|
4126 | * Validates @a hMmio2, making sure it belongs to @a pDevIns.
|
---|
4127 | *
|
---|
4128 | * @returns VBox status code.
|
---|
4129 | * @param pVM The cross context VM structure.
|
---|
4130 | * @param pDevIns The device which allegedly owns @a hMmio2.
|
---|
4131 | * @param hMmio2 The handle to validate.
|
---|
4132 | */
|
---|
4133 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
4134 | {
|
---|
4135 | /*
|
---|
4136 | * Validate input
|
---|
4137 | */
|
---|
4138 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
4139 | AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
|
---|
4140 |
|
---|
4141 | /*
|
---|
4142 | * Just do this the simple way.
|
---|
4143 | */
|
---|
4144 | int rc = PGM_LOCK_VOID(pVM);
|
---|
4145 | AssertRCReturn(rc, rc);
|
---|
4146 | uint32_t cChunks;
|
---|
4147 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4148 | PGM_UNLOCK(pVM);
|
---|
4149 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4150 | return VINF_SUCCESS;
|
---|
4151 | }
|
---|
4152 |
|
---|
4153 |
|
---|
4154 | /**
|
---|
4155 | * Gets the mapping address of an MMIO2 region.
|
---|
4156 | *
|
---|
4157 | * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
|
---|
4158 | *
|
---|
4159 | * @param pVM The cross context VM structure.
|
---|
4160 | * @param pDevIns The device owning the MMIO2 handle.
|
---|
4161 | * @param hMmio2 The region handle.
|
---|
4162 | */
|
---|
4163 | VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
4164 | {
|
---|
4165 | RTGCPHYS GCPhysRet = NIL_RTGCPHYS;
|
---|
4166 |
|
---|
4167 | int rc = PGM_LOCK_VOID(pVM);
|
---|
4168 | AssertRCReturn(rc, NIL_RTGCPHYS);
|
---|
4169 |
|
---|
4170 | uint32_t cChunks;
|
---|
4171 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4172 | if ((int32_t)idxFirst >= 0)
|
---|
4173 | GCPhysRet = pVM->pgm.s.aMmio2Ranges[idxFirst].GCPhys;
|
---|
4174 |
|
---|
4175 | PGM_UNLOCK(pVM);
|
---|
4176 | return NIL_RTGCPHYS;
|
---|
4177 | }
|
---|
4178 |
|
---|
4179 |
|
---|
4180 | /**
|
---|
4181 | * Worker for PGMR3PhysMmio2QueryAndResetDirtyBitmap.
|
---|
4182 | *
|
---|
4183 | * Called holding the PGM lock.
|
---|
4184 | */
|
---|
4185 | static int pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
|
---|
4186 | void *pvBitmap, size_t cbBitmap)
|
---|
4187 | {
|
---|
4188 | /*
|
---|
4189 | * Continue validation.
|
---|
4190 | */
|
---|
4191 | uint32_t cChunks;
|
---|
4192 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4193 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4194 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
4195 | AssertReturn(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES, VERR_INVALID_FUNCTION);
|
---|
4196 |
|
---|
4197 | int rc = VINF_SUCCESS;
|
---|
4198 | if (cbBitmap || pvBitmap)
|
---|
4199 | {
|
---|
4200 | /*
|
---|
4201 | * Check the bitmap size and collect all the dirty flags.
|
---|
4202 | */
|
---|
4203 | RTGCPHYS cbTotal = 0;
|
---|
4204 | uint16_t fTotalDirty = 0;
|
---|
4205 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4206 | {
|
---|
4207 | /* Not using cbReal here, because NEM is not in on the creating, only the mapping. */
|
---|
4208 | cbTotal += pVM->pgm.s.apMmio2RamRanges[idx]->cb;
|
---|
4209 | fTotalDirty |= pVM->pgm.s.aMmio2Ranges[idx].fFlags;
|
---|
4210 | }
|
---|
4211 | size_t const cbTotalBitmap = RT_ALIGN_T(cbTotal, GUEST_PAGE_SIZE * 64, RTGCPHYS) / GUEST_PAGE_SIZE / 8;
|
---|
4212 |
|
---|
4213 | AssertPtrReturn(pvBitmap, VERR_INVALID_POINTER);
|
---|
4214 | AssertReturn(RT_ALIGN_P(pvBitmap, sizeof(uint64_t)) == pvBitmap, VERR_INVALID_POINTER);
|
---|
4215 | AssertReturn(cbBitmap == cbTotalBitmap, VERR_INVALID_PARAMETER);
|
---|
4216 |
|
---|
4217 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4218 | /*
|
---|
4219 | * If there is no physical handler we must be in NEM mode and NEM
|
---|
4220 | * taking care of the dirty bit collecting.
|
---|
4221 | */
|
---|
4222 | if (pFirstMmio2->pPhysHandlerR3 == NULL)
|
---|
4223 | {
|
---|
4224 | /** @todo This does not integrate at all with --execute-all-in-iem, leaving the
|
---|
4225 | * screen blank when using it together with --driverless. Fixing this won't be
|
---|
4226 | * entirely easy as we take the PGM_PAGE_HNDL_PHYS_STATE_DISABLED page status to
|
---|
4227 | * mean a dirty page. */
|
---|
4228 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
4229 | uint8_t *pbBitmap = (uint8_t *)pvBitmap;
|
---|
4230 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4231 | {
|
---|
4232 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
4233 | size_t const cbBitmapChunk = (pRamRange->cb / GUEST_PAGE_SIZE + 7) / 8;
|
---|
4234 | Assert((RTGCPHYS)cbBitmapChunk * GUEST_PAGE_SIZE * 8 == pRamRange->cb);
|
---|
4235 | Assert(pRamRange->GCPhys == pVM->pgm.s.aMmio2Ranges[idx].GCPhys); /* (No MMIO2 inside RAM in NEM mode!)*/
|
---|
4236 | int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pRamRange->GCPhys, pRamRange->cb,
|
---|
4237 | pRamRange->uNemRange, pbBitmap, cbBitmapChunk);
|
---|
4238 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4239 | rc = rc2;
|
---|
4240 | pbBitmap += pRamRange->cb / GUEST_PAGE_SIZE / 8;
|
---|
4241 | }
|
---|
4242 | }
|
---|
4243 | else
|
---|
4244 | #endif
|
---|
4245 | if (fTotalDirty & PGMREGMMIO2RANGE_F_IS_DIRTY)
|
---|
4246 | {
|
---|
4247 | if ( (pFirstMmio2->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4248 | == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4249 | {
|
---|
4250 | /*
|
---|
4251 | * Reset each chunk, gathering dirty bits.
|
---|
4252 | */
|
---|
4253 | RT_BZERO(pvBitmap, cbBitmap); /* simpler for now. */
|
---|
4254 | for (uint32_t iChunk = 0, idx = idxFirst, iPageNo = 0; iChunk < cChunks; iChunk++, idx++)
|
---|
4255 | {
|
---|
4256 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
4257 | if (pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
|
---|
4258 | {
|
---|
4259 | int rc2 = pgmHandlerPhysicalResetMmio2WithBitmap(pVM, pMmio2->GCPhys, pvBitmap, iPageNo);
|
---|
4260 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4261 | rc = rc2;
|
---|
4262 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
|
---|
4263 | }
|
---|
4264 | iPageNo += pVM->pgm.s.apMmio2RamRanges[idx]->cb >> GUEST_PAGE_SHIFT;
|
---|
4265 | }
|
---|
4266 | }
|
---|
4267 | else
|
---|
4268 | {
|
---|
4269 | /*
|
---|
4270 | * If not mapped or tracking is disabled, we return the
|
---|
4271 | * PGMREGMMIO2RANGE_F_IS_DIRTY status for all pages. We cannot
|
---|
4272 | * get more accurate data than that after unmapping or disabling.
|
---|
4273 | */
|
---|
4274 | RT_BZERO(pvBitmap, cbBitmap);
|
---|
4275 | for (uint32_t iChunk = 0, idx = idxFirst, iPageNo = 0; iChunk < cChunks; iChunk++, idx++)
|
---|
4276 | {
|
---|
4277 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
4278 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
4279 | if (pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
|
---|
4280 | {
|
---|
4281 | ASMBitSetRange(pvBitmap, iPageNo, iPageNo + (pRamRange->cb >> GUEST_PAGE_SHIFT));
|
---|
4282 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
|
---|
4283 | }
|
---|
4284 | iPageNo += pRamRange->cb >> GUEST_PAGE_SHIFT;
|
---|
4285 | }
|
---|
4286 | }
|
---|
4287 | }
|
---|
4288 | /*
|
---|
4289 | * No dirty chunks.
|
---|
4290 | */
|
---|
4291 | else
|
---|
4292 | RT_BZERO(pvBitmap, cbBitmap);
|
---|
4293 | }
|
---|
4294 | /*
|
---|
4295 | * No bitmap. Reset the region if tracking is currently enabled.
|
---|
4296 | */
|
---|
4297 | else if ( (pFirstMmio2->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4298 | == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4299 | {
|
---|
4300 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4301 | if (pFirstMmio2->pPhysHandlerR3 == NULL)
|
---|
4302 | {
|
---|
4303 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
4304 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4305 | {
|
---|
4306 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
4307 | Assert(pRamRange->GCPhys == pVM->pgm.s.aMmio2Ranges[idx].GCPhys); /* (No MMIO2 inside RAM in NEM mode!)*/
|
---|
4308 | int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pRamRange->GCPhys, pRamRange->cb,
|
---|
4309 | pRamRange->uNemRange, NULL, 0);
|
---|
4310 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4311 | rc = rc2;
|
---|
4312 | }
|
---|
4313 | }
|
---|
4314 | else
|
---|
4315 | #endif
|
---|
4316 | {
|
---|
4317 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4318 | {
|
---|
4319 | pVM->pgm.s.aMmio2Ranges[idx].fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
|
---|
4320 | int rc2 = PGMHandlerPhysicalReset(pVM, pVM->pgm.s.aMmio2Ranges[idx].GCPhys);
|
---|
4321 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4322 | rc = rc2;
|
---|
4323 | }
|
---|
4324 | }
|
---|
4325 | }
|
---|
4326 |
|
---|
4327 | return rc;
|
---|
4328 | }
|
---|
4329 |
|
---|
4330 |
|
---|
4331 | /**
|
---|
4332 | * Queries the dirty page bitmap and resets the monitoring.
|
---|
4333 | *
|
---|
4334 | * The PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES flag must be specified when
|
---|
4335 | * creating the range for this to work.
|
---|
4336 | *
|
---|
4337 | * @returns VBox status code.
|
---|
4338 | * @retval VERR_INVALID_FUNCTION if not created using
|
---|
4339 | * PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES.
|
---|
4340 | * @param pVM The cross context VM structure.
|
---|
4341 | * @param pDevIns The device owning the MMIO2 handle.
|
---|
4342 | * @param hMmio2 The region handle.
|
---|
4343 | * @param pvBitmap The output bitmap. Must be 8-byte aligned. Ignored
|
---|
4344 | * when @a cbBitmap is zero.
|
---|
4345 | * @param cbBitmap The size of the bitmap. Must be the size of the whole
|
---|
4346 | * MMIO2 range, rounded up to the nearest 8 bytes.
|
---|
4347 | * When zero only a reset is done.
|
---|
4348 | */
|
---|
4349 | VMMR3_INT_DECL(int) PGMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
|
---|
4350 | void *pvBitmap, size_t cbBitmap)
|
---|
4351 | {
|
---|
4352 | /*
|
---|
4353 | * Do some basic validation before grapping the PGM lock and continuing.
|
---|
4354 | */
|
---|
4355 | AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
|
---|
4356 | AssertReturn(RT_ALIGN_Z(cbBitmap, sizeof(uint64_t)) == cbBitmap, VERR_INVALID_PARAMETER);
|
---|
4357 | int rc = PGM_LOCK(pVM);
|
---|
4358 | if (RT_SUCCESS(rc))
|
---|
4359 | {
|
---|
4360 | STAM_PROFILE_START(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
|
---|
4361 | rc = pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(pVM, pDevIns, hMmio2, pvBitmap, cbBitmap);
|
---|
4362 | STAM_PROFILE_STOP(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
|
---|
4363 | PGM_UNLOCK(pVM);
|
---|
4364 | }
|
---|
4365 | return rc;
|
---|
4366 | }
|
---|
4367 |
|
---|
4368 |
|
---|
4369 | /**
|
---|
4370 | * Worker for PGMR3PhysMmio2ControlDirtyPageTracking
|
---|
4371 | *
|
---|
4372 | * Called owning the PGM lock.
|
---|
4373 | */
|
---|
4374 | static int pgmR3PhysMmio2ControlDirtyPageTrackingLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
|
---|
4375 | {
|
---|
4376 | /*
|
---|
4377 | * Continue validation.
|
---|
4378 | */
|
---|
4379 | uint32_t cChunks;
|
---|
4380 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4381 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4382 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
4383 | AssertReturn(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES, VERR_INVALID_FUNCTION);
|
---|
4384 |
|
---|
4385 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4386 | /*
|
---|
4387 | * This is a nop if NEM is responsible for doing the tracking, we simply
|
---|
4388 | * leave the tracking on all the time there.
|
---|
4389 | */
|
---|
4390 | if (pFirstMmio2->pPhysHandlerR3 == NULL)
|
---|
4391 | {
|
---|
4392 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
4393 | return VINF_SUCCESS;
|
---|
4394 | }
|
---|
4395 | #endif
|
---|
4396 |
|
---|
4397 | /*
|
---|
4398 | * Anything needing doing?
|
---|
4399 | */
|
---|
4400 | if (fEnabled != RT_BOOL(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4401 | {
|
---|
4402 | LogFlowFunc(("fEnabled=%RTbool %s\n", fEnabled, pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc));
|
---|
4403 |
|
---|
4404 | /*
|
---|
4405 | * Update the PGMREGMMIO2RANGE_F_TRACKING_ENABLED flag.
|
---|
4406 | */
|
---|
4407 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4408 | if (fEnabled)
|
---|
4409 | pVM->pgm.s.aMmio2Ranges[idx].fFlags |= PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
|
---|
4410 | else
|
---|
4411 | pVM->pgm.s.aMmio2Ranges[idx].fFlags &= ~PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
|
---|
4412 |
|
---|
4413 | /*
|
---|
4414 | * Enable/disable handlers if currently mapped.
|
---|
4415 | *
|
---|
4416 | * We ignore status codes here as we've already changed the flags and
|
---|
4417 | * returning a failure status now would be confusing. Besides, the two
|
---|
4418 | * functions will continue past failures. As argued in the mapping code,
|
---|
4419 | * it's in the release log.
|
---|
4420 | */
|
---|
4421 | if (pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
4422 | {
|
---|
4423 | if (fEnabled)
|
---|
4424 | pgmR3PhysMmio2EnableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
4425 | else
|
---|
4426 | pgmR3PhysMmio2DisableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
4427 | }
|
---|
4428 | }
|
---|
4429 | else
|
---|
4430 | LogFlowFunc(("fEnabled=%RTbool %s - no change\n", fEnabled, pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc));
|
---|
4431 |
|
---|
4432 | return VINF_SUCCESS;
|
---|
4433 | }
|
---|
4434 |
|
---|
4435 |
|
---|
4436 | /**
|
---|
4437 | * Controls the dirty page tracking for an MMIO2 range.
|
---|
4438 | *
|
---|
4439 | * @returns VBox status code.
|
---|
4440 | * @param pVM The cross context VM structure.
|
---|
4441 | * @param pDevIns The device owning the MMIO2 memory.
|
---|
4442 | * @param hMmio2 The handle of the region.
|
---|
4443 | * @param fEnabled The new tracking state.
|
---|
4444 | */
|
---|
4445 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ControlDirtyPageTracking(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
|
---|
4446 | {
|
---|
4447 | /*
|
---|
4448 | * Do some basic validation before grapping the PGM lock and continuing.
|
---|
4449 | */
|
---|
4450 | AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
|
---|
4451 | int rc = PGM_LOCK(pVM);
|
---|
4452 | if (RT_SUCCESS(rc))
|
---|
4453 | {
|
---|
4454 | rc = pgmR3PhysMmio2ControlDirtyPageTrackingLocked(pVM, pDevIns, hMmio2, fEnabled);
|
---|
4455 | PGM_UNLOCK(pVM);
|
---|
4456 | }
|
---|
4457 | return rc;
|
---|
4458 | }
|
---|
4459 |
|
---|
4460 |
|
---|
4461 | /**
|
---|
4462 | * Changes the region number of an MMIO2 region.
|
---|
4463 | *
|
---|
4464 | * This is only for dealing with save state issues, nothing else.
|
---|
4465 | *
|
---|
4466 | * @return VBox status code.
|
---|
4467 | *
|
---|
4468 | * @param pVM The cross context VM structure.
|
---|
4469 | * @param pDevIns The device owning the MMIO2 memory.
|
---|
4470 | * @param hMmio2 The handle of the region.
|
---|
4471 | * @param iNewRegion The new region index.
|
---|
4472 | *
|
---|
4473 | * @thread EMT(0)
|
---|
4474 | * @sa @bugref{9359}
|
---|
4475 | */
|
---|
4476 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
|
---|
4477 | {
|
---|
4478 | /*
|
---|
4479 | * Validate input.
|
---|
4480 | */
|
---|
4481 | VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
4482 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
|
---|
4483 | AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
4484 |
|
---|
4485 | int rc = PGM_LOCK(pVM);
|
---|
4486 | AssertRCReturn(rc, rc);
|
---|
4487 |
|
---|
4488 | /* Validate and resolve the handle. */
|
---|
4489 | uint32_t cChunks;
|
---|
4490 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4491 | if ((int32_t)idxFirst >= 0)
|
---|
4492 | {
|
---|
4493 | /* Check that the new range number is unused. */
|
---|
4494 | PPGMREGMMIO2RANGE const pConflict = pgmR3PhysMmio2Find(pVM, pDevIns, pVM->pgm.s.aMmio2Ranges[idxFirst].iSubDev,
|
---|
4495 | iNewRegion);
|
---|
4496 | if (!pConflict)
|
---|
4497 | {
|
---|
4498 | /*
|
---|
4499 | * Make the change.
|
---|
4500 | */
|
---|
4501 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4502 | pVM->pgm.s.aMmio2Ranges[idx].iRegion = (uint8_t)iNewRegion;
|
---|
4503 | rc = VINF_SUCCESS;
|
---|
4504 | }
|
---|
4505 | else
|
---|
4506 | {
|
---|
4507 | AssertLogRelMsgFailed(("MMIO2/%s: iNewRegion=%d conflicts with %s\n", pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc,
|
---|
4508 | iNewRegion, pVM->pgm.s.apMmio2RamRanges[pConflict->idRamRange]->pszDesc));
|
---|
4509 | rc = VERR_RESOURCE_IN_USE;
|
---|
4510 | }
|
---|
4511 | }
|
---|
4512 | else
|
---|
4513 | rc = (int32_t)idxFirst;
|
---|
4514 |
|
---|
4515 | PGM_UNLOCK(pVM);
|
---|
4516 | return rc;
|
---|
4517 | }
|
---|
4518 |
|
---|
4519 |
|
---|
4520 |
|
---|
4521 | /*********************************************************************************************************************************
|
---|
4522 | * ROM *
|
---|
4523 | *********************************************************************************************************************************/
|
---|
4524 |
|
---|
4525 | /**
|
---|
4526 | * Worker for PGMR3PhysRomRegister.
|
---|
4527 | *
|
---|
4528 | * This is here to simplify lock management, i.e. the caller does all the
|
---|
4529 | * locking and we can simply return without needing to remember to unlock
|
---|
4530 | * anything first.
|
---|
4531 | *
|
---|
4532 | * @returns VBox status code.
|
---|
4533 | * @param pVM The cross context VM structure.
|
---|
4534 | * @param pDevIns The device instance owning the ROM.
|
---|
4535 | * @param GCPhys First physical address in the range.
|
---|
4536 | * Must be page aligned!
|
---|
4537 | * @param cb The size of the range (in bytes).
|
---|
4538 | * Must be page aligned!
|
---|
4539 | * @param pvBinary Pointer to the binary data backing the ROM image.
|
---|
4540 | * @param cbBinary The size of the binary data pvBinary points to.
|
---|
4541 | * This must be less or equal to @a cb.
|
---|
4542 | * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
|
---|
4543 | * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
|
---|
4544 | * @param pszDesc Pointer to description string. This must not be freed.
|
---|
4545 | */
|
---|
4546 | static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
4547 | const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
|
---|
4548 | {
|
---|
4549 | /*
|
---|
4550 | * Validate input.
|
---|
4551 | */
|
---|
4552 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
4553 | AssertReturn(RT_ALIGN_T(GCPhys, GUEST_PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
|
---|
4554 | AssertReturn(RT_ALIGN_T(cb, GUEST_PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
|
---|
4555 | RTGCPHYS const GCPhysLast = GCPhys + (cb - 1);
|
---|
4556 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
4557 | AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
|
---|
4558 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
4559 | AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
|
---|
4560 |
|
---|
4561 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
4562 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
4563 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
|
---|
4564 |
|
---|
4565 | const uint32_t cGuestPages = cb >> GUEST_PAGE_SHIFT;
|
---|
4566 | AssertReturn(cGuestPages <= PGM_MAX_PAGES_PER_ROM_RANGE, VERR_OUT_OF_RANGE);
|
---|
4567 |
|
---|
4568 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4569 | const uint32_t cHostPages = RT_ALIGN_T(cb, HOST_PAGE_SIZE, RTGCPHYS) >> HOST_PAGE_SHIFT;
|
---|
4570 | #endif
|
---|
4571 |
|
---|
4572 | /*
|
---|
4573 | * Make sure we've got a free ROM range.
|
---|
4574 | */
|
---|
4575 | uint8_t const idRomRange = pVM->pgm.s.cRomRanges;
|
---|
4576 | AssertLogRelReturn(idRomRange < RT_ELEMENTS(pVM->pgm.s.apRomRanges), VERR_PGM_TOO_MANY_ROM_RANGES);
|
---|
4577 |
|
---|
4578 | /*
|
---|
4579 | * Look thru the existing ROM range and make sure there aren't any
|
---|
4580 | * overlapping registration.
|
---|
4581 | */
|
---|
4582 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
4583 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
4584 | {
|
---|
4585 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
4586 | AssertLogRelMsgReturn( GCPhys > pRom->GCPhysLast
|
---|
4587 | || GCPhysLast < pRom->GCPhys,
|
---|
4588 | ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
|
---|
4589 | GCPhys, GCPhysLast, pszDesc,
|
---|
4590 | pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
|
---|
4591 | VERR_PGM_RAM_CONFLICT);
|
---|
4592 | }
|
---|
4593 |
|
---|
4594 | /*
|
---|
4595 | * Find the RAM location and check for conflicts.
|
---|
4596 | *
|
---|
4597 | * Conflict detection is a bit different than for RAM registration since a
|
---|
4598 | * ROM can be located within a RAM range. So, what we have to check for is
|
---|
4599 | * other memory types (other than RAM that is) and that we don't span more
|
---|
4600 | * than one RAM range (lazy).
|
---|
4601 | */
|
---|
4602 | uint32_t idxInsert = UINT32_MAX;
|
---|
4603 | PPGMRAMRANGE const pOverlappingRange = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxInsert);
|
---|
4604 | if (pOverlappingRange)
|
---|
4605 | {
|
---|
4606 | /* completely within? */
|
---|
4607 | AssertLogRelMsgReturn( GCPhys >= pOverlappingRange->GCPhys
|
---|
4608 | && GCPhysLast <= pOverlappingRange->GCPhysLast,
|
---|
4609 | ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
4610 | GCPhys, GCPhysLast, pszDesc,
|
---|
4611 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
4612 | VERR_PGM_RAM_CONFLICT);
|
---|
4613 |
|
---|
4614 | /* Check that is isn't an ad hoc range, but a real RAM range. */
|
---|
4615 | AssertLogRelMsgReturn(!PGM_RAM_RANGE_IS_AD_HOC(pOverlappingRange),
|
---|
4616 | ("%RGp-%RGp (ROM/%s) mapping attempt in non-RAM range: %RGp-%RGp (%s)\n",
|
---|
4617 | GCPhys, GCPhysLast, pszDesc,
|
---|
4618 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
4619 | VERR_PGM_RAM_CONFLICT);
|
---|
4620 |
|
---|
4621 | /* All the pages must be RAM pages. */
|
---|
4622 | PPGMPAGE pPage = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
4623 | uint32_t cPagesLeft = cGuestPages;
|
---|
4624 | while (cPagesLeft-- > 0)
|
---|
4625 | {
|
---|
4626 | AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
|
---|
4627 | ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
|
---|
4628 | GCPhys + ((RTGCPHYS)cPagesLeft << GUEST_PAGE_SHIFT), pPage, GCPhys, GCPhysLast, pszDesc),
|
---|
4629 | VERR_PGM_RAM_CONFLICT);
|
---|
4630 | AssertLogRelMsgReturn(PGM_PAGE_IS_ZERO(pPage) || PGM_IS_IN_NEM_MODE(pVM),
|
---|
4631 | ("%RGp (%R[pgmpage]) is not a ZERO page - registering %RGp-%RGp (%s).\n",
|
---|
4632 | GCPhys + ((RTGCPHYS)cPagesLeft << GUEST_PAGE_SHIFT), pPage, GCPhys, GCPhysLast, pszDesc),
|
---|
4633 | VERR_PGM_UNEXPECTED_PAGE_STATE);
|
---|
4634 | pPage++;
|
---|
4635 | }
|
---|
4636 | }
|
---|
4637 |
|
---|
4638 | /*
|
---|
4639 | * Update the base memory reservation if necessary.
|
---|
4640 | */
|
---|
4641 | uint32_t const cExtraBaseCost = (pOverlappingRange ? 0 : cGuestPages)
|
---|
4642 | + (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? cGuestPages : 0);
|
---|
4643 | if (cExtraBaseCost)
|
---|
4644 | {
|
---|
4645 | int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
|
---|
4646 | AssertRCReturn(rc, rc);
|
---|
4647 | }
|
---|
4648 |
|
---|
4649 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4650 | /*
|
---|
4651 | * Early NEM notification before we've made any changes or anything.
|
---|
4652 | */
|
---|
4653 | uint32_t const fNemNotify = (pOverlappingRange ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
|
---|
4654 | | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
|
---|
4655 | uint8_t u2NemState = UINT8_MAX;
|
---|
4656 | uint32_t uNemRange = 0;
|
---|
4657 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
4658 | {
|
---|
4659 | int rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cGuestPages << GUEST_PAGE_SHIFT,
|
---|
4660 | pOverlappingRange
|
---|
4661 | ? PGM_RAMRANGE_CALC_PAGE_R3PTR(pOverlappingRange, GCPhys) : NULL,
|
---|
4662 | fNemNotify, &u2NemState,
|
---|
4663 | pOverlappingRange ? &pOverlappingRange->uNemRange : &uNemRange);
|
---|
4664 | AssertLogRelRCReturn(rc, rc);
|
---|
4665 | }
|
---|
4666 | #endif
|
---|
4667 |
|
---|
4668 | /*
|
---|
4669 | * Allocate memory for the virgin copy of the RAM. In simplified memory
|
---|
4670 | * mode, we allocate memory for any ad-hoc RAM range and for shadow pages.
|
---|
4671 | */
|
---|
4672 | int rc;
|
---|
4673 | PGMMALLOCATEPAGESREQ pReq = NULL;
|
---|
4674 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4675 | void *pvRam = NULL;
|
---|
4676 | void *pvAlt = NULL;
|
---|
4677 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4678 | {
|
---|
4679 | if (!pOverlappingRange)
|
---|
4680 | {
|
---|
4681 | rc = SUPR3PageAlloc(cHostPages, 0, &pvRam);
|
---|
4682 | if (RT_FAILURE(rc))
|
---|
4683 | return rc;
|
---|
4684 | }
|
---|
4685 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4686 | {
|
---|
4687 | rc = SUPR3PageAlloc(cHostPages, 0, &pvAlt);
|
---|
4688 | if (RT_FAILURE(rc))
|
---|
4689 | {
|
---|
4690 | if (pvRam)
|
---|
4691 | SUPR3PageFree(pvRam, cHostPages);
|
---|
4692 | return rc;
|
---|
4693 | }
|
---|
4694 | }
|
---|
4695 | }
|
---|
4696 | else
|
---|
4697 | #endif
|
---|
4698 | {
|
---|
4699 | rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cGuestPages, GMMACCOUNT_BASE);
|
---|
4700 | AssertRCReturn(rc, rc);
|
---|
4701 |
|
---|
4702 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++)
|
---|
4703 | {
|
---|
4704 | pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
4705 | pReq->aPages[iPage].fZeroed = false;
|
---|
4706 | pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
|
---|
4707 | pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
|
---|
4708 | }
|
---|
4709 |
|
---|
4710 | rc = GMMR3AllocatePagesPerform(pVM, pReq);
|
---|
4711 | if (RT_FAILURE(rc))
|
---|
4712 | {
|
---|
4713 | GMMR3AllocatePagesCleanup(pReq);
|
---|
4714 | return rc;
|
---|
4715 | }
|
---|
4716 | }
|
---|
4717 |
|
---|
4718 | /*
|
---|
4719 | * Allocate a RAM range if required.
|
---|
4720 | * Note! We don't clean up the RAM range here on failure, VM destruction does that.
|
---|
4721 | */
|
---|
4722 | rc = VINF_SUCCESS;
|
---|
4723 | PPGMRAMRANGE pRamRange = NULL;
|
---|
4724 | if (!pOverlappingRange)
|
---|
4725 | rc = pgmR3PhysAllocateRamRange(pVM, pVCpu, cGuestPages, PGM_RAM_RANGE_FLAGS_AD_HOC_ROM, &pRamRange);
|
---|
4726 | if (RT_SUCCESS(rc))
|
---|
4727 | {
|
---|
4728 | /*
|
---|
4729 | * Allocate a ROM range.
|
---|
4730 | * Note! We don't clean up the ROM range here on failure, VM destruction does that.
|
---|
4731 | */
|
---|
4732 | if (SUPR3IsDriverless())
|
---|
4733 | rc = pgmPhysRomRangeAllocCommon(pVM, cGuestPages, idRomRange, fFlags);
|
---|
4734 | else
|
---|
4735 | {
|
---|
4736 | PGMPHYSROMALLOCATERANGEREQ RomRangeReq;
|
---|
4737 | RomRangeReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
4738 | RomRangeReq.Hdr.cbReq = sizeof(RomRangeReq);
|
---|
4739 | RomRangeReq.cbGuestPage = GUEST_PAGE_SIZE;
|
---|
4740 | RomRangeReq.cGuestPages = cGuestPages;
|
---|
4741 | RomRangeReq.idRomRange = idRomRange;
|
---|
4742 | RomRangeReq.fFlags = fFlags;
|
---|
4743 | rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_ROM_ALLOCATE_RANGE, 0 /*u64Arg*/, &RomRangeReq.Hdr);
|
---|
4744 | }
|
---|
4745 | }
|
---|
4746 | if (RT_SUCCESS(rc))
|
---|
4747 | {
|
---|
4748 | /*
|
---|
4749 | * Initialize and map the RAM range (if required).
|
---|
4750 | */
|
---|
4751 | PPGMROMRANGE const pRomRange = pVM->pgm.s.apRomRanges[idRomRange];
|
---|
4752 | AssertPtr(pRomRange);
|
---|
4753 | uint32_t const idxFirstRamPage = pOverlappingRange ? (GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT : 0;
|
---|
4754 | PPGMROMPAGE pRomPage = &pRomRange->aPages[0];
|
---|
4755 | if (!pOverlappingRange)
|
---|
4756 | {
|
---|
4757 | /* Initialize the new RAM range and insert it into the lookup table. */
|
---|
4758 | pRamRange->pszDesc = pszDesc;
|
---|
4759 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4760 | pRamRange->uNemRange = uNemRange;
|
---|
4761 | #endif
|
---|
4762 |
|
---|
4763 | PPGMPAGE pRamPage = &pRamRange->aPages[idxFirstRamPage];
|
---|
4764 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4765 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4766 | {
|
---|
4767 | AssertPtr(pvRam); Assert(pReq == NULL);
|
---|
4768 | pRamRange->pbR3 = (uint8_t *)pvRam;
|
---|
4769 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4770 | {
|
---|
4771 | PGM_PAGE_INIT(pRamPage, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
|
---|
4772 | PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED);
|
---|
4773 | pRomPage->Virgin = *pRamPage;
|
---|
4774 | }
|
---|
4775 | }
|
---|
4776 | else
|
---|
4777 | #endif
|
---|
4778 | {
|
---|
4779 | Assert(!pRamRange->pbR3); Assert(!pvRam);
|
---|
4780 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4781 | {
|
---|
4782 | PGM_PAGE_INIT(pRamPage,
|
---|
4783 | pReq->aPages[iPage].HCPhysGCPhys,
|
---|
4784 | pReq->aPages[iPage].idPage,
|
---|
4785 | PGMPAGETYPE_ROM,
|
---|
4786 | PGM_PAGE_STATE_ALLOCATED);
|
---|
4787 |
|
---|
4788 | pRomPage->Virgin = *pRamPage;
|
---|
4789 | }
|
---|
4790 | }
|
---|
4791 |
|
---|
4792 | pVM->pgm.s.cAllPages += cGuestPages;
|
---|
4793 | pVM->pgm.s.cPrivatePages += cGuestPages;
|
---|
4794 |
|
---|
4795 | rc = pgmR3PhysRamRangeInsertLookup(pVM, pRamRange, GCPhys, &idxInsert);
|
---|
4796 | }
|
---|
4797 | else
|
---|
4798 | {
|
---|
4799 | /* Insert the ROM into an existing RAM range. */
|
---|
4800 | PPGMPAGE pRamPage = &pOverlappingRange->aPages[idxFirstRamPage];
|
---|
4801 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4802 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4803 | {
|
---|
4804 | Assert(pvRam == NULL); Assert(pReq == NULL);
|
---|
4805 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4806 | {
|
---|
4807 | Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
|
---|
4808 | Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
|
---|
4809 | Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
4810 | PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
|
---|
4811 | PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
4812 | PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
4813 | PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
|
---|
4814 | PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
|
---|
4815 |
|
---|
4816 | pRomPage->Virgin = *pRamPage;
|
---|
4817 | }
|
---|
4818 | }
|
---|
4819 | else
|
---|
4820 | #endif
|
---|
4821 | {
|
---|
4822 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4823 | {
|
---|
4824 | PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
|
---|
4825 | PGM_PAGE_SET_HCPHYS(pVM, pRamPage, pReq->aPages[iPage].HCPhysGCPhys);
|
---|
4826 | PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
4827 | PGM_PAGE_SET_PAGEID(pVM, pRamPage, pReq->aPages[iPage].idPage);
|
---|
4828 | PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
4829 | PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
|
---|
4830 | PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
|
---|
4831 |
|
---|
4832 | pRomPage->Virgin = *pRamPage;
|
---|
4833 | }
|
---|
4834 | pVM->pgm.s.cZeroPages -= cGuestPages;
|
---|
4835 | pVM->pgm.s.cPrivatePages += cGuestPages;
|
---|
4836 | }
|
---|
4837 | pRamRange = pOverlappingRange;
|
---|
4838 | }
|
---|
4839 |
|
---|
4840 | if (RT_SUCCESS(rc))
|
---|
4841 | {
|
---|
4842 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4843 | /* Set the NEM state of the pages if needed. */
|
---|
4844 | if (u2NemState != UINT8_MAX)
|
---|
4845 | pgmPhysSetNemStateForPages(&pRamRange->aPages[idxFirstRamPage], cGuestPages, u2NemState);
|
---|
4846 | #endif
|
---|
4847 |
|
---|
4848 | /* Flush physical page map TLB. */
|
---|
4849 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
4850 |
|
---|
4851 | /*
|
---|
4852 | * Register the ROM access handler.
|
---|
4853 | */
|
---|
4854 | rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType, idRomRange, pszDesc);
|
---|
4855 | if (RT_SUCCESS(rc))
|
---|
4856 | {
|
---|
4857 | /*
|
---|
4858 | * Copy the image over to the virgin pages.
|
---|
4859 | * This must be done after linking in the RAM range.
|
---|
4860 | */
|
---|
4861 | size_t cbBinaryLeft = cbBinary;
|
---|
4862 | PPGMPAGE pRamPage = &pRamRange->aPages[idxFirstRamPage];
|
---|
4863 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++)
|
---|
4864 | {
|
---|
4865 | void *pvDstPage;
|
---|
4866 | rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << GUEST_PAGE_SHIFT), &pvDstPage);
|
---|
4867 | if (RT_FAILURE(rc))
|
---|
4868 | {
|
---|
4869 | VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
|
---|
4870 | break;
|
---|
4871 | }
|
---|
4872 | if (cbBinaryLeft >= GUEST_PAGE_SIZE)
|
---|
4873 | {
|
---|
4874 | memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << GUEST_PAGE_SHIFT), GUEST_PAGE_SIZE);
|
---|
4875 | cbBinaryLeft -= GUEST_PAGE_SIZE;
|
---|
4876 | }
|
---|
4877 | else
|
---|
4878 | {
|
---|
4879 | RT_BZERO(pvDstPage, GUEST_PAGE_SIZE); /* (shouldn't be necessary, but can't hurt either) */
|
---|
4880 | if (cbBinaryLeft > 0)
|
---|
4881 | {
|
---|
4882 | memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << GUEST_PAGE_SHIFT), cbBinaryLeft);
|
---|
4883 | cbBinaryLeft = 0;
|
---|
4884 | }
|
---|
4885 | }
|
---|
4886 | }
|
---|
4887 | if (RT_SUCCESS(rc))
|
---|
4888 | {
|
---|
4889 | /*
|
---|
4890 | * Initialize the ROM range.
|
---|
4891 | * Note that the Virgin member of the pages has already been initialized above.
|
---|
4892 | */
|
---|
4893 | Assert(pRomRange->cb == cb);
|
---|
4894 | Assert(pRomRange->fFlags == fFlags);
|
---|
4895 | Assert(pRomRange->idSavedState == UINT8_MAX);
|
---|
4896 | pRomRange->GCPhys = GCPhys;
|
---|
4897 | pRomRange->GCPhysLast = GCPhysLast;
|
---|
4898 | pRomRange->cbOriginal = cbBinary;
|
---|
4899 | pRomRange->pszDesc = pszDesc;
|
---|
4900 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4901 | pRomRange->pbR3Alternate = (uint8_t *)pvAlt;
|
---|
4902 | #endif
|
---|
4903 | pRomRange->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
|
---|
4904 | ? pvBinary : RTMemDup(pvBinary, cbBinary);
|
---|
4905 | if (pRomRange->pvOriginal)
|
---|
4906 | {
|
---|
4907 | for (unsigned iPage = 0; iPage < cGuestPages; iPage++)
|
---|
4908 | {
|
---|
4909 | PPGMROMPAGE const pPage = &pRomRange->aPages[iPage];
|
---|
4910 | pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
|
---|
4911 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4912 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4913 | PGM_PAGE_INIT(&pPage->Shadow, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
|
---|
4914 | PGMPAGETYPE_ROM_SHADOW, PGM_PAGE_STATE_ALLOCATED);
|
---|
4915 | else
|
---|
4916 | #endif
|
---|
4917 | PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
|
---|
4918 | }
|
---|
4919 |
|
---|
4920 | /* update the page count stats for the shadow pages. */
|
---|
4921 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4922 | {
|
---|
4923 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4924 | pVM->pgm.s.cPrivatePages += cGuestPages;
|
---|
4925 | else
|
---|
4926 | pVM->pgm.s.cZeroPages += cGuestPages;
|
---|
4927 | pVM->pgm.s.cAllPages += cGuestPages;
|
---|
4928 | }
|
---|
4929 |
|
---|
4930 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4931 | /*
|
---|
4932 | * Notify NEM again.
|
---|
4933 | */
|
---|
4934 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
4935 | {
|
---|
4936 | u2NemState = UINT8_MAX;
|
---|
4937 | rc = NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, PGM_RAMRANGE_CALC_PAGE_R3PTR(pRamRange, GCPhys),
|
---|
4938 | fNemNotify, &u2NemState, &pRamRange->uNemRange);
|
---|
4939 | if (u2NemState != UINT8_MAX)
|
---|
4940 | pgmPhysSetNemStateForPages(&pRamRange->aPages[idxFirstRamPage], cGuestPages, u2NemState);
|
---|
4941 | }
|
---|
4942 | else
|
---|
4943 | #endif
|
---|
4944 | GMMR3AllocatePagesCleanup(pReq);
|
---|
4945 | if (RT_SUCCESS(rc))
|
---|
4946 | {
|
---|
4947 | /*
|
---|
4948 | * Done!
|
---|
4949 | */
|
---|
4950 | #ifdef VBOX_STRICT
|
---|
4951 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
4952 | #endif
|
---|
4953 | return rc;
|
---|
4954 | }
|
---|
4955 |
|
---|
4956 | /*
|
---|
4957 | * bail out
|
---|
4958 | */
|
---|
4959 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4960 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4961 | {
|
---|
4962 | Assert(VM_IS_NEM_ENABLED(pVM));
|
---|
4963 | pVM->pgm.s.cPrivatePages -= cGuestPages;
|
---|
4964 | pVM->pgm.s.cAllPages -= cGuestPages;
|
---|
4965 | }
|
---|
4966 | #endif
|
---|
4967 | }
|
---|
4968 | else
|
---|
4969 | rc = VERR_NO_MEMORY;
|
---|
4970 | }
|
---|
4971 |
|
---|
4972 | int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
4973 | AssertRC(rc2);
|
---|
4974 | }
|
---|
4975 |
|
---|
4976 | idxInsert -= 1;
|
---|
4977 | if (!pOverlappingRange)
|
---|
4978 | pgmR3PhysRamRangeRemoveLookup(pVM, pRamRange, &idxInsert);
|
---|
4979 | }
|
---|
4980 | /* else: lookup insertion failed. */
|
---|
4981 |
|
---|
4982 | if (pOverlappingRange)
|
---|
4983 | {
|
---|
4984 | PPGMPAGE pRamPage = &pOverlappingRange->aPages[idxFirstRamPage];
|
---|
4985 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4986 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4987 | {
|
---|
4988 | Assert(pvRam == NULL); Assert(pReq == NULL);
|
---|
4989 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4990 | {
|
---|
4991 | Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
|
---|
4992 | Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
|
---|
4993 | Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
4994 | PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_RAM);
|
---|
4995 | PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
4996 | }
|
---|
4997 | }
|
---|
4998 | else
|
---|
4999 | #endif
|
---|
5000 | {
|
---|
5001 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++)
|
---|
5002 | PGM_PAGE_INIT_ZERO(pRamPage, pVM, PGMPAGETYPE_RAM);
|
---|
5003 | pVM->pgm.s.cZeroPages += cGuestPages;
|
---|
5004 | pVM->pgm.s.cPrivatePages -= cGuestPages;
|
---|
5005 | }
|
---|
5006 | }
|
---|
5007 | }
|
---|
5008 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
5009 | pgmPhysInvalidRamRangeTlbs(pVM);
|
---|
5010 |
|
---|
5011 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
5012 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
5013 | {
|
---|
5014 | Assert(!pReq);
|
---|
5015 | if (pvRam)
|
---|
5016 | SUPR3PageFree(pvRam, cHostPages);
|
---|
5017 | if (pvAlt)
|
---|
5018 | SUPR3PageFree(pvAlt, cHostPages);
|
---|
5019 | }
|
---|
5020 | else
|
---|
5021 | #endif
|
---|
5022 | {
|
---|
5023 | GMMR3FreeAllocatedPages(pVM, pReq);
|
---|
5024 | GMMR3AllocatePagesCleanup(pReq);
|
---|
5025 | }
|
---|
5026 |
|
---|
5027 | /* We don't bother to actually free either the ROM nor the RAM ranges
|
---|
5028 | themselves, as already mentioned above, we'll leave that to the VM
|
---|
5029 | termination cleanup code. */
|
---|
5030 | return rc;
|
---|
5031 | }
|
---|
5032 |
|
---|
5033 |
|
---|
5034 | /**
|
---|
5035 | * Registers a ROM image.
|
---|
5036 | *
|
---|
5037 | * Shadowed ROM images requires double the amount of backing memory, so,
|
---|
5038 | * don't use that unless you have to. Shadowing of ROM images is process
|
---|
5039 | * where we can select where the reads go and where the writes go. On real
|
---|
5040 | * hardware the chipset provides means to configure this. We provide
|
---|
5041 | * PGMR3PhysRomProtect() for this purpose.
|
---|
5042 | *
|
---|
5043 | * A read-only copy of the ROM image will always be kept around while we
|
---|
5044 | * will allocate RAM pages for the changes on demand (unless all memory
|
---|
5045 | * is configured to be preallocated).
|
---|
5046 | *
|
---|
5047 | * @returns VBox status code.
|
---|
5048 | * @param pVM The cross context VM structure.
|
---|
5049 | * @param pDevIns The device instance owning the ROM.
|
---|
5050 | * @param GCPhys First physical address in the range.
|
---|
5051 | * Must be page aligned!
|
---|
5052 | * @param cb The size of the range (in bytes).
|
---|
5053 | * Must be page aligned!
|
---|
5054 | * @param pvBinary Pointer to the binary data backing the ROM image.
|
---|
5055 | * @param cbBinary The size of the binary data pvBinary points to.
|
---|
5056 | * This must be less or equal to @a cb.
|
---|
5057 | * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
|
---|
5058 | * @param pszDesc Pointer to description string. This must not be freed.
|
---|
5059 | *
|
---|
5060 | * @remark There is no way to remove the rom, automatically on device cleanup or
|
---|
5061 | * manually from the device yet. This isn't difficult in any way, it's
|
---|
5062 | * just not something we expect to be necessary for a while.
|
---|
5063 | */
|
---|
5064 | VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
5065 | const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
|
---|
5066 | {
|
---|
5067 | Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
|
---|
5068 | pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
|
---|
5069 | PGM_LOCK_VOID(pVM);
|
---|
5070 |
|
---|
5071 | int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
|
---|
5072 |
|
---|
5073 | PGM_UNLOCK(pVM);
|
---|
5074 | return rc;
|
---|
5075 | }
|
---|
5076 |
|
---|
5077 |
|
---|
5078 | /**
|
---|
5079 | * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
|
---|
5080 | * that the virgin part is untouched.
|
---|
5081 | *
|
---|
5082 | * This is done after the normal memory has been cleared.
|
---|
5083 | *
|
---|
5084 | * ASSUMES that the caller owns the PGM lock.
|
---|
5085 | *
|
---|
5086 | * @param pVM The cross context VM structure.
|
---|
5087 | */
|
---|
5088 | int pgmR3PhysRomReset(PVM pVM)
|
---|
5089 | {
|
---|
5090 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
5091 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
5092 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
5093 | {
|
---|
5094 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
5095 | uint32_t const cGuestPages = pRom->cb >> GUEST_PAGE_SHIFT;
|
---|
5096 |
|
---|
5097 | if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
5098 | {
|
---|
5099 | /*
|
---|
5100 | * Reset the physical handler.
|
---|
5101 | */
|
---|
5102 | int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
|
---|
5103 | AssertRCReturn(rc, rc);
|
---|
5104 |
|
---|
5105 | /*
|
---|
5106 | * What we do with the shadow pages depends on the memory
|
---|
5107 | * preallocation option. If not enabled, we'll just throw
|
---|
5108 | * out all the dirty pages and replace them by the zero page.
|
---|
5109 | */
|
---|
5110 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
5111 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
5112 | {
|
---|
5113 | /* Clear all the shadow pages (currently using alternate backing). */
|
---|
5114 | RT_BZERO(pRom->pbR3Alternate, pRom->cb);
|
---|
5115 | }
|
---|
5116 | else
|
---|
5117 | #endif
|
---|
5118 | if (!pVM->pgm.s.fRamPreAlloc)
|
---|
5119 | {
|
---|
5120 | /* Free the dirty pages. */
|
---|
5121 | uint32_t cPendingPages = 0;
|
---|
5122 | PGMMFREEPAGESREQ pReq;
|
---|
5123 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
5124 | AssertRCReturn(rc, rc);
|
---|
5125 |
|
---|
5126 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++)
|
---|
5127 | if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
|
---|
5128 | && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
|
---|
5129 | {
|
---|
5130 | Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
|
---|
5131 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
|
---|
5132 | pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT),
|
---|
5133 | (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
|
---|
5134 | AssertLogRelRCReturn(rc, rc);
|
---|
5135 | }
|
---|
5136 |
|
---|
5137 | if (cPendingPages)
|
---|
5138 | {
|
---|
5139 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
5140 | AssertLogRelRCReturn(rc, rc);
|
---|
5141 | }
|
---|
5142 | GMMR3FreePagesCleanup(pReq);
|
---|
5143 | }
|
---|
5144 | else
|
---|
5145 | {
|
---|
5146 | /* clear all the shadow pages. */
|
---|
5147 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++)
|
---|
5148 | {
|
---|
5149 | if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
|
---|
5150 | continue;
|
---|
5151 | Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
|
---|
5152 | void *pvDstPage;
|
---|
5153 | RTGCPHYS const GCPhys = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
5154 | rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
|
---|
5155 | if (RT_FAILURE(rc))
|
---|
5156 | break;
|
---|
5157 | RT_BZERO(pvDstPage, GUEST_PAGE_SIZE);
|
---|
5158 | }
|
---|
5159 | AssertRCReturn(rc, rc);
|
---|
5160 | }
|
---|
5161 | }
|
---|
5162 |
|
---|
5163 | /*
|
---|
5164 | * Restore the original ROM pages after a saved state load.
|
---|
5165 | * Also, in strict builds check that ROM pages remain unmodified.
|
---|
5166 | */
|
---|
5167 | #ifndef VBOX_STRICT
|
---|
5168 | if (pVM->pgm.s.fRestoreRomPagesOnReset)
|
---|
5169 | #endif
|
---|
5170 | {
|
---|
5171 | size_t cbSrcLeft = pRom->cbOriginal;
|
---|
5172 | uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
|
---|
5173 | uint32_t cRestored = 0;
|
---|
5174 | for (uint32_t iPage = 0; iPage < cGuestPages && cbSrcLeft > 0; iPage++, pbSrcPage += GUEST_PAGE_SIZE)
|
---|
5175 | {
|
---|
5176 | RTGCPHYS const GCPhys = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
5177 | PPGMPAGE const pPage = pgmPhysGetPage(pVM, GCPhys);
|
---|
5178 | void const *pvDstPage = NULL;
|
---|
5179 | int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvDstPage);
|
---|
5180 | if (RT_FAILURE(rc))
|
---|
5181 | break;
|
---|
5182 |
|
---|
5183 | if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE)))
|
---|
5184 | {
|
---|
5185 | if (pVM->pgm.s.fRestoreRomPagesOnReset)
|
---|
5186 | {
|
---|
5187 | void *pvDstPageW = NULL;
|
---|
5188 | rc = pgmPhysPageMap(pVM, pPage, GCPhys, &pvDstPageW);
|
---|
5189 | AssertLogRelRCReturn(rc, rc);
|
---|
5190 | memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE));
|
---|
5191 | cRestored++;
|
---|
5192 | }
|
---|
5193 | else
|
---|
5194 | LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
|
---|
5195 | }
|
---|
5196 | cbSrcLeft -= RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE);
|
---|
5197 | }
|
---|
5198 | if (cRestored > 0)
|
---|
5199 | LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cGuestPages));
|
---|
5200 | }
|
---|
5201 | }
|
---|
5202 |
|
---|
5203 | /* Clear the ROM restore flag now as we only need to do this once after
|
---|
5204 | loading saved state. */
|
---|
5205 | pVM->pgm.s.fRestoreRomPagesOnReset = false;
|
---|
5206 |
|
---|
5207 | return VINF_SUCCESS;
|
---|
5208 | }
|
---|
5209 |
|
---|
5210 |
|
---|
5211 | /**
|
---|
5212 | * Called by PGMR3Term to free resources.
|
---|
5213 | *
|
---|
5214 | * ASSUMES that the caller owns the PGM lock.
|
---|
5215 | *
|
---|
5216 | * @param pVM The cross context VM structure.
|
---|
5217 | */
|
---|
5218 | void pgmR3PhysRomTerm(PVM pVM)
|
---|
5219 | {
|
---|
5220 | /*
|
---|
5221 | * Free the heap copy of the original bits.
|
---|
5222 | */
|
---|
5223 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
5224 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
5225 | {
|
---|
5226 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
5227 | if ( pRom->pvOriginal
|
---|
5228 | && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
|
---|
5229 | {
|
---|
5230 | RTMemFree((void *)pRom->pvOriginal);
|
---|
5231 | pRom->pvOriginal = NULL;
|
---|
5232 | }
|
---|
5233 | }
|
---|
5234 | }
|
---|
5235 |
|
---|
5236 |
|
---|
5237 | /**
|
---|
5238 | * Change the shadowing of a range of ROM pages.
|
---|
5239 | *
|
---|
5240 | * This is intended for implementing chipset specific memory registers
|
---|
5241 | * and will not be very strict about the input. It will silently ignore
|
---|
5242 | * any pages that are not the part of a shadowed ROM.
|
---|
5243 | *
|
---|
5244 | * @returns VBox status code.
|
---|
5245 | * @retval VINF_PGM_SYNC_CR3
|
---|
5246 | *
|
---|
5247 | * @param pVM The cross context VM structure.
|
---|
5248 | * @param GCPhys Where to start. Page aligned.
|
---|
5249 | * @param cb How much to change. Page aligned.
|
---|
5250 | * @param enmProt The new ROM protection.
|
---|
5251 | */
|
---|
5252 | VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
|
---|
5253 | {
|
---|
5254 | LogFlow(("PGMR3PhysRomProtect: GCPhys=%RGp cb=%RGp enmProt=%d\n", GCPhys, cb, enmProt));
|
---|
5255 |
|
---|
5256 | /*
|
---|
5257 | * Check input
|
---|
5258 | */
|
---|
5259 | if (!cb)
|
---|
5260 | return VINF_SUCCESS;
|
---|
5261 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
5262 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
5263 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
5264 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
5265 | AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
|
---|
5266 |
|
---|
5267 | /*
|
---|
5268 | * Process the request.
|
---|
5269 | */
|
---|
5270 | PGM_LOCK_VOID(pVM);
|
---|
5271 | int rc = VINF_SUCCESS;
|
---|
5272 | bool fFlushTLB = false;
|
---|
5273 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
5274 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
5275 | {
|
---|
5276 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
5277 | if ( GCPhys <= pRom->GCPhysLast
|
---|
5278 | && GCPhysLast >= pRom->GCPhys
|
---|
5279 | && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
|
---|
5280 | {
|
---|
5281 | /*
|
---|
5282 | * Iterate the relevant pages and make necessary the changes.
|
---|
5283 | */
|
---|
5284 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
5285 | PPGMRAMRANGE const pRam = pgmPhysGetRange(pVM, GCPhys);
|
---|
5286 | AssertPtrReturn(pRam, VERR_INTERNAL_ERROR_3);
|
---|
5287 | #endif
|
---|
5288 | bool fChanges = false;
|
---|
5289 | uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
|
---|
5290 | ? pRom->cb >> GUEST_PAGE_SHIFT
|
---|
5291 | : (GCPhysLast - pRom->GCPhys + 1) >> GUEST_PAGE_SHIFT;
|
---|
5292 | for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> GUEST_PAGE_SHIFT;
|
---|
5293 | iPage < cPages;
|
---|
5294 | iPage++)
|
---|
5295 | {
|
---|
5296 | PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
|
---|
5297 | if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
|
---|
5298 | {
|
---|
5299 | fChanges = true;
|
---|
5300 |
|
---|
5301 | /* flush references to the page. */
|
---|
5302 | RTGCPHYS const GCPhysPage = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
5303 | PPGMPAGE pRamPage = pgmPhysGetPage(pVM, GCPhysPage);
|
---|
5304 | int rc2 = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pRamPage, true /*fFlushPTEs*/, &fFlushTLB);
|
---|
5305 | if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
|
---|
5306 | rc = rc2;
|
---|
5307 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
5308 | uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
|
---|
5309 | #endif
|
---|
5310 |
|
---|
5311 | PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
|
---|
5312 | PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
|
---|
5313 |
|
---|
5314 | *pOld = *pRamPage;
|
---|
5315 | *pRamPage = *pNew;
|
---|
5316 | /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
|
---|
5317 |
|
---|
5318 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
5319 | # ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
5320 | /* In simplified mode we have to switch the page data around too. */
|
---|
5321 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
5322 | {
|
---|
5323 | uint8_t abPage[GUEST_PAGE_SIZE];
|
---|
5324 | uint8_t * const pbRamPage = PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage);
|
---|
5325 | memcpy(abPage, &pRom->pbR3Alternate[(size_t)iPage << GUEST_PAGE_SHIFT], sizeof(abPage));
|
---|
5326 | memcpy(&pRom->pbR3Alternate[(size_t)iPage << GUEST_PAGE_SHIFT], pbRamPage, sizeof(abPage));
|
---|
5327 | memcpy(pbRamPage, abPage, sizeof(abPage));
|
---|
5328 | }
|
---|
5329 | # endif
|
---|
5330 | /* Tell NEM about the backing and protection change. */
|
---|
5331 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
5332 | {
|
---|
5333 | PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
|
---|
5334 | NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
|
---|
5335 | PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage),
|
---|
5336 | pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
|
---|
5337 | PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
|
---|
5338 | }
|
---|
5339 | #endif
|
---|
5340 | }
|
---|
5341 | pRomPage->enmProt = enmProt;
|
---|
5342 | }
|
---|
5343 |
|
---|
5344 | /*
|
---|
5345 | * Reset the access handler if we made changes, no need to optimize this.
|
---|
5346 | */
|
---|
5347 | if (fChanges)
|
---|
5348 | {
|
---|
5349 | int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
|
---|
5350 | if (RT_FAILURE(rc2))
|
---|
5351 | {
|
---|
5352 | PGM_UNLOCK(pVM);
|
---|
5353 | AssertRC(rc);
|
---|
5354 | return rc2;
|
---|
5355 | }
|
---|
5356 |
|
---|
5357 | /* Explicitly flush IEM. Not sure if this is really necessary, but better
|
---|
5358 | be on the safe side. This shouldn't be a high volume flush source. */
|
---|
5359 | IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_ROM_PROTECT);
|
---|
5360 | }
|
---|
5361 |
|
---|
5362 | /* Advance - cb isn't updated. */
|
---|
5363 | GCPhys = pRom->GCPhys + (cPages << GUEST_PAGE_SHIFT);
|
---|
5364 | }
|
---|
5365 | }
|
---|
5366 | PGM_UNLOCK(pVM);
|
---|
5367 | if (fFlushTLB)
|
---|
5368 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
5369 |
|
---|
5370 | return rc;
|
---|
5371 | }
|
---|
5372 |
|
---|
5373 |
|
---|
5374 |
|
---|
5375 | /*********************************************************************************************************************************
|
---|
5376 | * Ballooning *
|
---|
5377 | *********************************************************************************************************************************/
|
---|
5378 |
|
---|
5379 | #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
|
---|
5380 |
|
---|
5381 | /**
|
---|
5382 | * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
|
---|
5383 | *
|
---|
5384 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
5385 | * it to complete this function.
|
---|
5386 | *
|
---|
5387 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
5388 | * @param pVM The cross context VM structure.
|
---|
5389 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
5390 | * @param pvUser User parameter
|
---|
5391 | */
|
---|
5392 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
5393 | {
|
---|
5394 | uintptr_t *paUser = (uintptr_t *)pvUser;
|
---|
5395 | bool fInflate = !!paUser[0];
|
---|
5396 | unsigned cPages = paUser[1];
|
---|
5397 | RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
|
---|
5398 | uint32_t cPendingPages = 0;
|
---|
5399 | PGMMFREEPAGESREQ pReq;
|
---|
5400 | int rc;
|
---|
5401 |
|
---|
5402 | Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
|
---|
5403 | PGM_LOCK_VOID(pVM);
|
---|
5404 |
|
---|
5405 | if (fInflate)
|
---|
5406 | {
|
---|
5407 | /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
|
---|
5408 | pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
|
---|
5409 |
|
---|
5410 | /* Replace pages with ZERO pages. */
|
---|
5411 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
5412 | if (RT_FAILURE(rc))
|
---|
5413 | {
|
---|
5414 | PGM_UNLOCK(pVM);
|
---|
5415 | AssertLogRelRC(rc);
|
---|
5416 | return rc;
|
---|
5417 | }
|
---|
5418 |
|
---|
5419 | /* Iterate the pages. */
|
---|
5420 | for (unsigned i = 0; i < cPages; i++)
|
---|
5421 | {
|
---|
5422 | PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
|
---|
5423 | if ( pPage == NULL
|
---|
5424 | || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
|
---|
5425 | {
|
---|
5426 | Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
|
---|
5427 | break;
|
---|
5428 | }
|
---|
5429 |
|
---|
5430 | LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
|
---|
5431 |
|
---|
5432 | /* Flush the shadow PT if this page was previously used as a guest page table. */
|
---|
5433 | pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
|
---|
5434 |
|
---|
5435 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
|
---|
5436 | if (RT_FAILURE(rc))
|
---|
5437 | {
|
---|
5438 | PGM_UNLOCK(pVM);
|
---|
5439 | AssertLogRelRC(rc);
|
---|
5440 | return rc;
|
---|
5441 | }
|
---|
5442 | Assert(PGM_PAGE_IS_ZERO(pPage));
|
---|
5443 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
|
---|
5444 | }
|
---|
5445 |
|
---|
5446 | if (cPendingPages)
|
---|
5447 | {
|
---|
5448 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
5449 | if (RT_FAILURE(rc))
|
---|
5450 | {
|
---|
5451 | PGM_UNLOCK(pVM);
|
---|
5452 | AssertLogRelRC(rc);
|
---|
5453 | return rc;
|
---|
5454 | }
|
---|
5455 | }
|
---|
5456 | GMMR3FreePagesCleanup(pReq);
|
---|
5457 | }
|
---|
5458 | else
|
---|
5459 | {
|
---|
5460 | /* Iterate the pages. */
|
---|
5461 | for (unsigned i = 0; i < cPages; i++)
|
---|
5462 | {
|
---|
5463 | PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
|
---|
5464 | AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
|
---|
5465 |
|
---|
5466 | LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
|
---|
5467 |
|
---|
5468 | Assert(PGM_PAGE_IS_BALLOONED(pPage));
|
---|
5469 |
|
---|
5470 | /* Change back to zero page. (NEM does not need to be informed.) */
|
---|
5471 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
5472 | }
|
---|
5473 |
|
---|
5474 | /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
|
---|
5475 | }
|
---|
5476 |
|
---|
5477 | /* Notify GMM about the balloon change. */
|
---|
5478 | rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
|
---|
5479 | if (RT_SUCCESS(rc))
|
---|
5480 | {
|
---|
5481 | if (!fInflate)
|
---|
5482 | {
|
---|
5483 | Assert(pVM->pgm.s.cBalloonedPages >= cPages);
|
---|
5484 | pVM->pgm.s.cBalloonedPages -= cPages;
|
---|
5485 | }
|
---|
5486 | else
|
---|
5487 | pVM->pgm.s.cBalloonedPages += cPages;
|
---|
5488 | }
|
---|
5489 |
|
---|
5490 | PGM_UNLOCK(pVM);
|
---|
5491 |
|
---|
5492 | /* Flush the recompiler's TLB as well. */
|
---|
5493 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
5494 | CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
5495 |
|
---|
5496 | AssertLogRelRC(rc);
|
---|
5497 | return rc;
|
---|
5498 | }
|
---|
5499 |
|
---|
5500 |
|
---|
5501 | /**
|
---|
5502 | * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
|
---|
5503 | *
|
---|
5504 | * @param pVM The cross context VM structure.
|
---|
5505 | * @param fInflate Inflate or deflate memory balloon
|
---|
5506 | * @param cPages Number of pages to free
|
---|
5507 | * @param paPhysPage Array of guest physical addresses
|
---|
5508 | */
|
---|
5509 | static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
|
---|
5510 | {
|
---|
5511 | uintptr_t paUser[3];
|
---|
5512 |
|
---|
5513 | paUser[0] = fInflate;
|
---|
5514 | paUser[1] = cPages;
|
---|
5515 | paUser[2] = (uintptr_t)paPhysPage;
|
---|
5516 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
|
---|
5517 | AssertRC(rc);
|
---|
5518 |
|
---|
5519 | /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
|
---|
5520 | RTMemFree(paPhysPage);
|
---|
5521 | }
|
---|
5522 |
|
---|
5523 | #endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
|
---|
5524 |
|
---|
5525 | /**
|
---|
5526 | * Inflate or deflate a memory balloon
|
---|
5527 | *
|
---|
5528 | * @returns VBox status code.
|
---|
5529 | * @param pVM The cross context VM structure.
|
---|
5530 | * @param fInflate Inflate or deflate memory balloon
|
---|
5531 | * @param cPages Number of pages to free
|
---|
5532 | * @param paPhysPage Array of guest physical addresses
|
---|
5533 | */
|
---|
5534 | VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
|
---|
5535 | {
|
---|
5536 | /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
|
---|
5537 | #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
|
---|
5538 | int rc;
|
---|
5539 |
|
---|
5540 | /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
|
---|
5541 | AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
|
---|
5542 |
|
---|
5543 | /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
|
---|
5544 | * In the SMP case we post a request packet to postpone the job.
|
---|
5545 | */
|
---|
5546 | if (pVM->cCpus > 1)
|
---|
5547 | {
|
---|
5548 | unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
|
---|
5549 | RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
|
---|
5550 | AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
|
---|
5551 |
|
---|
5552 | memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
|
---|
5553 |
|
---|
5554 | rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
|
---|
5555 | AssertRC(rc);
|
---|
5556 | }
|
---|
5557 | else
|
---|
5558 | {
|
---|
5559 | uintptr_t paUser[3];
|
---|
5560 |
|
---|
5561 | paUser[0] = fInflate;
|
---|
5562 | paUser[1] = cPages;
|
---|
5563 | paUser[2] = (uintptr_t)paPhysPage;
|
---|
5564 | rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
|
---|
5565 | AssertRC(rc);
|
---|
5566 | }
|
---|
5567 | return rc;
|
---|
5568 |
|
---|
5569 | #else
|
---|
5570 | NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
|
---|
5571 | return VERR_NOT_IMPLEMENTED;
|
---|
5572 | #endif
|
---|
5573 | }
|
---|
5574 |
|
---|
5575 |
|
---|
5576 |
|
---|
5577 | /*********************************************************************************************************************************
|
---|
5578 | * Write Monitoring *
|
---|
5579 | *********************************************************************************************************************************/
|
---|
5580 |
|
---|
5581 | /**
|
---|
5582 | * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
|
---|
5583 | * physical RAM.
|
---|
5584 | *
|
---|
5585 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
5586 | * it to complete this function.
|
---|
5587 | *
|
---|
5588 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
5589 | * @param pVM The cross context VM structure.
|
---|
5590 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
5591 | * @param pvUser User parameter, unused.
|
---|
5592 | */
|
---|
5593 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
5594 | {
|
---|
5595 | int rc = VINF_SUCCESS;
|
---|
5596 | NOREF(pvUser); NOREF(pVCpu);
|
---|
5597 |
|
---|
5598 | PGM_LOCK_VOID(pVM);
|
---|
5599 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
5600 | pgmPoolResetDirtyPages(pVM);
|
---|
5601 | #endif
|
---|
5602 |
|
---|
5603 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
5604 | for (uint32_t idxLookup = 0; idxLookup < cLookupEntries; idxLookup++)
|
---|
5605 | {
|
---|
5606 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
5607 | AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
5608 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
5609 | AssertContinue(pRam);
|
---|
5610 |
|
---|
5611 | uint32_t cPages = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
5612 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
5613 | {
|
---|
5614 | PPGMPAGE const pPage = &pRam->aPages[iPage];
|
---|
5615 | PGMPAGETYPE const enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
|
---|
5616 |
|
---|
5617 | if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
|
---|
5618 | || enmPageType == PGMPAGETYPE_MMIO2)
|
---|
5619 | {
|
---|
5620 | /*
|
---|
5621 | * A RAM page.
|
---|
5622 | */
|
---|
5623 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
5624 | {
|
---|
5625 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
5626 | /** @todo Optimize this: Don't always re-enable write
|
---|
5627 | * monitoring if the page is known to be very busy. */
|
---|
5628 | if (PGM_PAGE_IS_WRITTEN_TO(pPage))
|
---|
5629 | PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
|
---|
5630 |
|
---|
5631 | pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT));
|
---|
5632 | break;
|
---|
5633 |
|
---|
5634 | case PGM_PAGE_STATE_SHARED:
|
---|
5635 | AssertFailed();
|
---|
5636 | break;
|
---|
5637 |
|
---|
5638 | case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
|
---|
5639 | default:
|
---|
5640 | break;
|
---|
5641 | }
|
---|
5642 | }
|
---|
5643 | }
|
---|
5644 | }
|
---|
5645 | pgmR3PoolWriteProtectPages(pVM);
|
---|
5646 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
5647 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
5648 | CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
5649 |
|
---|
5650 | PGM_UNLOCK(pVM);
|
---|
5651 | return rc;
|
---|
5652 | }
|
---|
5653 |
|
---|
5654 | /**
|
---|
5655 | * Protect all physical RAM to monitor writes
|
---|
5656 | *
|
---|
5657 | * @returns VBox status code.
|
---|
5658 | * @param pVM The cross context VM structure.
|
---|
5659 | */
|
---|
5660 | VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
|
---|
5661 | {
|
---|
5662 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
5663 |
|
---|
5664 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
|
---|
5665 | AssertRC(rc);
|
---|
5666 | return rc;
|
---|
5667 | }
|
---|
5668 |
|
---|
5669 |
|
---|
5670 | /*********************************************************************************************************************************
|
---|
5671 | * Stats. *
|
---|
5672 | *********************************************************************************************************************************/
|
---|
5673 |
|
---|
5674 | /**
|
---|
5675 | * Query the amount of free memory inside VMMR0
|
---|
5676 | *
|
---|
5677 | * @returns VBox status code.
|
---|
5678 | * @param pUVM The user mode VM handle.
|
---|
5679 | * @param pcbAllocMem Where to return the amount of memory allocated
|
---|
5680 | * by VMs.
|
---|
5681 | * @param pcbFreeMem Where to return the amount of memory that is
|
---|
5682 | * allocated from the host but not currently used
|
---|
5683 | * by any VMs.
|
---|
5684 | * @param pcbBallonedMem Where to return the sum of memory that is
|
---|
5685 | * currently ballooned by the VMs.
|
---|
5686 | * @param pcbSharedMem Where to return the amount of memory that is
|
---|
5687 | * currently shared.
|
---|
5688 | */
|
---|
5689 | VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
|
---|
5690 | uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
|
---|
5691 | {
|
---|
5692 | UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
|
---|
5693 | VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
|
---|
5694 |
|
---|
5695 | uint64_t cAllocPages = 0;
|
---|
5696 | uint64_t cFreePages = 0;
|
---|
5697 | uint64_t cBalloonPages = 0;
|
---|
5698 | uint64_t cSharedPages = 0;
|
---|
5699 | if (!SUPR3IsDriverless())
|
---|
5700 | {
|
---|
5701 | int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
|
---|
5702 | AssertRCReturn(rc, rc);
|
---|
5703 | }
|
---|
5704 |
|
---|
5705 | if (pcbAllocMem)
|
---|
5706 | *pcbAllocMem = cAllocPages * _4K;
|
---|
5707 |
|
---|
5708 | if (pcbFreeMem)
|
---|
5709 | *pcbFreeMem = cFreePages * _4K;
|
---|
5710 |
|
---|
5711 | if (pcbBallonedMem)
|
---|
5712 | *pcbBallonedMem = cBalloonPages * _4K;
|
---|
5713 |
|
---|
5714 | if (pcbSharedMem)
|
---|
5715 | *pcbSharedMem = cSharedPages * _4K;
|
---|
5716 |
|
---|
5717 | Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
|
---|
5718 | cAllocPages, cFreePages, cBalloonPages, cSharedPages));
|
---|
5719 | return VINF_SUCCESS;
|
---|
5720 | }
|
---|
5721 |
|
---|
5722 |
|
---|
5723 | /**
|
---|
5724 | * Query memory stats for the VM.
|
---|
5725 | *
|
---|
5726 | * @returns VBox status code.
|
---|
5727 | * @param pUVM The user mode VM handle.
|
---|
5728 | * @param pcbTotalMem Where to return total amount memory the VM may
|
---|
5729 | * possibly use.
|
---|
5730 | * @param pcbPrivateMem Where to return the amount of private memory
|
---|
5731 | * currently allocated.
|
---|
5732 | * @param pcbSharedMem Where to return the amount of actually shared
|
---|
5733 | * memory currently used by the VM.
|
---|
5734 | * @param pcbZeroMem Where to return the amount of memory backed by
|
---|
5735 | * zero pages.
|
---|
5736 | *
|
---|
5737 | * @remarks The total mem is normally larger than the sum of the three
|
---|
5738 | * components. There are two reasons for this, first the amount of
|
---|
5739 | * shared memory is what we're sure is shared instead of what could
|
---|
5740 | * possibly be shared with someone. Secondly, because the total may
|
---|
5741 | * include some pure MMIO pages that doesn't go into any of the three
|
---|
5742 | * sub-counts.
|
---|
5743 | *
|
---|
5744 | * @todo Why do we return reused shared pages instead of anything that could
|
---|
5745 | * potentially be shared? Doesn't this mean the first VM gets a much
|
---|
5746 | * lower number of shared pages?
|
---|
5747 | */
|
---|
5748 | VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
|
---|
5749 | uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
|
---|
5750 | {
|
---|
5751 | UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
|
---|
5752 | PVM pVM = pUVM->pVM;
|
---|
5753 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
5754 |
|
---|
5755 | if (pcbTotalMem)
|
---|
5756 | *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * GUEST_PAGE_SIZE;
|
---|
5757 |
|
---|
5758 | if (pcbPrivateMem)
|
---|
5759 | *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * GUEST_PAGE_SIZE;
|
---|
5760 |
|
---|
5761 | if (pcbSharedMem)
|
---|
5762 | *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * GUEST_PAGE_SIZE;
|
---|
5763 |
|
---|
5764 | if (pcbZeroMem)
|
---|
5765 | *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * GUEST_PAGE_SIZE;
|
---|
5766 |
|
---|
5767 | Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
|
---|
5768 | return VINF_SUCCESS;
|
---|
5769 | }
|
---|
5770 |
|
---|
5771 |
|
---|
5772 |
|
---|
5773 | /*********************************************************************************************************************************
|
---|
5774 | * Chunk Mappings and Page Allocation *
|
---|
5775 | *********************************************************************************************************************************/
|
---|
5776 |
|
---|
5777 | /**
|
---|
5778 | * Tree enumeration callback for dealing with age rollover.
|
---|
5779 | * It will perform a simple compression of the current age.
|
---|
5780 | */
|
---|
5781 | static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
5782 | {
|
---|
5783 | /* Age compression - ASSUMES iNow == 4. */
|
---|
5784 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
5785 | if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
|
---|
5786 | pChunk->iLastUsed = 3;
|
---|
5787 | else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
|
---|
5788 | pChunk->iLastUsed = 2;
|
---|
5789 | else if (pChunk->iLastUsed)
|
---|
5790 | pChunk->iLastUsed = 1;
|
---|
5791 | else /* iLastUsed = 0 */
|
---|
5792 | pChunk->iLastUsed = 4;
|
---|
5793 |
|
---|
5794 | NOREF(pvUser);
|
---|
5795 | return 0;
|
---|
5796 | }
|
---|
5797 |
|
---|
5798 |
|
---|
5799 | /**
|
---|
5800 | * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
|
---|
5801 | */
|
---|
5802 | typedef struct PGMR3PHYSCHUNKUNMAPCB
|
---|
5803 | {
|
---|
5804 | PVM pVM; /**< Pointer to the VM. */
|
---|
5805 | PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
|
---|
5806 | } PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
|
---|
5807 |
|
---|
5808 |
|
---|
5809 | /**
|
---|
5810 | * Callback used to find the mapping that's been unused for
|
---|
5811 | * the longest time.
|
---|
5812 | */
|
---|
5813 | static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
5814 | {
|
---|
5815 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
5816 | PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
|
---|
5817 |
|
---|
5818 | /*
|
---|
5819 | * Check for locks and compare when last used.
|
---|
5820 | */
|
---|
5821 | if (pChunk->cRefs)
|
---|
5822 | return 0;
|
---|
5823 | if (pChunk->cPermRefs)
|
---|
5824 | return 0;
|
---|
5825 | if ( pArg->pChunk
|
---|
5826 | && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
|
---|
5827 | return 0;
|
---|
5828 |
|
---|
5829 | /*
|
---|
5830 | * Check that it's not in any of the TLBs.
|
---|
5831 | */
|
---|
5832 | PVM pVM = pArg->pVM;
|
---|
5833 | if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
|
---|
5834 | == pChunk->Core.Key)
|
---|
5835 | {
|
---|
5836 | pChunk = NULL;
|
---|
5837 | return 0;
|
---|
5838 | }
|
---|
5839 | #ifdef VBOX_STRICT
|
---|
5840 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
5841 | {
|
---|
5842 | Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
|
---|
5843 | Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
|
---|
5844 | }
|
---|
5845 | #endif
|
---|
5846 |
|
---|
5847 | #if 0 /* This is too much work with the PGMCPU::PhysTlb as well. We flush them all instead. */
|
---|
5848 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
|
---|
5849 | if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
|
---|
5850 | return 0;
|
---|
5851 | #endif
|
---|
5852 |
|
---|
5853 | pArg->pChunk = pChunk;
|
---|
5854 | return 0;
|
---|
5855 | }
|
---|
5856 |
|
---|
5857 |
|
---|
5858 | /**
|
---|
5859 | * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
|
---|
5860 | *
|
---|
5861 | * The candidate will not be part of any TLBs, so no need to flush
|
---|
5862 | * anything afterwards.
|
---|
5863 | *
|
---|
5864 | * @returns Chunk id.
|
---|
5865 | * @param pVM The cross context VM structure.
|
---|
5866 | */
|
---|
5867 | static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
|
---|
5868 | {
|
---|
5869 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
5870 |
|
---|
5871 | /*
|
---|
5872 | * Enumerate the age tree starting with the left most node.
|
---|
5873 | */
|
---|
5874 | STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
|
---|
5875 | PGMR3PHYSCHUNKUNMAPCB Args;
|
---|
5876 | Args.pVM = pVM;
|
---|
5877 | Args.pChunk = NULL;
|
---|
5878 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
|
---|
5879 | Assert(Args.pChunk);
|
---|
5880 | if (Args.pChunk)
|
---|
5881 | {
|
---|
5882 | Assert(Args.pChunk->cRefs == 0);
|
---|
5883 | Assert(Args.pChunk->cPermRefs == 0);
|
---|
5884 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
|
---|
5885 | return Args.pChunk->Core.Key;
|
---|
5886 | }
|
---|
5887 |
|
---|
5888 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
|
---|
5889 | return INT32_MAX;
|
---|
5890 | }
|
---|
5891 |
|
---|
5892 |
|
---|
5893 | /**
|
---|
5894 | * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
|
---|
5895 | *
|
---|
5896 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
5897 | * it to complete this function.
|
---|
5898 | *
|
---|
5899 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
5900 | * @param pVM The cross context VM structure.
|
---|
5901 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
5902 | * @param pvUser User pointer. Unused
|
---|
5903 | *
|
---|
5904 | */
|
---|
5905 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
5906 | {
|
---|
5907 | int rc = VINF_SUCCESS;
|
---|
5908 | PGM_LOCK_VOID(pVM);
|
---|
5909 | NOREF(pVCpu); NOREF(pvUser);
|
---|
5910 |
|
---|
5911 | if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
|
---|
5912 | {
|
---|
5913 | /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
|
---|
5914 | /** @todo also not really efficient to unmap a chunk that contains PD
|
---|
5915 | * or PT pages. */
|
---|
5916 | pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
|
---|
5917 |
|
---|
5918 | /*
|
---|
5919 | * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
|
---|
5920 | */
|
---|
5921 | GMMMAPUNMAPCHUNKREQ Req;
|
---|
5922 | Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
5923 | Req.Hdr.cbReq = sizeof(Req);
|
---|
5924 | Req.pvR3 = NULL;
|
---|
5925 | Req.idChunkMap = NIL_GMM_CHUNKID;
|
---|
5926 | Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
|
---|
5927 | if (Req.idChunkUnmap != INT32_MAX)
|
---|
5928 | {
|
---|
5929 | STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkUnmap, a);
|
---|
5930 | rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
|
---|
5931 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkUnmap, a);
|
---|
5932 | if (RT_SUCCESS(rc))
|
---|
5933 | {
|
---|
5934 | /*
|
---|
5935 | * Remove the unmapped one.
|
---|
5936 | */
|
---|
5937 | PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
|
---|
5938 | AssertRelease(pUnmappedChunk);
|
---|
5939 | AssertRelease(!pUnmappedChunk->cRefs);
|
---|
5940 | AssertRelease(!pUnmappedChunk->cPermRefs);
|
---|
5941 | pUnmappedChunk->pv = NULL;
|
---|
5942 | pUnmappedChunk->Core.Key = UINT32_MAX;
|
---|
5943 | MMR3HeapFree(pUnmappedChunk);
|
---|
5944 | pVM->pgm.s.ChunkR3Map.c--;
|
---|
5945 | pVM->pgm.s.cUnmappedChunks++;
|
---|
5946 |
|
---|
5947 | /*
|
---|
5948 | * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
|
---|
5949 | */
|
---|
5950 | /** @todo We should not flush chunks which include cr3 mappings. */
|
---|
5951 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
5952 | {
|
---|
5953 | PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
|
---|
5954 |
|
---|
5955 | pPGM->pGst32BitPdR3 = NULL;
|
---|
5956 | pPGM->pGstPaePdptR3 = NULL;
|
---|
5957 | pPGM->pGstAmd64Pml4R3 = NULL;
|
---|
5958 | pPGM->pGstEptPml4R3 = NULL;
|
---|
5959 | pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
|
---|
5960 | pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
|
---|
5961 | pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
|
---|
5962 | pPGM->pGstEptPml4R0 = NIL_RTR0PTR;
|
---|
5963 | for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
|
---|
5964 | {
|
---|
5965 | pPGM->apGstPaePDsR3[i] = NULL;
|
---|
5966 | pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
|
---|
5967 | }
|
---|
5968 |
|
---|
5969 | /* Flush REM TLBs. */
|
---|
5970 | CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
5971 | }
|
---|
5972 |
|
---|
5973 | pgmR3PhysChunkInvalidateTLB(pVM, true /*fInRendezvous*/); /* includes pgmPhysInvalidatePageMapTLB call */
|
---|
5974 | }
|
---|
5975 | }
|
---|
5976 | }
|
---|
5977 | PGM_UNLOCK(pVM);
|
---|
5978 | return rc;
|
---|
5979 | }
|
---|
5980 |
|
---|
5981 | /**
|
---|
5982 | * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
|
---|
5983 | *
|
---|
5984 | * @param pVM The cross context VM structure.
|
---|
5985 | */
|
---|
5986 | static DECLCALLBACK(void) pgmR3PhysUnmapChunk(PVM pVM)
|
---|
5987 | {
|
---|
5988 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
|
---|
5989 | AssertRC(rc);
|
---|
5990 | }
|
---|
5991 |
|
---|
5992 |
|
---|
5993 | /**
|
---|
5994 | * Maps the given chunk into the ring-3 mapping cache.
|
---|
5995 | *
|
---|
5996 | * This will call ring-0.
|
---|
5997 | *
|
---|
5998 | * @returns VBox status code.
|
---|
5999 | * @param pVM The cross context VM structure.
|
---|
6000 | * @param idChunk The chunk in question.
|
---|
6001 | * @param ppChunk Where to store the chunk tracking structure.
|
---|
6002 | *
|
---|
6003 | * @remarks Called from within the PGM critical section.
|
---|
6004 | * @remarks Can be called from any thread!
|
---|
6005 | */
|
---|
6006 | int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
|
---|
6007 | {
|
---|
6008 | int rc;
|
---|
6009 |
|
---|
6010 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
6011 |
|
---|
6012 | /*
|
---|
6013 | * Move the chunk time forward.
|
---|
6014 | */
|
---|
6015 | pVM->pgm.s.ChunkR3Map.iNow++;
|
---|
6016 | if (pVM->pgm.s.ChunkR3Map.iNow == 0)
|
---|
6017 | {
|
---|
6018 | pVM->pgm.s.ChunkR3Map.iNow = 4;
|
---|
6019 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
|
---|
6020 | }
|
---|
6021 |
|
---|
6022 | /*
|
---|
6023 | * Allocate a new tracking structure first.
|
---|
6024 | */
|
---|
6025 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
|
---|
6026 | AssertReturn(pChunk, VERR_NO_MEMORY);
|
---|
6027 | pChunk->Core.Key = idChunk;
|
---|
6028 | pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
|
---|
6029 |
|
---|
6030 | /*
|
---|
6031 | * Request the ring-0 part to map the chunk in question.
|
---|
6032 | */
|
---|
6033 | GMMMAPUNMAPCHUNKREQ Req;
|
---|
6034 | Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
6035 | Req.Hdr.cbReq = sizeof(Req);
|
---|
6036 | Req.pvR3 = NULL;
|
---|
6037 | Req.idChunkMap = idChunk;
|
---|
6038 | Req.idChunkUnmap = NIL_GMM_CHUNKID;
|
---|
6039 |
|
---|
6040 | /* Must be callable from any thread, so can't use VMMR3CallR0. */
|
---|
6041 | STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkMap, a);
|
---|
6042 | rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
|
---|
6043 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkMap, a);
|
---|
6044 | if (RT_SUCCESS(rc))
|
---|
6045 | {
|
---|
6046 | pChunk->pv = Req.pvR3;
|
---|
6047 |
|
---|
6048 | /*
|
---|
6049 | * If we're running out of virtual address space, then we should
|
---|
6050 | * unmap another chunk.
|
---|
6051 | *
|
---|
6052 | * Currently, an unmap operation requires that all other virtual CPUs
|
---|
6053 | * are idling and not by chance making use of the memory we're
|
---|
6054 | * unmapping. So, we create an async unmap operation here.
|
---|
6055 | *
|
---|
6056 | * Now, when creating or restoring a saved state this wont work very
|
---|
6057 | * well since we may want to restore all guest RAM + a little something.
|
---|
6058 | * So, we have to do the unmap synchronously. Fortunately for us
|
---|
6059 | * though, during these operations the other virtual CPUs are inactive
|
---|
6060 | * and it should be safe to do this.
|
---|
6061 | */
|
---|
6062 | /** @todo Eventually we should lock all memory when used and do
|
---|
6063 | * map+unmap as one kernel call without any rendezvous or
|
---|
6064 | * other precautions. */
|
---|
6065 | if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
|
---|
6066 | {
|
---|
6067 | switch (VMR3GetState(pVM))
|
---|
6068 | {
|
---|
6069 | case VMSTATE_LOADING:
|
---|
6070 | case VMSTATE_SAVING:
|
---|
6071 | {
|
---|
6072 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
6073 | if ( pVCpu
|
---|
6074 | && pVM->pgm.s.cDeprecatedPageLocks == 0)
|
---|
6075 | {
|
---|
6076 | pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
|
---|
6077 | break;
|
---|
6078 | }
|
---|
6079 | }
|
---|
6080 | RT_FALL_THRU();
|
---|
6081 | default:
|
---|
6082 | rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
|
---|
6083 | AssertRC(rc);
|
---|
6084 | break;
|
---|
6085 | }
|
---|
6086 | }
|
---|
6087 |
|
---|
6088 | /*
|
---|
6089 | * Update the tree. We must do this after any unmapping to make sure
|
---|
6090 | * the chunk we're going to return isn't unmapped by accident.
|
---|
6091 | */
|
---|
6092 | AssertPtr(Req.pvR3);
|
---|
6093 | bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
|
---|
6094 | AssertRelease(fRc);
|
---|
6095 | pVM->pgm.s.ChunkR3Map.c++;
|
---|
6096 | pVM->pgm.s.cMappedChunks++;
|
---|
6097 | }
|
---|
6098 | else
|
---|
6099 | {
|
---|
6100 | /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
|
---|
6101 | * should probably restrict ourselves on linux. */
|
---|
6102 | AssertRC(rc);
|
---|
6103 | MMR3HeapFree(pChunk);
|
---|
6104 | pChunk = NULL;
|
---|
6105 | }
|
---|
6106 |
|
---|
6107 | *ppChunk = pChunk;
|
---|
6108 | return rc;
|
---|
6109 | }
|
---|
6110 |
|
---|
6111 |
|
---|
6112 | /**
|
---|
6113 | * Invalidates the TLB for the ring-3 mapping cache.
|
---|
6114 | *
|
---|
6115 | * @param pVM The cross context VM structure.
|
---|
6116 | * @param fInRendezvous Set if we're in a rendezvous.
|
---|
6117 | */
|
---|
6118 | DECLHIDDEN(void) pgmR3PhysChunkInvalidateTLB(PVM pVM, bool fInRendezvous)
|
---|
6119 | {
|
---|
6120 | PGM_LOCK_VOID(pVM);
|
---|
6121 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
6122 | {
|
---|
6123 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
|
---|
6124 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
|
---|
6125 | }
|
---|
6126 | /* The page map TLB references chunks, so invalidate that one too. */
|
---|
6127 | pgmPhysInvalidatePageMapTLB(pVM, fInRendezvous);
|
---|
6128 | PGM_UNLOCK(pVM);
|
---|
6129 | }
|
---|
6130 |
|
---|
6131 |
|
---|
6132 | /**
|
---|
6133 | * Response to VM_FF_PGM_NEED_HANDY_PAGES and helper for pgmPhysEnsureHandyPage.
|
---|
6134 | *
|
---|
6135 | * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
|
---|
6136 | * signal and clear the out of memory condition. When called, this API is used
|
---|
6137 | * to try clear the condition when the user wants to resume.
|
---|
6138 | *
|
---|
6139 | * @returns The following VBox status codes.
|
---|
6140 | * @retval VINF_SUCCESS on success. FFs cleared.
|
---|
6141 | * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
|
---|
6142 | * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
|
---|
6143 | *
|
---|
6144 | * @param pVM The cross context VM structure.
|
---|
6145 | *
|
---|
6146 | * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
|
---|
6147 | * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
|
---|
6148 | * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
|
---|
6149 | * handler.
|
---|
6150 | */
|
---|
6151 | VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
|
---|
6152 | {
|
---|
6153 | PGM_LOCK_VOID(pVM);
|
---|
6154 |
|
---|
6155 | /*
|
---|
6156 | * Allocate more pages, noting down the index of the first new page.
|
---|
6157 | */
|
---|
6158 | uint32_t iClear = pVM->pgm.s.cHandyPages;
|
---|
6159 | AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
|
---|
6160 | Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
|
---|
6161 | int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
|
---|
6162 | /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
|
---|
6163 | if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
|
---|
6164 | && pVM->pgm.s.cHandyPages > 0)
|
---|
6165 | {
|
---|
6166 | /* Still handy pages left, so don't panic. */
|
---|
6167 | rc = VINF_SUCCESS;
|
---|
6168 | }
|
---|
6169 |
|
---|
6170 | if (RT_SUCCESS(rc))
|
---|
6171 | {
|
---|
6172 | AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
|
---|
6173 | Assert(pVM->pgm.s.cHandyPages > 0);
|
---|
6174 | #ifdef VBOX_STRICT
|
---|
6175 | uint32_t i;
|
---|
6176 | for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
|
---|
6177 | if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
|
---|
6178 | || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
|
---|
6179 | || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & GUEST_PAGE_OFFSET_MASK))
|
---|
6180 | break;
|
---|
6181 | if (i != pVM->pgm.s.cHandyPages)
|
---|
6182 | {
|
---|
6183 | RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
|
---|
6184 | RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
|
---|
6185 | for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
|
---|
6186 | RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%s\n", j,
|
---|
6187 | pVM->pgm.s.aHandyPages[j].idPage,
|
---|
6188 | pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
|
---|
6189 | pVM->pgm.s.aHandyPages[j].idSharedPage,
|
---|
6190 | j == i ? " <---" : "");
|
---|
6191 | RTAssertPanic();
|
---|
6192 | }
|
---|
6193 | #endif
|
---|
6194 | }
|
---|
6195 | else
|
---|
6196 | {
|
---|
6197 | /*
|
---|
6198 | * We should never get here unless there is a genuine shortage of
|
---|
6199 | * memory (or some internal error). Flag the error so the VM can be
|
---|
6200 | * suspended ASAP and the user informed. If we're totally out of
|
---|
6201 | * handy pages we will return failure.
|
---|
6202 | */
|
---|
6203 | /* Report the failure. */
|
---|
6204 | LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n"
|
---|
6205 | " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
|
---|
6206 | rc, pVM->pgm.s.cHandyPages,
|
---|
6207 | pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages));
|
---|
6208 |
|
---|
6209 | if ( rc != VERR_NO_MEMORY
|
---|
6210 | && rc != VERR_NO_PHYS_MEMORY
|
---|
6211 | && rc != VERR_LOCK_FAILED)
|
---|
6212 | for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
|
---|
6213 | {
|
---|
6214 | LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
|
---|
6215 | i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
|
---|
6216 | pVM->pgm.s.aHandyPages[i].idSharedPage));
|
---|
6217 | uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
|
---|
6218 | if (idPage != NIL_GMM_PAGEID)
|
---|
6219 | {
|
---|
6220 | uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U);
|
---|
6221 | for (uint32_t idRamRange = 0; idRamRange <= idRamRangeMax; idRamRange++)
|
---|
6222 | {
|
---|
6223 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
6224 | Assert(pRam || idRamRange == 0);
|
---|
6225 | if (!pRam) continue;
|
---|
6226 | Assert(pRam->idRange == idRamRange);
|
---|
6227 |
|
---|
6228 | uint32_t const cPages = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
6229 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
6230 | if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
|
---|
6231 | LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
|
---|
6232 | pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
|
---|
6233 | }
|
---|
6234 | }
|
---|
6235 | }
|
---|
6236 |
|
---|
6237 | if (rc == VERR_NO_MEMORY)
|
---|
6238 | {
|
---|
6239 | uint64_t cbHostRamAvail = 0;
|
---|
6240 | int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
|
---|
6241 | if (RT_SUCCESS(rc2))
|
---|
6242 | LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
|
---|
6243 | else
|
---|
6244 | LogRel(("Cannot determine the amount of available host memory\n"));
|
---|
6245 | }
|
---|
6246 |
|
---|
6247 | /* Set the FFs and adjust rc. */
|
---|
6248 | VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
|
---|
6249 | VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
|
---|
6250 | if ( rc == VERR_NO_MEMORY
|
---|
6251 | || rc == VERR_NO_PHYS_MEMORY
|
---|
6252 | || rc == VERR_LOCK_FAILED)
|
---|
6253 | rc = VINF_EM_NO_MEMORY;
|
---|
6254 | }
|
---|
6255 |
|
---|
6256 | PGM_UNLOCK(pVM);
|
---|
6257 | return rc;
|
---|
6258 | }
|
---|
6259 |
|
---|
6260 |
|
---|
6261 | /*********************************************************************************************************************************
|
---|
6262 | * Other Stuff *
|
---|
6263 | *********************************************************************************************************************************/
|
---|
6264 |
|
---|
6265 | #if !defined(VBOX_VMM_TARGET_ARMV8)
|
---|
6266 | /**
|
---|
6267 | * Sets the Address Gate 20 state.
|
---|
6268 | *
|
---|
6269 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6270 | * @param fEnable True if the gate should be enabled.
|
---|
6271 | * False if the gate should be disabled.
|
---|
6272 | */
|
---|
6273 | VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
|
---|
6274 | {
|
---|
6275 | LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
|
---|
6276 | if (pVCpu->pgm.s.fA20Enabled != fEnable)
|
---|
6277 | {
|
---|
6278 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6279 | PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
6280 | if ( CPUMIsGuestInVmxRootMode(pCtx)
|
---|
6281 | && !fEnable)
|
---|
6282 | {
|
---|
6283 | Log(("Cannot enter A20M mode while in VMX root mode\n"));
|
---|
6284 | return;
|
---|
6285 | }
|
---|
6286 | #endif
|
---|
6287 | pVCpu->pgm.s.fA20Enabled = fEnable;
|
---|
6288 | pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
|
---|
6289 | if (VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)))
|
---|
6290 | NEMR3NotifySetA20(pVCpu, fEnable);
|
---|
6291 | #ifdef PGM_WITH_A20
|
---|
6292 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
6293 | pgmR3RefreshShadowModeAfterA20Change(pVCpu);
|
---|
6294 | HMFlushTlb(pVCpu);
|
---|
6295 | #endif
|
---|
6296 | #if 0 /* PGMGetPage will apply the A20 mask to the GCPhys it returns, so we must invalid both sides of the TLB. */
|
---|
6297 | IEMTlbInvalidateAllPhysical(pVCpu);
|
---|
6298 | #else
|
---|
6299 | IEMTlbInvalidateAll(pVCpu);
|
---|
6300 | #endif
|
---|
6301 | STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
|
---|
6302 | }
|
---|
6303 | }
|
---|
6304 | #endif
|
---|
6305 |
|
---|