1 | /* $Id: PGMPhys.cpp 107625 2025-01-10 10:06:36Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * PGM - Page Manager and Monitor, Physical Memory Addressing.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2024 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*********************************************************************************************************************************
|
---|
30 | * Header Files *
|
---|
31 | *********************************************************************************************************************************/
|
---|
32 | #define LOG_GROUP LOG_GROUP_PGM_PHYS
|
---|
33 | #define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
|
---|
34 | #include <VBox/vmm/pgm.h>
|
---|
35 | #include <VBox/vmm/iem.h>
|
---|
36 | #include <VBox/vmm/iom.h>
|
---|
37 | #include <VBox/vmm/mm.h>
|
---|
38 | #include <VBox/vmm/nem.h>
|
---|
39 | #include <VBox/vmm/stam.h>
|
---|
40 | #include <VBox/vmm/pdmdev.h>
|
---|
41 | #include "PGMInternal.h"
|
---|
42 | #include <VBox/vmm/vmcc.h>
|
---|
43 |
|
---|
44 | #include "PGMInline.h"
|
---|
45 |
|
---|
46 | #include <VBox/sup.h>
|
---|
47 | #include <VBox/param.h>
|
---|
48 | #include <VBox/err.h>
|
---|
49 | #include <VBox/log.h>
|
---|
50 | #include <iprt/assert.h>
|
---|
51 | #include <iprt/alloc.h>
|
---|
52 | #include <iprt/asm.h>
|
---|
53 | #ifdef VBOX_STRICT
|
---|
54 | # include <iprt/crc.h>
|
---|
55 | #endif
|
---|
56 | #include <iprt/thread.h>
|
---|
57 | #include <iprt/string.h>
|
---|
58 | #include <iprt/system.h>
|
---|
59 |
|
---|
60 |
|
---|
61 | /*********************************************************************************************************************************
|
---|
62 | * Defined Constants And Macros *
|
---|
63 | *********************************************************************************************************************************/
|
---|
64 | /** The number of pages to free in one batch. */
|
---|
65 | #define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
|
---|
66 |
|
---|
67 |
|
---|
68 |
|
---|
69 | /*********************************************************************************************************************************
|
---|
70 | * Reading and Writing Guest Pysical Memory *
|
---|
71 | *********************************************************************************************************************************/
|
---|
72 |
|
---|
73 | /*
|
---|
74 | * PGMR3PhysReadU8-64
|
---|
75 | * PGMR3PhysWriteU8-64
|
---|
76 | */
|
---|
77 | #define PGMPHYSFN_READNAME PGMR3PhysReadU8
|
---|
78 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
|
---|
79 | #define PGMPHYS_DATASIZE 1
|
---|
80 | #define PGMPHYS_DATATYPE uint8_t
|
---|
81 | #include "PGMPhysRWTmpl.h"
|
---|
82 |
|
---|
83 | #define PGMPHYSFN_READNAME PGMR3PhysReadU16
|
---|
84 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
|
---|
85 | #define PGMPHYS_DATASIZE 2
|
---|
86 | #define PGMPHYS_DATATYPE uint16_t
|
---|
87 | #include "PGMPhysRWTmpl.h"
|
---|
88 |
|
---|
89 | #define PGMPHYSFN_READNAME PGMR3PhysReadU32
|
---|
90 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
|
---|
91 | #define PGMPHYS_DATASIZE 4
|
---|
92 | #define PGMPHYS_DATATYPE uint32_t
|
---|
93 | #include "PGMPhysRWTmpl.h"
|
---|
94 |
|
---|
95 | #define PGMPHYSFN_READNAME PGMR3PhysReadU64
|
---|
96 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
|
---|
97 | #define PGMPHYS_DATASIZE 8
|
---|
98 | #define PGMPHYS_DATATYPE uint64_t
|
---|
99 | #include "PGMPhysRWTmpl.h"
|
---|
100 |
|
---|
101 |
|
---|
102 | /**
|
---|
103 | * EMT worker for PGMR3PhysReadExternal.
|
---|
104 | */
|
---|
105 | static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
|
---|
106 | PGMACCESSORIGIN enmOrigin)
|
---|
107 | {
|
---|
108 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
|
---|
109 | AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
|
---|
110 | return VINF_SUCCESS;
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | /**
|
---|
115 | * Read from physical memory, external users.
|
---|
116 | *
|
---|
117 | * @returns VBox status code.
|
---|
118 | * @retval VINF_SUCCESS.
|
---|
119 | *
|
---|
120 | * @param pVM The cross context VM structure.
|
---|
121 | * @param GCPhys Physical address to read from.
|
---|
122 | * @param pvBuf Where to read into.
|
---|
123 | * @param cbRead How many bytes to read.
|
---|
124 | * @param enmOrigin Who is calling.
|
---|
125 | *
|
---|
126 | * @thread Any but EMTs.
|
---|
127 | */
|
---|
128 | VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
|
---|
129 | {
|
---|
130 | VM_ASSERT_OTHER_THREAD(pVM);
|
---|
131 |
|
---|
132 | AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
|
---|
133 | LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
|
---|
134 |
|
---|
135 | PGM_LOCK_VOID(pVM);
|
---|
136 |
|
---|
137 | /*
|
---|
138 | * Copy loop on ram ranges.
|
---|
139 | */
|
---|
140 | for (;;)
|
---|
141 | {
|
---|
142 | PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
|
---|
143 |
|
---|
144 | /* Inside range or not? */
|
---|
145 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
146 | {
|
---|
147 | /*
|
---|
148 | * Must work our way thru this page by page.
|
---|
149 | */
|
---|
150 | RTGCPHYS off = GCPhys - pRam->GCPhys;
|
---|
151 | while (off < pRam->cb)
|
---|
152 | {
|
---|
153 | unsigned iPage = off >> GUEST_PAGE_SHIFT;
|
---|
154 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
155 |
|
---|
156 | /*
|
---|
157 | * If the page has an ALL access handler, we'll have to
|
---|
158 | * delegate the job to EMT.
|
---|
159 | */
|
---|
160 | if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
|
---|
161 | || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
|
---|
162 | {
|
---|
163 | PGM_UNLOCK(pVM);
|
---|
164 |
|
---|
165 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
|
---|
166 | pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
|
---|
167 | }
|
---|
168 | Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
|
---|
169 |
|
---|
170 | /*
|
---|
171 | * Simple stuff, go ahead.
|
---|
172 | */
|
---|
173 | size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK);
|
---|
174 | if (cb > cbRead)
|
---|
175 | cb = cbRead;
|
---|
176 | PGMPAGEMAPLOCK PgMpLck;
|
---|
177 | const void *pvSrc;
|
---|
178 | int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
|
---|
179 | if (RT_SUCCESS(rc))
|
---|
180 | {
|
---|
181 | memcpy(pvBuf, pvSrc, cb);
|
---|
182 | pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
|
---|
183 | }
|
---|
184 | else
|
---|
185 | {
|
---|
186 | AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
|
---|
187 | pRam->GCPhys + off, pPage, rc));
|
---|
188 | memset(pvBuf, 0xff, cb);
|
---|
189 | }
|
---|
190 |
|
---|
191 | /* next page */
|
---|
192 | if (cb >= cbRead)
|
---|
193 | {
|
---|
194 | PGM_UNLOCK(pVM);
|
---|
195 | return VINF_SUCCESS;
|
---|
196 | }
|
---|
197 | cbRead -= cb;
|
---|
198 | off += cb;
|
---|
199 | GCPhys += cb;
|
---|
200 | pvBuf = (char *)pvBuf + cb;
|
---|
201 | } /* walk pages in ram range. */
|
---|
202 | }
|
---|
203 | else
|
---|
204 | {
|
---|
205 | LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
|
---|
206 |
|
---|
207 | /*
|
---|
208 | * Unassigned address space.
|
---|
209 | */
|
---|
210 | size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
|
---|
211 | if (cb >= cbRead)
|
---|
212 | {
|
---|
213 | memset(pvBuf, 0xff, cbRead);
|
---|
214 | break;
|
---|
215 | }
|
---|
216 | memset(pvBuf, 0xff, cb);
|
---|
217 |
|
---|
218 | cbRead -= cb;
|
---|
219 | pvBuf = (char *)pvBuf + cb;
|
---|
220 | GCPhys += cb;
|
---|
221 | }
|
---|
222 | } /* Ram range walk */
|
---|
223 |
|
---|
224 | PGM_UNLOCK(pVM);
|
---|
225 |
|
---|
226 | return VINF_SUCCESS;
|
---|
227 | }
|
---|
228 |
|
---|
229 |
|
---|
230 | /**
|
---|
231 | * EMT worker for PGMR3PhysWriteExternal.
|
---|
232 | */
|
---|
233 | static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
|
---|
234 | PGMACCESSORIGIN enmOrigin)
|
---|
235 | {
|
---|
236 | /** @todo VERR_EM_NO_MEMORY */
|
---|
237 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
|
---|
238 | AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
|
---|
239 | return VINF_SUCCESS;
|
---|
240 | }
|
---|
241 |
|
---|
242 |
|
---|
243 | /**
|
---|
244 | * Write to physical memory, external users.
|
---|
245 | *
|
---|
246 | * @returns VBox status code.
|
---|
247 | * @retval VINF_SUCCESS.
|
---|
248 | * @retval VERR_EM_NO_MEMORY.
|
---|
249 | *
|
---|
250 | * @param pVM The cross context VM structure.
|
---|
251 | * @param GCPhys Physical address to write to.
|
---|
252 | * @param pvBuf What to write.
|
---|
253 | * @param cbWrite How many bytes to write.
|
---|
254 | * @param enmOrigin Who is calling.
|
---|
255 | *
|
---|
256 | * @thread Any but EMTs.
|
---|
257 | */
|
---|
258 | VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
|
---|
259 | {
|
---|
260 | VM_ASSERT_OTHER_THREAD(pVM);
|
---|
261 |
|
---|
262 | AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
|
---|
263 | ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
|
---|
264 | GCPhys, cbWrite, enmOrigin));
|
---|
265 | AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
|
---|
266 | LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
|
---|
267 |
|
---|
268 | PGM_LOCK_VOID(pVM);
|
---|
269 |
|
---|
270 | /*
|
---|
271 | * Copy loop on ram ranges, stop when we hit something difficult.
|
---|
272 | */
|
---|
273 | for (;;)
|
---|
274 | {
|
---|
275 | PPGMRAMRANGE const pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
|
---|
276 |
|
---|
277 | /* Inside range or not? */
|
---|
278 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
279 | {
|
---|
280 | /*
|
---|
281 | * Must work our way thru this page by page.
|
---|
282 | */
|
---|
283 | RTGCPTR off = GCPhys - pRam->GCPhys;
|
---|
284 | while (off < pRam->cb)
|
---|
285 | {
|
---|
286 | RTGCPTR iPage = off >> GUEST_PAGE_SHIFT;
|
---|
287 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
288 |
|
---|
289 | /*
|
---|
290 | * Is the page problematic, we have to do the work on the EMT.
|
---|
291 | *
|
---|
292 | * Allocating writable pages and access handlers are
|
---|
293 | * problematic, write monitored pages are simple and can be
|
---|
294 | * dealt with here.
|
---|
295 | */
|
---|
296 | if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
297 | || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
298 | || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
|
---|
299 | {
|
---|
300 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
301 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
302 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
|
---|
303 | else
|
---|
304 | {
|
---|
305 | PGM_UNLOCK(pVM);
|
---|
306 |
|
---|
307 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
|
---|
308 | pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
|
---|
309 | }
|
---|
310 | }
|
---|
311 | Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
|
---|
312 |
|
---|
313 | /*
|
---|
314 | * Simple stuff, go ahead.
|
---|
315 | */
|
---|
316 | size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK);
|
---|
317 | if (cb > cbWrite)
|
---|
318 | cb = cbWrite;
|
---|
319 | PGMPAGEMAPLOCK PgMpLck;
|
---|
320 | void *pvDst;
|
---|
321 | int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
|
---|
322 | if (RT_SUCCESS(rc))
|
---|
323 | {
|
---|
324 | memcpy(pvDst, pvBuf, cb);
|
---|
325 | pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
|
---|
326 | }
|
---|
327 | else
|
---|
328 | AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
|
---|
329 | pRam->GCPhys + off, pPage, rc));
|
---|
330 |
|
---|
331 | /* next page */
|
---|
332 | if (cb >= cbWrite)
|
---|
333 | {
|
---|
334 | PGM_UNLOCK(pVM);
|
---|
335 | return VINF_SUCCESS;
|
---|
336 | }
|
---|
337 |
|
---|
338 | cbWrite -= cb;
|
---|
339 | off += cb;
|
---|
340 | GCPhys += cb;
|
---|
341 | pvBuf = (const char *)pvBuf + cb;
|
---|
342 | } /* walk pages in ram range */
|
---|
343 | }
|
---|
344 | else
|
---|
345 | {
|
---|
346 | /*
|
---|
347 | * Unassigned address space, skip it.
|
---|
348 | */
|
---|
349 | if (!pRam)
|
---|
350 | break;
|
---|
351 | size_t cb = pRam->GCPhys - GCPhys;
|
---|
352 | if (cb >= cbWrite)
|
---|
353 | break;
|
---|
354 | cbWrite -= cb;
|
---|
355 | pvBuf = (const char *)pvBuf + cb;
|
---|
356 | GCPhys += cb;
|
---|
357 | }
|
---|
358 | } /* Ram range walk */
|
---|
359 |
|
---|
360 | PGM_UNLOCK(pVM);
|
---|
361 | return VINF_SUCCESS;
|
---|
362 | }
|
---|
363 |
|
---|
364 |
|
---|
365 | /*********************************************************************************************************************************
|
---|
366 | * Mapping Guest Physical Memory *
|
---|
367 | *********************************************************************************************************************************/
|
---|
368 |
|
---|
369 | /**
|
---|
370 | * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
|
---|
371 | *
|
---|
372 | * @returns see PGMR3PhysGCPhys2CCPtrExternal
|
---|
373 | * @param pVM The cross context VM structure.
|
---|
374 | * @param pGCPhys Pointer to the guest physical address.
|
---|
375 | * @param ppv Where to store the mapping address.
|
---|
376 | * @param pLock Where to store the lock.
|
---|
377 | */
|
---|
378 | static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
379 | {
|
---|
380 | /*
|
---|
381 | * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
|
---|
382 | * an access handler after it succeeds.
|
---|
383 | */
|
---|
384 | int rc = PGM_LOCK(pVM);
|
---|
385 | AssertRCReturn(rc, rc);
|
---|
386 |
|
---|
387 | rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
|
---|
388 | if (RT_SUCCESS(rc))
|
---|
389 | {
|
---|
390 | PPGMPAGEMAPTLBE pTlbe;
|
---|
391 | int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
|
---|
392 | AssertFatalRC(rc2);
|
---|
393 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
394 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
395 | {
|
---|
396 | PGMPhysReleasePageMappingLock(pVM, pLock);
|
---|
397 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
398 | }
|
---|
399 | else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
400 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
401 | || pgmPoolIsDirtyPage(pVM, *pGCPhys)
|
---|
402 | #endif
|
---|
403 | )
|
---|
404 | {
|
---|
405 | /* We *must* flush any corresponding pgm pool page here, otherwise we'll
|
---|
406 | * not be informed about writes and keep bogus gst->shw mappings around.
|
---|
407 | */
|
---|
408 | pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
|
---|
409 | Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
|
---|
410 | /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
|
---|
411 | * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
|
---|
412 | }
|
---|
413 | }
|
---|
414 |
|
---|
415 | PGM_UNLOCK(pVM);
|
---|
416 | return rc;
|
---|
417 | }
|
---|
418 |
|
---|
419 |
|
---|
420 | /**
|
---|
421 | * Requests the mapping of a guest page into ring-3, external threads.
|
---|
422 | *
|
---|
423 | * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
|
---|
424 | * release it.
|
---|
425 | *
|
---|
426 | * This API will assume your intention is to write to the page, and will
|
---|
427 | * therefore replace shared and zero pages. If you do not intend to modify the
|
---|
428 | * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
|
---|
429 | *
|
---|
430 | * @returns VBox status code.
|
---|
431 | * @retval VINF_SUCCESS on success.
|
---|
432 | * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
|
---|
433 | * backing or if the page has any active access handlers. The caller
|
---|
434 | * must fall back on using PGMR3PhysWriteExternal.
|
---|
435 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
|
---|
436 | *
|
---|
437 | * @param pVM The cross context VM structure.
|
---|
438 | * @param GCPhys The guest physical address of the page that should be mapped.
|
---|
439 | * @param ppv Where to store the address corresponding to GCPhys.
|
---|
440 | * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
|
---|
441 | *
|
---|
442 | * @remark Avoid calling this API from within critical sections (other than the
|
---|
443 | * PGM one) because of the deadlock risk when we have to delegating the
|
---|
444 | * task to an EMT.
|
---|
445 | * @thread Any.
|
---|
446 | */
|
---|
447 | VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
448 | {
|
---|
449 | AssertPtr(ppv);
|
---|
450 | AssertPtr(pLock);
|
---|
451 |
|
---|
452 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
453 |
|
---|
454 | int rc = PGM_LOCK(pVM);
|
---|
455 | AssertRCReturn(rc, rc);
|
---|
456 |
|
---|
457 | /*
|
---|
458 | * Query the Physical TLB entry for the page (may fail).
|
---|
459 | */
|
---|
460 | PPGMPAGEMAPTLBE pTlbe;
|
---|
461 | rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
462 | if (RT_SUCCESS(rc))
|
---|
463 | {
|
---|
464 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
465 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
466 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
467 | else
|
---|
468 | {
|
---|
469 | /*
|
---|
470 | * If the page is shared, the zero page, or being write monitored
|
---|
471 | * it must be converted to an page that's writable if possible.
|
---|
472 | * We can only deal with write monitored pages here, the rest have
|
---|
473 | * to be on an EMT.
|
---|
474 | */
|
---|
475 | if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
476 | || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
477 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
478 | || pgmPoolIsDirtyPage(pVM, GCPhys)
|
---|
479 | #endif
|
---|
480 | )
|
---|
481 | {
|
---|
482 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
483 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
484 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
485 | && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
|
---|
486 | #endif
|
---|
487 | )
|
---|
488 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
|
---|
489 | else
|
---|
490 | {
|
---|
491 | PGM_UNLOCK(pVM);
|
---|
492 |
|
---|
493 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
|
---|
494 | pVM, &GCPhys, ppv, pLock);
|
---|
495 | }
|
---|
496 | }
|
---|
497 |
|
---|
498 | /*
|
---|
499 | * Now, just perform the locking and calculate the return address.
|
---|
500 | */
|
---|
501 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
502 | if (pMap)
|
---|
503 | pMap->cRefs++;
|
---|
504 |
|
---|
505 | unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
|
---|
506 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
507 | {
|
---|
508 | if (cLocks == 0)
|
---|
509 | pVM->pgm.s.cWriteLockedPages++;
|
---|
510 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
511 | }
|
---|
512 | else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
|
---|
513 | {
|
---|
514 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
515 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
|
---|
516 | if (pMap)
|
---|
517 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
518 | }
|
---|
519 |
|
---|
520 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK));
|
---|
521 | pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
|
---|
522 | pLock->pvMap = pMap;
|
---|
523 | }
|
---|
524 | }
|
---|
525 |
|
---|
526 | PGM_UNLOCK(pVM);
|
---|
527 | return rc;
|
---|
528 | }
|
---|
529 |
|
---|
530 |
|
---|
531 | /**
|
---|
532 | * Requests the mapping of a guest page into ring-3, external threads.
|
---|
533 | *
|
---|
534 | * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
|
---|
535 | * release it.
|
---|
536 | *
|
---|
537 | * @returns VBox status code.
|
---|
538 | * @retval VINF_SUCCESS on success.
|
---|
539 | * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
|
---|
540 | * backing or if the page as an active ALL access handler. The caller
|
---|
541 | * must fall back on using PGMPhysRead.
|
---|
542 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
|
---|
543 | *
|
---|
544 | * @param pVM The cross context VM structure.
|
---|
545 | * @param GCPhys The guest physical address of the page that should be mapped.
|
---|
546 | * @param ppv Where to store the address corresponding to GCPhys.
|
---|
547 | * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
|
---|
548 | *
|
---|
549 | * @remark Avoid calling this API from within critical sections (other than
|
---|
550 | * the PGM one) because of the deadlock risk.
|
---|
551 | * @thread Any.
|
---|
552 | */
|
---|
553 | VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
554 | {
|
---|
555 | int rc = PGM_LOCK(pVM);
|
---|
556 | AssertRCReturn(rc, rc);
|
---|
557 |
|
---|
558 | /*
|
---|
559 | * Query the Physical TLB entry for the page (may fail).
|
---|
560 | */
|
---|
561 | PPGMPAGEMAPTLBE pTlbe;
|
---|
562 | rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
563 | if (RT_SUCCESS(rc))
|
---|
564 | {
|
---|
565 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
566 | #if 1
|
---|
567 | /* MMIO pages doesn't have any readable backing. */
|
---|
568 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
569 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
570 | #else
|
---|
571 | if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
572 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
573 | #endif
|
---|
574 | else
|
---|
575 | {
|
---|
576 | /*
|
---|
577 | * Now, just perform the locking and calculate the return address.
|
---|
578 | */
|
---|
579 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
580 | if (pMap)
|
---|
581 | pMap->cRefs++;
|
---|
582 |
|
---|
583 | unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
|
---|
584 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
585 | {
|
---|
586 | if (cLocks == 0)
|
---|
587 | pVM->pgm.s.cReadLockedPages++;
|
---|
588 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
589 | }
|
---|
590 | else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
|
---|
591 | {
|
---|
592 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
593 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
|
---|
594 | if (pMap)
|
---|
595 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
596 | }
|
---|
597 |
|
---|
598 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK));
|
---|
599 | pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
|
---|
600 | pLock->pvMap = pMap;
|
---|
601 | }
|
---|
602 | }
|
---|
603 |
|
---|
604 | PGM_UNLOCK(pVM);
|
---|
605 | return rc;
|
---|
606 | }
|
---|
607 |
|
---|
608 |
|
---|
609 | /**
|
---|
610 | * Requests the mapping of multiple guest page into ring-3, external threads.
|
---|
611 | *
|
---|
612 | * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
|
---|
613 | * ASAP to release them.
|
---|
614 | *
|
---|
615 | * This API will assume your intention is to write to the pages, and will
|
---|
616 | * therefore replace shared and zero pages. If you do not intend to modify the
|
---|
617 | * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
|
---|
618 | *
|
---|
619 | * @returns VBox status code.
|
---|
620 | * @retval VINF_SUCCESS on success.
|
---|
621 | * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
|
---|
622 | * backing or if any of the pages the page has any active access
|
---|
623 | * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
|
---|
624 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
|
---|
625 | * an invalid physical address.
|
---|
626 | *
|
---|
627 | * @param pVM The cross context VM structure.
|
---|
628 | * @param cPages Number of pages to lock.
|
---|
629 | * @param paGCPhysPages The guest physical address of the pages that
|
---|
630 | * should be mapped (@a cPages entries).
|
---|
631 | * @param papvPages Where to store the ring-3 mapping addresses
|
---|
632 | * corresponding to @a paGCPhysPages.
|
---|
633 | * @param paLocks Where to store the locking information that
|
---|
634 | * pfnPhysBulkReleasePageMappingLock needs (@a cPages
|
---|
635 | * in length).
|
---|
636 | *
|
---|
637 | * @remark Avoid calling this API from within critical sections (other than the
|
---|
638 | * PGM one) because of the deadlock risk when we have to delegating the
|
---|
639 | * task to an EMT.
|
---|
640 | * @thread Any.
|
---|
641 | */
|
---|
642 | VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
|
---|
643 | void **papvPages, PPGMPAGEMAPLOCK paLocks)
|
---|
644 | {
|
---|
645 | Assert(cPages > 0);
|
---|
646 | AssertPtr(papvPages);
|
---|
647 | AssertPtr(paLocks);
|
---|
648 |
|
---|
649 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
650 |
|
---|
651 | int rc = PGM_LOCK(pVM);
|
---|
652 | AssertRCReturn(rc, rc);
|
---|
653 |
|
---|
654 | /*
|
---|
655 | * Lock the pages one by one.
|
---|
656 | * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
|
---|
657 | */
|
---|
658 | int32_t cNextYield = 128;
|
---|
659 | uint32_t iPage;
|
---|
660 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
661 | {
|
---|
662 | if (--cNextYield > 0)
|
---|
663 | { /* likely */ }
|
---|
664 | else
|
---|
665 | {
|
---|
666 | PGM_UNLOCK(pVM);
|
---|
667 | ASMNopPause();
|
---|
668 | PGM_LOCK_VOID(pVM);
|
---|
669 | cNextYield = 128;
|
---|
670 | }
|
---|
671 |
|
---|
672 | /*
|
---|
673 | * Query the Physical TLB entry for the page (may fail).
|
---|
674 | */
|
---|
675 | PPGMPAGEMAPTLBE pTlbe;
|
---|
676 | rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
|
---|
677 | if (RT_SUCCESS(rc))
|
---|
678 | { }
|
---|
679 | else
|
---|
680 | break;
|
---|
681 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
682 |
|
---|
683 | /*
|
---|
684 | * No MMIO or active access handlers.
|
---|
685 | */
|
---|
686 | if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
|
---|
687 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
688 | { }
|
---|
689 | else
|
---|
690 | {
|
---|
691 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
692 | break;
|
---|
693 | }
|
---|
694 |
|
---|
695 | /*
|
---|
696 | * The page must be in the allocated state and not be a dirty pool page.
|
---|
697 | * We can handle converting a write monitored page to an allocated one, but
|
---|
698 | * anything more complicated must be delegated to an EMT.
|
---|
699 | */
|
---|
700 | bool fDelegateToEmt = false;
|
---|
701 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
|
---|
702 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
703 | fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
|
---|
704 | #else
|
---|
705 | fDelegateToEmt = false;
|
---|
706 | #endif
|
---|
707 | else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
|
---|
708 | {
|
---|
709 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
710 | if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
|
---|
711 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
|
---|
712 | else
|
---|
713 | fDelegateToEmt = true;
|
---|
714 | #endif
|
---|
715 | }
|
---|
716 | else
|
---|
717 | fDelegateToEmt = true;
|
---|
718 | if (!fDelegateToEmt)
|
---|
719 | { }
|
---|
720 | else
|
---|
721 | {
|
---|
722 | /* We could do this delegation in bulk, but considered too much work vs gain. */
|
---|
723 | PGM_UNLOCK(pVM);
|
---|
724 | rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
|
---|
725 | pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
|
---|
726 | PGM_LOCK_VOID(pVM);
|
---|
727 | if (RT_FAILURE(rc))
|
---|
728 | break;
|
---|
729 | cNextYield = 128;
|
---|
730 | }
|
---|
731 |
|
---|
732 | /*
|
---|
733 | * Now, just perform the locking and address calculation.
|
---|
734 | */
|
---|
735 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
736 | if (pMap)
|
---|
737 | pMap->cRefs++;
|
---|
738 |
|
---|
739 | unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
|
---|
740 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
741 | {
|
---|
742 | if (cLocks == 0)
|
---|
743 | pVM->pgm.s.cWriteLockedPages++;
|
---|
744 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
745 | }
|
---|
746 | else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
|
---|
747 | {
|
---|
748 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
749 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
|
---|
750 | if (pMap)
|
---|
751 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
752 | }
|
---|
753 |
|
---|
754 | papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & GUEST_PAGE_OFFSET_MASK));
|
---|
755 | paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
|
---|
756 | paLocks[iPage].pvMap = pMap;
|
---|
757 | }
|
---|
758 |
|
---|
759 | PGM_UNLOCK(pVM);
|
---|
760 |
|
---|
761 | /*
|
---|
762 | * On failure we must unlock any pages we managed to get already.
|
---|
763 | */
|
---|
764 | if (RT_FAILURE(rc) && iPage > 0)
|
---|
765 | PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
|
---|
766 |
|
---|
767 | return rc;
|
---|
768 | }
|
---|
769 |
|
---|
770 |
|
---|
771 | /**
|
---|
772 | * Requests the mapping of multiple guest page into ring-3, for reading only,
|
---|
773 | * external threads.
|
---|
774 | *
|
---|
775 | * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
|
---|
776 | * to release them.
|
---|
777 | *
|
---|
778 | * @returns VBox status code.
|
---|
779 | * @retval VINF_SUCCESS on success.
|
---|
780 | * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
|
---|
781 | * backing or if any of the pages the page has an active ALL access
|
---|
782 | * handler. The caller must fall back on using PGMR3PhysWriteExternal.
|
---|
783 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
|
---|
784 | * an invalid physical address.
|
---|
785 | *
|
---|
786 | * @param pVM The cross context VM structure.
|
---|
787 | * @param cPages Number of pages to lock.
|
---|
788 | * @param paGCPhysPages The guest physical address of the pages that
|
---|
789 | * should be mapped (@a cPages entries).
|
---|
790 | * @param papvPages Where to store the ring-3 mapping addresses
|
---|
791 | * corresponding to @a paGCPhysPages.
|
---|
792 | * @param paLocks Where to store the lock information that
|
---|
793 | * pfnPhysReleasePageMappingLock needs (@a cPages
|
---|
794 | * in length).
|
---|
795 | *
|
---|
796 | * @remark Avoid calling this API from within critical sections (other than
|
---|
797 | * the PGM one) because of the deadlock risk.
|
---|
798 | * @thread Any.
|
---|
799 | */
|
---|
800 | VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
|
---|
801 | void const **papvPages, PPGMPAGEMAPLOCK paLocks)
|
---|
802 | {
|
---|
803 | Assert(cPages > 0);
|
---|
804 | AssertPtr(papvPages);
|
---|
805 | AssertPtr(paLocks);
|
---|
806 |
|
---|
807 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
808 |
|
---|
809 | int rc = PGM_LOCK(pVM);
|
---|
810 | AssertRCReturn(rc, rc);
|
---|
811 |
|
---|
812 | /*
|
---|
813 | * Lock the pages one by one.
|
---|
814 | * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
|
---|
815 | */
|
---|
816 | int32_t cNextYield = 256;
|
---|
817 | uint32_t iPage;
|
---|
818 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
819 | {
|
---|
820 | if (--cNextYield > 0)
|
---|
821 | { /* likely */ }
|
---|
822 | else
|
---|
823 | {
|
---|
824 | PGM_UNLOCK(pVM);
|
---|
825 | ASMNopPause();
|
---|
826 | PGM_LOCK_VOID(pVM);
|
---|
827 | cNextYield = 256;
|
---|
828 | }
|
---|
829 |
|
---|
830 | /*
|
---|
831 | * Query the Physical TLB entry for the page (may fail).
|
---|
832 | */
|
---|
833 | PPGMPAGEMAPTLBE pTlbe;
|
---|
834 | rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
|
---|
835 | if (RT_SUCCESS(rc))
|
---|
836 | { }
|
---|
837 | else
|
---|
838 | break;
|
---|
839 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
840 |
|
---|
841 | /*
|
---|
842 | * No MMIO or active all access handlers, everything else can be accessed.
|
---|
843 | */
|
---|
844 | if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
|
---|
845 | && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
846 | { }
|
---|
847 | else
|
---|
848 | {
|
---|
849 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
850 | break;
|
---|
851 | }
|
---|
852 |
|
---|
853 | /*
|
---|
854 | * Now, just perform the locking and address calculation.
|
---|
855 | */
|
---|
856 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
857 | if (pMap)
|
---|
858 | pMap->cRefs++;
|
---|
859 |
|
---|
860 | unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
|
---|
861 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
862 | {
|
---|
863 | if (cLocks == 0)
|
---|
864 | pVM->pgm.s.cReadLockedPages++;
|
---|
865 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
866 | }
|
---|
867 | else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
|
---|
868 | {
|
---|
869 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
870 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
|
---|
871 | if (pMap)
|
---|
872 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
873 | }
|
---|
874 |
|
---|
875 | papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & GUEST_PAGE_OFFSET_MASK));
|
---|
876 | paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
|
---|
877 | paLocks[iPage].pvMap = pMap;
|
---|
878 | }
|
---|
879 |
|
---|
880 | PGM_UNLOCK(pVM);
|
---|
881 |
|
---|
882 | /*
|
---|
883 | * On failure we must unlock any pages we managed to get already.
|
---|
884 | */
|
---|
885 | if (RT_FAILURE(rc) && iPage > 0)
|
---|
886 | PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
|
---|
887 |
|
---|
888 | return rc;
|
---|
889 | }
|
---|
890 |
|
---|
891 |
|
---|
892 | /**
|
---|
893 | * Converts a GC physical address to a HC ring-3 pointer, with some
|
---|
894 | * additional checks.
|
---|
895 | *
|
---|
896 | * @returns VBox status code.
|
---|
897 | * @retval VINF_SUCCESS on success.
|
---|
898 | * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
|
---|
899 | * access handler of some kind.
|
---|
900 | * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
|
---|
901 | * accesses or is odd in any way.
|
---|
902 | * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
|
---|
903 | *
|
---|
904 | * @param pVM The cross context VM structure.
|
---|
905 | * @param GCPhys The GC physical address to convert. Since this is only
|
---|
906 | * used for filling the REM TLB, the A20 mask must be
|
---|
907 | * applied before calling this API.
|
---|
908 | * @param fWritable Whether write access is required.
|
---|
909 | * @param ppv Where to store the pointer corresponding to GCPhys on
|
---|
910 | * success.
|
---|
911 | */
|
---|
912 | VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
|
---|
913 | {
|
---|
914 | PGM_LOCK_VOID(pVM);
|
---|
915 | PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
|
---|
916 |
|
---|
917 | PPGMRAMRANGE pRam;
|
---|
918 | PPGMPAGE pPage;
|
---|
919 | int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
|
---|
920 | if (RT_SUCCESS(rc))
|
---|
921 | {
|
---|
922 | if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
923 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
924 | else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
|
---|
925 | rc = VINF_SUCCESS;
|
---|
926 | else
|
---|
927 | {
|
---|
928 | if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
|
---|
929 | rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
930 | else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
931 | {
|
---|
932 | /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
|
---|
933 | * in -norawr0 mode. */
|
---|
934 | if (fWritable)
|
---|
935 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
936 | }
|
---|
937 | else
|
---|
938 | {
|
---|
939 | /* Temporarily disabled physical handler(s), since the recompiler
|
---|
940 | doesn't get notified when it's reset we'll have to pretend it's
|
---|
941 | operating normally. */
|
---|
942 | if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
|
---|
943 | rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
944 | else
|
---|
945 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
946 | }
|
---|
947 | }
|
---|
948 | if (RT_SUCCESS(rc))
|
---|
949 | {
|
---|
950 | int rc2;
|
---|
951 |
|
---|
952 | /* Make sure what we return is writable. */
|
---|
953 | if (fWritable)
|
---|
954 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
955 | {
|
---|
956 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
957 | break;
|
---|
958 | case PGM_PAGE_STATE_BALLOONED:
|
---|
959 | AssertFailed();
|
---|
960 | break;
|
---|
961 | case PGM_PAGE_STATE_ZERO:
|
---|
962 | case PGM_PAGE_STATE_SHARED:
|
---|
963 | if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
|
---|
964 | break;
|
---|
965 | RT_FALL_THRU();
|
---|
966 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
967 | rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
|
---|
968 | AssertLogRelRCReturn(rc2, rc2);
|
---|
969 | break;
|
---|
970 | }
|
---|
971 |
|
---|
972 | /* Get a ring-3 mapping of the address. */
|
---|
973 | PPGMPAGER3MAPTLBE pTlbe;
|
---|
974 | rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
975 | AssertLogRelRCReturn(rc2, rc2);
|
---|
976 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK));
|
---|
977 | /** @todo mapping/locking hell; this isn't horribly efficient since
|
---|
978 | * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
|
---|
979 |
|
---|
980 | Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
|
---|
981 | }
|
---|
982 | else
|
---|
983 | Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
|
---|
984 |
|
---|
985 | /* else: handler catching all access, no pointer returned. */
|
---|
986 | }
|
---|
987 | else
|
---|
988 | rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
989 |
|
---|
990 | PGM_UNLOCK(pVM);
|
---|
991 | return rc;
|
---|
992 | }
|
---|
993 |
|
---|
994 |
|
---|
995 |
|
---|
996 | /*********************************************************************************************************************************
|
---|
997 | * RAM Range Management *
|
---|
998 | *********************************************************************************************************************************/
|
---|
999 |
|
---|
1000 | /**
|
---|
1001 | * Given the range @a GCPhys thru @a GCPhysLast, find overlapping RAM range or
|
---|
1002 | * the correct insertion point.
|
---|
1003 | *
|
---|
1004 | * @returns Pointer to overlapping RAM range if found, NULL if not.
|
---|
1005 | * @param pVM The cross context VM structure.
|
---|
1006 | * @param GCPhys The address of the first byte in the range.
|
---|
1007 | * @param GCPhysLast The address of the last byte in the range.
|
---|
1008 | * @param pidxInsert Where to return the lookup table index to insert the
|
---|
1009 | * range at when returning NULL. Set to UINT32_MAX when
|
---|
1010 | * returning the pointer to an overlapping range.
|
---|
1011 | * @note Caller must own the PGM lock.
|
---|
1012 | */
|
---|
1013 | static PPGMRAMRANGE pgmR3PhysRamRangeFindOverlapping(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint32_t *pidxInsert)
|
---|
1014 | {
|
---|
1015 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1016 | uint32_t iStart = 0;
|
---|
1017 | uint32_t iEnd = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1018 | for (;;)
|
---|
1019 | {
|
---|
1020 | uint32_t idxLookup = iStart + (iEnd - iStart) / 2;
|
---|
1021 | RTGCPHYS const GCPhysEntryFirst = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1022 | if (GCPhysLast < GCPhysEntryFirst)
|
---|
1023 | {
|
---|
1024 | if (idxLookup > iStart)
|
---|
1025 | iEnd = idxLookup;
|
---|
1026 | else
|
---|
1027 | {
|
---|
1028 | *pidxInsert = idxLookup;
|
---|
1029 | return NULL;
|
---|
1030 | }
|
---|
1031 | }
|
---|
1032 | else
|
---|
1033 | {
|
---|
1034 | RTGCPHYS const GCPhysEntryLast = pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast;
|
---|
1035 | if (GCPhys > GCPhysEntryLast)
|
---|
1036 | {
|
---|
1037 | idxLookup += 1;
|
---|
1038 | if (idxLookup < iEnd)
|
---|
1039 | iStart = idxLookup;
|
---|
1040 | else
|
---|
1041 | {
|
---|
1042 | *pidxInsert = idxLookup;
|
---|
1043 | return NULL;
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 | else
|
---|
1047 | {
|
---|
1048 | /* overlap */
|
---|
1049 | Assert(GCPhysEntryLast > GCPhys && GCPhysEntryFirst < GCPhysLast);
|
---|
1050 | *pidxInsert = UINT32_MAX;
|
---|
1051 | return pVM->pgm.s.apRamRanges[PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup])];
|
---|
1052 | }
|
---|
1053 | }
|
---|
1054 | }
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 |
|
---|
1058 | /**
|
---|
1059 | * Given the range @a GCPhys thru @a GCPhysLast, find the lookup table entry
|
---|
1060 | * that's overlapping it.
|
---|
1061 | *
|
---|
1062 | * @returns The lookup table index of the overlapping entry, UINT32_MAX if not
|
---|
1063 | * found.
|
---|
1064 | * @param pVM The cross context VM structure.
|
---|
1065 | * @param GCPhys The address of the first byte in the range.
|
---|
1066 | * @param GCPhysLast The address of the last byte in the range.
|
---|
1067 | * @note Caller must own the PGM lock.
|
---|
1068 | */
|
---|
1069 | static uint32_t pgmR3PhysRamRangeFindOverlappingIndex(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast)
|
---|
1070 | {
|
---|
1071 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1072 | uint32_t iStart = 0;
|
---|
1073 | uint32_t iEnd = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1074 | for (;;)
|
---|
1075 | {
|
---|
1076 | uint32_t idxLookup = iStart + (iEnd - iStart) / 2;
|
---|
1077 | RTGCPHYS const GCPhysEntryFirst = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1078 | if (GCPhysLast < GCPhysEntryFirst)
|
---|
1079 | {
|
---|
1080 | if (idxLookup > iStart)
|
---|
1081 | iEnd = idxLookup;
|
---|
1082 | else
|
---|
1083 | return UINT32_MAX;
|
---|
1084 | }
|
---|
1085 | else
|
---|
1086 | {
|
---|
1087 | RTGCPHYS const GCPhysEntryLast = pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast;
|
---|
1088 | if (GCPhys > GCPhysEntryLast)
|
---|
1089 | {
|
---|
1090 | idxLookup += 1;
|
---|
1091 | if (idxLookup < iEnd)
|
---|
1092 | iStart = idxLookup;
|
---|
1093 | else
|
---|
1094 | return UINT32_MAX;
|
---|
1095 | }
|
---|
1096 | else
|
---|
1097 | {
|
---|
1098 | /* overlap */
|
---|
1099 | Assert(GCPhysEntryLast > GCPhys && GCPhysEntryFirst < GCPhysLast);
|
---|
1100 | return idxLookup;
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | * Insert @a pRam into the lookup table.
|
---|
1109 | *
|
---|
1110 | * @returns VBox status code.
|
---|
1111 | * @param pVM The cross context VM structure.
|
---|
1112 | * @param pRam The RAM range to insert into the lookup table.
|
---|
1113 | * @param GCPhys The new mapping address to assign @a pRam on insertion.
|
---|
1114 | * @param pidxLookup Optional lookup table hint. This is updated.
|
---|
1115 | * @note Caller must own PGM lock.
|
---|
1116 | */
|
---|
1117 | static int pgmR3PhysRamRangeInsertLookup(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, uint32_t *pidxLookup)
|
---|
1118 | {
|
---|
1119 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1120 | #ifdef DEBUG_bird
|
---|
1121 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, true /*fRamRelaxed*/);
|
---|
1122 | #endif
|
---|
1123 | AssertMsg(pRam->pszDesc, ("%RGp-%RGp\n", pRam->GCPhys, pRam->GCPhysLast));
|
---|
1124 | AssertLogRelMsgReturn( pRam->GCPhys == NIL_RTGCPHYS
|
---|
1125 | && pRam->GCPhysLast == NIL_RTGCPHYS,
|
---|
1126 | ("GCPhys=%RGp; range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n",
|
---|
1127 | GCPhys, pRam->GCPhys, pRam->cb, pRam->GCPhysLast, pRam->pszDesc),
|
---|
1128 | VERR_ALREADY_EXISTS);
|
---|
1129 | uint32_t const idRamRange = pRam->idRange;
|
---|
1130 | AssertReturn(pVM->pgm.s.apRamRanges[idRamRange] == pRam, VERR_INTERNAL_ERROR_2);
|
---|
1131 |
|
---|
1132 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INTERNAL_ERROR_3);
|
---|
1133 | RTGCPHYS const GCPhysLast = GCPhys + pRam->cb - 1U;
|
---|
1134 | AssertReturn(GCPhysLast > GCPhys, VERR_INTERNAL_ERROR_4);
|
---|
1135 | LogFlowFunc(("GCPhys=%RGp LB %RGp GCPhysLast=%RGp id=%#x %s\n", GCPhys, pRam->cb, GCPhysLast, idRamRange, pRam->pszDesc));
|
---|
1136 |
|
---|
1137 | /*
|
---|
1138 | * Find the lookup table location if necessary.
|
---|
1139 | */
|
---|
1140 | uint32_t const cLookupEntries = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1141 | AssertLogRelMsgReturn(cLookupEntries + 1 < RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup), /* id=0 is unused, so < is correct. */
|
---|
1142 | ("%#x\n", cLookupEntries), VERR_INTERNAL_ERROR_3);
|
---|
1143 |
|
---|
1144 | uint32_t idxLookup = pidxLookup ? *pidxLookup : UINT32_MAX;
|
---|
1145 | if (cLookupEntries == 0)
|
---|
1146 | idxLookup = 0; /* special case: empty table */
|
---|
1147 | else
|
---|
1148 | {
|
---|
1149 | if ( idxLookup > cLookupEntries
|
---|
1150 | || ( idxLookup != 0
|
---|
1151 | && pVM->pgm.s.aRamRangeLookup[idxLookup - 1].GCPhysLast >= GCPhys)
|
---|
1152 | || ( idxLookup < cLookupEntries
|
---|
1153 | && PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]) < GCPhysLast))
|
---|
1154 | {
|
---|
1155 | PPGMRAMRANGE pOverlapping = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxLookup);
|
---|
1156 | AssertLogRelMsgReturn(!pOverlapping,
|
---|
1157 | ("GCPhys=%RGp; GCPhysLast=%RGp %s - overlaps %RGp...%RGp %s\n",
|
---|
1158 | GCPhys, GCPhysLast, pRam->pszDesc,
|
---|
1159 | pOverlapping->GCPhys, pOverlapping->GCPhysLast, pOverlapping->pszDesc),
|
---|
1160 | VERR_PGM_RAM_CONFLICT);
|
---|
1161 | AssertLogRelMsgReturn(idxLookup <= cLookupEntries, ("%#x vs %#x\n", idxLookup, cLookupEntries), VERR_INTERNAL_ERROR_5);
|
---|
1162 | }
|
---|
1163 | /* else we've got a good hint. */
|
---|
1164 | }
|
---|
1165 |
|
---|
1166 | /*
|
---|
1167 | * Do the actual job.
|
---|
1168 | *
|
---|
1169 | * The moving of existing table entries is done in a way that allows other
|
---|
1170 | * EMTs to perform concurrent lookups with the updating.
|
---|
1171 | */
|
---|
1172 | bool const fUseAtomic = pVM->enmVMState != VMSTATE_CREATING
|
---|
1173 | && pVM->cCpus > 1
|
---|
1174 | #ifdef RT_ARCH_AMD64
|
---|
1175 | && g_CpumHostFeatures.s.fCmpXchg16b
|
---|
1176 | #endif
|
---|
1177 | ;
|
---|
1178 |
|
---|
1179 | /* Signal that we're modifying the lookup table: */
|
---|
1180 | uint32_t const idGeneration = (pVM->pgm.s.RamRangeUnion.idGeneration + 1) | 1; /* paranoia^3 */
|
---|
1181 | ASMAtomicWriteU32(&pVM->pgm.s.RamRangeUnion.idGeneration, idGeneration);
|
---|
1182 |
|
---|
1183 | /* Update the RAM range entry. */
|
---|
1184 | pRam->GCPhys = GCPhys;
|
---|
1185 | pRam->GCPhysLast = GCPhysLast;
|
---|
1186 |
|
---|
1187 | /* Do we need to shift any lookup table entries? */
|
---|
1188 | if (idxLookup != cLookupEntries)
|
---|
1189 | {
|
---|
1190 | /* We do. Make a copy of the final entry first. */
|
---|
1191 | uint32_t cToMove = cLookupEntries - idxLookup;
|
---|
1192 | PGMRAMRANGELOOKUPENTRY *pCur = &pVM->pgm.s.aRamRangeLookup[cLookupEntries];
|
---|
1193 | pCur->GCPhysFirstAndId = pCur[-1].GCPhysFirstAndId;
|
---|
1194 | pCur->GCPhysLast = pCur[-1].GCPhysLast;
|
---|
1195 |
|
---|
1196 | /* Then increase the table size. This will ensure that anyone starting
|
---|
1197 | a search from here on should have consistent data. */
|
---|
1198 | ASMAtomicWriteU32(&pVM->pgm.s.RamRangeUnion.cLookupEntries, cLookupEntries + 1);
|
---|
1199 |
|
---|
1200 | /* Transfer the rest of the entries. */
|
---|
1201 | cToMove -= 1;
|
---|
1202 | if (cToMove > 0)
|
---|
1203 | {
|
---|
1204 | if (!fUseAtomic)
|
---|
1205 | do
|
---|
1206 | {
|
---|
1207 | pCur -= 1;
|
---|
1208 | pCur->GCPhysFirstAndId = pCur[-1].GCPhysFirstAndId;
|
---|
1209 | pCur->GCPhysLast = pCur[-1].GCPhysLast;
|
---|
1210 | cToMove -= 1;
|
---|
1211 | } while (cToMove > 0);
|
---|
1212 | else
|
---|
1213 | {
|
---|
1214 | #if RTASM_HAVE_WRITE_U128 >= 2
|
---|
1215 | do
|
---|
1216 | {
|
---|
1217 | pCur -= 1;
|
---|
1218 | ASMAtomicWriteU128U(&pCur->u128Volatile, pCur[-1].u128Normal);
|
---|
1219 | cToMove -= 1;
|
---|
1220 | } while (cToMove > 0);
|
---|
1221 |
|
---|
1222 | #else
|
---|
1223 | uint64_t u64PrevLo = pCur[-1].u128Normal.s.Lo;
|
---|
1224 | uint64_t u64PrevHi = pCur[-1].u128Normal.s.Hi;
|
---|
1225 | do
|
---|
1226 | {
|
---|
1227 | pCur -= 1;
|
---|
1228 | uint64_t const u64CurLo = pCur[-1].u128Normal.s.Lo;
|
---|
1229 | uint64_t const u64CurHi = pCur[-1].u128Normal.s.Hi;
|
---|
1230 | uint128_t uOldIgn;
|
---|
1231 | AssertStmt(ASMAtomicCmpXchgU128v2(&pCur->u128Volatile.u, u64CurHi, u64CurLo, u64PrevHi, u64PrevLo, &uOldIgn),
|
---|
1232 | (pCur->u128Volatile.s.Lo = u64CurLo, pCur->u128Volatile.s.Hi = u64CurHi));
|
---|
1233 | u64PrevLo = u64CurLo;
|
---|
1234 | u64PrevHi = u64CurHi;
|
---|
1235 | cToMove -= 1;
|
---|
1236 | } while (cToMove > 0);
|
---|
1237 | #endif
|
---|
1238 | }
|
---|
1239 | }
|
---|
1240 | }
|
---|
1241 |
|
---|
1242 | /*
|
---|
1243 | * Write the new entry.
|
---|
1244 | */
|
---|
1245 | PGMRAMRANGELOOKUPENTRY *pInsert = &pVM->pgm.s.aRamRangeLookup[idxLookup];
|
---|
1246 | if (!fUseAtomic)
|
---|
1247 | {
|
---|
1248 | pInsert->GCPhysFirstAndId = idRamRange | GCPhys;
|
---|
1249 | pInsert->GCPhysLast = GCPhysLast;
|
---|
1250 | }
|
---|
1251 | else
|
---|
1252 | {
|
---|
1253 | PGMRAMRANGELOOKUPENTRY NewEntry;
|
---|
1254 | NewEntry.GCPhysFirstAndId = idRamRange | GCPhys;
|
---|
1255 | NewEntry.GCPhysLast = GCPhysLast;
|
---|
1256 | ASMAtomicWriteU128v2(&pInsert->u128Volatile.u, NewEntry.u128Normal.s.Hi, NewEntry.u128Normal.s.Lo);
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 | /*
|
---|
1260 | * Update the generation and count in one go, signaling the end of the updating.
|
---|
1261 | */
|
---|
1262 | PGM::PGMRAMRANGEGENANDLOOKUPCOUNT GenAndCount;
|
---|
1263 | GenAndCount.cLookupEntries = cLookupEntries + 1;
|
---|
1264 | GenAndCount.idGeneration = idGeneration + 1;
|
---|
1265 | ASMAtomicWriteU64(&pVM->pgm.s.RamRangeUnion.u64Combined, GenAndCount.u64Combined);
|
---|
1266 |
|
---|
1267 | if (pidxLookup)
|
---|
1268 | *pidxLookup = idxLookup + 1;
|
---|
1269 |
|
---|
1270 | #ifdef DEBUG_bird
|
---|
1271 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
1272 | #endif
|
---|
1273 | return VINF_SUCCESS;
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 |
|
---|
1277 | /**
|
---|
1278 | * Removes @a pRam from the lookup table.
|
---|
1279 | *
|
---|
1280 | * @returns VBox status code.
|
---|
1281 | * @param pVM The cross context VM structure.
|
---|
1282 | * @param pRam The RAM range to insert into the lookup table.
|
---|
1283 | * @param pidxLookup Optional lookup table hint. This is updated.
|
---|
1284 | * @note Caller must own PGM lock.
|
---|
1285 | */
|
---|
1286 | static int pgmR3PhysRamRangeRemoveLookup(PVM pVM, PPGMRAMRANGE pRam, uint32_t *pidxLookup)
|
---|
1287 | {
|
---|
1288 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1289 | AssertMsg(pRam->pszDesc, ("%RGp-%RGp\n", pRam->GCPhys, pRam->GCPhysLast));
|
---|
1290 |
|
---|
1291 | RTGCPHYS const GCPhys = pRam->GCPhys;
|
---|
1292 | RTGCPHYS const GCPhysLast = pRam->GCPhysLast;
|
---|
1293 | AssertLogRelMsgReturn( GCPhys != NIL_RTGCPHYS
|
---|
1294 | || GCPhysLast != NIL_RTGCPHYS,
|
---|
1295 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n", GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1296 | VERR_NOT_FOUND);
|
---|
1297 | AssertLogRelMsgReturn( GCPhys != NIL_RTGCPHYS
|
---|
1298 | && GCPhysLast == GCPhys + pRam->cb - 1U
|
---|
1299 | && (GCPhys & GUEST_PAGE_OFFSET_MASK) == 0
|
---|
1300 | && (GCPhysLast & GUEST_PAGE_OFFSET_MASK) == GUEST_PAGE_OFFSET_MASK
|
---|
1301 | && GCPhysLast > GCPhys,
|
---|
1302 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n", GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1303 | VERR_INTERNAL_ERROR_5);
|
---|
1304 | uint32_t const idRamRange = pRam->idRange;
|
---|
1305 | AssertReturn(pVM->pgm.s.apRamRanges[idRamRange] == pRam, VERR_INTERNAL_ERROR_4);
|
---|
1306 | LogFlowFunc(("GCPhys=%RGp LB %RGp GCPhysLast=%RGp id=%#x %s\n", GCPhys, pRam->cb, GCPhysLast, idRamRange, pRam->pszDesc));
|
---|
1307 |
|
---|
1308 | /*
|
---|
1309 | * Find the lookup table location.
|
---|
1310 | */
|
---|
1311 | uint32_t const cLookupEntries = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1312 | AssertLogRelMsgReturn( cLookupEntries > 0
|
---|
1313 | && cLookupEntries < RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup), /* id=0 is unused, so < is correct. */
|
---|
1314 | ("%#x\n", cLookupEntries), VERR_INTERNAL_ERROR_3);
|
---|
1315 |
|
---|
1316 | uint32_t idxLookup = pidxLookup ? *pidxLookup : UINT32_MAX;
|
---|
1317 | if ( idxLookup >= cLookupEntries
|
---|
1318 | || pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast != GCPhysLast
|
---|
1319 | || pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysFirstAndId != (GCPhys | idRamRange))
|
---|
1320 | {
|
---|
1321 | uint32_t iStart = 0;
|
---|
1322 | uint32_t iEnd = cLookupEntries;
|
---|
1323 | for (;;)
|
---|
1324 | {
|
---|
1325 | idxLookup = iStart + (iEnd - iStart) / 2;
|
---|
1326 | RTGCPHYS const GCPhysEntryFirst = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1327 | if (GCPhysLast < GCPhysEntryFirst)
|
---|
1328 | {
|
---|
1329 | AssertLogRelMsgReturn(idxLookup > iStart,
|
---|
1330 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n",
|
---|
1331 | GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1332 | VERR_NOT_FOUND);
|
---|
1333 | iEnd = idxLookup;
|
---|
1334 | }
|
---|
1335 | else
|
---|
1336 | {
|
---|
1337 | RTGCPHYS const GCPhysEntryLast = pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast;
|
---|
1338 | if (GCPhys > GCPhysEntryLast)
|
---|
1339 | {
|
---|
1340 | idxLookup += 1;
|
---|
1341 | AssertLogRelMsgReturn(idxLookup < iEnd,
|
---|
1342 | ("range: GCPhys=%RGp LB %RGp GCPhysLast=%RGp %s\n",
|
---|
1343 | GCPhys, pRam->cb, GCPhysLast, pRam->pszDesc),
|
---|
1344 | VERR_NOT_FOUND);
|
---|
1345 | iStart = idxLookup;
|
---|
1346 | }
|
---|
1347 | else
|
---|
1348 | {
|
---|
1349 | uint32_t const idEntry = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1350 | AssertLogRelMsgReturn( GCPhysEntryFirst == GCPhys
|
---|
1351 | && GCPhysEntryLast == GCPhysLast
|
---|
1352 | && idEntry == idRamRange,
|
---|
1353 | ("Found: %RGp..%RGp id=%#x; Wanted: GCPhys=%RGp LB %RGp GCPhysLast=%RGp id=%#x %s\n",
|
---|
1354 | GCPhysEntryFirst, GCPhysEntryLast, idEntry,
|
---|
1355 | GCPhys, pRam->cb, GCPhysLast, pRam->idRange, pRam->pszDesc),
|
---|
1356 | VERR_NOT_FOUND);
|
---|
1357 | break;
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 | }
|
---|
1361 | }
|
---|
1362 | /* else we've got a good hint. */
|
---|
1363 |
|
---|
1364 | /*
|
---|
1365 | * Do the actual job.
|
---|
1366 | *
|
---|
1367 | * The moving of existing table entries is done in a way that allows other
|
---|
1368 | * EMTs to perform concurrent lookups with the updating.
|
---|
1369 | */
|
---|
1370 | bool const fUseAtomic = pVM->enmVMState != VMSTATE_CREATING
|
---|
1371 | && pVM->cCpus > 1
|
---|
1372 | #ifdef RT_ARCH_AMD64
|
---|
1373 | && g_CpumHostFeatures.s.fCmpXchg16b
|
---|
1374 | #endif
|
---|
1375 | ;
|
---|
1376 |
|
---|
1377 | /* Signal that we're modifying the lookup table: */
|
---|
1378 | uint32_t const idGeneration = (pVM->pgm.s.RamRangeUnion.idGeneration + 1) | 1; /* paranoia^3 */
|
---|
1379 | ASMAtomicWriteU32(&pVM->pgm.s.RamRangeUnion.idGeneration, idGeneration);
|
---|
1380 |
|
---|
1381 | /* Do we need to shift any lookup table entries? (This is a lot simpler
|
---|
1382 | than insertion.) */
|
---|
1383 | if (idxLookup + 1U < cLookupEntries)
|
---|
1384 | {
|
---|
1385 | uint32_t cToMove = cLookupEntries - idxLookup - 1U;
|
---|
1386 | PGMRAMRANGELOOKUPENTRY *pCur = &pVM->pgm.s.aRamRangeLookup[idxLookup];
|
---|
1387 | if (!fUseAtomic)
|
---|
1388 | do
|
---|
1389 | {
|
---|
1390 | pCur->GCPhysFirstAndId = pCur[1].GCPhysFirstAndId;
|
---|
1391 | pCur->GCPhysLast = pCur[1].GCPhysLast;
|
---|
1392 | pCur += 1;
|
---|
1393 | cToMove -= 1;
|
---|
1394 | } while (cToMove > 0);
|
---|
1395 | else
|
---|
1396 | {
|
---|
1397 | #if RTASM_HAVE_WRITE_U128 >= 2
|
---|
1398 | do
|
---|
1399 | {
|
---|
1400 | ASMAtomicWriteU128U(&pCur->u128Volatile, pCur[1].u128Normal);
|
---|
1401 | pCur += 1;
|
---|
1402 | cToMove -= 1;
|
---|
1403 | } while (cToMove > 0);
|
---|
1404 |
|
---|
1405 | #else
|
---|
1406 | uint64_t u64PrevLo = pCur->u128Normal.s.Lo;
|
---|
1407 | uint64_t u64PrevHi = pCur->u128Normal.s.Hi;
|
---|
1408 | do
|
---|
1409 | {
|
---|
1410 | uint64_t const u64CurLo = pCur[1].u128Normal.s.Lo;
|
---|
1411 | uint64_t const u64CurHi = pCur[1].u128Normal.s.Hi;
|
---|
1412 | uint128_t uOldIgn;
|
---|
1413 | AssertStmt(ASMAtomicCmpXchgU128v2(&pCur->u128Volatile.u, u64CurHi, u64CurLo, u64PrevHi, u64PrevLo, &uOldIgn),
|
---|
1414 | (pCur->u128Volatile.s.Lo = u64CurLo, pCur->u128Volatile.s.Hi = u64CurHi));
|
---|
1415 | u64PrevLo = u64CurLo;
|
---|
1416 | u64PrevHi = u64CurHi;
|
---|
1417 | pCur += 1;
|
---|
1418 | cToMove -= 1;
|
---|
1419 | } while (cToMove > 0);
|
---|
1420 | #endif
|
---|
1421 | }
|
---|
1422 | }
|
---|
1423 |
|
---|
1424 | /* Update the RAM range entry to indicate that it is no longer mapped.
|
---|
1425 | The GCPhys member is accessed by the lockless TLB lookup code, so update
|
---|
1426 | it last and atomically to be on the safe side. */
|
---|
1427 | pRam->GCPhysLast = NIL_RTGCPHYS;
|
---|
1428 | ASMAtomicWriteU64(&pRam->GCPhys, NIL_RTGCPHYS);
|
---|
1429 |
|
---|
1430 | /*
|
---|
1431 | * Update the generation and count in one go, signaling the end of the updating.
|
---|
1432 | */
|
---|
1433 | PGM::PGMRAMRANGEGENANDLOOKUPCOUNT GenAndCount;
|
---|
1434 | GenAndCount.cLookupEntries = cLookupEntries - 1;
|
---|
1435 | GenAndCount.idGeneration = idGeneration + 1;
|
---|
1436 | ASMAtomicWriteU64(&pVM->pgm.s.RamRangeUnion.u64Combined, GenAndCount.u64Combined);
|
---|
1437 |
|
---|
1438 | if (pidxLookup)
|
---|
1439 | *pidxLookup = idxLookup + 1;
|
---|
1440 |
|
---|
1441 | return VINF_SUCCESS;
|
---|
1442 | }
|
---|
1443 |
|
---|
1444 |
|
---|
1445 | /**
|
---|
1446 | * Gets the number of ram ranges.
|
---|
1447 | *
|
---|
1448 | * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
|
---|
1449 | * @param pVM The cross context VM structure.
|
---|
1450 | */
|
---|
1451 | VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
|
---|
1452 | {
|
---|
1453 | VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
|
---|
1454 |
|
---|
1455 | PGM_LOCK_VOID(pVM);
|
---|
1456 | uint32_t const cRamRanges = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
1457 | PGM_UNLOCK(pVM);
|
---|
1458 | return cRamRanges;
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 |
|
---|
1462 | /**
|
---|
1463 | * Get information about a range.
|
---|
1464 | *
|
---|
1465 | * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
|
---|
1466 | * @param pVM The cross context VM structure.
|
---|
1467 | * @param iRange The ordinal of the range.
|
---|
1468 | * @param pGCPhysStart Where to return the start of the range. Optional.
|
---|
1469 | * @param pGCPhysLast Where to return the address of the last byte in the
|
---|
1470 | * range. Optional.
|
---|
1471 | * @param ppszDesc Where to return the range description. Optional.
|
---|
1472 | * @param pfIsMmio Where to indicate that this is a pure MMIO range.
|
---|
1473 | * Optional.
|
---|
1474 | */
|
---|
1475 | VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
|
---|
1476 | const char **ppszDesc, bool *pfIsMmio)
|
---|
1477 | {
|
---|
1478 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
1479 |
|
---|
1480 | PGM_LOCK_VOID(pVM);
|
---|
1481 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
1482 | if (iRange < cLookupEntries)
|
---|
1483 | {
|
---|
1484 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[iRange]);
|
---|
1485 | Assert(idRamRange && idRamRange <= pVM->pgm.s.idRamRangeMax);
|
---|
1486 | PGMRAMRANGE const * const pRamRange = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
1487 | AssertPtr(pRamRange);
|
---|
1488 |
|
---|
1489 | if (pGCPhysStart)
|
---|
1490 | *pGCPhysStart = pRamRange->GCPhys;
|
---|
1491 | if (pGCPhysLast)
|
---|
1492 | *pGCPhysLast = pRamRange->GCPhysLast;
|
---|
1493 | if (ppszDesc)
|
---|
1494 | *ppszDesc = pRamRange->pszDesc;
|
---|
1495 | if (pfIsMmio)
|
---|
1496 | *pfIsMmio = !!(pRamRange->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
|
---|
1497 |
|
---|
1498 | PGM_UNLOCK(pVM);
|
---|
1499 | return VINF_SUCCESS;
|
---|
1500 | }
|
---|
1501 | PGM_UNLOCK(pVM);
|
---|
1502 | return VERR_OUT_OF_RANGE;
|
---|
1503 | }
|
---|
1504 |
|
---|
1505 |
|
---|
1506 | /**
|
---|
1507 | * Gets RAM ranges that are supposed to be zero'ed at boot.
|
---|
1508 | *
|
---|
1509 | * This function gets all RAM ranges that are not ad hoc (ROM, MMIO, MMIO2) memory.
|
---|
1510 | * The RAM hole (if any) is -NOT- included because we don't return 0s when it is
|
---|
1511 | * read anyway.
|
---|
1512 | *
|
---|
1513 | * @returns VBox status code.
|
---|
1514 | * @param pVM The cross context VM structure.
|
---|
1515 | * @param pRanges Where to store the physical RAM ranges.
|
---|
1516 | * @param cMaxRanges The maximum ranges that can be stored.
|
---|
1517 | */
|
---|
1518 | VMMR3_INT_DECL(int) PGMR3PhysGetRamBootZeroedRanges(PVM pVM, PPGMPHYSRANGES pRanges, uint32_t cMaxRanges)
|
---|
1519 | {
|
---|
1520 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
1521 | AssertPtrReturn(pRanges, VERR_INVALID_PARAMETER);
|
---|
1522 | AssertReturn(cMaxRanges > 0, VERR_INVALID_PARAMETER);
|
---|
1523 |
|
---|
1524 | int rc = VINF_SUCCESS;
|
---|
1525 | uint32_t idxRange = 0;
|
---|
1526 | PGM_LOCK_VOID(pVM);
|
---|
1527 |
|
---|
1528 | /*
|
---|
1529 | * The primary purpose of this API is the GIM Hyper-V hypercall which recommends (not
|
---|
1530 | * requires) that the largest ranges are reported earlier. Therefore, here we iterate
|
---|
1531 | * the ranges in reverse because in PGM the largest range is generally at the end.
|
---|
1532 | */
|
---|
1533 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
1534 | for (int32_t idxLookup = cLookupEntries - 1; idxLookup >= 0; idxLookup--)
|
---|
1535 | {
|
---|
1536 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1537 | Assert(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
1538 | PPGMRAMRANGE const pCur = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
1539 | AssertContinue(pCur);
|
---|
1540 |
|
---|
1541 | if (!PGM_RAM_RANGE_IS_AD_HOC(pCur))
|
---|
1542 | {
|
---|
1543 | if (idxRange < cMaxRanges)
|
---|
1544 | {
|
---|
1545 | /* Combine with previous range if it is contiguous, otherwise add it as a new range. */
|
---|
1546 | if ( idxRange > 0
|
---|
1547 | && pRanges->aRanges[idxRange - 1].GCPhysStart == pCur->GCPhysLast + 1U)
|
---|
1548 | {
|
---|
1549 | pRanges->aRanges[idxRange - 1].GCPhysStart = pCur->GCPhys;
|
---|
1550 | pRanges->aRanges[idxRange - 1].cPages += (pCur->cb >> GUEST_PAGE_SHIFT);
|
---|
1551 | }
|
---|
1552 | else
|
---|
1553 | {
|
---|
1554 | pRanges->aRanges[idxRange].GCPhysStart = pCur->GCPhys;
|
---|
1555 | pRanges->aRanges[idxRange].cPages = pCur->cb >> GUEST_PAGE_SHIFT;
|
---|
1556 | ++idxRange;
|
---|
1557 | }
|
---|
1558 | }
|
---|
1559 | else
|
---|
1560 | {
|
---|
1561 | rc = VERR_BUFFER_OVERFLOW;
|
---|
1562 | break;
|
---|
1563 | }
|
---|
1564 | }
|
---|
1565 | }
|
---|
1566 | pRanges->cRanges = idxRange;
|
---|
1567 | PGM_UNLOCK(pVM);
|
---|
1568 | return rc;
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 |
|
---|
1572 | /*********************************************************************************************************************************
|
---|
1573 | * RAM *
|
---|
1574 | *********************************************************************************************************************************/
|
---|
1575 |
|
---|
1576 | /**
|
---|
1577 | * Frees the specified RAM page and replaces it with the ZERO page.
|
---|
1578 | *
|
---|
1579 | * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
|
---|
1580 | *
|
---|
1581 | * @param pVM The cross context VM structure.
|
---|
1582 | * @param pReq Pointer to the request. This is NULL when doing a
|
---|
1583 | * bulk free in NEM memory mode.
|
---|
1584 | * @param pcPendingPages Where the number of pages waiting to be freed are
|
---|
1585 | * kept. This will normally be incremented. This is
|
---|
1586 | * NULL when doing a bulk free in NEM memory mode.
|
---|
1587 | * @param pPage Pointer to the page structure.
|
---|
1588 | * @param GCPhys The guest physical address of the page, if applicable.
|
---|
1589 | * @param enmNewType New page type for NEM notification, since several
|
---|
1590 | * callers will change the type upon successful return.
|
---|
1591 | *
|
---|
1592 | * @remarks The caller must own the PGM lock.
|
---|
1593 | */
|
---|
1594 | int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
|
---|
1595 | PGMPAGETYPE enmNewType)
|
---|
1596 | {
|
---|
1597 | RT_NOREF(enmNewType, pcPendingPages);
|
---|
1598 |
|
---|
1599 | /*
|
---|
1600 | * Assert sanity.
|
---|
1601 | */
|
---|
1602 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1603 | if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
|
---|
1604 | && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
|
---|
1605 | {
|
---|
1606 | AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
|
---|
1607 | return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | /** @todo What about ballooning of large pages??! */
|
---|
1611 | Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
|
---|
1612 | && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
|
---|
1613 |
|
---|
1614 | if ( PGM_PAGE_IS_ZERO(pPage)
|
---|
1615 | || PGM_PAGE_IS_BALLOONED(pPage))
|
---|
1616 | return VINF_SUCCESS;
|
---|
1617 |
|
---|
1618 | const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
|
---|
1619 | Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
|
---|
1620 | if (RT_UNLIKELY(!PGM_IS_IN_NEM_MODE(pVM)
|
---|
1621 | ? idPage == NIL_GMM_PAGEID
|
---|
1622 | || idPage > GMM_PAGEID_LAST
|
---|
1623 | || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID
|
---|
1624 | : idPage != NIL_GMM_PAGEID))
|
---|
1625 | {
|
---|
1626 | AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
|
---|
1627 | return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
|
---|
1628 | }
|
---|
1629 | #if defined(VBOX_WITH_NATIVE_NEM) && !defined(VBOX_WITH_ONLY_PGM_NEM_MODE)
|
---|
1630 | const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
1631 | #endif
|
---|
1632 |
|
---|
1633 | /* update page count stats. */
|
---|
1634 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
1635 | pVM->pgm.s.cSharedPages--;
|
---|
1636 | else
|
---|
1637 | pVM->pgm.s.cPrivatePages--;
|
---|
1638 | pVM->pgm.s.cZeroPages++;
|
---|
1639 |
|
---|
1640 | /* Deal with write monitored pages. */
|
---|
1641 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
|
---|
1642 | {
|
---|
1643 | PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
|
---|
1644 | pVM->pgm.s.cWrittenToPages++;
|
---|
1645 | }
|
---|
1646 | PGM_PAGE_CLEAR_CODE_PAGE(pVM, pPage); /* No callback needed, IEMTlbInvalidateAllPhysicalAllCpus is called below. */
|
---|
1647 |
|
---|
1648 | /*
|
---|
1649 | * pPage = ZERO page.
|
---|
1650 | */
|
---|
1651 | PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
|
---|
1652 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
1653 | PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
|
---|
1654 | PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
1655 | PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
|
---|
1656 | PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
|
---|
1657 |
|
---|
1658 | /* Flush physical page map TLB entry. */
|
---|
1659 | pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
|
---|
1660 | IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_FREED); /// @todo move to the perform step.
|
---|
1661 |
|
---|
1662 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
1663 | # ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
1664 | /*
|
---|
1665 | * Skip the rest if we're doing a bulk free in NEM memory mode.
|
---|
1666 | */
|
---|
1667 | if (!pReq)
|
---|
1668 | return VINF_SUCCESS;
|
---|
1669 | AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
|
---|
1670 | # endif
|
---|
1671 |
|
---|
1672 | # ifdef VBOX_WITH_NATIVE_NEM
|
---|
1673 | /* Notify NEM. */
|
---|
1674 | /** @todo Remove this one? */
|
---|
1675 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1676 | {
|
---|
1677 | uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
|
---|
1678 | NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.abZeroPg,
|
---|
1679 | pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
|
---|
1680 | PGM_PAGE_SET_NEM_STATE(pPage, u2State);
|
---|
1681 | }
|
---|
1682 | # endif
|
---|
1683 |
|
---|
1684 | /*
|
---|
1685 | * Make sure it's not in the handy page array.
|
---|
1686 | */
|
---|
1687 | for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
|
---|
1688 | {
|
---|
1689 | if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
|
---|
1690 | {
|
---|
1691 | pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
|
---|
1692 | pVM->pgm.s.aHandyPages[i].fZeroed = false;
|
---|
1693 | pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
|
---|
1694 | break;
|
---|
1695 | }
|
---|
1696 | if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
|
---|
1697 | {
|
---|
1698 | pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
|
---|
1699 | break;
|
---|
1700 | }
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 | /*
|
---|
1704 | * Push it onto the page array.
|
---|
1705 | */
|
---|
1706 | uint32_t iPage = *pcPendingPages;
|
---|
1707 | Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
|
---|
1708 | *pcPendingPages += 1;
|
---|
1709 |
|
---|
1710 | pReq->aPages[iPage].idPage = idPage;
|
---|
1711 |
|
---|
1712 | if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
|
---|
1713 | return VINF_SUCCESS;
|
---|
1714 |
|
---|
1715 | /*
|
---|
1716 | * Flush the pages.
|
---|
1717 | */
|
---|
1718 | int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
|
---|
1719 | if (RT_SUCCESS(rc))
|
---|
1720 | {
|
---|
1721 | GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
1722 | *pcPendingPages = 0;
|
---|
1723 | }
|
---|
1724 | return rc;
|
---|
1725 |
|
---|
1726 | #else /* VBOX_WITH_ONLY_PGM_NEM_MODE */
|
---|
1727 | Assert(!pReq); RT_NOREF(pReq);
|
---|
1728 | return VINF_SUCCESS;
|
---|
1729 | #endif /* VBOX_WITH_ONLY_PGM_NEM_MODE */
|
---|
1730 | }
|
---|
1731 |
|
---|
1732 |
|
---|
1733 | /**
|
---|
1734 | * Frees a range of pages, replacing them with MMIO ZERO pages.
|
---|
1735 | *
|
---|
1736 | * @returns VBox status code.
|
---|
1737 | * @param pVM The cross context VM structure.
|
---|
1738 | * @param pRam The RAM range in which the pages resides.
|
---|
1739 | * @param GCPhys The address of the first page.
|
---|
1740 | * @param GCPhysLast The address of the last page.
|
---|
1741 | * @param pvMmio2 Pointer to the ring-3 mapping of any MMIO2 memory that
|
---|
1742 | * will replace the pages we're freeing up.
|
---|
1743 | */
|
---|
1744 | static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, void *pvMmio2)
|
---|
1745 | {
|
---|
1746 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1747 | /** @todo pvMmio2 is always NULL. */
|
---|
1748 |
|
---|
1749 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
1750 | /*
|
---|
1751 | * In simplified memory mode we don't actually free the memory,
|
---|
1752 | * we just unmap it and let NEM do any unlocking of it.
|
---|
1753 | */
|
---|
1754 | # ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
1755 | if (pVM->pgm.s.fNemMode)
|
---|
1756 | # endif
|
---|
1757 | {
|
---|
1758 | Assert(VM_IS_NEM_ENABLED(pVM) || VM_IS_EXEC_ENGINE_IEM(pVM));
|
---|
1759 | uint8_t u2State = 0; /* (We don't support UINT8_MAX here.) */
|
---|
1760 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1761 | {
|
---|
1762 | uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
|
---|
1763 | int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
|
---|
1764 | pRam->pbR3 ? pRam->pbR3 + GCPhys - pRam->GCPhys : NULL,
|
---|
1765 | pvMmio2, &u2State, NULL /*puNemRange*/);
|
---|
1766 | AssertLogRelRCReturn(rc, rc);
|
---|
1767 | }
|
---|
1768 |
|
---|
1769 | /* Iterate the pages. */
|
---|
1770 | PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
1771 | uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> GUEST_PAGE_SHIFT) + 1;
|
---|
1772 | while (cPagesLeft-- > 0)
|
---|
1773 | {
|
---|
1774 | int rc = pgmPhysFreePage(pVM, NULL, NULL, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
|
---|
1775 | AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
|
---|
1776 |
|
---|
1777 | PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
|
---|
1778 | PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
|
---|
1779 |
|
---|
1780 | GCPhys += GUEST_PAGE_SIZE;
|
---|
1781 | pPageDst++;
|
---|
1782 | }
|
---|
1783 | return VINF_SUCCESS;
|
---|
1784 | }
|
---|
1785 | #else /* !VBOX_WITH_PGM_NEM_MODE */
|
---|
1786 | RT_NOREF(pvMmio2);
|
---|
1787 | #endif /* !VBOX_WITH_PGM_NEM_MODE */
|
---|
1788 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
1789 |
|
---|
1790 | /*
|
---|
1791 | * Regular mode.
|
---|
1792 | */
|
---|
1793 | /* Prepare. */
|
---|
1794 | uint32_t cPendingPages = 0;
|
---|
1795 | PGMMFREEPAGESREQ pReq;
|
---|
1796 | int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
1797 | AssertLogRelRCReturn(rc, rc);
|
---|
1798 |
|
---|
1799 | # ifdef VBOX_WITH_NATIVE_NEM
|
---|
1800 | /* Tell NEM up-front. */
|
---|
1801 | uint8_t u2State = UINT8_MAX;
|
---|
1802 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1803 | {
|
---|
1804 | uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
|
---|
1805 | rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, NULL, pvMmio2,
|
---|
1806 | &u2State, NULL /*puNemRange*/);
|
---|
1807 | AssertLogRelRCReturnStmt(rc, GMMR3FreePagesCleanup(pReq), rc);
|
---|
1808 | }
|
---|
1809 | # endif
|
---|
1810 |
|
---|
1811 | /* Iterate the pages. */
|
---|
1812 | PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
1813 | uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> GUEST_PAGE_SHIFT) + 1;
|
---|
1814 | while (cPagesLeft-- > 0)
|
---|
1815 | {
|
---|
1816 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
|
---|
1817 | AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
|
---|
1818 |
|
---|
1819 | PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
|
---|
1820 | # ifdef VBOX_WITH_NATIVE_NEM
|
---|
1821 | if (u2State != UINT8_MAX)
|
---|
1822 | PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
|
---|
1823 | # endif
|
---|
1824 |
|
---|
1825 | GCPhys += GUEST_PAGE_SIZE;
|
---|
1826 | pPageDst++;
|
---|
1827 | }
|
---|
1828 |
|
---|
1829 | /* Finish pending and cleanup. */
|
---|
1830 | if (cPendingPages)
|
---|
1831 | {
|
---|
1832 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
1833 | AssertLogRelRCReturn(rc, rc);
|
---|
1834 | }
|
---|
1835 | GMMR3FreePagesCleanup(pReq);
|
---|
1836 |
|
---|
1837 | return rc;
|
---|
1838 | #endif /* !VBOX_WITH_ONLY_PGM_NEM_MODE */
|
---|
1839 | }
|
---|
1840 |
|
---|
1841 |
|
---|
1842 | /**
|
---|
1843 | * Wrapper around VMMR0_DO_PGM_PHYS_ALLOCATE_RAM_RANGE.
|
---|
1844 | */
|
---|
1845 | static int pgmR3PhysAllocateRamRange(PVM pVM, PVMCPU pVCpu, uint32_t cGuestPages, uint32_t fFlags, PPGMRAMRANGE *ppRamRange)
|
---|
1846 | {
|
---|
1847 | int rc;
|
---|
1848 | PGMPHYSALLOCATERAMRANGEREQ AllocRangeReq;
|
---|
1849 | AllocRangeReq.idNewRange = UINT32_MAX / 4;
|
---|
1850 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
1851 | if (!SUPR3IsDriverless())
|
---|
1852 | {
|
---|
1853 | AllocRangeReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
1854 | AllocRangeReq.Hdr.cbReq = sizeof(AllocRangeReq);
|
---|
1855 | AllocRangeReq.cbGuestPage = GUEST_PAGE_SIZE;
|
---|
1856 | AllocRangeReq.cGuestPages = cGuestPages;
|
---|
1857 | AllocRangeReq.fFlags = fFlags;
|
---|
1858 | rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_ALLOCATE_RAM_RANGE, 0 /*u64Arg*/, &AllocRangeReq.Hdr);
|
---|
1859 | }
|
---|
1860 | else
|
---|
1861 | #endif
|
---|
1862 | rc = pgmPhysRamRangeAllocCommon(pVM, cGuestPages, fFlags, &AllocRangeReq.idNewRange);
|
---|
1863 | if (RT_SUCCESS(rc))
|
---|
1864 | {
|
---|
1865 | Assert(AllocRangeReq.idNewRange != 0);
|
---|
1866 | Assert(AllocRangeReq.idNewRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
1867 | AssertPtr(pVM->pgm.s.apRamRanges[AllocRangeReq.idNewRange]);
|
---|
1868 | *ppRamRange = pVM->pgm.s.apRamRanges[AllocRangeReq.idNewRange];
|
---|
1869 | return VINF_SUCCESS;
|
---|
1870 | }
|
---|
1871 |
|
---|
1872 | RT_NOREF(pVCpu);
|
---|
1873 | *ppRamRange = NULL;
|
---|
1874 | return rc;
|
---|
1875 | }
|
---|
1876 |
|
---|
1877 |
|
---|
1878 | /**
|
---|
1879 | * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
|
---|
1880 | *
|
---|
1881 | * In NEM mode, this will allocate the pages backing the RAM range and this may
|
---|
1882 | * fail. NEM registration may also fail. (In regular HM mode it won't fail.)
|
---|
1883 | *
|
---|
1884 | * @returns VBox status code.
|
---|
1885 | * @param pVM The cross context VM structure.
|
---|
1886 | * @param pNew The new RAM range.
|
---|
1887 | * @param GCPhys The address of the RAM range.
|
---|
1888 | * @param GCPhysLast The last address of the RAM range.
|
---|
1889 | * @param pszDesc The description.
|
---|
1890 | * @param pidxLookup The lookup table insertion point.
|
---|
1891 | */
|
---|
1892 | static int pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
|
---|
1893 | const char *pszDesc, uint32_t *pidxLookup)
|
---|
1894 | {
|
---|
1895 | /*
|
---|
1896 | * Initialize the range.
|
---|
1897 | */
|
---|
1898 | Assert(pNew->cb == GCPhysLast - GCPhys + 1U); RT_NOREF(GCPhysLast);
|
---|
1899 | pNew->pszDesc = pszDesc;
|
---|
1900 | pNew->uNemRange = UINT32_MAX;
|
---|
1901 | pNew->pbR3 = NULL;
|
---|
1902 | pNew->paLSPages = NULL;
|
---|
1903 |
|
---|
1904 | uint32_t const cPages = pNew->cb >> GUEST_PAGE_SHIFT;
|
---|
1905 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
1906 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
1907 | {
|
---|
1908 | int rc = SUPR3PageAlloc(RT_ALIGN_Z(pNew->cb, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT,
|
---|
1909 | pVM->pgm.s.fUseLargePages ? SUP_PAGE_ALLOC_F_LARGE_PAGES : 0, (void **)&pNew->pbR3);
|
---|
1910 | if (RT_FAILURE(rc))
|
---|
1911 | return rc;
|
---|
1912 |
|
---|
1913 | RTGCPHYS iPage = cPages;
|
---|
1914 | while (iPage-- > 0)
|
---|
1915 | PGM_PAGE_INIT(&pNew->aPages[iPage], UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
|
---|
1916 | PGMPAGETYPE_RAM, PGM_PAGE_STATE_ALLOCATED);
|
---|
1917 |
|
---|
1918 | /* Update the page count stats. */
|
---|
1919 | pVM->pgm.s.cPrivatePages += cPages;
|
---|
1920 | pVM->pgm.s.cAllPages += cPages;
|
---|
1921 | }
|
---|
1922 | else
|
---|
1923 | #endif
|
---|
1924 | {
|
---|
1925 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
1926 | RTGCPHYS iPage = cPages;
|
---|
1927 | while (iPage-- > 0)
|
---|
1928 | PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
|
---|
1929 |
|
---|
1930 | /* Update the page count stats. */
|
---|
1931 | pVM->pgm.s.cZeroPages += cPages;
|
---|
1932 | pVM->pgm.s.cAllPages += cPages;
|
---|
1933 | #endif
|
---|
1934 | }
|
---|
1935 |
|
---|
1936 | /*
|
---|
1937 | * Insert it into the lookup table.
|
---|
1938 | */
|
---|
1939 | int rc = pgmR3PhysRamRangeInsertLookup(pVM, pNew, GCPhys, pidxLookup);
|
---|
1940 | AssertRCReturn(rc, rc);
|
---|
1941 |
|
---|
1942 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
1943 | /*
|
---|
1944 | * Notify NEM now that it has been linked.
|
---|
1945 | *
|
---|
1946 | * As above, it is assumed that on failure the VM creation will fail, so
|
---|
1947 | * no extra cleanup is needed here.
|
---|
1948 | */
|
---|
1949 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
1950 | {
|
---|
1951 | uint8_t u2State = UINT8_MAX;
|
---|
1952 | rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, pNew->cb, pNew->pbR3, &u2State, &pNew->uNemRange);
|
---|
1953 | if (RT_SUCCESS(rc) && u2State != UINT8_MAX)
|
---|
1954 | pgmPhysSetNemStateForPages(&pNew->aPages[0], cPages, u2State);
|
---|
1955 | return rc;
|
---|
1956 | }
|
---|
1957 | #endif
|
---|
1958 | return VINF_SUCCESS;
|
---|
1959 | }
|
---|
1960 |
|
---|
1961 |
|
---|
1962 | /**
|
---|
1963 | * Worker for PGMR3PhysRegisterRam called with the PGM lock.
|
---|
1964 | *
|
---|
1965 | * The caller releases the lock.
|
---|
1966 | */
|
---|
1967 | static int pgmR3PhysRegisterRamWorker(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc,
|
---|
1968 | uint32_t const cRamRanges, RTGCPHYS const GCPhysLast)
|
---|
1969 | {
|
---|
1970 | #ifdef VBOX_STRICT
|
---|
1971 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
1972 | #endif
|
---|
1973 |
|
---|
1974 | /*
|
---|
1975 | * Check that we've got enough free RAM ranges.
|
---|
1976 | */
|
---|
1977 | AssertLogRelMsgReturn((uint64_t)pVM->pgm.s.idRamRangeMax + cRamRanges + 1 <= RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup),
|
---|
1978 | ("idRamRangeMax=%#RX32 vs GCPhys=%RGp cb=%RGp / %#RX32 ranges (%s)\n",
|
---|
1979 | pVM->pgm.s.idRamRangeMax, GCPhys, cb, cRamRanges, pszDesc),
|
---|
1980 | VERR_PGM_TOO_MANY_RAM_RANGES);
|
---|
1981 |
|
---|
1982 | /*
|
---|
1983 | * Check for conflicts via the lookup table. We search it backwards,
|
---|
1984 | * assuming that memory is added in ascending order by address.
|
---|
1985 | */
|
---|
1986 | uint32_t idxLookup = pVM->pgm.s.RamRangeUnion.cLookupEntries;
|
---|
1987 | while (idxLookup)
|
---|
1988 | {
|
---|
1989 | if (GCPhys > pVM->pgm.s.aRamRangeLookup[idxLookup - 1].GCPhysLast)
|
---|
1990 | break;
|
---|
1991 | idxLookup--;
|
---|
1992 | RTGCPHYS const GCPhysCur = PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
1993 | AssertLogRelMsgReturn( GCPhysLast < GCPhysCur
|
---|
1994 | || GCPhys > pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast,
|
---|
1995 | ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
|
---|
1996 | GCPhys, GCPhysLast, pszDesc, GCPhysCur, pVM->pgm.s.aRamRangeLookup[idxLookup].GCPhysLast,
|
---|
1997 | pVM->pgm.s.apRamRanges[PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup])]->pszDesc),
|
---|
1998 | VERR_PGM_RAM_CONFLICT);
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 | /*
|
---|
2002 | * Register it with GMM (the API bitches).
|
---|
2003 | */
|
---|
2004 | const RTGCPHYS cPages = cb >> GUEST_PAGE_SHIFT;
|
---|
2005 | int rc = MMR3IncreaseBaseReservation(pVM, cPages);
|
---|
2006 | if (RT_FAILURE(rc))
|
---|
2007 | return rc;
|
---|
2008 |
|
---|
2009 | /*
|
---|
2010 | * Create the required chunks.
|
---|
2011 | */
|
---|
2012 | RTGCPHYS cPagesLeft = cPages;
|
---|
2013 | RTGCPHYS GCPhysChunk = GCPhys;
|
---|
2014 | uint32_t idxChunk = 0;
|
---|
2015 | while (cPagesLeft > 0)
|
---|
2016 | {
|
---|
2017 | uint32_t cPagesInChunk = cPagesLeft;
|
---|
2018 | if (cPagesInChunk > PGM_MAX_PAGES_PER_RAM_RANGE)
|
---|
2019 | cPagesInChunk = PGM_MAX_PAGES_PER_RAM_RANGE;
|
---|
2020 |
|
---|
2021 | const char *pszDescChunk = idxChunk == 0
|
---|
2022 | ? pszDesc
|
---|
2023 | : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, idxChunk + 1);
|
---|
2024 | AssertReturn(pszDescChunk, VERR_NO_MEMORY);
|
---|
2025 |
|
---|
2026 | /*
|
---|
2027 | * Allocate a RAM range.
|
---|
2028 | */
|
---|
2029 | PPGMRAMRANGE pNew = NULL;
|
---|
2030 | rc = pgmR3PhysAllocateRamRange(pVM, pVCpu, cPagesInChunk, 0 /*fFlags*/, &pNew);
|
---|
2031 | AssertLogRelMsgReturn(RT_SUCCESS(rc),
|
---|
2032 | ("pgmR3PhysAllocateRamRange failed: GCPhysChunk=%RGp cPagesInChunk=%#RX32 (%s): %Rrc\n",
|
---|
2033 | GCPhysChunk, cPagesInChunk, pszDescChunk, rc),
|
---|
2034 | rc);
|
---|
2035 |
|
---|
2036 | /*
|
---|
2037 | * Ok, init and link the range.
|
---|
2038 | */
|
---|
2039 | rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhysChunk,
|
---|
2040 | GCPhysChunk + ((RTGCPHYS)cPagesInChunk << GUEST_PAGE_SHIFT) - 1U,
|
---|
2041 | pszDescChunk, &idxLookup);
|
---|
2042 | AssertLogRelMsgReturn(RT_SUCCESS(rc),
|
---|
2043 | ("pgmR3PhysInitAndLinkRamRange failed: GCPhysChunk=%RGp cPagesInChunk=%#RX32 (%s): %Rrc\n",
|
---|
2044 | GCPhysChunk, cPagesInChunk, pszDescChunk, rc),
|
---|
2045 | rc);
|
---|
2046 |
|
---|
2047 | /* advance */
|
---|
2048 | GCPhysChunk += (RTGCPHYS)cPagesInChunk << GUEST_PAGE_SHIFT;
|
---|
2049 | cPagesLeft -= cPagesInChunk;
|
---|
2050 | idxChunk++;
|
---|
2051 | }
|
---|
2052 |
|
---|
2053 | return rc;
|
---|
2054 | }
|
---|
2055 |
|
---|
2056 |
|
---|
2057 | /**
|
---|
2058 | * Sets up a range RAM.
|
---|
2059 | *
|
---|
2060 | * This will check for conflicting registrations, make a resource reservation
|
---|
2061 | * for the memory (with GMM), and setup the per-page tracking structures
|
---|
2062 | * (PGMPAGE).
|
---|
2063 | *
|
---|
2064 | * @returns VBox status code.
|
---|
2065 | * @param pVM The cross context VM structure.
|
---|
2066 | * @param GCPhys The physical address of the RAM.
|
---|
2067 | * @param cb The size of the RAM.
|
---|
2068 | * @param pszDesc The description - not copied, so, don't free or change it.
|
---|
2069 | */
|
---|
2070 | VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
|
---|
2071 | {
|
---|
2072 | /*
|
---|
2073 | * Validate input.
|
---|
2074 | */
|
---|
2075 | Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
|
---|
2076 | AssertReturn(RT_ALIGN_T(GCPhys, GUEST_PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
|
---|
2077 | AssertReturn(RT_ALIGN_T(cb, GUEST_PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
|
---|
2078 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
2079 | RTGCPHYS const GCPhysLast = GCPhys + (cb - 1);
|
---|
2080 | AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
|
---|
2081 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
2082 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
2083 | AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
|
---|
2084 | AssertReturn(pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
2085 |
|
---|
2086 | /*
|
---|
2087 | * Calculate the number of RAM ranges required.
|
---|
2088 | * See also pgmPhysMmio2CalcChunkCount.
|
---|
2089 | */
|
---|
2090 | uint32_t const cPagesPerChunk = PGM_MAX_PAGES_PER_RAM_RANGE;
|
---|
2091 | uint32_t const cRamRanges = (uint32_t)(((cb >> GUEST_PAGE_SHIFT) + cPagesPerChunk - 1) / cPagesPerChunk);
|
---|
2092 | AssertLogRelMsgReturn(cRamRanges * (RTGCPHYS)cPagesPerChunk * GUEST_PAGE_SIZE >= cb,
|
---|
2093 | ("cb=%RGp cRamRanges=%#RX32 cPagesPerChunk=%#RX32\n", cb, cRamRanges, cPagesPerChunk),
|
---|
2094 | VERR_OUT_OF_RANGE);
|
---|
2095 |
|
---|
2096 | PGM_LOCK_VOID(pVM);
|
---|
2097 |
|
---|
2098 | int rc = pgmR3PhysRegisterRamWorker(pVM, pVCpu, GCPhys, cb, pszDesc, cRamRanges, GCPhysLast);
|
---|
2099 | #ifdef VBOX_STRICT
|
---|
2100 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
2101 | #endif
|
---|
2102 |
|
---|
2103 | PGM_UNLOCK(pVM);
|
---|
2104 | return rc;
|
---|
2105 | }
|
---|
2106 |
|
---|
2107 |
|
---|
2108 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
2109 | /**
|
---|
2110 | * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
|
---|
2111 | *
|
---|
2112 | * We do this late in the init process so that all the ROM and MMIO ranges have
|
---|
2113 | * been registered already and we don't go wasting memory on them.
|
---|
2114 | *
|
---|
2115 | * @returns VBox status code.
|
---|
2116 | *
|
---|
2117 | * @param pVM The cross context VM structure.
|
---|
2118 | */
|
---|
2119 | int pgmR3PhysRamPreAllocate(PVM pVM)
|
---|
2120 | {
|
---|
2121 | Assert(pVM->pgm.s.fRamPreAlloc);
|
---|
2122 | Log(("pgmR3PhysRamPreAllocate: enter\n"));
|
---|
2123 | # ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
2124 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
2125 | {
|
---|
2126 | LogRel(("PGM: Pre-alloc ignored in NEM mode.\n"));
|
---|
2127 | return VINF_SUCCESS;
|
---|
2128 | }
|
---|
2129 | # endif
|
---|
2130 |
|
---|
2131 | /*
|
---|
2132 | * Walk the RAM ranges and allocate all RAM pages, halt at
|
---|
2133 | * the first allocation error.
|
---|
2134 | */
|
---|
2135 | uint64_t cPages = 0;
|
---|
2136 | uint64_t NanoTS = RTTimeNanoTS();
|
---|
2137 | PGM_LOCK_VOID(pVM);
|
---|
2138 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
2139 | for (uint32_t idxLookup = 0; idxLookup < cLookupEntries; idxLookup++)
|
---|
2140 | {
|
---|
2141 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
2142 | AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
2143 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2144 | AssertContinue(pRam);
|
---|
2145 |
|
---|
2146 | PPGMPAGE pPage = &pRam->aPages[0];
|
---|
2147 | RTGCPHYS GCPhys = pRam->GCPhys;
|
---|
2148 | uint32_t cLeft = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2149 | while (cLeft-- > 0)
|
---|
2150 | {
|
---|
2151 | if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
|
---|
2152 | {
|
---|
2153 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
2154 | {
|
---|
2155 | case PGM_PAGE_STATE_ZERO:
|
---|
2156 | {
|
---|
2157 | int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
|
---|
2158 | if (RT_FAILURE(rc))
|
---|
2159 | {
|
---|
2160 | LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
|
---|
2161 | PGM_UNLOCK(pVM);
|
---|
2162 | return rc;
|
---|
2163 | }
|
---|
2164 | cPages++;
|
---|
2165 | break;
|
---|
2166 | }
|
---|
2167 |
|
---|
2168 | case PGM_PAGE_STATE_BALLOONED:
|
---|
2169 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
2170 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
2171 | case PGM_PAGE_STATE_SHARED:
|
---|
2172 | /* nothing to do here. */
|
---|
2173 | break;
|
---|
2174 | }
|
---|
2175 | }
|
---|
2176 |
|
---|
2177 | /* next */
|
---|
2178 | pPage++;
|
---|
2179 | GCPhys += GUEST_PAGE_SIZE;
|
---|
2180 | }
|
---|
2181 | }
|
---|
2182 | PGM_UNLOCK(pVM);
|
---|
2183 | NanoTS = RTTimeNanoTS() - NanoTS;
|
---|
2184 |
|
---|
2185 | LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
|
---|
2186 | Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
|
---|
2187 | return VINF_SUCCESS;
|
---|
2188 | }
|
---|
2189 | #endif /* !VBOX_WITH_ONLY_PGM_NEM_MODE */
|
---|
2190 |
|
---|
2191 |
|
---|
2192 | /**
|
---|
2193 | * Checks shared page checksums.
|
---|
2194 | *
|
---|
2195 | * @param pVM The cross context VM structure.
|
---|
2196 | */
|
---|
2197 | void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
|
---|
2198 | {
|
---|
2199 | #ifdef VBOX_STRICT
|
---|
2200 | PGM_LOCK_VOID(pVM);
|
---|
2201 |
|
---|
2202 | if (pVM->pgm.s.cSharedPages > 0)
|
---|
2203 | {
|
---|
2204 | /*
|
---|
2205 | * Walk the ram ranges.
|
---|
2206 | */
|
---|
2207 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
2208 | for (uint32_t idxLookup = 0; idxLookup < cLookupEntries; idxLookup++)
|
---|
2209 | {
|
---|
2210 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
2211 | AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
2212 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2213 | AssertContinue(pRam);
|
---|
2214 |
|
---|
2215 | uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2216 | AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb,
|
---|
2217 | ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb));
|
---|
2218 |
|
---|
2219 | while (iPage-- > 0)
|
---|
2220 | {
|
---|
2221 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2222 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
2223 | {
|
---|
2224 | uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
|
---|
2225 | if (!u32Checksum)
|
---|
2226 | {
|
---|
2227 | RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
|
---|
2228 | void const *pvPage;
|
---|
2229 | int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
|
---|
2230 | if (RT_SUCCESS(rc))
|
---|
2231 | {
|
---|
2232 | uint32_t u32Checksum2 = RTCrc32(pvPage, GUEST_PAGE_SIZE);
|
---|
2233 | # if 0
|
---|
2234 | AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
|
---|
2235 | # else
|
---|
2236 | if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
|
---|
2237 | LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
|
---|
2238 | else
|
---|
2239 | AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
|
---|
2240 | # endif
|
---|
2241 | }
|
---|
2242 | else
|
---|
2243 | AssertRC(rc);
|
---|
2244 | }
|
---|
2245 | }
|
---|
2246 |
|
---|
2247 | } /* for each page */
|
---|
2248 |
|
---|
2249 | } /* for each ram range */
|
---|
2250 | }
|
---|
2251 |
|
---|
2252 | PGM_UNLOCK(pVM);
|
---|
2253 | #endif /* VBOX_STRICT */
|
---|
2254 | NOREF(pVM);
|
---|
2255 | }
|
---|
2256 |
|
---|
2257 |
|
---|
2258 | /**
|
---|
2259 | * Resets the physical memory state.
|
---|
2260 | *
|
---|
2261 | * ASSUMES that the caller owns the PGM lock.
|
---|
2262 | *
|
---|
2263 | * @returns VBox status code.
|
---|
2264 | * @param pVM The cross context VM structure.
|
---|
2265 | */
|
---|
2266 | int pgmR3PhysRamReset(PVM pVM)
|
---|
2267 | {
|
---|
2268 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2269 |
|
---|
2270 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
2271 | /* Reset the memory balloon. */
|
---|
2272 | int rc1 = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
|
---|
2273 | AssertRC(rc1);
|
---|
2274 | #endif
|
---|
2275 |
|
---|
2276 | #ifdef VBOX_WITH_PAGE_SHARING
|
---|
2277 | /* Clear all registered shared modules. */
|
---|
2278 | pgmR3PhysAssertSharedPageChecksums(pVM);
|
---|
2279 | int rc2 = GMMR3ResetSharedModules(pVM);
|
---|
2280 | AssertRC(rc2);
|
---|
2281 | #endif
|
---|
2282 | /* Reset counters. */
|
---|
2283 | pVM->pgm.s.cReusedSharedPages = 0;
|
---|
2284 | pVM->pgm.s.cBalloonedPages = 0;
|
---|
2285 |
|
---|
2286 | return VINF_SUCCESS;
|
---|
2287 | }
|
---|
2288 |
|
---|
2289 |
|
---|
2290 | /**
|
---|
2291 | * Resets (zeros) the RAM after all devices and components have been reset.
|
---|
2292 | *
|
---|
2293 | * ASSUMES that the caller owns the PGM lock.
|
---|
2294 | *
|
---|
2295 | * @returns VBox status code.
|
---|
2296 | * @param pVM The cross context VM structure.
|
---|
2297 | */
|
---|
2298 | int pgmR3PhysRamZeroAll(PVM pVM)
|
---|
2299 | {
|
---|
2300 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2301 |
|
---|
2302 | /*
|
---|
2303 | * We batch up pages that should be freed instead of calling GMM for
|
---|
2304 | * each and every one of them.
|
---|
2305 | */
|
---|
2306 | uint32_t cPendingPages = 0;
|
---|
2307 | PGMMFREEPAGESREQ pReq;
|
---|
2308 | int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
2309 | AssertLogRelRCReturn(rc, rc);
|
---|
2310 |
|
---|
2311 | /*
|
---|
2312 | * Walk the ram ranges.
|
---|
2313 | */
|
---|
2314 | uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U);
|
---|
2315 | for (uint32_t idRamRange = 0; idRamRange <= idRamRangeMax; idRamRange++)
|
---|
2316 | {
|
---|
2317 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2318 | Assert(pRam || idRamRange == 0);
|
---|
2319 | if (!pRam) continue;
|
---|
2320 | Assert(pRam->idRange == idRamRange);
|
---|
2321 |
|
---|
2322 | uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2323 | AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb));
|
---|
2324 |
|
---|
2325 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
2326 | if ( !pVM->pgm.s.fRamPreAlloc
|
---|
2327 | # ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
2328 | && !pVM->pgm.s.fNemMode
|
---|
2329 | # endif
|
---|
2330 | && pVM->pgm.s.fZeroRamPagesOnReset)
|
---|
2331 | {
|
---|
2332 | /* Replace all RAM pages by ZERO pages. */
|
---|
2333 | while (iPage-- > 0)
|
---|
2334 | {
|
---|
2335 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2336 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2337 | {
|
---|
2338 | case PGMPAGETYPE_RAM:
|
---|
2339 | /* Do not replace pages part of a 2 MB continuous range
|
---|
2340 | with zero pages, but zero them instead. */
|
---|
2341 | if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
|
---|
2342 | || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
|
---|
2343 | {
|
---|
2344 | void *pvPage;
|
---|
2345 | rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pvPage);
|
---|
2346 | AssertLogRelRCReturn(rc, rc);
|
---|
2347 | RT_BZERO(pvPage, GUEST_PAGE_SIZE);
|
---|
2348 | }
|
---|
2349 | else if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
2350 | {
|
---|
2351 | /* Turn into a zero page; the balloon status is lost when the VM reboots. */
|
---|
2352 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
2353 | }
|
---|
2354 | else if (!PGM_PAGE_IS_ZERO(pPage))
|
---|
2355 | {
|
---|
2356 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage,
|
---|
2357 | pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), PGMPAGETYPE_RAM);
|
---|
2358 | AssertLogRelRCReturn(rc, rc);
|
---|
2359 | }
|
---|
2360 | break;
|
---|
2361 |
|
---|
2362 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2363 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
|
---|
2364 | pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT),
|
---|
2365 | pRam, true /*fDoAccounting*/, false /*fFlushIemTlbs*/);
|
---|
2366 | break;
|
---|
2367 |
|
---|
2368 | case PGMPAGETYPE_MMIO2:
|
---|
2369 | case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
|
---|
2370 | case PGMPAGETYPE_ROM:
|
---|
2371 | case PGMPAGETYPE_MMIO:
|
---|
2372 | break;
|
---|
2373 | default:
|
---|
2374 | AssertFailed();
|
---|
2375 | }
|
---|
2376 | } /* for each page */
|
---|
2377 | }
|
---|
2378 | else
|
---|
2379 | #endif /* !VBOX_WITH_ONLY_PGM_NEM_MODE */
|
---|
2380 |
|
---|
2381 | {
|
---|
2382 | /* Zero the memory. */
|
---|
2383 | while (iPage-- > 0)
|
---|
2384 | {
|
---|
2385 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2386 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2387 | {
|
---|
2388 | case PGMPAGETYPE_RAM:
|
---|
2389 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
2390 | {
|
---|
2391 | case PGM_PAGE_STATE_ZERO:
|
---|
2392 | break;
|
---|
2393 |
|
---|
2394 | case PGM_PAGE_STATE_BALLOONED:
|
---|
2395 | /* Turn into a zero page; the balloon status is lost when the VM reboots. */
|
---|
2396 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
2397 | break;
|
---|
2398 |
|
---|
2399 | case PGM_PAGE_STATE_SHARED:
|
---|
2400 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
2401 | rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT));
|
---|
2402 | AssertLogRelRCReturn(rc, rc);
|
---|
2403 | RT_FALL_THRU();
|
---|
2404 |
|
---|
2405 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
2406 | if (pVM->pgm.s.fZeroRamPagesOnReset)
|
---|
2407 | {
|
---|
2408 | void *pvPage;
|
---|
2409 | rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pvPage);
|
---|
2410 | AssertLogRelRCReturn(rc, rc);
|
---|
2411 | RT_BZERO(pvPage, GUEST_PAGE_SIZE);
|
---|
2412 | }
|
---|
2413 | break;
|
---|
2414 | }
|
---|
2415 | break;
|
---|
2416 |
|
---|
2417 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2418 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
|
---|
2419 | pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT),
|
---|
2420 | pRam, true /*fDoAccounting*/, false /*fFlushIemTlbs*/);
|
---|
2421 | break;
|
---|
2422 |
|
---|
2423 | case PGMPAGETYPE_MMIO2:
|
---|
2424 | case PGMPAGETYPE_ROM_SHADOW:
|
---|
2425 | case PGMPAGETYPE_ROM:
|
---|
2426 | case PGMPAGETYPE_MMIO:
|
---|
2427 | break;
|
---|
2428 | default:
|
---|
2429 | AssertFailed();
|
---|
2430 |
|
---|
2431 | }
|
---|
2432 | } /* for each page */
|
---|
2433 | }
|
---|
2434 | }
|
---|
2435 |
|
---|
2436 | /*
|
---|
2437 | * Finish off any pages pending freeing.
|
---|
2438 | */
|
---|
2439 | if (cPendingPages)
|
---|
2440 | {
|
---|
2441 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
2442 | AssertLogRelRCReturn(rc, rc);
|
---|
2443 | }
|
---|
2444 | GMMR3FreePagesCleanup(pReq);
|
---|
2445 |
|
---|
2446 | /*
|
---|
2447 | * Flush the IEM TLB, just to be sure it really is done.
|
---|
2448 | */
|
---|
2449 | IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_ZERO_ALL);
|
---|
2450 |
|
---|
2451 | return VINF_SUCCESS;
|
---|
2452 | }
|
---|
2453 |
|
---|
2454 |
|
---|
2455 | /**
|
---|
2456 | * Frees all RAM during VM termination
|
---|
2457 | *
|
---|
2458 | * ASSUMES that the caller owns the PGM lock.
|
---|
2459 | *
|
---|
2460 | * @returns VBox status code.
|
---|
2461 | * @param pVM The cross context VM structure.
|
---|
2462 | */
|
---|
2463 | int pgmR3PhysRamTerm(PVM pVM)
|
---|
2464 | {
|
---|
2465 | int rc;
|
---|
2466 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2467 |
|
---|
2468 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
2469 | /* Reset the memory balloon. */
|
---|
2470 | rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
|
---|
2471 | AssertRC(rc);
|
---|
2472 | #endif
|
---|
2473 |
|
---|
2474 | #ifdef VBOX_WITH_PAGE_SHARING
|
---|
2475 |
|
---|
2476 | /*
|
---|
2477 | * Clear all registered shared modules.
|
---|
2478 | */
|
---|
2479 | pgmR3PhysAssertSharedPageChecksums(pVM);
|
---|
2480 | rc = GMMR3ResetSharedModules(pVM);
|
---|
2481 | AssertRC(rc);
|
---|
2482 |
|
---|
2483 | /*
|
---|
2484 | * Flush the handy pages updates to make sure no shared pages are hiding
|
---|
2485 | * in there. (Not unlikely if the VM shuts down, apparently.)
|
---|
2486 | */
|
---|
2487 | # ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
2488 | if (!pVM->pgm.s.fNemMode)
|
---|
2489 | # endif
|
---|
2490 | rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
|
---|
2491 | #endif
|
---|
2492 |
|
---|
2493 | /*
|
---|
2494 | * We batch up pages that should be freed instead of calling GMM for
|
---|
2495 | * each and every one of them.
|
---|
2496 | */
|
---|
2497 | uint32_t cPendingPages = 0;
|
---|
2498 | PGMMFREEPAGESREQ pReq;
|
---|
2499 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
2500 | AssertLogRelRCReturn(rc, rc);
|
---|
2501 |
|
---|
2502 | /*
|
---|
2503 | * Walk the ram ranges.
|
---|
2504 | */
|
---|
2505 | uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U);
|
---|
2506 | for (uint32_t idRamRange = 0; idRamRange <= idRamRangeMax; idRamRange++)
|
---|
2507 | {
|
---|
2508 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2509 | Assert(pRam || idRamRange == 0);
|
---|
2510 | if (!pRam) continue;
|
---|
2511 | Assert(pRam->idRange == idRamRange);
|
---|
2512 |
|
---|
2513 | uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
2514 | AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb));
|
---|
2515 |
|
---|
2516 | while (iPage-- > 0)
|
---|
2517 | {
|
---|
2518 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2519 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2520 | {
|
---|
2521 | case PGMPAGETYPE_RAM:
|
---|
2522 | /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
|
---|
2523 | /** @todo change this to explicitly free private pages here. */
|
---|
2524 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
2525 | {
|
---|
2526 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage,
|
---|
2527 | pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), PGMPAGETYPE_RAM);
|
---|
2528 | AssertLogRelRCReturn(rc, rc);
|
---|
2529 | }
|
---|
2530 | break;
|
---|
2531 |
|
---|
2532 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2533 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
|
---|
2534 | case PGMPAGETYPE_MMIO2:
|
---|
2535 | case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
|
---|
2536 | case PGMPAGETYPE_ROM:
|
---|
2537 | case PGMPAGETYPE_MMIO:
|
---|
2538 | break;
|
---|
2539 | default:
|
---|
2540 | AssertFailed();
|
---|
2541 | }
|
---|
2542 | } /* for each page */
|
---|
2543 | }
|
---|
2544 |
|
---|
2545 | /*
|
---|
2546 | * Finish off any pages pending freeing.
|
---|
2547 | */
|
---|
2548 | if (cPendingPages)
|
---|
2549 | {
|
---|
2550 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
2551 | AssertLogRelRCReturn(rc, rc);
|
---|
2552 | }
|
---|
2553 | GMMR3FreePagesCleanup(pReq);
|
---|
2554 | return VINF_SUCCESS;
|
---|
2555 | }
|
---|
2556 |
|
---|
2557 |
|
---|
2558 |
|
---|
2559 | /*********************************************************************************************************************************
|
---|
2560 | * MMIO *
|
---|
2561 | *********************************************************************************************************************************/
|
---|
2562 |
|
---|
2563 | /**
|
---|
2564 | * This is the interface IOM is using to register an MMIO region (unmapped).
|
---|
2565 | *
|
---|
2566 | *
|
---|
2567 | * @returns VBox status code.
|
---|
2568 | *
|
---|
2569 | * @param pVM The cross context VM structure.
|
---|
2570 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2571 | * @param cb The size of the MMIO region.
|
---|
2572 | * @param pszDesc The description of the MMIO region.
|
---|
2573 | * @param pidRamRange Where to return the RAM range ID for the MMIO region
|
---|
2574 | * on success.
|
---|
2575 | * @thread EMT(0)
|
---|
2576 | */
|
---|
2577 | VMMR3_INT_DECL(int) PGMR3PhysMmioRegister(PVM pVM, PVMCPU pVCpu, RTGCPHYS cb, const char *pszDesc, uint16_t *pidRamRange)
|
---|
2578 | {
|
---|
2579 | /*
|
---|
2580 | * Assert assumptions.
|
---|
2581 | */
|
---|
2582 | AssertPtrReturn(pidRamRange, VERR_INVALID_POINTER);
|
---|
2583 | *pidRamRange = UINT16_MAX;
|
---|
2584 | AssertReturn(pVCpu == VMMGetCpu(pVM) && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
2585 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
|
---|
2586 | /// @todo AssertReturn(!pVM->pgm.s.fRamRangesFrozen, VERR_WRONG_ORDER);
|
---|
2587 | AssertReturn(cb <= ((RTGCPHYS)PGM_MAX_PAGES_PER_RAM_RANGE << GUEST_PAGE_SHIFT), VERR_OUT_OF_RANGE);
|
---|
2588 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2589 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
2590 | AssertReturn(*pszDesc != '\0', VERR_INVALID_POINTER);
|
---|
2591 |
|
---|
2592 | /*
|
---|
2593 | * Take the PGM lock and allocate an ad-hoc MMIO RAM range.
|
---|
2594 | */
|
---|
2595 | int rc = PGM_LOCK(pVM);
|
---|
2596 | AssertRCReturn(rc, rc);
|
---|
2597 |
|
---|
2598 | uint32_t const cPages = cb >> GUEST_PAGE_SHIFT;
|
---|
2599 | PPGMRAMRANGE pNew = NULL;
|
---|
2600 | rc = pgmR3PhysAllocateRamRange(pVM, pVCpu, cPages, PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO, &pNew);
|
---|
2601 | AssertLogRelMsg(RT_SUCCESS(rc), ("pgmR3PhysAllocateRamRange failed: cPages=%#RX32 (%s): %Rrc\n", cPages, pszDesc, rc));
|
---|
2602 | if (RT_SUCCESS(rc))
|
---|
2603 | {
|
---|
2604 | /* Initialize the range. */
|
---|
2605 | pNew->pszDesc = pszDesc;
|
---|
2606 | pNew->uNemRange = UINT32_MAX;
|
---|
2607 | pNew->pbR3 = NULL;
|
---|
2608 | pNew->paLSPages = NULL;
|
---|
2609 | Assert(pNew->fFlags == PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO && pNew->cb == cb);
|
---|
2610 |
|
---|
2611 | uint32_t iPage = cPages;
|
---|
2612 | while (iPage-- > 0)
|
---|
2613 | PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
|
---|
2614 | Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
|
---|
2615 |
|
---|
2616 | /* update the page count stats. */
|
---|
2617 | pVM->pgm.s.cPureMmioPages += cPages;
|
---|
2618 | pVM->pgm.s.cAllPages += cPages;
|
---|
2619 |
|
---|
2620 | /*
|
---|
2621 | * Set the return value, release lock and return to IOM.
|
---|
2622 | */
|
---|
2623 | *pidRamRange = pNew->idRange;
|
---|
2624 | }
|
---|
2625 |
|
---|
2626 | PGM_UNLOCK(pVM);
|
---|
2627 | return rc;
|
---|
2628 | }
|
---|
2629 |
|
---|
2630 |
|
---|
2631 | /**
|
---|
2632 | * Worker for PGMR3PhysMmioMap that's called owning the lock.
|
---|
2633 | */
|
---|
2634 | static int pgmR3PhysMmioMapLocked(PVM pVM, PVMCPU pVCpu, RTGCPHYS const GCPhys, RTGCPHYS const cb, RTGCPHYS const GCPhysLast,
|
---|
2635 | PPGMRAMRANGE const pMmioRamRange, PGMPHYSHANDLERTYPE const hType, uint64_t const uUser)
|
---|
2636 | {
|
---|
2637 | /* Check that the range isn't mapped already. */
|
---|
2638 | AssertLogRelMsgReturn(pMmioRamRange->GCPhys == NIL_RTGCPHYS,
|
---|
2639 | ("desired %RGp mapping for '%s' - already mapped at %RGp!\n",
|
---|
2640 | GCPhys, pMmioRamRange->pszDesc, pMmioRamRange->GCPhys),
|
---|
2641 | VERR_ALREADY_EXISTS);
|
---|
2642 |
|
---|
2643 | /*
|
---|
2644 | * Now, check if this falls into a regular RAM range or if we should use
|
---|
2645 | * the ad-hoc one (idRamRange).
|
---|
2646 | */
|
---|
2647 | int rc;
|
---|
2648 | uint32_t idxInsert = UINT32_MAX;
|
---|
2649 | PPGMRAMRANGE const pOverlappingRange = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxInsert);
|
---|
2650 | if (pOverlappingRange)
|
---|
2651 | {
|
---|
2652 | /* Simplification: all within the same range. */
|
---|
2653 | AssertLogRelMsgReturn( GCPhys >= pOverlappingRange->GCPhys
|
---|
2654 | && GCPhysLast <= pOverlappingRange->GCPhysLast,
|
---|
2655 | ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
2656 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc,
|
---|
2657 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
2658 | VERR_PGM_RAM_CONFLICT);
|
---|
2659 |
|
---|
2660 | /* Check that is isn't an ad hoc range, but a real RAM range. */
|
---|
2661 | AssertLogRelMsgReturn(!PGM_RAM_RANGE_IS_AD_HOC(pOverlappingRange),
|
---|
2662 | ("%RGp-%RGp (MMIO/%s) mapping attempt in non-RAM range: %RGp-%RGp (%s)\n",
|
---|
2663 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc,
|
---|
2664 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
2665 | VERR_PGM_RAM_CONFLICT);
|
---|
2666 |
|
---|
2667 | /* Check that it's all RAM or MMIO pages. */
|
---|
2668 | PCPGMPAGE pPage = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
2669 | uint32_t cLeft = cb >> GUEST_PAGE_SHIFT;
|
---|
2670 | while (cLeft-- > 0)
|
---|
2671 | {
|
---|
2672 | AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
2673 | || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO, /** @todo MMIO type isn't right */
|
---|
2674 | ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
|
---|
2675 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc, pOverlappingRange->GCPhys,
|
---|
2676 | PGM_PAGE_GET_TYPE(pPage), pOverlappingRange->pszDesc),
|
---|
2677 | VERR_PGM_RAM_CONFLICT);
|
---|
2678 | pPage++;
|
---|
2679 | }
|
---|
2680 |
|
---|
2681 | /*
|
---|
2682 | * Make all the pages in the range MMIO/ZERO pages, freeing any
|
---|
2683 | * RAM pages currently mapped here. This might not be 100% correct
|
---|
2684 | * for PCI memory, but we're doing the same thing for MMIO2 pages.
|
---|
2685 | */
|
---|
2686 | rc = pgmR3PhysFreePageRange(pVM, pOverlappingRange, GCPhys, GCPhysLast, NULL);
|
---|
2687 | AssertRCReturn(rc, rc);
|
---|
2688 |
|
---|
2689 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
2690 | /** @todo not entirely SMP safe; assuming for now the guest takes
|
---|
2691 | * care of this internally (not touch mapped mmio while changing the
|
---|
2692 | * mapping). */
|
---|
2693 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
2694 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2695 | }
|
---|
2696 | else
|
---|
2697 | {
|
---|
2698 | /*
|
---|
2699 | * No RAM range, use the ad hoc one (idRamRange).
|
---|
2700 | *
|
---|
2701 | * Note that we don't have to tell REM about this range because
|
---|
2702 | * PGMHandlerPhysicalRegisterEx will do that for us.
|
---|
2703 | */
|
---|
2704 | AssertLogRelReturn(idxInsert <= pVM->pgm.s.RamRangeUnion.cLookupEntries, VERR_INTERNAL_ERROR_4);
|
---|
2705 | Log(("PGMR3PhysMmioMap: Inserting ad hoc MMIO range #%x for %RGp-%RGp %s\n",
|
---|
2706 | pMmioRamRange->idRange, GCPhys, GCPhysLast, pMmioRamRange->pszDesc));
|
---|
2707 |
|
---|
2708 | Assert(PGM_PAGE_GET_TYPE(&pMmioRamRange->aPages[0]) == PGMPAGETYPE_MMIO);
|
---|
2709 |
|
---|
2710 | /* We ASSUME that all the pages in the ad-hoc range are in the proper
|
---|
2711 | state and all that and that we don't need to re-initialize them here. */
|
---|
2712 |
|
---|
2713 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2714 | /* Notify NEM. */
|
---|
2715 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
2716 | {
|
---|
2717 | uint8_t u2State = 0; /* (must have valid state as there can't be anything to preserve) */
|
---|
2718 | rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, cb, 0 /*fFlags*/, NULL, NULL, &u2State, &pMmioRamRange->uNemRange);
|
---|
2719 | AssertLogRelRCReturn(rc, rc);
|
---|
2720 |
|
---|
2721 | uint32_t iPage = cb >> GUEST_PAGE_SHIFT;
|
---|
2722 | while (iPage-- > 0)
|
---|
2723 | PGM_PAGE_SET_NEM_STATE(&pMmioRamRange->aPages[iPage], u2State);
|
---|
2724 | }
|
---|
2725 | #endif
|
---|
2726 | /* Insert it into the lookup table (may in theory fail). */
|
---|
2727 | rc = pgmR3PhysRamRangeInsertLookup(pVM, pMmioRamRange, GCPhys, &idxInsert);
|
---|
2728 | }
|
---|
2729 | if (RT_SUCCESS(rc))
|
---|
2730 | {
|
---|
2731 | /*
|
---|
2732 | * Register the access handler.
|
---|
2733 | */
|
---|
2734 | rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, uUser, pMmioRamRange->pszDesc);
|
---|
2735 | if (RT_SUCCESS(rc))
|
---|
2736 | {
|
---|
2737 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2738 | /* Late NEM notification (currently not used by anyone). */
|
---|
2739 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
2740 | {
|
---|
2741 | if (pOverlappingRange)
|
---|
2742 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, cb, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
|
---|
2743 | pOverlappingRange->pbR3 + (uintptr_t)(GCPhys - pOverlappingRange->GCPhys),
|
---|
2744 | NULL /*pvMmio2*/, NULL /*puNemRange*/);
|
---|
2745 | else
|
---|
2746 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, cb, 0 /*fFlags*/, NULL /*pvRam*/, NULL /*pvMmio2*/,
|
---|
2747 | &pMmioRamRange->uNemRange);
|
---|
2748 | AssertLogRelRC(rc);
|
---|
2749 | }
|
---|
2750 | if (RT_SUCCESS(rc))
|
---|
2751 | #endif
|
---|
2752 | {
|
---|
2753 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
2754 | return VINF_SUCCESS;
|
---|
2755 | }
|
---|
2756 |
|
---|
2757 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2758 | /*
|
---|
2759 | * Failed, so revert it all as best as we can (the memory content in
|
---|
2760 | * the overlapping case is gone).
|
---|
2761 | */
|
---|
2762 | PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
2763 | #endif
|
---|
2764 | }
|
---|
2765 | }
|
---|
2766 |
|
---|
2767 | if (!pOverlappingRange)
|
---|
2768 | {
|
---|
2769 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2770 | /* Notify NEM about the sudden removal of the RAM range we just told it about. */
|
---|
2771 | NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, cb, 0 /*fFlags*/, NULL /*pvRam*/, NULL /*pvMmio2*/,
|
---|
2772 | NULL /*pu2State*/, &pMmioRamRange->uNemRange);
|
---|
2773 | #endif
|
---|
2774 |
|
---|
2775 | /* Remove the ad hoc range from the lookup table. */
|
---|
2776 | idxInsert -= 1;
|
---|
2777 | pgmR3PhysRamRangeRemoveLookup(pVM, pMmioRamRange, &idxInsert);
|
---|
2778 | }
|
---|
2779 |
|
---|
2780 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
2781 | return rc;
|
---|
2782 | }
|
---|
2783 |
|
---|
2784 |
|
---|
2785 | /**
|
---|
2786 | * This is the interface IOM is using to map an MMIO region.
|
---|
2787 | *
|
---|
2788 | * It will check for conflicts and ensure that a RAM range structure
|
---|
2789 | * is present before calling the PGMR3HandlerPhysicalRegister API to
|
---|
2790 | * register the callbacks.
|
---|
2791 | *
|
---|
2792 | * @returns VBox status code.
|
---|
2793 | *
|
---|
2794 | * @param pVM The cross context VM structure.
|
---|
2795 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2796 | * @param GCPhys The start of the MMIO region.
|
---|
2797 | * @param cb The size of the MMIO region.
|
---|
2798 | * @param idRamRange The RAM range ID for the MMIO region as returned by
|
---|
2799 | * PGMR3PhysMmioRegister().
|
---|
2800 | * @param hType The physical access handler type registration.
|
---|
2801 | * @param uUser The user argument.
|
---|
2802 | * @thread EMT(pVCpu)
|
---|
2803 | */
|
---|
2804 | VMMR3_INT_DECL(int) PGMR3PhysMmioMap(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTGCPHYS cb, uint16_t idRamRange,
|
---|
2805 | PGMPHYSHANDLERTYPE hType, uint64_t uUser)
|
---|
2806 | {
|
---|
2807 | /*
|
---|
2808 | * Assert on some assumption.
|
---|
2809 | */
|
---|
2810 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2811 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2812 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2813 | RTGCPHYS const GCPhysLast = GCPhys + cb - 1U;
|
---|
2814 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
2815 | #ifdef VBOX_STRICT
|
---|
2816 | PCPGMPHYSHANDLERTYPEINT pType = pgmHandlerPhysicalTypeHandleToPtr(pVM, hType);
|
---|
2817 | Assert(pType);
|
---|
2818 | Assert(pType->enmKind == PGMPHYSHANDLERKIND_MMIO);
|
---|
2819 | #endif
|
---|
2820 | AssertReturn(idRamRange <= pVM->pgm.s.idRamRangeMax && idRamRange > 0, VERR_INVALID_HANDLE);
|
---|
2821 | PPGMRAMRANGE const pMmioRamRange = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2822 | AssertReturn(pMmioRamRange, VERR_INVALID_HANDLE);
|
---|
2823 | AssertReturn(pMmioRamRange->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO, VERR_INVALID_HANDLE);
|
---|
2824 | AssertReturn(pMmioRamRange->cb == cb, VERR_OUT_OF_RANGE);
|
---|
2825 |
|
---|
2826 | /*
|
---|
2827 | * Take the PGM lock and do the work.
|
---|
2828 | */
|
---|
2829 | int rc = PGM_LOCK(pVM);
|
---|
2830 | AssertRCReturn(rc, rc);
|
---|
2831 |
|
---|
2832 | rc = pgmR3PhysMmioMapLocked(pVM, pVCpu, GCPhys, cb, GCPhysLast, pMmioRamRange, hType, uUser);
|
---|
2833 | #ifdef VBOX_STRICT
|
---|
2834 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
2835 | #endif
|
---|
2836 |
|
---|
2837 | PGM_UNLOCK(pVM);
|
---|
2838 | return rc;
|
---|
2839 | }
|
---|
2840 |
|
---|
2841 |
|
---|
2842 | /**
|
---|
2843 | * Worker for PGMR3PhysMmioUnmap that's called with the PGM lock held.
|
---|
2844 | */
|
---|
2845 | static int pgmR3PhysMmioUnmapLocked(PVM pVM, PVMCPU pVCpu, RTGCPHYS const GCPhys, RTGCPHYS const cb,
|
---|
2846 | RTGCPHYS const GCPhysLast, PPGMRAMRANGE const pMmioRamRange)
|
---|
2847 | {
|
---|
2848 | /*
|
---|
2849 | * Lookup the RAM range containing the region to make sure it is actually mapped.
|
---|
2850 | */
|
---|
2851 | uint32_t idxLookup = pgmR3PhysRamRangeFindOverlappingIndex(pVM, GCPhys, GCPhysLast);
|
---|
2852 | AssertLogRelMsgReturn(idxLookup < pVM->pgm.s.RamRangeUnion.cLookupEntries,
|
---|
2853 | ("MMIO range not found at %RGp LB %RGp! (%s)\n", GCPhys, cb, pMmioRamRange->pszDesc),
|
---|
2854 | VERR_NOT_FOUND);
|
---|
2855 |
|
---|
2856 | uint32_t const idLookupRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
2857 | AssertLogRelReturn(idLookupRange != 0 && idLookupRange <= pVM->pgm.s.idRamRangeMax, VERR_INTERNAL_ERROR_5);
|
---|
2858 | PPGMRAMRANGE const pLookupRange = pVM->pgm.s.apRamRanges[idLookupRange];
|
---|
2859 | AssertLogRelReturn(pLookupRange, VERR_INTERNAL_ERROR_4);
|
---|
2860 |
|
---|
2861 | AssertLogRelMsgReturn(pLookupRange == pMmioRamRange || !PGM_RAM_RANGE_IS_AD_HOC(pLookupRange),
|
---|
2862 | ("MMIO unmap mixup at %RGp LB %RGp (%s) vs %RGp LB %RGp (%s)\n",
|
---|
2863 | GCPhys, cb, pMmioRamRange->pszDesc, pLookupRange->GCPhys, pLookupRange->cb, pLookupRange->pszDesc),
|
---|
2864 | VERR_NOT_FOUND);
|
---|
2865 |
|
---|
2866 | /*
|
---|
2867 | * Deregister the handler. This should reset any aliases, so an ad hoc
|
---|
2868 | * range will only contain MMIO type pages afterwards.
|
---|
2869 | */
|
---|
2870 | int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
2871 | if (RT_SUCCESS(rc))
|
---|
2872 | {
|
---|
2873 | if (pLookupRange != pMmioRamRange)
|
---|
2874 | {
|
---|
2875 | /*
|
---|
2876 | * Turn the pages back into RAM pages.
|
---|
2877 | */
|
---|
2878 | Log(("pgmR3PhysMmioUnmapLocked: Reverting MMIO range %RGp-%RGp (%s) in %RGp-%RGp (%s) to RAM.\n",
|
---|
2879 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc,
|
---|
2880 | pLookupRange->GCPhys, pLookupRange->GCPhysLast, pLookupRange->pszDesc));
|
---|
2881 |
|
---|
2882 | RTGCPHYS const offRange = GCPhys - pLookupRange->GCPhys;
|
---|
2883 | uint32_t iPage = offRange >> GUEST_PAGE_SHIFT;
|
---|
2884 | uint32_t cLeft = cb >> GUEST_PAGE_SHIFT;
|
---|
2885 | while (cLeft--)
|
---|
2886 | {
|
---|
2887 | PPGMPAGE pPage = &pLookupRange->aPages[iPage];
|
---|
2888 | AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
|
---|
2889 | //|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
|
---|
2890 | //|| PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO
|
---|
2891 | , ("%RGp %R[pgmpage]\n", pLookupRange->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), pPage));
|
---|
2892 | /** @todo this isn't entirely correct, is it now... aliases must be converted
|
---|
2893 | * to zero pages as they won't be. however, shouldn't
|
---|
2894 | * PGMHandlerPhysicalDeregister deal with this already? */
|
---|
2895 | if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
|
---|
2896 | PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
|
---|
2897 | iPage++;
|
---|
2898 | }
|
---|
2899 |
|
---|
2900 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2901 | /* Notify REM (failure will probably leave things in a non-working state). */
|
---|
2902 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
2903 | {
|
---|
2904 | uint8_t u2State = UINT8_MAX;
|
---|
2905 | rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
|
---|
2906 | pLookupRange->pbR3 ? pLookupRange->pbR3 + GCPhys - pLookupRange->GCPhys : NULL,
|
---|
2907 | NULL, &u2State, &pLookupRange->uNemRange);
|
---|
2908 | AssertLogRelRC(rc);
|
---|
2909 | /** @todo status code propagation here... This is likely fatal, right? */
|
---|
2910 | if (u2State != UINT8_MAX)
|
---|
2911 | pgmPhysSetNemStateForPages(&pLookupRange->aPages[(GCPhys - pLookupRange->GCPhys) >> GUEST_PAGE_SHIFT],
|
---|
2912 | cb >> GUEST_PAGE_SHIFT, u2State);
|
---|
2913 | }
|
---|
2914 | #endif
|
---|
2915 | }
|
---|
2916 | else
|
---|
2917 | {
|
---|
2918 | /*
|
---|
2919 | * Unlink the ad hoc range.
|
---|
2920 | */
|
---|
2921 | #ifdef VBOX_STRICT
|
---|
2922 | uint32_t iPage = cb >> GUEST_PAGE_SHIFT;
|
---|
2923 | while (iPage-- > 0)
|
---|
2924 | {
|
---|
2925 | PPGMPAGE const pPage = &pMmioRamRange->aPages[iPage];
|
---|
2926 | Assert(PGM_PAGE_IS_MMIO(pPage));
|
---|
2927 | }
|
---|
2928 | #endif
|
---|
2929 |
|
---|
2930 | Log(("pgmR3PhysMmioUnmapLocked: Unmapping ad hoc MMIO range for %RGp-%RGp %s\n",
|
---|
2931 | GCPhys, GCPhysLast, pMmioRamRange->pszDesc));
|
---|
2932 |
|
---|
2933 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
2934 | if (VM_IS_NEM_ENABLED(pVM)) /* Notify REM before we unlink the range. */
|
---|
2935 | {
|
---|
2936 | rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, 0 /*fFlags*/,
|
---|
2937 | NULL, NULL, NULL, &pMmioRamRange->uNemRange);
|
---|
2938 | AssertLogRelRCReturn(rc, rc); /* we're up the creek if this hits. */
|
---|
2939 | }
|
---|
2940 | #endif
|
---|
2941 |
|
---|
2942 | pgmR3PhysRamRangeRemoveLookup(pVM, pMmioRamRange, &idxLookup);
|
---|
2943 | }
|
---|
2944 | }
|
---|
2945 |
|
---|
2946 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
2947 | /** @todo Not entirely SMP safe; assuming for now the guest takes care of
|
---|
2948 | * this internally (not touch mapped mmio while changing the mapping). */
|
---|
2949 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
2950 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2951 |
|
---|
2952 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
2953 | /*pgmPhysInvalidRamRangeTlbs(pVM); - not necessary */
|
---|
2954 |
|
---|
2955 | return rc;
|
---|
2956 | }
|
---|
2957 |
|
---|
2958 |
|
---|
2959 | /**
|
---|
2960 | * This is the interface IOM is using to register an MMIO region.
|
---|
2961 | *
|
---|
2962 | * It will take care of calling PGMHandlerPhysicalDeregister and clean up
|
---|
2963 | * any ad hoc PGMRAMRANGE left behind.
|
---|
2964 | *
|
---|
2965 | * @returns VBox status code.
|
---|
2966 | * @param pVM The cross context VM structure.
|
---|
2967 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2968 | * @param GCPhys The start of the MMIO region.
|
---|
2969 | * @param cb The size of the MMIO region.
|
---|
2970 | * @param idRamRange The RAM range ID for the MMIO region as returned by
|
---|
2971 | * PGMR3PhysMmioRegister().
|
---|
2972 | * @thread EMT(pVCpu)
|
---|
2973 | */
|
---|
2974 | VMMR3_INT_DECL(int) PGMR3PhysMmioUnmap(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, RTGCPHYS cb, uint16_t idRamRange)
|
---|
2975 | {
|
---|
2976 | /*
|
---|
2977 | * Input validation.
|
---|
2978 | */
|
---|
2979 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2980 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2981 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2982 | RTGCPHYS const GCPhysLast = GCPhys + cb - 1U;
|
---|
2983 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
2984 | AssertReturn(idRamRange <= pVM->pgm.s.idRamRangeMax && idRamRange > 0, VERR_INVALID_HANDLE);
|
---|
2985 | PPGMRAMRANGE const pMmioRamRange = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
2986 | AssertReturn(pMmioRamRange, VERR_INVALID_HANDLE);
|
---|
2987 | AssertReturn(pMmioRamRange->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO, VERR_INVALID_HANDLE);
|
---|
2988 | AssertReturn(pMmioRamRange->cb == cb, VERR_OUT_OF_RANGE);
|
---|
2989 |
|
---|
2990 | /*
|
---|
2991 | * Take the PGM lock and do what's asked.
|
---|
2992 | */
|
---|
2993 | int rc = PGM_LOCK(pVM);
|
---|
2994 | AssertRCReturn(rc, rc);
|
---|
2995 |
|
---|
2996 | rc = pgmR3PhysMmioUnmapLocked(pVM, pVCpu, GCPhys, cb, GCPhysLast, pMmioRamRange);
|
---|
2997 | #ifdef VBOX_STRICT
|
---|
2998 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
2999 | #endif
|
---|
3000 |
|
---|
3001 | PGM_UNLOCK(pVM);
|
---|
3002 | return rc;
|
---|
3003 | }
|
---|
3004 |
|
---|
3005 |
|
---|
3006 |
|
---|
3007 | /*********************************************************************************************************************************
|
---|
3008 | * MMIO2 *
|
---|
3009 | *********************************************************************************************************************************/
|
---|
3010 |
|
---|
3011 | /**
|
---|
3012 | * Validates the claim to an MMIO2 range and returns the pointer to it.
|
---|
3013 | *
|
---|
3014 | * @returns The MMIO2 entry index on success, negative error status on failure.
|
---|
3015 | * @param pVM The cross context VM structure.
|
---|
3016 | * @param pDevIns The device instance owning the region.
|
---|
3017 | * @param hMmio2 Handle to look up.
|
---|
3018 | * @param pcChunks Where to return the number of chunks associated with
|
---|
3019 | * this handle.
|
---|
3020 | */
|
---|
3021 | static int32_t pgmR3PhysMmio2ResolveHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t *pcChunks)
|
---|
3022 | {
|
---|
3023 | *pcChunks = 0;
|
---|
3024 | uint32_t const idxFirst = hMmio2 - 1U;
|
---|
3025 | uint32_t const cMmio2Ranges = RT_MIN(pVM->pgm.s.cMmio2Ranges, RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges));
|
---|
3026 | AssertReturn(idxFirst < cMmio2Ranges, VERR_INVALID_HANDLE);
|
---|
3027 |
|
---|
3028 | PPGMREGMMIO2RANGE const pFirst = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
3029 | AssertReturn(pFirst->idMmio2 == hMmio2, VERR_INVALID_HANDLE);
|
---|
3030 | AssertReturn((pFirst->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK), VERR_INVALID_HANDLE);
|
---|
3031 | AssertReturn(pFirst->pDevInsR3 == pDevIns && RT_VALID_PTR(pDevIns), VERR_NOT_OWNER);
|
---|
3032 |
|
---|
3033 | /* Figure out how many chunks this handle spans. */
|
---|
3034 | if (pFirst->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3035 | *pcChunks = 1;
|
---|
3036 | else
|
---|
3037 | {
|
---|
3038 | uint32_t cChunks = 1;
|
---|
3039 | for (uint32_t idx = idxFirst + 1;; idx++)
|
---|
3040 | {
|
---|
3041 | cChunks++;
|
---|
3042 | AssertReturn(idx < cMmio2Ranges, VERR_INTERNAL_ERROR_2);
|
---|
3043 | PPGMREGMMIO2RANGE const pCur = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3044 | AssertLogRelMsgReturn( pCur->pDevInsR3 == pDevIns
|
---|
3045 | && pCur->idMmio2 == idx + 1
|
---|
3046 | && pCur->iSubDev == pFirst->iSubDev
|
---|
3047 | && pCur->iRegion == pFirst->iRegion
|
---|
3048 | && !(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK),
|
---|
3049 | ("cur: %p/%#x/%#x/%#x/%#x/%s; first: %p/%#x/%#x/%#x/%#x/%s\n",
|
---|
3050 | pCur->pDevInsR3, pCur->idMmio2, pCur->iSubDev, pCur->iRegion, pCur->fFlags,
|
---|
3051 | pVM->pgm.s.apMmio2RamRanges[idx]->pszDesc,
|
---|
3052 | pDevIns, idx + 1, pFirst->iSubDev, pFirst->iRegion, pFirst->fFlags,
|
---|
3053 | pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc),
|
---|
3054 | VERR_INTERNAL_ERROR_3);
|
---|
3055 | if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3056 | break;
|
---|
3057 | }
|
---|
3058 | *pcChunks = cChunks;
|
---|
3059 | }
|
---|
3060 |
|
---|
3061 | return (int32_t)idxFirst;
|
---|
3062 | }
|
---|
3063 |
|
---|
3064 |
|
---|
3065 | /**
|
---|
3066 | * Check if a device has already registered a MMIO2 region.
|
---|
3067 | *
|
---|
3068 | * @returns NULL if not registered, otherwise pointer to the MMIO2.
|
---|
3069 | * @param pVM The cross context VM structure.
|
---|
3070 | * @param pDevIns The device instance owning the region.
|
---|
3071 | * @param iSubDev The sub-device number.
|
---|
3072 | * @param iRegion The region.
|
---|
3073 | */
|
---|
3074 | DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
|
---|
3075 | {
|
---|
3076 | /*
|
---|
3077 | * Search the array. There shouldn't be many entries.
|
---|
3078 | */
|
---|
3079 | uint32_t idx = RT_MIN(pVM->pgm.s.cMmio2Ranges, RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges));
|
---|
3080 | while (idx-- > 0)
|
---|
3081 | if (RT_LIKELY( pVM->pgm.s.aMmio2Ranges[idx].pDevInsR3 != pDevIns
|
---|
3082 | || pVM->pgm.s.aMmio2Ranges[idx].iRegion != iRegion
|
---|
3083 | || pVM->pgm.s.aMmio2Ranges[idx].iSubDev != iSubDev))
|
---|
3084 | { /* likely */ }
|
---|
3085 | else
|
---|
3086 | return &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3087 | return NULL;
|
---|
3088 | }
|
---|
3089 |
|
---|
3090 | /**
|
---|
3091 | * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Map.
|
---|
3092 | */
|
---|
3093 | static int pgmR3PhysMmio2EnableDirtyPageTracing(PVM pVM, uint32_t idx, uint32_t cChunks)
|
---|
3094 | {
|
---|
3095 | int rc = VINF_SUCCESS;
|
---|
3096 | while (cChunks-- > 0)
|
---|
3097 | {
|
---|
3098 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3099 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3100 |
|
---|
3101 | Assert(!(pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING));
|
---|
3102 | int rc2 = pgmHandlerPhysicalExRegister(pVM, pMmio2->pPhysHandlerR3, pRamRange->GCPhys, pRamRange->GCPhysLast);
|
---|
3103 | if (RT_SUCCESS(rc2))
|
---|
3104 | pMmio2->fFlags |= PGMREGMMIO2RANGE_F_IS_TRACKING;
|
---|
3105 | else
|
---|
3106 | AssertLogRelMsgFailedStmt(("%#RGp-%#RGp %s failed -> %Rrc\n",
|
---|
3107 | pRamRange->GCPhys, pRamRange->GCPhysLast, pRamRange->pszDesc, rc2),
|
---|
3108 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3109 |
|
---|
3110 | idx++;
|
---|
3111 | }
|
---|
3112 | return rc;
|
---|
3113 | }
|
---|
3114 |
|
---|
3115 |
|
---|
3116 | /**
|
---|
3117 | * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Unmap.
|
---|
3118 | */
|
---|
3119 | static int pgmR3PhysMmio2DisableDirtyPageTracing(PVM pVM, uint32_t idx, uint32_t cChunks)
|
---|
3120 | {
|
---|
3121 | int rc = VINF_SUCCESS;
|
---|
3122 | while (cChunks-- > 0)
|
---|
3123 | {
|
---|
3124 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3125 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3126 | if (pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING)
|
---|
3127 | {
|
---|
3128 | int rc2 = pgmHandlerPhysicalExDeregister(pVM, pMmio2->pPhysHandlerR3);
|
---|
3129 | AssertLogRelMsgStmt(RT_SUCCESS(rc2),
|
---|
3130 | ("%#RGp-%#RGp %s failed -> %Rrc\n",
|
---|
3131 | pRamRange->GCPhys, pRamRange->GCPhysLast, pRamRange->pszDesc, rc2),
|
---|
3132 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3133 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_TRACKING;
|
---|
3134 | }
|
---|
3135 | idx++;
|
---|
3136 | }
|
---|
3137 | return rc;
|
---|
3138 | }
|
---|
3139 |
|
---|
3140 | #if 0 // temp
|
---|
3141 |
|
---|
3142 | /**
|
---|
3143 | * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
|
---|
3144 | * complete registration entry into the lists and lookup tables.
|
---|
3145 | *
|
---|
3146 | * @param pVM The cross context VM structure.
|
---|
3147 | * @param pNew The new MMIO / MMIO2 registration to link.
|
---|
3148 | */
|
---|
3149 | static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
|
---|
3150 | {
|
---|
3151 | Assert(pNew->idMmio2 != UINT8_MAX);
|
---|
3152 |
|
---|
3153 | /*
|
---|
3154 | * Link it into the list (order doesn't matter, so insert it at the head).
|
---|
3155 | *
|
---|
3156 | * Note! The range we're linking may consist of multiple chunks, so we
|
---|
3157 | * have to find the last one.
|
---|
3158 | */
|
---|
3159 | PPGMREGMMIO2RANGE pLast = pNew;
|
---|
3160 | for (pLast = pNew; ; pLast = pLast->pNextR3)
|
---|
3161 | {
|
---|
3162 | if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3163 | break;
|
---|
3164 | Assert(pLast->pNextR3);
|
---|
3165 | Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
|
---|
3166 | Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
|
---|
3167 | Assert(pLast->pNextR3->iRegion == pNew->iRegion);
|
---|
3168 | Assert(pLast->pNextR3->idMmio2 == pLast->idMmio2 + 1);
|
---|
3169 | }
|
---|
3170 |
|
---|
3171 | PGM_LOCK_VOID(pVM);
|
---|
3172 |
|
---|
3173 | /* Link in the chain of ranges at the head of the list. */
|
---|
3174 | pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
|
---|
3175 | pVM->pgm.s.pRegMmioRangesR3 = pNew;
|
---|
3176 |
|
---|
3177 | /* Insert the MMIO2 range/page IDs. */
|
---|
3178 | uint8_t idMmio2 = pNew->idMmio2;
|
---|
3179 | for (;;)
|
---|
3180 | {
|
---|
3181 | Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
|
---|
3182 | Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
|
---|
3183 | pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
|
---|
3184 | pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
|
---|
3185 | if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3186 | break;
|
---|
3187 | pNew = pNew->pNextR3;
|
---|
3188 | idMmio2++;
|
---|
3189 | }
|
---|
3190 |
|
---|
3191 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
3192 | PGM_UNLOCK(pVM);
|
---|
3193 | }
|
---|
3194 | #endif
|
---|
3195 |
|
---|
3196 |
|
---|
3197 | /**
|
---|
3198 | * Allocate and register an MMIO2 region.
|
---|
3199 | *
|
---|
3200 | * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
|
---|
3201 | * associated with a device. It is also non-shared memory with a permanent
|
---|
3202 | * ring-3 mapping and page backing (presently).
|
---|
3203 | *
|
---|
3204 | * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
|
---|
3205 | * the VM, in which case we'll drop the base memory pages. Presently we will
|
---|
3206 | * make no attempt to preserve anything that happens to be present in the base
|
---|
3207 | * memory that is replaced, this is of course incorrect but it's too much
|
---|
3208 | * effort.
|
---|
3209 | *
|
---|
3210 | * @returns VBox status code.
|
---|
3211 | * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
|
---|
3212 | * memory.
|
---|
3213 | * @retval VERR_ALREADY_EXISTS if the region already exists.
|
---|
3214 | *
|
---|
3215 | * @param pVM The cross context VM structure.
|
---|
3216 | * @param pDevIns The device instance owning the region.
|
---|
3217 | * @param iSubDev The sub-device number.
|
---|
3218 | * @param iRegion The region number. If the MMIO2 memory is a PCI
|
---|
3219 | * I/O region this number has to be the number of that
|
---|
3220 | * region. Otherwise it can be any number save
|
---|
3221 | * UINT8_MAX.
|
---|
3222 | * @param cb The size of the region. Must be page aligned.
|
---|
3223 | * @param fFlags Reserved for future use, must be zero.
|
---|
3224 | * @param pszDesc The description.
|
---|
3225 | * @param ppv Where to store the pointer to the ring-3 mapping of
|
---|
3226 | * the memory.
|
---|
3227 | * @param phRegion Where to return the MMIO2 region handle. Optional.
|
---|
3228 | * @thread EMT(0)
|
---|
3229 | *
|
---|
3230 | * @note Only callable at VM creation time and during VM state loading.
|
---|
3231 | * The latter is for PCNet saved state compatibility with pre 4.3.6
|
---|
3232 | * state.
|
---|
3233 | */
|
---|
3234 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
|
---|
3235 | uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
|
---|
3236 | {
|
---|
3237 | /*
|
---|
3238 | * Validate input.
|
---|
3239 | */
|
---|
3240 | AssertPtrReturn(ppv, VERR_INVALID_POINTER);
|
---|
3241 | *ppv = NULL;
|
---|
3242 | if (phRegion)
|
---|
3243 | {
|
---|
3244 | AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
|
---|
3245 | *phRegion = NIL_PGMMMIO2HANDLE;
|
---|
3246 | }
|
---|
3247 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
3248 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
3249 | VMSTATE const enmVMState = VMR3GetState(pVM);
|
---|
3250 | AssertMsgReturn(enmVMState == VMSTATE_CREATING || enmVMState == VMSTATE_LOADING,
|
---|
3251 | ("state %s, expected CREATING or LOADING\n", VMGetStateName(enmVMState)),
|
---|
3252 | VERR_VM_INVALID_VM_STATE);
|
---|
3253 |
|
---|
3254 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3255 | AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
3256 | AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
3257 |
|
---|
3258 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
3259 | AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
|
---|
3260 |
|
---|
3261 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
3262 | AssertReturn(cb, VERR_INVALID_PARAMETER);
|
---|
3263 | AssertReturn(!(fFlags & ~PGMPHYS_MMIO2_FLAGS_VALID_MASK), VERR_INVALID_FLAGS);
|
---|
3264 |
|
---|
3265 | const uint32_t cGuestPages = cb >> GUEST_PAGE_SHIFT;
|
---|
3266 | AssertLogRelReturn(((RTGCPHYS)cGuestPages << GUEST_PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
|
---|
3267 | AssertLogRelReturn(cGuestPages <= PGM_MAX_PAGES_PER_MMIO2_REGION, VERR_OUT_OF_RANGE);
|
---|
3268 | AssertLogRelReturn(cGuestPages <= (MM_MMIO_64_MAX >> GUEST_PAGE_SHIFT), VERR_OUT_OF_RANGE);
|
---|
3269 |
|
---|
3270 | AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
|
---|
3271 |
|
---|
3272 | /*
|
---|
3273 | * For the 2nd+ instance, mangle the description string so it's unique.
|
---|
3274 | */
|
---|
3275 | if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
|
---|
3276 | {
|
---|
3277 | pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
|
---|
3278 | if (!pszDesc)
|
---|
3279 | return VERR_NO_MEMORY;
|
---|
3280 | }
|
---|
3281 |
|
---|
3282 | /*
|
---|
3283 | * Check that we've got sufficient MMIO2 ID space for this request (the
|
---|
3284 | * allocation will be done later once we've got the backing memory secured,
|
---|
3285 | * but given the EMT0 restriction, that's not going to be a problem).
|
---|
3286 | *
|
---|
3287 | * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
|
---|
3288 | * the IDs goes from 1 thru PGM_MAX_MMIO2_RANGES.
|
---|
3289 | */
|
---|
3290 | unsigned const cChunks = pgmPhysMmio2CalcChunkCount(cb, NULL);
|
---|
3291 |
|
---|
3292 | int rc = PGM_LOCK(pVM);
|
---|
3293 | AssertRCReturn(rc, rc);
|
---|
3294 |
|
---|
3295 | AssertCompile(PGM_MAX_MMIO2_RANGES < 255);
|
---|
3296 | uint8_t const idMmio2 = pVM->pgm.s.cMmio2Ranges + 1;
|
---|
3297 | AssertLogRelReturnStmt(idMmio2 + cChunks <= PGM_MAX_MMIO2_RANGES, PGM_UNLOCK(pVM), VERR_PGM_TOO_MANY_MMIO2_RANGES);
|
---|
3298 |
|
---|
3299 | /*
|
---|
3300 | * Try reserve and allocate the backing memory first as this is what is
|
---|
3301 | * most likely to fail.
|
---|
3302 | */
|
---|
3303 | rc = MMR3AdjustFixedReservation(pVM, cGuestPages, pszDesc);
|
---|
3304 | if (RT_SUCCESS(rc))
|
---|
3305 | {
|
---|
3306 | /*
|
---|
3307 | * If we're in driverless we'll be doing the work here, otherwise we
|
---|
3308 | * must call ring-0 to do the job as we'll need physical addresses
|
---|
3309 | * and maybe a ring-0 mapping address for it all.
|
---|
3310 | */
|
---|
3311 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
3312 | if (!SUPR3IsDriverless())
|
---|
3313 | {
|
---|
3314 | PGMPHYSMMIO2REGISTERREQ Mmio2RegReq;
|
---|
3315 | Mmio2RegReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
3316 | Mmio2RegReq.Hdr.cbReq = sizeof(Mmio2RegReq);
|
---|
3317 | Mmio2RegReq.cbGuestPage = GUEST_PAGE_SIZE;
|
---|
3318 | Mmio2RegReq.cGuestPages = cGuestPages;
|
---|
3319 | Mmio2RegReq.idMmio2 = idMmio2;
|
---|
3320 | Mmio2RegReq.cChunks = cChunks;
|
---|
3321 | Mmio2RegReq.iSubDev = (uint8_t)iSubDev;
|
---|
3322 | Mmio2RegReq.iRegion = (uint8_t)iRegion;
|
---|
3323 | Mmio2RegReq.fFlags = fFlags;
|
---|
3324 | Mmio2RegReq.pDevIns = pDevIns;
|
---|
3325 | rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_MMIO2_REGISTER, 0 /*u64Arg*/, &Mmio2RegReq.Hdr);
|
---|
3326 | }
|
---|
3327 | else
|
---|
3328 | #endif
|
---|
3329 | rc = pgmPhysMmio2RegisterWorker(pVM, cGuestPages, idMmio2, cChunks, pDevIns, iSubDev, iRegion, fFlags);
|
---|
3330 | if (RT_SUCCESS(rc))
|
---|
3331 | {
|
---|
3332 | Assert(idMmio2 + cChunks - 1 == pVM->pgm.s.cMmio2Ranges);
|
---|
3333 |
|
---|
3334 | /*
|
---|
3335 | * There are two things left to do:
|
---|
3336 | * 1. Add the description to the associated RAM ranges.
|
---|
3337 | * 2. Pre-allocate access handlers for dirty bit tracking if necessary.
|
---|
3338 | */
|
---|
3339 | bool const fNeedHandler = (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
|
---|
3340 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
3341 | && (!VM_IS_NEM_ENABLED(pVM) || !NEMR3IsMmio2DirtyPageTrackingSupported(pVM))
|
---|
3342 | #endif
|
---|
3343 | ;
|
---|
3344 | for (uint32_t idxChunk = 0; idxChunk < cChunks; idxChunk++)
|
---|
3345 | {
|
---|
3346 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idxChunk + idMmio2 - 1];
|
---|
3347 | Assert(pMmio2->idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
3348 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apRamRanges[pMmio2->idRamRange];
|
---|
3349 | Assert(pRamRange->pbR3 == pMmio2->pbR3);
|
---|
3350 | Assert(pRamRange->cb == pMmio2->cbReal);
|
---|
3351 |
|
---|
3352 | pRamRange->pszDesc = pszDesc; /** @todo mangle this if we got more than one chunk */
|
---|
3353 | if (fNeedHandler)
|
---|
3354 | {
|
---|
3355 | rc = pgmHandlerPhysicalExCreate(pVM, pVM->pgm.s.hMmio2DirtyPhysHandlerType, pMmio2->idMmio2,
|
---|
3356 | pszDesc, &pMmio2->pPhysHandlerR3);
|
---|
3357 | AssertLogRelMsgReturnStmt(RT_SUCCESS(rc),
|
---|
3358 | ("idMmio2=%#x idxChunk=%#x rc=%Rc\n", idMmio2, idxChunk, rc),
|
---|
3359 | PGM_UNLOCK(pVM),
|
---|
3360 | rc); /* PGMR3Term will take care of it all. */
|
---|
3361 | }
|
---|
3362 | }
|
---|
3363 |
|
---|
3364 | /*
|
---|
3365 | * Done!
|
---|
3366 | */
|
---|
3367 | if (phRegion)
|
---|
3368 | *phRegion = idMmio2;
|
---|
3369 | *ppv = pVM->pgm.s.aMmio2Ranges[idMmio2 - 1].pbR3;
|
---|
3370 |
|
---|
3371 | PGM_UNLOCK(pVM);
|
---|
3372 | return VINF_SUCCESS;
|
---|
3373 | }
|
---|
3374 |
|
---|
3375 | MMR3AdjustFixedReservation(pVM, -(int32_t)cGuestPages, pszDesc);
|
---|
3376 | }
|
---|
3377 | if (pDevIns->iInstance > 0)
|
---|
3378 | MMR3HeapFree((void *)pszDesc);
|
---|
3379 | return rc;
|
---|
3380 | }
|
---|
3381 |
|
---|
3382 | /**
|
---|
3383 | * Deregisters and frees an MMIO2 region.
|
---|
3384 | *
|
---|
3385 | * Any physical access handlers registered for the region must be deregistered
|
---|
3386 | * before calling this function.
|
---|
3387 | *
|
---|
3388 | * @returns VBox status code.
|
---|
3389 | * @param pVM The cross context VM structure.
|
---|
3390 | * @param pDevIns The device instance owning the region.
|
---|
3391 | * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
|
---|
3392 | * regions for the given device is to be deregistered.
|
---|
3393 | * @thread EMT(0)
|
---|
3394 | *
|
---|
3395 | * @note Only callable during VM state loading. This is to jettison an unused
|
---|
3396 | * MMIO2 section present in PCNet saved state prior to VBox v4.3.6.
|
---|
3397 | */
|
---|
3398 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
3399 | {
|
---|
3400 | /*
|
---|
3401 | * Validate input.
|
---|
3402 | */
|
---|
3403 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
3404 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
3405 | VMSTATE const enmVMState = VMR3GetState(pVM);
|
---|
3406 | AssertMsgReturn(enmVMState == VMSTATE_LOADING,
|
---|
3407 | ("state %s, expected LOADING\n", VMGetStateName(enmVMState)),
|
---|
3408 | VERR_VM_INVALID_VM_STATE);
|
---|
3409 |
|
---|
3410 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3411 |
|
---|
3412 | /*
|
---|
3413 | * Take the PGM lock and scan for registrations matching the requirements.
|
---|
3414 | * We do this backwards to more easily reduce the cMmio2Ranges count when
|
---|
3415 | * stuff is removed.
|
---|
3416 | */
|
---|
3417 | PGM_LOCK_VOID(pVM);
|
---|
3418 |
|
---|
3419 | int rc = VINF_SUCCESS;
|
---|
3420 | unsigned cFound = 0;
|
---|
3421 | uint32_t const cMmio2Ranges = RT_MIN(pVM->pgm.s.cMmio2Ranges, RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges));
|
---|
3422 | uint32_t idx = cMmio2Ranges;
|
---|
3423 | while (idx-- > 0)
|
---|
3424 | {
|
---|
3425 | PPGMREGMMIO2RANGE pCur = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3426 | if ( pCur->pDevInsR3 == pDevIns
|
---|
3427 | && ( hMmio2 == NIL_PGMMMIO2HANDLE
|
---|
3428 | || pCur->idMmio2 == hMmio2))
|
---|
3429 | {
|
---|
3430 | cFound++;
|
---|
3431 |
|
---|
3432 | /*
|
---|
3433 | * Wind back the first chunk for this registration.
|
---|
3434 | */
|
---|
3435 | AssertLogRelMsgReturnStmt(pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK, ("idx=%u fFlags=%#x\n", idx, pCur->fFlags),
|
---|
3436 | PGM_UNLOCK(pVM), VERR_INTERNAL_ERROR_3);
|
---|
3437 | uint32_t cGuestPages = pCur->cbReal >> GUEST_PAGE_SHIFT;
|
---|
3438 | uint32_t cChunks = 1;
|
---|
3439 | while ( idx > 0
|
---|
3440 | && !(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK))
|
---|
3441 | {
|
---|
3442 | AssertLogRelMsgReturnStmt( pCur[-1].pDevInsR3 == pDevIns
|
---|
3443 | && pCur[-1].iRegion == pCur->iRegion
|
---|
3444 | && pCur[-1].iSubDev == pCur->iSubDev,
|
---|
3445 | ("[%u]: %p/%#x/%#x/fl=%#x; [%u]: %p/%#x/%#x/fl=%#x; cChunks=%#x\n",
|
---|
3446 | idx - 1, pCur[-1].pDevInsR3, pCur[-1].iRegion, pCur[-1].iSubDev, pCur[-1].fFlags,
|
---|
3447 | idx, pCur->pDevInsR3, pCur->iRegion, pCur->iSubDev, pCur->fFlags, cChunks),
|
---|
3448 | PGM_UNLOCK(pVM), VERR_INTERNAL_ERROR_3);
|
---|
3449 | cChunks++;
|
---|
3450 | pCur--;
|
---|
3451 | idx--;
|
---|
3452 | cGuestPages += pCur->cbReal >> GUEST_PAGE_SHIFT;
|
---|
3453 | }
|
---|
3454 | AssertLogRelMsgReturnStmt(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK,
|
---|
3455 | ("idx=%u fFlags=%#x cChunks=%#x\n", idx, pCur->fFlags, cChunks),
|
---|
3456 | PGM_UNLOCK(pVM), VERR_INTERNAL_ERROR_3);
|
---|
3457 |
|
---|
3458 | /*
|
---|
3459 | * Unmap it if it's mapped.
|
---|
3460 | */
|
---|
3461 | if (pCur->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
3462 | {
|
---|
3463 | int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, idx + 1, pCur->GCPhys);
|
---|
3464 | AssertRC(rc2);
|
---|
3465 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
3466 | rc = rc2;
|
---|
3467 | }
|
---|
3468 |
|
---|
3469 | /*
|
---|
3470 | * Destroy access handlers.
|
---|
3471 | */
|
---|
3472 | for (uint32_t iChunk = 0; iChunk < cChunks; iChunk++)
|
---|
3473 | if (pCur[iChunk].pPhysHandlerR3)
|
---|
3474 | {
|
---|
3475 | pgmHandlerPhysicalExDestroy(pVM, pCur[iChunk].pPhysHandlerR3);
|
---|
3476 | pCur[iChunk].pPhysHandlerR3 = NULL;
|
---|
3477 | }
|
---|
3478 |
|
---|
3479 | /*
|
---|
3480 | * Call kernel mode / worker to do the actual deregistration.
|
---|
3481 | */
|
---|
3482 | const char * const pszDesc = pVM->pgm.s.apMmio2RamRanges[idx] ? pVM->pgm.s.apMmio2RamRanges[idx]->pszDesc : NULL;
|
---|
3483 | int rc2;
|
---|
3484 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
3485 | if (!SUPR3IsDriverless())
|
---|
3486 | {
|
---|
3487 | PGMPHYSMMIO2DEREGISTERREQ Mmio2DeregReq;
|
---|
3488 | Mmio2DeregReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
3489 | Mmio2DeregReq.Hdr.cbReq = sizeof(Mmio2DeregReq);
|
---|
3490 | Mmio2DeregReq.idMmio2 = idx + 1;
|
---|
3491 | Mmio2DeregReq.cChunks = cChunks;
|
---|
3492 | Mmio2DeregReq.pDevIns = pDevIns;
|
---|
3493 | rc2 = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_MMIO2_DEREGISTER, 0 /*u64Arg*/, &Mmio2DeregReq.Hdr);
|
---|
3494 | AssertLogRelMsgStmt(RT_SUCCESS(rc2),
|
---|
3495 | ("VMMR0_DO_PGM_PHYS_MMIO2_DEREGISTER: rc=%Rrc idx=%#x cChunks=%#x %s\n",
|
---|
3496 | rc2, idx, cChunks, pszDesc),
|
---|
3497 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3498 | pgmPhysInvalidRamRangeTlbs(pVM); /* Ensure no stale pointers in the ring-3 RAM range TLB. */
|
---|
3499 | }
|
---|
3500 | else
|
---|
3501 | #endif
|
---|
3502 | {
|
---|
3503 | Assert(PGM_IS_IN_NEM_MODE(pVM));
|
---|
3504 | rc2 = pgmPhysMmio2DeregisterWorker(pVM, idx, cChunks, pDevIns);
|
---|
3505 | AssertLogRelMsgStmt(RT_SUCCESS(rc2),
|
---|
3506 | ("pgmPhysMmio2DeregisterWorker: rc=%Rrc idx=%#x cChunks=%#x %s\n",
|
---|
3507 | rc2, idx, cChunks, pszDesc),
|
---|
3508 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3509 | }
|
---|
3510 | if (RT_FAILURE(rc2))
|
---|
3511 | {
|
---|
3512 | LogRel(("PGMR3PhysMmio2Deregister: Deregistration failed: %Rrc; cChunks=%u %s\n", rc, cChunks, pszDesc));
|
---|
3513 | if (RT_SUCCESS(rc))
|
---|
3514 | rc = rc2;
|
---|
3515 | }
|
---|
3516 |
|
---|
3517 | /*
|
---|
3518 | * Adjust the memory reservation.
|
---|
3519 | */
|
---|
3520 | if (!PGM_IS_IN_NEM_MODE(pVM) && RT_SUCCESS(rc2))
|
---|
3521 | {
|
---|
3522 | rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cGuestPages, pszDesc);
|
---|
3523 | AssertLogRelMsgStmt(RT_SUCCESS(rc2), ("rc=%Rrc cGuestPages=%#x\n", rc, cGuestPages),
|
---|
3524 | rc = RT_SUCCESS(rc) ? rc2 : rc);
|
---|
3525 | }
|
---|
3526 |
|
---|
3527 | /* Are we done? */
|
---|
3528 | if (hMmio2 != NIL_PGMMMIO2HANDLE)
|
---|
3529 | break;
|
---|
3530 | }
|
---|
3531 | }
|
---|
3532 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
3533 | PGM_UNLOCK(pVM);
|
---|
3534 | return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
|
---|
3535 | }
|
---|
3536 |
|
---|
3537 |
|
---|
3538 | /**
|
---|
3539 | * Worker form PGMR3PhysMmio2Map.
|
---|
3540 | */
|
---|
3541 | static int pgmR3PhysMmio2MapLocked(PVM pVM, uint32_t const idxFirst, uint32_t const cChunks,
|
---|
3542 | RTGCPHYS const GCPhys, RTGCPHYS const GCPhysLast)
|
---|
3543 | {
|
---|
3544 | /*
|
---|
3545 | * Validate the mapped status now that we've got the lock.
|
---|
3546 | */
|
---|
3547 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3548 | {
|
---|
3549 | AssertReturn( pVM->pgm.s.aMmio2Ranges[idx].GCPhys == NIL_RTGCPHYS
|
---|
3550 | && !(pVM->pgm.s.aMmio2Ranges[idx].fFlags & PGMREGMMIO2RANGE_F_MAPPED),
|
---|
3551 | VERR_WRONG_ORDER);
|
---|
3552 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3553 | AssertReturn(pRamRange->GCPhys == NIL_RTGCPHYS, VERR_INTERNAL_ERROR_3);
|
---|
3554 | AssertReturn(pRamRange->GCPhysLast == NIL_RTGCPHYS, VERR_INTERNAL_ERROR_3);
|
---|
3555 | Assert(pRamRange->pbR3 == pVM->pgm.s.aMmio2Ranges[idx].pbR3);
|
---|
3556 | Assert(pRamRange->idRange == pVM->pgm.s.aMmio2Ranges[idx].idRamRange);
|
---|
3557 | }
|
---|
3558 |
|
---|
3559 | const char * const pszDesc = pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc;
|
---|
3560 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3561 | uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
|
---|
3562 | | (pVM->pgm.s.aMmio2Ranges[idxFirst].fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
|
---|
3563 | ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
|
---|
3564 | #endif
|
---|
3565 |
|
---|
3566 | /*
|
---|
3567 | * Now, check if this falls into a regular RAM range or if we should use
|
---|
3568 | * the ad-hoc one.
|
---|
3569 | *
|
---|
3570 | * Note! For reasons of simplictly, we're considering the whole MMIO2 area
|
---|
3571 | * here rather than individual chunks.
|
---|
3572 | */
|
---|
3573 | int rc = VINF_SUCCESS;
|
---|
3574 | uint32_t idxInsert = UINT32_MAX;
|
---|
3575 | PPGMRAMRANGE const pOverlappingRange = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxInsert);
|
---|
3576 | if (pOverlappingRange)
|
---|
3577 | {
|
---|
3578 | /* Simplification: all within the same range. */
|
---|
3579 | AssertLogRelMsgReturn( GCPhys >= pOverlappingRange->GCPhys
|
---|
3580 | && GCPhysLast <= pOverlappingRange->GCPhysLast,
|
---|
3581 | ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
3582 | GCPhys, GCPhysLast, pszDesc,
|
---|
3583 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
3584 | VERR_PGM_RAM_CONFLICT);
|
---|
3585 |
|
---|
3586 | /* Check that is isn't an ad hoc range, but a real RAM range. */
|
---|
3587 | AssertLogRelMsgReturn(!PGM_RAM_RANGE_IS_AD_HOC(pOverlappingRange),
|
---|
3588 | ("%RGp-%RGp (MMIO2/%s) mapping attempt in non-RAM range: %RGp-%RGp (%s)\n",
|
---|
3589 | GCPhys, GCPhysLast, pszDesc,
|
---|
3590 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
3591 | VERR_PGM_RAM_CONFLICT);
|
---|
3592 |
|
---|
3593 | /* There can only be one MMIO2 chunk matching here! */
|
---|
3594 | AssertLogRelMsgReturn(cChunks == 1,
|
---|
3595 | ("%RGp-%RGp (MMIO2/%s) consists of %u chunks whereas the RAM (%s) somehow doesn't!\n",
|
---|
3596 | GCPhys, GCPhysLast, pszDesc, cChunks, pOverlappingRange->pszDesc),
|
---|
3597 | VERR_PGM_PHYS_MMIO_EX_IPE);
|
---|
3598 |
|
---|
3599 | /* Check that it's all RAM pages. */
|
---|
3600 | PCPGMPAGE pPage = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
3601 | uint32_t const cMmio2Pages = pVM->pgm.s.apMmio2RamRanges[idxFirst]->cb >> GUEST_PAGE_SHIFT;
|
---|
3602 | uint32_t cPagesLeft = cMmio2Pages;
|
---|
3603 | while (cPagesLeft-- > 0)
|
---|
3604 | {
|
---|
3605 | AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
|
---|
3606 | ("%RGp-%RGp (MMIO2/%s): %RGp is not a RAM page - type=%d desc=%s\n", GCPhys, GCPhysLast,
|
---|
3607 | pszDesc, pOverlappingRange->GCPhys, PGM_PAGE_GET_TYPE(pPage), pOverlappingRange->pszDesc),
|
---|
3608 | VERR_PGM_RAM_CONFLICT);
|
---|
3609 | pPage++;
|
---|
3610 | }
|
---|
3611 |
|
---|
3612 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
3613 | /* We cannot mix MMIO2 into a RAM range in simplified memory mode because pOverlappingRange->pbR3 can't point
|
---|
3614 | both at the RAM and MMIO2, so we won't ever write & read from the actual MMIO2 memory if we try. */
|
---|
3615 | AssertLogRelMsgReturn(!VM_IS_NEM_ENABLED(pVM),
|
---|
3616 | ("Putting %s at %RGp-%RGp is not possible in NEM mode because existing %RGp-%RGp (%s) mapping\n",
|
---|
3617 | pszDesc, GCPhys, GCPhysLast,
|
---|
3618 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
3619 | VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
|
---|
3620 | #endif
|
---|
3621 |
|
---|
3622 | /*
|
---|
3623 | * Make all the pages in the range MMIO/ZERO pages, freeing any
|
---|
3624 | * RAM pages currently mapped here. This might not be 100% correct,
|
---|
3625 | * but so what, we do the same from MMIO...
|
---|
3626 | */
|
---|
3627 | rc = pgmR3PhysFreePageRange(pVM, pOverlappingRange, GCPhys, GCPhysLast, NULL);
|
---|
3628 | AssertRCReturn(rc, rc);
|
---|
3629 |
|
---|
3630 | Log(("PGMR3PhysMmio2Map: %RGp-%RGp %s - inside %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc,
|
---|
3631 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc));
|
---|
3632 |
|
---|
3633 | /*
|
---|
3634 | * We're all in for mapping it now. Update the MMIO2 range to reflect it.
|
---|
3635 | */
|
---|
3636 | pVM->pgm.s.aMmio2Ranges[idxFirst].GCPhys = GCPhys;
|
---|
3637 | pVM->pgm.s.aMmio2Ranges[idxFirst].fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3638 |
|
---|
3639 | /*
|
---|
3640 | * Replace the pages in the range.
|
---|
3641 | */
|
---|
3642 | PPGMPAGE pPageSrc = &pVM->pgm.s.apMmio2RamRanges[idxFirst]->aPages[0];
|
---|
3643 | PPGMPAGE pPageDst = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
3644 | cPagesLeft = cMmio2Pages;
|
---|
3645 | while (cPagesLeft-- > 0)
|
---|
3646 | {
|
---|
3647 | Assert(PGM_PAGE_IS_MMIO(pPageDst));
|
---|
3648 |
|
---|
3649 | RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc); RT_NOREF_PV(HCPhys);
|
---|
3650 | uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
|
---|
3651 | PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
|
---|
3652 | PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
|
---|
3653 | PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
|
---|
3654 | PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
|
---|
3655 | PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
3656 | PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
|
---|
3657 | PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
|
---|
3658 | /* NEM state is not relevant, see VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE above. */
|
---|
3659 |
|
---|
3660 | pVM->pgm.s.cZeroPages--;
|
---|
3661 | pPageSrc++;
|
---|
3662 | pPageDst++;
|
---|
3663 | }
|
---|
3664 |
|
---|
3665 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
3666 | /** @todo not entirely SMP safe; assuming for now the guest takes
|
---|
3667 | * care of this internally (not touch mapped mmio while changing the
|
---|
3668 | * mapping). */
|
---|
3669 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
3670 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
3671 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
3672 | }
|
---|
3673 | else
|
---|
3674 | {
|
---|
3675 | /*
|
---|
3676 | * No RAM range, insert the ones prepared during registration.
|
---|
3677 | */
|
---|
3678 | Log(("PGMR3PhysMmio2Map: %RGp-%RGp %s - no RAM overlap\n", GCPhys, GCPhysLast, pszDesc));
|
---|
3679 | RTGCPHYS GCPhysCur = GCPhys;
|
---|
3680 | uint32_t iChunk = 0;
|
---|
3681 | uint32_t idx = idxFirst;
|
---|
3682 | for (; iChunk < cChunks; iChunk++, idx++)
|
---|
3683 | {
|
---|
3684 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3685 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3686 | Assert(pRamRange->idRange == pMmio2->idRamRange);
|
---|
3687 | Assert(pMmio2->GCPhys == NIL_RTGCPHYS);
|
---|
3688 |
|
---|
3689 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3690 | /* Tell NEM and get the new NEM state for the pages. */
|
---|
3691 | uint8_t u2NemState = 0;
|
---|
3692 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
3693 | {
|
---|
3694 | rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhysCur, pRamRange->cb, fNemFlags, NULL /*pvRam*/, pRamRange->pbR3,
|
---|
3695 | &u2NemState, &pRamRange->uNemRange);
|
---|
3696 | AssertLogRelMsgBreak(RT_SUCCESS(rc),
|
---|
3697 | ("%RGp LB %RGp fFlags=%#x (%s)\n",
|
---|
3698 | GCPhysCur, pRamRange->cb, pMmio2->fFlags, pRamRange->pszDesc));
|
---|
3699 | pMmio2->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; /* Set this early to indicate that NEM has been notified. */
|
---|
3700 | }
|
---|
3701 | #endif
|
---|
3702 |
|
---|
3703 | /* Clear the tracking data of pages we're going to reactivate. */
|
---|
3704 | PPGMPAGE pPageSrc = &pRamRange->aPages[0];
|
---|
3705 | uint32_t cPagesLeft = pRamRange->cb >> GUEST_PAGE_SHIFT;
|
---|
3706 | while (cPagesLeft-- > 0)
|
---|
3707 | {
|
---|
3708 | PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
|
---|
3709 | PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
|
---|
3710 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3711 | PGM_PAGE_SET_NEM_STATE(pPageSrc, u2NemState);
|
---|
3712 | #endif
|
---|
3713 | pPageSrc++;
|
---|
3714 | }
|
---|
3715 |
|
---|
3716 | /* Insert the RAM range into the lookup table. */
|
---|
3717 | rc = pgmR3PhysRamRangeInsertLookup(pVM, pRamRange, GCPhysCur, &idxInsert);
|
---|
3718 | AssertRCBreak(rc);
|
---|
3719 |
|
---|
3720 | /* Mark the range as fully mapped. */
|
---|
3721 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
|
---|
3722 | pMmio2->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3723 | pMmio2->GCPhys = GCPhysCur;
|
---|
3724 |
|
---|
3725 | /* Advance. */
|
---|
3726 | GCPhysCur += pRamRange->cb;
|
---|
3727 | }
|
---|
3728 | if (RT_FAILURE(rc))
|
---|
3729 | {
|
---|
3730 | /*
|
---|
3731 | * Bail out anything we've done so far.
|
---|
3732 | */
|
---|
3733 | idxInsert -= 1;
|
---|
3734 | do
|
---|
3735 | {
|
---|
3736 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3737 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3738 |
|
---|
3739 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3740 | if ( VM_IS_NEM_ENABLED(pVM)
|
---|
3741 | && (pVM->pgm.s.aMmio2Ranges[idx].fFlags & PGMREGMMIO2RANGE_F_MAPPED))
|
---|
3742 | {
|
---|
3743 | uint8_t u2NemState = UINT8_MAX;
|
---|
3744 | NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysCur, pRamRange->cb, fNemFlags, NULL, pRamRange->pbR3,
|
---|
3745 | &u2NemState, &pRamRange->uNemRange);
|
---|
3746 | if (u2NemState != UINT8_MAX)
|
---|
3747 | pgmPhysSetNemStateForPages(pRamRange->aPages, pRamRange->cb >> GUEST_PAGE_SHIFT, u2NemState);
|
---|
3748 | }
|
---|
3749 | #endif
|
---|
3750 | if (pMmio2->GCPhys != NIL_RTGCPHYS)
|
---|
3751 | pgmR3PhysRamRangeRemoveLookup(pVM, pRamRange, &idxInsert);
|
---|
3752 |
|
---|
3753 | pMmio2->GCPhys = NIL_RTGCPHYS;
|
---|
3754 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3755 |
|
---|
3756 | idx--;
|
---|
3757 | } while (iChunk-- > 0);
|
---|
3758 | return rc;
|
---|
3759 | }
|
---|
3760 | }
|
---|
3761 |
|
---|
3762 | /*
|
---|
3763 | * If the range have dirty page monitoring enabled, enable that.
|
---|
3764 | *
|
---|
3765 | * We ignore failures here for now because if we fail, the whole mapping
|
---|
3766 | * will have to be reversed and we'll end up with nothing at all on the
|
---|
3767 | * screen and a grumpy guest, whereas if we just go on, we'll only have
|
---|
3768 | * visual distortions to gripe about. There will be something in the
|
---|
3769 | * release log.
|
---|
3770 | */
|
---|
3771 | if ( pVM->pgm.s.aMmio2Ranges[idxFirst].pPhysHandlerR3
|
---|
3772 | && (pVM->pgm.s.aMmio2Ranges[idxFirst].fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
3773 | pgmR3PhysMmio2EnableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
3774 |
|
---|
3775 | /* Flush physical page map TLB. */
|
---|
3776 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
3777 |
|
---|
3778 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3779 | /*
|
---|
3780 | * Late NEM notification (currently unused).
|
---|
3781 | */
|
---|
3782 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
3783 | {
|
---|
3784 | if (pOverlappingRange)
|
---|
3785 | {
|
---|
3786 | uint8_t * const pbRam = pOverlappingRange->pbR3 ? &pOverlappingRange->pbR3[GCPhys - pOverlappingRange->GCPhys] : NULL;
|
---|
3787 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1U,
|
---|
3788 | fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE, pbRam,
|
---|
3789 | pVM->pgm.s.aMmio2Ranges[idxFirst].pbR3, NULL /*puNemRange*/);
|
---|
3790 | }
|
---|
3791 | else
|
---|
3792 | {
|
---|
3793 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3794 | {
|
---|
3795 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3796 | Assert(pVM->pgm.s.aMmio2Ranges[idx].GCPhys == pRamRange->GCPhys);
|
---|
3797 |
|
---|
3798 | rc = NEMR3NotifyPhysMmioExMapLate(pVM, pRamRange->GCPhys, pRamRange->cb, fNemFlags, NULL /*pvRam*/,
|
---|
3799 | pRamRange->pbR3, &pRamRange->uNemRange);
|
---|
3800 | AssertRCBreak(rc);
|
---|
3801 | }
|
---|
3802 | }
|
---|
3803 | AssertLogRelRCReturnStmt(rc,
|
---|
3804 | PGMR3PhysMmio2Unmap(pVM, pVM->pgm.s.aMmio2Ranges[idxFirst].pDevInsR3, idxFirst + 1, GCPhys),
|
---|
3805 | rc);
|
---|
3806 | }
|
---|
3807 | #endif
|
---|
3808 |
|
---|
3809 | return VINF_SUCCESS;
|
---|
3810 | }
|
---|
3811 |
|
---|
3812 |
|
---|
3813 | /**
|
---|
3814 | * Maps a MMIO2 region.
|
---|
3815 | *
|
---|
3816 | * This is typically done when a guest / the bios / state loading changes the
|
---|
3817 | * PCI config. The replacing of base memory has the same restrictions as during
|
---|
3818 | * registration, of course.
|
---|
3819 | *
|
---|
3820 | * @returns VBox status code.
|
---|
3821 | *
|
---|
3822 | * @param pVM The cross context VM structure.
|
---|
3823 | * @param pDevIns The device instance owning the region.
|
---|
3824 | * @param hMmio2 The handle of the region to map.
|
---|
3825 | * @param GCPhys The guest-physical address to be remapped.
|
---|
3826 | */
|
---|
3827 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
|
---|
3828 | {
|
---|
3829 | /*
|
---|
3830 | * Validate input.
|
---|
3831 | */
|
---|
3832 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3833 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3834 | AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
|
---|
3835 | AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
|
---|
3836 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
3837 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
3838 |
|
---|
3839 | uint32_t cChunks = 0;
|
---|
3840 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
3841 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
3842 |
|
---|
3843 | /* Gather the full range size so we can validate the mapping address properly. */
|
---|
3844 | RTGCPHYS cbRange = 0;
|
---|
3845 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3846 | cbRange += pVM->pgm.s.apMmio2RamRanges[idx]->cb;
|
---|
3847 |
|
---|
3848 | RTGCPHYS const GCPhysLast = GCPhys + cbRange - 1;
|
---|
3849 | AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
3850 |
|
---|
3851 | /*
|
---|
3852 | * Take the PGM lock and call worker.
|
---|
3853 | */
|
---|
3854 | int rc = PGM_LOCK(pVM);
|
---|
3855 | AssertRCReturn(rc, rc);
|
---|
3856 |
|
---|
3857 | rc = pgmR3PhysMmio2MapLocked(pVM, idxFirst, cChunks, GCPhys, GCPhysLast);
|
---|
3858 | #ifdef VBOX_STRICT
|
---|
3859 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
3860 | #endif
|
---|
3861 |
|
---|
3862 | PGM_UNLOCK(pVM);
|
---|
3863 | return rc;
|
---|
3864 | }
|
---|
3865 |
|
---|
3866 |
|
---|
3867 | /**
|
---|
3868 | * Worker form PGMR3PhysMmio2Map.
|
---|
3869 | */
|
---|
3870 | static int pgmR3PhysMmio2UnmapLocked(PVM pVM, uint32_t const idxFirst, uint32_t const cChunks, RTGCPHYS const GCPhysIn)
|
---|
3871 | {
|
---|
3872 | /*
|
---|
3873 | * Validate input.
|
---|
3874 | */
|
---|
3875 | RTGCPHYS cbRange = 0;
|
---|
3876 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3877 | {
|
---|
3878 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3879 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3880 | AssertReturn(pMmio2->idRamRange == pRamRange->idRange, VERR_INTERNAL_ERROR_3);
|
---|
3881 | AssertReturn(pMmio2->fFlags & PGMREGMMIO2RANGE_F_MAPPED, VERR_WRONG_ORDER);
|
---|
3882 | AssertReturn(pMmio2->GCPhys != NIL_RTGCPHYS, VERR_WRONG_ORDER);
|
---|
3883 | cbRange += pRamRange->cb;
|
---|
3884 | }
|
---|
3885 |
|
---|
3886 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
3887 | PPGMRAMRANGE const pFirstRamRange = pVM->pgm.s.apMmio2RamRanges[idxFirst];
|
---|
3888 | const char * const pszDesc = pFirstRamRange->pszDesc;
|
---|
3889 | AssertLogRelMsgReturn(GCPhysIn == pFirstMmio2->GCPhys || GCPhysIn == NIL_RTGCPHYS,
|
---|
3890 | ("GCPhys=%RGp, actual address is %RGp\n", GCPhysIn, pFirstMmio2->GCPhys),
|
---|
3891 | VERR_MISMATCH);
|
---|
3892 | RTGCPHYS const GCPhys = pFirstMmio2->GCPhys; /* (it's always NIL_RTGCPHYS) */
|
---|
3893 | Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n", GCPhys, GCPhys + cbRange - 1U, pszDesc));
|
---|
3894 |
|
---|
3895 | uint16_t const fOldFlags = pFirstMmio2->fFlags;
|
---|
3896 | Assert(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3897 |
|
---|
3898 | /* Find the first entry in the lookup table and verify the overlapping flag. */
|
---|
3899 | uint32_t idxLookup = pgmR3PhysRamRangeFindOverlappingIndex(pVM, GCPhys, GCPhys + pFirstRamRange->cb - 1U);
|
---|
3900 | AssertLogRelMsgReturn(idxLookup < pVM->pgm.s.RamRangeUnion.cLookupEntries,
|
---|
3901 | ("MMIO2 range not found at %RGp LB %RGp in the lookup table! (%s)\n",
|
---|
3902 | GCPhys, pFirstRamRange->cb, pszDesc),
|
---|
3903 | VERR_INTERNAL_ERROR_2);
|
---|
3904 |
|
---|
3905 | uint32_t const idLookupRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
3906 | AssertLogRelReturn(idLookupRange != 0 && idLookupRange <= pVM->pgm.s.idRamRangeMax, VERR_INTERNAL_ERROR_5);
|
---|
3907 | PPGMRAMRANGE const pLookupRange = pVM->pgm.s.apRamRanges[idLookupRange];
|
---|
3908 | AssertLogRelReturn(pLookupRange, VERR_INTERNAL_ERROR_3);
|
---|
3909 |
|
---|
3910 | AssertLogRelMsgReturn(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING
|
---|
3911 | ? pLookupRange != pFirstRamRange : pLookupRange == pFirstRamRange,
|
---|
3912 | ("MMIO2 unmap mixup at %RGp LB %RGp fl=%#x (%s) vs %RGp LB %RGp (%s)\n",
|
---|
3913 | GCPhys, cbRange, fOldFlags, pszDesc, pLookupRange->GCPhys, pLookupRange->cb, pLookupRange->pszDesc),
|
---|
3914 | VERR_INTERNAL_ERROR_4);
|
---|
3915 |
|
---|
3916 | /*
|
---|
3917 | * If monitoring dirty pages, we must deregister the handlers first.
|
---|
3918 | */
|
---|
3919 | if ( pFirstMmio2->pPhysHandlerR3
|
---|
3920 | && (fOldFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
3921 | pgmR3PhysMmio2DisableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
3922 |
|
---|
3923 | /*
|
---|
3924 | * Unmap it.
|
---|
3925 | */
|
---|
3926 | int rcRet = VINF_SUCCESS;
|
---|
3927 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3928 | uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
|
---|
3929 | | (fOldFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
|
---|
3930 | ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
|
---|
3931 | #endif
|
---|
3932 | if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
|
---|
3933 | {
|
---|
3934 | /*
|
---|
3935 | * We've replaced RAM, replace with zero pages.
|
---|
3936 | *
|
---|
3937 | * Note! This is where we might differ a little from a real system, because
|
---|
3938 | * it's likely to just show the RAM pages as they were before the
|
---|
3939 | * MMIO2 region was mapped here.
|
---|
3940 | */
|
---|
3941 | /* Only one chunk allowed when overlapping! */
|
---|
3942 | Assert(cChunks == 1);
|
---|
3943 | /* No NEM stuff should ever get here, see assertion in the mapping function. */
|
---|
3944 | AssertReturn(!VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
3945 |
|
---|
3946 | /* Restore the RAM pages we've replaced. */
|
---|
3947 | PPGMPAGE pPageDst = &pLookupRange->aPages[(pFirstRamRange->GCPhys - pLookupRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
3948 | uint32_t cPagesLeft = pFirstRamRange->cb >> GUEST_PAGE_SHIFT;
|
---|
3949 | pVM->pgm.s.cZeroPages += cPagesLeft;
|
---|
3950 | while (cPagesLeft-- > 0)
|
---|
3951 | {
|
---|
3952 | PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
|
---|
3953 | pPageDst++;
|
---|
3954 | }
|
---|
3955 |
|
---|
3956 | /* Update range state. */
|
---|
3957 | pFirstMmio2->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3958 | pFirstMmio2->GCPhys = NIL_RTGCPHYS;
|
---|
3959 | Assert(pFirstRamRange->GCPhys == NIL_RTGCPHYS);
|
---|
3960 | Assert(pFirstRamRange->GCPhysLast == NIL_RTGCPHYS);
|
---|
3961 | }
|
---|
3962 | else
|
---|
3963 | {
|
---|
3964 | /*
|
---|
3965 | * Unlink the chunks related to the MMIO/MMIO2 region.
|
---|
3966 | */
|
---|
3967 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
3968 | {
|
---|
3969 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
3970 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
3971 | Assert(pMmio2->idRamRange == pRamRange->idRange);
|
---|
3972 | Assert(pMmio2->GCPhys == pRamRange->GCPhys);
|
---|
3973 |
|
---|
3974 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
3975 | if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. */
|
---|
3976 | {
|
---|
3977 | uint8_t u2State = UINT8_MAX;
|
---|
3978 | int rc = NEMR3NotifyPhysMmioExUnmap(pVM, pRamRange->GCPhys, pRamRange->cb, fNemFlags,
|
---|
3979 | NULL, pMmio2->pbR3, &u2State, &pRamRange->uNemRange);
|
---|
3980 | AssertLogRelMsgStmt(RT_SUCCESS(rc),
|
---|
3981 | ("NEMR3NotifyPhysMmioExUnmap failed: %Rrc - GCPhys=RGp LB %RGp fNemFlags=%#x pbR3=%p %s\n",
|
---|
3982 | rc, pRamRange->GCPhys, pRamRange->cb, fNemFlags, pMmio2->pbR3, pRamRange->pszDesc),
|
---|
3983 | rcRet = rc);
|
---|
3984 | if (u2State != UINT8_MAX)
|
---|
3985 | pgmPhysSetNemStateForPages(pRamRange->aPages, pRamRange->cb >> GUEST_PAGE_SHIFT, u2State);
|
---|
3986 | }
|
---|
3987 | #endif
|
---|
3988 |
|
---|
3989 | int rc = pgmR3PhysRamRangeRemoveLookup(pVM, pRamRange, &idxLookup);
|
---|
3990 | AssertLogRelMsgStmt(RT_SUCCESS(rc),
|
---|
3991 | ("pgmR3PhysRamRangeRemoveLookup failed: %Rrc - GCPhys=%RGp LB %RGp %s\n",
|
---|
3992 | rc, pRamRange->GCPhys, pRamRange->cb, pRamRange->pszDesc),
|
---|
3993 | rcRet = rc);
|
---|
3994 |
|
---|
3995 | pMmio2->GCPhys = NIL_RTGCPHYS;
|
---|
3996 | pMmio2->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3997 | Assert(pRamRange->GCPhys == NIL_RTGCPHYS);
|
---|
3998 | Assert(pRamRange->GCPhysLast == NIL_RTGCPHYS);
|
---|
3999 | }
|
---|
4000 | }
|
---|
4001 |
|
---|
4002 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
4003 | /** @todo not entirely SMP safe; assuming for now the guest takes care
|
---|
4004 | * of this internally (not touch mapped mmio while changing the
|
---|
4005 | * mapping). */
|
---|
4006 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4007 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
4008 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
4009 |
|
---|
4010 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
4011 | /* pgmPhysInvalidRamRangeTlbs(pVM); - not necessary */
|
---|
4012 |
|
---|
4013 | return rcRet;
|
---|
4014 | }
|
---|
4015 |
|
---|
4016 |
|
---|
4017 | /**
|
---|
4018 | * Unmaps an MMIO2 region.
|
---|
4019 | *
|
---|
4020 | * This is typically done when a guest / the bios / state loading changes the
|
---|
4021 | * PCI config. The replacing of base memory has the same restrictions as during
|
---|
4022 | * registration, of course.
|
---|
4023 | */
|
---|
4024 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
|
---|
4025 | {
|
---|
4026 | /*
|
---|
4027 | * Validate input
|
---|
4028 | */
|
---|
4029 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
4030 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
4031 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
4032 | if (GCPhys != NIL_RTGCPHYS)
|
---|
4033 | {
|
---|
4034 | AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
|
---|
4035 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
4036 | }
|
---|
4037 |
|
---|
4038 | uint32_t cChunks = 0;
|
---|
4039 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4040 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4041 |
|
---|
4042 |
|
---|
4043 | /*
|
---|
4044 | * Take the PGM lock and call worker.
|
---|
4045 | */
|
---|
4046 | int rc = PGM_LOCK(pVM);
|
---|
4047 | AssertRCReturn(rc, rc);
|
---|
4048 |
|
---|
4049 | rc = pgmR3PhysMmio2UnmapLocked(pVM, idxFirst, cChunks, GCPhys);
|
---|
4050 | #ifdef VBOX_STRICT
|
---|
4051 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
4052 | #endif
|
---|
4053 |
|
---|
4054 | PGM_UNLOCK(pVM);
|
---|
4055 | return rc;
|
---|
4056 | }
|
---|
4057 |
|
---|
4058 |
|
---|
4059 | /**
|
---|
4060 | * Reduces the mapping size of a MMIO2 region.
|
---|
4061 | *
|
---|
4062 | * This is mainly for dealing with old saved states after changing the default
|
---|
4063 | * size of a mapping region. See PDMDevHlpMmio2Reduce and
|
---|
4064 | * PDMPCIDEV::pfnRegionLoadChangeHookR3.
|
---|
4065 | *
|
---|
4066 | * The region must not currently be mapped when making this call. The VM state
|
---|
4067 | * must be state restore or VM construction.
|
---|
4068 | *
|
---|
4069 | * @returns VBox status code.
|
---|
4070 | * @param pVM The cross context VM structure.
|
---|
4071 | * @param pDevIns The device instance owning the region.
|
---|
4072 | * @param hMmio2 The handle of the region to reduce.
|
---|
4073 | * @param cbRegion The new mapping size.
|
---|
4074 | */
|
---|
4075 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
|
---|
4076 | {
|
---|
4077 | /*
|
---|
4078 | * Validate input
|
---|
4079 | */
|
---|
4080 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
4081 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE && hMmio2 != 0 && hMmio2 <= RT_ELEMENTS(pVM->pgm.s.aMmio2Ranges),
|
---|
4082 | VERR_INVALID_HANDLE);
|
---|
4083 | AssertReturn(cbRegion >= GUEST_PAGE_SIZE, VERR_INVALID_PARAMETER);
|
---|
4084 | AssertReturn(!(cbRegion & GUEST_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
|
---|
4085 |
|
---|
4086 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
4087 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
4088 |
|
---|
4089 | VMSTATE const enmVmState = VMR3GetState(pVM);
|
---|
4090 | AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
|
---|
4091 | || enmVmState == VMSTATE_LOADING,
|
---|
4092 | ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
|
---|
4093 | VERR_VM_INVALID_VM_STATE);
|
---|
4094 |
|
---|
4095 | /*
|
---|
4096 | * Grab the PGM lock and validate the request properly.
|
---|
4097 | */
|
---|
4098 | int rc = PGM_LOCK(pVM);
|
---|
4099 | AssertRCReturn(rc, rc);
|
---|
4100 |
|
---|
4101 | uint32_t cChunks = 0;
|
---|
4102 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4103 | if ((int32_t)idxFirst >= 0)
|
---|
4104 | {
|
---|
4105 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
4106 | PPGMRAMRANGE const pFirstRamRange = pVM->pgm.s.apMmio2RamRanges[idxFirst];
|
---|
4107 | if ( !(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
4108 | && pFirstMmio2->GCPhys == NIL_RTGCPHYS)
|
---|
4109 | {
|
---|
4110 | /*
|
---|
4111 | * NOTE! Current implementation does not support multiple ranges.
|
---|
4112 | * Implement when there is a real world need and thus a testcase.
|
---|
4113 | */
|
---|
4114 | if (cChunks == 1)
|
---|
4115 | {
|
---|
4116 | /*
|
---|
4117 | * The request has to be within the initial size.
|
---|
4118 | */
|
---|
4119 | if (cbRegion <= pFirstMmio2->cbReal)
|
---|
4120 | {
|
---|
4121 | /*
|
---|
4122 | * All we have to do is modify the size stored in the RAM range,
|
---|
4123 | * as it is the one used when mapping it and such.
|
---|
4124 | * The two page counts stored in PGMR0PERVM remain unchanged.
|
---|
4125 | */
|
---|
4126 | Log(("PGMR3PhysMmio2Reduce: %s changes from %#RGp bytes (%#RGp) to %#RGp bytes.\n",
|
---|
4127 | pFirstRamRange->pszDesc, pFirstRamRange->cb, pFirstMmio2->cbReal, cbRegion));
|
---|
4128 | pFirstRamRange->cb = cbRegion;
|
---|
4129 | rc = VINF_SUCCESS;
|
---|
4130 | }
|
---|
4131 | else
|
---|
4132 | {
|
---|
4133 | AssertLogRelMsgFailed(("MMIO2/%s: cbRegion=%#RGp > cbReal=%#RGp\n",
|
---|
4134 | pFirstRamRange->pszDesc, cbRegion, pFirstMmio2->cbReal));
|
---|
4135 | rc = VERR_OUT_OF_RANGE;
|
---|
4136 | }
|
---|
4137 | }
|
---|
4138 | else
|
---|
4139 | {
|
---|
4140 | AssertLogRelMsgFailed(("MMIO2/%s: more than one chunk: %d (flags=%#x)\n",
|
---|
4141 | pFirstRamRange->pszDesc, cChunks, pFirstMmio2->fFlags));
|
---|
4142 | rc = VERR_NOT_SUPPORTED;
|
---|
4143 | }
|
---|
4144 | }
|
---|
4145 | else
|
---|
4146 | {
|
---|
4147 | AssertLogRelMsgFailed(("MMIO2/%s: cannot change size of mapped range: %RGp..%RGp\n", pFirstRamRange->pszDesc,
|
---|
4148 | pFirstMmio2->GCPhys, pFirstMmio2->GCPhys + pFirstRamRange->cb - 1U));
|
---|
4149 | rc = VERR_WRONG_ORDER;
|
---|
4150 | }
|
---|
4151 | }
|
---|
4152 | else
|
---|
4153 | rc = (int32_t)idxFirst;
|
---|
4154 |
|
---|
4155 | PGM_UNLOCK(pVM);
|
---|
4156 | return rc;
|
---|
4157 | }
|
---|
4158 |
|
---|
4159 |
|
---|
4160 | /**
|
---|
4161 | * Validates @a hMmio2, making sure it belongs to @a pDevIns.
|
---|
4162 | *
|
---|
4163 | * @returns VBox status code.
|
---|
4164 | * @param pVM The cross context VM structure.
|
---|
4165 | * @param pDevIns The device which allegedly owns @a hMmio2.
|
---|
4166 | * @param hMmio2 The handle to validate.
|
---|
4167 | */
|
---|
4168 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
4169 | {
|
---|
4170 | /*
|
---|
4171 | * Validate input
|
---|
4172 | */
|
---|
4173 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
4174 | AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
|
---|
4175 |
|
---|
4176 | /*
|
---|
4177 | * Just do this the simple way.
|
---|
4178 | */
|
---|
4179 | int rc = PGM_LOCK_VOID(pVM);
|
---|
4180 | AssertRCReturn(rc, rc);
|
---|
4181 | uint32_t cChunks;
|
---|
4182 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4183 | PGM_UNLOCK(pVM);
|
---|
4184 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4185 | return VINF_SUCCESS;
|
---|
4186 | }
|
---|
4187 |
|
---|
4188 |
|
---|
4189 | /**
|
---|
4190 | * Gets the mapping address of an MMIO2 region.
|
---|
4191 | *
|
---|
4192 | * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
|
---|
4193 | *
|
---|
4194 | * @param pVM The cross context VM structure.
|
---|
4195 | * @param pDevIns The device owning the MMIO2 handle.
|
---|
4196 | * @param hMmio2 The region handle.
|
---|
4197 | */
|
---|
4198 | VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
4199 | {
|
---|
4200 | RTGCPHYS GCPhysRet = NIL_RTGCPHYS;
|
---|
4201 |
|
---|
4202 | int rc = PGM_LOCK_VOID(pVM);
|
---|
4203 | AssertRCReturn(rc, NIL_RTGCPHYS);
|
---|
4204 |
|
---|
4205 | uint32_t cChunks;
|
---|
4206 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4207 | if ((int32_t)idxFirst >= 0)
|
---|
4208 | GCPhysRet = pVM->pgm.s.aMmio2Ranges[idxFirst].GCPhys;
|
---|
4209 |
|
---|
4210 | PGM_UNLOCK(pVM);
|
---|
4211 | return GCPhysRet;
|
---|
4212 | }
|
---|
4213 |
|
---|
4214 |
|
---|
4215 | /**
|
---|
4216 | * Worker for PGMR3PhysMmio2QueryAndResetDirtyBitmap.
|
---|
4217 | *
|
---|
4218 | * Called holding the PGM lock.
|
---|
4219 | */
|
---|
4220 | static int pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
|
---|
4221 | void *pvBitmap, size_t cbBitmap)
|
---|
4222 | {
|
---|
4223 | /*
|
---|
4224 | * Continue validation.
|
---|
4225 | */
|
---|
4226 | uint32_t cChunks;
|
---|
4227 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4228 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4229 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
4230 | AssertReturn(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES, VERR_INVALID_FUNCTION);
|
---|
4231 |
|
---|
4232 | int rc = VINF_SUCCESS;
|
---|
4233 | if (cbBitmap || pvBitmap)
|
---|
4234 | {
|
---|
4235 | /*
|
---|
4236 | * Check the bitmap size and collect all the dirty flags.
|
---|
4237 | */
|
---|
4238 | RTGCPHYS cbTotal = 0;
|
---|
4239 | uint16_t fTotalDirty = 0;
|
---|
4240 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4241 | {
|
---|
4242 | /* Not using cbReal here, because NEM is not in on the creating, only the mapping. */
|
---|
4243 | cbTotal += pVM->pgm.s.apMmio2RamRanges[idx]->cb;
|
---|
4244 | fTotalDirty |= pVM->pgm.s.aMmio2Ranges[idx].fFlags;
|
---|
4245 | }
|
---|
4246 | size_t const cbTotalBitmap = RT_ALIGN_T(cbTotal, GUEST_PAGE_SIZE * 64, RTGCPHYS) / GUEST_PAGE_SIZE / 8;
|
---|
4247 |
|
---|
4248 | AssertPtrReturn(pvBitmap, VERR_INVALID_POINTER);
|
---|
4249 | AssertReturn(RT_ALIGN_P(pvBitmap, sizeof(uint64_t)) == pvBitmap, VERR_INVALID_POINTER);
|
---|
4250 | AssertReturn(cbBitmap == cbTotalBitmap, VERR_INVALID_PARAMETER);
|
---|
4251 |
|
---|
4252 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4253 | /*
|
---|
4254 | * If there is no physical handler we must be in NEM mode and NEM
|
---|
4255 | * taking care of the dirty bit collecting.
|
---|
4256 | */
|
---|
4257 | if (pFirstMmio2->pPhysHandlerR3 == NULL)
|
---|
4258 | {
|
---|
4259 | /** @todo This does not integrate at all with --execute-all-in-iem, leaving the
|
---|
4260 | * screen blank when using it together with --driverless. Fixing this won't be
|
---|
4261 | * entirely easy as we take the PGM_PAGE_HNDL_PHYS_STATE_DISABLED page status to
|
---|
4262 | * mean a dirty page. */
|
---|
4263 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
4264 | uint8_t *pbBitmap = (uint8_t *)pvBitmap;
|
---|
4265 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4266 | {
|
---|
4267 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
4268 | size_t const cbBitmapChunk = (pRamRange->cb / GUEST_PAGE_SIZE + 7) / 8;
|
---|
4269 | Assert((RTGCPHYS)cbBitmapChunk * GUEST_PAGE_SIZE * 8 == pRamRange->cb);
|
---|
4270 | Assert(pRamRange->GCPhys == pVM->pgm.s.aMmio2Ranges[idx].GCPhys); /* (No MMIO2 inside RAM in NEM mode!)*/
|
---|
4271 | int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pRamRange->GCPhys, pRamRange->cb,
|
---|
4272 | pRamRange->uNemRange, pbBitmap, cbBitmapChunk);
|
---|
4273 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4274 | rc = rc2;
|
---|
4275 | pbBitmap += pRamRange->cb / GUEST_PAGE_SIZE / 8;
|
---|
4276 | }
|
---|
4277 | }
|
---|
4278 | else
|
---|
4279 | #endif
|
---|
4280 | if (fTotalDirty & PGMREGMMIO2RANGE_F_IS_DIRTY)
|
---|
4281 | {
|
---|
4282 | if ( (pFirstMmio2->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4283 | == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4284 | {
|
---|
4285 | /*
|
---|
4286 | * Reset each chunk, gathering dirty bits.
|
---|
4287 | */
|
---|
4288 | RT_BZERO(pvBitmap, cbBitmap); /* simpler for now. */
|
---|
4289 | for (uint32_t iChunk = 0, idx = idxFirst, iPageNo = 0; iChunk < cChunks; iChunk++, idx++)
|
---|
4290 | {
|
---|
4291 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
4292 | if (pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
|
---|
4293 | {
|
---|
4294 | int rc2 = pgmHandlerPhysicalResetMmio2WithBitmap(pVM, pMmio2->GCPhys, pvBitmap, iPageNo);
|
---|
4295 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4296 | rc = rc2;
|
---|
4297 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
|
---|
4298 | }
|
---|
4299 | iPageNo += pVM->pgm.s.apMmio2RamRanges[idx]->cb >> GUEST_PAGE_SHIFT;
|
---|
4300 | }
|
---|
4301 | }
|
---|
4302 | else
|
---|
4303 | {
|
---|
4304 | /*
|
---|
4305 | * If not mapped or tracking is disabled, we return the
|
---|
4306 | * PGMREGMMIO2RANGE_F_IS_DIRTY status for all pages. We cannot
|
---|
4307 | * get more accurate data than that after unmapping or disabling.
|
---|
4308 | */
|
---|
4309 | RT_BZERO(pvBitmap, cbBitmap);
|
---|
4310 | for (uint32_t iChunk = 0, idx = idxFirst, iPageNo = 0; iChunk < cChunks; iChunk++, idx++)
|
---|
4311 | {
|
---|
4312 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
4313 | PPGMREGMMIO2RANGE const pMmio2 = &pVM->pgm.s.aMmio2Ranges[idx];
|
---|
4314 | if (pMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
|
---|
4315 | {
|
---|
4316 | ASMBitSetRange(pvBitmap, iPageNo, iPageNo + (pRamRange->cb >> GUEST_PAGE_SHIFT));
|
---|
4317 | pMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
|
---|
4318 | }
|
---|
4319 | iPageNo += pRamRange->cb >> GUEST_PAGE_SHIFT;
|
---|
4320 | }
|
---|
4321 | }
|
---|
4322 | }
|
---|
4323 | /*
|
---|
4324 | * No dirty chunks.
|
---|
4325 | */
|
---|
4326 | else
|
---|
4327 | RT_BZERO(pvBitmap, cbBitmap);
|
---|
4328 | }
|
---|
4329 | /*
|
---|
4330 | * No bitmap. Reset the region if tracking is currently enabled.
|
---|
4331 | */
|
---|
4332 | else if ( (pFirstMmio2->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4333 | == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4334 | {
|
---|
4335 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4336 | if (pFirstMmio2->pPhysHandlerR3 == NULL)
|
---|
4337 | {
|
---|
4338 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
4339 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4340 | {
|
---|
4341 | PPGMRAMRANGE const pRamRange = pVM->pgm.s.apMmio2RamRanges[idx];
|
---|
4342 | Assert(pRamRange->GCPhys == pVM->pgm.s.aMmio2Ranges[idx].GCPhys); /* (No MMIO2 inside RAM in NEM mode!)*/
|
---|
4343 | int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pRamRange->GCPhys, pRamRange->cb,
|
---|
4344 | pRamRange->uNemRange, NULL, 0);
|
---|
4345 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4346 | rc = rc2;
|
---|
4347 | }
|
---|
4348 | }
|
---|
4349 | else
|
---|
4350 | #endif
|
---|
4351 | {
|
---|
4352 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4353 | {
|
---|
4354 | pVM->pgm.s.aMmio2Ranges[idx].fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
|
---|
4355 | int rc2 = PGMHandlerPhysicalReset(pVM, pVM->pgm.s.aMmio2Ranges[idx].GCPhys);
|
---|
4356 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
4357 | rc = rc2;
|
---|
4358 | }
|
---|
4359 | }
|
---|
4360 | }
|
---|
4361 |
|
---|
4362 | return rc;
|
---|
4363 | }
|
---|
4364 |
|
---|
4365 |
|
---|
4366 | /**
|
---|
4367 | * Queries the dirty page bitmap and resets the monitoring.
|
---|
4368 | *
|
---|
4369 | * The PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES flag must be specified when
|
---|
4370 | * creating the range for this to work.
|
---|
4371 | *
|
---|
4372 | * @returns VBox status code.
|
---|
4373 | * @retval VERR_INVALID_FUNCTION if not created using
|
---|
4374 | * PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES.
|
---|
4375 | * @param pVM The cross context VM structure.
|
---|
4376 | * @param pDevIns The device owning the MMIO2 handle.
|
---|
4377 | * @param hMmio2 The region handle.
|
---|
4378 | * @param pvBitmap The output bitmap. Must be 8-byte aligned. Ignored
|
---|
4379 | * when @a cbBitmap is zero.
|
---|
4380 | * @param cbBitmap The size of the bitmap. Must be the size of the whole
|
---|
4381 | * MMIO2 range, rounded up to the nearest 8 bytes.
|
---|
4382 | * When zero only a reset is done.
|
---|
4383 | */
|
---|
4384 | VMMR3_INT_DECL(int) PGMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
|
---|
4385 | void *pvBitmap, size_t cbBitmap)
|
---|
4386 | {
|
---|
4387 | /*
|
---|
4388 | * Do some basic validation before grapping the PGM lock and continuing.
|
---|
4389 | */
|
---|
4390 | AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
|
---|
4391 | AssertReturn(RT_ALIGN_Z(cbBitmap, sizeof(uint64_t)) == cbBitmap, VERR_INVALID_PARAMETER);
|
---|
4392 | int rc = PGM_LOCK(pVM);
|
---|
4393 | if (RT_SUCCESS(rc))
|
---|
4394 | {
|
---|
4395 | STAM_PROFILE_START(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
|
---|
4396 | rc = pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(pVM, pDevIns, hMmio2, pvBitmap, cbBitmap);
|
---|
4397 | STAM_PROFILE_STOP(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
|
---|
4398 | PGM_UNLOCK(pVM);
|
---|
4399 | }
|
---|
4400 | return rc;
|
---|
4401 | }
|
---|
4402 |
|
---|
4403 |
|
---|
4404 | /**
|
---|
4405 | * Worker for PGMR3PhysMmio2ControlDirtyPageTracking
|
---|
4406 | *
|
---|
4407 | * Called owning the PGM lock.
|
---|
4408 | */
|
---|
4409 | static int pgmR3PhysMmio2ControlDirtyPageTrackingLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
|
---|
4410 | {
|
---|
4411 | /*
|
---|
4412 | * Continue validation.
|
---|
4413 | */
|
---|
4414 | uint32_t cChunks;
|
---|
4415 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4416 | AssertReturn((int32_t)idxFirst >= 0, (int32_t)idxFirst);
|
---|
4417 | PPGMREGMMIO2RANGE const pFirstMmio2 = &pVM->pgm.s.aMmio2Ranges[idxFirst];
|
---|
4418 | AssertReturn(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES, VERR_INVALID_FUNCTION);
|
---|
4419 |
|
---|
4420 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4421 | /*
|
---|
4422 | * This is a nop if NEM is responsible for doing the tracking, we simply
|
---|
4423 | * leave the tracking on all the time there.
|
---|
4424 | */
|
---|
4425 | if (pFirstMmio2->pPhysHandlerR3 == NULL)
|
---|
4426 | {
|
---|
4427 | AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
|
---|
4428 | return VINF_SUCCESS;
|
---|
4429 | }
|
---|
4430 | #endif
|
---|
4431 |
|
---|
4432 | /*
|
---|
4433 | * Anything needing doing?
|
---|
4434 | */
|
---|
4435 | if (fEnabled != RT_BOOL(pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
|
---|
4436 | {
|
---|
4437 | LogFlowFunc(("fEnabled=%RTbool %s\n", fEnabled, pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc));
|
---|
4438 |
|
---|
4439 | /*
|
---|
4440 | * Update the PGMREGMMIO2RANGE_F_TRACKING_ENABLED flag.
|
---|
4441 | */
|
---|
4442 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4443 | if (fEnabled)
|
---|
4444 | pVM->pgm.s.aMmio2Ranges[idx].fFlags |= PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
|
---|
4445 | else
|
---|
4446 | pVM->pgm.s.aMmio2Ranges[idx].fFlags &= ~PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
|
---|
4447 |
|
---|
4448 | /*
|
---|
4449 | * Enable/disable handlers if currently mapped.
|
---|
4450 | *
|
---|
4451 | * We ignore status codes here as we've already changed the flags and
|
---|
4452 | * returning a failure status now would be confusing. Besides, the two
|
---|
4453 | * functions will continue past failures. As argued in the mapping code,
|
---|
4454 | * it's in the release log.
|
---|
4455 | */
|
---|
4456 | if (pFirstMmio2->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
4457 | {
|
---|
4458 | if (fEnabled)
|
---|
4459 | pgmR3PhysMmio2EnableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
4460 | else
|
---|
4461 | pgmR3PhysMmio2DisableDirtyPageTracing(pVM, idxFirst, cChunks);
|
---|
4462 | }
|
---|
4463 | }
|
---|
4464 | else
|
---|
4465 | LogFlowFunc(("fEnabled=%RTbool %s - no change\n", fEnabled, pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc));
|
---|
4466 |
|
---|
4467 | return VINF_SUCCESS;
|
---|
4468 | }
|
---|
4469 |
|
---|
4470 |
|
---|
4471 | /**
|
---|
4472 | * Controls the dirty page tracking for an MMIO2 range.
|
---|
4473 | *
|
---|
4474 | * @returns VBox status code.
|
---|
4475 | * @param pVM The cross context VM structure.
|
---|
4476 | * @param pDevIns The device owning the MMIO2 memory.
|
---|
4477 | * @param hMmio2 The handle of the region.
|
---|
4478 | * @param fEnabled The new tracking state.
|
---|
4479 | */
|
---|
4480 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ControlDirtyPageTracking(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
|
---|
4481 | {
|
---|
4482 | /*
|
---|
4483 | * Do some basic validation before grapping the PGM lock and continuing.
|
---|
4484 | */
|
---|
4485 | AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
|
---|
4486 | int rc = PGM_LOCK(pVM);
|
---|
4487 | if (RT_SUCCESS(rc))
|
---|
4488 | {
|
---|
4489 | rc = pgmR3PhysMmio2ControlDirtyPageTrackingLocked(pVM, pDevIns, hMmio2, fEnabled);
|
---|
4490 | PGM_UNLOCK(pVM);
|
---|
4491 | }
|
---|
4492 | return rc;
|
---|
4493 | }
|
---|
4494 |
|
---|
4495 |
|
---|
4496 | /**
|
---|
4497 | * Changes the region number of an MMIO2 region.
|
---|
4498 | *
|
---|
4499 | * This is only for dealing with save state issues, nothing else.
|
---|
4500 | *
|
---|
4501 | * @return VBox status code.
|
---|
4502 | *
|
---|
4503 | * @param pVM The cross context VM structure.
|
---|
4504 | * @param pDevIns The device owning the MMIO2 memory.
|
---|
4505 | * @param hMmio2 The handle of the region.
|
---|
4506 | * @param iNewRegion The new region index.
|
---|
4507 | *
|
---|
4508 | * @thread EMT(0)
|
---|
4509 | * @sa @bugref{9359}
|
---|
4510 | */
|
---|
4511 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
|
---|
4512 | {
|
---|
4513 | /*
|
---|
4514 | * Validate input.
|
---|
4515 | */
|
---|
4516 | VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
4517 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
|
---|
4518 | AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
4519 |
|
---|
4520 | int rc = PGM_LOCK(pVM);
|
---|
4521 | AssertRCReturn(rc, rc);
|
---|
4522 |
|
---|
4523 | /* Validate and resolve the handle. */
|
---|
4524 | uint32_t cChunks;
|
---|
4525 | uint32_t const idxFirst = pgmR3PhysMmio2ResolveHandle(pVM, pDevIns, hMmio2, &cChunks);
|
---|
4526 | if ((int32_t)idxFirst >= 0)
|
---|
4527 | {
|
---|
4528 | /* Check that the new range number is unused. */
|
---|
4529 | PPGMREGMMIO2RANGE const pConflict = pgmR3PhysMmio2Find(pVM, pDevIns, pVM->pgm.s.aMmio2Ranges[idxFirst].iSubDev,
|
---|
4530 | iNewRegion);
|
---|
4531 | if (!pConflict)
|
---|
4532 | {
|
---|
4533 | /*
|
---|
4534 | * Make the change.
|
---|
4535 | */
|
---|
4536 | for (uint32_t iChunk = 0, idx = idxFirst; iChunk < cChunks; iChunk++, idx++)
|
---|
4537 | pVM->pgm.s.aMmio2Ranges[idx].iRegion = (uint8_t)iNewRegion;
|
---|
4538 | rc = VINF_SUCCESS;
|
---|
4539 | }
|
---|
4540 | else
|
---|
4541 | {
|
---|
4542 | AssertLogRelMsgFailed(("MMIO2/%s: iNewRegion=%d conflicts with %s\n", pVM->pgm.s.apMmio2RamRanges[idxFirst]->pszDesc,
|
---|
4543 | iNewRegion, pVM->pgm.s.apMmio2RamRanges[pConflict->idRamRange]->pszDesc));
|
---|
4544 | rc = VERR_RESOURCE_IN_USE;
|
---|
4545 | }
|
---|
4546 | }
|
---|
4547 | else
|
---|
4548 | rc = (int32_t)idxFirst;
|
---|
4549 |
|
---|
4550 | PGM_UNLOCK(pVM);
|
---|
4551 | return rc;
|
---|
4552 | }
|
---|
4553 |
|
---|
4554 |
|
---|
4555 |
|
---|
4556 | /*********************************************************************************************************************************
|
---|
4557 | * ROM *
|
---|
4558 | *********************************************************************************************************************************/
|
---|
4559 |
|
---|
4560 | /**
|
---|
4561 | * Worker for PGMR3PhysRomRegister.
|
---|
4562 | *
|
---|
4563 | * This is here to simplify lock management, i.e. the caller does all the
|
---|
4564 | * locking and we can simply return without needing to remember to unlock
|
---|
4565 | * anything first.
|
---|
4566 | *
|
---|
4567 | * @returns VBox status code.
|
---|
4568 | * @param pVM The cross context VM structure.
|
---|
4569 | * @param pDevIns The device instance owning the ROM.
|
---|
4570 | * @param GCPhys First physical address in the range.
|
---|
4571 | * Must be page aligned!
|
---|
4572 | * @param cb The size of the range (in bytes).
|
---|
4573 | * Must be page aligned!
|
---|
4574 | * @param pvBinary Pointer to the binary data backing the ROM image.
|
---|
4575 | * @param cbBinary The size of the binary data pvBinary points to.
|
---|
4576 | * This must be less or equal to @a cb.
|
---|
4577 | * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
|
---|
4578 | * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
|
---|
4579 | * @param pszDesc Pointer to description string. This must not be freed.
|
---|
4580 | */
|
---|
4581 | static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
4582 | const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
|
---|
4583 | {
|
---|
4584 | /*
|
---|
4585 | * Validate input.
|
---|
4586 | */
|
---|
4587 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
4588 | AssertReturn(RT_ALIGN_T(GCPhys, GUEST_PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
|
---|
4589 | AssertReturn(RT_ALIGN_T(cb, GUEST_PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
|
---|
4590 | RTGCPHYS const GCPhysLast = GCPhys + (cb - 1);
|
---|
4591 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
4592 | AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
|
---|
4593 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
4594 | AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
|
---|
4595 |
|
---|
4596 | PVMCPU const pVCpu = VMMGetCpu(pVM);
|
---|
4597 | AssertReturn(pVCpu && pVCpu->idCpu == 0, VERR_VM_THREAD_NOT_EMT);
|
---|
4598 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
|
---|
4599 |
|
---|
4600 | const uint32_t cGuestPages = cb >> GUEST_PAGE_SHIFT;
|
---|
4601 | AssertReturn(cGuestPages <= PGM_MAX_PAGES_PER_ROM_RANGE, VERR_OUT_OF_RANGE);
|
---|
4602 |
|
---|
4603 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4604 | const uint32_t cHostPages = RT_ALIGN_T(cb, HOST_PAGE_SIZE, RTGCPHYS) >> HOST_PAGE_SHIFT;
|
---|
4605 | #endif
|
---|
4606 |
|
---|
4607 | /*
|
---|
4608 | * Make sure we've got a free ROM range.
|
---|
4609 | */
|
---|
4610 | uint8_t const idRomRange = pVM->pgm.s.cRomRanges;
|
---|
4611 | AssertLogRelReturn(idRomRange < RT_ELEMENTS(pVM->pgm.s.apRomRanges), VERR_PGM_TOO_MANY_ROM_RANGES);
|
---|
4612 |
|
---|
4613 | /*
|
---|
4614 | * Look thru the existing ROM range and make sure there aren't any
|
---|
4615 | * overlapping registration.
|
---|
4616 | */
|
---|
4617 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
4618 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
4619 | {
|
---|
4620 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
4621 | AssertLogRelMsgReturn( GCPhys > pRom->GCPhysLast
|
---|
4622 | || GCPhysLast < pRom->GCPhys,
|
---|
4623 | ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
|
---|
4624 | GCPhys, GCPhysLast, pszDesc,
|
---|
4625 | pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
|
---|
4626 | VERR_PGM_RAM_CONFLICT);
|
---|
4627 | }
|
---|
4628 |
|
---|
4629 | /*
|
---|
4630 | * Find the RAM location and check for conflicts.
|
---|
4631 | *
|
---|
4632 | * Conflict detection is a bit different than for RAM registration since a
|
---|
4633 | * ROM can be located within a RAM range. So, what we have to check for is
|
---|
4634 | * other memory types (other than RAM that is) and that we don't span more
|
---|
4635 | * than one RAM range (lazy).
|
---|
4636 | */
|
---|
4637 | uint32_t idxInsert = UINT32_MAX;
|
---|
4638 | PPGMRAMRANGE const pOverlappingRange = pgmR3PhysRamRangeFindOverlapping(pVM, GCPhys, GCPhysLast, &idxInsert);
|
---|
4639 | if (pOverlappingRange)
|
---|
4640 | {
|
---|
4641 | /* completely within? */
|
---|
4642 | AssertLogRelMsgReturn( GCPhys >= pOverlappingRange->GCPhys
|
---|
4643 | && GCPhysLast <= pOverlappingRange->GCPhysLast,
|
---|
4644 | ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
4645 | GCPhys, GCPhysLast, pszDesc,
|
---|
4646 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
4647 | VERR_PGM_RAM_CONFLICT);
|
---|
4648 |
|
---|
4649 | /* Check that is isn't an ad hoc range, but a real RAM range. */
|
---|
4650 | AssertLogRelMsgReturn(!PGM_RAM_RANGE_IS_AD_HOC(pOverlappingRange),
|
---|
4651 | ("%RGp-%RGp (ROM/%s) mapping attempt in non-RAM range: %RGp-%RGp (%s)\n",
|
---|
4652 | GCPhys, GCPhysLast, pszDesc,
|
---|
4653 | pOverlappingRange->GCPhys, pOverlappingRange->GCPhysLast, pOverlappingRange->pszDesc),
|
---|
4654 | VERR_PGM_RAM_CONFLICT);
|
---|
4655 |
|
---|
4656 | /* All the pages must be RAM pages. */
|
---|
4657 | PPGMPAGE pPage = &pOverlappingRange->aPages[(GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT];
|
---|
4658 | uint32_t cPagesLeft = cGuestPages;
|
---|
4659 | while (cPagesLeft-- > 0)
|
---|
4660 | {
|
---|
4661 | AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
|
---|
4662 | ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
|
---|
4663 | GCPhys + ((RTGCPHYS)cPagesLeft << GUEST_PAGE_SHIFT), pPage, GCPhys, GCPhysLast, pszDesc),
|
---|
4664 | VERR_PGM_RAM_CONFLICT);
|
---|
4665 | AssertLogRelMsgReturn(PGM_PAGE_IS_ZERO(pPage) || PGM_IS_IN_NEM_MODE(pVM),
|
---|
4666 | ("%RGp (%R[pgmpage]) is not a ZERO page - registering %RGp-%RGp (%s).\n",
|
---|
4667 | GCPhys + ((RTGCPHYS)cPagesLeft << GUEST_PAGE_SHIFT), pPage, GCPhys, GCPhysLast, pszDesc),
|
---|
4668 | VERR_PGM_UNEXPECTED_PAGE_STATE);
|
---|
4669 | pPage++;
|
---|
4670 | }
|
---|
4671 | }
|
---|
4672 |
|
---|
4673 | /*
|
---|
4674 | * Update the base memory reservation if necessary.
|
---|
4675 | */
|
---|
4676 | uint32_t const cExtraBaseCost = (pOverlappingRange ? 0 : cGuestPages)
|
---|
4677 | + (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? cGuestPages : 0);
|
---|
4678 | if (cExtraBaseCost)
|
---|
4679 | {
|
---|
4680 | int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
|
---|
4681 | AssertRCReturn(rc, rc);
|
---|
4682 | }
|
---|
4683 |
|
---|
4684 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4685 | /*
|
---|
4686 | * Early NEM notification before we've made any changes or anything.
|
---|
4687 | */
|
---|
4688 | uint32_t const fNemNotify = (pOverlappingRange ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
|
---|
4689 | | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
|
---|
4690 | uint8_t u2NemState = UINT8_MAX;
|
---|
4691 | uint32_t uNemRange = 0;
|
---|
4692 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
4693 | {
|
---|
4694 | int rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cGuestPages << GUEST_PAGE_SHIFT,
|
---|
4695 | pOverlappingRange
|
---|
4696 | ? PGM_RAMRANGE_CALC_PAGE_R3PTR(pOverlappingRange, GCPhys) : NULL,
|
---|
4697 | fNemNotify, &u2NemState,
|
---|
4698 | pOverlappingRange ? &pOverlappingRange->uNemRange : &uNemRange);
|
---|
4699 | AssertLogRelRCReturn(rc, rc);
|
---|
4700 | }
|
---|
4701 | #endif
|
---|
4702 |
|
---|
4703 | /*
|
---|
4704 | * Allocate memory for the virgin copy of the RAM. In simplified memory
|
---|
4705 | * mode, we allocate memory for any ad-hoc RAM range and for shadow pages.
|
---|
4706 | */
|
---|
4707 | int rc;
|
---|
4708 | PGMMALLOCATEPAGESREQ pReq = NULL;
|
---|
4709 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4710 | void *pvRam = NULL;
|
---|
4711 | void *pvAlt = NULL;
|
---|
4712 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4713 | {
|
---|
4714 | if (!pOverlappingRange)
|
---|
4715 | {
|
---|
4716 | rc = SUPR3PageAlloc(cHostPages, 0, &pvRam);
|
---|
4717 | if (RT_FAILURE(rc))
|
---|
4718 | return rc;
|
---|
4719 | }
|
---|
4720 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4721 | {
|
---|
4722 | rc = SUPR3PageAlloc(cHostPages, 0, &pvAlt);
|
---|
4723 | if (RT_FAILURE(rc))
|
---|
4724 | {
|
---|
4725 | if (pvRam)
|
---|
4726 | SUPR3PageFree(pvRam, cHostPages);
|
---|
4727 | return rc;
|
---|
4728 | }
|
---|
4729 | }
|
---|
4730 | }
|
---|
4731 | else
|
---|
4732 | #endif
|
---|
4733 | {
|
---|
4734 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
4735 | rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cGuestPages, GMMACCOUNT_BASE);
|
---|
4736 | AssertRCReturn(rc, rc);
|
---|
4737 |
|
---|
4738 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++)
|
---|
4739 | {
|
---|
4740 | pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
4741 | pReq->aPages[iPage].fZeroed = false;
|
---|
4742 | pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
|
---|
4743 | pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
|
---|
4744 | }
|
---|
4745 |
|
---|
4746 | rc = GMMR3AllocatePagesPerform(pVM, pReq);
|
---|
4747 | if (RT_FAILURE(rc))
|
---|
4748 | {
|
---|
4749 | GMMR3AllocatePagesCleanup(pReq);
|
---|
4750 | return rc;
|
---|
4751 | }
|
---|
4752 | #endif
|
---|
4753 | }
|
---|
4754 |
|
---|
4755 | /*
|
---|
4756 | * Allocate a RAM range if required.
|
---|
4757 | * Note! We don't clean up the RAM range here on failure, VM destruction does that.
|
---|
4758 | */
|
---|
4759 | rc = VINF_SUCCESS;
|
---|
4760 | PPGMRAMRANGE pRamRange = NULL;
|
---|
4761 | if (!pOverlappingRange)
|
---|
4762 | rc = pgmR3PhysAllocateRamRange(pVM, pVCpu, cGuestPages, PGM_RAM_RANGE_FLAGS_AD_HOC_ROM, &pRamRange);
|
---|
4763 | if (RT_SUCCESS(rc))
|
---|
4764 | {
|
---|
4765 | /*
|
---|
4766 | * Allocate a ROM range.
|
---|
4767 | * Note! We don't clean up the ROM range here on failure, VM destruction does that.
|
---|
4768 | */
|
---|
4769 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
4770 | if (!SUPR3IsDriverless())
|
---|
4771 | {
|
---|
4772 | PGMPHYSROMALLOCATERANGEREQ RomRangeReq;
|
---|
4773 | RomRangeReq.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
4774 | RomRangeReq.Hdr.cbReq = sizeof(RomRangeReq);
|
---|
4775 | RomRangeReq.cbGuestPage = GUEST_PAGE_SIZE;
|
---|
4776 | RomRangeReq.cGuestPages = cGuestPages;
|
---|
4777 | RomRangeReq.idRomRange = idRomRange;
|
---|
4778 | RomRangeReq.fFlags = fFlags;
|
---|
4779 | rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_PHYS_ROM_ALLOCATE_RANGE, 0 /*u64Arg*/, &RomRangeReq.Hdr);
|
---|
4780 | }
|
---|
4781 | else
|
---|
4782 | #endif
|
---|
4783 | rc = pgmPhysRomRangeAllocCommon(pVM, cGuestPages, idRomRange, fFlags);
|
---|
4784 | }
|
---|
4785 | if (RT_SUCCESS(rc))
|
---|
4786 | {
|
---|
4787 | /*
|
---|
4788 | * Initialize and map the RAM range (if required).
|
---|
4789 | */
|
---|
4790 | PPGMROMRANGE const pRomRange = pVM->pgm.s.apRomRanges[idRomRange];
|
---|
4791 | AssertPtr(pRomRange);
|
---|
4792 | uint32_t const idxFirstRamPage = pOverlappingRange ? (GCPhys - pOverlappingRange->GCPhys) >> GUEST_PAGE_SHIFT : 0;
|
---|
4793 | PPGMROMPAGE pRomPage = &pRomRange->aPages[0];
|
---|
4794 | if (!pOverlappingRange)
|
---|
4795 | {
|
---|
4796 | /* Initialize the new RAM range and insert it into the lookup table. */
|
---|
4797 | pRamRange->pszDesc = pszDesc;
|
---|
4798 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4799 | pRamRange->uNemRange = uNemRange;
|
---|
4800 | #endif
|
---|
4801 |
|
---|
4802 | PPGMPAGE pRamPage = &pRamRange->aPages[idxFirstRamPage];
|
---|
4803 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4804 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4805 | {
|
---|
4806 | AssertPtr(pvRam); Assert(pReq == NULL);
|
---|
4807 | pRamRange->pbR3 = (uint8_t *)pvRam;
|
---|
4808 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4809 | {
|
---|
4810 | PGM_PAGE_INIT(pRamPage, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
|
---|
4811 | PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED);
|
---|
4812 | pRomPage->Virgin = *pRamPage;
|
---|
4813 | }
|
---|
4814 | }
|
---|
4815 | else
|
---|
4816 | #endif
|
---|
4817 | {
|
---|
4818 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
4819 | Assert(!pRamRange->pbR3); Assert(!pvRam);
|
---|
4820 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4821 | {
|
---|
4822 | PGM_PAGE_INIT(pRamPage,
|
---|
4823 | pReq->aPages[iPage].HCPhysGCPhys,
|
---|
4824 | pReq->aPages[iPage].idPage,
|
---|
4825 | PGMPAGETYPE_ROM,
|
---|
4826 | PGM_PAGE_STATE_ALLOCATED);
|
---|
4827 |
|
---|
4828 | pRomPage->Virgin = *pRamPage;
|
---|
4829 | }
|
---|
4830 | #endif
|
---|
4831 | }
|
---|
4832 |
|
---|
4833 | pVM->pgm.s.cAllPages += cGuestPages;
|
---|
4834 | pVM->pgm.s.cPrivatePages += cGuestPages;
|
---|
4835 |
|
---|
4836 | rc = pgmR3PhysRamRangeInsertLookup(pVM, pRamRange, GCPhys, &idxInsert);
|
---|
4837 | }
|
---|
4838 | else
|
---|
4839 | {
|
---|
4840 | /* Insert the ROM into an existing RAM range. */
|
---|
4841 | PPGMPAGE pRamPage = &pOverlappingRange->aPages[idxFirstRamPage];
|
---|
4842 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4843 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4844 | {
|
---|
4845 | Assert(pvRam == NULL); Assert(pReq == NULL);
|
---|
4846 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4847 | {
|
---|
4848 | Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000) || PGM_PAGE_GET_HCPHYS(pRamPage) == 0);
|
---|
4849 | Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
|
---|
4850 | Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
4851 | PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
|
---|
4852 | PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
4853 | PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
4854 | PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
|
---|
4855 | PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
|
---|
4856 |
|
---|
4857 | pRomPage->Virgin = *pRamPage;
|
---|
4858 | }
|
---|
4859 | }
|
---|
4860 | else
|
---|
4861 | #endif
|
---|
4862 | {
|
---|
4863 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
4864 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
4865 | {
|
---|
4866 | PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
|
---|
4867 | PGM_PAGE_SET_HCPHYS(pVM, pRamPage, pReq->aPages[iPage].HCPhysGCPhys);
|
---|
4868 | PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
4869 | PGM_PAGE_SET_PAGEID(pVM, pRamPage, pReq->aPages[iPage].idPage);
|
---|
4870 | PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
4871 | PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
|
---|
4872 | PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
|
---|
4873 |
|
---|
4874 | pRomPage->Virgin = *pRamPage;
|
---|
4875 | }
|
---|
4876 | pVM->pgm.s.cZeroPages -= cGuestPages;
|
---|
4877 | pVM->pgm.s.cPrivatePages += cGuestPages;
|
---|
4878 | #endif
|
---|
4879 | }
|
---|
4880 | pRamRange = pOverlappingRange;
|
---|
4881 | }
|
---|
4882 |
|
---|
4883 | if (RT_SUCCESS(rc))
|
---|
4884 | {
|
---|
4885 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4886 | /* Set the NEM state of the pages if needed. */
|
---|
4887 | if (u2NemState != UINT8_MAX)
|
---|
4888 | pgmPhysSetNemStateForPages(&pRamRange->aPages[idxFirstRamPage], cGuestPages, u2NemState);
|
---|
4889 | #endif
|
---|
4890 |
|
---|
4891 | /* Flush physical page map TLB. */
|
---|
4892 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
4893 |
|
---|
4894 | /*
|
---|
4895 | * Register the ROM access handler.
|
---|
4896 | */
|
---|
4897 | rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType, idRomRange, pszDesc);
|
---|
4898 | if (RT_SUCCESS(rc))
|
---|
4899 | {
|
---|
4900 | /*
|
---|
4901 | * Copy the image over to the virgin pages.
|
---|
4902 | * This must be done after linking in the RAM range.
|
---|
4903 | */
|
---|
4904 | size_t cbBinaryLeft = cbBinary;
|
---|
4905 | PPGMPAGE pRamPage = &pRamRange->aPages[idxFirstRamPage];
|
---|
4906 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++)
|
---|
4907 | {
|
---|
4908 | void *pvDstPage;
|
---|
4909 | rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << GUEST_PAGE_SHIFT), &pvDstPage);
|
---|
4910 | if (RT_FAILURE(rc))
|
---|
4911 | {
|
---|
4912 | VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
|
---|
4913 | break;
|
---|
4914 | }
|
---|
4915 | if (cbBinaryLeft >= GUEST_PAGE_SIZE)
|
---|
4916 | {
|
---|
4917 | memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << GUEST_PAGE_SHIFT), GUEST_PAGE_SIZE);
|
---|
4918 | cbBinaryLeft -= GUEST_PAGE_SIZE;
|
---|
4919 | }
|
---|
4920 | else
|
---|
4921 | {
|
---|
4922 | RT_BZERO(pvDstPage, GUEST_PAGE_SIZE); /* (shouldn't be necessary, but can't hurt either) */
|
---|
4923 | if (cbBinaryLeft > 0)
|
---|
4924 | {
|
---|
4925 | memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << GUEST_PAGE_SHIFT), cbBinaryLeft);
|
---|
4926 | cbBinaryLeft = 0;
|
---|
4927 | }
|
---|
4928 | }
|
---|
4929 | }
|
---|
4930 | if (RT_SUCCESS(rc))
|
---|
4931 | {
|
---|
4932 | /*
|
---|
4933 | * Initialize the ROM range.
|
---|
4934 | * Note that the Virgin member of the pages has already been initialized above.
|
---|
4935 | */
|
---|
4936 | Assert(pRomRange->cb == cb);
|
---|
4937 | Assert(pRomRange->fFlags == fFlags);
|
---|
4938 | Assert(pRomRange->idSavedState == UINT8_MAX);
|
---|
4939 | pRomRange->GCPhys = GCPhys;
|
---|
4940 | pRomRange->GCPhysLast = GCPhysLast;
|
---|
4941 | pRomRange->cbOriginal = cbBinary;
|
---|
4942 | pRomRange->pszDesc = pszDesc;
|
---|
4943 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4944 | pRomRange->pbR3Alternate = (uint8_t *)pvAlt;
|
---|
4945 | #endif
|
---|
4946 | pRomRange->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
|
---|
4947 | ? pvBinary : RTMemDup(pvBinary, cbBinary);
|
---|
4948 | if (pRomRange->pvOriginal)
|
---|
4949 | {
|
---|
4950 | for (unsigned iPage = 0; iPage < cGuestPages; iPage++)
|
---|
4951 | {
|
---|
4952 | PPGMROMPAGE const pPage = &pRomRange->aPages[iPage];
|
---|
4953 | pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
|
---|
4954 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
4955 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4956 | PGM_PAGE_INIT(&pPage->Shadow, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
|
---|
4957 | PGMPAGETYPE_ROM_SHADOW, PGM_PAGE_STATE_ALLOCATED);
|
---|
4958 | else
|
---|
4959 | #endif
|
---|
4960 | PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
|
---|
4961 | }
|
---|
4962 |
|
---|
4963 | /* update the page count stats for the shadow pages. */
|
---|
4964 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4965 | {
|
---|
4966 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
4967 | pVM->pgm.s.cPrivatePages += cGuestPages;
|
---|
4968 | else
|
---|
4969 | pVM->pgm.s.cZeroPages += cGuestPages;
|
---|
4970 | pVM->pgm.s.cAllPages += cGuestPages;
|
---|
4971 | }
|
---|
4972 |
|
---|
4973 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
4974 | /*
|
---|
4975 | * Notify NEM again.
|
---|
4976 | */
|
---|
4977 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
4978 | {
|
---|
4979 | u2NemState = UINT8_MAX;
|
---|
4980 | rc = NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, PGM_RAMRANGE_CALC_PAGE_R3PTR(pRamRange, GCPhys),
|
---|
4981 | fNemNotify, &u2NemState, &pRamRange->uNemRange);
|
---|
4982 | if (u2NemState != UINT8_MAX)
|
---|
4983 | pgmPhysSetNemStateForPages(&pRamRange->aPages[idxFirstRamPage], cGuestPages, u2NemState);
|
---|
4984 | }
|
---|
4985 | else
|
---|
4986 | #endif
|
---|
4987 | GMMR3AllocatePagesCleanup(pReq);
|
---|
4988 | if (RT_SUCCESS(rc))
|
---|
4989 | {
|
---|
4990 | /*
|
---|
4991 | * Done!
|
---|
4992 | */
|
---|
4993 | #ifdef VBOX_STRICT
|
---|
4994 | pgmPhysAssertRamRangesLocked(pVM, false /*fInUpdate*/, false /*fRamRelaxed*/);
|
---|
4995 | #endif
|
---|
4996 | return rc;
|
---|
4997 | }
|
---|
4998 |
|
---|
4999 | /*
|
---|
5000 | * bail out
|
---|
5001 | */
|
---|
5002 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
5003 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
5004 | {
|
---|
5005 | Assert(VM_IS_NEM_ENABLED(pVM));
|
---|
5006 | pVM->pgm.s.cPrivatePages -= cGuestPages;
|
---|
5007 | pVM->pgm.s.cAllPages -= cGuestPages;
|
---|
5008 | }
|
---|
5009 | #endif
|
---|
5010 | }
|
---|
5011 | else
|
---|
5012 | rc = VERR_NO_MEMORY;
|
---|
5013 | }
|
---|
5014 |
|
---|
5015 | int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
5016 | AssertRC(rc2);
|
---|
5017 | }
|
---|
5018 |
|
---|
5019 | idxInsert -= 1;
|
---|
5020 | if (!pOverlappingRange)
|
---|
5021 | pgmR3PhysRamRangeRemoveLookup(pVM, pRamRange, &idxInsert);
|
---|
5022 | }
|
---|
5023 | /* else: lookup insertion failed. */
|
---|
5024 |
|
---|
5025 | if (pOverlappingRange)
|
---|
5026 | {
|
---|
5027 | PPGMPAGE pRamPage = &pOverlappingRange->aPages[idxFirstRamPage];
|
---|
5028 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
5029 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
5030 | {
|
---|
5031 | Assert(pvRam == NULL); Assert(pReq == NULL);
|
---|
5032 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++)
|
---|
5033 | {
|
---|
5034 | Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000) || PGM_PAGE_GET_HCPHYS(pRamPage) == 0);
|
---|
5035 | Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
|
---|
5036 | Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
|
---|
5037 | PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_RAM);
|
---|
5038 | PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
5039 | }
|
---|
5040 | }
|
---|
5041 | else
|
---|
5042 | #endif
|
---|
5043 | {
|
---|
5044 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
5045 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++)
|
---|
5046 | PGM_PAGE_INIT_ZERO(pRamPage, pVM, PGMPAGETYPE_RAM);
|
---|
5047 | pVM->pgm.s.cZeroPages += cGuestPages;
|
---|
5048 | pVM->pgm.s.cPrivatePages -= cGuestPages;
|
---|
5049 | #endif
|
---|
5050 | }
|
---|
5051 | }
|
---|
5052 | }
|
---|
5053 | pgmPhysInvalidatePageMapTLB(pVM, false /*fInRendezvous*/);
|
---|
5054 | pgmPhysInvalidRamRangeTlbs(pVM);
|
---|
5055 |
|
---|
5056 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
5057 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
5058 | {
|
---|
5059 | Assert(!pReq);
|
---|
5060 | if (pvRam)
|
---|
5061 | SUPR3PageFree(pvRam, cHostPages);
|
---|
5062 | if (pvAlt)
|
---|
5063 | SUPR3PageFree(pvAlt, cHostPages);
|
---|
5064 | }
|
---|
5065 | else
|
---|
5066 | #endif
|
---|
5067 | {
|
---|
5068 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
5069 | GMMR3FreeAllocatedPages(pVM, pReq);
|
---|
5070 | GMMR3AllocatePagesCleanup(pReq);
|
---|
5071 | #endif
|
---|
5072 | }
|
---|
5073 |
|
---|
5074 | /* We don't bother to actually free either the ROM nor the RAM ranges
|
---|
5075 | themselves, as already mentioned above, we'll leave that to the VM
|
---|
5076 | termination cleanup code. */
|
---|
5077 | return rc;
|
---|
5078 | }
|
---|
5079 |
|
---|
5080 |
|
---|
5081 | /**
|
---|
5082 | * Registers a ROM image.
|
---|
5083 | *
|
---|
5084 | * Shadowed ROM images requires double the amount of backing memory, so,
|
---|
5085 | * don't use that unless you have to. Shadowing of ROM images is process
|
---|
5086 | * where we can select where the reads go and where the writes go. On real
|
---|
5087 | * hardware the chipset provides means to configure this. We provide
|
---|
5088 | * PGMR3PhysRomProtect() for this purpose.
|
---|
5089 | *
|
---|
5090 | * A read-only copy of the ROM image will always be kept around while we
|
---|
5091 | * will allocate RAM pages for the changes on demand (unless all memory
|
---|
5092 | * is configured to be preallocated).
|
---|
5093 | *
|
---|
5094 | * @returns VBox status code.
|
---|
5095 | * @param pVM The cross context VM structure.
|
---|
5096 | * @param pDevIns The device instance owning the ROM.
|
---|
5097 | * @param GCPhys First physical address in the range.
|
---|
5098 | * Must be page aligned!
|
---|
5099 | * @param cb The size of the range (in bytes).
|
---|
5100 | * Must be page aligned!
|
---|
5101 | * @param pvBinary Pointer to the binary data backing the ROM image.
|
---|
5102 | * @param cbBinary The size of the binary data pvBinary points to.
|
---|
5103 | * This must be less or equal to @a cb.
|
---|
5104 | * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
|
---|
5105 | * @param pszDesc Pointer to description string. This must not be freed.
|
---|
5106 | *
|
---|
5107 | * @remark There is no way to remove the rom, automatically on device cleanup or
|
---|
5108 | * manually from the device yet. This isn't difficult in any way, it's
|
---|
5109 | * just not something we expect to be necessary for a while.
|
---|
5110 | */
|
---|
5111 | VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
5112 | const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
|
---|
5113 | {
|
---|
5114 | Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
|
---|
5115 | pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
|
---|
5116 | PGM_LOCK_VOID(pVM);
|
---|
5117 |
|
---|
5118 | int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
|
---|
5119 |
|
---|
5120 | PGM_UNLOCK(pVM);
|
---|
5121 | return rc;
|
---|
5122 | }
|
---|
5123 |
|
---|
5124 |
|
---|
5125 | /**
|
---|
5126 | * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
|
---|
5127 | * that the virgin part is untouched.
|
---|
5128 | *
|
---|
5129 | * This is done after the normal memory has been cleared.
|
---|
5130 | *
|
---|
5131 | * ASSUMES that the caller owns the PGM lock.
|
---|
5132 | *
|
---|
5133 | * @param pVM The cross context VM structure.
|
---|
5134 | */
|
---|
5135 | int pgmR3PhysRomReset(PVM pVM)
|
---|
5136 | {
|
---|
5137 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
5138 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
5139 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
5140 | {
|
---|
5141 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
5142 | uint32_t const cGuestPages = pRom->cb >> GUEST_PAGE_SHIFT;
|
---|
5143 |
|
---|
5144 | if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
5145 | {
|
---|
5146 | /*
|
---|
5147 | * Reset the physical handler.
|
---|
5148 | */
|
---|
5149 | int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
|
---|
5150 | AssertRCReturn(rc, rc);
|
---|
5151 |
|
---|
5152 | /*
|
---|
5153 | * What we do with the shadow pages depends on the memory
|
---|
5154 | * preallocation option. If not enabled, we'll just throw
|
---|
5155 | * out all the dirty pages and replace them by the zero page.
|
---|
5156 | */
|
---|
5157 | #ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
5158 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
5159 | {
|
---|
5160 | /* Clear all the shadow pages (currently using alternate backing). */
|
---|
5161 | RT_BZERO(pRom->pbR3Alternate, pRom->cb);
|
---|
5162 | }
|
---|
5163 | # ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
5164 | else
|
---|
5165 | # endif
|
---|
5166 | #endif
|
---|
5167 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
5168 | if (!pVM->pgm.s.fRamPreAlloc)
|
---|
5169 | {
|
---|
5170 | /* Free the dirty pages. */
|
---|
5171 | uint32_t cPendingPages = 0;
|
---|
5172 | PGMMFREEPAGESREQ pReq;
|
---|
5173 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
5174 | AssertRCReturn(rc, rc);
|
---|
5175 |
|
---|
5176 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++)
|
---|
5177 | if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
|
---|
5178 | && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
|
---|
5179 | {
|
---|
5180 | Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
|
---|
5181 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
|
---|
5182 | pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT),
|
---|
5183 | (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
|
---|
5184 | AssertLogRelRCReturn(rc, rc);
|
---|
5185 | }
|
---|
5186 |
|
---|
5187 | if (cPendingPages)
|
---|
5188 | {
|
---|
5189 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
5190 | AssertLogRelRCReturn(rc, rc);
|
---|
5191 | }
|
---|
5192 | GMMR3FreePagesCleanup(pReq);
|
---|
5193 | }
|
---|
5194 | else
|
---|
5195 | {
|
---|
5196 | /* clear all the shadow pages. */
|
---|
5197 | for (uint32_t iPage = 0; iPage < cGuestPages; iPage++)
|
---|
5198 | {
|
---|
5199 | if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
|
---|
5200 | continue;
|
---|
5201 | Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
|
---|
5202 | void *pvDstPage;
|
---|
5203 | RTGCPHYS const GCPhys = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
5204 | rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
|
---|
5205 | if (RT_FAILURE(rc))
|
---|
5206 | break;
|
---|
5207 | RT_BZERO(pvDstPage, GUEST_PAGE_SIZE);
|
---|
5208 | }
|
---|
5209 | AssertRCReturn(rc, rc);
|
---|
5210 | }
|
---|
5211 | #endif
|
---|
5212 | }
|
---|
5213 |
|
---|
5214 | /*
|
---|
5215 | * Restore the original ROM pages after a saved state load.
|
---|
5216 | * Also, in strict builds check that ROM pages remain unmodified.
|
---|
5217 | */
|
---|
5218 | #ifndef VBOX_STRICT
|
---|
5219 | if (pVM->pgm.s.fRestoreRomPagesOnReset)
|
---|
5220 | #endif
|
---|
5221 | {
|
---|
5222 | size_t cbSrcLeft = pRom->cbOriginal;
|
---|
5223 | uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
|
---|
5224 | uint32_t cRestored = 0;
|
---|
5225 | for (uint32_t iPage = 0; iPage < cGuestPages && cbSrcLeft > 0; iPage++, pbSrcPage += GUEST_PAGE_SIZE)
|
---|
5226 | {
|
---|
5227 | RTGCPHYS const GCPhys = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
5228 | PPGMPAGE const pPage = pgmPhysGetPage(pVM, GCPhys);
|
---|
5229 | void const *pvDstPage = NULL;
|
---|
5230 | int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvDstPage);
|
---|
5231 | if (RT_FAILURE(rc))
|
---|
5232 | break;
|
---|
5233 |
|
---|
5234 | if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE)))
|
---|
5235 | {
|
---|
5236 | if (pVM->pgm.s.fRestoreRomPagesOnReset)
|
---|
5237 | {
|
---|
5238 | void *pvDstPageW = NULL;
|
---|
5239 | rc = pgmPhysPageMap(pVM, pPage, GCPhys, &pvDstPageW);
|
---|
5240 | AssertLogRelRCReturn(rc, rc);
|
---|
5241 | memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE));
|
---|
5242 | cRestored++;
|
---|
5243 | }
|
---|
5244 | else
|
---|
5245 | LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
|
---|
5246 | }
|
---|
5247 | cbSrcLeft -= RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE);
|
---|
5248 | }
|
---|
5249 | if (cRestored > 0)
|
---|
5250 | LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cGuestPages));
|
---|
5251 | }
|
---|
5252 | }
|
---|
5253 |
|
---|
5254 | /* Clear the ROM restore flag now as we only need to do this once after
|
---|
5255 | loading saved state. */
|
---|
5256 | pVM->pgm.s.fRestoreRomPagesOnReset = false;
|
---|
5257 |
|
---|
5258 | return VINF_SUCCESS;
|
---|
5259 | }
|
---|
5260 |
|
---|
5261 |
|
---|
5262 | /**
|
---|
5263 | * Called by PGMR3Term to free resources.
|
---|
5264 | *
|
---|
5265 | * ASSUMES that the caller owns the PGM lock.
|
---|
5266 | *
|
---|
5267 | * @param pVM The cross context VM structure.
|
---|
5268 | */
|
---|
5269 | void pgmR3PhysRomTerm(PVM pVM)
|
---|
5270 | {
|
---|
5271 | /*
|
---|
5272 | * Free the heap copy of the original bits.
|
---|
5273 | */
|
---|
5274 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
5275 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
5276 | {
|
---|
5277 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
5278 | if ( pRom->pvOriginal
|
---|
5279 | && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
|
---|
5280 | {
|
---|
5281 | RTMemFree((void *)pRom->pvOriginal);
|
---|
5282 | pRom->pvOriginal = NULL;
|
---|
5283 | }
|
---|
5284 | }
|
---|
5285 | }
|
---|
5286 |
|
---|
5287 |
|
---|
5288 | /**
|
---|
5289 | * Change the shadowing of a range of ROM pages.
|
---|
5290 | *
|
---|
5291 | * This is intended for implementing chipset specific memory registers
|
---|
5292 | * and will not be very strict about the input. It will silently ignore
|
---|
5293 | * any pages that are not the part of a shadowed ROM.
|
---|
5294 | *
|
---|
5295 | * @returns VBox status code.
|
---|
5296 | * @retval VINF_PGM_SYNC_CR3
|
---|
5297 | *
|
---|
5298 | * @param pVM The cross context VM structure.
|
---|
5299 | * @param GCPhys Where to start. Page aligned.
|
---|
5300 | * @param cb How much to change. Page aligned.
|
---|
5301 | * @param enmProt The new ROM protection.
|
---|
5302 | */
|
---|
5303 | VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
|
---|
5304 | {
|
---|
5305 | LogFlow(("PGMR3PhysRomProtect: GCPhys=%RGp cb=%RGp enmProt=%d\n", GCPhys, cb, enmProt));
|
---|
5306 |
|
---|
5307 | /*
|
---|
5308 | * Check input
|
---|
5309 | */
|
---|
5310 | if (!cb)
|
---|
5311 | return VINF_SUCCESS;
|
---|
5312 | AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
5313 | AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
5314 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
5315 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
5316 | AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
|
---|
5317 |
|
---|
5318 | /*
|
---|
5319 | * Process the request.
|
---|
5320 | */
|
---|
5321 | PGM_LOCK_VOID(pVM);
|
---|
5322 | int rc = VINF_SUCCESS;
|
---|
5323 | bool fFlushTLB = false;
|
---|
5324 | uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
|
---|
5325 | for (uint32_t idx = 0; idx < cRomRanges; idx++)
|
---|
5326 | {
|
---|
5327 | PPGMROMRANGE const pRom = pVM->pgm.s.apRomRanges[idx];
|
---|
5328 | if ( GCPhys <= pRom->GCPhysLast
|
---|
5329 | && GCPhysLast >= pRom->GCPhys
|
---|
5330 | && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
|
---|
5331 | {
|
---|
5332 | /*
|
---|
5333 | * Iterate the relevant pages and make necessary the changes.
|
---|
5334 | */
|
---|
5335 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
5336 | PPGMRAMRANGE const pRam = pgmPhysGetRange(pVM, GCPhys);
|
---|
5337 | AssertPtrReturn(pRam, VERR_INTERNAL_ERROR_3);
|
---|
5338 | #endif
|
---|
5339 | bool fChanges = false;
|
---|
5340 | uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
|
---|
5341 | ? pRom->cb >> GUEST_PAGE_SHIFT
|
---|
5342 | : (GCPhysLast - pRom->GCPhys + 1) >> GUEST_PAGE_SHIFT;
|
---|
5343 | for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> GUEST_PAGE_SHIFT;
|
---|
5344 | iPage < cPages;
|
---|
5345 | iPage++)
|
---|
5346 | {
|
---|
5347 | PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
|
---|
5348 | if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
|
---|
5349 | {
|
---|
5350 | fChanges = true;
|
---|
5351 |
|
---|
5352 | /* flush references to the page. */
|
---|
5353 | RTGCPHYS const GCPhysPage = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT);
|
---|
5354 | PPGMPAGE pRamPage = pgmPhysGetPage(pVM, GCPhysPage);
|
---|
5355 | int rc2 = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pRamPage, true /*fFlushPTEs*/, &fFlushTLB);
|
---|
5356 | if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
|
---|
5357 | rc = rc2;
|
---|
5358 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
5359 | uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
|
---|
5360 | #endif
|
---|
5361 |
|
---|
5362 | PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
|
---|
5363 | PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
|
---|
5364 |
|
---|
5365 | *pOld = *pRamPage;
|
---|
5366 | *pRamPage = *pNew;
|
---|
5367 | /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
|
---|
5368 |
|
---|
5369 | #ifdef VBOX_WITH_NATIVE_NEM
|
---|
5370 | # ifdef VBOX_WITH_PGM_NEM_MODE
|
---|
5371 | /* In simplified mode we have to switch the page data around too. */
|
---|
5372 | if (PGM_IS_IN_NEM_MODE(pVM))
|
---|
5373 | {
|
---|
5374 | uint8_t abPage[GUEST_PAGE_SIZE];
|
---|
5375 | uint8_t * const pbRamPage = PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage);
|
---|
5376 | memcpy(abPage, &pRom->pbR3Alternate[(size_t)iPage << GUEST_PAGE_SHIFT], sizeof(abPage));
|
---|
5377 | memcpy(&pRom->pbR3Alternate[(size_t)iPage << GUEST_PAGE_SHIFT], pbRamPage, sizeof(abPage));
|
---|
5378 | memcpy(pbRamPage, abPage, sizeof(abPage));
|
---|
5379 | }
|
---|
5380 | # endif
|
---|
5381 | /* Tell NEM about the backing and protection change. */
|
---|
5382 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
5383 | {
|
---|
5384 | PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
|
---|
5385 | NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
|
---|
5386 | PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage),
|
---|
5387 | pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
|
---|
5388 | PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
|
---|
5389 | }
|
---|
5390 | #endif
|
---|
5391 | }
|
---|
5392 | pRomPage->enmProt = enmProt;
|
---|
5393 | }
|
---|
5394 |
|
---|
5395 | /*
|
---|
5396 | * Reset the access handler if we made changes, no need to optimize this.
|
---|
5397 | */
|
---|
5398 | if (fChanges)
|
---|
5399 | {
|
---|
5400 | int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
|
---|
5401 | if (RT_FAILURE(rc2))
|
---|
5402 | {
|
---|
5403 | PGM_UNLOCK(pVM);
|
---|
5404 | AssertRC(rc);
|
---|
5405 | return rc2;
|
---|
5406 | }
|
---|
5407 |
|
---|
5408 | /* Explicitly flush IEM. Not sure if this is really necessary, but better
|
---|
5409 | be on the safe side. This shouldn't be a high volume flush source. */
|
---|
5410 | IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_ROM_PROTECT);
|
---|
5411 | }
|
---|
5412 |
|
---|
5413 | /* Advance - cb isn't updated. */
|
---|
5414 | GCPhys = pRom->GCPhys + (cPages << GUEST_PAGE_SHIFT);
|
---|
5415 | }
|
---|
5416 | }
|
---|
5417 | PGM_UNLOCK(pVM);
|
---|
5418 | if (fFlushTLB)
|
---|
5419 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
5420 |
|
---|
5421 | return rc;
|
---|
5422 | }
|
---|
5423 |
|
---|
5424 |
|
---|
5425 |
|
---|
5426 | /*********************************************************************************************************************************
|
---|
5427 | * Ballooning *
|
---|
5428 | *********************************************************************************************************************************/
|
---|
5429 |
|
---|
5430 | #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
|
---|
5431 |
|
---|
5432 | /**
|
---|
5433 | * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
|
---|
5434 | *
|
---|
5435 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
5436 | * it to complete this function.
|
---|
5437 | *
|
---|
5438 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
5439 | * @param pVM The cross context VM structure.
|
---|
5440 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
5441 | * @param pvUser User parameter
|
---|
5442 | */
|
---|
5443 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
5444 | {
|
---|
5445 | uintptr_t *paUser = (uintptr_t *)pvUser;
|
---|
5446 | bool fInflate = !!paUser[0];
|
---|
5447 | unsigned cPages = paUser[1];
|
---|
5448 | RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
|
---|
5449 | int rc = VINF_SUCCESS;
|
---|
5450 |
|
---|
5451 | Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
|
---|
5452 | PGM_LOCK_VOID(pVM);
|
---|
5453 |
|
---|
5454 | if (fInflate)
|
---|
5455 | {
|
---|
5456 | /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
|
---|
5457 | pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
|
---|
5458 |
|
---|
5459 | /* Replace pages with ZERO pages. */
|
---|
5460 | uint32_t cPendingPages = 0;
|
---|
5461 | PGMMFREEPAGESREQ pReq = NULL;
|
---|
5462 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
5463 | if (RT_FAILURE(rc))
|
---|
5464 | {
|
---|
5465 | PGM_UNLOCK(pVM);
|
---|
5466 | AssertLogRelRC(rc);
|
---|
5467 | return rc;
|
---|
5468 | }
|
---|
5469 |
|
---|
5470 | /* Iterate the pages. */
|
---|
5471 | for (unsigned i = 0; i < cPages; i++)
|
---|
5472 | {
|
---|
5473 | PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
|
---|
5474 | if ( pPage == NULL
|
---|
5475 | || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
|
---|
5476 | {
|
---|
5477 | Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
|
---|
5478 | break;
|
---|
5479 | }
|
---|
5480 |
|
---|
5481 | LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
|
---|
5482 |
|
---|
5483 | /* Flush the shadow PT if this page was previously used as a guest page table. */
|
---|
5484 | pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
|
---|
5485 |
|
---|
5486 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
|
---|
5487 | if (RT_FAILURE(rc))
|
---|
5488 | {
|
---|
5489 | PGM_UNLOCK(pVM);
|
---|
5490 | AssertLogRelRC(rc);
|
---|
5491 | return rc;
|
---|
5492 | }
|
---|
5493 | Assert(PGM_PAGE_IS_ZERO(pPage));
|
---|
5494 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
|
---|
5495 | }
|
---|
5496 |
|
---|
5497 | if (cPendingPages)
|
---|
5498 | {
|
---|
5499 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
5500 | if (RT_FAILURE(rc))
|
---|
5501 | {
|
---|
5502 | PGM_UNLOCK(pVM);
|
---|
5503 | AssertLogRelRC(rc);
|
---|
5504 | return rc;
|
---|
5505 | }
|
---|
5506 | }
|
---|
5507 | GMMR3FreePagesCleanup(pReq);
|
---|
5508 | }
|
---|
5509 | else
|
---|
5510 | {
|
---|
5511 | /* Iterate the pages. */
|
---|
5512 | for (unsigned i = 0; i < cPages; i++)
|
---|
5513 | {
|
---|
5514 | PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
|
---|
5515 | AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
|
---|
5516 |
|
---|
5517 | LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
|
---|
5518 |
|
---|
5519 | Assert(PGM_PAGE_IS_BALLOONED(pPage));
|
---|
5520 |
|
---|
5521 | /* Change back to zero page. (NEM does not need to be informed.) */
|
---|
5522 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
5523 | }
|
---|
5524 |
|
---|
5525 | /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
|
---|
5526 | }
|
---|
5527 |
|
---|
5528 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
5529 | /* Notify GMM about the balloon change. */
|
---|
5530 | rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
|
---|
5531 | if (RT_SUCCESS(rc))
|
---|
5532 | {
|
---|
5533 | if (!fInflate)
|
---|
5534 | {
|
---|
5535 | Assert(pVM->pgm.s.cBalloonedPages >= cPages);
|
---|
5536 | pVM->pgm.s.cBalloonedPages -= cPages;
|
---|
5537 | }
|
---|
5538 | else
|
---|
5539 | pVM->pgm.s.cBalloonedPages += cPages;
|
---|
5540 | }
|
---|
5541 | #endif
|
---|
5542 |
|
---|
5543 | PGM_UNLOCK(pVM);
|
---|
5544 |
|
---|
5545 | /* Flush the recompiler's TLB as well. */
|
---|
5546 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
5547 | CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
5548 |
|
---|
5549 | AssertLogRelRC(rc);
|
---|
5550 | return rc;
|
---|
5551 | }
|
---|
5552 |
|
---|
5553 |
|
---|
5554 | /**
|
---|
5555 | * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
|
---|
5556 | *
|
---|
5557 | * @param pVM The cross context VM structure.
|
---|
5558 | * @param fInflate Inflate or deflate memory balloon
|
---|
5559 | * @param cPages Number of pages to free
|
---|
5560 | * @param paPhysPage Array of guest physical addresses
|
---|
5561 | */
|
---|
5562 | static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
|
---|
5563 | {
|
---|
5564 | uintptr_t paUser[3];
|
---|
5565 |
|
---|
5566 | paUser[0] = fInflate;
|
---|
5567 | paUser[1] = cPages;
|
---|
5568 | paUser[2] = (uintptr_t)paPhysPage;
|
---|
5569 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
|
---|
5570 | AssertRC(rc);
|
---|
5571 |
|
---|
5572 | /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
|
---|
5573 | RTMemFree(paPhysPage);
|
---|
5574 | }
|
---|
5575 |
|
---|
5576 | #endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
|
---|
5577 |
|
---|
5578 | /**
|
---|
5579 | * Inflate or deflate a memory balloon
|
---|
5580 | *
|
---|
5581 | * @returns VBox status code.
|
---|
5582 | * @param pVM The cross context VM structure.
|
---|
5583 | * @param fInflate Inflate or deflate memory balloon
|
---|
5584 | * @param cPages Number of pages to free
|
---|
5585 | * @param paPhysPage Array of guest physical addresses
|
---|
5586 | */
|
---|
5587 | VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
|
---|
5588 | {
|
---|
5589 | /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
|
---|
5590 | #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
|
---|
5591 | int rc;
|
---|
5592 |
|
---|
5593 | /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
|
---|
5594 | AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
|
---|
5595 |
|
---|
5596 | /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
|
---|
5597 | * In the SMP case we post a request packet to postpone the job.
|
---|
5598 | */
|
---|
5599 | if (pVM->cCpus > 1)
|
---|
5600 | {
|
---|
5601 | unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
|
---|
5602 | RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
|
---|
5603 | AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
|
---|
5604 |
|
---|
5605 | memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
|
---|
5606 |
|
---|
5607 | rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4,
|
---|
5608 | pVM, fInflate, cPages, paPhysPageCopy);
|
---|
5609 | AssertRC(rc);
|
---|
5610 | }
|
---|
5611 | else
|
---|
5612 | {
|
---|
5613 | uintptr_t paUser[3];
|
---|
5614 |
|
---|
5615 | paUser[0] = fInflate;
|
---|
5616 | paUser[1] = cPages;
|
---|
5617 | paUser[2] = (uintptr_t)paPhysPage;
|
---|
5618 | rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
|
---|
5619 | AssertRC(rc);
|
---|
5620 | }
|
---|
5621 | return rc;
|
---|
5622 |
|
---|
5623 | #else
|
---|
5624 | NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
|
---|
5625 | return VERR_NOT_IMPLEMENTED;
|
---|
5626 | #endif
|
---|
5627 | }
|
---|
5628 |
|
---|
5629 |
|
---|
5630 |
|
---|
5631 | /*********************************************************************************************************************************
|
---|
5632 | * Write Monitoring *
|
---|
5633 | *********************************************************************************************************************************/
|
---|
5634 |
|
---|
5635 | /**
|
---|
5636 | * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
|
---|
5637 | * physical RAM.
|
---|
5638 | *
|
---|
5639 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
5640 | * it to complete this function.
|
---|
5641 | *
|
---|
5642 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
5643 | * @param pVM The cross context VM structure.
|
---|
5644 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
5645 | * @param pvUser User parameter, unused.
|
---|
5646 | */
|
---|
5647 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
5648 | {
|
---|
5649 | int rc = VINF_SUCCESS;
|
---|
5650 | NOREF(pvUser); NOREF(pVCpu);
|
---|
5651 |
|
---|
5652 | PGM_LOCK_VOID(pVM);
|
---|
5653 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
5654 | pgmPoolResetDirtyPages(pVM);
|
---|
5655 | #endif
|
---|
5656 |
|
---|
5657 | uint32_t const cLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries, RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
|
---|
5658 | for (uint32_t idxLookup = 0; idxLookup < cLookupEntries; idxLookup++)
|
---|
5659 | {
|
---|
5660 | uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
|
---|
5661 | AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
|
---|
5662 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
5663 | AssertContinue(pRam);
|
---|
5664 |
|
---|
5665 | uint32_t cPages = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
5666 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
5667 | {
|
---|
5668 | PPGMPAGE const pPage = &pRam->aPages[iPage];
|
---|
5669 | PGMPAGETYPE const enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
|
---|
5670 |
|
---|
5671 | if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
|
---|
5672 | || enmPageType == PGMPAGETYPE_MMIO2)
|
---|
5673 | {
|
---|
5674 | /*
|
---|
5675 | * A RAM page.
|
---|
5676 | */
|
---|
5677 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
5678 | {
|
---|
5679 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
5680 | /** @todo Optimize this: Don't always re-enable write
|
---|
5681 | * monitoring if the page is known to be very busy. */
|
---|
5682 | if (PGM_PAGE_IS_WRITTEN_TO(pPage))
|
---|
5683 | PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
|
---|
5684 |
|
---|
5685 | pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT));
|
---|
5686 | break;
|
---|
5687 |
|
---|
5688 | case PGM_PAGE_STATE_SHARED:
|
---|
5689 | AssertFailed();
|
---|
5690 | break;
|
---|
5691 |
|
---|
5692 | case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
|
---|
5693 | default:
|
---|
5694 | break;
|
---|
5695 | }
|
---|
5696 | }
|
---|
5697 | }
|
---|
5698 | }
|
---|
5699 | pgmR3PoolWriteProtectPages(pVM);
|
---|
5700 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
5701 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
5702 | CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
5703 |
|
---|
5704 | PGM_UNLOCK(pVM);
|
---|
5705 | return rc;
|
---|
5706 | }
|
---|
5707 |
|
---|
5708 | /**
|
---|
5709 | * Protect all physical RAM to monitor writes
|
---|
5710 | *
|
---|
5711 | * @returns VBox status code.
|
---|
5712 | * @param pVM The cross context VM structure.
|
---|
5713 | */
|
---|
5714 | VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
|
---|
5715 | {
|
---|
5716 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
5717 |
|
---|
5718 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
|
---|
5719 | AssertRC(rc);
|
---|
5720 | return rc;
|
---|
5721 | }
|
---|
5722 |
|
---|
5723 |
|
---|
5724 | /*********************************************************************************************************************************
|
---|
5725 | * Stats. *
|
---|
5726 | *********************************************************************************************************************************/
|
---|
5727 |
|
---|
5728 | /**
|
---|
5729 | * Query the amount of free memory inside VMMR0
|
---|
5730 | *
|
---|
5731 | * @returns VBox status code.
|
---|
5732 | * @param pUVM The user mode VM handle.
|
---|
5733 | * @param pcbAllocMem Where to return the amount of memory allocated
|
---|
5734 | * by VMs.
|
---|
5735 | * @param pcbFreeMem Where to return the amount of memory that is
|
---|
5736 | * allocated from the host but not currently used
|
---|
5737 | * by any VMs.
|
---|
5738 | * @param pcbBallonedMem Where to return the sum of memory that is
|
---|
5739 | * currently ballooned by the VMs.
|
---|
5740 | * @param pcbSharedMem Where to return the amount of memory that is
|
---|
5741 | * currently shared.
|
---|
5742 | */
|
---|
5743 | VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
|
---|
5744 | uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
|
---|
5745 | {
|
---|
5746 | UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
|
---|
5747 | VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
|
---|
5748 |
|
---|
5749 | uint64_t cAllocPages = 0;
|
---|
5750 | uint64_t cFreePages = 0;
|
---|
5751 | uint64_t cBalloonPages = 0;
|
---|
5752 | uint64_t cSharedPages = 0;
|
---|
5753 | #if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
|
---|
5754 | if (!SUPR3IsDriverless())
|
---|
5755 | {
|
---|
5756 | int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
|
---|
5757 | AssertRCReturn(rc, rc);
|
---|
5758 | }
|
---|
5759 | #endif
|
---|
5760 |
|
---|
5761 | if (pcbAllocMem)
|
---|
5762 | *pcbAllocMem = cAllocPages * _4K;
|
---|
5763 |
|
---|
5764 | if (pcbFreeMem)
|
---|
5765 | *pcbFreeMem = cFreePages * _4K;
|
---|
5766 |
|
---|
5767 | if (pcbBallonedMem)
|
---|
5768 | *pcbBallonedMem = cBalloonPages * _4K;
|
---|
5769 |
|
---|
5770 | if (pcbSharedMem)
|
---|
5771 | *pcbSharedMem = cSharedPages * _4K;
|
---|
5772 |
|
---|
5773 | Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
|
---|
5774 | cAllocPages, cFreePages, cBalloonPages, cSharedPages));
|
---|
5775 | return VINF_SUCCESS;
|
---|
5776 | }
|
---|
5777 |
|
---|
5778 |
|
---|
5779 | /**
|
---|
5780 | * Query memory stats for the VM.
|
---|
5781 | *
|
---|
5782 | * @returns VBox status code.
|
---|
5783 | * @param pUVM The user mode VM handle.
|
---|
5784 | * @param pcbTotalMem Where to return total amount memory the VM may
|
---|
5785 | * possibly use.
|
---|
5786 | * @param pcbPrivateMem Where to return the amount of private memory
|
---|
5787 | * currently allocated.
|
---|
5788 | * @param pcbSharedMem Where to return the amount of actually shared
|
---|
5789 | * memory currently used by the VM.
|
---|
5790 | * @param pcbZeroMem Where to return the amount of memory backed by
|
---|
5791 | * zero pages.
|
---|
5792 | *
|
---|
5793 | * @remarks The total mem is normally larger than the sum of the three
|
---|
5794 | * components. There are two reasons for this, first the amount of
|
---|
5795 | * shared memory is what we're sure is shared instead of what could
|
---|
5796 | * possibly be shared with someone. Secondly, because the total may
|
---|
5797 | * include some pure MMIO pages that doesn't go into any of the three
|
---|
5798 | * sub-counts.
|
---|
5799 | *
|
---|
5800 | * @todo Why do we return reused shared pages instead of anything that could
|
---|
5801 | * potentially be shared? Doesn't this mean the first VM gets a much
|
---|
5802 | * lower number of shared pages?
|
---|
5803 | */
|
---|
5804 | VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
|
---|
5805 | uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
|
---|
5806 | {
|
---|
5807 | UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
|
---|
5808 | PVM pVM = pUVM->pVM;
|
---|
5809 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
5810 |
|
---|
5811 | if (pcbTotalMem)
|
---|
5812 | *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * GUEST_PAGE_SIZE;
|
---|
5813 |
|
---|
5814 | if (pcbPrivateMem)
|
---|
5815 | *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * GUEST_PAGE_SIZE;
|
---|
5816 |
|
---|
5817 | if (pcbSharedMem)
|
---|
5818 | *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * GUEST_PAGE_SIZE;
|
---|
5819 |
|
---|
5820 | if (pcbZeroMem)
|
---|
5821 | *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * GUEST_PAGE_SIZE;
|
---|
5822 |
|
---|
5823 | Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
|
---|
5824 | return VINF_SUCCESS;
|
---|
5825 | }
|
---|
5826 |
|
---|
5827 |
|
---|
5828 |
|
---|
5829 | /*********************************************************************************************************************************
|
---|
5830 | * Chunk Mappings and Page Allocation *
|
---|
5831 | *********************************************************************************************************************************/
|
---|
5832 | #ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
|
---|
5833 |
|
---|
5834 | /**
|
---|
5835 | * Tree enumeration callback for dealing with age rollover.
|
---|
5836 | * It will perform a simple compression of the current age.
|
---|
5837 | */
|
---|
5838 | static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
5839 | {
|
---|
5840 | /* Age compression - ASSUMES iNow == 4. */
|
---|
5841 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
5842 | if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
|
---|
5843 | pChunk->iLastUsed = 3;
|
---|
5844 | else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
|
---|
5845 | pChunk->iLastUsed = 2;
|
---|
5846 | else if (pChunk->iLastUsed)
|
---|
5847 | pChunk->iLastUsed = 1;
|
---|
5848 | else /* iLastUsed = 0 */
|
---|
5849 | pChunk->iLastUsed = 4;
|
---|
5850 |
|
---|
5851 | NOREF(pvUser);
|
---|
5852 | return 0;
|
---|
5853 | }
|
---|
5854 |
|
---|
5855 |
|
---|
5856 | /**
|
---|
5857 | * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
|
---|
5858 | */
|
---|
5859 | typedef struct PGMR3PHYSCHUNKUNMAPCB
|
---|
5860 | {
|
---|
5861 | PVM pVM; /**< Pointer to the VM. */
|
---|
5862 | PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
|
---|
5863 | } PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
|
---|
5864 |
|
---|
5865 |
|
---|
5866 | /**
|
---|
5867 | * Callback used to find the mapping that's been unused for
|
---|
5868 | * the longest time.
|
---|
5869 | */
|
---|
5870 | static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
5871 | {
|
---|
5872 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
5873 | PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
|
---|
5874 |
|
---|
5875 | /*
|
---|
5876 | * Check for locks and compare when last used.
|
---|
5877 | */
|
---|
5878 | if (pChunk->cRefs)
|
---|
5879 | return 0;
|
---|
5880 | if (pChunk->cPermRefs)
|
---|
5881 | return 0;
|
---|
5882 | if ( pArg->pChunk
|
---|
5883 | && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
|
---|
5884 | return 0;
|
---|
5885 |
|
---|
5886 | /*
|
---|
5887 | * Check that it's not in any of the TLBs.
|
---|
5888 | */
|
---|
5889 | PVM pVM = pArg->pVM;
|
---|
5890 | if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
|
---|
5891 | == pChunk->Core.Key)
|
---|
5892 | {
|
---|
5893 | pChunk = NULL;
|
---|
5894 | return 0;
|
---|
5895 | }
|
---|
5896 | # ifdef VBOX_STRICT
|
---|
5897 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
5898 | {
|
---|
5899 | Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
|
---|
5900 | Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
|
---|
5901 | }
|
---|
5902 | # endif
|
---|
5903 |
|
---|
5904 | # if 0 /* This is too much work with the PGMCPU::PhysTlb as well. We flush them all instead. */
|
---|
5905 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
|
---|
5906 | if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
|
---|
5907 | return 0;
|
---|
5908 | # endif
|
---|
5909 |
|
---|
5910 | pArg->pChunk = pChunk;
|
---|
5911 | return 0;
|
---|
5912 | }
|
---|
5913 |
|
---|
5914 |
|
---|
5915 | /**
|
---|
5916 | * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
|
---|
5917 | *
|
---|
5918 | * The candidate will not be part of any TLBs, so no need to flush
|
---|
5919 | * anything afterwards.
|
---|
5920 | *
|
---|
5921 | * @returns Chunk id.
|
---|
5922 | * @param pVM The cross context VM structure.
|
---|
5923 | */
|
---|
5924 | static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
|
---|
5925 | {
|
---|
5926 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
5927 |
|
---|
5928 | /*
|
---|
5929 | * Enumerate the age tree starting with the left most node.
|
---|
5930 | */
|
---|
5931 | STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
|
---|
5932 | PGMR3PHYSCHUNKUNMAPCB Args;
|
---|
5933 | Args.pVM = pVM;
|
---|
5934 | Args.pChunk = NULL;
|
---|
5935 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
|
---|
5936 | Assert(Args.pChunk);
|
---|
5937 | if (Args.pChunk)
|
---|
5938 | {
|
---|
5939 | Assert(Args.pChunk->cRefs == 0);
|
---|
5940 | Assert(Args.pChunk->cPermRefs == 0);
|
---|
5941 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
|
---|
5942 | return Args.pChunk->Core.Key;
|
---|
5943 | }
|
---|
5944 |
|
---|
5945 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
|
---|
5946 | return INT32_MAX;
|
---|
5947 | }
|
---|
5948 |
|
---|
5949 |
|
---|
5950 | /**
|
---|
5951 | * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
|
---|
5952 | *
|
---|
5953 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
5954 | * it to complete this function.
|
---|
5955 | *
|
---|
5956 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
5957 | * @param pVM The cross context VM structure.
|
---|
5958 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
5959 | * @param pvUser User pointer. Unused
|
---|
5960 | *
|
---|
5961 | */
|
---|
5962 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
5963 | {
|
---|
5964 | int rc = VINF_SUCCESS;
|
---|
5965 | PGM_LOCK_VOID(pVM);
|
---|
5966 | NOREF(pVCpu); NOREF(pvUser);
|
---|
5967 |
|
---|
5968 | if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
|
---|
5969 | {
|
---|
5970 | /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
|
---|
5971 | /** @todo also not really efficient to unmap a chunk that contains PD
|
---|
5972 | * or PT pages. */
|
---|
5973 | pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
|
---|
5974 |
|
---|
5975 | /*
|
---|
5976 | * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
|
---|
5977 | */
|
---|
5978 | GMMMAPUNMAPCHUNKREQ Req;
|
---|
5979 | Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
5980 | Req.Hdr.cbReq = sizeof(Req);
|
---|
5981 | Req.pvR3 = NULL;
|
---|
5982 | Req.idChunkMap = NIL_GMM_CHUNKID;
|
---|
5983 | Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
|
---|
5984 | if (Req.idChunkUnmap != INT32_MAX)
|
---|
5985 | {
|
---|
5986 | STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkUnmap, a);
|
---|
5987 | rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
|
---|
5988 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkUnmap, a);
|
---|
5989 | if (RT_SUCCESS(rc))
|
---|
5990 | {
|
---|
5991 | /*
|
---|
5992 | * Remove the unmapped one.
|
---|
5993 | */
|
---|
5994 | PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
|
---|
5995 | AssertRelease(pUnmappedChunk);
|
---|
5996 | AssertRelease(!pUnmappedChunk->cRefs);
|
---|
5997 | AssertRelease(!pUnmappedChunk->cPermRefs);
|
---|
5998 | pUnmappedChunk->pv = NULL;
|
---|
5999 | pUnmappedChunk->Core.Key = UINT32_MAX;
|
---|
6000 | MMR3HeapFree(pUnmappedChunk);
|
---|
6001 | pVM->pgm.s.ChunkR3Map.c--;
|
---|
6002 | pVM->pgm.s.cUnmappedChunks++;
|
---|
6003 |
|
---|
6004 | /*
|
---|
6005 | * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
|
---|
6006 | */
|
---|
6007 | /** @todo We should not flush chunks which include cr3 mappings. */
|
---|
6008 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
6009 | {
|
---|
6010 | PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
|
---|
6011 |
|
---|
6012 | pPGM->pGst32BitPdR3 = NULL;
|
---|
6013 | pPGM->pGstPaePdptR3 = NULL;
|
---|
6014 | pPGM->pGstAmd64Pml4R3 = NULL;
|
---|
6015 | pPGM->pGstEptPml4R3 = NULL;
|
---|
6016 | pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
|
---|
6017 | pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
|
---|
6018 | pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
|
---|
6019 | pPGM->pGstEptPml4R0 = NIL_RTR0PTR;
|
---|
6020 | for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
|
---|
6021 | {
|
---|
6022 | pPGM->apGstPaePDsR3[i] = NULL;
|
---|
6023 | pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
|
---|
6024 | }
|
---|
6025 |
|
---|
6026 | /* Flush REM TLBs. */
|
---|
6027 | CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
6028 | }
|
---|
6029 |
|
---|
6030 | pgmR3PhysChunkInvalidateTLB(pVM, true /*fInRendezvous*/); /* includes pgmPhysInvalidatePageMapTLB call */
|
---|
6031 | }
|
---|
6032 | }
|
---|
6033 | }
|
---|
6034 | PGM_UNLOCK(pVM);
|
---|
6035 | return rc;
|
---|
6036 | }
|
---|
6037 |
|
---|
6038 | /**
|
---|
6039 | * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
|
---|
6040 | *
|
---|
6041 | * @param pVM The cross context VM structure.
|
---|
6042 | */
|
---|
6043 | static DECLCALLBACK(void) pgmR3PhysUnmapChunk(PVM pVM)
|
---|
6044 | {
|
---|
6045 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
|
---|
6046 | AssertRC(rc);
|
---|
6047 | }
|
---|
6048 |
|
---|
6049 |
|
---|
6050 | /**
|
---|
6051 | * Maps the given chunk into the ring-3 mapping cache.
|
---|
6052 | *
|
---|
6053 | * This will call ring-0.
|
---|
6054 | *
|
---|
6055 | * @returns VBox status code.
|
---|
6056 | * @param pVM The cross context VM structure.
|
---|
6057 | * @param idChunk The chunk in question.
|
---|
6058 | * @param ppChunk Where to store the chunk tracking structure.
|
---|
6059 | *
|
---|
6060 | * @remarks Called from within the PGM critical section.
|
---|
6061 | * @remarks Can be called from any thread!
|
---|
6062 | */
|
---|
6063 | int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
|
---|
6064 | {
|
---|
6065 | int rc;
|
---|
6066 |
|
---|
6067 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
6068 |
|
---|
6069 | /*
|
---|
6070 | * Move the chunk time forward.
|
---|
6071 | */
|
---|
6072 | pVM->pgm.s.ChunkR3Map.iNow++;
|
---|
6073 | if (pVM->pgm.s.ChunkR3Map.iNow == 0)
|
---|
6074 | {
|
---|
6075 | pVM->pgm.s.ChunkR3Map.iNow = 4;
|
---|
6076 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
|
---|
6077 | }
|
---|
6078 |
|
---|
6079 | /*
|
---|
6080 | * Allocate a new tracking structure first.
|
---|
6081 | */
|
---|
6082 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
|
---|
6083 | AssertReturn(pChunk, VERR_NO_MEMORY);
|
---|
6084 | pChunk->Core.Key = idChunk;
|
---|
6085 | pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
|
---|
6086 |
|
---|
6087 | /*
|
---|
6088 | * Request the ring-0 part to map the chunk in question.
|
---|
6089 | */
|
---|
6090 | GMMMAPUNMAPCHUNKREQ Req;
|
---|
6091 | Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
6092 | Req.Hdr.cbReq = sizeof(Req);
|
---|
6093 | Req.pvR3 = NULL;
|
---|
6094 | Req.idChunkMap = idChunk;
|
---|
6095 | Req.idChunkUnmap = NIL_GMM_CHUNKID;
|
---|
6096 |
|
---|
6097 | /* Must be callable from any thread, so can't use VMMR3CallR0. */
|
---|
6098 | STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkMap, a);
|
---|
6099 | rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
|
---|
6100 | STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkMap, a);
|
---|
6101 | if (RT_SUCCESS(rc))
|
---|
6102 | {
|
---|
6103 | pChunk->pv = Req.pvR3;
|
---|
6104 |
|
---|
6105 | /*
|
---|
6106 | * If we're running out of virtual address space, then we should
|
---|
6107 | * unmap another chunk.
|
---|
6108 | *
|
---|
6109 | * Currently, an unmap operation requires that all other virtual CPUs
|
---|
6110 | * are idling and not by chance making use of the memory we're
|
---|
6111 | * unmapping. So, we create an async unmap operation here.
|
---|
6112 | *
|
---|
6113 | * Now, when creating or restoring a saved state this wont work very
|
---|
6114 | * well since we may want to restore all guest RAM + a little something.
|
---|
6115 | * So, we have to do the unmap synchronously. Fortunately for us
|
---|
6116 | * though, during these operations the other virtual CPUs are inactive
|
---|
6117 | * and it should be safe to do this.
|
---|
6118 | */
|
---|
6119 | /** @todo Eventually we should lock all memory when used and do
|
---|
6120 | * map+unmap as one kernel call without any rendezvous or
|
---|
6121 | * other precautions. */
|
---|
6122 | if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
|
---|
6123 | {
|
---|
6124 | switch (VMR3GetState(pVM))
|
---|
6125 | {
|
---|
6126 | case VMSTATE_LOADING:
|
---|
6127 | case VMSTATE_SAVING:
|
---|
6128 | {
|
---|
6129 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
6130 | if ( pVCpu
|
---|
6131 | && pVM->pgm.s.cDeprecatedPageLocks == 0)
|
---|
6132 | {
|
---|
6133 | pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
|
---|
6134 | break;
|
---|
6135 | }
|
---|
6136 | }
|
---|
6137 | RT_FALL_THRU();
|
---|
6138 | default:
|
---|
6139 | rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
|
---|
6140 | AssertRC(rc);
|
---|
6141 | break;
|
---|
6142 | }
|
---|
6143 | }
|
---|
6144 |
|
---|
6145 | /*
|
---|
6146 | * Update the tree. We must do this after any unmapping to make sure
|
---|
6147 | * the chunk we're going to return isn't unmapped by accident.
|
---|
6148 | */
|
---|
6149 | AssertPtr(Req.pvR3);
|
---|
6150 | bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
|
---|
6151 | AssertRelease(fRc);
|
---|
6152 | pVM->pgm.s.ChunkR3Map.c++;
|
---|
6153 | pVM->pgm.s.cMappedChunks++;
|
---|
6154 | }
|
---|
6155 | else
|
---|
6156 | {
|
---|
6157 | /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
|
---|
6158 | * should probably restrict ourselves on linux. */
|
---|
6159 | AssertRC(rc);
|
---|
6160 | MMR3HeapFree(pChunk);
|
---|
6161 | pChunk = NULL;
|
---|
6162 | }
|
---|
6163 |
|
---|
6164 | *ppChunk = pChunk;
|
---|
6165 | return rc;
|
---|
6166 | }
|
---|
6167 |
|
---|
6168 |
|
---|
6169 | /**
|
---|
6170 | * Invalidates the TLB for the ring-3 mapping cache.
|
---|
6171 | *
|
---|
6172 | * @param pVM The cross context VM structure.
|
---|
6173 | * @param fInRendezvous Set if we're in a rendezvous.
|
---|
6174 | */
|
---|
6175 | DECLHIDDEN(void) pgmR3PhysChunkInvalidateTLB(PVM pVM, bool fInRendezvous)
|
---|
6176 | {
|
---|
6177 | PGM_LOCK_VOID(pVM);
|
---|
6178 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
6179 | {
|
---|
6180 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
|
---|
6181 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
|
---|
6182 | }
|
---|
6183 | /* The page map TLB references chunks, so invalidate that one too. */
|
---|
6184 | pgmPhysInvalidatePageMapTLB(pVM, fInRendezvous);
|
---|
6185 | PGM_UNLOCK(pVM);
|
---|
6186 | }
|
---|
6187 |
|
---|
6188 |
|
---|
6189 | /**
|
---|
6190 | * Response to VM_FF_PGM_NEED_HANDY_PAGES and helper for pgmPhysEnsureHandyPage.
|
---|
6191 | *
|
---|
6192 | * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
|
---|
6193 | * signal and clear the out of memory condition. When called, this API is used
|
---|
6194 | * to try clear the condition when the user wants to resume.
|
---|
6195 | *
|
---|
6196 | * @returns The following VBox status codes.
|
---|
6197 | * @retval VINF_SUCCESS on success. FFs cleared.
|
---|
6198 | * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
|
---|
6199 | * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
|
---|
6200 | *
|
---|
6201 | * @param pVM The cross context VM structure.
|
---|
6202 | *
|
---|
6203 | * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
|
---|
6204 | * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
|
---|
6205 | * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
|
---|
6206 | * handler.
|
---|
6207 | */
|
---|
6208 | VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
|
---|
6209 | {
|
---|
6210 | PGM_LOCK_VOID(pVM);
|
---|
6211 |
|
---|
6212 | /*
|
---|
6213 | * Allocate more pages, noting down the index of the first new page.
|
---|
6214 | */
|
---|
6215 | uint32_t iClear = pVM->pgm.s.cHandyPages;
|
---|
6216 | AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
|
---|
6217 | Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
|
---|
6218 | int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
|
---|
6219 | /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
|
---|
6220 | if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
|
---|
6221 | && pVM->pgm.s.cHandyPages > 0)
|
---|
6222 | {
|
---|
6223 | /* Still handy pages left, so don't panic. */
|
---|
6224 | rc = VINF_SUCCESS;
|
---|
6225 | }
|
---|
6226 |
|
---|
6227 | if (RT_SUCCESS(rc))
|
---|
6228 | {
|
---|
6229 | AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
|
---|
6230 | Assert(pVM->pgm.s.cHandyPages > 0);
|
---|
6231 | # ifdef VBOX_STRICT
|
---|
6232 | uint32_t i;
|
---|
6233 | for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
|
---|
6234 | if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
|
---|
6235 | || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
|
---|
6236 | || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & GUEST_PAGE_OFFSET_MASK))
|
---|
6237 | break;
|
---|
6238 | if (i != pVM->pgm.s.cHandyPages)
|
---|
6239 | {
|
---|
6240 | RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
|
---|
6241 | RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
|
---|
6242 | for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
|
---|
6243 | RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%s\n", j,
|
---|
6244 | pVM->pgm.s.aHandyPages[j].idPage,
|
---|
6245 | pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
|
---|
6246 | pVM->pgm.s.aHandyPages[j].idSharedPage,
|
---|
6247 | j == i ? " <---" : "");
|
---|
6248 | RTAssertPanic();
|
---|
6249 | }
|
---|
6250 | # endif
|
---|
6251 | }
|
---|
6252 | else
|
---|
6253 | {
|
---|
6254 | /*
|
---|
6255 | * We should never get here unless there is a genuine shortage of
|
---|
6256 | * memory (or some internal error). Flag the error so the VM can be
|
---|
6257 | * suspended ASAP and the user informed. If we're totally out of
|
---|
6258 | * handy pages we will return failure.
|
---|
6259 | */
|
---|
6260 | /* Report the failure. */
|
---|
6261 | LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n"
|
---|
6262 | " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
|
---|
6263 | rc, pVM->pgm.s.cHandyPages,
|
---|
6264 | pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages));
|
---|
6265 |
|
---|
6266 | if ( rc != VERR_NO_MEMORY
|
---|
6267 | && rc != VERR_NO_PHYS_MEMORY
|
---|
6268 | && rc != VERR_LOCK_FAILED)
|
---|
6269 | for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
|
---|
6270 | {
|
---|
6271 | LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
|
---|
6272 | i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
|
---|
6273 | pVM->pgm.s.aHandyPages[i].idSharedPage));
|
---|
6274 | uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
|
---|
6275 | if (idPage != NIL_GMM_PAGEID)
|
---|
6276 | {
|
---|
6277 | uint32_t const idRamRangeMax = RT_MIN(pVM->pgm.s.idRamRangeMax, RT_ELEMENTS(pVM->pgm.s.apRamRanges) - 1U);
|
---|
6278 | for (uint32_t idRamRange = 0; idRamRange <= idRamRangeMax; idRamRange++)
|
---|
6279 | {
|
---|
6280 | PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
|
---|
6281 | Assert(pRam || idRamRange == 0);
|
---|
6282 | if (!pRam) continue;
|
---|
6283 | Assert(pRam->idRange == idRamRange);
|
---|
6284 |
|
---|
6285 | uint32_t const cPages = pRam->cb >> GUEST_PAGE_SHIFT;
|
---|
6286 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
6287 | if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
|
---|
6288 | LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
|
---|
6289 | pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
|
---|
6290 | }
|
---|
6291 | }
|
---|
6292 | }
|
---|
6293 |
|
---|
6294 | if (rc == VERR_NO_MEMORY)
|
---|
6295 | {
|
---|
6296 | uint64_t cbHostRamAvail = 0;
|
---|
6297 | int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
|
---|
6298 | if (RT_SUCCESS(rc2))
|
---|
6299 | LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
|
---|
6300 | else
|
---|
6301 | LogRel(("Cannot determine the amount of available host memory\n"));
|
---|
6302 | }
|
---|
6303 |
|
---|
6304 | /* Set the FFs and adjust rc. */
|
---|
6305 | VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
|
---|
6306 | VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
|
---|
6307 | if ( rc == VERR_NO_MEMORY
|
---|
6308 | || rc == VERR_NO_PHYS_MEMORY
|
---|
6309 | || rc == VERR_LOCK_FAILED)
|
---|
6310 | rc = VINF_EM_NO_MEMORY;
|
---|
6311 | }
|
---|
6312 |
|
---|
6313 | PGM_UNLOCK(pVM);
|
---|
6314 | return rc;
|
---|
6315 | }
|
---|
6316 |
|
---|
6317 | #endif /* !VBOX_WITH_ONLY_PGM_NEM_MODE */
|
---|
6318 |
|
---|
6319 |
|
---|
6320 | /*********************************************************************************************************************************
|
---|
6321 | * Other Stuff *
|
---|
6322 | *********************************************************************************************************************************/
|
---|
6323 |
|
---|
6324 | #ifdef VBOX_VMM_TARGET_X86
|
---|
6325 | /**
|
---|
6326 | * Sets the Address Gate 20 state.
|
---|
6327 | *
|
---|
6328 | * @param pVCpu The cross context virtual CPU structure.
|
---|
6329 | * @param fEnable True if the gate should be enabled.
|
---|
6330 | * False if the gate should be disabled.
|
---|
6331 | */
|
---|
6332 | VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
|
---|
6333 | {
|
---|
6334 | LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
|
---|
6335 | if (pVCpu->pgm.s.fA20Enabled != fEnable)
|
---|
6336 | {
|
---|
6337 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
6338 | PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
6339 | if ( CPUMIsGuestInVmxRootMode(pCtx)
|
---|
6340 | && !fEnable)
|
---|
6341 | {
|
---|
6342 | Log(("Cannot enter A20M mode while in VMX root mode\n"));
|
---|
6343 | return;
|
---|
6344 | }
|
---|
6345 | # endif
|
---|
6346 | pVCpu->pgm.s.fA20Enabled = fEnable;
|
---|
6347 | pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
|
---|
6348 | if (VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)))
|
---|
6349 | NEMR3NotifySetA20(pVCpu, fEnable);
|
---|
6350 | # ifdef PGM_WITH_A20
|
---|
6351 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
6352 | pgmR3RefreshShadowModeAfterA20Change(pVCpu);
|
---|
6353 | HMFlushTlb(pVCpu);
|
---|
6354 | # endif
|
---|
6355 | # if 0 /* PGMGetPage will apply the A20 mask to the GCPhys it returns, so we must invalid both sides of the TLB. */
|
---|
6356 | IEMTlbInvalidateAllPhysical(pVCpu);
|
---|
6357 | # else
|
---|
6358 | IEMTlbInvalidateAllGlobal(pVCpu);
|
---|
6359 | # endif
|
---|
6360 | STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
|
---|
6361 | }
|
---|
6362 | }
|
---|
6363 | #endif /* VBOX_VMM_TARGET_X86 */
|
---|
6364 |
|
---|