VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 44397

Last change on this file since 44397 was 44347, checked in by vboxsync, 12 years ago

PGM,SSM,STAM: Changed APIs used by Main to take PUVM instead of PVM as the VM handle.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 166.9 KB
Line 
1/* $Id: PGMPhys.cpp 44347 2013-01-24 00:27:56Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iom.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/stam.h>
27#ifdef VBOX_WITH_REM
28# include <VBox/vmm/rem.h>
29#endif
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vm.h>
33#include <VBox/vmm/uvm.h>
34#include "PGMInline.h"
35#include <VBox/sup.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/alloc.h>
41#include <iprt/asm.h>
42#ifdef VBOX_STRICT
43# include <iprt/crc.h>
44#endif
45#include <iprt/thread.h>
46#include <iprt/string.h>
47#include <iprt/system.h>
48
49
50/*******************************************************************************
51* Defined Constants And Macros *
52*******************************************************************************/
53/** The number of pages to free in one batch. */
54#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
55
56
57/*******************************************************************************
58* Internal Functions *
59*******************************************************************************/
60static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
61
62
63/*
64 * PGMR3PhysReadU8-64
65 * PGMR3PhysWriteU8-64
66 */
67#define PGMPHYSFN_READNAME PGMR3PhysReadU8
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
69#define PGMPHYS_DATASIZE 1
70#define PGMPHYS_DATATYPE uint8_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU16
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
75#define PGMPHYS_DATASIZE 2
76#define PGMPHYS_DATATYPE uint16_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU32
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
81#define PGMPHYS_DATASIZE 4
82#define PGMPHYS_DATATYPE uint32_t
83#include "PGMPhysRWTmpl.h"
84
85#define PGMPHYSFN_READNAME PGMR3PhysReadU64
86#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
87#define PGMPHYS_DATASIZE 8
88#define PGMPHYS_DATATYPE uint64_t
89#include "PGMPhysRWTmpl.h"
90
91
92/**
93 * EMT worker for PGMR3PhysReadExternal.
94 */
95static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
96{
97 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
98 return VINF_SUCCESS;
99}
100
101
102/**
103 * Read from physical memory, external users.
104 *
105 * @returns VBox status code.
106 * @retval VINF_SUCCESS.
107 *
108 * @param pVM Pointer to the VM.
109 * @param GCPhys Physical address to read from.
110 * @param pvBuf Where to read into.
111 * @param cbRead How many bytes to read.
112 *
113 * @thread Any but EMTs.
114 */
115VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
116{
117 VM_ASSERT_OTHER_THREAD(pVM);
118
119 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
120 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
121
122 pgmLock(pVM);
123
124 /*
125 * Copy loop on ram ranges.
126 */
127 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
128 for (;;)
129 {
130 /* Inside range or not? */
131 if (pRam && GCPhys >= pRam->GCPhys)
132 {
133 /*
134 * Must work our way thru this page by page.
135 */
136 RTGCPHYS off = GCPhys - pRam->GCPhys;
137 while (off < pRam->cb)
138 {
139 unsigned iPage = off >> PAGE_SHIFT;
140 PPGMPAGE pPage = &pRam->aPages[iPage];
141
142 /*
143 * If the page has an ALL access handler, we'll have to
144 * delegate the job to EMT.
145 */
146 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
147 {
148 pgmUnlock(pVM);
149
150 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
151 pVM, &GCPhys, pvBuf, cbRead);
152 }
153 Assert(!PGM_PAGE_IS_MMIO(pPage));
154
155 /*
156 * Simple stuff, go ahead.
157 */
158 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
159 if (cb > cbRead)
160 cb = cbRead;
161 PGMPAGEMAPLOCK PgMpLck;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
164 if (RT_SUCCESS(rc))
165 {
166 memcpy(pvBuf, pvSrc, cb);
167 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
168 }
169 else
170 {
171 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
172 pRam->GCPhys + off, pPage, rc));
173 memset(pvBuf, 0xff, cb);
174 }
175
176 /* next page */
177 if (cb >= cbRead)
178 {
179 pgmUnlock(pVM);
180 return VINF_SUCCESS;
181 }
182 cbRead -= cb;
183 off += cb;
184 GCPhys += cb;
185 pvBuf = (char *)pvBuf + cb;
186 } /* walk pages in ram range. */
187 }
188 else
189 {
190 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
191
192 /*
193 * Unassigned address space.
194 */
195 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
196 if (cb >= cbRead)
197 {
198 memset(pvBuf, 0xff, cbRead);
199 break;
200 }
201 memset(pvBuf, 0xff, cb);
202
203 cbRead -= cb;
204 pvBuf = (char *)pvBuf + cb;
205 GCPhys += cb;
206 }
207
208 /* Advance range if necessary. */
209 while (pRam && GCPhys > pRam->GCPhysLast)
210 pRam = pRam->CTX_SUFF(pNext);
211 } /* Ram range walk */
212
213 pgmUnlock(pVM);
214
215 return VINF_SUCCESS;
216}
217
218
219/**
220 * EMT worker for PGMR3PhysWriteExternal.
221 */
222static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
223{
224 /** @todo VERR_EM_NO_MEMORY */
225 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
226 return VINF_SUCCESS;
227}
228
229
230/**
231 * Write to physical memory, external users.
232 *
233 * @returns VBox status code.
234 * @retval VINF_SUCCESS.
235 * @retval VERR_EM_NO_MEMORY.
236 *
237 * @param pVM Pointer to the VM.
238 * @param GCPhys Physical address to write to.
239 * @param pvBuf What to write.
240 * @param cbWrite How many bytes to write.
241 * @param pszWho Who is writing. For tracking down who is writing
242 * after we've saved the state.
243 *
244 * @thread Any but EMTs.
245 */
246VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
247{
248 VM_ASSERT_OTHER_THREAD(pVM);
249
250 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
251 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
252 GCPhys, cbWrite, pszWho));
253 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
254 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
255
256 pgmLock(pVM);
257
258 /*
259 * Copy loop on ram ranges, stop when we hit something difficult.
260 */
261 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
262 for (;;)
263 {
264 /* Inside range or not? */
265 if (pRam && GCPhys >= pRam->GCPhys)
266 {
267 /*
268 * Must work our way thru this page by page.
269 */
270 RTGCPTR off = GCPhys - pRam->GCPhys;
271 while (off < pRam->cb)
272 {
273 RTGCPTR iPage = off >> PAGE_SHIFT;
274 PPGMPAGE pPage = &pRam->aPages[iPage];
275
276 /*
277 * Is the page problematic, we have to do the work on the EMT.
278 *
279 * Allocating writable pages and access handlers are
280 * problematic, write monitored pages are simple and can be
281 * dealt with here.
282 */
283 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
284 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
285 {
286 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
287 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
288 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
289 else
290 {
291 pgmUnlock(pVM);
292
293 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
294 pVM, &GCPhys, pvBuf, cbWrite);
295 }
296 }
297 Assert(!PGM_PAGE_IS_MMIO(pPage));
298
299 /*
300 * Simple stuff, go ahead.
301 */
302 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
303 if (cb > cbWrite)
304 cb = cbWrite;
305 PGMPAGEMAPLOCK PgMpLck;
306 void *pvDst;
307 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
308 if (RT_SUCCESS(rc))
309 {
310 memcpy(pvDst, pvBuf, cb);
311 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
312 }
313 else
314 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
315 pRam->GCPhys + off, pPage, rc));
316
317 /* next page */
318 if (cb >= cbWrite)
319 {
320 pgmUnlock(pVM);
321 return VINF_SUCCESS;
322 }
323
324 cbWrite -= cb;
325 off += cb;
326 GCPhys += cb;
327 pvBuf = (const char *)pvBuf + cb;
328 } /* walk pages in ram range */
329 }
330 else
331 {
332 /*
333 * Unassigned address space, skip it.
334 */
335 if (!pRam)
336 break;
337 size_t cb = pRam->GCPhys - GCPhys;
338 if (cb >= cbWrite)
339 break;
340 cbWrite -= cb;
341 pvBuf = (const char *)pvBuf + cb;
342 GCPhys += cb;
343 }
344
345 /* Advance range if necessary. */
346 while (pRam && GCPhys > pRam->GCPhysLast)
347 pRam = pRam->CTX_SUFF(pNext);
348 } /* Ram range walk */
349
350 pgmUnlock(pVM);
351 return VINF_SUCCESS;
352}
353
354
355/**
356 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
357 *
358 * @returns see PGMR3PhysGCPhys2CCPtrExternal
359 * @param pVM Pointer to the VM.
360 * @param pGCPhys Pointer to the guest physical address.
361 * @param ppv Where to store the mapping address.
362 * @param pLock Where to store the lock.
363 */
364static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
365{
366 /*
367 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
368 * an access handler after it succeeds.
369 */
370 int rc = pgmLock(pVM);
371 AssertRCReturn(rc, rc);
372
373 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
374 if (RT_SUCCESS(rc))
375 {
376 PPGMPAGEMAPTLBE pTlbe;
377 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
378 AssertFatalRC(rc2);
379 PPGMPAGE pPage = pTlbe->pPage;
380 if (PGM_PAGE_IS_MMIO(pPage))
381 {
382 PGMPhysReleasePageMappingLock(pVM, pLock);
383 rc = VERR_PGM_PHYS_PAGE_RESERVED;
384 }
385 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
386#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
387 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
388#endif
389 )
390 {
391 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
392 * not be informed about writes and keep bogus gst->shw mappings around.
393 */
394 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
395 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
396 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
397 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
398 }
399 }
400
401 pgmUnlock(pVM);
402 return rc;
403}
404
405
406/**
407 * Requests the mapping of a guest page into ring-3, external threads.
408 *
409 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
410 * release it.
411 *
412 * This API will assume your intention is to write to the page, and will
413 * therefore replace shared and zero pages. If you do not intend to modify the
414 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
415 *
416 * @returns VBox status code.
417 * @retval VINF_SUCCESS on success.
418 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
419 * backing or if the page has any active access handlers. The caller
420 * must fall back on using PGMR3PhysWriteExternal.
421 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
422 *
423 * @param pVM Pointer to the VM.
424 * @param GCPhys The guest physical address of the page that should be mapped.
425 * @param ppv Where to store the address corresponding to GCPhys.
426 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
427 *
428 * @remark Avoid calling this API from within critical sections (other than the
429 * PGM one) because of the deadlock risk when we have to delegating the
430 * task to an EMT.
431 * @thread Any.
432 */
433VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
434{
435 AssertPtr(ppv);
436 AssertPtr(pLock);
437
438 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
439
440 int rc = pgmLock(pVM);
441 AssertRCReturn(rc, rc);
442
443 /*
444 * Query the Physical TLB entry for the page (may fail).
445 */
446 PPGMPAGEMAPTLBE pTlbe;
447 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
448 if (RT_SUCCESS(rc))
449 {
450 PPGMPAGE pPage = pTlbe->pPage;
451 if (PGM_PAGE_IS_MMIO(pPage))
452 rc = VERR_PGM_PHYS_PAGE_RESERVED;
453 else
454 {
455 /*
456 * If the page is shared, the zero page, or being write monitored
457 * it must be converted to an page that's writable if possible.
458 * We can only deal with write monitored pages here, the rest have
459 * to be on an EMT.
460 */
461 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
462 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
463#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
464 || pgmPoolIsDirtyPage(pVM, GCPhys)
465#endif
466 )
467 {
468 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
469 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
470#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
471 && !pgmPoolIsDirtyPage(pVM, GCPhys)
472#endif
473 )
474 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
475 else
476 {
477 pgmUnlock(pVM);
478
479 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
480 pVM, &GCPhys, ppv, pLock);
481 }
482 }
483
484 /*
485 * Now, just perform the locking and calculate the return address.
486 */
487 PPGMPAGEMAP pMap = pTlbe->pMap;
488 if (pMap)
489 pMap->cRefs++;
490
491 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
492 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
493 {
494 if (cLocks == 0)
495 pVM->pgm.s.cWriteLockedPages++;
496 PGM_PAGE_INC_WRITE_LOCKS(pPage);
497 }
498 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
499 {
500 PGM_PAGE_INC_WRITE_LOCKS(pPage);
501 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
502 if (pMap)
503 pMap->cRefs++; /* Extra ref to prevent it from going away. */
504 }
505
506 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
507 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
508 pLock->pvMap = pMap;
509 }
510 }
511
512 pgmUnlock(pVM);
513 return rc;
514}
515
516
517/**
518 * Requests the mapping of a guest page into ring-3, external threads.
519 *
520 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
521 * release it.
522 *
523 * @returns VBox status code.
524 * @retval VINF_SUCCESS on success.
525 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
526 * backing or if the page as an active ALL access handler. The caller
527 * must fall back on using PGMPhysRead.
528 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
529 *
530 * @param pVM Pointer to the VM.
531 * @param GCPhys The guest physical address of the page that should be mapped.
532 * @param ppv Where to store the address corresponding to GCPhys.
533 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
534 *
535 * @remark Avoid calling this API from within critical sections (other than
536 * the PGM one) because of the deadlock risk.
537 * @thread Any.
538 */
539VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
540{
541 int rc = pgmLock(pVM);
542 AssertRCReturn(rc, rc);
543
544 /*
545 * Query the Physical TLB entry for the page (may fail).
546 */
547 PPGMPAGEMAPTLBE pTlbe;
548 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
549 if (RT_SUCCESS(rc))
550 {
551 PPGMPAGE pPage = pTlbe->pPage;
552#if 1
553 /* MMIO pages doesn't have any readable backing. */
554 if (PGM_PAGE_IS_MMIO(pPage))
555 rc = VERR_PGM_PHYS_PAGE_RESERVED;
556#else
557 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
558 rc = VERR_PGM_PHYS_PAGE_RESERVED;
559#endif
560 else
561 {
562 /*
563 * Now, just perform the locking and calculate the return address.
564 */
565 PPGMPAGEMAP pMap = pTlbe->pMap;
566 if (pMap)
567 pMap->cRefs++;
568
569 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
570 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
571 {
572 if (cLocks == 0)
573 pVM->pgm.s.cReadLockedPages++;
574 PGM_PAGE_INC_READ_LOCKS(pPage);
575 }
576 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
577 {
578 PGM_PAGE_INC_READ_LOCKS(pPage);
579 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
580 if (pMap)
581 pMap->cRefs++; /* Extra ref to prevent it from going away. */
582 }
583
584 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
585 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
586 pLock->pvMap = pMap;
587 }
588 }
589
590 pgmUnlock(pVM);
591 return rc;
592}
593
594
595#define MAKE_LEAF(a_pNode) \
596 do { \
597 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
598 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
599 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
600 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
601 (a_pNode)->pLeftRC = NIL_RTRCPTR; \
602 (a_pNode)->pRightRC = NIL_RTRCPTR; \
603 } while (0)
604
605#define INSERT_LEFT(a_pParent, a_pNode) \
606 do { \
607 (a_pParent)->pLeftR3 = (a_pNode); \
608 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
609 (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
610 } while (0)
611#define INSERT_RIGHT(a_pParent, a_pNode) \
612 do { \
613 (a_pParent)->pRightR3 = (a_pNode); \
614 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
615 (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
616 } while (0)
617
618
619/**
620 * Recursive tree builder.
621 *
622 * @param ppRam Pointer to the iterator variable.
623 * @param iHeight The hight about normal leaf nodes. Inserts a leaf
624 * node if 0.
625 */
626static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
627{
628 PPGMRAMRANGE pRam;
629 if (iDepth <= 0)
630 {
631 /*
632 * Leaf node.
633 */
634 pRam = *ppRam;
635 if (pRam)
636 {
637 *ppRam = pRam->pNextR3;
638 MAKE_LEAF(pRam);
639 }
640 }
641 else
642 {
643
644 /*
645 * Intermediate node.
646 */
647 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
648
649 pRam = *ppRam;
650 if (!pRam)
651 return pLeft;
652 *ppRam = pRam->pNextR3;
653 MAKE_LEAF(pRam);
654 INSERT_LEFT(pRam, pLeft);
655
656 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
657 if (pRight)
658 INSERT_RIGHT(pRam, pRight);
659 }
660 return pRam;
661}
662
663
664/**
665 * Rebuilds the RAM range search trees.
666 *
667 * @param pVM Pointer to the VM.
668 */
669static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
670{
671
672 /*
673 * Create the reasonably balanced tree in a sequential fashion.
674 * For simplicity (laziness) we use standard recursion here.
675 */
676 int iDepth = 0;
677 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
678 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
679 while (pRam)
680 {
681 PPGMRAMRANGE pLeft = pRoot;
682
683 pRoot = pRam;
684 pRam = pRam->pNextR3;
685 MAKE_LEAF(pRoot);
686 INSERT_LEFT(pRoot, pLeft);
687
688 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
689 if (pRight)
690 INSERT_RIGHT(pRoot, pRight);
691 /** @todo else: rotate the tree. */
692
693 iDepth++;
694 }
695
696 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
697 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
698 pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;
699
700#ifdef VBOX_STRICT
701 /*
702 * Verify that the above code works.
703 */
704 unsigned cRanges = 0;
705 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
706 cRanges++;
707 Assert(cRanges > 0);
708
709 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
710 if ((1U << cMaxDepth) < cRanges)
711 cMaxDepth++;
712
713 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
714 {
715 unsigned cDepth = 0;
716 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
717 for (;;)
718 {
719 if (pRam == pRam2)
720 break;
721 Assert(pRam2);
722 if (pRam->GCPhys < pRam2->GCPhys)
723 pRam2 = pRam2->pLeftR3;
724 else
725 pRam2 = pRam2->pRightR3;
726 }
727 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
728 }
729#endif /* VBOX_STRICT */
730}
731
732#undef MAKE_LEAF
733#undef INSERT_LEFT
734#undef INSERT_RIGHT
735
736/**
737 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
738 *
739 * Called when anything was relocated.
740 *
741 * @param pVM Pointer to the VM.
742 */
743void pgmR3PhysRelinkRamRanges(PVM pVM)
744{
745 PPGMRAMRANGE pCur;
746
747#ifdef VBOX_STRICT
748 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
749 {
750 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
751 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
752 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
753 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
754 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
755 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
756 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
757 Assert( pCur2 == pCur
758 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
759 }
760#endif
761
762 pCur = pVM->pgm.s.pRamRangesXR3;
763 if (pCur)
764 {
765 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
766 pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;
767
768 for (; pCur->pNextR3; pCur = pCur->pNextR3)
769 {
770 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
771 pCur->pNextRC = pCur->pNextR3->pSelfRC;
772 }
773
774 Assert(pCur->pNextR0 == NIL_RTR0PTR);
775 Assert(pCur->pNextRC == NIL_RTRCPTR);
776 }
777 else
778 {
779 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
780 Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
781 }
782 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
783
784 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
785}
786
787
788/**
789 * Links a new RAM range into the list.
790 *
791 * @param pVM Pointer to the VM.
792 * @param pNew Pointer to the new list entry.
793 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
794 */
795static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
796{
797 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
798 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
799 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
800
801 pgmLock(pVM);
802
803 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
804 pNew->pNextR3 = pRam;
805 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
806 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
807
808 if (pPrev)
809 {
810 pPrev->pNextR3 = pNew;
811 pPrev->pNextR0 = pNew->pSelfR0;
812 pPrev->pNextRC = pNew->pSelfRC;
813 }
814 else
815 {
816 pVM->pgm.s.pRamRangesXR3 = pNew;
817 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
818 pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
819 }
820 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
821
822 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
823 pgmUnlock(pVM);
824}
825
826
827/**
828 * Unlink an existing RAM range from the list.
829 *
830 * @param pVM Pointer to the VM.
831 * @param pRam Pointer to the new list entry.
832 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
833 */
834static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
835{
836 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
837 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
838 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
839
840 pgmLock(pVM);
841
842 PPGMRAMRANGE pNext = pRam->pNextR3;
843 if (pPrev)
844 {
845 pPrev->pNextR3 = pNext;
846 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
847 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
848 }
849 else
850 {
851 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
852 pVM->pgm.s.pRamRangesXR3 = pNext;
853 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
854 pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
855 }
856 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
857
858 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
859 pgmUnlock(pVM);
860}
861
862
863/**
864 * Unlink an existing RAM range from the list.
865 *
866 * @param pVM Pointer to the VM.
867 * @param pRam Pointer to the new list entry.
868 */
869static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
870{
871 pgmLock(pVM);
872
873 /* find prev. */
874 PPGMRAMRANGE pPrev = NULL;
875 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
876 while (pCur != pRam)
877 {
878 pPrev = pCur;
879 pCur = pCur->pNextR3;
880 }
881 AssertFatal(pCur);
882
883 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
884 pgmUnlock(pVM);
885}
886
887
888/**
889 * Frees a range of pages, replacing them with ZERO pages of the specified type.
890 *
891 * @returns VBox status code.
892 * @param pVM Pointer to the VM.
893 * @param pRam The RAM range in which the pages resides.
894 * @param GCPhys The address of the first page.
895 * @param GCPhysLast The address of the last page.
896 * @param uType The page type to replace then with.
897 */
898static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
899{
900 PGM_LOCK_ASSERT_OWNER(pVM);
901 uint32_t cPendingPages = 0;
902 PGMMFREEPAGESREQ pReq;
903 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
904 AssertLogRelRCReturn(rc, rc);
905
906 /* Iterate the pages. */
907 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
908 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
909 while (cPagesLeft-- > 0)
910 {
911 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
912 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
913
914 PGM_PAGE_SET_TYPE(pVM, pPageDst, uType);
915
916 GCPhys += PAGE_SIZE;
917 pPageDst++;
918 }
919
920 if (cPendingPages)
921 {
922 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
923 AssertLogRelRCReturn(rc, rc);
924 }
925 GMMR3FreePagesCleanup(pReq);
926
927 return rc;
928}
929
930#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
931
932/**
933 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
934 *
935 * This is only called on one of the EMTs while the other ones are waiting for
936 * it to complete this function.
937 *
938 * @returns VINF_SUCCESS (VBox strict status code).
939 * @param pVM Pointer to the VM.
940 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
941 * @param pvUser User parameter
942 */
943static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
944{
945 uintptr_t *paUser = (uintptr_t *)pvUser;
946 bool fInflate = !!paUser[0];
947 unsigned cPages = paUser[1];
948 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
949 uint32_t cPendingPages = 0;
950 PGMMFREEPAGESREQ pReq;
951 int rc;
952
953 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
954 pgmLock(pVM);
955
956 if (fInflate)
957 {
958 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
959 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
960
961 /* Replace pages with ZERO pages. */
962 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
963 if (RT_FAILURE(rc))
964 {
965 pgmUnlock(pVM);
966 AssertLogRelRC(rc);
967 return rc;
968 }
969
970 /* Iterate the pages. */
971 for (unsigned i = 0; i < cPages; i++)
972 {
973 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
974 if ( pPage == NULL
975 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
976 {
977 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
978 break;
979 }
980
981 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
982
983 /* Flush the shadow PT if this page was previously used as a guest page table. */
984 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
985
986 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
987 if (RT_FAILURE(rc))
988 {
989 pgmUnlock(pVM);
990 AssertLogRelRC(rc);
991 return rc;
992 }
993 Assert(PGM_PAGE_IS_ZERO(pPage));
994 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
995 }
996
997 if (cPendingPages)
998 {
999 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1000 if (RT_FAILURE(rc))
1001 {
1002 pgmUnlock(pVM);
1003 AssertLogRelRC(rc);
1004 return rc;
1005 }
1006 }
1007 GMMR3FreePagesCleanup(pReq);
1008 }
1009 else
1010 {
1011 /* Iterate the pages. */
1012 for (unsigned i = 0; i < cPages; i++)
1013 {
1014 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1015 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1016
1017 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1018
1019 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1020
1021 /* Change back to zero page. */
1022 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1023 }
1024
1025 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1026 }
1027
1028 /* Notify GMM about the balloon change. */
1029 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1030 if (RT_SUCCESS(rc))
1031 {
1032 if (!fInflate)
1033 {
1034 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1035 pVM->pgm.s.cBalloonedPages -= cPages;
1036 }
1037 else
1038 pVM->pgm.s.cBalloonedPages += cPages;
1039 }
1040
1041 pgmUnlock(pVM);
1042
1043 /* Flush the recompiler's TLB as well. */
1044 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1045 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1046
1047 AssertLogRelRC(rc);
1048 return rc;
1049}
1050
1051
1052/**
1053 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1054 *
1055 * @returns VBox status code.
1056 * @param pVM Pointer to the VM.
1057 * @param fInflate Inflate or deflate memory balloon
1058 * @param cPages Number of pages to free
1059 * @param paPhysPage Array of guest physical addresses
1060 */
1061static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1062{
1063 uintptr_t paUser[3];
1064
1065 paUser[0] = fInflate;
1066 paUser[1] = cPages;
1067 paUser[2] = (uintptr_t)paPhysPage;
1068 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1069 AssertRC(rc);
1070
1071 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1072 RTMemFree(paPhysPage);
1073}
1074
1075#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1076
1077/**
1078 * Inflate or deflate a memory balloon
1079 *
1080 * @returns VBox status code.
1081 * @param pVM Pointer to the VM.
1082 * @param fInflate Inflate or deflate memory balloon
1083 * @param cPages Number of pages to free
1084 * @param paPhysPage Array of guest physical addresses
1085 */
1086VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1087{
1088 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1089#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1090 int rc;
1091
1092 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1093 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1094
1095 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1096 * In the SMP case we post a request packet to postpone the job.
1097 */
1098 if (pVM->cCpus > 1)
1099 {
1100 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1101 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1102 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1103
1104 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1105
1106 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1107 AssertRC(rc);
1108 }
1109 else
1110 {
1111 uintptr_t paUser[3];
1112
1113 paUser[0] = fInflate;
1114 paUser[1] = cPages;
1115 paUser[2] = (uintptr_t)paPhysPage;
1116 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1117 AssertRC(rc);
1118 }
1119 return rc;
1120
1121#else
1122 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1123 return VERR_NOT_IMPLEMENTED;
1124#endif
1125}
1126
1127
1128/**
1129 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1130 * physical RAM.
1131 *
1132 * This is only called on one of the EMTs while the other ones are waiting for
1133 * it to complete this function.
1134 *
1135 * @returns VINF_SUCCESS (VBox strict status code).
1136 * @param pVM Pointer to the VM.
1137 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
1138 * @param pvUser User parameter, unused.
1139 */
1140static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1141{
1142 int rc = VINF_SUCCESS;
1143 NOREF(pvUser); NOREF(pVCpu);
1144
1145 pgmLock(pVM);
1146#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1147 pgmPoolResetDirtyPages(pVM);
1148#endif
1149
1150 /** @todo pointless to write protect the physical page pointed to by RSP. */
1151
1152 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1153 pRam;
1154 pRam = pRam->CTX_SUFF(pNext))
1155 {
1156 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1157 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1158 {
1159 PPGMPAGE pPage = &pRam->aPages[iPage];
1160 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1161
1162 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1163 || enmPageType == PGMPAGETYPE_MMIO2)
1164 {
1165 /*
1166 * A RAM page.
1167 */
1168 switch (PGM_PAGE_GET_STATE(pPage))
1169 {
1170 case PGM_PAGE_STATE_ALLOCATED:
1171 /** @todo Optimize this: Don't always re-enable write
1172 * monitoring if the page is known to be very busy. */
1173 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1174 {
1175 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1176 /* Remember this dirty page for the next (memory) sync. */
1177 PGM_PAGE_SET_FT_DIRTY(pPage);
1178 }
1179
1180 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1181 break;
1182
1183 case PGM_PAGE_STATE_SHARED:
1184 AssertFailed();
1185 break;
1186
1187 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1188 default:
1189 break;
1190 }
1191 }
1192 }
1193 }
1194 pgmR3PoolWriteProtectPages(pVM);
1195 PGM_INVL_ALL_VCPU_TLBS(pVM);
1196 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1197 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1198
1199 pgmUnlock(pVM);
1200 return rc;
1201}
1202
1203/**
1204 * Protect all physical RAM to monitor writes
1205 *
1206 * @returns VBox status code.
1207 * @param pVM Pointer to the VM.
1208 */
1209VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1210{
1211 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1212
1213 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1214 AssertRC(rc);
1215 return rc;
1216}
1217
1218/**
1219 * Enumerate all dirty FT pages.
1220 *
1221 * @returns VBox status code.
1222 * @param pVM Pointer to the VM.
1223 * @param pfnEnum Enumerate callback handler.
1224 * @param pvUser Enumerate callback handler parameter.
1225 */
1226VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
1227{
1228 int rc = VINF_SUCCESS;
1229
1230 pgmLock(pVM);
1231 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1232 pRam;
1233 pRam = pRam->CTX_SUFF(pNext))
1234 {
1235 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1236 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1237 {
1238 PPGMPAGE pPage = &pRam->aPages[iPage];
1239 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1240
1241 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1242 || enmPageType == PGMPAGETYPE_MMIO2)
1243 {
1244 /*
1245 * A RAM page.
1246 */
1247 switch (PGM_PAGE_GET_STATE(pPage))
1248 {
1249 case PGM_PAGE_STATE_ALLOCATED:
1250 case PGM_PAGE_STATE_WRITE_MONITORED:
1251 if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */
1252 && PGM_PAGE_IS_FT_DIRTY(pPage))
1253 {
1254 unsigned cbPageRange = PAGE_SIZE;
1255 unsigned iPageClean = iPage + 1;
1256 RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE;
1257 uint8_t *pu8Page = NULL;
1258 PGMPAGEMAPLOCK Lock;
1259
1260 /* Find the next clean page, so we can merge adjacent dirty pages. */
1261 for (; iPageClean < cPages; iPageClean++)
1262 {
1263 PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
1264 if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
1265 || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
1266 || PGM_PAGE_IS_WRITTEN_TO(pPageNext)
1267 || !PGM_PAGE_IS_FT_DIRTY(pPageNext)
1268 /* Crossing a chunk boundary? */
1269 || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
1270 )
1271 break;
1272
1273 cbPageRange += PAGE_SIZE;
1274 }
1275
1276 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
1277 if (RT_SUCCESS(rc))
1278 {
1279 /** @todo this is risky; the range might be changed, but little choice as the sync
1280 * costs a lot of time. */
1281 pgmUnlock(pVM);
1282 pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
1283 pgmLock(pVM);
1284 PGMPhysReleasePageMappingLock(pVM, &Lock);
1285 }
1286
1287 for (iPage; iPage < iPageClean; iPage++)
1288 PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iPage]);
1289
1290 iPage = iPageClean - 1;
1291 }
1292 break;
1293 }
1294 }
1295 }
1296 }
1297 pgmUnlock(pVM);
1298 return rc;
1299}
1300
1301
1302/**
1303 * Gets the number of ram ranges.
1304 *
1305 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1306 * @param pVM Pointer to the VM.
1307 */
1308VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1309{
1310 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1311
1312 pgmLock(pVM);
1313 uint32_t cRamRanges = 0;
1314 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1315 cRamRanges++;
1316 pgmUnlock(pVM);
1317 return cRamRanges;
1318}
1319
1320
1321/**
1322 * Get information about a range.
1323 *
1324 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1325 * @param pVM Pointer to the VM.
1326 * @param iRange The ordinal of the range.
1327 * @param pGCPhysStart Where to return the start of the range. Optional.
1328 * @param pGCPhysLast Where to return the address of the last byte in the
1329 * range. Optional.
1330 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1331 * Optional.
1332 */
1333VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1334 const char **ppszDesc, bool *pfIsMmio)
1335{
1336 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1337
1338 pgmLock(pVM);
1339 uint32_t iCurRange = 0;
1340 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1341 if (iCurRange == iRange)
1342 {
1343 if (pGCPhysStart)
1344 *pGCPhysStart = pCur->GCPhys;
1345 if (pGCPhysLast)
1346 *pGCPhysLast = pCur->GCPhysLast;
1347 if (ppszDesc)
1348 *ppszDesc = pCur->pszDesc;
1349 if (pfIsMmio)
1350 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1351
1352 pgmUnlock(pVM);
1353 return VINF_SUCCESS;
1354 }
1355 pgmUnlock(pVM);
1356 return VERR_OUT_OF_RANGE;
1357}
1358
1359
1360/**
1361 * Query the amount of free memory inside VMMR0
1362 *
1363 * @returns VBox status code.
1364 * @param pUVM The user mode VM handle.
1365 * @param pcbAllocMem Where to return the amount of memory allocated
1366 * by VMs.
1367 * @param pcbFreeMem Where to return the amount of memory that is
1368 * allocated from the host but not currently used
1369 * by any VMs.
1370 * @param pcbBallonedMem Where to return the sum of memory that is
1371 * currently ballooned by the VMs.
1372 * @param pcbSharedMem Where to return the amount of memory that is
1373 * currently shared.
1374 */
1375VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1376 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1377{
1378 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1379 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1380
1381 uint64_t cAllocPages = 0;
1382 uint64_t cFreePages = 0;
1383 uint64_t cBalloonPages = 0;
1384 uint64_t cSharedPages = 0;
1385 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1386 AssertRCReturn(rc, rc);
1387
1388 if (pcbAllocMem)
1389 *pcbAllocMem = cAllocPages * _4K;
1390
1391 if (pcbFreeMem)
1392 *pcbFreeMem = cFreePages * _4K;
1393
1394 if (pcbBallonedMem)
1395 *pcbBallonedMem = cBalloonPages * _4K;
1396
1397 if (pcbSharedMem)
1398 *pcbSharedMem = cSharedPages * _4K;
1399
1400 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1401 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1402 return VINF_SUCCESS;
1403}
1404
1405
1406/**
1407 * Query memory stats for the VM.
1408 *
1409 * @returns VBox status code.
1410 * @param pUVM The user mode VM handle.
1411 * @param pcbTotalMem Where to return total amount memory the VM may
1412 * possibly use.
1413 * @param pcbPrivateMem Where to return the amount of private memory
1414 * currently allocated.
1415 * @param pcbSharedMem Where to return the amount of actually shared
1416 * memory currently used by the VM.
1417 * @param pcbZeroMem Where to return the amount of memory backed by
1418 * zero pages.
1419 *
1420 * @remarks The total mem is normally larger than the sum of the three
1421 * components. There are two reasons for this, first the amount of
1422 * shared memory is what we're sure is shared instead of what could
1423 * possibly be shared with someone. Secondly, because the total may
1424 * include some pure MMIO pages that doesn't go into any of the three
1425 * sub-counts.
1426 *
1427 * @todo Why do we return reused shared pages instead of anything that could
1428 * potentially be shared? Doesn't this mean the first VM gets a much
1429 * lower number of shared pages?
1430 */
1431VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1432 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1433{
1434 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1435 PVM pVM = pUVM->pVM;
1436 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1437
1438 if (pcbTotalMem)
1439 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1440
1441 if (pcbPrivateMem)
1442 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1443
1444 if (pcbSharedMem)
1445 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1446
1447 if (pcbZeroMem)
1448 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1449
1450 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1451 return VINF_SUCCESS;
1452}
1453
1454
1455/**
1456 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1457 *
1458 * @param pVM Pointer to the VM.
1459 * @param pNew The new RAM range.
1460 * @param GCPhys The address of the RAM range.
1461 * @param GCPhysLast The last address of the RAM range.
1462 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1463 * if in HMA.
1464 * @param R0PtrNew Ditto for R0.
1465 * @param pszDesc The description.
1466 * @param pPrev The previous RAM range (for linking).
1467 */
1468static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1469 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1470{
1471 /*
1472 * Initialize the range.
1473 */
1474 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1475 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1476 pNew->GCPhys = GCPhys;
1477 pNew->GCPhysLast = GCPhysLast;
1478 pNew->cb = GCPhysLast - GCPhys + 1;
1479 pNew->pszDesc = pszDesc;
1480 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1481 pNew->pvR3 = NULL;
1482 pNew->paLSPages = NULL;
1483
1484 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1485 RTGCPHYS iPage = cPages;
1486 while (iPage-- > 0)
1487 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1488
1489 /* Update the page count stats. */
1490 pVM->pgm.s.cZeroPages += cPages;
1491 pVM->pgm.s.cAllPages += cPages;
1492
1493 /*
1494 * Link it.
1495 */
1496 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1497}
1498
1499
1500/**
1501 * Relocate a floating RAM range.
1502 *
1503 * @copydoc FNPGMRELOCATE.
1504 */
1505static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1506{
1507 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1508 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1509 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1510
1511 switch (enmMode)
1512 {
1513 case PGMRELOCATECALL_SUGGEST:
1514 return true;
1515
1516 case PGMRELOCATECALL_RELOCATE:
1517 {
1518 /*
1519 * Update myself, then relink all the ranges and flush the RC TLB.
1520 */
1521 pgmLock(pVM);
1522
1523 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1524
1525 pgmR3PhysRelinkRamRanges(pVM);
1526 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1527 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1528
1529 pgmUnlock(pVM);
1530 return true;
1531 }
1532
1533 default:
1534 AssertFailedReturn(false);
1535 }
1536}
1537
1538
1539/**
1540 * PGMR3PhysRegisterRam worker that registers a high chunk.
1541 *
1542 * @returns VBox status code.
1543 * @param pVM Pointer to the VM.
1544 * @param GCPhys The address of the RAM.
1545 * @param cRamPages The number of RAM pages to register.
1546 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1547 * @param iChunk The chunk number.
1548 * @param pszDesc The RAM range description.
1549 * @param ppPrev Previous RAM range pointer. In/Out.
1550 */
1551static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1552 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1553 PPGMRAMRANGE *ppPrev)
1554{
1555 const char *pszDescChunk = iChunk == 0
1556 ? pszDesc
1557 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1558 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1559
1560 /*
1561 * Allocate memory for the new chunk.
1562 */
1563 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1564 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1565 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1566 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1567 void *pvChunk = NULL;
1568 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1569#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1570 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1571#else
1572 NULL,
1573#endif
1574 paChunkPages);
1575 if (RT_SUCCESS(rc))
1576 {
1577#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1578 if (!VMMIsHwVirtExtForced(pVM))
1579 R0PtrChunk = NIL_RTR0PTR;
1580#else
1581 R0PtrChunk = (uintptr_t)pvChunk;
1582#endif
1583 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1584
1585 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1586
1587 /*
1588 * Create a mapping and map the pages into it.
1589 * We push these in below the HMA.
1590 */
1591 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1592 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1593 if (RT_SUCCESS(rc))
1594 {
1595 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1596
1597 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1598 RTGCPTR GCPtrPage = GCPtrChunk;
1599 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1600 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1601 if (RT_SUCCESS(rc))
1602 {
1603 /*
1604 * Ok, init and link the range.
1605 */
1606 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1607 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1608 *ppPrev = pNew;
1609 }
1610 }
1611
1612 if (RT_FAILURE(rc))
1613 SUPR3PageFreeEx(pvChunk, cChunkPages);
1614 }
1615
1616 RTMemTmpFree(paChunkPages);
1617 return rc;
1618}
1619
1620
1621/**
1622 * Sets up a range RAM.
1623 *
1624 * This will check for conflicting registrations, make a resource
1625 * reservation for the memory (with GMM), and setup the per-page
1626 * tracking structures (PGMPAGE).
1627 *
1628 * @returns VBox status code.
1629 * @param pVM Pointer to the VM.
1630 * @param GCPhys The physical address of the RAM.
1631 * @param cb The size of the RAM.
1632 * @param pszDesc The description - not copied, so, don't free or change it.
1633 */
1634VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1635{
1636 /*
1637 * Validate input.
1638 */
1639 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1640 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1641 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1642 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1643 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1644 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1645 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1646 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1647
1648 pgmLock(pVM);
1649
1650 /*
1651 * Find range location and check for conflicts.
1652 * (We don't lock here because the locking by EMT is only required on update.)
1653 */
1654 PPGMRAMRANGE pPrev = NULL;
1655 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1656 while (pRam && GCPhysLast >= pRam->GCPhys)
1657 {
1658 if ( GCPhysLast >= pRam->GCPhys
1659 && GCPhys <= pRam->GCPhysLast)
1660 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1661 GCPhys, GCPhysLast, pszDesc,
1662 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1663 VERR_PGM_RAM_CONFLICT);
1664
1665 /* next */
1666 pPrev = pRam;
1667 pRam = pRam->pNextR3;
1668 }
1669
1670 /*
1671 * Register it with GMM (the API bitches).
1672 */
1673 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1674 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1675 if (RT_FAILURE(rc))
1676 {
1677 pgmUnlock(pVM);
1678 return rc;
1679 }
1680
1681 if ( GCPhys >= _4G
1682 && cPages > 256)
1683 {
1684 /*
1685 * The PGMRAMRANGE structures for the high memory can get very big.
1686 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1687 * allocation size limit there and also to avoid being unable to find
1688 * guest mapping space for them, we split this memory up into 4MB in
1689 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1690 * mode.
1691 *
1692 * The first and last page of each mapping are guard pages and marked
1693 * not-present. So, we've got 4186112 and 16769024 bytes available for
1694 * the PGMRAMRANGE structure.
1695 *
1696 * Note! The sizes used here will influence the saved state.
1697 */
1698 uint32_t cbChunk;
1699 uint32_t cPagesPerChunk;
1700 if (VMMIsHwVirtExtForced(pVM))
1701 {
1702 cbChunk = 16U*_1M;
1703 cPagesPerChunk = 1048048; /* max ~1048059 */
1704 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1705 }
1706 else
1707 {
1708 cbChunk = 4U*_1M;
1709 cPagesPerChunk = 261616; /* max ~261627 */
1710 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1711 }
1712 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1713
1714 RTGCPHYS cPagesLeft = cPages;
1715 RTGCPHYS GCPhysChunk = GCPhys;
1716 uint32_t iChunk = 0;
1717 while (cPagesLeft > 0)
1718 {
1719 uint32_t cPagesInChunk = cPagesLeft;
1720 if (cPagesInChunk > cPagesPerChunk)
1721 cPagesInChunk = cPagesPerChunk;
1722
1723 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1724 AssertRCReturn(rc, rc);
1725
1726 /* advance */
1727 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1728 cPagesLeft -= cPagesInChunk;
1729 iChunk++;
1730 }
1731 }
1732 else
1733 {
1734 /*
1735 * Allocate, initialize and link the new RAM range.
1736 */
1737 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1738 PPGMRAMRANGE pNew;
1739 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1740 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1741
1742 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1743 }
1744 pgmPhysInvalidatePageMapTLB(pVM);
1745 pgmUnlock(pVM);
1746
1747#ifdef VBOX_WITH_REM
1748 /*
1749 * Notify REM.
1750 */
1751 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1752#endif
1753
1754 return VINF_SUCCESS;
1755}
1756
1757
1758/**
1759 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1760 *
1761 * We do this late in the init process so that all the ROM and MMIO ranges have
1762 * been registered already and we don't go wasting memory on them.
1763 *
1764 * @returns VBox status code.
1765 *
1766 * @param pVM Pointer to the VM.
1767 */
1768int pgmR3PhysRamPreAllocate(PVM pVM)
1769{
1770 Assert(pVM->pgm.s.fRamPreAlloc);
1771 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1772
1773 /*
1774 * Walk the RAM ranges and allocate all RAM pages, halt at
1775 * the first allocation error.
1776 */
1777 uint64_t cPages = 0;
1778 uint64_t NanoTS = RTTimeNanoTS();
1779 pgmLock(pVM);
1780 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1781 {
1782 PPGMPAGE pPage = &pRam->aPages[0];
1783 RTGCPHYS GCPhys = pRam->GCPhys;
1784 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1785 while (cLeft-- > 0)
1786 {
1787 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1788 {
1789 switch (PGM_PAGE_GET_STATE(pPage))
1790 {
1791 case PGM_PAGE_STATE_ZERO:
1792 {
1793 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1794 if (RT_FAILURE(rc))
1795 {
1796 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1797 pgmUnlock(pVM);
1798 return rc;
1799 }
1800 cPages++;
1801 break;
1802 }
1803
1804 case PGM_PAGE_STATE_BALLOONED:
1805 case PGM_PAGE_STATE_ALLOCATED:
1806 case PGM_PAGE_STATE_WRITE_MONITORED:
1807 case PGM_PAGE_STATE_SHARED:
1808 /* nothing to do here. */
1809 break;
1810 }
1811 }
1812
1813 /* next */
1814 pPage++;
1815 GCPhys += PAGE_SIZE;
1816 }
1817 }
1818 pgmUnlock(pVM);
1819 NanoTS = RTTimeNanoTS() - NanoTS;
1820
1821 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1822 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1823 return VINF_SUCCESS;
1824}
1825
1826
1827/**
1828 * Checks shared page checksums.
1829 *
1830 * @param pVM Pointer to the shared VM structure.
1831 */
1832void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1833{
1834#ifdef VBOX_STRICT
1835 pgmLock(pVM);
1836
1837 if (pVM->pgm.s.cSharedPages > 0)
1838 {
1839 /*
1840 * Walk the ram ranges.
1841 */
1842 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1843 {
1844 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1845 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1846
1847 while (iPage-- > 0)
1848 {
1849 PPGMPAGE pPage = &pRam->aPages[iPage];
1850 if (PGM_PAGE_IS_SHARED(pPage))
1851 {
1852 uint32_t u32Checksum = pPage->s.u2Unused0 | ((uint32_t)pPage->s.u2Unused1 << 8);
1853 if (!u32Checksum)
1854 {
1855 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1856 void const *pvPage;
1857 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1858 if (RT_SUCCESS(rc))
1859 {
1860 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1861# if 0
1862 AssertMsg((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1863# else
1864 if ((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum)
1865 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1866 else
1867 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1868# endif
1869 }
1870 else
1871 AssertRC(rc);
1872 }
1873 }
1874
1875 } /* for each page */
1876
1877 } /* for each ram range */
1878 }
1879
1880 pgmUnlock(pVM);
1881#endif /* VBOX_STRICT */
1882 NOREF(pVM);
1883}
1884
1885
1886/**
1887 * Resets (zeros) the RAM.
1888 *
1889 * ASSUMES that the caller owns the PGM lock.
1890 *
1891 * @returns VBox status code.
1892 * @param pVM Pointer to the VM.
1893 */
1894int pgmR3PhysRamReset(PVM pVM)
1895{
1896 PGM_LOCK_ASSERT_OWNER(pVM);
1897
1898 /* Reset the memory balloon. */
1899 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1900 AssertRC(rc);
1901
1902#ifdef VBOX_WITH_PAGE_SHARING
1903 /* Clear all registered shared modules. */
1904 pgmR3PhysAssertSharedPageChecksums(pVM);
1905 rc = GMMR3ResetSharedModules(pVM);
1906 AssertRC(rc);
1907#endif
1908 /* Reset counters. */
1909 pVM->pgm.s.cReusedSharedPages = 0;
1910 pVM->pgm.s.cBalloonedPages = 0;
1911
1912 /*
1913 * We batch up pages that should be freed instead of calling GMM for
1914 * each and every one of them.
1915 */
1916 uint32_t cPendingPages = 0;
1917 PGMMFREEPAGESREQ pReq;
1918 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1919 AssertLogRelRCReturn(rc, rc);
1920
1921 /*
1922 * Walk the ram ranges.
1923 */
1924 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1925 {
1926 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1927 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1928
1929#ifndef NO_RAM_RESET
1930 if (!pVM->pgm.s.fRamPreAlloc)
1931#else
1932 if (0)
1933#endif
1934 {
1935 /* Replace all RAM pages by ZERO pages. */
1936 while (iPage-- > 0)
1937 {
1938 PPGMPAGE pPage = &pRam->aPages[iPage];
1939 switch (PGM_PAGE_GET_TYPE(pPage))
1940 {
1941 case PGMPAGETYPE_RAM:
1942 /* Do not replace pages part of a 2 MB continuous range
1943 with zero pages, but zero them instead. */
1944 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
1945 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
1946 {
1947 void *pvPage;
1948 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1949 AssertLogRelRCReturn(rc, rc);
1950 ASMMemZeroPage(pvPage);
1951 }
1952 else if (PGM_PAGE_IS_BALLOONED(pPage))
1953 {
1954 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1955 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1956 }
1957 else if (!PGM_PAGE_IS_ZERO(pPage))
1958 {
1959 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1960 AssertLogRelRCReturn(rc, rc);
1961 }
1962 break;
1963
1964 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1965 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1966 true /*fDoAccounting*/);
1967 break;
1968
1969 case PGMPAGETYPE_MMIO2:
1970 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1971 case PGMPAGETYPE_ROM:
1972 case PGMPAGETYPE_MMIO:
1973 break;
1974 default:
1975 AssertFailed();
1976 }
1977 } /* for each page */
1978 }
1979 else
1980 {
1981 /* Zero the memory. */
1982 while (iPage-- > 0)
1983 {
1984 PPGMPAGE pPage = &pRam->aPages[iPage];
1985 switch (PGM_PAGE_GET_TYPE(pPage))
1986 {
1987 case PGMPAGETYPE_RAM:
1988 switch (PGM_PAGE_GET_STATE(pPage))
1989 {
1990 case PGM_PAGE_STATE_ZERO:
1991 break;
1992
1993 case PGM_PAGE_STATE_BALLOONED:
1994 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1995 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1996 break;
1997
1998 case PGM_PAGE_STATE_SHARED:
1999 case PGM_PAGE_STATE_WRITE_MONITORED:
2000 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2001 AssertLogRelRCReturn(rc, rc);
2002 /* no break */
2003
2004 case PGM_PAGE_STATE_ALLOCATED:
2005 {
2006 void *pvPage;
2007 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2008 AssertLogRelRCReturn(rc, rc);
2009#ifndef NO_RAM_RESET
2010 ASMMemZeroPage(pvPage);
2011#endif
2012 break;
2013 }
2014 }
2015 break;
2016
2017 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2018 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2019 true /*fDoAccounting*/);
2020 break;
2021
2022 case PGMPAGETYPE_MMIO2:
2023 case PGMPAGETYPE_ROM_SHADOW:
2024 case PGMPAGETYPE_ROM:
2025 case PGMPAGETYPE_MMIO:
2026 break;
2027 default:
2028 AssertFailed();
2029
2030 }
2031 } /* for each page */
2032 }
2033
2034 }
2035
2036 /*
2037 * Finish off any pages pending freeing.
2038 */
2039 if (cPendingPages)
2040 {
2041 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2042 AssertLogRelRCReturn(rc, rc);
2043 }
2044 GMMR3FreePagesCleanup(pReq);
2045
2046 return VINF_SUCCESS;
2047}
2048
2049
2050/**
2051 * Frees all RAM during VM termination
2052 *
2053 * ASSUMES that the caller owns the PGM lock.
2054 *
2055 * @returns VBox status code.
2056 * @param pVM Pointer to the VM.
2057 */
2058int pgmR3PhysRamTerm(PVM pVM)
2059{
2060 PGM_LOCK_ASSERT_OWNER(pVM);
2061
2062 /* Reset the memory balloon. */
2063 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2064 AssertRC(rc);
2065
2066#ifdef VBOX_WITH_PAGE_SHARING
2067 /*
2068 * Clear all registered shared modules.
2069 */
2070 pgmR3PhysAssertSharedPageChecksums(pVM);
2071 rc = GMMR3ResetSharedModules(pVM);
2072 AssertRC(rc);
2073
2074 /*
2075 * Flush the handy pages updates to make sure no shared pages are hiding
2076 * in there. (No unlikely if the VM shuts down, apparently.)
2077 */
2078 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2079#endif
2080
2081 /*
2082 * We batch up pages that should be freed instead of calling GMM for
2083 * each and every one of them.
2084 */
2085 uint32_t cPendingPages = 0;
2086 PGMMFREEPAGESREQ pReq;
2087 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2088 AssertLogRelRCReturn(rc, rc);
2089
2090 /*
2091 * Walk the ram ranges.
2092 */
2093 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2094 {
2095 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2096 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2097
2098 while (iPage-- > 0)
2099 {
2100 PPGMPAGE pPage = &pRam->aPages[iPage];
2101 switch (PGM_PAGE_GET_TYPE(pPage))
2102 {
2103 case PGMPAGETYPE_RAM:
2104 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2105 /** @todo change this to explicitly free private pages here. */
2106 if (PGM_PAGE_IS_SHARED(pPage))
2107 {
2108 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2109 AssertLogRelRCReturn(rc, rc);
2110 }
2111 break;
2112
2113 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2114 case PGMPAGETYPE_MMIO2:
2115 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2116 case PGMPAGETYPE_ROM:
2117 case PGMPAGETYPE_MMIO:
2118 break;
2119 default:
2120 AssertFailed();
2121 }
2122 } /* for each page */
2123 }
2124
2125 /*
2126 * Finish off any pages pending freeing.
2127 */
2128 if (cPendingPages)
2129 {
2130 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2131 AssertLogRelRCReturn(rc, rc);
2132 }
2133 GMMR3FreePagesCleanup(pReq);
2134 return VINF_SUCCESS;
2135}
2136
2137/**
2138 * This is the interface IOM is using to register an MMIO region.
2139 *
2140 * It will check for conflicts and ensure that a RAM range structure
2141 * is present before calling the PGMR3HandlerPhysicalRegister API to
2142 * register the callbacks.
2143 *
2144 * @returns VBox status code.
2145 *
2146 * @param pVM Pointer to the VM.
2147 * @param GCPhys The start of the MMIO region.
2148 * @param cb The size of the MMIO region.
2149 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
2150 * @param pvUserR3 The user argument for R3.
2151 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
2152 * @param pvUserR0 The user argument for R0.
2153 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
2154 * @param pvUserRC The user argument for RC.
2155 * @param pszDesc The description of the MMIO region.
2156 */
2157VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
2158 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
2159 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
2160 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
2161 R3PTRTYPE(const char *) pszDesc)
2162{
2163 /*
2164 * Assert on some assumption.
2165 */
2166 VM_ASSERT_EMT(pVM);
2167 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2168 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2169 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2170 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2171
2172 int rc = pgmLock(pVM);
2173 AssertRCReturn(rc, rc);
2174
2175 /*
2176 * Make sure there's a RAM range structure for the region.
2177 */
2178 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2179 bool fRamExists = false;
2180 PPGMRAMRANGE pRamPrev = NULL;
2181 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2182 while (pRam && GCPhysLast >= pRam->GCPhys)
2183 {
2184 if ( GCPhysLast >= pRam->GCPhys
2185 && GCPhys <= pRam->GCPhysLast)
2186 {
2187 /* Simplification: all within the same range. */
2188 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2189 && GCPhysLast <= pRam->GCPhysLast,
2190 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2191 GCPhys, GCPhysLast, pszDesc,
2192 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2193 pgmUnlock(pVM),
2194 VERR_PGM_RAM_CONFLICT);
2195
2196 /* Check that it's all RAM or MMIO pages. */
2197 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2198 uint32_t cLeft = cb >> PAGE_SHIFT;
2199 while (cLeft-- > 0)
2200 {
2201 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2202 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2203 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2204 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2205 pgmUnlock(pVM),
2206 VERR_PGM_RAM_CONFLICT);
2207 pPage++;
2208 }
2209
2210 /* Looks good. */
2211 fRamExists = true;
2212 break;
2213 }
2214
2215 /* next */
2216 pRamPrev = pRam;
2217 pRam = pRam->pNextR3;
2218 }
2219 PPGMRAMRANGE pNew;
2220 if (fRamExists)
2221 {
2222 pNew = NULL;
2223
2224 /*
2225 * Make all the pages in the range MMIO/ZERO pages, freeing any
2226 * RAM pages currently mapped here. This might not be 100% correct
2227 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2228 */
2229 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2230 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2231
2232 /* Force a PGM pool flush as guest ram references have been changed. */
2233 /** @todo not entirely SMP safe; assuming for now the guest takes
2234 * care of this internally (not touch mapped mmio while changing the
2235 * mapping). */
2236 PVMCPU pVCpu = VMMGetCpu(pVM);
2237 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2238 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2239 }
2240 else
2241 {
2242
2243 /*
2244 * No RAM range, insert an ad hoc one.
2245 *
2246 * Note that we don't have to tell REM about this range because
2247 * PGMHandlerPhysicalRegisterEx will do that for us.
2248 */
2249 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2250
2251 const uint32_t cPages = cb >> PAGE_SHIFT;
2252 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
2253 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2254 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2255
2256 /* Initialize the range. */
2257 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2258 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
2259 pNew->GCPhys = GCPhys;
2260 pNew->GCPhysLast = GCPhysLast;
2261 pNew->cb = cb;
2262 pNew->pszDesc = pszDesc;
2263 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2264 pNew->pvR3 = NULL;
2265 pNew->paLSPages = NULL;
2266
2267 uint32_t iPage = cPages;
2268 while (iPage-- > 0)
2269 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2270 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2271
2272 /* update the page count stats. */
2273 pVM->pgm.s.cPureMmioPages += cPages;
2274 pVM->pgm.s.cAllPages += cPages;
2275
2276 /* link it */
2277 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2278 }
2279
2280 /*
2281 * Register the access handler.
2282 */
2283 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
2284 pfnHandlerR3, pvUserR3,
2285 pfnHandlerR0, pvUserR0,
2286 pfnHandlerRC, pvUserRC, pszDesc);
2287 if ( RT_FAILURE(rc)
2288 && !fRamExists)
2289 {
2290 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2291 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2292
2293 /* remove the ad hoc range. */
2294 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2295 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2296 MMHyperFree(pVM, pRam);
2297 }
2298 pgmPhysInvalidatePageMapTLB(pVM);
2299
2300 pgmUnlock(pVM);
2301 return rc;
2302}
2303
2304
2305/**
2306 * This is the interface IOM is using to register an MMIO region.
2307 *
2308 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2309 * any ad hoc PGMRAMRANGE left behind.
2310 *
2311 * @returns VBox status code.
2312 * @param pVM Pointer to the VM.
2313 * @param GCPhys The start of the MMIO region.
2314 * @param cb The size of the MMIO region.
2315 */
2316VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2317{
2318 VM_ASSERT_EMT(pVM);
2319
2320 int rc = pgmLock(pVM);
2321 AssertRCReturn(rc, rc);
2322
2323 /*
2324 * First deregister the handler, then check if we should remove the ram range.
2325 */
2326 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2327 if (RT_SUCCESS(rc))
2328 {
2329 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2330 PPGMRAMRANGE pRamPrev = NULL;
2331 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2332 while (pRam && GCPhysLast >= pRam->GCPhys)
2333 {
2334 /** @todo We're being a bit too careful here. rewrite. */
2335 if ( GCPhysLast == pRam->GCPhysLast
2336 && GCPhys == pRam->GCPhys)
2337 {
2338 Assert(pRam->cb == cb);
2339
2340 /*
2341 * See if all the pages are dead MMIO pages.
2342 */
2343 uint32_t const cPages = cb >> PAGE_SHIFT;
2344 bool fAllMMIO = true;
2345 uint32_t iPage = 0;
2346 uint32_t cLeft = cPages;
2347 while (cLeft-- > 0)
2348 {
2349 PPGMPAGE pPage = &pRam->aPages[iPage];
2350 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
2351 /*|| not-out-of-action later */)
2352 {
2353 fAllMMIO = false;
2354 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
2355 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2356 break;
2357 }
2358 Assert(PGM_PAGE_IS_ZERO(pPage));
2359 pPage++;
2360 }
2361 if (fAllMMIO)
2362 {
2363 /*
2364 * Ad-hoc range, unlink and free it.
2365 */
2366 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2367 GCPhys, GCPhysLast, pRam->pszDesc));
2368
2369 pVM->pgm.s.cAllPages -= cPages;
2370 pVM->pgm.s.cPureMmioPages -= cPages;
2371
2372 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2373 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2374 MMHyperFree(pVM, pRam);
2375 break;
2376 }
2377 }
2378
2379 /*
2380 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2381 */
2382 if ( GCPhysLast >= pRam->GCPhys
2383 && GCPhys <= pRam->GCPhysLast)
2384 {
2385 Assert(GCPhys >= pRam->GCPhys);
2386 Assert(GCPhysLast <= pRam->GCPhysLast);
2387
2388 /*
2389 * Turn the pages back into RAM pages.
2390 */
2391 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2392 uint32_t cLeft = cb >> PAGE_SHIFT;
2393 while (cLeft--)
2394 {
2395 PPGMPAGE pPage = &pRam->aPages[iPage];
2396 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2397 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2398 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2399 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2400 }
2401 break;
2402 }
2403
2404 /* next */
2405 pRamPrev = pRam;
2406 pRam = pRam->pNextR3;
2407 }
2408 }
2409
2410 /* Force a PGM pool flush as guest ram references have been changed. */
2411 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2412 * this internally (not touch mapped mmio while changing the mapping). */
2413 PVMCPU pVCpu = VMMGetCpu(pVM);
2414 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2415 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2416
2417 pgmPhysInvalidatePageMapTLB(pVM);
2418 pgmPhysInvalidRamRangeTlbs(pVM);
2419 pgmUnlock(pVM);
2420 return rc;
2421}
2422
2423
2424/**
2425 * Locate a MMIO2 range.
2426 *
2427 * @returns Pointer to the MMIO2 range.
2428 * @param pVM Pointer to the VM.
2429 * @param pDevIns The device instance owning the region.
2430 * @param iRegion The region.
2431 */
2432DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2433{
2434 /*
2435 * Search the list.
2436 */
2437 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2438 if ( pCur->pDevInsR3 == pDevIns
2439 && pCur->iRegion == iRegion)
2440 return pCur;
2441 return NULL;
2442}
2443
2444
2445/**
2446 * Allocate and register an MMIO2 region.
2447 *
2448 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2449 * associated with a device. It is also non-shared memory with a permanent
2450 * ring-3 mapping and page backing (presently).
2451 *
2452 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2453 * the VM, in which case we'll drop the base memory pages. Presently we will
2454 * make no attempt to preserve anything that happens to be present in the base
2455 * memory that is replaced, this is of course incorrectly but it's too much
2456 * effort.
2457 *
2458 * @returns VBox status code.
2459 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2460 * memory.
2461 * @retval VERR_ALREADY_EXISTS if the region already exists.
2462 *
2463 * @param pVM Pointer to the VM.
2464 * @param pDevIns The device instance owning the region.
2465 * @param iRegion The region number. If the MMIO2 memory is a PCI
2466 * I/O region this number has to be the number of that
2467 * region. Otherwise it can be any number safe
2468 * UINT8_MAX.
2469 * @param cb The size of the region. Must be page aligned.
2470 * @param fFlags Reserved for future use, must be zero.
2471 * @param ppv Where to store the pointer to the ring-3 mapping of
2472 * the memory.
2473 * @param pszDesc The description.
2474 */
2475VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
2476{
2477 /*
2478 * Validate input.
2479 */
2480 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2481 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2482 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2483 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2484 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2485 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2486 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
2487 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2488 AssertReturn(cb, VERR_INVALID_PARAMETER);
2489 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2490
2491 const uint32_t cPages = cb >> PAGE_SHIFT;
2492 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
2493 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
2494
2495 /*
2496 * For the 2nd+ instance, mangle the description string so it's unique.
2497 */
2498 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
2499 {
2500 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
2501 if (!pszDesc)
2502 return VERR_NO_MEMORY;
2503 }
2504
2505 /*
2506 * Try reserve and allocate the backing memory first as this is what is
2507 * most likely to fail.
2508 */
2509 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
2510 if (RT_SUCCESS(rc))
2511 {
2512 void *pvPages;
2513 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
2514 if (RT_SUCCESS(rc))
2515 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
2516 if (RT_SUCCESS(rc))
2517 {
2518 memset(pvPages, 0, cPages * PAGE_SIZE);
2519
2520 /*
2521 * Create the MMIO2 range record for it.
2522 */
2523 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
2524 PPGMMMIO2RANGE pNew;
2525 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2526 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
2527 if (RT_SUCCESS(rc))
2528 {
2529 pNew->pDevInsR3 = pDevIns;
2530 pNew->pvR3 = pvPages;
2531 //pNew->pNext = NULL;
2532 //pNew->fMapped = false;
2533 //pNew->fOverlapping = false;
2534 pNew->iRegion = iRegion;
2535 pNew->idSavedState = UINT8_MAX;
2536 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2537 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2538 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2539 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2540 pNew->RamRange.pszDesc = pszDesc;
2541 pNew->RamRange.cb = cb;
2542 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
2543 pNew->RamRange.pvR3 = pvPages;
2544 //pNew->RamRange.paLSPages = NULL;
2545
2546 uint32_t iPage = cPages;
2547 while (iPage-- > 0)
2548 {
2549 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
2550 paPages[iPage].Phys, NIL_GMM_PAGEID,
2551 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
2552 }
2553
2554 /* update page count stats */
2555 pVM->pgm.s.cAllPages += cPages;
2556 pVM->pgm.s.cPrivatePages += cPages;
2557
2558 /*
2559 * Link it into the list.
2560 * Since there is no particular order, just push it.
2561 */
2562 pgmLock(pVM);
2563 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
2564 pVM->pgm.s.pMmio2RangesR3 = pNew;
2565 pgmUnlock(pVM);
2566
2567 *ppv = pvPages;
2568 RTMemTmpFree(paPages);
2569 pgmPhysInvalidatePageMapTLB(pVM);
2570 return VINF_SUCCESS;
2571 }
2572
2573 SUPR3PageFreeEx(pvPages, cPages);
2574 }
2575 RTMemTmpFree(paPages);
2576 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
2577 }
2578 if (pDevIns->iInstance > 0)
2579 MMR3HeapFree((void *)pszDesc);
2580 return rc;
2581}
2582
2583
2584/**
2585 * Deregisters and frees an MMIO2 region.
2586 *
2587 * Any physical (and virtual) access handlers registered for the region must
2588 * be deregistered before calling this function.
2589 *
2590 * @returns VBox status code.
2591 * @param pVM Pointer to the VM.
2592 * @param pDevIns The device instance owning the region.
2593 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
2594 */
2595VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2596{
2597 /*
2598 * Validate input.
2599 */
2600 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2601 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2602 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
2603
2604 pgmLock(pVM);
2605 int rc = VINF_SUCCESS;
2606 unsigned cFound = 0;
2607 PPGMMMIO2RANGE pPrev = NULL;
2608 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
2609 while (pCur)
2610 {
2611 if ( pCur->pDevInsR3 == pDevIns
2612 && ( iRegion == UINT32_MAX
2613 || pCur->iRegion == iRegion))
2614 {
2615 cFound++;
2616
2617 /*
2618 * Unmap it if it's mapped.
2619 */
2620 if (pCur->fMapped)
2621 {
2622 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
2623 AssertRC(rc2);
2624 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2625 rc = rc2;
2626 }
2627
2628 /*
2629 * Unlink it
2630 */
2631 PPGMMMIO2RANGE pNext = pCur->pNextR3;
2632 if (pPrev)
2633 pPrev->pNextR3 = pNext;
2634 else
2635 pVM->pgm.s.pMmio2RangesR3 = pNext;
2636 pCur->pNextR3 = NULL;
2637
2638 /*
2639 * Free the memory.
2640 */
2641 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
2642 AssertRC(rc2);
2643 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2644 rc = rc2;
2645
2646 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
2647 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
2648 AssertRC(rc2);
2649 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2650 rc = rc2;
2651
2652 /* we're leaking hyper memory here if done at runtime. */
2653#ifdef VBOX_STRICT
2654 VMSTATE const enmState = VMR3GetState(pVM);
2655 AssertMsg( enmState == VMSTATE_POWERING_OFF
2656 || enmState == VMSTATE_POWERING_OFF_LS
2657 || enmState == VMSTATE_OFF
2658 || enmState == VMSTATE_OFF_LS
2659 || enmState == VMSTATE_DESTROYING
2660 || enmState == VMSTATE_TERMINATED
2661 || enmState == VMSTATE_CREATING
2662 , ("%s\n", VMR3GetStateName(enmState)));
2663#endif
2664 /*rc = MMHyperFree(pVM, pCur);
2665 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
2666
2667
2668 /* update page count stats */
2669 pVM->pgm.s.cAllPages -= cPages;
2670 pVM->pgm.s.cPrivatePages -= cPages;
2671
2672 /* next */
2673 pCur = pNext;
2674 }
2675 else
2676 {
2677 pPrev = pCur;
2678 pCur = pCur->pNextR3;
2679 }
2680 }
2681 pgmPhysInvalidatePageMapTLB(pVM);
2682 pgmUnlock(pVM);
2683 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2684}
2685
2686
2687/**
2688 * Maps a MMIO2 region.
2689 *
2690 * This is done when a guest / the bios / state loading changes the
2691 * PCI config. The replacing of base memory has the same restrictions
2692 * as during registration, of course.
2693 *
2694 * @returns VBox status code.
2695 *
2696 * @param pVM Pointer to the VM.
2697 * @param pDevIns The device instance owning the region.
2698 */
2699VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2700{
2701 /*
2702 * Validate input
2703 */
2704 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2705 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2706 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2707 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2708 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2709 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2710
2711 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2712 AssertReturn(pCur, VERR_NOT_FOUND);
2713 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2714 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2715 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2716
2717 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2718 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2719
2720 /*
2721 * Find our location in the ram range list, checking for
2722 * restriction we don't bother implementing yet (partially overlapping).
2723 */
2724 bool fRamExists = false;
2725 PPGMRAMRANGE pRamPrev = NULL;
2726 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2727 while (pRam && GCPhysLast >= pRam->GCPhys)
2728 {
2729 if ( GCPhys <= pRam->GCPhysLast
2730 && GCPhysLast >= pRam->GCPhys)
2731 {
2732 /* completely within? */
2733 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2734 && GCPhysLast <= pRam->GCPhysLast,
2735 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2736 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2737 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2738 VERR_PGM_RAM_CONFLICT);
2739 fRamExists = true;
2740 break;
2741 }
2742
2743 /* next */
2744 pRamPrev = pRam;
2745 pRam = pRam->pNextR3;
2746 }
2747 if (fRamExists)
2748 {
2749 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2750 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2751 while (cPagesLeft-- > 0)
2752 {
2753 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2754 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2755 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2756 VERR_PGM_RAM_CONFLICT);
2757 pPage++;
2758 }
2759 }
2760 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2761 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2762
2763 /*
2764 * Make the changes.
2765 */
2766 pgmLock(pVM);
2767
2768 pCur->RamRange.GCPhys = GCPhys;
2769 pCur->RamRange.GCPhysLast = GCPhysLast;
2770 pCur->fMapped = true;
2771 pCur->fOverlapping = fRamExists;
2772
2773 if (fRamExists)
2774 {
2775/** @todo use pgmR3PhysFreePageRange here. */
2776 uint32_t cPendingPages = 0;
2777 PGMMFREEPAGESREQ pReq;
2778 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2779 AssertLogRelRCReturn(rc, rc);
2780
2781 /* replace the pages, freeing all present RAM pages. */
2782 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2783 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2784 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2785 while (cPagesLeft-- > 0)
2786 {
2787 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2788 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2789
2790 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2791 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
2792 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
2793 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
2794 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2795 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
2796 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
2797
2798 pVM->pgm.s.cZeroPages--;
2799 GCPhys += PAGE_SIZE;
2800 pPageSrc++;
2801 pPageDst++;
2802 }
2803
2804 /* Flush physical page map TLB. */
2805 pgmPhysInvalidatePageMapTLB(pVM);
2806
2807 if (cPendingPages)
2808 {
2809 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2810 AssertLogRelRCReturn(rc, rc);
2811 }
2812 GMMR3FreePagesCleanup(pReq);
2813
2814 /* Force a PGM pool flush as guest ram references have been changed. */
2815 /** @todo not entirely SMP safe; assuming for now the guest takes care of
2816 * this internally (not touch mapped mmio while changing the mapping). */
2817 PVMCPU pVCpu = VMMGetCpu(pVM);
2818 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2819 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2820
2821 pgmUnlock(pVM);
2822 }
2823 else
2824 {
2825 RTGCPHYS cb = pCur->RamRange.cb;
2826
2827 /* Clear the tracking data of pages we're going to reactivate. */
2828 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2829 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2830 while (cPagesLeft-- > 0)
2831 {
2832 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
2833 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
2834 pPageSrc++;
2835 }
2836
2837 /* link in the ram range */
2838 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2839 pgmUnlock(pVM);
2840
2841#ifdef VBOX_WITH_REM
2842 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2843#endif
2844 }
2845
2846 pgmPhysInvalidatePageMapTLB(pVM);
2847 return VINF_SUCCESS;
2848}
2849
2850
2851/**
2852 * Unmaps a MMIO2 region.
2853 *
2854 * This is done when a guest / the bios / state loading changes the
2855 * PCI config. The replacing of base memory has the same restrictions
2856 * as during registration, of course.
2857 */
2858VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2859{
2860 /*
2861 * Validate input
2862 */
2863 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2864 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2865 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2866 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2867 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2868 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2869
2870 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2871 AssertReturn(pCur, VERR_NOT_FOUND);
2872 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2873 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2874 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2875
2876 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2877 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2878
2879 /*
2880 * Unmap it.
2881 */
2882 pgmLock(pVM);
2883
2884#ifdef VBOX_WITH_REM
2885 RTGCPHYS GCPhysRangeREM;
2886 RTGCPHYS cbRangeREM;
2887 bool fInformREM;
2888#endif
2889 if (pCur->fOverlapping)
2890 {
2891 /* Restore the RAM pages we've replaced. */
2892 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2893 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2894 pRam = pRam->pNextR3;
2895
2896 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2897 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2898 while (cPagesLeft-- > 0)
2899 {
2900 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
2901 pVM->pgm.s.cZeroPages++;
2902 pPageDst++;
2903 }
2904
2905 /* Flush physical page map TLB. */
2906 pgmPhysInvalidatePageMapTLB(pVM);
2907#ifdef VBOX_WITH_REM
2908 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2909 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2910 fInformREM = false;
2911#endif
2912 }
2913 else
2914 {
2915#ifdef VBOX_WITH_REM
2916 GCPhysRangeREM = pCur->RamRange.GCPhys;
2917 cbRangeREM = pCur->RamRange.cb;
2918 fInformREM = true;
2919#endif
2920 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2921 }
2922
2923 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2924 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2925 pCur->fOverlapping = false;
2926 pCur->fMapped = false;
2927
2928 /* Force a PGM pool flush as guest ram references have been changed. */
2929 /** @todo not entirely SMP safe; assuming for now the guest takes care
2930 * of this internally (not touch mapped mmio while changing the
2931 * mapping). */
2932 PVMCPU pVCpu = VMMGetCpu(pVM);
2933 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2934 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2935
2936 pgmPhysInvalidatePageMapTLB(pVM);
2937 pgmPhysInvalidRamRangeTlbs(pVM);
2938 pgmUnlock(pVM);
2939
2940#ifdef VBOX_WITH_REM
2941 if (fInformREM)
2942 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2943#endif
2944
2945 return VINF_SUCCESS;
2946}
2947
2948
2949/**
2950 * Checks if the given address is an MMIO2 base address or not.
2951 *
2952 * @returns true/false accordingly.
2953 * @param pVM Pointer to the VM.
2954 * @param pDevIns The owner of the memory, optional.
2955 * @param GCPhys The address to check.
2956 */
2957VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2958{
2959 /*
2960 * Validate input
2961 */
2962 VM_ASSERT_EMT_RETURN(pVM, false);
2963 AssertPtrReturn(pDevIns, false);
2964 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2965 AssertReturn(GCPhys != 0, false);
2966 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2967
2968 /*
2969 * Search the list.
2970 */
2971 pgmLock(pVM);
2972 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2973 if (pCur->RamRange.GCPhys == GCPhys)
2974 {
2975 Assert(pCur->fMapped);
2976 pgmUnlock(pVM);
2977 return true;
2978 }
2979 pgmUnlock(pVM);
2980 return false;
2981}
2982
2983
2984/**
2985 * Gets the HC physical address of a page in the MMIO2 region.
2986 *
2987 * This is API is intended for MMHyper and shouldn't be called
2988 * by anyone else...
2989 *
2990 * @returns VBox status code.
2991 * @param pVM Pointer to the VM.
2992 * @param pDevIns The owner of the memory, optional.
2993 * @param iRegion The region.
2994 * @param off The page expressed an offset into the MMIO2 region.
2995 * @param pHCPhys Where to store the result.
2996 */
2997VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2998{
2999 /*
3000 * Validate input
3001 */
3002 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3003 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3004 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3005
3006 pgmLock(pVM);
3007 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3008 AssertReturn(pCur, VERR_NOT_FOUND);
3009 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3010
3011 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
3012 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3013 pgmUnlock(pVM);
3014 return VINF_SUCCESS;
3015}
3016
3017
3018/**
3019 * Maps a portion of an MMIO2 region into kernel space (host).
3020 *
3021 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
3022 * or the VM is terminated.
3023 *
3024 * @return VBox status code.
3025 *
3026 * @param pVM Pointer to the VM.
3027 * @param pDevIns The device owning the MMIO2 memory.
3028 * @param iRegion The region.
3029 * @param off The offset into the region. Must be page aligned.
3030 * @param cb The number of bytes to map. Must be page aligned.
3031 * @param pszDesc Mapping description.
3032 * @param pR0Ptr Where to store the R0 address.
3033 */
3034VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
3035 const char *pszDesc, PRTR0PTR pR0Ptr)
3036{
3037 /*
3038 * Validate input.
3039 */
3040 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3041 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3042 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3043
3044 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3045 AssertReturn(pCur, VERR_NOT_FOUND);
3046 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3047 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3048 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3049 NOREF(pszDesc);
3050
3051 /*
3052 * Pass the request on to the support library/driver.
3053 */
3054 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
3055
3056 return rc;
3057}
3058
3059
3060/**
3061 * Worker for PGMR3PhysRomRegister.
3062 *
3063 * This is here to simplify lock management, i.e. the caller does all the
3064 * locking and we can simply return without needing to remember to unlock
3065 * anything first.
3066 *
3067 * @returns VBox status.
3068 * @param pVM Pointer to the VM.
3069 * @param pDevIns The device instance owning the ROM.
3070 * @param GCPhys First physical address in the range.
3071 * Must be page aligned!
3072 * @param cb The size of the range (in bytes).
3073 * Must be page aligned!
3074 * @param pvBinary Pointer to the binary data backing the ROM image.
3075 * @param cbBinary The size of the binary data pvBinary points to.
3076 * This must be less or equal to @a cb.
3077 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3078 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3079 * @param pszDesc Pointer to description string. This must not be freed.
3080 */
3081static int pgmR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3082 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3083{
3084 /*
3085 * Validate input.
3086 */
3087 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3088 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
3089 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
3090 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3091 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3092 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
3093 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3094 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
3095 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
3096
3097 const uint32_t cPages = cb >> PAGE_SHIFT;
3098
3099 /*
3100 * Find the ROM location in the ROM list first.
3101 */
3102 PPGMROMRANGE pRomPrev = NULL;
3103 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3104 while (pRom && GCPhysLast >= pRom->GCPhys)
3105 {
3106 if ( GCPhys <= pRom->GCPhysLast
3107 && GCPhysLast >= pRom->GCPhys)
3108 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
3109 GCPhys, GCPhysLast, pszDesc,
3110 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
3111 VERR_PGM_RAM_CONFLICT);
3112 /* next */
3113 pRomPrev = pRom;
3114 pRom = pRom->pNextR3;
3115 }
3116
3117 /*
3118 * Find the RAM location and check for conflicts.
3119 *
3120 * Conflict detection is a bit different than for RAM
3121 * registration since a ROM can be located within a RAM
3122 * range. So, what we have to check for is other memory
3123 * types (other than RAM that is) and that we don't span
3124 * more than one RAM range (layz).
3125 */
3126 bool fRamExists = false;
3127 PPGMRAMRANGE pRamPrev = NULL;
3128 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3129 while (pRam && GCPhysLast >= pRam->GCPhys)
3130 {
3131 if ( GCPhys <= pRam->GCPhysLast
3132 && GCPhysLast >= pRam->GCPhys)
3133 {
3134 /* completely within? */
3135 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
3136 && GCPhysLast <= pRam->GCPhysLast,
3137 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
3138 GCPhys, GCPhysLast, pszDesc,
3139 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3140 VERR_PGM_RAM_CONFLICT);
3141 fRamExists = true;
3142 break;
3143 }
3144
3145 /* next */
3146 pRamPrev = pRam;
3147 pRam = pRam->pNextR3;
3148 }
3149 if (fRamExists)
3150 {
3151 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3152 uint32_t cPagesLeft = cPages;
3153 while (cPagesLeft-- > 0)
3154 {
3155 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3156 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
3157 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
3158 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
3159 Assert(PGM_PAGE_IS_ZERO(pPage));
3160 pPage++;
3161 }
3162 }
3163
3164 /*
3165 * Update the base memory reservation if necessary.
3166 */
3167 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
3168 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3169 cExtraBaseCost += cPages;
3170 if (cExtraBaseCost)
3171 {
3172 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
3173 if (RT_FAILURE(rc))
3174 return rc;
3175 }
3176
3177 /*
3178 * Allocate memory for the virgin copy of the RAM.
3179 */
3180 PGMMALLOCATEPAGESREQ pReq;
3181 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
3182 AssertRCReturn(rc, rc);
3183
3184 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3185 {
3186 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
3187 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
3188 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
3189 }
3190
3191 rc = GMMR3AllocatePagesPerform(pVM, pReq);
3192 if (RT_FAILURE(rc))
3193 {
3194 GMMR3AllocatePagesCleanup(pReq);
3195 return rc;
3196 }
3197
3198 /*
3199 * Allocate the new ROM range and RAM range (if necessary).
3200 */
3201 PPGMROMRANGE pRomNew;
3202 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
3203 if (RT_SUCCESS(rc))
3204 {
3205 PPGMRAMRANGE pRamNew = NULL;
3206 if (!fRamExists)
3207 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
3208 if (RT_SUCCESS(rc))
3209 {
3210 /*
3211 * Initialize and insert the RAM range (if required).
3212 */
3213 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
3214 if (!fRamExists)
3215 {
3216 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
3217 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
3218 pRamNew->GCPhys = GCPhys;
3219 pRamNew->GCPhysLast = GCPhysLast;
3220 pRamNew->cb = cb;
3221 pRamNew->pszDesc = pszDesc;
3222 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
3223 pRamNew->pvR3 = NULL;
3224 pRamNew->paLSPages = NULL;
3225
3226 PPGMPAGE pPage = &pRamNew->aPages[0];
3227 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3228 {
3229 PGM_PAGE_INIT(pPage,
3230 pReq->aPages[iPage].HCPhysGCPhys,
3231 pReq->aPages[iPage].idPage,
3232 PGMPAGETYPE_ROM,
3233 PGM_PAGE_STATE_ALLOCATED);
3234
3235 pRomPage->Virgin = *pPage;
3236 }
3237
3238 pVM->pgm.s.cAllPages += cPages;
3239 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
3240 }
3241 else
3242 {
3243 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3244 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3245 {
3246 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
3247 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
3248 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
3249 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
3250 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3251 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
3252 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
3253
3254 pRomPage->Virgin = *pPage;
3255 }
3256
3257 pRamNew = pRam;
3258
3259 pVM->pgm.s.cZeroPages -= cPages;
3260 }
3261 pVM->pgm.s.cPrivatePages += cPages;
3262
3263 /* Flush physical page map TLB. */
3264 pgmPhysInvalidatePageMapTLB(pVM);
3265
3266
3267 /*
3268 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
3269 *
3270 * If it's shadowed we'll register the handler after the ROM notification
3271 * so we get the access handler callbacks that we should. If it isn't
3272 * shadowed we'll do it the other way around to make REM use the built-in
3273 * ROM behavior and not the handler behavior (which is to route all access
3274 * to PGM atm).
3275 */
3276 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3277 {
3278#ifdef VBOX_WITH_REM
3279 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
3280#endif
3281 rc = PGMR3HandlerPhysicalRegister(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE, GCPhys, GCPhysLast,
3282 pgmR3PhysRomWriteHandler, pRomNew,
3283 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
3284 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
3285 }
3286 else
3287 {
3288 rc = PGMR3HandlerPhysicalRegister(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE, GCPhys, GCPhysLast,
3289 pgmR3PhysRomWriteHandler, pRomNew,
3290 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
3291 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
3292#ifdef VBOX_WITH_REM
3293 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
3294#endif
3295 }
3296 if (RT_SUCCESS(rc))
3297 {
3298 /*
3299 * Copy the image over to the virgin pages.
3300 * This must be done after linking in the RAM range.
3301 */
3302 size_t cbBinaryLeft = cbBinary;
3303 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
3304 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
3305 {
3306 void *pvDstPage;
3307 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
3308 if (RT_FAILURE(rc))
3309 {
3310 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
3311 break;
3312 }
3313 if (cbBinaryLeft >= PAGE_SIZE)
3314 {
3315 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
3316 cbBinaryLeft -= PAGE_SIZE;
3317 }
3318 else
3319 {
3320 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
3321 if (cbBinaryLeft > 0)
3322 {
3323 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
3324 cbBinaryLeft = 0;
3325 }
3326 }
3327 }
3328 if (RT_SUCCESS(rc))
3329 {
3330 /*
3331 * Initialize the ROM range.
3332 * Note that the Virgin member of the pages has already been initialized above.
3333 */
3334 pRomNew->GCPhys = GCPhys;
3335 pRomNew->GCPhysLast = GCPhysLast;
3336 pRomNew->cb = cb;
3337 pRomNew->fFlags = fFlags;
3338 pRomNew->idSavedState = UINT8_MAX;
3339 pRomNew->cbOriginal = cbBinary;
3340#ifdef VBOX_STRICT
3341 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
3342 ? pvBinary : RTMemDup(pvBinary, cbBinary);
3343#else
3344 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
3345#endif
3346 pRomNew->pszDesc = pszDesc;
3347
3348 for (unsigned iPage = 0; iPage < cPages; iPage++)
3349 {
3350 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
3351 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
3352 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
3353 }
3354
3355 /* update the page count stats for the shadow pages. */
3356 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3357 {
3358 pVM->pgm.s.cZeroPages += cPages;
3359 pVM->pgm.s.cAllPages += cPages;
3360 }
3361
3362 /*
3363 * Insert the ROM range, tell REM and return successfully.
3364 */
3365 pRomNew->pNextR3 = pRom;
3366 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
3367 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
3368
3369 if (pRomPrev)
3370 {
3371 pRomPrev->pNextR3 = pRomNew;
3372 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
3373 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
3374 }
3375 else
3376 {
3377 pVM->pgm.s.pRomRangesR3 = pRomNew;
3378 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
3379 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
3380 }
3381
3382 pgmPhysInvalidatePageMapTLB(pVM);
3383 GMMR3AllocatePagesCleanup(pReq);
3384 return VINF_SUCCESS;
3385 }
3386
3387 /* bail out */
3388
3389 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
3390 AssertRC(rc2);
3391 }
3392
3393 if (!fRamExists)
3394 {
3395 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
3396 MMHyperFree(pVM, pRamNew);
3397 }
3398 }
3399 MMHyperFree(pVM, pRomNew);
3400 }
3401
3402 /** @todo Purge the mapping cache or something... */
3403 GMMR3FreeAllocatedPages(pVM, pReq);
3404 GMMR3AllocatePagesCleanup(pReq);
3405 return rc;
3406}
3407
3408
3409/**
3410 * Registers a ROM image.
3411 *
3412 * Shadowed ROM images requires double the amount of backing memory, so,
3413 * don't use that unless you have to. Shadowing of ROM images is process
3414 * where we can select where the reads go and where the writes go. On real
3415 * hardware the chipset provides means to configure this. We provide
3416 * PGMR3PhysProtectROM() for this purpose.
3417 *
3418 * A read-only copy of the ROM image will always be kept around while we
3419 * will allocate RAM pages for the changes on demand (unless all memory
3420 * is configured to be preallocated).
3421 *
3422 * @returns VBox status.
3423 * @param pVM Pointer to the VM.
3424 * @param pDevIns The device instance owning the ROM.
3425 * @param GCPhys First physical address in the range.
3426 * Must be page aligned!
3427 * @param cb The size of the range (in bytes).
3428 * Must be page aligned!
3429 * @param pvBinary Pointer to the binary data backing the ROM image.
3430 * @param cbBinary The size of the binary data pvBinary points to.
3431 * This must be less or equal to @a cb.
3432 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3433 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3434 * @param pszDesc Pointer to description string. This must not be freed.
3435 *
3436 * @remark There is no way to remove the rom, automatically on device cleanup or
3437 * manually from the device yet. This isn't difficult in any way, it's
3438 * just not something we expect to be necessary for a while.
3439 */
3440VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3441 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3442{
3443 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
3444 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
3445 pgmLock(pVM);
3446 int rc = pgmR3PhysRomRegister(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
3447 pgmUnlock(pVM);
3448 return rc;
3449}
3450
3451
3452/**
3453 * \#PF Handler callback for ROM write accesses.
3454 *
3455 * @returns VINF_SUCCESS if the handler have carried out the operation.
3456 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
3457 * @param pVM Pointer to the VM.
3458 * @param GCPhys The physical address the guest is writing to.
3459 * @param pvPhys The HC mapping of that address.
3460 * @param pvBuf What the guest is reading/writing.
3461 * @param cbBuf How much it's reading/writing.
3462 * @param enmAccessType The access type.
3463 * @param pvUser User argument.
3464 */
3465static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
3466 PGMACCESSTYPE enmAccessType, void *pvUser)
3467{
3468 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
3469 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3470 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
3471 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3472 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
3473 NOREF(pvPhys);
3474
3475 if (enmAccessType == PGMACCESSTYPE_READ)
3476 {
3477 switch (pRomPage->enmProt)
3478 {
3479 /*
3480 * Take the default action.
3481 */
3482 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3483 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3484 case PGMROMPROT_READ_ROM_WRITE_RAM:
3485 case PGMROMPROT_READ_RAM_WRITE_RAM:
3486 return VINF_PGM_HANDLER_DO_DEFAULT;
3487
3488 default:
3489 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3490 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3491 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
3492 }
3493 }
3494 else
3495 {
3496 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
3497 switch (pRomPage->enmProt)
3498 {
3499 /*
3500 * Ignore writes.
3501 */
3502 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3503 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3504 return VINF_SUCCESS;
3505
3506 /*
3507 * Write to the RAM page.
3508 */
3509 case PGMROMPROT_READ_ROM_WRITE_RAM:
3510 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
3511 {
3512 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
3513 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
3514
3515 /*
3516 * Take the lock, do lazy allocation, map the page and copy the data.
3517 *
3518 * Note that we have to bypass the mapping TLB since it works on
3519 * guest physical addresses and entering the shadow page would
3520 * kind of screw things up...
3521 */
3522 int rc = pgmLock(pVM);
3523 AssertRC(rc);
3524
3525 PPGMPAGE pShadowPage = &pRomPage->Shadow;
3526 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
3527 {
3528 pShadowPage = pgmPhysGetPage(pVM, GCPhys);
3529 AssertLogRelReturn(pShadowPage, VERR_PGM_PHYS_PAGE_GET_IPE);
3530 }
3531
3532 void *pvDstPage;
3533 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
3534 if (RT_SUCCESS(rc))
3535 {
3536 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
3537 pRomPage->LiveSave.fWrittenTo = true;
3538 }
3539
3540 pgmUnlock(pVM);
3541 return rc;
3542 }
3543
3544 default:
3545 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3546 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3547 VERR_IPE_NOT_REACHED_DEFAULT_CASE);
3548 }
3549 }
3550}
3551
3552
3553/**
3554 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
3555 * and verify that the virgin part is untouched.
3556 *
3557 * This is done after the normal memory has been cleared.
3558 *
3559 * ASSUMES that the caller owns the PGM lock.
3560 *
3561 * @param pVM Pointer to the VM.
3562 */
3563int pgmR3PhysRomReset(PVM pVM)
3564{
3565 PGM_LOCK_ASSERT_OWNER(pVM);
3566 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3567 {
3568 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
3569
3570 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3571 {
3572 /*
3573 * Reset the physical handler.
3574 */
3575 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
3576 AssertRCReturn(rc, rc);
3577
3578 /*
3579 * What we do with the shadow pages depends on the memory
3580 * preallocation option. If not enabled, we'll just throw
3581 * out all the dirty pages and replace them by the zero page.
3582 */
3583 if (!pVM->pgm.s.fRamPreAlloc)
3584 {
3585 /* Free the dirty pages. */
3586 uint32_t cPendingPages = 0;
3587 PGMMFREEPAGESREQ pReq;
3588 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3589 AssertRCReturn(rc, rc);
3590
3591 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3592 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
3593 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
3594 {
3595 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
3596 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
3597 pRom->GCPhys + (iPage << PAGE_SHIFT));
3598 AssertLogRelRCReturn(rc, rc);
3599 }
3600
3601 if (cPendingPages)
3602 {
3603 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
3604 AssertLogRelRCReturn(rc, rc);
3605 }
3606 GMMR3FreePagesCleanup(pReq);
3607 }
3608 else
3609 {
3610 /* clear all the shadow pages. */
3611 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3612 {
3613 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
3614 continue;
3615 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
3616 void *pvDstPage;
3617 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3618 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
3619 if (RT_FAILURE(rc))
3620 break;
3621 ASMMemZeroPage(pvDstPage);
3622 }
3623 AssertRCReturn(rc, rc);
3624 }
3625 }
3626
3627#ifdef VBOX_STRICT
3628 /*
3629 * Verify that the virgin page is unchanged if possible.
3630 */
3631 if (pRom->pvOriginal)
3632 {
3633 size_t cbSrcLeft = pRom->cbOriginal;
3634 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
3635 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
3636 {
3637 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3638 void const *pvDstPage;
3639 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
3640 if (RT_FAILURE(rc))
3641 break;
3642
3643 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
3644 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
3645 GCPhys, pRom->pszDesc));
3646 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
3647 }
3648 }
3649#endif
3650 }
3651
3652 return VINF_SUCCESS;
3653}
3654
3655
3656/**
3657 * Called by PGMR3Term to free resources.
3658 *
3659 * ASSUMES that the caller owns the PGM lock.
3660 *
3661 * @param pVM Pointer to the VM.
3662 */
3663void pgmR3PhysRomTerm(PVM pVM)
3664{
3665#ifdef RT_STRICT
3666 /*
3667 * Free the heap copy of the original bits.
3668 */
3669 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3670 {
3671 if ( pRom->pvOriginal
3672 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
3673 {
3674 RTMemFree((void *)pRom->pvOriginal);
3675 pRom->pvOriginal = NULL;
3676 }
3677 }
3678#endif
3679}
3680
3681
3682/**
3683 * Change the shadowing of a range of ROM pages.
3684 *
3685 * This is intended for implementing chipset specific memory registers
3686 * and will not be very strict about the input. It will silently ignore
3687 * any pages that are not the part of a shadowed ROM.
3688 *
3689 * @returns VBox status code.
3690 * @retval VINF_PGM_SYNC_CR3
3691 *
3692 * @param pVM Pointer to the VM.
3693 * @param GCPhys Where to start. Page aligned.
3694 * @param cb How much to change. Page aligned.
3695 * @param enmProt The new ROM protection.
3696 */
3697VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
3698{
3699 /*
3700 * Check input
3701 */
3702 if (!cb)
3703 return VINF_SUCCESS;
3704 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3705 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3706 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3707 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3708 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
3709
3710 /*
3711 * Process the request.
3712 */
3713 pgmLock(pVM);
3714 int rc = VINF_SUCCESS;
3715 bool fFlushTLB = false;
3716 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3717 {
3718 if ( GCPhys <= pRom->GCPhysLast
3719 && GCPhysLast >= pRom->GCPhys
3720 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
3721 {
3722 /*
3723 * Iterate the relevant pages and make necessary the changes.
3724 */
3725 bool fChanges = false;
3726 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
3727 ? pRom->cb >> PAGE_SHIFT
3728 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
3729 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3730 iPage < cPages;
3731 iPage++)
3732 {
3733 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3734 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
3735 {
3736 fChanges = true;
3737
3738 /* flush references to the page. */
3739 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
3740 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
3741 true /*fFlushPTEs*/, &fFlushTLB);
3742 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
3743 rc = rc2;
3744
3745 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
3746 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
3747
3748 *pOld = *pRamPage;
3749 *pRamPage = *pNew;
3750 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
3751 }
3752 pRomPage->enmProt = enmProt;
3753 }
3754
3755 /*
3756 * Reset the access handler if we made changes, no need
3757 * to optimize this.
3758 */
3759 if (fChanges)
3760 {
3761 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
3762 if (RT_FAILURE(rc2))
3763 {
3764 pgmUnlock(pVM);
3765 AssertRC(rc);
3766 return rc2;
3767 }
3768 }
3769
3770 /* Advance - cb isn't updated. */
3771 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3772 }
3773 }
3774 pgmUnlock(pVM);
3775 if (fFlushTLB)
3776 PGM_INVL_ALL_VCPU_TLBS(pVM);
3777
3778 return rc;
3779}
3780
3781
3782/**
3783 * Sets the Address Gate 20 state.
3784 *
3785 * @param pVCpu Pointer to the VMCPU.
3786 * @param fEnable True if the gate should be enabled.
3787 * False if the gate should be disabled.
3788 */
3789VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3790{
3791 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3792 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3793 {
3794 pVCpu->pgm.s.fA20Enabled = fEnable;
3795 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
3796#ifdef VBOX_WITH_REM
3797 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3798#endif
3799#ifdef PGM_WITH_A20
3800 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3801 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3802 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
3803 HMFlushTLB(pVCpu);
3804#endif
3805 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
3806 }
3807}
3808
3809
3810/**
3811 * Tree enumeration callback for dealing with age rollover.
3812 * It will perform a simple compression of the current age.
3813 */
3814static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3815{
3816 /* Age compression - ASSUMES iNow == 4. */
3817 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3818 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
3819 pChunk->iLastUsed = 3;
3820 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
3821 pChunk->iLastUsed = 2;
3822 else if (pChunk->iLastUsed)
3823 pChunk->iLastUsed = 1;
3824 else /* iLastUsed = 0 */
3825 pChunk->iLastUsed = 4;
3826
3827 NOREF(pvUser);
3828 return 0;
3829}
3830
3831
3832/**
3833 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3834 */
3835typedef struct PGMR3PHYSCHUNKUNMAPCB
3836{
3837 PVM pVM; /**< Pointer to the VM. */
3838 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3839} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3840
3841
3842/**
3843 * Callback used to find the mapping that's been unused for
3844 * the longest time.
3845 */
3846static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
3847{
3848 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3849 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
3850
3851 /*
3852 * Check for locks and compare when last used.
3853 */
3854 if (pChunk->cRefs)
3855 return 0;
3856 if (pChunk->cPermRefs)
3857 return 0;
3858 if ( pArg->pChunk
3859 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
3860 return 0;
3861
3862 /*
3863 * Check that it's not in any of the TLBs.
3864 */
3865 PVM pVM = pArg->pVM;
3866 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
3867 == pChunk->Core.Key)
3868 {
3869 pChunk = NULL;
3870 return 0;
3871 }
3872#ifdef VBOX_STRICT
3873 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3874 {
3875 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
3876 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
3877 }
3878#endif
3879
3880 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3881 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3882 return 0;
3883
3884 pArg->pChunk = pChunk;
3885 return 0;
3886}
3887
3888
3889/**
3890 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3891 *
3892 * The candidate will not be part of any TLBs, so no need to flush
3893 * anything afterwards.
3894 *
3895 * @returns Chunk id.
3896 * @param pVM Pointer to the VM.
3897 */
3898static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3899{
3900 PGM_LOCK_ASSERT_OWNER(pVM);
3901
3902 /*
3903 * Enumerate the age tree starting with the left most node.
3904 */
3905 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3906 PGMR3PHYSCHUNKUNMAPCB Args;
3907 Args.pVM = pVM;
3908 Args.pChunk = NULL;
3909 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
3910 Assert(Args.pChunk);
3911 if (Args.pChunk)
3912 {
3913 Assert(Args.pChunk->cRefs == 0);
3914 Assert(Args.pChunk->cPermRefs == 0);
3915 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3916 return Args.pChunk->Core.Key;
3917 }
3918
3919 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3920 return INT32_MAX;
3921}
3922
3923
3924/**
3925 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
3926 *
3927 * This is only called on one of the EMTs while the other ones are waiting for
3928 * it to complete this function.
3929 *
3930 * @returns VINF_SUCCESS (VBox strict status code).
3931 * @param pVM Pointer to the VM.
3932 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
3933 * @param pvUser User pointer. Unused
3934 *
3935 */
3936static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
3937{
3938 int rc = VINF_SUCCESS;
3939 pgmLock(pVM);
3940 NOREF(pVCpu); NOREF(pvUser);
3941
3942 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3943 {
3944 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
3945 /** @todo also not really efficient to unmap a chunk that contains PD
3946 * or PT pages. */
3947 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
3948
3949 /*
3950 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
3951 */
3952 GMMMAPUNMAPCHUNKREQ Req;
3953 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3954 Req.Hdr.cbReq = sizeof(Req);
3955 Req.pvR3 = NULL;
3956 Req.idChunkMap = NIL_GMM_CHUNKID;
3957 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3958 if (Req.idChunkUnmap != INT32_MAX)
3959 {
3960 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3961 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3962 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3963 if (RT_SUCCESS(rc))
3964 {
3965 /*
3966 * Remove the unmapped one.
3967 */
3968 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3969 AssertRelease(pUnmappedChunk);
3970 AssertRelease(!pUnmappedChunk->cRefs);
3971 AssertRelease(!pUnmappedChunk->cPermRefs);
3972 pUnmappedChunk->pv = NULL;
3973 pUnmappedChunk->Core.Key = UINT32_MAX;
3974#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3975 MMR3HeapFree(pUnmappedChunk);
3976#else
3977 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3978#endif
3979 pVM->pgm.s.ChunkR3Map.c--;
3980 pVM->pgm.s.cUnmappedChunks++;
3981
3982 /*
3983 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
3984 */
3985 /** todo: we should not flush chunks which include cr3 mappings. */
3986 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3987 {
3988 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
3989
3990 pPGM->pGst32BitPdR3 = NULL;
3991 pPGM->pGstPaePdptR3 = NULL;
3992 pPGM->pGstAmd64Pml4R3 = NULL;
3993#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3994 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
3995 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
3996 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
3997#endif
3998 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
3999 {
4000 pPGM->apGstPaePDsR3[i] = NULL;
4001#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4002 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
4003#endif
4004 }
4005
4006 /* Flush REM TLBs. */
4007 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
4008 }
4009#ifdef VBOX_WITH_REM
4010 /* Flush REM translation blocks. */
4011 REMFlushTBs(pVM);
4012#endif
4013 }
4014 }
4015 }
4016 pgmUnlock(pVM);
4017 return rc;
4018}
4019
4020/**
4021 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
4022 *
4023 * @returns VBox status code.
4024 * @param pVM Pointer to the VM.
4025 */
4026void pgmR3PhysUnmapChunk(PVM pVM)
4027{
4028 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
4029 AssertRC(rc);
4030}
4031
4032
4033/**
4034 * Maps the given chunk into the ring-3 mapping cache.
4035 *
4036 * This will call ring-0.
4037 *
4038 * @returns VBox status code.
4039 * @param pVM Pointer to the VM.
4040 * @param idChunk The chunk in question.
4041 * @param ppChunk Where to store the chunk tracking structure.
4042 *
4043 * @remarks Called from within the PGM critical section.
4044 * @remarks Can be called from any thread!
4045 */
4046int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
4047{
4048 int rc;
4049
4050 PGM_LOCK_ASSERT_OWNER(pVM);
4051
4052 /*
4053 * Move the chunk time forward.
4054 */
4055 pVM->pgm.s.ChunkR3Map.iNow++;
4056 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
4057 {
4058 pVM->pgm.s.ChunkR3Map.iNow = 4;
4059 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
4060 }
4061
4062 /*
4063 * Allocate a new tracking structure first.
4064 */
4065#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4066 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
4067#else
4068 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
4069#endif
4070 AssertReturn(pChunk, VERR_NO_MEMORY);
4071 pChunk->Core.Key = idChunk;
4072 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
4073
4074 /*
4075 * Request the ring-0 part to map the chunk in question.
4076 */
4077 GMMMAPUNMAPCHUNKREQ Req;
4078 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4079 Req.Hdr.cbReq = sizeof(Req);
4080 Req.pvR3 = NULL;
4081 Req.idChunkMap = idChunk;
4082 Req.idChunkUnmap = NIL_GMM_CHUNKID;
4083
4084 /* Must be callable from any thread, so can't use VMMR3CallR0. */
4085 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4086 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4087 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4088 if (RT_SUCCESS(rc))
4089 {
4090 pChunk->pv = Req.pvR3;
4091
4092 /*
4093 * If we're running out of virtual address space, then we should
4094 * unmap another chunk.
4095 *
4096 * Currently, an unmap operation requires that all other virtual CPUs
4097 * are idling and not by chance making use of the memory we're
4098 * unmapping. So, we create an async unmap operation here.
4099 *
4100 * Now, when creating or restoring a saved state this wont work very
4101 * well since we may want to restore all guest RAM + a little something.
4102 * So, we have to do the unmap synchronously. Fortunately for us
4103 * though, during these operations the other virtual CPUs are inactive
4104 * and it should be safe to do this.
4105 */
4106 /** @todo Eventually we should lock all memory when used and do
4107 * map+unmap as one kernel call without any rendezvous or
4108 * other precautions. */
4109 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
4110 {
4111 switch (VMR3GetState(pVM))
4112 {
4113 case VMSTATE_LOADING:
4114 case VMSTATE_SAVING:
4115 {
4116 PVMCPU pVCpu = VMMGetCpu(pVM);
4117 if ( pVCpu
4118 && pVM->pgm.s.cDeprecatedPageLocks == 0)
4119 {
4120 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
4121 break;
4122 }
4123 /* fall thru */
4124 }
4125 default:
4126 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
4127 AssertRC(rc);
4128 break;
4129 }
4130 }
4131
4132 /*
4133 * Update the tree. We must do this after any unmapping to make sure
4134 * the chunk we're going to return isn't unmapped by accident.
4135 */
4136 AssertPtr(Req.pvR3);
4137 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
4138 AssertRelease(fRc);
4139 pVM->pgm.s.ChunkR3Map.c++;
4140 pVM->pgm.s.cMappedChunks++;
4141 }
4142 else
4143 {
4144 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
4145 * should probably restrict ourselves on linux. */
4146 AssertRC(rc);
4147#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4148 MMR3HeapFree(pChunk);
4149#else
4150 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
4151#endif
4152 pChunk = NULL;
4153 }
4154
4155 *ppChunk = pChunk;
4156 return rc;
4157}
4158
4159
4160/**
4161 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
4162 *
4163 * @returns see pgmR3PhysChunkMap.
4164 * @param pVM Pointer to the VM.
4165 * @param idChunk The chunk to map.
4166 */
4167VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
4168{
4169 PPGMCHUNKR3MAP pChunk;
4170 int rc;
4171
4172 pgmLock(pVM);
4173 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
4174 pgmUnlock(pVM);
4175 return rc;
4176}
4177
4178
4179/**
4180 * Invalidates the TLB for the ring-3 mapping cache.
4181 *
4182 * @param pVM Pointer to the VM.
4183 */
4184VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
4185{
4186 pgmLock(pVM);
4187 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4188 {
4189 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
4190 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
4191 }
4192 /* The page map TLB references chunks, so invalidate that one too. */
4193 pgmPhysInvalidatePageMapTLB(pVM);
4194 pgmUnlock(pVM);
4195}
4196
4197
4198/**
4199 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
4200 * (2MB) page for use with a nested paging PDE.
4201 *
4202 * @returns The following VBox status codes.
4203 * @retval VINF_SUCCESS on success.
4204 * @retval VINF_EM_NO_MEMORY if we're out of memory.
4205 *
4206 * @param pVM Pointer to the VM.
4207 * @param GCPhys GC physical start address of the 2 MB range
4208 */
4209VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
4210{
4211#ifdef PGM_WITH_LARGE_PAGES
4212 uint64_t u64TimeStamp1, u64TimeStamp2;
4213
4214 pgmLock(pVM);
4215
4216 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4217 u64TimeStamp1 = RTTimeMilliTS();
4218 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
4219 u64TimeStamp2 = RTTimeMilliTS();
4220 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4221 if (RT_SUCCESS(rc))
4222 {
4223 Assert(pVM->pgm.s.cLargeHandyPages == 1);
4224
4225 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
4226 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
4227
4228 void *pv;
4229
4230 /* Map the large page into our address space.
4231 *
4232 * Note: assuming that within the 2 MB range:
4233 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
4234 * - user space mapping is continuous as well
4235 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
4236 */
4237 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
4238 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
4239
4240 if (RT_SUCCESS(rc))
4241 {
4242 /*
4243 * Clear the pages.
4244 */
4245 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4246 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
4247 {
4248 ASMMemZeroPage(pv);
4249
4250 PPGMPAGE pPage;
4251 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
4252 AssertRC(rc);
4253
4254 Assert(PGM_PAGE_IS_ZERO(pPage));
4255 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
4256 pVM->pgm.s.cZeroPages--;
4257
4258 /*
4259 * Do the PGMPAGE modifications.
4260 */
4261 pVM->pgm.s.cPrivatePages++;
4262 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
4263 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
4264 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4265 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
4266 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4267 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4268
4269 /* Somewhat dirty assumption that page ids are increasing. */
4270 idPage++;
4271
4272 HCPhys += PAGE_SIZE;
4273 GCPhys += PAGE_SIZE;
4274
4275 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
4276
4277 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
4278 }
4279 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4280
4281 /* Flush all TLBs. */
4282 PGM_INVL_ALL_VCPU_TLBS(pVM);
4283 pgmPhysInvalidatePageMapTLB(pVM);
4284 }
4285 pVM->pgm.s.cLargeHandyPages = 0;
4286 }
4287
4288 if (RT_SUCCESS(rc))
4289 {
4290 static uint32_t cTimeOut = 0;
4291 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
4292
4293 if (u64TimeStampDelta > 100)
4294 {
4295 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
4296 if ( ++cTimeOut > 10
4297 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
4298 {
4299 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
4300 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
4301 */
4302 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
4303 PGMSetLargePageUsage(pVM, false);
4304 }
4305 }
4306 else
4307 if (cTimeOut > 0)
4308 cTimeOut--;
4309 }
4310
4311 pgmUnlock(pVM);
4312 return rc;
4313#else
4314 return VERR_NOT_IMPLEMENTED;
4315#endif /* PGM_WITH_LARGE_PAGES */
4316}
4317
4318
4319/**
4320 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
4321 *
4322 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
4323 * signal and clear the out of memory condition. When contracted, this API is
4324 * used to try clear the condition when the user wants to resume.
4325 *
4326 * @returns The following VBox status codes.
4327 * @retval VINF_SUCCESS on success. FFs cleared.
4328 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
4329 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
4330 *
4331 * @param pVM Pointer to the VM.
4332 *
4333 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
4334 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
4335 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
4336 * handler.
4337 */
4338VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
4339{
4340 pgmLock(pVM);
4341
4342 /*
4343 * Allocate more pages, noting down the index of the first new page.
4344 */
4345 uint32_t iClear = pVM->pgm.s.cHandyPages;
4346 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
4347 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
4348 int rcAlloc = VINF_SUCCESS;
4349 int rcSeed = VINF_SUCCESS;
4350 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4351 while (rc == VERR_GMM_SEED_ME)
4352 {
4353 void *pvChunk;
4354 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
4355 if (RT_SUCCESS(rc))
4356 {
4357 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
4358 if (RT_FAILURE(rc))
4359 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
4360 }
4361 if (RT_SUCCESS(rc))
4362 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4363 }
4364
4365 /* todo: we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
4366 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
4367 && pVM->pgm.s.cHandyPages > 0)
4368 {
4369 /* Still handy pages left, so don't panic. */
4370 rc = VINF_SUCCESS;
4371 }
4372
4373 if (RT_SUCCESS(rc))
4374 {
4375 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
4376 Assert(pVM->pgm.s.cHandyPages > 0);
4377 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4378 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
4379
4380#ifdef VBOX_STRICT
4381 uint32_t i;
4382 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
4383 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
4384 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
4385 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
4386 break;
4387 if (i != pVM->pgm.s.cHandyPages)
4388 {
4389 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
4390 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
4391 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
4392 RTAssertMsg2Add(("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
4393 pVM->pgm.s.aHandyPages[j].idPage,
4394 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
4395 pVM->pgm.s.aHandyPages[j].idSharedPage,
4396 j == i ? " <---" : ""));
4397 RTAssertPanic();
4398 }
4399#endif
4400 /*
4401 * Clear the pages.
4402 */
4403 while (iClear < pVM->pgm.s.cHandyPages)
4404 {
4405 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
4406 void *pv;
4407 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
4408 AssertLogRelMsgBreak(RT_SUCCESS(rc),
4409 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
4410 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
4411 ASMMemZeroPage(pv);
4412 iClear++;
4413 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
4414 }
4415 }
4416 else
4417 {
4418 uint64_t cAllocPages, cMaxPages, cBalloonPages;
4419
4420 /*
4421 * We should never get here unless there is a genuine shortage of
4422 * memory (or some internal error). Flag the error so the VM can be
4423 * suspended ASAP and the user informed. If we're totally out of
4424 * handy pages we will return failure.
4425 */
4426 /* Report the failure. */
4427 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
4428 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
4429 rc, rcAlloc, rcSeed,
4430 pVM->pgm.s.cHandyPages,
4431 pVM->pgm.s.cAllPages,
4432 pVM->pgm.s.cPrivatePages,
4433 pVM->pgm.s.cSharedPages,
4434 pVM->pgm.s.cZeroPages));
4435
4436 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
4437 {
4438 LogRel(("GMM: Statistics:\n"
4439 " Allocated pages: %RX64\n"
4440 " Maximum pages: %RX64\n"
4441 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
4442 }
4443
4444 if ( rc != VERR_NO_MEMORY
4445 && rc != VERR_NO_PHYS_MEMORY
4446 && rc != VERR_LOCK_FAILED)
4447 {
4448 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4449 {
4450 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
4451 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
4452 pVM->pgm.s.aHandyPages[i].idSharedPage));
4453 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
4454 if (idPage != NIL_GMM_PAGEID)
4455 {
4456 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4457 pRam;
4458 pRam = pRam->pNextR3)
4459 {
4460 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
4461 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4462 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
4463 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
4464 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
4465 }
4466 }
4467 }
4468 }
4469
4470 /* Set the FFs and adjust rc. */
4471 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4472 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
4473 if ( rc == VERR_NO_MEMORY
4474 || rc == VERR_NO_PHYS_MEMORY
4475 || rc == VERR_LOCK_FAILED)
4476 rc = VINF_EM_NO_MEMORY;
4477 }
4478
4479 pgmUnlock(pVM);
4480 return rc;
4481}
4482
4483
4484/**
4485 * Frees the specified RAM page and replaces it with the ZERO page.
4486 *
4487 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
4488 *
4489 * @param pVM Pointer to the VM.
4490 * @param pReq Pointer to the request.
4491 * @param pcPendingPages Where the number of pages waiting to be freed are
4492 * kept. This will normally be incremented.
4493 * @param pPage Pointer to the page structure.
4494 * @param GCPhys The guest physical address of the page, if applicable.
4495 *
4496 * @remarks The caller must own the PGM lock.
4497 */
4498int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
4499{
4500 /*
4501 * Assert sanity.
4502 */
4503 PGM_LOCK_ASSERT_OWNER(pVM);
4504 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
4505 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
4506 {
4507 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4508 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
4509 }
4510
4511 /** @todo What about ballooning of large pages??! */
4512 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
4513 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
4514
4515 if ( PGM_PAGE_IS_ZERO(pPage)
4516 || PGM_PAGE_IS_BALLOONED(pPage))
4517 return VINF_SUCCESS;
4518
4519 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
4520 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
4521 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
4522 || idPage > GMM_PAGEID_LAST
4523 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
4524 {
4525 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4526 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
4527 }
4528
4529 /* update page count stats. */
4530 if (PGM_PAGE_IS_SHARED(pPage))
4531 pVM->pgm.s.cSharedPages--;
4532 else
4533 pVM->pgm.s.cPrivatePages--;
4534 pVM->pgm.s.cZeroPages++;
4535
4536 /* Deal with write monitored pages. */
4537 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
4538 {
4539 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
4540 pVM->pgm.s.cWrittenToPages++;
4541 }
4542
4543 /*
4544 * pPage = ZERO page.
4545 */
4546 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
4547 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
4548 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
4549 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4550 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4551 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4552
4553 /* Flush physical page map TLB entry. */
4554 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
4555
4556 /*
4557 * Make sure it's not in the handy page array.
4558 */
4559 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4560 {
4561 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
4562 {
4563 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
4564 break;
4565 }
4566 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
4567 {
4568 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
4569 break;
4570 }
4571 }
4572
4573 /*
4574 * Push it onto the page array.
4575 */
4576 uint32_t iPage = *pcPendingPages;
4577 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
4578 *pcPendingPages += 1;
4579
4580 pReq->aPages[iPage].idPage = idPage;
4581
4582 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
4583 return VINF_SUCCESS;
4584
4585 /*
4586 * Flush the pages.
4587 */
4588 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
4589 if (RT_SUCCESS(rc))
4590 {
4591 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4592 *pcPendingPages = 0;
4593 }
4594 return rc;
4595}
4596
4597
4598/**
4599 * Converts a GC physical address to a HC ring-3 pointer, with some
4600 * additional checks.
4601 *
4602 * @returns VBox status code.
4603 * @retval VINF_SUCCESS on success.
4604 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4605 * access handler of some kind.
4606 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4607 * accesses or is odd in any way.
4608 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4609 *
4610 * @param pVM Pointer to the VM.
4611 * @param GCPhys The GC physical address to convert. Since this is only
4612 * used for filling the REM TLB, the A20 mask must be
4613 * applied before calling this API.
4614 * @param fWritable Whether write access is required.
4615 * @param ppv Where to store the pointer corresponding to GCPhys on
4616 * success.
4617 */
4618VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
4619{
4620 pgmLock(pVM);
4621 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
4622
4623 PPGMRAMRANGE pRam;
4624 PPGMPAGE pPage;
4625 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4626 if (RT_SUCCESS(rc))
4627 {
4628 if (PGM_PAGE_IS_BALLOONED(pPage))
4629 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4630 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
4631 rc = VINF_SUCCESS;
4632 else
4633 {
4634 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4635 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4636 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
4637 {
4638 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
4639 * in -norawr0 mode. */
4640 if (fWritable)
4641 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4642 }
4643 else
4644 {
4645 /* Temporarily disabled physical handler(s), since the recompiler
4646 doesn't get notified when it's reset we'll have to pretend it's
4647 operating normally. */
4648 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
4649 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4650 else
4651 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4652 }
4653 }
4654 if (RT_SUCCESS(rc))
4655 {
4656 int rc2;
4657
4658 /* Make sure what we return is writable. */
4659 if (fWritable)
4660 switch (PGM_PAGE_GET_STATE(pPage))
4661 {
4662 case PGM_PAGE_STATE_ALLOCATED:
4663 break;
4664 case PGM_PAGE_STATE_BALLOONED:
4665 AssertFailed();
4666 break;
4667 case PGM_PAGE_STATE_ZERO:
4668 case PGM_PAGE_STATE_SHARED:
4669 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
4670 break;
4671 case PGM_PAGE_STATE_WRITE_MONITORED:
4672 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4673 AssertLogRelRCReturn(rc2, rc2);
4674 break;
4675 }
4676
4677 /* Get a ring-3 mapping of the address. */
4678 PPGMPAGER3MAPTLBE pTlbe;
4679 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
4680 AssertLogRelRCReturn(rc2, rc2);
4681 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4682 /** @todo mapping/locking hell; this isn't horribly efficient since
4683 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
4684
4685 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4686 }
4687 else
4688 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4689
4690 /* else: handler catching all access, no pointer returned. */
4691 }
4692 else
4693 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4694
4695 pgmUnlock(pVM);
4696 return rc;
4697}
4698
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette