VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 60380

Last change on this file since 60380 was 58782, checked in by vboxsync, 9 years ago

PGM: we've always got pvOriginal now, no need to check here.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 166.9 KB
Line 
1/* $Id: PGMPhys.cpp 58782 2015-11-19 22:34:17Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iom.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/stam.h>
27#ifdef VBOX_WITH_REM
28# include <VBox/vmm/rem.h>
29#endif
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vm.h>
33#include <VBox/vmm/uvm.h>
34#include "PGMInline.h"
35#include <VBox/sup.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/alloc.h>
41#include <iprt/asm.h>
42#ifdef VBOX_STRICT
43# include <iprt/crc.h>
44#endif
45#include <iprt/thread.h>
46#include <iprt/string.h>
47#include <iprt/system.h>
48
49
50/*********************************************************************************************************************************
51* Defined Constants And Macros *
52*********************************************************************************************************************************/
53/** The number of pages to free in one batch. */
54#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
55
56
57/*
58 * PGMR3PhysReadU8-64
59 * PGMR3PhysWriteU8-64
60 */
61#define PGMPHYSFN_READNAME PGMR3PhysReadU8
62#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
63#define PGMPHYS_DATASIZE 1
64#define PGMPHYS_DATATYPE uint8_t
65#include "PGMPhysRWTmpl.h"
66
67#define PGMPHYSFN_READNAME PGMR3PhysReadU16
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
69#define PGMPHYS_DATASIZE 2
70#define PGMPHYS_DATATYPE uint16_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU32
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
75#define PGMPHYS_DATASIZE 4
76#define PGMPHYS_DATATYPE uint32_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU64
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
81#define PGMPHYS_DATASIZE 8
82#define PGMPHYS_DATATYPE uint64_t
83#include "PGMPhysRWTmpl.h"
84
85
86/**
87 * EMT worker for PGMR3PhysReadExternal.
88 */
89static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
90 PGMACCESSORIGIN enmOrigin)
91{
92 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
93 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
94 return VINF_SUCCESS;
95}
96
97
98/**
99 * Read from physical memory, external users.
100 *
101 * @returns VBox status code.
102 * @retval VINF_SUCCESS.
103 *
104 * @param pVM The cross context VM structure.
105 * @param GCPhys Physical address to read from.
106 * @param pvBuf Where to read into.
107 * @param cbRead How many bytes to read.
108 * @param enmOrigin Who is calling.
109 *
110 * @thread Any but EMTs.
111 */
112VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
113{
114 VM_ASSERT_OTHER_THREAD(pVM);
115
116 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
117 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
118
119 pgmLock(pVM);
120
121 /*
122 * Copy loop on ram ranges.
123 */
124 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
125 for (;;)
126 {
127 /* Inside range or not? */
128 if (pRam && GCPhys >= pRam->GCPhys)
129 {
130 /*
131 * Must work our way thru this page by page.
132 */
133 RTGCPHYS off = GCPhys - pRam->GCPhys;
134 while (off < pRam->cb)
135 {
136 unsigned iPage = off >> PAGE_SHIFT;
137 PPGMPAGE pPage = &pRam->aPages[iPage];
138
139 /*
140 * If the page has an ALL access handler, we'll have to
141 * delegate the job to EMT.
142 */
143 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
144 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
145 {
146 pgmUnlock(pVM);
147
148 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
149 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
150 }
151 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
152
153 /*
154 * Simple stuff, go ahead.
155 */
156 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
157 if (cb > cbRead)
158 cb = cbRead;
159 PGMPAGEMAPLOCK PgMpLck;
160 const void *pvSrc;
161 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
162 if (RT_SUCCESS(rc))
163 {
164 memcpy(pvBuf, pvSrc, cb);
165 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
166 }
167 else
168 {
169 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
170 pRam->GCPhys + off, pPage, rc));
171 memset(pvBuf, 0xff, cb);
172 }
173
174 /* next page */
175 if (cb >= cbRead)
176 {
177 pgmUnlock(pVM);
178 return VINF_SUCCESS;
179 }
180 cbRead -= cb;
181 off += cb;
182 GCPhys += cb;
183 pvBuf = (char *)pvBuf + cb;
184 } /* walk pages in ram range. */
185 }
186 else
187 {
188 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
189
190 /*
191 * Unassigned address space.
192 */
193 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
194 if (cb >= cbRead)
195 {
196 memset(pvBuf, 0xff, cbRead);
197 break;
198 }
199 memset(pvBuf, 0xff, cb);
200
201 cbRead -= cb;
202 pvBuf = (char *)pvBuf + cb;
203 GCPhys += cb;
204 }
205
206 /* Advance range if necessary. */
207 while (pRam && GCPhys > pRam->GCPhysLast)
208 pRam = pRam->CTX_SUFF(pNext);
209 } /* Ram range walk */
210
211 pgmUnlock(pVM);
212
213 return VINF_SUCCESS;
214}
215
216
217/**
218 * EMT worker for PGMR3PhysWriteExternal.
219 */
220static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
221 PGMACCESSORIGIN enmOrigin)
222{
223 /** @todo VERR_EM_NO_MEMORY */
224 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
225 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
226 return VINF_SUCCESS;
227}
228
229
230/**
231 * Write to physical memory, external users.
232 *
233 * @returns VBox status code.
234 * @retval VINF_SUCCESS.
235 * @retval VERR_EM_NO_MEMORY.
236 *
237 * @param pVM The cross context VM structure.
238 * @param GCPhys Physical address to write to.
239 * @param pvBuf What to write.
240 * @param cbWrite How many bytes to write.
241 * @param enmOrigin Who is calling.
242 *
243 * @thread Any but EMTs.
244 */
245VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
246{
247 VM_ASSERT_OTHER_THREAD(pVM);
248
249 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
250 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
251 GCPhys, cbWrite, enmOrigin));
252 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
253 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
254
255 pgmLock(pVM);
256
257 /*
258 * Copy loop on ram ranges, stop when we hit something difficult.
259 */
260 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
261 for (;;)
262 {
263 /* Inside range or not? */
264 if (pRam && GCPhys >= pRam->GCPhys)
265 {
266 /*
267 * Must work our way thru this page by page.
268 */
269 RTGCPTR off = GCPhys - pRam->GCPhys;
270 while (off < pRam->cb)
271 {
272 RTGCPTR iPage = off >> PAGE_SHIFT;
273 PPGMPAGE pPage = &pRam->aPages[iPage];
274
275 /*
276 * Is the page problematic, we have to do the work on the EMT.
277 *
278 * Allocating writable pages and access handlers are
279 * problematic, write monitored pages are simple and can be
280 * dealt with here.
281 */
282 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
283 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
284 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
285 {
286 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
287 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
288 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
289 else
290 {
291 pgmUnlock(pVM);
292
293 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
294 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
295 }
296 }
297 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
298
299 /*
300 * Simple stuff, go ahead.
301 */
302 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
303 if (cb > cbWrite)
304 cb = cbWrite;
305 PGMPAGEMAPLOCK PgMpLck;
306 void *pvDst;
307 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
308 if (RT_SUCCESS(rc))
309 {
310 memcpy(pvDst, pvBuf, cb);
311 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
312 }
313 else
314 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
315 pRam->GCPhys + off, pPage, rc));
316
317 /* next page */
318 if (cb >= cbWrite)
319 {
320 pgmUnlock(pVM);
321 return VINF_SUCCESS;
322 }
323
324 cbWrite -= cb;
325 off += cb;
326 GCPhys += cb;
327 pvBuf = (const char *)pvBuf + cb;
328 } /* walk pages in ram range */
329 }
330 else
331 {
332 /*
333 * Unassigned address space, skip it.
334 */
335 if (!pRam)
336 break;
337 size_t cb = pRam->GCPhys - GCPhys;
338 if (cb >= cbWrite)
339 break;
340 cbWrite -= cb;
341 pvBuf = (const char *)pvBuf + cb;
342 GCPhys += cb;
343 }
344
345 /* Advance range if necessary. */
346 while (pRam && GCPhys > pRam->GCPhysLast)
347 pRam = pRam->CTX_SUFF(pNext);
348 } /* Ram range walk */
349
350 pgmUnlock(pVM);
351 return VINF_SUCCESS;
352}
353
354
355/**
356 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
357 *
358 * @returns see PGMR3PhysGCPhys2CCPtrExternal
359 * @param pVM The cross context VM structure.
360 * @param pGCPhys Pointer to the guest physical address.
361 * @param ppv Where to store the mapping address.
362 * @param pLock Where to store the lock.
363 */
364static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
365{
366 /*
367 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
368 * an access handler after it succeeds.
369 */
370 int rc = pgmLock(pVM);
371 AssertRCReturn(rc, rc);
372
373 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
374 if (RT_SUCCESS(rc))
375 {
376 PPGMPAGEMAPTLBE pTlbe;
377 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
378 AssertFatalRC(rc2);
379 PPGMPAGE pPage = pTlbe->pPage;
380 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
381 {
382 PGMPhysReleasePageMappingLock(pVM, pLock);
383 rc = VERR_PGM_PHYS_PAGE_RESERVED;
384 }
385 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
386#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
387 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
388#endif
389 )
390 {
391 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
392 * not be informed about writes and keep bogus gst->shw mappings around.
393 */
394 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
395 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
396 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
397 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
398 }
399 }
400
401 pgmUnlock(pVM);
402 return rc;
403}
404
405
406/**
407 * Requests the mapping of a guest page into ring-3, external threads.
408 *
409 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
410 * release it.
411 *
412 * This API will assume your intention is to write to the page, and will
413 * therefore replace shared and zero pages. If you do not intend to modify the
414 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
415 *
416 * @returns VBox status code.
417 * @retval VINF_SUCCESS on success.
418 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
419 * backing or if the page has any active access handlers. The caller
420 * must fall back on using PGMR3PhysWriteExternal.
421 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
422 *
423 * @param pVM The cross context VM structure.
424 * @param GCPhys The guest physical address of the page that should be mapped.
425 * @param ppv Where to store the address corresponding to GCPhys.
426 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
427 *
428 * @remark Avoid calling this API from within critical sections (other than the
429 * PGM one) because of the deadlock risk when we have to delegating the
430 * task to an EMT.
431 * @thread Any.
432 */
433VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
434{
435 AssertPtr(ppv);
436 AssertPtr(pLock);
437
438 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
439
440 int rc = pgmLock(pVM);
441 AssertRCReturn(rc, rc);
442
443 /*
444 * Query the Physical TLB entry for the page (may fail).
445 */
446 PPGMPAGEMAPTLBE pTlbe;
447 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
448 if (RT_SUCCESS(rc))
449 {
450 PPGMPAGE pPage = pTlbe->pPage;
451 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
452 rc = VERR_PGM_PHYS_PAGE_RESERVED;
453 else
454 {
455 /*
456 * If the page is shared, the zero page, or being write monitored
457 * it must be converted to an page that's writable if possible.
458 * We can only deal with write monitored pages here, the rest have
459 * to be on an EMT.
460 */
461 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
462 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
463#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
464 || pgmPoolIsDirtyPage(pVM, GCPhys)
465#endif
466 )
467 {
468 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
469 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
470#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
471 && !pgmPoolIsDirtyPage(pVM, GCPhys)
472#endif
473 )
474 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
475 else
476 {
477 pgmUnlock(pVM);
478
479 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
480 pVM, &GCPhys, ppv, pLock);
481 }
482 }
483
484 /*
485 * Now, just perform the locking and calculate the return address.
486 */
487 PPGMPAGEMAP pMap = pTlbe->pMap;
488 if (pMap)
489 pMap->cRefs++;
490
491 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
492 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
493 {
494 if (cLocks == 0)
495 pVM->pgm.s.cWriteLockedPages++;
496 PGM_PAGE_INC_WRITE_LOCKS(pPage);
497 }
498 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
499 {
500 PGM_PAGE_INC_WRITE_LOCKS(pPage);
501 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
502 if (pMap)
503 pMap->cRefs++; /* Extra ref to prevent it from going away. */
504 }
505
506 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
507 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
508 pLock->pvMap = pMap;
509 }
510 }
511
512 pgmUnlock(pVM);
513 return rc;
514}
515
516
517/**
518 * Requests the mapping of a guest page into ring-3, external threads.
519 *
520 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
521 * release it.
522 *
523 * @returns VBox status code.
524 * @retval VINF_SUCCESS on success.
525 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
526 * backing or if the page as an active ALL access handler. The caller
527 * must fall back on using PGMPhysRead.
528 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
529 *
530 * @param pVM The cross context VM structure.
531 * @param GCPhys The guest physical address of the page that should be mapped.
532 * @param ppv Where to store the address corresponding to GCPhys.
533 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
534 *
535 * @remark Avoid calling this API from within critical sections (other than
536 * the PGM one) because of the deadlock risk.
537 * @thread Any.
538 */
539VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
540{
541 int rc = pgmLock(pVM);
542 AssertRCReturn(rc, rc);
543
544 /*
545 * Query the Physical TLB entry for the page (may fail).
546 */
547 PPGMPAGEMAPTLBE pTlbe;
548 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
549 if (RT_SUCCESS(rc))
550 {
551 PPGMPAGE pPage = pTlbe->pPage;
552#if 1
553 /* MMIO pages doesn't have any readable backing. */
554 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
555 rc = VERR_PGM_PHYS_PAGE_RESERVED;
556#else
557 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
558 rc = VERR_PGM_PHYS_PAGE_RESERVED;
559#endif
560 else
561 {
562 /*
563 * Now, just perform the locking and calculate the return address.
564 */
565 PPGMPAGEMAP pMap = pTlbe->pMap;
566 if (pMap)
567 pMap->cRefs++;
568
569 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
570 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
571 {
572 if (cLocks == 0)
573 pVM->pgm.s.cReadLockedPages++;
574 PGM_PAGE_INC_READ_LOCKS(pPage);
575 }
576 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
577 {
578 PGM_PAGE_INC_READ_LOCKS(pPage);
579 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
580 if (pMap)
581 pMap->cRefs++; /* Extra ref to prevent it from going away. */
582 }
583
584 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
585 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
586 pLock->pvMap = pMap;
587 }
588 }
589
590 pgmUnlock(pVM);
591 return rc;
592}
593
594
595#define MAKE_LEAF(a_pNode) \
596 do { \
597 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
598 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
599 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
600 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
601 (a_pNode)->pLeftRC = NIL_RTRCPTR; \
602 (a_pNode)->pRightRC = NIL_RTRCPTR; \
603 } while (0)
604
605#define INSERT_LEFT(a_pParent, a_pNode) \
606 do { \
607 (a_pParent)->pLeftR3 = (a_pNode); \
608 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
609 (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
610 } while (0)
611#define INSERT_RIGHT(a_pParent, a_pNode) \
612 do { \
613 (a_pParent)->pRightR3 = (a_pNode); \
614 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
615 (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
616 } while (0)
617
618
619/**
620 * Recursive tree builder.
621 *
622 * @param ppRam Pointer to the iterator variable.
623 * @param iDepth The current depth. Inserts a leaf node if 0.
624 */
625static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
626{
627 PPGMRAMRANGE pRam;
628 if (iDepth <= 0)
629 {
630 /*
631 * Leaf node.
632 */
633 pRam = *ppRam;
634 if (pRam)
635 {
636 *ppRam = pRam->pNextR3;
637 MAKE_LEAF(pRam);
638 }
639 }
640 else
641 {
642
643 /*
644 * Intermediate node.
645 */
646 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
647
648 pRam = *ppRam;
649 if (!pRam)
650 return pLeft;
651 *ppRam = pRam->pNextR3;
652 MAKE_LEAF(pRam);
653 INSERT_LEFT(pRam, pLeft);
654
655 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
656 if (pRight)
657 INSERT_RIGHT(pRam, pRight);
658 }
659 return pRam;
660}
661
662
663/**
664 * Rebuilds the RAM range search trees.
665 *
666 * @param pVM The cross context VM structure.
667 */
668static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
669{
670
671 /*
672 * Create the reasonably balanced tree in a sequential fashion.
673 * For simplicity (laziness) we use standard recursion here.
674 */
675 int iDepth = 0;
676 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
677 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
678 while (pRam)
679 {
680 PPGMRAMRANGE pLeft = pRoot;
681
682 pRoot = pRam;
683 pRam = pRam->pNextR3;
684 MAKE_LEAF(pRoot);
685 INSERT_LEFT(pRoot, pLeft);
686
687 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
688 if (pRight)
689 INSERT_RIGHT(pRoot, pRight);
690 /** @todo else: rotate the tree. */
691
692 iDepth++;
693 }
694
695 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
696 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
697 pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;
698
699#ifdef VBOX_STRICT
700 /*
701 * Verify that the above code works.
702 */
703 unsigned cRanges = 0;
704 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
705 cRanges++;
706 Assert(cRanges > 0);
707
708 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
709 if ((1U << cMaxDepth) < cRanges)
710 cMaxDepth++;
711
712 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
713 {
714 unsigned cDepth = 0;
715 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
716 for (;;)
717 {
718 if (pRam == pRam2)
719 break;
720 Assert(pRam2);
721 if (pRam->GCPhys < pRam2->GCPhys)
722 pRam2 = pRam2->pLeftR3;
723 else
724 pRam2 = pRam2->pRightR3;
725 }
726 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
727 }
728#endif /* VBOX_STRICT */
729}
730
731#undef MAKE_LEAF
732#undef INSERT_LEFT
733#undef INSERT_RIGHT
734
735/**
736 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
737 *
738 * Called when anything was relocated.
739 *
740 * @param pVM The cross context VM structure.
741 */
742void pgmR3PhysRelinkRamRanges(PVM pVM)
743{
744 PPGMRAMRANGE pCur;
745
746#ifdef VBOX_STRICT
747 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
748 {
749 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
750 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
751 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
752 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
753 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
754 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
755 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
756 Assert( pCur2 == pCur
757 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
758 }
759#endif
760
761 pCur = pVM->pgm.s.pRamRangesXR3;
762 if (pCur)
763 {
764 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
765 pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;
766
767 for (; pCur->pNextR3; pCur = pCur->pNextR3)
768 {
769 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
770 pCur->pNextRC = pCur->pNextR3->pSelfRC;
771 }
772
773 Assert(pCur->pNextR0 == NIL_RTR0PTR);
774 Assert(pCur->pNextRC == NIL_RTRCPTR);
775 }
776 else
777 {
778 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
779 Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
780 }
781 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
782
783 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
784}
785
786
787/**
788 * Links a new RAM range into the list.
789 *
790 * @param pVM The cross context VM structure.
791 * @param pNew Pointer to the new list entry.
792 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
793 */
794static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
795{
796 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
797 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
798 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
799
800 pgmLock(pVM);
801
802 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
803 pNew->pNextR3 = pRam;
804 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
805 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
806
807 if (pPrev)
808 {
809 pPrev->pNextR3 = pNew;
810 pPrev->pNextR0 = pNew->pSelfR0;
811 pPrev->pNextRC = pNew->pSelfRC;
812 }
813 else
814 {
815 pVM->pgm.s.pRamRangesXR3 = pNew;
816 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
817 pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
818 }
819 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
820
821 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
822 pgmUnlock(pVM);
823}
824
825
826/**
827 * Unlink an existing RAM range from the list.
828 *
829 * @param pVM The cross context VM structure.
830 * @param pRam Pointer to the new list entry.
831 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
832 */
833static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
834{
835 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
836 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
837 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
838
839 pgmLock(pVM);
840
841 PPGMRAMRANGE pNext = pRam->pNextR3;
842 if (pPrev)
843 {
844 pPrev->pNextR3 = pNext;
845 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
846 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
847 }
848 else
849 {
850 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
851 pVM->pgm.s.pRamRangesXR3 = pNext;
852 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
853 pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
854 }
855 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
856
857 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
858 pgmUnlock(pVM);
859}
860
861
862/**
863 * Unlink an existing RAM range from the list.
864 *
865 * @param pVM The cross context VM structure.
866 * @param pRam Pointer to the new list entry.
867 */
868static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
869{
870 pgmLock(pVM);
871
872 /* find prev. */
873 PPGMRAMRANGE pPrev = NULL;
874 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
875 while (pCur != pRam)
876 {
877 pPrev = pCur;
878 pCur = pCur->pNextR3;
879 }
880 AssertFatal(pCur);
881
882 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
883 pgmUnlock(pVM);
884}
885
886
887/**
888 * Frees a range of pages, replacing them with ZERO pages of the specified type.
889 *
890 * @returns VBox status code.
891 * @param pVM The cross context VM structure.
892 * @param pRam The RAM range in which the pages resides.
893 * @param GCPhys The address of the first page.
894 * @param GCPhysLast The address of the last page.
895 * @param uType The page type to replace then with.
896 */
897static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
898{
899 PGM_LOCK_ASSERT_OWNER(pVM);
900 uint32_t cPendingPages = 0;
901 PGMMFREEPAGESREQ pReq;
902 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
903 AssertLogRelRCReturn(rc, rc);
904
905 /* Iterate the pages. */
906 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
907 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
908 while (cPagesLeft-- > 0)
909 {
910 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
911 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
912
913 PGM_PAGE_SET_TYPE(pVM, pPageDst, uType);
914
915 GCPhys += PAGE_SIZE;
916 pPageDst++;
917 }
918
919 if (cPendingPages)
920 {
921 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
922 AssertLogRelRCReturn(rc, rc);
923 }
924 GMMR3FreePagesCleanup(pReq);
925
926 return rc;
927}
928
929#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
930
931/**
932 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
933 *
934 * This is only called on one of the EMTs while the other ones are waiting for
935 * it to complete this function.
936 *
937 * @returns VINF_SUCCESS (VBox strict status code).
938 * @param pVM The cross context VM structure.
939 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
940 * @param pvUser User parameter
941 */
942static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
943{
944 uintptr_t *paUser = (uintptr_t *)pvUser;
945 bool fInflate = !!paUser[0];
946 unsigned cPages = paUser[1];
947 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
948 uint32_t cPendingPages = 0;
949 PGMMFREEPAGESREQ pReq;
950 int rc;
951
952 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
953 pgmLock(pVM);
954
955 if (fInflate)
956 {
957 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
958 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
959
960 /* Replace pages with ZERO pages. */
961 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
962 if (RT_FAILURE(rc))
963 {
964 pgmUnlock(pVM);
965 AssertLogRelRC(rc);
966 return rc;
967 }
968
969 /* Iterate the pages. */
970 for (unsigned i = 0; i < cPages; i++)
971 {
972 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
973 if ( pPage == NULL
974 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
975 {
976 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
977 break;
978 }
979
980 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
981
982 /* Flush the shadow PT if this page was previously used as a guest page table. */
983 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
984
985 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
986 if (RT_FAILURE(rc))
987 {
988 pgmUnlock(pVM);
989 AssertLogRelRC(rc);
990 return rc;
991 }
992 Assert(PGM_PAGE_IS_ZERO(pPage));
993 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
994 }
995
996 if (cPendingPages)
997 {
998 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
999 if (RT_FAILURE(rc))
1000 {
1001 pgmUnlock(pVM);
1002 AssertLogRelRC(rc);
1003 return rc;
1004 }
1005 }
1006 GMMR3FreePagesCleanup(pReq);
1007 }
1008 else
1009 {
1010 /* Iterate the pages. */
1011 for (unsigned i = 0; i < cPages; i++)
1012 {
1013 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1014 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1015
1016 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1017
1018 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1019
1020 /* Change back to zero page. */
1021 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1022 }
1023
1024 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1025 }
1026
1027 /* Notify GMM about the balloon change. */
1028 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1029 if (RT_SUCCESS(rc))
1030 {
1031 if (!fInflate)
1032 {
1033 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1034 pVM->pgm.s.cBalloonedPages -= cPages;
1035 }
1036 else
1037 pVM->pgm.s.cBalloonedPages += cPages;
1038 }
1039
1040 pgmUnlock(pVM);
1041
1042 /* Flush the recompiler's TLB as well. */
1043 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1044 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1045
1046 AssertLogRelRC(rc);
1047 return rc;
1048}
1049
1050
1051/**
1052 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1053 *
1054 * @returns VBox status code.
1055 * @param pVM The cross context VM structure.
1056 * @param fInflate Inflate or deflate memory balloon
1057 * @param cPages Number of pages to free
1058 * @param paPhysPage Array of guest physical addresses
1059 */
1060static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1061{
1062 uintptr_t paUser[3];
1063
1064 paUser[0] = fInflate;
1065 paUser[1] = cPages;
1066 paUser[2] = (uintptr_t)paPhysPage;
1067 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1068 AssertRC(rc);
1069
1070 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1071 RTMemFree(paPhysPage);
1072}
1073
1074#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1075
1076/**
1077 * Inflate or deflate a memory balloon
1078 *
1079 * @returns VBox status code.
1080 * @param pVM The cross context VM structure.
1081 * @param fInflate Inflate or deflate memory balloon
1082 * @param cPages Number of pages to free
1083 * @param paPhysPage Array of guest physical addresses
1084 */
1085VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1086{
1087 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1088#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1089 int rc;
1090
1091 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1092 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1093
1094 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1095 * In the SMP case we post a request packet to postpone the job.
1096 */
1097 if (pVM->cCpus > 1)
1098 {
1099 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1100 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1101 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1102
1103 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1104
1105 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1106 AssertRC(rc);
1107 }
1108 else
1109 {
1110 uintptr_t paUser[3];
1111
1112 paUser[0] = fInflate;
1113 paUser[1] = cPages;
1114 paUser[2] = (uintptr_t)paPhysPage;
1115 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1116 AssertRC(rc);
1117 }
1118 return rc;
1119
1120#else
1121 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1122 return VERR_NOT_IMPLEMENTED;
1123#endif
1124}
1125
1126
1127/**
1128 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1129 * physical RAM.
1130 *
1131 * This is only called on one of the EMTs while the other ones are waiting for
1132 * it to complete this function.
1133 *
1134 * @returns VINF_SUCCESS (VBox strict status code).
1135 * @param pVM The cross context VM structure.
1136 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1137 * @param pvUser User parameter, unused.
1138 */
1139static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1140{
1141 int rc = VINF_SUCCESS;
1142 NOREF(pvUser); NOREF(pVCpu);
1143
1144 pgmLock(pVM);
1145#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1146 pgmPoolResetDirtyPages(pVM);
1147#endif
1148
1149 /** @todo pointless to write protect the physical page pointed to by RSP. */
1150
1151 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1152 pRam;
1153 pRam = pRam->CTX_SUFF(pNext))
1154 {
1155 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1156 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1157 {
1158 PPGMPAGE pPage = &pRam->aPages[iPage];
1159 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1160
1161 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1162 || enmPageType == PGMPAGETYPE_MMIO2)
1163 {
1164 /*
1165 * A RAM page.
1166 */
1167 switch (PGM_PAGE_GET_STATE(pPage))
1168 {
1169 case PGM_PAGE_STATE_ALLOCATED:
1170 /** @todo Optimize this: Don't always re-enable write
1171 * monitoring if the page is known to be very busy. */
1172 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1173 {
1174 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1175 /* Remember this dirty page for the next (memory) sync. */
1176 PGM_PAGE_SET_FT_DIRTY(pPage);
1177 }
1178
1179 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1180 break;
1181
1182 case PGM_PAGE_STATE_SHARED:
1183 AssertFailed();
1184 break;
1185
1186 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1187 default:
1188 break;
1189 }
1190 }
1191 }
1192 }
1193 pgmR3PoolWriteProtectPages(pVM);
1194 PGM_INVL_ALL_VCPU_TLBS(pVM);
1195 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1196 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1197
1198 pgmUnlock(pVM);
1199 return rc;
1200}
1201
1202/**
1203 * Protect all physical RAM to monitor writes
1204 *
1205 * @returns VBox status code.
1206 * @param pVM The cross context VM structure.
1207 */
1208VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1209{
1210 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1211
1212 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1213 AssertRC(rc);
1214 return rc;
1215}
1216
1217/**
1218 * Enumerate all dirty FT pages.
1219 *
1220 * @returns VBox status code.
1221 * @param pVM The cross context VM structure.
1222 * @param pfnEnum Enumerate callback handler.
1223 * @param pvUser Enumerate callback handler parameter.
1224 */
1225VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
1226{
1227 int rc = VINF_SUCCESS;
1228
1229 pgmLock(pVM);
1230 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1231 pRam;
1232 pRam = pRam->CTX_SUFF(pNext))
1233 {
1234 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1235 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1236 {
1237 PPGMPAGE pPage = &pRam->aPages[iPage];
1238 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1239
1240 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1241 || enmPageType == PGMPAGETYPE_MMIO2)
1242 {
1243 /*
1244 * A RAM page.
1245 */
1246 switch (PGM_PAGE_GET_STATE(pPage))
1247 {
1248 case PGM_PAGE_STATE_ALLOCATED:
1249 case PGM_PAGE_STATE_WRITE_MONITORED:
1250 if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */
1251 && PGM_PAGE_IS_FT_DIRTY(pPage))
1252 {
1253 unsigned cbPageRange = PAGE_SIZE;
1254 unsigned iPageClean = iPage + 1;
1255 RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE;
1256 uint8_t *pu8Page = NULL;
1257 PGMPAGEMAPLOCK Lock;
1258
1259 /* Find the next clean page, so we can merge adjacent dirty pages. */
1260 for (; iPageClean < cPages; iPageClean++)
1261 {
1262 PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
1263 if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
1264 || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
1265 || PGM_PAGE_IS_WRITTEN_TO(pPageNext)
1266 || !PGM_PAGE_IS_FT_DIRTY(pPageNext)
1267 /* Crossing a chunk boundary? */
1268 || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
1269 )
1270 break;
1271
1272 cbPageRange += PAGE_SIZE;
1273 }
1274
1275 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
1276 if (RT_SUCCESS(rc))
1277 {
1278 /** @todo this is risky; the range might be changed, but little choice as the sync
1279 * costs a lot of time. */
1280 pgmUnlock(pVM);
1281 pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
1282 pgmLock(pVM);
1283 PGMPhysReleasePageMappingLock(pVM, &Lock);
1284 }
1285
1286 for (iPage; iPage < iPageClean; iPage++)
1287 PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iPage]);
1288
1289 iPage = iPageClean - 1;
1290 }
1291 break;
1292 }
1293 }
1294 }
1295 }
1296 pgmUnlock(pVM);
1297 return rc;
1298}
1299
1300
1301/**
1302 * Gets the number of ram ranges.
1303 *
1304 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1305 * @param pVM The cross context VM structure.
1306 */
1307VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1308{
1309 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1310
1311 pgmLock(pVM);
1312 uint32_t cRamRanges = 0;
1313 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1314 cRamRanges++;
1315 pgmUnlock(pVM);
1316 return cRamRanges;
1317}
1318
1319
1320/**
1321 * Get information about a range.
1322 *
1323 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1324 * @param pVM The cross context VM structure.
1325 * @param iRange The ordinal of the range.
1326 * @param pGCPhysStart Where to return the start of the range. Optional.
1327 * @param pGCPhysLast Where to return the address of the last byte in the
1328 * range. Optional.
1329 * @param ppszDesc Where to return the range description. Optional.
1330 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1331 * Optional.
1332 */
1333VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1334 const char **ppszDesc, bool *pfIsMmio)
1335{
1336 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1337
1338 pgmLock(pVM);
1339 uint32_t iCurRange = 0;
1340 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1341 if (iCurRange == iRange)
1342 {
1343 if (pGCPhysStart)
1344 *pGCPhysStart = pCur->GCPhys;
1345 if (pGCPhysLast)
1346 *pGCPhysLast = pCur->GCPhysLast;
1347 if (ppszDesc)
1348 *ppszDesc = pCur->pszDesc;
1349 if (pfIsMmio)
1350 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1351
1352 pgmUnlock(pVM);
1353 return VINF_SUCCESS;
1354 }
1355 pgmUnlock(pVM);
1356 return VERR_OUT_OF_RANGE;
1357}
1358
1359
1360/**
1361 * Query the amount of free memory inside VMMR0
1362 *
1363 * @returns VBox status code.
1364 * @param pUVM The user mode VM handle.
1365 * @param pcbAllocMem Where to return the amount of memory allocated
1366 * by VMs.
1367 * @param pcbFreeMem Where to return the amount of memory that is
1368 * allocated from the host but not currently used
1369 * by any VMs.
1370 * @param pcbBallonedMem Where to return the sum of memory that is
1371 * currently ballooned by the VMs.
1372 * @param pcbSharedMem Where to return the amount of memory that is
1373 * currently shared.
1374 */
1375VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1376 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1377{
1378 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1379 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1380
1381 uint64_t cAllocPages = 0;
1382 uint64_t cFreePages = 0;
1383 uint64_t cBalloonPages = 0;
1384 uint64_t cSharedPages = 0;
1385 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1386 AssertRCReturn(rc, rc);
1387
1388 if (pcbAllocMem)
1389 *pcbAllocMem = cAllocPages * _4K;
1390
1391 if (pcbFreeMem)
1392 *pcbFreeMem = cFreePages * _4K;
1393
1394 if (pcbBallonedMem)
1395 *pcbBallonedMem = cBalloonPages * _4K;
1396
1397 if (pcbSharedMem)
1398 *pcbSharedMem = cSharedPages * _4K;
1399
1400 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1401 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1402 return VINF_SUCCESS;
1403}
1404
1405
1406/**
1407 * Query memory stats for the VM.
1408 *
1409 * @returns VBox status code.
1410 * @param pUVM The user mode VM handle.
1411 * @param pcbTotalMem Where to return total amount memory the VM may
1412 * possibly use.
1413 * @param pcbPrivateMem Where to return the amount of private memory
1414 * currently allocated.
1415 * @param pcbSharedMem Where to return the amount of actually shared
1416 * memory currently used by the VM.
1417 * @param pcbZeroMem Where to return the amount of memory backed by
1418 * zero pages.
1419 *
1420 * @remarks The total mem is normally larger than the sum of the three
1421 * components. There are two reasons for this, first the amount of
1422 * shared memory is what we're sure is shared instead of what could
1423 * possibly be shared with someone. Secondly, because the total may
1424 * include some pure MMIO pages that doesn't go into any of the three
1425 * sub-counts.
1426 *
1427 * @todo Why do we return reused shared pages instead of anything that could
1428 * potentially be shared? Doesn't this mean the first VM gets a much
1429 * lower number of shared pages?
1430 */
1431VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1432 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1433{
1434 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1435 PVM pVM = pUVM->pVM;
1436 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1437
1438 if (pcbTotalMem)
1439 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1440
1441 if (pcbPrivateMem)
1442 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1443
1444 if (pcbSharedMem)
1445 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1446
1447 if (pcbZeroMem)
1448 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1449
1450 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1451 return VINF_SUCCESS;
1452}
1453
1454
1455/**
1456 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1457 *
1458 * @param pVM The cross context VM structure.
1459 * @param pNew The new RAM range.
1460 * @param GCPhys The address of the RAM range.
1461 * @param GCPhysLast The last address of the RAM range.
1462 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1463 * if in HMA.
1464 * @param R0PtrNew Ditto for R0.
1465 * @param pszDesc The description.
1466 * @param pPrev The previous RAM range (for linking).
1467 */
1468static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1469 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1470{
1471 /*
1472 * Initialize the range.
1473 */
1474 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1475 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1476 pNew->GCPhys = GCPhys;
1477 pNew->GCPhysLast = GCPhysLast;
1478 pNew->cb = GCPhysLast - GCPhys + 1;
1479 pNew->pszDesc = pszDesc;
1480 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1481 pNew->pvR3 = NULL;
1482 pNew->paLSPages = NULL;
1483
1484 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1485 RTGCPHYS iPage = cPages;
1486 while (iPage-- > 0)
1487 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1488
1489 /* Update the page count stats. */
1490 pVM->pgm.s.cZeroPages += cPages;
1491 pVM->pgm.s.cAllPages += cPages;
1492
1493 /*
1494 * Link it.
1495 */
1496 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1497}
1498
1499
1500/**
1501 * Relocate a floating RAM range.
1502 *
1503 * @copydoc FNPGMRELOCATE
1504 */
1505static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
1506 PGMRELOCATECALL enmMode, void *pvUser)
1507{
1508 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1509 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1510 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1511
1512 switch (enmMode)
1513 {
1514 case PGMRELOCATECALL_SUGGEST:
1515 return true;
1516
1517 case PGMRELOCATECALL_RELOCATE:
1518 {
1519 /*
1520 * Update myself, then relink all the ranges and flush the RC TLB.
1521 */
1522 pgmLock(pVM);
1523
1524 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1525
1526 pgmR3PhysRelinkRamRanges(pVM);
1527 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1528 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1529
1530 pgmUnlock(pVM);
1531 return true;
1532 }
1533
1534 default:
1535 AssertFailedReturn(false);
1536 }
1537}
1538
1539
1540/**
1541 * PGMR3PhysRegisterRam worker that registers a high chunk.
1542 *
1543 * @returns VBox status code.
1544 * @param pVM The cross context VM structure.
1545 * @param GCPhys The address of the RAM.
1546 * @param cRamPages The number of RAM pages to register.
1547 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1548 * @param iChunk The chunk number.
1549 * @param pszDesc The RAM range description.
1550 * @param ppPrev Previous RAM range pointer. In/Out.
1551 */
1552static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1553 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1554 PPGMRAMRANGE *ppPrev)
1555{
1556 const char *pszDescChunk = iChunk == 0
1557 ? pszDesc
1558 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1559 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1560
1561 /*
1562 * Allocate memory for the new chunk.
1563 */
1564 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1565 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1566 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1567 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1568 void *pvChunk = NULL;
1569 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1570#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1571 &R0PtrChunk,
1572#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1573 HMIsEnabled(pVM) ? &R0PtrChunk : NULL,
1574#else
1575 NULL,
1576#endif
1577 paChunkPages);
1578 if (RT_SUCCESS(rc))
1579 {
1580#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1581 Assert(R0PtrChunk != NIL_RTR0PTR);
1582#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1583 if (!HMIsEnabled(pVM))
1584 R0PtrChunk = NIL_RTR0PTR;
1585#else
1586 R0PtrChunk = (uintptr_t)pvChunk;
1587#endif
1588 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1589
1590 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1591
1592 /*
1593 * Create a mapping and map the pages into it.
1594 * We push these in below the HMA.
1595 */
1596 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1597 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1598 if (RT_SUCCESS(rc))
1599 {
1600 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1601
1602 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1603 RTGCPTR GCPtrPage = GCPtrChunk;
1604 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1605 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1606 if (RT_SUCCESS(rc))
1607 {
1608 /*
1609 * Ok, init and link the range.
1610 */
1611 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1612 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1613 *ppPrev = pNew;
1614 }
1615 }
1616
1617 if (RT_FAILURE(rc))
1618 SUPR3PageFreeEx(pvChunk, cChunkPages);
1619 }
1620
1621 RTMemTmpFree(paChunkPages);
1622 return rc;
1623}
1624
1625
1626/**
1627 * Sets up a range RAM.
1628 *
1629 * This will check for conflicting registrations, make a resource
1630 * reservation for the memory (with GMM), and setup the per-page
1631 * tracking structures (PGMPAGE).
1632 *
1633 * @returns VBox status code.
1634 * @param pVM The cross context VM structure.
1635 * @param GCPhys The physical address of the RAM.
1636 * @param cb The size of the RAM.
1637 * @param pszDesc The description - not copied, so, don't free or change it.
1638 */
1639VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1640{
1641 /*
1642 * Validate input.
1643 */
1644 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1645 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1646 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1647 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1648 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1649 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1650 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1651 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1652
1653 pgmLock(pVM);
1654
1655 /*
1656 * Find range location and check for conflicts.
1657 * (We don't lock here because the locking by EMT is only required on update.)
1658 */
1659 PPGMRAMRANGE pPrev = NULL;
1660 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1661 while (pRam && GCPhysLast >= pRam->GCPhys)
1662 {
1663 if ( GCPhysLast >= pRam->GCPhys
1664 && GCPhys <= pRam->GCPhysLast)
1665 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1666 GCPhys, GCPhysLast, pszDesc,
1667 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1668 VERR_PGM_RAM_CONFLICT);
1669
1670 /* next */
1671 pPrev = pRam;
1672 pRam = pRam->pNextR3;
1673 }
1674
1675 /*
1676 * Register it with GMM (the API bitches).
1677 */
1678 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1679 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1680 if (RT_FAILURE(rc))
1681 {
1682 pgmUnlock(pVM);
1683 return rc;
1684 }
1685
1686 if ( GCPhys >= _4G
1687 && cPages > 256)
1688 {
1689 /*
1690 * The PGMRAMRANGE structures for the high memory can get very big.
1691 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1692 * allocation size limit there and also to avoid being unable to find
1693 * guest mapping space for them, we split this memory up into 4MB in
1694 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1695 * mode.
1696 *
1697 * The first and last page of each mapping are guard pages and marked
1698 * not-present. So, we've got 4186112 and 16769024 bytes available for
1699 * the PGMRAMRANGE structure.
1700 *
1701 * Note! The sizes used here will influence the saved state.
1702 */
1703 uint32_t cbChunk;
1704 uint32_t cPagesPerChunk;
1705 if (HMIsEnabled(pVM))
1706 {
1707 cbChunk = 16U*_1M;
1708 cPagesPerChunk = 1048048; /* max ~1048059 */
1709 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1710 }
1711 else
1712 {
1713 cbChunk = 4U*_1M;
1714 cPagesPerChunk = 261616; /* max ~261627 */
1715 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1716 }
1717 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1718
1719 RTGCPHYS cPagesLeft = cPages;
1720 RTGCPHYS GCPhysChunk = GCPhys;
1721 uint32_t iChunk = 0;
1722 while (cPagesLeft > 0)
1723 {
1724 uint32_t cPagesInChunk = cPagesLeft;
1725 if (cPagesInChunk > cPagesPerChunk)
1726 cPagesInChunk = cPagesPerChunk;
1727
1728 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1729 AssertRCReturn(rc, rc);
1730
1731 /* advance */
1732 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1733 cPagesLeft -= cPagesInChunk;
1734 iChunk++;
1735 }
1736 }
1737 else
1738 {
1739 /*
1740 * Allocate, initialize and link the new RAM range.
1741 */
1742 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1743 PPGMRAMRANGE pNew;
1744 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1745 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1746
1747 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1748 }
1749 pgmPhysInvalidatePageMapTLB(pVM);
1750 pgmUnlock(pVM);
1751
1752#ifdef VBOX_WITH_REM
1753 /*
1754 * Notify REM.
1755 */
1756 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1757#endif
1758
1759 return VINF_SUCCESS;
1760}
1761
1762
1763/**
1764 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1765 *
1766 * We do this late in the init process so that all the ROM and MMIO ranges have
1767 * been registered already and we don't go wasting memory on them.
1768 *
1769 * @returns VBox status code.
1770 *
1771 * @param pVM The cross context VM structure.
1772 */
1773int pgmR3PhysRamPreAllocate(PVM pVM)
1774{
1775 Assert(pVM->pgm.s.fRamPreAlloc);
1776 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1777
1778 /*
1779 * Walk the RAM ranges and allocate all RAM pages, halt at
1780 * the first allocation error.
1781 */
1782 uint64_t cPages = 0;
1783 uint64_t NanoTS = RTTimeNanoTS();
1784 pgmLock(pVM);
1785 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1786 {
1787 PPGMPAGE pPage = &pRam->aPages[0];
1788 RTGCPHYS GCPhys = pRam->GCPhys;
1789 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1790 while (cLeft-- > 0)
1791 {
1792 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1793 {
1794 switch (PGM_PAGE_GET_STATE(pPage))
1795 {
1796 case PGM_PAGE_STATE_ZERO:
1797 {
1798 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1799 if (RT_FAILURE(rc))
1800 {
1801 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1802 pgmUnlock(pVM);
1803 return rc;
1804 }
1805 cPages++;
1806 break;
1807 }
1808
1809 case PGM_PAGE_STATE_BALLOONED:
1810 case PGM_PAGE_STATE_ALLOCATED:
1811 case PGM_PAGE_STATE_WRITE_MONITORED:
1812 case PGM_PAGE_STATE_SHARED:
1813 /* nothing to do here. */
1814 break;
1815 }
1816 }
1817
1818 /* next */
1819 pPage++;
1820 GCPhys += PAGE_SIZE;
1821 }
1822 }
1823 pgmUnlock(pVM);
1824 NanoTS = RTTimeNanoTS() - NanoTS;
1825
1826 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1827 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1828 return VINF_SUCCESS;
1829}
1830
1831
1832/**
1833 * Checks shared page checksums.
1834 *
1835 * @param pVM The cross context VM structure.
1836 */
1837void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1838{
1839#ifdef VBOX_STRICT
1840 pgmLock(pVM);
1841
1842 if (pVM->pgm.s.cSharedPages > 0)
1843 {
1844 /*
1845 * Walk the ram ranges.
1846 */
1847 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1848 {
1849 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1850 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1851
1852 while (iPage-- > 0)
1853 {
1854 PPGMPAGE pPage = &pRam->aPages[iPage];
1855 if (PGM_PAGE_IS_SHARED(pPage))
1856 {
1857 uint32_t u32Checksum = pPage->s.u2Unused0 | ((uint32_t)pPage->s.u2Unused1 << 8);
1858 if (!u32Checksum)
1859 {
1860 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1861 void const *pvPage;
1862 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1863 if (RT_SUCCESS(rc))
1864 {
1865 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1866# if 0
1867 AssertMsg((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1868# else
1869 if ((u32Checksum2 & UINT32_C(0x00000303)) == u32Checksum)
1870 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1871 else
1872 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1873# endif
1874 }
1875 else
1876 AssertRC(rc);
1877 }
1878 }
1879
1880 } /* for each page */
1881
1882 } /* for each ram range */
1883 }
1884
1885 pgmUnlock(pVM);
1886#endif /* VBOX_STRICT */
1887 NOREF(pVM);
1888}
1889
1890
1891/**
1892 * Resets the physical memory state.
1893 *
1894 * ASSUMES that the caller owns the PGM lock.
1895 *
1896 * @returns VBox status code.
1897 * @param pVM The cross context VM structure.
1898 */
1899int pgmR3PhysRamReset(PVM pVM)
1900{
1901 PGM_LOCK_ASSERT_OWNER(pVM);
1902
1903 /* Reset the memory balloon. */
1904 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1905 AssertRC(rc);
1906
1907#ifdef VBOX_WITH_PAGE_SHARING
1908 /* Clear all registered shared modules. */
1909 pgmR3PhysAssertSharedPageChecksums(pVM);
1910 rc = GMMR3ResetSharedModules(pVM);
1911 AssertRC(rc);
1912#endif
1913 /* Reset counters. */
1914 pVM->pgm.s.cReusedSharedPages = 0;
1915 pVM->pgm.s.cBalloonedPages = 0;
1916
1917 return VINF_SUCCESS;
1918}
1919
1920
1921/**
1922 * Resets (zeros) the RAM after all devices and components have been reset.
1923 *
1924 * ASSUMES that the caller owns the PGM lock.
1925 *
1926 * @returns VBox status code.
1927 * @param pVM The cross context VM structure.
1928 */
1929int pgmR3PhysRamZeroAll(PVM pVM)
1930{
1931 PGM_LOCK_ASSERT_OWNER(pVM);
1932
1933 /*
1934 * We batch up pages that should be freed instead of calling GMM for
1935 * each and every one of them.
1936 */
1937 uint32_t cPendingPages = 0;
1938 PGMMFREEPAGESREQ pReq;
1939 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1940 AssertLogRelRCReturn(rc, rc);
1941
1942 /*
1943 * Walk the ram ranges.
1944 */
1945 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1946 {
1947 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1948 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1949
1950#ifndef NO_RAM_RESET
1951 if (!pVM->pgm.s.fRamPreAlloc)
1952#else
1953 if (0)
1954#endif
1955 {
1956 /* Replace all RAM pages by ZERO pages. */
1957 while (iPage-- > 0)
1958 {
1959 PPGMPAGE pPage = &pRam->aPages[iPage];
1960 switch (PGM_PAGE_GET_TYPE(pPage))
1961 {
1962 case PGMPAGETYPE_RAM:
1963 /* Do not replace pages part of a 2 MB continuous range
1964 with zero pages, but zero them instead. */
1965 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
1966 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
1967 {
1968 void *pvPage;
1969 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1970 AssertLogRelRCReturn(rc, rc);
1971 ASMMemZeroPage(pvPage);
1972 }
1973 else if (PGM_PAGE_IS_BALLOONED(pPage))
1974 {
1975 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1976 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1977 }
1978 else if (!PGM_PAGE_IS_ZERO(pPage))
1979 {
1980 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1981 AssertLogRelRCReturn(rc, rc);
1982 }
1983 break;
1984
1985 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1986 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
1987 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1988 true /*fDoAccounting*/);
1989 break;
1990
1991 case PGMPAGETYPE_MMIO2:
1992 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1993 case PGMPAGETYPE_ROM:
1994 case PGMPAGETYPE_MMIO:
1995 break;
1996 default:
1997 AssertFailed();
1998 }
1999 } /* for each page */
2000 }
2001 else
2002 {
2003 /* Zero the memory. */
2004 while (iPage-- > 0)
2005 {
2006 PPGMPAGE pPage = &pRam->aPages[iPage];
2007 switch (PGM_PAGE_GET_TYPE(pPage))
2008 {
2009 case PGMPAGETYPE_RAM:
2010 switch (PGM_PAGE_GET_STATE(pPage))
2011 {
2012 case PGM_PAGE_STATE_ZERO:
2013 break;
2014
2015 case PGM_PAGE_STATE_BALLOONED:
2016 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2017 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2018 break;
2019
2020 case PGM_PAGE_STATE_SHARED:
2021 case PGM_PAGE_STATE_WRITE_MONITORED:
2022 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2023 AssertLogRelRCReturn(rc, rc);
2024 /* no break */
2025
2026 case PGM_PAGE_STATE_ALLOCATED:
2027 {
2028 void *pvPage;
2029 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2030 AssertLogRelRCReturn(rc, rc);
2031#ifndef NO_RAM_RESET
2032 ASMMemZeroPage(pvPage);
2033#endif
2034 break;
2035 }
2036 }
2037 break;
2038
2039 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2040 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2041 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2042 true /*fDoAccounting*/);
2043 break;
2044
2045 case PGMPAGETYPE_MMIO2:
2046 case PGMPAGETYPE_ROM_SHADOW:
2047 case PGMPAGETYPE_ROM:
2048 case PGMPAGETYPE_MMIO:
2049 break;
2050 default:
2051 AssertFailed();
2052
2053 }
2054 } /* for each page */
2055 }
2056
2057 }
2058
2059 /*
2060 * Finish off any pages pending freeing.
2061 */
2062 if (cPendingPages)
2063 {
2064 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2065 AssertLogRelRCReturn(rc, rc);
2066 }
2067 GMMR3FreePagesCleanup(pReq);
2068 return VINF_SUCCESS;
2069}
2070
2071
2072/**
2073 * Frees all RAM during VM termination
2074 *
2075 * ASSUMES that the caller owns the PGM lock.
2076 *
2077 * @returns VBox status code.
2078 * @param pVM The cross context VM structure.
2079 */
2080int pgmR3PhysRamTerm(PVM pVM)
2081{
2082 PGM_LOCK_ASSERT_OWNER(pVM);
2083
2084 /* Reset the memory balloon. */
2085 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2086 AssertRC(rc);
2087
2088#ifdef VBOX_WITH_PAGE_SHARING
2089 /*
2090 * Clear all registered shared modules.
2091 */
2092 pgmR3PhysAssertSharedPageChecksums(pVM);
2093 rc = GMMR3ResetSharedModules(pVM);
2094 AssertRC(rc);
2095
2096 /*
2097 * Flush the handy pages updates to make sure no shared pages are hiding
2098 * in there. (No unlikely if the VM shuts down, apparently.)
2099 */
2100 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2101#endif
2102
2103 /*
2104 * We batch up pages that should be freed instead of calling GMM for
2105 * each and every one of them.
2106 */
2107 uint32_t cPendingPages = 0;
2108 PGMMFREEPAGESREQ pReq;
2109 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2110 AssertLogRelRCReturn(rc, rc);
2111
2112 /*
2113 * Walk the ram ranges.
2114 */
2115 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2116 {
2117 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2118 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2119
2120 while (iPage-- > 0)
2121 {
2122 PPGMPAGE pPage = &pRam->aPages[iPage];
2123 switch (PGM_PAGE_GET_TYPE(pPage))
2124 {
2125 case PGMPAGETYPE_RAM:
2126 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2127 /** @todo change this to explicitly free private pages here. */
2128 if (PGM_PAGE_IS_SHARED(pPage))
2129 {
2130 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2131 AssertLogRelRCReturn(rc, rc);
2132 }
2133 break;
2134
2135 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2136 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2137 case PGMPAGETYPE_MMIO2:
2138 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2139 case PGMPAGETYPE_ROM:
2140 case PGMPAGETYPE_MMIO:
2141 break;
2142 default:
2143 AssertFailed();
2144 }
2145 } /* for each page */
2146 }
2147
2148 /*
2149 * Finish off any pages pending freeing.
2150 */
2151 if (cPendingPages)
2152 {
2153 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2154 AssertLogRelRCReturn(rc, rc);
2155 }
2156 GMMR3FreePagesCleanup(pReq);
2157 return VINF_SUCCESS;
2158}
2159
2160
2161/**
2162 * This is the interface IOM is using to register an MMIO region.
2163 *
2164 * It will check for conflicts and ensure that a RAM range structure
2165 * is present before calling the PGMR3HandlerPhysicalRegister API to
2166 * register the callbacks.
2167 *
2168 * @returns VBox status code.
2169 *
2170 * @param pVM The cross context VM structure.
2171 * @param GCPhys The start of the MMIO region.
2172 * @param cb The size of the MMIO region.
2173 * @param hType The physical access handler type registration.
2174 * @param pvUserR3 The user argument for R3.
2175 * @param pvUserR0 The user argument for R0.
2176 * @param pvUserRC The user argument for RC.
2177 * @param pszDesc The description of the MMIO region.
2178 */
2179VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2180 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2181{
2182 /*
2183 * Assert on some assumption.
2184 */
2185 VM_ASSERT_EMT(pVM);
2186 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2187 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2188 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2189 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2190 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2191
2192 int rc = pgmLock(pVM);
2193 AssertRCReturn(rc, rc);
2194
2195 /*
2196 * Make sure there's a RAM range structure for the region.
2197 */
2198 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2199 bool fRamExists = false;
2200 PPGMRAMRANGE pRamPrev = NULL;
2201 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2202 while (pRam && GCPhysLast >= pRam->GCPhys)
2203 {
2204 if ( GCPhysLast >= pRam->GCPhys
2205 && GCPhys <= pRam->GCPhysLast)
2206 {
2207 /* Simplification: all within the same range. */
2208 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2209 && GCPhysLast <= pRam->GCPhysLast,
2210 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2211 GCPhys, GCPhysLast, pszDesc,
2212 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2213 pgmUnlock(pVM),
2214 VERR_PGM_RAM_CONFLICT);
2215
2216 /* Check that it's all RAM or MMIO pages. */
2217 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2218 uint32_t cLeft = cb >> PAGE_SHIFT;
2219 while (cLeft-- > 0)
2220 {
2221 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2222 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2223 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2224 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2225 pgmUnlock(pVM),
2226 VERR_PGM_RAM_CONFLICT);
2227 pPage++;
2228 }
2229
2230 /* Looks good. */
2231 fRamExists = true;
2232 break;
2233 }
2234
2235 /* next */
2236 pRamPrev = pRam;
2237 pRam = pRam->pNextR3;
2238 }
2239 PPGMRAMRANGE pNew;
2240 if (fRamExists)
2241 {
2242 pNew = NULL;
2243
2244 /*
2245 * Make all the pages in the range MMIO/ZERO pages, freeing any
2246 * RAM pages currently mapped here. This might not be 100% correct
2247 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2248 */
2249 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2250 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2251
2252 /* Force a PGM pool flush as guest ram references have been changed. */
2253 /** @todo not entirely SMP safe; assuming for now the guest takes
2254 * care of this internally (not touch mapped mmio while changing the
2255 * mapping). */
2256 PVMCPU pVCpu = VMMGetCpu(pVM);
2257 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2258 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2259 }
2260 else
2261 {
2262
2263 /*
2264 * No RAM range, insert an ad hoc one.
2265 *
2266 * Note that we don't have to tell REM about this range because
2267 * PGMHandlerPhysicalRegisterEx will do that for us.
2268 */
2269 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2270
2271 const uint32_t cPages = cb >> PAGE_SHIFT;
2272 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
2273 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2274 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2275
2276 /* Initialize the range. */
2277 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2278 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
2279 pNew->GCPhys = GCPhys;
2280 pNew->GCPhysLast = GCPhysLast;
2281 pNew->cb = cb;
2282 pNew->pszDesc = pszDesc;
2283 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2284 pNew->pvR3 = NULL;
2285 pNew->paLSPages = NULL;
2286
2287 uint32_t iPage = cPages;
2288 while (iPage-- > 0)
2289 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2290 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2291
2292 /* update the page count stats. */
2293 pVM->pgm.s.cPureMmioPages += cPages;
2294 pVM->pgm.s.cAllPages += cPages;
2295
2296 /* link it */
2297 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2298 }
2299
2300 /*
2301 * Register the access handler.
2302 */
2303 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2304 if ( RT_FAILURE(rc)
2305 && !fRamExists)
2306 {
2307 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2308 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2309
2310 /* remove the ad hoc range. */
2311 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2312 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2313 MMHyperFree(pVM, pRam);
2314 }
2315 pgmPhysInvalidatePageMapTLB(pVM);
2316
2317 pgmUnlock(pVM);
2318 return rc;
2319}
2320
2321
2322/**
2323 * This is the interface IOM is using to register an MMIO region.
2324 *
2325 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2326 * any ad hoc PGMRAMRANGE left behind.
2327 *
2328 * @returns VBox status code.
2329 * @param pVM The cross context VM structure.
2330 * @param GCPhys The start of the MMIO region.
2331 * @param cb The size of the MMIO region.
2332 */
2333VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2334{
2335 VM_ASSERT_EMT(pVM);
2336
2337 int rc = pgmLock(pVM);
2338 AssertRCReturn(rc, rc);
2339
2340 /*
2341 * First deregister the handler, then check if we should remove the ram range.
2342 */
2343 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2344 if (RT_SUCCESS(rc))
2345 {
2346 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2347 PPGMRAMRANGE pRamPrev = NULL;
2348 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2349 while (pRam && GCPhysLast >= pRam->GCPhys)
2350 {
2351 /** @todo We're being a bit too careful here. rewrite. */
2352 if ( GCPhysLast == pRam->GCPhysLast
2353 && GCPhys == pRam->GCPhys)
2354 {
2355 Assert(pRam->cb == cb);
2356
2357 /*
2358 * See if all the pages are dead MMIO pages.
2359 */
2360 uint32_t const cPages = cb >> PAGE_SHIFT;
2361 bool fAllMMIO = true;
2362 uint32_t iPage = 0;
2363 uint32_t cLeft = cPages;
2364 while (cLeft-- > 0)
2365 {
2366 PPGMPAGE pPage = &pRam->aPages[iPage];
2367 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2368 /*|| not-out-of-action later */)
2369 {
2370 fAllMMIO = false;
2371 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2372 break;
2373 }
2374 Assert( PGM_PAGE_IS_ZERO(pPage)
2375 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2376 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2377 pPage++;
2378 }
2379 if (fAllMMIO)
2380 {
2381 /*
2382 * Ad-hoc range, unlink and free it.
2383 */
2384 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2385 GCPhys, GCPhysLast, pRam->pszDesc));
2386
2387 pVM->pgm.s.cAllPages -= cPages;
2388 pVM->pgm.s.cPureMmioPages -= cPages;
2389
2390 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2391 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2392 MMHyperFree(pVM, pRam);
2393 break;
2394 }
2395 }
2396
2397 /*
2398 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2399 */
2400 if ( GCPhysLast >= pRam->GCPhys
2401 && GCPhys <= pRam->GCPhysLast)
2402 {
2403 Assert(GCPhys >= pRam->GCPhys);
2404 Assert(GCPhysLast <= pRam->GCPhysLast);
2405
2406 /*
2407 * Turn the pages back into RAM pages.
2408 */
2409 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2410 uint32_t cLeft = cb >> PAGE_SHIFT;
2411 while (cLeft--)
2412 {
2413 PPGMPAGE pPage = &pRam->aPages[iPage];
2414 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2415 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2416 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2417 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2418 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2419 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2420 }
2421 break;
2422 }
2423
2424 /* next */
2425 pRamPrev = pRam;
2426 pRam = pRam->pNextR3;
2427 }
2428 }
2429
2430 /* Force a PGM pool flush as guest ram references have been changed. */
2431 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2432 * this internally (not touch mapped mmio while changing the mapping). */
2433 PVMCPU pVCpu = VMMGetCpu(pVM);
2434 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2435 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2436
2437 pgmPhysInvalidatePageMapTLB(pVM);
2438 pgmPhysInvalidRamRangeTlbs(pVM);
2439 pgmUnlock(pVM);
2440 return rc;
2441}
2442
2443
2444/**
2445 * Locate a MMIO2 range.
2446 *
2447 * @returns Pointer to the MMIO2 range.
2448 * @param pVM The cross context VM structure.
2449 * @param pDevIns The device instance owning the region.
2450 * @param iRegion The region.
2451 */
2452DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2453{
2454 /*
2455 * Search the list.
2456 */
2457 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2458 if ( pCur->pDevInsR3 == pDevIns
2459 && pCur->iRegion == iRegion)
2460 return pCur;
2461 return NULL;
2462}
2463
2464
2465/**
2466 * Allocate and register an MMIO2 region.
2467 *
2468 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2469 * associated with a device. It is also non-shared memory with a permanent
2470 * ring-3 mapping and page backing (presently).
2471 *
2472 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2473 * the VM, in which case we'll drop the base memory pages. Presently we will
2474 * make no attempt to preserve anything that happens to be present in the base
2475 * memory that is replaced, this is of course incorrect but it's too much
2476 * effort.
2477 *
2478 * @returns VBox status code.
2479 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2480 * memory.
2481 * @retval VERR_ALREADY_EXISTS if the region already exists.
2482 *
2483 * @param pVM The cross context VM structure.
2484 * @param pDevIns The device instance owning the region.
2485 * @param iRegion The region number. If the MMIO2 memory is a PCI
2486 * I/O region this number has to be the number of that
2487 * region. Otherwise it can be any number safe
2488 * UINT8_MAX.
2489 * @param cb The size of the region. Must be page aligned.
2490 * @param fFlags Reserved for future use, must be zero.
2491 * @param ppv Where to store the pointer to the ring-3 mapping of
2492 * the memory.
2493 * @param pszDesc The description.
2494 */
2495VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags,
2496 void **ppv, const char *pszDesc)
2497{
2498 /*
2499 * Validate input.
2500 */
2501 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2502 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2503 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2504 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2505 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2506 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2507 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
2508 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2509 AssertReturn(cb, VERR_INVALID_PARAMETER);
2510 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2511
2512 const uint32_t cPages = cb >> PAGE_SHIFT;
2513 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
2514 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_NO_MEMORY);
2515
2516 /*
2517 * For the 2nd+ instance, mangle the description string so it's unique.
2518 */
2519 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
2520 {
2521 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
2522 if (!pszDesc)
2523 return VERR_NO_MEMORY;
2524 }
2525
2526 /*
2527 * Allocate an MMIO2 range ID (not freed on failure).
2528 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID.
2529 */
2530 pgmLock(pVM);
2531 uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
2532 if (idMmio2 > PGM_MMIO2_MAX_RANGES)
2533 {
2534 pgmUnlock(pVM);
2535 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
2536 }
2537 pVM->pgm.s.cMmio2Regions = idMmio2;
2538 pgmUnlock(pVM);
2539
2540 /*
2541 * Try reserve and allocate the backing memory first as this is what is
2542 * most likely to fail.
2543 */
2544 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
2545 if (RT_SUCCESS(rc))
2546 {
2547 void *pvPages;
2548 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
2549 if (RT_SUCCESS(rc))
2550 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
2551 if (RT_SUCCESS(rc))
2552 {
2553 memset(pvPages, 0, cPages * PAGE_SIZE);
2554
2555 /*
2556 * Create the MMIO2 range record for it.
2557 */
2558 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
2559 PPGMMMIO2RANGE pNew;
2560 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2561 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
2562 if (RT_SUCCESS(rc))
2563 {
2564 pNew->pDevInsR3 = pDevIns;
2565 pNew->pvR3 = pvPages;
2566 //pNew->pNext = NULL;
2567 //pNew->fMapped = false;
2568 //pNew->fOverlapping = false;
2569 pNew->iRegion = iRegion;
2570 pNew->idSavedState = UINT8_MAX;
2571 pNew->idMmio2 = idMmio2;
2572 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2573 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2574 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2575 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2576 pNew->RamRange.pszDesc = pszDesc;
2577 pNew->RamRange.cb = cb;
2578 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
2579 pNew->RamRange.pvR3 = pvPages;
2580 //pNew->RamRange.paLSPages = NULL;
2581
2582 uint32_t iPage = cPages;
2583 while (iPage-- > 0)
2584 {
2585 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
2586 paPages[iPage].Phys,
2587 PGM_MMIO2_PAGEID_MAKE(idMmio2, iPage),
2588 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
2589 }
2590
2591 /* update page count stats */
2592 pVM->pgm.s.cAllPages += cPages;
2593 pVM->pgm.s.cPrivatePages += cPages;
2594
2595 /*
2596 * Link it into the list.
2597 * Since there is no particular order, just push it.
2598 */
2599 /** @todo we can save us the linked list now, just search the lookup table... */
2600 pgmLock(pVM);
2601 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2602 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2603 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
2604 pVM->pgm.s.pMmio2RangesR3 = pNew;
2605 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2606 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = MMHyperCCToR0(pVM, pNew);
2607 pgmUnlock(pVM);
2608
2609 *ppv = pvPages;
2610 RTMemTmpFree(paPages);
2611 pgmPhysInvalidatePageMapTLB(pVM);
2612 return VINF_SUCCESS;
2613 }
2614
2615 SUPR3PageFreeEx(pvPages, cPages);
2616 }
2617 RTMemTmpFree(paPages);
2618 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
2619 }
2620 if (pDevIns->iInstance > 0)
2621 MMR3HeapFree((void *)pszDesc);
2622 return rc;
2623}
2624
2625
2626/**
2627 * Deregisters and frees an MMIO2 region.
2628 *
2629 * Any physical (and virtual) access handlers registered for the region must
2630 * be deregistered before calling this function.
2631 *
2632 * @returns VBox status code.
2633 * @param pVM The cross context VM structure.
2634 * @param pDevIns The device instance owning the region.
2635 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
2636 */
2637VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2638{
2639 /*
2640 * Validate input.
2641 */
2642 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2643 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2644 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
2645
2646 pgmLock(pVM);
2647 int rc = VINF_SUCCESS;
2648 unsigned cFound = 0;
2649 PPGMMMIO2RANGE pPrev = NULL;
2650 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
2651 while (pCur)
2652 {
2653 if ( pCur->pDevInsR3 == pDevIns
2654 && ( iRegion == UINT32_MAX
2655 || pCur->iRegion == iRegion))
2656 {
2657 cFound++;
2658
2659 /*
2660 * Unmap it if it's mapped.
2661 */
2662 if (pCur->fMapped)
2663 {
2664 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
2665 AssertRC(rc2);
2666 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2667 rc = rc2;
2668 }
2669
2670 /*
2671 * Unlink it
2672 */
2673 PPGMMMIO2RANGE pNext = pCur->pNextR3;
2674 if (pPrev)
2675 pPrev->pNextR3 = pNext;
2676 else
2677 pVM->pgm.s.pMmio2RangesR3 = pNext;
2678 pCur->pNextR3 = NULL;
2679
2680 uint8_t idMmio2 = pCur->idMmio2;
2681 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
2682 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
2683 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
2684
2685 /*
2686 * Free the memory.
2687 */
2688 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
2689 AssertRC(rc2);
2690 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2691 rc = rc2;
2692
2693 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
2694 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
2695 AssertRC(rc2);
2696 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2697 rc = rc2;
2698
2699 /* we're leaking hyper memory here if done at runtime. */
2700#ifdef VBOX_STRICT
2701 VMSTATE const enmState = VMR3GetState(pVM);
2702 AssertMsg( enmState == VMSTATE_POWERING_OFF
2703 || enmState == VMSTATE_POWERING_OFF_LS
2704 || enmState == VMSTATE_OFF
2705 || enmState == VMSTATE_OFF_LS
2706 || enmState == VMSTATE_DESTROYING
2707 || enmState == VMSTATE_TERMINATED
2708 || enmState == VMSTATE_CREATING
2709 , ("%s\n", VMR3GetStateName(enmState)));
2710#endif
2711 /*rc = MMHyperFree(pVM, pCur);
2712 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
2713
2714
2715 /* update page count stats */
2716 pVM->pgm.s.cAllPages -= cPages;
2717 pVM->pgm.s.cPrivatePages -= cPages;
2718
2719 /* next */
2720 pCur = pNext;
2721 }
2722 else
2723 {
2724 pPrev = pCur;
2725 pCur = pCur->pNextR3;
2726 }
2727 }
2728 pgmPhysInvalidatePageMapTLB(pVM);
2729 pgmUnlock(pVM);
2730 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2731}
2732
2733
2734/**
2735 * Maps a MMIO2 region.
2736 *
2737 * This is done when a guest / the bios / state loading changes the
2738 * PCI config. The replacing of base memory has the same restrictions
2739 * as during registration, of course.
2740 *
2741 * @returns VBox status code.
2742 *
2743 * @param pVM The cross context VM structure.
2744 * @param pDevIns The device instance owning the region.
2745 * @param iRegion The index of the registered region.
2746 * @param GCPhys The guest-physical address to be remapped.
2747 */
2748VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2749{
2750 /*
2751 * Validate input
2752 */
2753 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2754 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2755 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2756 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2757 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2758 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2759
2760 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2761 AssertReturn(pCur, VERR_NOT_FOUND);
2762 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2763 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2764 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2765
2766 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2767 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2768
2769 /*
2770 * Find our location in the ram range list, checking for
2771 * restriction we don't bother implementing yet (partially overlapping).
2772 */
2773 bool fRamExists = false;
2774 PPGMRAMRANGE pRamPrev = NULL;
2775 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2776 while (pRam && GCPhysLast >= pRam->GCPhys)
2777 {
2778 if ( GCPhys <= pRam->GCPhysLast
2779 && GCPhysLast >= pRam->GCPhys)
2780 {
2781 /* completely within? */
2782 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2783 && GCPhysLast <= pRam->GCPhysLast,
2784 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2785 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2786 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2787 VERR_PGM_RAM_CONFLICT);
2788 fRamExists = true;
2789 break;
2790 }
2791
2792 /* next */
2793 pRamPrev = pRam;
2794 pRam = pRam->pNextR3;
2795 }
2796 if (fRamExists)
2797 {
2798 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2799 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2800 while (cPagesLeft-- > 0)
2801 {
2802 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2803 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2804 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2805 VERR_PGM_RAM_CONFLICT);
2806 pPage++;
2807 }
2808 }
2809 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2810 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2811
2812 /*
2813 * Make the changes.
2814 */
2815 pgmLock(pVM);
2816
2817 pCur->RamRange.GCPhys = GCPhys;
2818 pCur->RamRange.GCPhysLast = GCPhysLast;
2819 pCur->fMapped = true;
2820 pCur->fOverlapping = fRamExists;
2821
2822 if (fRamExists)
2823 {
2824/** @todo use pgmR3PhysFreePageRange here. */
2825 uint32_t cPendingPages = 0;
2826 PGMMFREEPAGESREQ pReq;
2827 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2828 AssertLogRelRCReturn(rc, rc);
2829
2830 /* replace the pages, freeing all present RAM pages. */
2831 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2832 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2833 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2834 while (cPagesLeft-- > 0)
2835 {
2836 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2837 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2838
2839 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2840 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
2841 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
2842 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
2843 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
2844 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
2845 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2846 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
2847 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
2848
2849 pVM->pgm.s.cZeroPages--;
2850 GCPhys += PAGE_SIZE;
2851 pPageSrc++;
2852 pPageDst++;
2853 }
2854
2855 /* Flush physical page map TLB. */
2856 pgmPhysInvalidatePageMapTLB(pVM);
2857
2858 if (cPendingPages)
2859 {
2860 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2861 AssertLogRelRCReturn(rc, rc);
2862 }
2863 GMMR3FreePagesCleanup(pReq);
2864
2865 /* Force a PGM pool flush as guest ram references have been changed. */
2866 /** @todo not entirely SMP safe; assuming for now the guest takes care of
2867 * this internally (not touch mapped mmio while changing the mapping). */
2868 PVMCPU pVCpu = VMMGetCpu(pVM);
2869 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2870 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2871
2872 pgmUnlock(pVM);
2873 }
2874 else
2875 {
2876 RTGCPHYS cb = pCur->RamRange.cb;
2877
2878 /* Clear the tracking data of pages we're going to reactivate. */
2879 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2880 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2881 while (cPagesLeft-- > 0)
2882 {
2883 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
2884 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
2885 pPageSrc++;
2886 }
2887
2888 /* link in the ram range */
2889 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2890 pgmUnlock(pVM);
2891
2892#ifdef VBOX_WITH_REM
2893 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2894#endif
2895 }
2896
2897 pgmPhysInvalidatePageMapTLB(pVM);
2898 return VINF_SUCCESS;
2899}
2900
2901
2902/**
2903 * Unmaps a MMIO2 region.
2904 *
2905 * This is done when a guest / the bios / state loading changes the
2906 * PCI config. The replacing of base memory has the same restrictions
2907 * as during registration, of course.
2908 */
2909VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2910{
2911 /*
2912 * Validate input
2913 */
2914 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2915 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2916 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2917 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2918 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2919 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2920
2921 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2922 AssertReturn(pCur, VERR_NOT_FOUND);
2923 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2924 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2925 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2926
2927 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2928 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2929
2930 /*
2931 * Unmap it.
2932 */
2933 pgmLock(pVM);
2934
2935#ifdef VBOX_WITH_REM
2936 RTGCPHYS GCPhysRangeREM;
2937 RTGCPHYS cbRangeREM;
2938 bool fInformREM;
2939#endif
2940 if (pCur->fOverlapping)
2941 {
2942 /* Restore the RAM pages we've replaced. */
2943 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2944 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2945 pRam = pRam->pNextR3;
2946
2947 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2948 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2949 while (cPagesLeft-- > 0)
2950 {
2951 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
2952 pVM->pgm.s.cZeroPages++;
2953 pPageDst++;
2954 }
2955
2956 /* Flush physical page map TLB. */
2957 pgmPhysInvalidatePageMapTLB(pVM);
2958#ifdef VBOX_WITH_REM
2959 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2960 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2961 fInformREM = false;
2962#endif
2963 }
2964 else
2965 {
2966#ifdef VBOX_WITH_REM
2967 GCPhysRangeREM = pCur->RamRange.GCPhys;
2968 cbRangeREM = pCur->RamRange.cb;
2969 fInformREM = true;
2970#endif
2971 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2972 }
2973
2974 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2975 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2976 pCur->fOverlapping = false;
2977 pCur->fMapped = false;
2978
2979 /* Force a PGM pool flush as guest ram references have been changed. */
2980 /** @todo not entirely SMP safe; assuming for now the guest takes care
2981 * of this internally (not touch mapped mmio while changing the
2982 * mapping). */
2983 PVMCPU pVCpu = VMMGetCpu(pVM);
2984 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2985 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2986
2987 pgmPhysInvalidatePageMapTLB(pVM);
2988 pgmPhysInvalidRamRangeTlbs(pVM);
2989 pgmUnlock(pVM);
2990
2991#ifdef VBOX_WITH_REM
2992 if (fInformREM)
2993 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2994#endif
2995
2996 return VINF_SUCCESS;
2997}
2998
2999
3000/**
3001 * Checks if the given address is an MMIO2 base address or not.
3002 *
3003 * @returns true/false accordingly.
3004 * @param pVM The cross context VM structure.
3005 * @param pDevIns The owner of the memory, optional.
3006 * @param GCPhys The address to check.
3007 */
3008VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
3009{
3010 /*
3011 * Validate input
3012 */
3013 VM_ASSERT_EMT_RETURN(pVM, false);
3014 AssertPtrReturn(pDevIns, false);
3015 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
3016 AssertReturn(GCPhys != 0, false);
3017 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
3018
3019 /*
3020 * Search the list.
3021 */
3022 pgmLock(pVM);
3023 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
3024 if (pCur->RamRange.GCPhys == GCPhys)
3025 {
3026 Assert(pCur->fMapped);
3027 pgmUnlock(pVM);
3028 return true;
3029 }
3030 pgmUnlock(pVM);
3031 return false;
3032}
3033
3034
3035/**
3036 * Gets the HC physical address of a page in the MMIO2 region.
3037 *
3038 * This is API is intended for MMHyper and shouldn't be called
3039 * by anyone else...
3040 *
3041 * @returns VBox status code.
3042 * @param pVM The cross context VM structure.
3043 * @param pDevIns The owner of the memory, optional.
3044 * @param iRegion The region.
3045 * @param off The page expressed an offset into the MMIO2 region.
3046 * @param pHCPhys Where to store the result.
3047 */
3048VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
3049{
3050 /*
3051 * Validate input
3052 */
3053 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3054 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3055 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3056
3057 pgmLock(pVM);
3058 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3059 AssertReturn(pCur, VERR_NOT_FOUND);
3060 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3061
3062 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
3063 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3064 pgmUnlock(pVM);
3065 return VINF_SUCCESS;
3066}
3067
3068
3069/**
3070 * Maps a portion of an MMIO2 region into kernel space (host).
3071 *
3072 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
3073 * or the VM is terminated.
3074 *
3075 * @return VBox status code.
3076 *
3077 * @param pVM The cross context VM structure.
3078 * @param pDevIns The device owning the MMIO2 memory.
3079 * @param iRegion The region.
3080 * @param off The offset into the region. Must be page aligned.
3081 * @param cb The number of bytes to map. Must be page aligned.
3082 * @param pszDesc Mapping description.
3083 * @param pR0Ptr Where to store the R0 address.
3084 */
3085VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
3086 const char *pszDesc, PRTR0PTR pR0Ptr)
3087{
3088 /*
3089 * Validate input.
3090 */
3091 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3092 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3093 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3094
3095 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
3096 AssertReturn(pCur, VERR_NOT_FOUND);
3097 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3098 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3099 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
3100 NOREF(pszDesc);
3101
3102 /*
3103 * Pass the request on to the support library/driver.
3104 */
3105 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
3106
3107 return rc;
3108}
3109
3110
3111/**
3112 * Worker for PGMR3PhysRomRegister.
3113 *
3114 * This is here to simplify lock management, i.e. the caller does all the
3115 * locking and we can simply return without needing to remember to unlock
3116 * anything first.
3117 *
3118 * @returns VBox status code.
3119 * @param pVM The cross context VM structure.
3120 * @param pDevIns The device instance owning the ROM.
3121 * @param GCPhys First physical address in the range.
3122 * Must be page aligned!
3123 * @param cb The size of the range (in bytes).
3124 * Must be page aligned!
3125 * @param pvBinary Pointer to the binary data backing the ROM image.
3126 * @param cbBinary The size of the binary data pvBinary points to.
3127 * This must be less or equal to @a cb.
3128 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3129 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3130 * @param pszDesc Pointer to description string. This must not be freed.
3131 */
3132static int pgmR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3133 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3134{
3135 /*
3136 * Validate input.
3137 */
3138 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3139 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
3140 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
3141 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3142 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3143 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
3144 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3145 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
3146 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
3147
3148 const uint32_t cPages = cb >> PAGE_SHIFT;
3149
3150 /*
3151 * Find the ROM location in the ROM list first.
3152 */
3153 PPGMROMRANGE pRomPrev = NULL;
3154 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3155 while (pRom && GCPhysLast >= pRom->GCPhys)
3156 {
3157 if ( GCPhys <= pRom->GCPhysLast
3158 && GCPhysLast >= pRom->GCPhys)
3159 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
3160 GCPhys, GCPhysLast, pszDesc,
3161 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
3162 VERR_PGM_RAM_CONFLICT);
3163 /* next */
3164 pRomPrev = pRom;
3165 pRom = pRom->pNextR3;
3166 }
3167
3168 /*
3169 * Find the RAM location and check for conflicts.
3170 *
3171 * Conflict detection is a bit different than for RAM
3172 * registration since a ROM can be located within a RAM
3173 * range. So, what we have to check for is other memory
3174 * types (other than RAM that is) and that we don't span
3175 * more than one RAM range (layz).
3176 */
3177 bool fRamExists = false;
3178 PPGMRAMRANGE pRamPrev = NULL;
3179 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3180 while (pRam && GCPhysLast >= pRam->GCPhys)
3181 {
3182 if ( GCPhys <= pRam->GCPhysLast
3183 && GCPhysLast >= pRam->GCPhys)
3184 {
3185 /* completely within? */
3186 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
3187 && GCPhysLast <= pRam->GCPhysLast,
3188 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
3189 GCPhys, GCPhysLast, pszDesc,
3190 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3191 VERR_PGM_RAM_CONFLICT);
3192 fRamExists = true;
3193 break;
3194 }
3195
3196 /* next */
3197 pRamPrev = pRam;
3198 pRam = pRam->pNextR3;
3199 }
3200 if (fRamExists)
3201 {
3202 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3203 uint32_t cPagesLeft = cPages;
3204 while (cPagesLeft-- > 0)
3205 {
3206 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3207 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
3208 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
3209 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
3210 Assert(PGM_PAGE_IS_ZERO(pPage));
3211 pPage++;
3212 }
3213 }
3214
3215 /*
3216 * Update the base memory reservation if necessary.
3217 */
3218 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
3219 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3220 cExtraBaseCost += cPages;
3221 if (cExtraBaseCost)
3222 {
3223 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
3224 if (RT_FAILURE(rc))
3225 return rc;
3226 }
3227
3228 /*
3229 * Allocate memory for the virgin copy of the RAM.
3230 */
3231 PGMMALLOCATEPAGESREQ pReq;
3232 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
3233 AssertRCReturn(rc, rc);
3234
3235 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3236 {
3237 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
3238 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
3239 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
3240 }
3241
3242 rc = GMMR3AllocatePagesPerform(pVM, pReq);
3243 if (RT_FAILURE(rc))
3244 {
3245 GMMR3AllocatePagesCleanup(pReq);
3246 return rc;
3247 }
3248
3249 /*
3250 * Allocate the new ROM range and RAM range (if necessary).
3251 */
3252 PPGMROMRANGE pRomNew;
3253 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
3254 if (RT_SUCCESS(rc))
3255 {
3256 PPGMRAMRANGE pRamNew = NULL;
3257 if (!fRamExists)
3258 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
3259 if (RT_SUCCESS(rc))
3260 {
3261 /*
3262 * Initialize and insert the RAM range (if required).
3263 */
3264 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
3265 if (!fRamExists)
3266 {
3267 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
3268 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
3269 pRamNew->GCPhys = GCPhys;
3270 pRamNew->GCPhysLast = GCPhysLast;
3271 pRamNew->cb = cb;
3272 pRamNew->pszDesc = pszDesc;
3273 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
3274 pRamNew->pvR3 = NULL;
3275 pRamNew->paLSPages = NULL;
3276
3277 PPGMPAGE pPage = &pRamNew->aPages[0];
3278 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3279 {
3280 PGM_PAGE_INIT(pPage,
3281 pReq->aPages[iPage].HCPhysGCPhys,
3282 pReq->aPages[iPage].idPage,
3283 PGMPAGETYPE_ROM,
3284 PGM_PAGE_STATE_ALLOCATED);
3285
3286 pRomPage->Virgin = *pPage;
3287 }
3288
3289 pVM->pgm.s.cAllPages += cPages;
3290 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
3291 }
3292 else
3293 {
3294 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3295 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
3296 {
3297 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
3298 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
3299 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
3300 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
3301 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3302 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
3303 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
3304
3305 pRomPage->Virgin = *pPage;
3306 }
3307
3308 pRamNew = pRam;
3309
3310 pVM->pgm.s.cZeroPages -= cPages;
3311 }
3312 pVM->pgm.s.cPrivatePages += cPages;
3313
3314 /* Flush physical page map TLB. */
3315 pgmPhysInvalidatePageMapTLB(pVM);
3316
3317
3318 /*
3319 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
3320 *
3321 * If it's shadowed we'll register the handler after the ROM notification
3322 * so we get the access handler callbacks that we should. If it isn't
3323 * shadowed we'll do it the other way around to make REM use the built-in
3324 * ROM behavior and not the handler behavior (which is to route all access
3325 * to PGM atm).
3326 */
3327 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3328 {
3329#ifdef VBOX_WITH_REM
3330 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
3331#endif
3332 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
3333 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
3334 pszDesc);
3335 }
3336 else
3337 {
3338 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
3339 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
3340 pszDesc);
3341#ifdef VBOX_WITH_REM
3342 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
3343#endif
3344 }
3345 if (RT_SUCCESS(rc))
3346 {
3347 /*
3348 * Copy the image over to the virgin pages.
3349 * This must be done after linking in the RAM range.
3350 */
3351 size_t cbBinaryLeft = cbBinary;
3352 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
3353 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
3354 {
3355 void *pvDstPage;
3356 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
3357 if (RT_FAILURE(rc))
3358 {
3359 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
3360 break;
3361 }
3362 if (cbBinaryLeft >= PAGE_SIZE)
3363 {
3364 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
3365 cbBinaryLeft -= PAGE_SIZE;
3366 }
3367 else
3368 {
3369 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
3370 if (cbBinaryLeft > 0)
3371 {
3372 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
3373 cbBinaryLeft = 0;
3374 }
3375 }
3376 }
3377 if (RT_SUCCESS(rc))
3378 {
3379 /*
3380 * Initialize the ROM range.
3381 * Note that the Virgin member of the pages has already been initialized above.
3382 */
3383 pRomNew->GCPhys = GCPhys;
3384 pRomNew->GCPhysLast = GCPhysLast;
3385 pRomNew->cb = cb;
3386 pRomNew->fFlags = fFlags;
3387 pRomNew->idSavedState = UINT8_MAX;
3388 pRomNew->cbOriginal = cbBinary;
3389 pRomNew->pszDesc = pszDesc;
3390 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
3391 ? pvBinary : RTMemDup(pvBinary, cbBinary);
3392 if (pRomNew->pvOriginal)
3393 {
3394 for (unsigned iPage = 0; iPage < cPages; iPage++)
3395 {
3396 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
3397 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
3398 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
3399 }
3400
3401 /* update the page count stats for the shadow pages. */
3402 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3403 {
3404 pVM->pgm.s.cZeroPages += cPages;
3405 pVM->pgm.s.cAllPages += cPages;
3406 }
3407
3408 /*
3409 * Insert the ROM range, tell REM and return successfully.
3410 */
3411 pRomNew->pNextR3 = pRom;
3412 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
3413 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
3414
3415 if (pRomPrev)
3416 {
3417 pRomPrev->pNextR3 = pRomNew;
3418 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
3419 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
3420 }
3421 else
3422 {
3423 pVM->pgm.s.pRomRangesR3 = pRomNew;
3424 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
3425 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
3426 }
3427
3428 pgmPhysInvalidatePageMapTLB(pVM);
3429 GMMR3AllocatePagesCleanup(pReq);
3430 return VINF_SUCCESS;
3431 }
3432
3433 /* bail out */
3434 rc = VERR_NO_MEMORY;
3435 }
3436
3437 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
3438 AssertRC(rc2);
3439 }
3440
3441 if (!fRamExists)
3442 {
3443 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
3444 MMHyperFree(pVM, pRamNew);
3445 }
3446 }
3447 MMHyperFree(pVM, pRomNew);
3448 }
3449
3450 /** @todo Purge the mapping cache or something... */
3451 GMMR3FreeAllocatedPages(pVM, pReq);
3452 GMMR3AllocatePagesCleanup(pReq);
3453 return rc;
3454}
3455
3456
3457/**
3458 * Registers a ROM image.
3459 *
3460 * Shadowed ROM images requires double the amount of backing memory, so,
3461 * don't use that unless you have to. Shadowing of ROM images is process
3462 * where we can select where the reads go and where the writes go. On real
3463 * hardware the chipset provides means to configure this. We provide
3464 * PGMR3PhysProtectROM() for this purpose.
3465 *
3466 * A read-only copy of the ROM image will always be kept around while we
3467 * will allocate RAM pages for the changes on demand (unless all memory
3468 * is configured to be preallocated).
3469 *
3470 * @returns VBox status code.
3471 * @param pVM The cross context VM structure.
3472 * @param pDevIns The device instance owning the ROM.
3473 * @param GCPhys First physical address in the range.
3474 * Must be page aligned!
3475 * @param cb The size of the range (in bytes).
3476 * Must be page aligned!
3477 * @param pvBinary Pointer to the binary data backing the ROM image.
3478 * @param cbBinary The size of the binary data pvBinary points to.
3479 * This must be less or equal to @a cb.
3480 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3481 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3482 * @param pszDesc Pointer to description string. This must not be freed.
3483 *
3484 * @remark There is no way to remove the rom, automatically on device cleanup or
3485 * manually from the device yet. This isn't difficult in any way, it's
3486 * just not something we expect to be necessary for a while.
3487 */
3488VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3489 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3490{
3491 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
3492 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
3493 pgmLock(pVM);
3494 int rc = pgmR3PhysRomRegister(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
3495 pgmUnlock(pVM);
3496 return rc;
3497}
3498
3499
3500/**
3501 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
3502 * that the virgin part is untouched.
3503 *
3504 * This is done after the normal memory has been cleared.
3505 *
3506 * ASSUMES that the caller owns the PGM lock.
3507 *
3508 * @param pVM The cross context VM structure.
3509 */
3510int pgmR3PhysRomReset(PVM pVM)
3511{
3512 PGM_LOCK_ASSERT_OWNER(pVM);
3513 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3514 {
3515 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
3516
3517 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3518 {
3519 /*
3520 * Reset the physical handler.
3521 */
3522 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
3523 AssertRCReturn(rc, rc);
3524
3525 /*
3526 * What we do with the shadow pages depends on the memory
3527 * preallocation option. If not enabled, we'll just throw
3528 * out all the dirty pages and replace them by the zero page.
3529 */
3530 if (!pVM->pgm.s.fRamPreAlloc)
3531 {
3532 /* Free the dirty pages. */
3533 uint32_t cPendingPages = 0;
3534 PGMMFREEPAGESREQ pReq;
3535 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3536 AssertRCReturn(rc, rc);
3537
3538 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3539 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
3540 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
3541 {
3542 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
3543 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
3544 pRom->GCPhys + (iPage << PAGE_SHIFT));
3545 AssertLogRelRCReturn(rc, rc);
3546 }
3547
3548 if (cPendingPages)
3549 {
3550 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
3551 AssertLogRelRCReturn(rc, rc);
3552 }
3553 GMMR3FreePagesCleanup(pReq);
3554 }
3555 else
3556 {
3557 /* clear all the shadow pages. */
3558 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3559 {
3560 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
3561 continue;
3562 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
3563 void *pvDstPage;
3564 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3565 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
3566 if (RT_FAILURE(rc))
3567 break;
3568 ASMMemZeroPage(pvDstPage);
3569 }
3570 AssertRCReturn(rc, rc);
3571 }
3572 }
3573
3574 /*
3575 * Restore the original ROM pages after a saved state load.
3576 * Also, in strict builds check that ROM pages remain unmodified.
3577 */
3578#ifndef VBOX_STRICT
3579 if (pVM->pgm.s.fRestoreRomPagesAtReset)
3580#endif
3581 {
3582 size_t cbSrcLeft = pRom->cbOriginal;
3583 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
3584 uint32_t cRestored = 0;
3585 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
3586 {
3587 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3588 void const *pvDstPage;
3589 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
3590 if (RT_FAILURE(rc))
3591 break;
3592
3593 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
3594 {
3595 if (pVM->pgm.s.fRestoreRomPagesAtReset)
3596 {
3597 void *pvDstPageW;
3598 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
3599 AssertLogRelRCReturn(rc, rc);
3600 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
3601 cRestored++;
3602 }
3603 else
3604 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
3605 }
3606 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
3607 }
3608 if (cRestored > 0)
3609 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
3610 }
3611 }
3612
3613 /* Clear the ROM restore flag now as we only need to do this once after
3614 loading saved state. */
3615 pVM->pgm.s.fRestoreRomPagesAtReset = false;
3616
3617 return VINF_SUCCESS;
3618}
3619
3620
3621/**
3622 * Called by PGMR3Term to free resources.
3623 *
3624 * ASSUMES that the caller owns the PGM lock.
3625 *
3626 * @param pVM The cross context VM structure.
3627 */
3628void pgmR3PhysRomTerm(PVM pVM)
3629{
3630 /*
3631 * Free the heap copy of the original bits.
3632 */
3633 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3634 {
3635 if ( pRom->pvOriginal
3636 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
3637 {
3638 RTMemFree((void *)pRom->pvOriginal);
3639 pRom->pvOriginal = NULL;
3640 }
3641 }
3642}
3643
3644
3645/**
3646 * Change the shadowing of a range of ROM pages.
3647 *
3648 * This is intended for implementing chipset specific memory registers
3649 * and will not be very strict about the input. It will silently ignore
3650 * any pages that are not the part of a shadowed ROM.
3651 *
3652 * @returns VBox status code.
3653 * @retval VINF_PGM_SYNC_CR3
3654 *
3655 * @param pVM The cross context VM structure.
3656 * @param GCPhys Where to start. Page aligned.
3657 * @param cb How much to change. Page aligned.
3658 * @param enmProt The new ROM protection.
3659 */
3660VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
3661{
3662 /*
3663 * Check input
3664 */
3665 if (!cb)
3666 return VINF_SUCCESS;
3667 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3668 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3669 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3670 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3671 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
3672
3673 /*
3674 * Process the request.
3675 */
3676 pgmLock(pVM);
3677 int rc = VINF_SUCCESS;
3678 bool fFlushTLB = false;
3679 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3680 {
3681 if ( GCPhys <= pRom->GCPhysLast
3682 && GCPhysLast >= pRom->GCPhys
3683 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
3684 {
3685 /*
3686 * Iterate the relevant pages and make necessary the changes.
3687 */
3688 bool fChanges = false;
3689 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
3690 ? pRom->cb >> PAGE_SHIFT
3691 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
3692 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3693 iPage < cPages;
3694 iPage++)
3695 {
3696 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3697 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
3698 {
3699 fChanges = true;
3700
3701 /* flush references to the page. */
3702 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
3703 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
3704 true /*fFlushPTEs*/, &fFlushTLB);
3705 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
3706 rc = rc2;
3707
3708 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
3709 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
3710
3711 *pOld = *pRamPage;
3712 *pRamPage = *pNew;
3713 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
3714 }
3715 pRomPage->enmProt = enmProt;
3716 }
3717
3718 /*
3719 * Reset the access handler if we made changes, no need
3720 * to optimize this.
3721 */
3722 if (fChanges)
3723 {
3724 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
3725 if (RT_FAILURE(rc2))
3726 {
3727 pgmUnlock(pVM);
3728 AssertRC(rc);
3729 return rc2;
3730 }
3731 }
3732
3733 /* Advance - cb isn't updated. */
3734 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3735 }
3736 }
3737 pgmUnlock(pVM);
3738 if (fFlushTLB)
3739 PGM_INVL_ALL_VCPU_TLBS(pVM);
3740
3741 return rc;
3742}
3743
3744
3745/**
3746 * Sets the Address Gate 20 state.
3747 *
3748 * @param pVCpu The cross context virtual CPU structure.
3749 * @param fEnable True if the gate should be enabled.
3750 * False if the gate should be disabled.
3751 */
3752VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3753{
3754 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3755 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3756 {
3757 pVCpu->pgm.s.fA20Enabled = fEnable;
3758 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
3759#ifdef VBOX_WITH_REM
3760 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3761#endif
3762#ifdef PGM_WITH_A20
3763 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3764 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3765 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
3766 HMFlushTLB(pVCpu);
3767#endif
3768 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
3769 }
3770}
3771
3772
3773/**
3774 * Tree enumeration callback for dealing with age rollover.
3775 * It will perform a simple compression of the current age.
3776 */
3777static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3778{
3779 /* Age compression - ASSUMES iNow == 4. */
3780 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3781 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
3782 pChunk->iLastUsed = 3;
3783 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
3784 pChunk->iLastUsed = 2;
3785 else if (pChunk->iLastUsed)
3786 pChunk->iLastUsed = 1;
3787 else /* iLastUsed = 0 */
3788 pChunk->iLastUsed = 4;
3789
3790 NOREF(pvUser);
3791 return 0;
3792}
3793
3794
3795/**
3796 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3797 */
3798typedef struct PGMR3PHYSCHUNKUNMAPCB
3799{
3800 PVM pVM; /**< Pointer to the VM. */
3801 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3802} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3803
3804
3805/**
3806 * Callback used to find the mapping that's been unused for
3807 * the longest time.
3808 */
3809static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
3810{
3811 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3812 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
3813
3814 /*
3815 * Check for locks and compare when last used.
3816 */
3817 if (pChunk->cRefs)
3818 return 0;
3819 if (pChunk->cPermRefs)
3820 return 0;
3821 if ( pArg->pChunk
3822 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
3823 return 0;
3824
3825 /*
3826 * Check that it's not in any of the TLBs.
3827 */
3828 PVM pVM = pArg->pVM;
3829 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
3830 == pChunk->Core.Key)
3831 {
3832 pChunk = NULL;
3833 return 0;
3834 }
3835#ifdef VBOX_STRICT
3836 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3837 {
3838 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
3839 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
3840 }
3841#endif
3842
3843 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3844 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3845 return 0;
3846
3847 pArg->pChunk = pChunk;
3848 return 0;
3849}
3850
3851
3852/**
3853 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3854 *
3855 * The candidate will not be part of any TLBs, so no need to flush
3856 * anything afterwards.
3857 *
3858 * @returns Chunk id.
3859 * @param pVM The cross context VM structure.
3860 */
3861static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3862{
3863 PGM_LOCK_ASSERT_OWNER(pVM);
3864
3865 /*
3866 * Enumerate the age tree starting with the left most node.
3867 */
3868 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3869 PGMR3PHYSCHUNKUNMAPCB Args;
3870 Args.pVM = pVM;
3871 Args.pChunk = NULL;
3872 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
3873 Assert(Args.pChunk);
3874 if (Args.pChunk)
3875 {
3876 Assert(Args.pChunk->cRefs == 0);
3877 Assert(Args.pChunk->cPermRefs == 0);
3878 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3879 return Args.pChunk->Core.Key;
3880 }
3881
3882 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3883 return INT32_MAX;
3884}
3885
3886
3887/**
3888 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
3889 *
3890 * This is only called on one of the EMTs while the other ones are waiting for
3891 * it to complete this function.
3892 *
3893 * @returns VINF_SUCCESS (VBox strict status code).
3894 * @param pVM The cross context VM structure.
3895 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
3896 * @param pvUser User pointer. Unused
3897 *
3898 */
3899static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
3900{
3901 int rc = VINF_SUCCESS;
3902 pgmLock(pVM);
3903 NOREF(pVCpu); NOREF(pvUser);
3904
3905 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3906 {
3907 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
3908 /** @todo also not really efficient to unmap a chunk that contains PD
3909 * or PT pages. */
3910 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
3911
3912 /*
3913 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
3914 */
3915 GMMMAPUNMAPCHUNKREQ Req;
3916 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3917 Req.Hdr.cbReq = sizeof(Req);
3918 Req.pvR3 = NULL;
3919 Req.idChunkMap = NIL_GMM_CHUNKID;
3920 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3921 if (Req.idChunkUnmap != INT32_MAX)
3922 {
3923 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3924 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3925 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3926 if (RT_SUCCESS(rc))
3927 {
3928 /*
3929 * Remove the unmapped one.
3930 */
3931 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3932 AssertRelease(pUnmappedChunk);
3933 AssertRelease(!pUnmappedChunk->cRefs);
3934 AssertRelease(!pUnmappedChunk->cPermRefs);
3935 pUnmappedChunk->pv = NULL;
3936 pUnmappedChunk->Core.Key = UINT32_MAX;
3937#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3938 MMR3HeapFree(pUnmappedChunk);
3939#else
3940 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3941#endif
3942 pVM->pgm.s.ChunkR3Map.c--;
3943 pVM->pgm.s.cUnmappedChunks++;
3944
3945 /*
3946 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
3947 */
3948 /** @todo We should not flush chunks which include cr3 mappings. */
3949 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3950 {
3951 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
3952
3953 pPGM->pGst32BitPdR3 = NULL;
3954 pPGM->pGstPaePdptR3 = NULL;
3955 pPGM->pGstAmd64Pml4R3 = NULL;
3956#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3957 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
3958 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
3959 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
3960#endif
3961 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
3962 {
3963 pPGM->apGstPaePDsR3[i] = NULL;
3964#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3965 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
3966#endif
3967 }
3968
3969 /* Flush REM TLBs. */
3970 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3971 }
3972#ifdef VBOX_WITH_REM
3973 /* Flush REM translation blocks. */
3974 REMFlushTBs(pVM);
3975#endif
3976 }
3977 }
3978 }
3979 pgmUnlock(pVM);
3980 return rc;
3981}
3982
3983/**
3984 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
3985 *
3986 * @returns VBox status code.
3987 * @param pVM The cross context VM structure.
3988 */
3989void pgmR3PhysUnmapChunk(PVM pVM)
3990{
3991 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
3992 AssertRC(rc);
3993}
3994
3995
3996/**
3997 * Maps the given chunk into the ring-3 mapping cache.
3998 *
3999 * This will call ring-0.
4000 *
4001 * @returns VBox status code.
4002 * @param pVM The cross context VM structure.
4003 * @param idChunk The chunk in question.
4004 * @param ppChunk Where to store the chunk tracking structure.
4005 *
4006 * @remarks Called from within the PGM critical section.
4007 * @remarks Can be called from any thread!
4008 */
4009int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
4010{
4011 int rc;
4012
4013 PGM_LOCK_ASSERT_OWNER(pVM);
4014
4015 /*
4016 * Move the chunk time forward.
4017 */
4018 pVM->pgm.s.ChunkR3Map.iNow++;
4019 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
4020 {
4021 pVM->pgm.s.ChunkR3Map.iNow = 4;
4022 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
4023 }
4024
4025 /*
4026 * Allocate a new tracking structure first.
4027 */
4028#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4029 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
4030#else
4031 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
4032#endif
4033 AssertReturn(pChunk, VERR_NO_MEMORY);
4034 pChunk->Core.Key = idChunk;
4035 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
4036
4037 /*
4038 * Request the ring-0 part to map the chunk in question.
4039 */
4040 GMMMAPUNMAPCHUNKREQ Req;
4041 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4042 Req.Hdr.cbReq = sizeof(Req);
4043 Req.pvR3 = NULL;
4044 Req.idChunkMap = idChunk;
4045 Req.idChunkUnmap = NIL_GMM_CHUNKID;
4046
4047 /* Must be callable from any thread, so can't use VMMR3CallR0. */
4048 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4049 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4050 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4051 if (RT_SUCCESS(rc))
4052 {
4053 pChunk->pv = Req.pvR3;
4054
4055 /*
4056 * If we're running out of virtual address space, then we should
4057 * unmap another chunk.
4058 *
4059 * Currently, an unmap operation requires that all other virtual CPUs
4060 * are idling and not by chance making use of the memory we're
4061 * unmapping. So, we create an async unmap operation here.
4062 *
4063 * Now, when creating or restoring a saved state this wont work very
4064 * well since we may want to restore all guest RAM + a little something.
4065 * So, we have to do the unmap synchronously. Fortunately for us
4066 * though, during these operations the other virtual CPUs are inactive
4067 * and it should be safe to do this.
4068 */
4069 /** @todo Eventually we should lock all memory when used and do
4070 * map+unmap as one kernel call without any rendezvous or
4071 * other precautions. */
4072 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
4073 {
4074 switch (VMR3GetState(pVM))
4075 {
4076 case VMSTATE_LOADING:
4077 case VMSTATE_SAVING:
4078 {
4079 PVMCPU pVCpu = VMMGetCpu(pVM);
4080 if ( pVCpu
4081 && pVM->pgm.s.cDeprecatedPageLocks == 0)
4082 {
4083 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
4084 break;
4085 }
4086 /* fall thru */
4087 }
4088 default:
4089 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
4090 AssertRC(rc);
4091 break;
4092 }
4093 }
4094
4095 /*
4096 * Update the tree. We must do this after any unmapping to make sure
4097 * the chunk we're going to return isn't unmapped by accident.
4098 */
4099 AssertPtr(Req.pvR3);
4100 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
4101 AssertRelease(fRc);
4102 pVM->pgm.s.ChunkR3Map.c++;
4103 pVM->pgm.s.cMappedChunks++;
4104 }
4105 else
4106 {
4107 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
4108 * should probably restrict ourselves on linux. */
4109 AssertRC(rc);
4110#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4111 MMR3HeapFree(pChunk);
4112#else
4113 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
4114#endif
4115 pChunk = NULL;
4116 }
4117
4118 *ppChunk = pChunk;
4119 return rc;
4120}
4121
4122
4123/**
4124 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
4125 *
4126 * @returns see pgmR3PhysChunkMap.
4127 * @param pVM The cross context VM structure.
4128 * @param idChunk The chunk to map.
4129 */
4130VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
4131{
4132 PPGMCHUNKR3MAP pChunk;
4133 int rc;
4134
4135 pgmLock(pVM);
4136 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
4137 pgmUnlock(pVM);
4138 return rc;
4139}
4140
4141
4142/**
4143 * Invalidates the TLB for the ring-3 mapping cache.
4144 *
4145 * @param pVM The cross context VM structure.
4146 */
4147VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
4148{
4149 pgmLock(pVM);
4150 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4151 {
4152 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
4153 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
4154 }
4155 /* The page map TLB references chunks, so invalidate that one too. */
4156 pgmPhysInvalidatePageMapTLB(pVM);
4157 pgmUnlock(pVM);
4158}
4159
4160
4161/**
4162 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
4163 * (2MB) page for use with a nested paging PDE.
4164 *
4165 * @returns The following VBox status codes.
4166 * @retval VINF_SUCCESS on success.
4167 * @retval VINF_EM_NO_MEMORY if we're out of memory.
4168 *
4169 * @param pVM The cross context VM structure.
4170 * @param GCPhys GC physical start address of the 2 MB range
4171 */
4172VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
4173{
4174#ifdef PGM_WITH_LARGE_PAGES
4175 uint64_t u64TimeStamp1, u64TimeStamp2;
4176
4177 pgmLock(pVM);
4178
4179 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4180 u64TimeStamp1 = RTTimeMilliTS();
4181 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
4182 u64TimeStamp2 = RTTimeMilliTS();
4183 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4184 if (RT_SUCCESS(rc))
4185 {
4186 Assert(pVM->pgm.s.cLargeHandyPages == 1);
4187
4188 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
4189 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
4190
4191 void *pv;
4192
4193 /* Map the large page into our address space.
4194 *
4195 * Note: assuming that within the 2 MB range:
4196 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
4197 * - user space mapping is continuous as well
4198 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
4199 */
4200 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
4201 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
4202
4203 if (RT_SUCCESS(rc))
4204 {
4205 /*
4206 * Clear the pages.
4207 */
4208 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4209 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
4210 {
4211 ASMMemZeroPage(pv);
4212
4213 PPGMPAGE pPage;
4214 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
4215 AssertRC(rc);
4216
4217 Assert(PGM_PAGE_IS_ZERO(pPage));
4218 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
4219 pVM->pgm.s.cZeroPages--;
4220
4221 /*
4222 * Do the PGMPAGE modifications.
4223 */
4224 pVM->pgm.s.cPrivatePages++;
4225 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
4226 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
4227 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4228 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
4229 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4230 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4231
4232 /* Somewhat dirty assumption that page ids are increasing. */
4233 idPage++;
4234
4235 HCPhys += PAGE_SIZE;
4236 GCPhys += PAGE_SIZE;
4237
4238 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
4239
4240 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
4241 }
4242 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
4243
4244 /* Flush all TLBs. */
4245 PGM_INVL_ALL_VCPU_TLBS(pVM);
4246 pgmPhysInvalidatePageMapTLB(pVM);
4247 }
4248 pVM->pgm.s.cLargeHandyPages = 0;
4249 }
4250
4251 if (RT_SUCCESS(rc))
4252 {
4253 static uint32_t cTimeOut = 0;
4254 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
4255
4256 if (u64TimeStampDelta > 100)
4257 {
4258 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
4259 if ( ++cTimeOut > 10
4260 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
4261 {
4262 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
4263 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
4264 */
4265 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
4266 PGMSetLargePageUsage(pVM, false);
4267 }
4268 }
4269 else
4270 if (cTimeOut > 0)
4271 cTimeOut--;
4272 }
4273
4274 pgmUnlock(pVM);
4275 return rc;
4276#else
4277 return VERR_NOT_IMPLEMENTED;
4278#endif /* PGM_WITH_LARGE_PAGES */
4279}
4280
4281
4282/**
4283 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
4284 *
4285 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
4286 * signal and clear the out of memory condition. When contracted, this API is
4287 * used to try clear the condition when the user wants to resume.
4288 *
4289 * @returns The following VBox status codes.
4290 * @retval VINF_SUCCESS on success. FFs cleared.
4291 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
4292 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
4293 *
4294 * @param pVM The cross context VM structure.
4295 *
4296 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
4297 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
4298 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
4299 * handler.
4300 */
4301VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
4302{
4303 pgmLock(pVM);
4304
4305 /*
4306 * Allocate more pages, noting down the index of the first new page.
4307 */
4308 uint32_t iClear = pVM->pgm.s.cHandyPages;
4309 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
4310 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
4311 int rcAlloc = VINF_SUCCESS;
4312 int rcSeed = VINF_SUCCESS;
4313 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4314 while (rc == VERR_GMM_SEED_ME)
4315 {
4316 void *pvChunk;
4317 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
4318 if (RT_SUCCESS(rc))
4319 {
4320 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
4321 if (RT_FAILURE(rc))
4322 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
4323 }
4324 if (RT_SUCCESS(rc))
4325 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
4326 }
4327
4328 /* todo: we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
4329 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
4330 && pVM->pgm.s.cHandyPages > 0)
4331 {
4332 /* Still handy pages left, so don't panic. */
4333 rc = VINF_SUCCESS;
4334 }
4335
4336 if (RT_SUCCESS(rc))
4337 {
4338 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
4339 Assert(pVM->pgm.s.cHandyPages > 0);
4340 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4341 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
4342
4343#ifdef VBOX_STRICT
4344 uint32_t i;
4345 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
4346 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
4347 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
4348 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
4349 break;
4350 if (i != pVM->pgm.s.cHandyPages)
4351 {
4352 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
4353 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
4354 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
4355 RTAssertMsg2Add(("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
4356 pVM->pgm.s.aHandyPages[j].idPage,
4357 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
4358 pVM->pgm.s.aHandyPages[j].idSharedPage,
4359 j == i ? " <---" : ""));
4360 RTAssertPanic();
4361 }
4362#endif
4363 /*
4364 * Clear the pages.
4365 */
4366 while (iClear < pVM->pgm.s.cHandyPages)
4367 {
4368 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
4369 void *pv;
4370 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
4371 AssertLogRelMsgBreak(RT_SUCCESS(rc),
4372 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
4373 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
4374 ASMMemZeroPage(pv);
4375 iClear++;
4376 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
4377 }
4378 }
4379 else
4380 {
4381 uint64_t cAllocPages, cMaxPages, cBalloonPages;
4382
4383 /*
4384 * We should never get here unless there is a genuine shortage of
4385 * memory (or some internal error). Flag the error so the VM can be
4386 * suspended ASAP and the user informed. If we're totally out of
4387 * handy pages we will return failure.
4388 */
4389 /* Report the failure. */
4390 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
4391 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
4392 rc, rcAlloc, rcSeed,
4393 pVM->pgm.s.cHandyPages,
4394 pVM->pgm.s.cAllPages,
4395 pVM->pgm.s.cPrivatePages,
4396 pVM->pgm.s.cSharedPages,
4397 pVM->pgm.s.cZeroPages));
4398
4399 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
4400 {
4401 LogRel(("GMM: Statistics:\n"
4402 " Allocated pages: %RX64\n"
4403 " Maximum pages: %RX64\n"
4404 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
4405 }
4406
4407 if ( rc != VERR_NO_MEMORY
4408 && rc != VERR_NO_PHYS_MEMORY
4409 && rc != VERR_LOCK_FAILED)
4410 {
4411 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4412 {
4413 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
4414 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
4415 pVM->pgm.s.aHandyPages[i].idSharedPage));
4416 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
4417 if (idPage != NIL_GMM_PAGEID)
4418 {
4419 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4420 pRam;
4421 pRam = pRam->pNextR3)
4422 {
4423 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
4424 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4425 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
4426 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
4427 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
4428 }
4429 }
4430 }
4431 }
4432
4433 /* Set the FFs and adjust rc. */
4434 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4435 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
4436 if ( rc == VERR_NO_MEMORY
4437 || rc == VERR_NO_PHYS_MEMORY
4438 || rc == VERR_LOCK_FAILED)
4439 rc = VINF_EM_NO_MEMORY;
4440 }
4441
4442 pgmUnlock(pVM);
4443 return rc;
4444}
4445
4446
4447/**
4448 * Frees the specified RAM page and replaces it with the ZERO page.
4449 *
4450 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
4451 *
4452 * @param pVM The cross context VM structure.
4453 * @param pReq Pointer to the request.
4454 * @param pcPendingPages Where the number of pages waiting to be freed are
4455 * kept. This will normally be incremented.
4456 * @param pPage Pointer to the page structure.
4457 * @param GCPhys The guest physical address of the page, if applicable.
4458 *
4459 * @remarks The caller must own the PGM lock.
4460 */
4461int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
4462{
4463 /*
4464 * Assert sanity.
4465 */
4466 PGM_LOCK_ASSERT_OWNER(pVM);
4467 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
4468 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
4469 {
4470 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4471 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
4472 }
4473
4474 /** @todo What about ballooning of large pages??! */
4475 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
4476 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
4477
4478 if ( PGM_PAGE_IS_ZERO(pPage)
4479 || PGM_PAGE_IS_BALLOONED(pPage))
4480 return VINF_SUCCESS;
4481
4482 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
4483 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
4484 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
4485 || idPage > GMM_PAGEID_LAST
4486 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
4487 {
4488 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4489 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
4490 }
4491
4492 /* update page count stats. */
4493 if (PGM_PAGE_IS_SHARED(pPage))
4494 pVM->pgm.s.cSharedPages--;
4495 else
4496 pVM->pgm.s.cPrivatePages--;
4497 pVM->pgm.s.cZeroPages++;
4498
4499 /* Deal with write monitored pages. */
4500 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
4501 {
4502 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
4503 pVM->pgm.s.cWrittenToPages++;
4504 }
4505
4506 /*
4507 * pPage = ZERO page.
4508 */
4509 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
4510 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
4511 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
4512 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4513 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4514 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4515
4516 /* Flush physical page map TLB entry. */
4517 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
4518
4519 /*
4520 * Make sure it's not in the handy page array.
4521 */
4522 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4523 {
4524 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
4525 {
4526 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
4527 break;
4528 }
4529 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
4530 {
4531 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
4532 break;
4533 }
4534 }
4535
4536 /*
4537 * Push it onto the page array.
4538 */
4539 uint32_t iPage = *pcPendingPages;
4540 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
4541 *pcPendingPages += 1;
4542
4543 pReq->aPages[iPage].idPage = idPage;
4544
4545 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
4546 return VINF_SUCCESS;
4547
4548 /*
4549 * Flush the pages.
4550 */
4551 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
4552 if (RT_SUCCESS(rc))
4553 {
4554 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4555 *pcPendingPages = 0;
4556 }
4557 return rc;
4558}
4559
4560
4561/**
4562 * Converts a GC physical address to a HC ring-3 pointer, with some
4563 * additional checks.
4564 *
4565 * @returns VBox status code.
4566 * @retval VINF_SUCCESS on success.
4567 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4568 * access handler of some kind.
4569 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4570 * accesses or is odd in any way.
4571 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4572 *
4573 * @param pVM The cross context VM structure.
4574 * @param GCPhys The GC physical address to convert. Since this is only
4575 * used for filling the REM TLB, the A20 mask must be
4576 * applied before calling this API.
4577 * @param fWritable Whether write access is required.
4578 * @param ppv Where to store the pointer corresponding to GCPhys on
4579 * success.
4580 */
4581VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
4582{
4583 pgmLock(pVM);
4584 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
4585
4586 PPGMRAMRANGE pRam;
4587 PPGMPAGE pPage;
4588 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
4589 if (RT_SUCCESS(rc))
4590 {
4591 if (PGM_PAGE_IS_BALLOONED(pPage))
4592 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4593 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
4594 rc = VINF_SUCCESS;
4595 else
4596 {
4597 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4598 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4599 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
4600 {
4601 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
4602 * in -norawr0 mode. */
4603 if (fWritable)
4604 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4605 }
4606 else
4607 {
4608 /* Temporarily disabled physical handler(s), since the recompiler
4609 doesn't get notified when it's reset we'll have to pretend it's
4610 operating normally. */
4611 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
4612 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4613 else
4614 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4615 }
4616 }
4617 if (RT_SUCCESS(rc))
4618 {
4619 int rc2;
4620
4621 /* Make sure what we return is writable. */
4622 if (fWritable)
4623 switch (PGM_PAGE_GET_STATE(pPage))
4624 {
4625 case PGM_PAGE_STATE_ALLOCATED:
4626 break;
4627 case PGM_PAGE_STATE_BALLOONED:
4628 AssertFailed();
4629 break;
4630 case PGM_PAGE_STATE_ZERO:
4631 case PGM_PAGE_STATE_SHARED:
4632 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
4633 break;
4634 case PGM_PAGE_STATE_WRITE_MONITORED:
4635 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4636 AssertLogRelRCReturn(rc2, rc2);
4637 break;
4638 }
4639
4640 /* Get a ring-3 mapping of the address. */
4641 PPGMPAGER3MAPTLBE pTlbe;
4642 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
4643 AssertLogRelRCReturn(rc2, rc2);
4644 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4645 /** @todo mapping/locking hell; this isn't horribly efficient since
4646 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
4647
4648 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4649 }
4650 else
4651 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4652
4653 /* else: handler catching all access, no pointer returned. */
4654 }
4655 else
4656 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4657
4658 pgmUnlock(pVM);
4659 return rc;
4660}
4661
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette