VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 77241

Last change on this file since 77241 was 77241, checked in by vboxsync, 6 years ago

VMM: Added dev helps for bulk page mapping locking. VMMDev will be using this for a new variation on the HGCM page list parameter type. bugref:9172

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 213.2 KB
Line 
1/* $Id: PGMPhys.cpp 77241 2019-02-10 22:30:33Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iem.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/mm.h>
27#include <VBox/vmm/nem.h>
28#include <VBox/vmm/stam.h>
29#ifdef VBOX_WITH_REM
30# include <VBox/vmm/rem.h>
31#endif
32#include <VBox/vmm/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vmm/vm.h>
35#include <VBox/vmm/uvm.h>
36#include "PGMInline.h"
37#include <VBox/sup.h>
38#include <VBox/param.h>
39#include <VBox/err.h>
40#include <VBox/log.h>
41#include <iprt/assert.h>
42#include <iprt/alloc.h>
43#include <iprt/asm.h>
44#ifdef VBOX_STRICT
45# include <iprt/crc.h>
46#endif
47#include <iprt/thread.h>
48#include <iprt/string.h>
49#include <iprt/system.h>
50
51
52/*********************************************************************************************************************************
53* Defined Constants And Macros *
54*********************************************************************************************************************************/
55/** The number of pages to free in one batch. */
56#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
57
58
59/*
60 * PGMR3PhysReadU8-64
61 * PGMR3PhysWriteU8-64
62 */
63#define PGMPHYSFN_READNAME PGMR3PhysReadU8
64#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
65#define PGMPHYS_DATASIZE 1
66#define PGMPHYS_DATATYPE uint8_t
67#include "PGMPhysRWTmpl.h"
68
69#define PGMPHYSFN_READNAME PGMR3PhysReadU16
70#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
71#define PGMPHYS_DATASIZE 2
72#define PGMPHYS_DATATYPE uint16_t
73#include "PGMPhysRWTmpl.h"
74
75#define PGMPHYSFN_READNAME PGMR3PhysReadU32
76#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
77#define PGMPHYS_DATASIZE 4
78#define PGMPHYS_DATATYPE uint32_t
79#include "PGMPhysRWTmpl.h"
80
81#define PGMPHYSFN_READNAME PGMR3PhysReadU64
82#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
83#define PGMPHYS_DATASIZE 8
84#define PGMPHYS_DATATYPE uint64_t
85#include "PGMPhysRWTmpl.h"
86
87
88/**
89 * EMT worker for PGMR3PhysReadExternal.
90 */
91static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
92 PGMACCESSORIGIN enmOrigin)
93{
94 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
95 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Read from physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM The cross context VM structure.
107 * @param GCPhys Physical address to read from.
108 * @param pvBuf Where to read into.
109 * @param cbRead How many bytes to read.
110 * @param enmOrigin Who is calling.
111 *
112 * @thread Any but EMTs.
113 */
114VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
115{
116 VM_ASSERT_OTHER_THREAD(pVM);
117
118 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
119 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
120
121 pgmLock(pVM);
122
123 /*
124 * Copy loop on ram ranges.
125 */
126 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
127 for (;;)
128 {
129 /* Inside range or not? */
130 if (pRam && GCPhys >= pRam->GCPhys)
131 {
132 /*
133 * Must work our way thru this page by page.
134 */
135 RTGCPHYS off = GCPhys - pRam->GCPhys;
136 while (off < pRam->cb)
137 {
138 unsigned iPage = off >> PAGE_SHIFT;
139 PPGMPAGE pPage = &pRam->aPages[iPage];
140
141 /*
142 * If the page has an ALL access handler, we'll have to
143 * delegate the job to EMT.
144 */
145 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
146 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
147 {
148 pgmUnlock(pVM);
149
150 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
151 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
152 }
153 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
154
155 /*
156 * Simple stuff, go ahead.
157 */
158 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
159 if (cb > cbRead)
160 cb = cbRead;
161 PGMPAGEMAPLOCK PgMpLck;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
164 if (RT_SUCCESS(rc))
165 {
166 memcpy(pvBuf, pvSrc, cb);
167 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
168 }
169 else
170 {
171 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
172 pRam->GCPhys + off, pPage, rc));
173 memset(pvBuf, 0xff, cb);
174 }
175
176 /* next page */
177 if (cb >= cbRead)
178 {
179 pgmUnlock(pVM);
180 return VINF_SUCCESS;
181 }
182 cbRead -= cb;
183 off += cb;
184 GCPhys += cb;
185 pvBuf = (char *)pvBuf + cb;
186 } /* walk pages in ram range. */
187 }
188 else
189 {
190 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
191
192 /*
193 * Unassigned address space.
194 */
195 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
196 if (cb >= cbRead)
197 {
198 memset(pvBuf, 0xff, cbRead);
199 break;
200 }
201 memset(pvBuf, 0xff, cb);
202
203 cbRead -= cb;
204 pvBuf = (char *)pvBuf + cb;
205 GCPhys += cb;
206 }
207
208 /* Advance range if necessary. */
209 while (pRam && GCPhys > pRam->GCPhysLast)
210 pRam = pRam->CTX_SUFF(pNext);
211 } /* Ram range walk */
212
213 pgmUnlock(pVM);
214
215 return VINF_SUCCESS;
216}
217
218
219/**
220 * EMT worker for PGMR3PhysWriteExternal.
221 */
222static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
223 PGMACCESSORIGIN enmOrigin)
224{
225 /** @todo VERR_EM_NO_MEMORY */
226 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
227 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
228 return VINF_SUCCESS;
229}
230
231
232/**
233 * Write to physical memory, external users.
234 *
235 * @returns VBox status code.
236 * @retval VINF_SUCCESS.
237 * @retval VERR_EM_NO_MEMORY.
238 *
239 * @param pVM The cross context VM structure.
240 * @param GCPhys Physical address to write to.
241 * @param pvBuf What to write.
242 * @param cbWrite How many bytes to write.
243 * @param enmOrigin Who is calling.
244 *
245 * @thread Any but EMTs.
246 */
247VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
248{
249 VM_ASSERT_OTHER_THREAD(pVM);
250
251 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
252 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
253 GCPhys, cbWrite, enmOrigin));
254 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
255 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
256
257 pgmLock(pVM);
258
259 /*
260 * Copy loop on ram ranges, stop when we hit something difficult.
261 */
262 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
263 for (;;)
264 {
265 /* Inside range or not? */
266 if (pRam && GCPhys >= pRam->GCPhys)
267 {
268 /*
269 * Must work our way thru this page by page.
270 */
271 RTGCPTR off = GCPhys - pRam->GCPhys;
272 while (off < pRam->cb)
273 {
274 RTGCPTR iPage = off >> PAGE_SHIFT;
275 PPGMPAGE pPage = &pRam->aPages[iPage];
276
277 /*
278 * Is the page problematic, we have to do the work on the EMT.
279 *
280 * Allocating writable pages and access handlers are
281 * problematic, write monitored pages are simple and can be
282 * dealt with here.
283 */
284 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
285 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
286 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
287 {
288 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
289 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
290 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
291 else
292 {
293 pgmUnlock(pVM);
294
295 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
296 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
297 }
298 }
299 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
300
301 /*
302 * Simple stuff, go ahead.
303 */
304 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
305 if (cb > cbWrite)
306 cb = cbWrite;
307 PGMPAGEMAPLOCK PgMpLck;
308 void *pvDst;
309 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
310 if (RT_SUCCESS(rc))
311 {
312 memcpy(pvDst, pvBuf, cb);
313 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
314 }
315 else
316 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
317 pRam->GCPhys + off, pPage, rc));
318
319 /* next page */
320 if (cb >= cbWrite)
321 {
322 pgmUnlock(pVM);
323 return VINF_SUCCESS;
324 }
325
326 cbWrite -= cb;
327 off += cb;
328 GCPhys += cb;
329 pvBuf = (const char *)pvBuf + cb;
330 } /* walk pages in ram range */
331 }
332 else
333 {
334 /*
335 * Unassigned address space, skip it.
336 */
337 if (!pRam)
338 break;
339 size_t cb = pRam->GCPhys - GCPhys;
340 if (cb >= cbWrite)
341 break;
342 cbWrite -= cb;
343 pvBuf = (const char *)pvBuf + cb;
344 GCPhys += cb;
345 }
346
347 /* Advance range if necessary. */
348 while (pRam && GCPhys > pRam->GCPhysLast)
349 pRam = pRam->CTX_SUFF(pNext);
350 } /* Ram range walk */
351
352 pgmUnlock(pVM);
353 return VINF_SUCCESS;
354}
355
356
357/**
358 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
359 *
360 * @returns see PGMR3PhysGCPhys2CCPtrExternal
361 * @param pVM The cross context VM structure.
362 * @param pGCPhys Pointer to the guest physical address.
363 * @param ppv Where to store the mapping address.
364 * @param pLock Where to store the lock.
365 */
366static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
367{
368 /*
369 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
370 * an access handler after it succeeds.
371 */
372 int rc = pgmLock(pVM);
373 AssertRCReturn(rc, rc);
374
375 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
376 if (RT_SUCCESS(rc))
377 {
378 PPGMPAGEMAPTLBE pTlbe;
379 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
380 AssertFatalRC(rc2);
381 PPGMPAGE pPage = pTlbe->pPage;
382 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
383 {
384 PGMPhysReleasePageMappingLock(pVM, pLock);
385 rc = VERR_PGM_PHYS_PAGE_RESERVED;
386 }
387 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
388#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
389 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
390#endif
391 )
392 {
393 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
394 * not be informed about writes and keep bogus gst->shw mappings around.
395 */
396 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
397 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
398 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
399 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
400 }
401 }
402
403 pgmUnlock(pVM);
404 return rc;
405}
406
407
408/**
409 * Requests the mapping of a guest page into ring-3, external threads.
410 *
411 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
412 * release it.
413 *
414 * This API will assume your intention is to write to the page, and will
415 * therefore replace shared and zero pages. If you do not intend to modify the
416 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
417 *
418 * @returns VBox status code.
419 * @retval VINF_SUCCESS on success.
420 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
421 * backing or if the page has any active access handlers. The caller
422 * must fall back on using PGMR3PhysWriteExternal.
423 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
424 *
425 * @param pVM The cross context VM structure.
426 * @param GCPhys The guest physical address of the page that should be mapped.
427 * @param ppv Where to store the address corresponding to GCPhys.
428 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
429 *
430 * @remark Avoid calling this API from within critical sections (other than the
431 * PGM one) because of the deadlock risk when we have to delegating the
432 * task to an EMT.
433 * @thread Any.
434 */
435VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
436{
437 AssertPtr(ppv);
438 AssertPtr(pLock);
439
440 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
441
442 int rc = pgmLock(pVM);
443 AssertRCReturn(rc, rc);
444
445 /*
446 * Query the Physical TLB entry for the page (may fail).
447 */
448 PPGMPAGEMAPTLBE pTlbe;
449 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
450 if (RT_SUCCESS(rc))
451 {
452 PPGMPAGE pPage = pTlbe->pPage;
453 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
454 rc = VERR_PGM_PHYS_PAGE_RESERVED;
455 else
456 {
457 /*
458 * If the page is shared, the zero page, or being write monitored
459 * it must be converted to an page that's writable if possible.
460 * We can only deal with write monitored pages here, the rest have
461 * to be on an EMT.
462 */
463 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
464 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
465#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
466 || pgmPoolIsDirtyPage(pVM, GCPhys)
467#endif
468 )
469 {
470 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
471 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
472#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
473 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
474#endif
475 )
476 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
477 else
478 {
479 pgmUnlock(pVM);
480
481 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
482 pVM, &GCPhys, ppv, pLock);
483 }
484 }
485
486 /*
487 * Now, just perform the locking and calculate the return address.
488 */
489 PPGMPAGEMAP pMap = pTlbe->pMap;
490 if (pMap)
491 pMap->cRefs++;
492
493 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
494 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
495 {
496 if (cLocks == 0)
497 pVM->pgm.s.cWriteLockedPages++;
498 PGM_PAGE_INC_WRITE_LOCKS(pPage);
499 }
500 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
501 {
502 PGM_PAGE_INC_WRITE_LOCKS(pPage);
503 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
504 if (pMap)
505 pMap->cRefs++; /* Extra ref to prevent it from going away. */
506 }
507
508 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
509 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
510 pLock->pvMap = pMap;
511 }
512 }
513
514 pgmUnlock(pVM);
515 return rc;
516}
517
518
519/**
520 * Requests the mapping of a guest page into ring-3, external threads.
521 *
522 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
523 * release it.
524 *
525 * @returns VBox status code.
526 * @retval VINF_SUCCESS on success.
527 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
528 * backing or if the page as an active ALL access handler. The caller
529 * must fall back on using PGMPhysRead.
530 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
531 *
532 * @param pVM The cross context VM structure.
533 * @param GCPhys The guest physical address of the page that should be mapped.
534 * @param ppv Where to store the address corresponding to GCPhys.
535 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
536 *
537 * @remark Avoid calling this API from within critical sections (other than
538 * the PGM one) because of the deadlock risk.
539 * @thread Any.
540 */
541VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
542{
543 int rc = pgmLock(pVM);
544 AssertRCReturn(rc, rc);
545
546 /*
547 * Query the Physical TLB entry for the page (may fail).
548 */
549 PPGMPAGEMAPTLBE pTlbe;
550 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
551 if (RT_SUCCESS(rc))
552 {
553 PPGMPAGE pPage = pTlbe->pPage;
554#if 1
555 /* MMIO pages doesn't have any readable backing. */
556 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
557 rc = VERR_PGM_PHYS_PAGE_RESERVED;
558#else
559 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
560 rc = VERR_PGM_PHYS_PAGE_RESERVED;
561#endif
562 else
563 {
564 /*
565 * Now, just perform the locking and calculate the return address.
566 */
567 PPGMPAGEMAP pMap = pTlbe->pMap;
568 if (pMap)
569 pMap->cRefs++;
570
571 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
572 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
573 {
574 if (cLocks == 0)
575 pVM->pgm.s.cReadLockedPages++;
576 PGM_PAGE_INC_READ_LOCKS(pPage);
577 }
578 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
579 {
580 PGM_PAGE_INC_READ_LOCKS(pPage);
581 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
582 if (pMap)
583 pMap->cRefs++; /* Extra ref to prevent it from going away. */
584 }
585
586 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
587 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
588 pLock->pvMap = pMap;
589 }
590 }
591
592 pgmUnlock(pVM);
593 return rc;
594}
595
596
597/**
598 * Requests the mapping of multiple guest page into ring-3, external threads.
599 *
600 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
601 * ASAP to release them.
602 *
603 * This API will assume your intention is to write to the pages, and will
604 * therefore replace shared and zero pages. If you do not intend to modify the
605 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
606 *
607 * @returns VBox status code.
608 * @retval VINF_SUCCESS on success.
609 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
610 * backing or if any of the pages the page has any active access
611 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
612 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
613 * an invalid physical address.
614 *
615 * @param pVM The cross context VM structure.
616 * @param cPages Number of pages to lock.
617 * @param paGCPhysPages The guest physical address of the pages that
618 * should be mapped (@a cPages entries).
619 * @param fFlags Flags reserved for future use, MBZ.
620 * @param papvPages Where to store the ring-3 mapping addresses
621 * corresponding to @a paGCPhysPages.
622 * @param paLocks Where to store the locking information that
623 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
624 * in length).
625 *
626 * @remark Avoid calling this API from within critical sections (other than the
627 * PGM one) because of the deadlock risk when we have to delegating the
628 * task to an EMT.
629 * @thread Any.
630 */
631VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
632 void **papvPages, PPGMPAGEMAPLOCK paLocks)
633{
634 Assert(cPages > 0);
635 AssertPtr(papvPages);
636 AssertPtr(paLocks);
637
638 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
639
640 int rc = pgmLock(pVM);
641 AssertRCReturn(rc, rc);
642
643 /*
644 * Lock the pages one by one.
645 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
646 */
647 int32_t cNextYield = 128;
648 uint32_t iPage;
649 for (iPage = 0; iPage < cPages; iPage++)
650 {
651 if (--cNextYield > 0)
652 { /* likely */ }
653 else
654 {
655 pgmUnlock(pVM);
656 ASMNopPause();
657 pgmLock(pVM);
658 cNextYield = 128;
659 }
660
661 /*
662 * Query the Physical TLB entry for the page (may fail).
663 */
664 PPGMPAGEMAPTLBE pTlbe;
665 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
666 if (RT_SUCCESS(rc))
667 { }
668 else
669 break;
670 PPGMPAGE pPage = pTlbe->pPage;
671
672 /*
673 * No MMIO or active access handlers.
674 */
675 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
676 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
677 { }
678 else
679 {
680 rc = VERR_PGM_PHYS_PAGE_RESERVED;
681 break;
682 }
683
684 /*
685 * The page must be in the allocated state and not be a dirty pool page.
686 * We can handle converting a write monitored page to an allocated one, but
687 * anything more complicated must be delegated to an EMT.
688 */
689 bool fDelegateToEmt = false;
690 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
691#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
692 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
693#else
694 fDelegateToEmt = false;
695#endif
696 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
697 {
698#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
699 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
700 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
701 else
702 fDelegateToEmt = true;
703#endif
704 }
705 else
706 fDelegateToEmt = true;
707 if (!fDelegateToEmt)
708 { }
709 else
710 {
711 /* We could do this delegation in bulk, but considered too much work vs gain. */
712 pgmUnlock(pVM);
713 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
714 pVM, paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
715 pgmLock(pVM);
716 if (RT_FAILURE(rc))
717 break;
718 cNextYield = 128;
719 }
720
721 /*
722 * Now, just perform the locking and address calculation.
723 */
724 PPGMPAGEMAP pMap = pTlbe->pMap;
725 if (pMap)
726 pMap->cRefs++;
727
728 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
729 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
730 {
731 if (cLocks == 0)
732 pVM->pgm.s.cWriteLockedPages++;
733 PGM_PAGE_INC_WRITE_LOCKS(pPage);
734 }
735 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
736 {
737 PGM_PAGE_INC_WRITE_LOCKS(pPage);
738 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
739 if (pMap)
740 pMap->cRefs++; /* Extra ref to prevent it from going away. */
741 }
742
743 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
744 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
745 paLocks[iPage].pvMap = pMap;
746 }
747
748 pgmUnlock(pVM);
749
750 /*
751 * On failure we must unlock any pages we managed to get already.
752 */
753 if (RT_FAILURE(rc) && iPage > 0)
754 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
755
756 return rc;
757}
758
759
760/**
761 * Requests the mapping of multiple guest page into ring-3, for reading only,
762 * external threads.
763 *
764 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
765 * to release them.
766 *
767 * @returns VBox status code.
768 * @retval VINF_SUCCESS on success.
769 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
770 * backing or if any of the pages the page has an active ALL access
771 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
772 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
773 * an invalid physical address.
774 *
775 * @param pVM The cross context VM structure.
776 * @param cPages Number of pages to lock.
777 * @param paGCPhysPages The guest physical address of the pages that
778 * should be mapped (@a cPages entries).
779 * @param fFlags Flags reserved for future use, MBZ.
780 * @param papvPages Where to store the ring-3 mapping addresses
781 * corresponding to @a paGCPhysPages.
782 * @param paLocks Where to store the lock information that
783 * pfnPhysReleasePageMappingLock needs (@a cPages
784 * in length).
785 *
786 * @remark Avoid calling this API from within critical sections (other than
787 * the PGM one) because of the deadlock risk.
788 * @thread Any.
789 */
790VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
791 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
792{
793 Assert(cPages > 0);
794 AssertPtr(papvPages);
795 AssertPtr(paLocks);
796
797 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
798
799 int rc = pgmLock(pVM);
800 AssertRCReturn(rc, rc);
801
802 /*
803 * Lock the pages one by one.
804 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
805 */
806 int32_t cNextYield = 256;
807 uint32_t iPage;
808 for (iPage = 0; iPage < cPages; iPage++)
809 {
810 if (--cNextYield > 0)
811 { /* likely */ }
812 else
813 {
814 pgmUnlock(pVM);
815 ASMNopPause();
816 pgmLock(pVM);
817 cNextYield = 256;
818 }
819
820 /*
821 * Query the Physical TLB entry for the page (may fail).
822 */
823 PPGMPAGEMAPTLBE pTlbe;
824 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
825 if (RT_SUCCESS(rc))
826 { }
827 else
828 break;
829 PPGMPAGE pPage = pTlbe->pPage;
830
831 /*
832 * No MMIO or active all access handlers, everything else can be accessed.
833 */
834 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
835 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
836 { }
837 else
838 {
839 rc = VERR_PGM_PHYS_PAGE_RESERVED;
840 break;
841 }
842
843 /*
844 * Now, just perform the locking and address calculation.
845 */
846 PPGMPAGEMAP pMap = pTlbe->pMap;
847 if (pMap)
848 pMap->cRefs++;
849
850 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
851 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
852 {
853 if (cLocks == 0)
854 pVM->pgm.s.cReadLockedPages++;
855 PGM_PAGE_INC_READ_LOCKS(pPage);
856 }
857 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
858 {
859 PGM_PAGE_INC_READ_LOCKS(pPage);
860 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
861 if (pMap)
862 pMap->cRefs++; /* Extra ref to prevent it from going away. */
863 }
864
865 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
866 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
867 paLocks[iPage].pvMap = pMap;
868 }
869
870 pgmUnlock(pVM);
871
872 /*
873 * On failure we must unlock any pages we managed to get already.
874 */
875 if (RT_FAILURE(rc) && iPage > 0)
876 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
877
878 return rc;
879}
880
881
882#define MAKE_LEAF(a_pNode) \
883 do { \
884 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
885 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
886 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
887 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
888 (a_pNode)->pLeftRC = NIL_RTRCPTR; \
889 (a_pNode)->pRightRC = NIL_RTRCPTR; \
890 } while (0)
891
892#define INSERT_LEFT(a_pParent, a_pNode) \
893 do { \
894 (a_pParent)->pLeftR3 = (a_pNode); \
895 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
896 (a_pParent)->pLeftRC = (a_pNode)->pSelfRC; \
897 } while (0)
898#define INSERT_RIGHT(a_pParent, a_pNode) \
899 do { \
900 (a_pParent)->pRightR3 = (a_pNode); \
901 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
902 (a_pParent)->pRightRC = (a_pNode)->pSelfRC; \
903 } while (0)
904
905
906/**
907 * Recursive tree builder.
908 *
909 * @param ppRam Pointer to the iterator variable.
910 * @param iDepth The current depth. Inserts a leaf node if 0.
911 */
912static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
913{
914 PPGMRAMRANGE pRam;
915 if (iDepth <= 0)
916 {
917 /*
918 * Leaf node.
919 */
920 pRam = *ppRam;
921 if (pRam)
922 {
923 *ppRam = pRam->pNextR3;
924 MAKE_LEAF(pRam);
925 }
926 }
927 else
928 {
929
930 /*
931 * Intermediate node.
932 */
933 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
934
935 pRam = *ppRam;
936 if (!pRam)
937 return pLeft;
938 *ppRam = pRam->pNextR3;
939 MAKE_LEAF(pRam);
940 INSERT_LEFT(pRam, pLeft);
941
942 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
943 if (pRight)
944 INSERT_RIGHT(pRam, pRight);
945 }
946 return pRam;
947}
948
949
950/**
951 * Rebuilds the RAM range search trees.
952 *
953 * @param pVM The cross context VM structure.
954 */
955static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
956{
957
958 /*
959 * Create the reasonably balanced tree in a sequential fashion.
960 * For simplicity (laziness) we use standard recursion here.
961 */
962 int iDepth = 0;
963 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
964 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
965 while (pRam)
966 {
967 PPGMRAMRANGE pLeft = pRoot;
968
969 pRoot = pRam;
970 pRam = pRam->pNextR3;
971 MAKE_LEAF(pRoot);
972 INSERT_LEFT(pRoot, pLeft);
973
974 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
975 if (pRight)
976 INSERT_RIGHT(pRoot, pRight);
977 /** @todo else: rotate the tree. */
978
979 iDepth++;
980 }
981
982 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
983 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
984 pVM->pgm.s.pRamRangeTreeRC = pRoot ? pRoot->pSelfRC : NIL_RTRCPTR;
985
986#ifdef VBOX_STRICT
987 /*
988 * Verify that the above code works.
989 */
990 unsigned cRanges = 0;
991 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
992 cRanges++;
993 Assert(cRanges > 0);
994
995 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
996 if ((1U << cMaxDepth) < cRanges)
997 cMaxDepth++;
998
999 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1000 {
1001 unsigned cDepth = 0;
1002 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
1003 for (;;)
1004 {
1005 if (pRam == pRam2)
1006 break;
1007 Assert(pRam2);
1008 if (pRam->GCPhys < pRam2->GCPhys)
1009 pRam2 = pRam2->pLeftR3;
1010 else
1011 pRam2 = pRam2->pRightR3;
1012 }
1013 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1014 }
1015#endif /* VBOX_STRICT */
1016}
1017
1018#undef MAKE_LEAF
1019#undef INSERT_LEFT
1020#undef INSERT_RIGHT
1021
1022/**
1023 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1024 *
1025 * Called when anything was relocated.
1026 *
1027 * @param pVM The cross context VM structure.
1028 */
1029void pgmR3PhysRelinkRamRanges(PVM pVM)
1030{
1031 PPGMRAMRANGE pCur;
1032
1033#ifdef VBOX_STRICT
1034 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1035 {
1036 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1037 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
1038 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1039 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1040 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1041 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1042 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1043 Assert( pCur2 == pCur
1044 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1045 }
1046#endif
1047
1048 pCur = pVM->pgm.s.pRamRangesXR3;
1049 if (pCur)
1050 {
1051 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1052 pVM->pgm.s.pRamRangesXRC = pCur->pSelfRC;
1053
1054 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1055 {
1056 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1057 pCur->pNextRC = pCur->pNextR3->pSelfRC;
1058 }
1059
1060 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1061 Assert(pCur->pNextRC == NIL_RTRCPTR);
1062 }
1063 else
1064 {
1065 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1066 Assert(pVM->pgm.s.pRamRangesXRC == NIL_RTRCPTR);
1067 }
1068 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1069
1070 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1071}
1072
1073
1074/**
1075 * Links a new RAM range into the list.
1076 *
1077 * @param pVM The cross context VM structure.
1078 * @param pNew Pointer to the new list entry.
1079 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1080 */
1081static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1082{
1083 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1084 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1085 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
1086
1087 pgmLock(pVM);
1088
1089 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1090 pNew->pNextR3 = pRam;
1091 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1092 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
1093
1094 if (pPrev)
1095 {
1096 pPrev->pNextR3 = pNew;
1097 pPrev->pNextR0 = pNew->pSelfR0;
1098 pPrev->pNextRC = pNew->pSelfRC;
1099 }
1100 else
1101 {
1102 pVM->pgm.s.pRamRangesXR3 = pNew;
1103 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1104 pVM->pgm.s.pRamRangesXRC = pNew->pSelfRC;
1105 }
1106 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1107
1108 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1109 pgmUnlock(pVM);
1110}
1111
1112
1113/**
1114 * Unlink an existing RAM range from the list.
1115 *
1116 * @param pVM The cross context VM structure.
1117 * @param pRam Pointer to the new list entry.
1118 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1119 */
1120static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1121{
1122 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1123 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1124 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
1125
1126 pgmLock(pVM);
1127
1128 PPGMRAMRANGE pNext = pRam->pNextR3;
1129 if (pPrev)
1130 {
1131 pPrev->pNextR3 = pNext;
1132 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1133 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
1134 }
1135 else
1136 {
1137 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1138 pVM->pgm.s.pRamRangesXR3 = pNext;
1139 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1140 pVM->pgm.s.pRamRangesXRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
1141 }
1142 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1143
1144 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1145 pgmUnlock(pVM);
1146}
1147
1148
1149/**
1150 * Unlink an existing RAM range from the list.
1151 *
1152 * @param pVM The cross context VM structure.
1153 * @param pRam Pointer to the new list entry.
1154 */
1155static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1156{
1157 pgmLock(pVM);
1158
1159 /* find prev. */
1160 PPGMRAMRANGE pPrev = NULL;
1161 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1162 while (pCur != pRam)
1163 {
1164 pPrev = pCur;
1165 pCur = pCur->pNextR3;
1166 }
1167 AssertFatal(pCur);
1168
1169 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1170 pgmUnlock(pVM);
1171}
1172
1173
1174/**
1175 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1176 *
1177 * @returns VBox status code.
1178 * @param pVM The cross context VM structure.
1179 * @param pRam The RAM range in which the pages resides.
1180 * @param GCPhys The address of the first page.
1181 * @param GCPhysLast The address of the last page.
1182 * @param enmType The page type to replace then with.
1183 */
1184static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType)
1185{
1186 PGM_LOCK_ASSERT_OWNER(pVM);
1187 uint32_t cPendingPages = 0;
1188 PGMMFREEPAGESREQ pReq;
1189 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1190 AssertLogRelRCReturn(rc, rc);
1191
1192 /* Iterate the pages. */
1193 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1194 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1195 while (cPagesLeft-- > 0)
1196 {
1197 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType);
1198 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1199
1200 PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType);
1201
1202 GCPhys += PAGE_SIZE;
1203 pPageDst++;
1204 }
1205
1206 if (cPendingPages)
1207 {
1208 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1209 AssertLogRelRCReturn(rc, rc);
1210 }
1211 GMMR3FreePagesCleanup(pReq);
1212
1213 return rc;
1214}
1215
1216#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1217
1218/**
1219 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
1220 *
1221 * This is only called on one of the EMTs while the other ones are waiting for
1222 * it to complete this function.
1223 *
1224 * @returns VINF_SUCCESS (VBox strict status code).
1225 * @param pVM The cross context VM structure.
1226 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1227 * @param pvUser User parameter
1228 */
1229static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1230{
1231 uintptr_t *paUser = (uintptr_t *)pvUser;
1232 bool fInflate = !!paUser[0];
1233 unsigned cPages = paUser[1];
1234 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
1235 uint32_t cPendingPages = 0;
1236 PGMMFREEPAGESREQ pReq;
1237 int rc;
1238
1239 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
1240 pgmLock(pVM);
1241
1242 if (fInflate)
1243 {
1244 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
1245 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
1246
1247 /* Replace pages with ZERO pages. */
1248 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1249 if (RT_FAILURE(rc))
1250 {
1251 pgmUnlock(pVM);
1252 AssertLogRelRC(rc);
1253 return rc;
1254 }
1255
1256 /* Iterate the pages. */
1257 for (unsigned i = 0; i < cPages; i++)
1258 {
1259 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1260 if ( pPage == NULL
1261 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
1262 {
1263 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
1264 break;
1265 }
1266
1267 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
1268
1269 /* Flush the shadow PT if this page was previously used as a guest page table. */
1270 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
1271
1272 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
1273 if (RT_FAILURE(rc))
1274 {
1275 pgmUnlock(pVM);
1276 AssertLogRelRC(rc);
1277 return rc;
1278 }
1279 Assert(PGM_PAGE_IS_ZERO(pPage));
1280 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
1281 }
1282
1283 if (cPendingPages)
1284 {
1285 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1286 if (RT_FAILURE(rc))
1287 {
1288 pgmUnlock(pVM);
1289 AssertLogRelRC(rc);
1290 return rc;
1291 }
1292 }
1293 GMMR3FreePagesCleanup(pReq);
1294 }
1295 else
1296 {
1297 /* Iterate the pages. */
1298 for (unsigned i = 0; i < cPages; i++)
1299 {
1300 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1301 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1302
1303 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1304
1305 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1306
1307 /* Change back to zero page. (NEM does not need to be informed.) */
1308 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1309 }
1310
1311 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1312 }
1313
1314 /* Notify GMM about the balloon change. */
1315 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1316 if (RT_SUCCESS(rc))
1317 {
1318 if (!fInflate)
1319 {
1320 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1321 pVM->pgm.s.cBalloonedPages -= cPages;
1322 }
1323 else
1324 pVM->pgm.s.cBalloonedPages += cPages;
1325 }
1326
1327 pgmUnlock(pVM);
1328
1329 /* Flush the recompiler's TLB as well. */
1330 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1331 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1332
1333 AssertLogRelRC(rc);
1334 return rc;
1335}
1336
1337
1338/**
1339 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1340 *
1341 * @returns VBox status code.
1342 * @param pVM The cross context VM structure.
1343 * @param fInflate Inflate or deflate memory balloon
1344 * @param cPages Number of pages to free
1345 * @param paPhysPage Array of guest physical addresses
1346 */
1347static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1348{
1349 uintptr_t paUser[3];
1350
1351 paUser[0] = fInflate;
1352 paUser[1] = cPages;
1353 paUser[2] = (uintptr_t)paPhysPage;
1354 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1355 AssertRC(rc);
1356
1357 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1358 RTMemFree(paPhysPage);
1359}
1360
1361#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1362
1363/**
1364 * Inflate or deflate a memory balloon
1365 *
1366 * @returns VBox status code.
1367 * @param pVM The cross context VM structure.
1368 * @param fInflate Inflate or deflate memory balloon
1369 * @param cPages Number of pages to free
1370 * @param paPhysPage Array of guest physical addresses
1371 */
1372VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1373{
1374 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1375#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1376 int rc;
1377
1378 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1379 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1380
1381 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1382 * In the SMP case we post a request packet to postpone the job.
1383 */
1384 if (pVM->cCpus > 1)
1385 {
1386 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1387 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1388 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1389
1390 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1391
1392 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1393 AssertRC(rc);
1394 }
1395 else
1396 {
1397 uintptr_t paUser[3];
1398
1399 paUser[0] = fInflate;
1400 paUser[1] = cPages;
1401 paUser[2] = (uintptr_t)paPhysPage;
1402 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1403 AssertRC(rc);
1404 }
1405 return rc;
1406
1407#else
1408 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1409 return VERR_NOT_IMPLEMENTED;
1410#endif
1411}
1412
1413
1414/**
1415 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1416 * physical RAM.
1417 *
1418 * This is only called on one of the EMTs while the other ones are waiting for
1419 * it to complete this function.
1420 *
1421 * @returns VINF_SUCCESS (VBox strict status code).
1422 * @param pVM The cross context VM structure.
1423 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1424 * @param pvUser User parameter, unused.
1425 */
1426static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1427{
1428 int rc = VINF_SUCCESS;
1429 NOREF(pvUser); NOREF(pVCpu);
1430
1431 pgmLock(pVM);
1432#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1433 pgmPoolResetDirtyPages(pVM);
1434#endif
1435
1436 /** @todo pointless to write protect the physical page pointed to by RSP. */
1437
1438 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1439 pRam;
1440 pRam = pRam->CTX_SUFF(pNext))
1441 {
1442 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1443 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1444 {
1445 PPGMPAGE pPage = &pRam->aPages[iPage];
1446 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1447
1448 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1449 || enmPageType == PGMPAGETYPE_MMIO2)
1450 {
1451 /*
1452 * A RAM page.
1453 */
1454 switch (PGM_PAGE_GET_STATE(pPage))
1455 {
1456 case PGM_PAGE_STATE_ALLOCATED:
1457 /** @todo Optimize this: Don't always re-enable write
1458 * monitoring if the page is known to be very busy. */
1459 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1460 {
1461 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1462 /* Remember this dirty page for the next (memory) sync. */
1463 PGM_PAGE_SET_FT_DIRTY(pPage);
1464 }
1465
1466 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1467 break;
1468
1469 case PGM_PAGE_STATE_SHARED:
1470 AssertFailed();
1471 break;
1472
1473 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1474 default:
1475 break;
1476 }
1477 }
1478 }
1479 }
1480 pgmR3PoolWriteProtectPages(pVM);
1481 PGM_INVL_ALL_VCPU_TLBS(pVM);
1482 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1483 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1484
1485 pgmUnlock(pVM);
1486 return rc;
1487}
1488
1489/**
1490 * Protect all physical RAM to monitor writes
1491 *
1492 * @returns VBox status code.
1493 * @param pVM The cross context VM structure.
1494 */
1495VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1496{
1497 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1498
1499 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1500 AssertRC(rc);
1501 return rc;
1502}
1503
1504/**
1505 * Enumerate all dirty FT pages.
1506 *
1507 * @returns VBox status code.
1508 * @param pVM The cross context VM structure.
1509 * @param pfnEnum Enumerate callback handler.
1510 * @param pvUser Enumerate callback handler parameter.
1511 */
1512VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
1513{
1514 int rc = VINF_SUCCESS;
1515
1516 pgmLock(pVM);
1517 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1518 pRam;
1519 pRam = pRam->CTX_SUFF(pNext))
1520 {
1521 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1522 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1523 {
1524 PPGMPAGE pPage = &pRam->aPages[iPage];
1525 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1526
1527 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1528 || enmPageType == PGMPAGETYPE_MMIO2)
1529 {
1530 /*
1531 * A RAM page.
1532 */
1533 switch (PGM_PAGE_GET_STATE(pPage))
1534 {
1535 case PGM_PAGE_STATE_ALLOCATED:
1536 case PGM_PAGE_STATE_WRITE_MONITORED:
1537 if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */
1538 && PGM_PAGE_IS_FT_DIRTY(pPage))
1539 {
1540 uint32_t cbPageRange = PAGE_SIZE;
1541 uint32_t iPageClean = iPage + 1;
1542 RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE;
1543 uint8_t *pu8Page = NULL;
1544 PGMPAGEMAPLOCK Lock;
1545
1546 /* Find the next clean page, so we can merge adjacent dirty pages. */
1547 for (; iPageClean < cPages; iPageClean++)
1548 {
1549 PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
1550 if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
1551 || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
1552 || PGM_PAGE_IS_WRITTEN_TO(pPageNext)
1553 || !PGM_PAGE_IS_FT_DIRTY(pPageNext)
1554 /* Crossing a chunk boundary? */
1555 || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
1556 )
1557 break;
1558
1559 cbPageRange += PAGE_SIZE;
1560 }
1561
1562 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
1563 if (RT_SUCCESS(rc))
1564 {
1565 /** @todo this is risky; the range might be changed, but little choice as the sync
1566 * costs a lot of time. */
1567 pgmUnlock(pVM);
1568 pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
1569 pgmLock(pVM);
1570 PGMPhysReleasePageMappingLock(pVM, &Lock);
1571 }
1572
1573 for (uint32_t iTmp = iPage; iTmp < iPageClean; iTmp++)
1574 PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iTmp]);
1575 }
1576 break;
1577 }
1578 }
1579 }
1580 }
1581 pgmUnlock(pVM);
1582 return rc;
1583}
1584
1585
1586/**
1587 * Gets the number of ram ranges.
1588 *
1589 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1590 * @param pVM The cross context VM structure.
1591 */
1592VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1593{
1594 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1595
1596 pgmLock(pVM);
1597 uint32_t cRamRanges = 0;
1598 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1599 cRamRanges++;
1600 pgmUnlock(pVM);
1601 return cRamRanges;
1602}
1603
1604
1605/**
1606 * Get information about a range.
1607 *
1608 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1609 * @param pVM The cross context VM structure.
1610 * @param iRange The ordinal of the range.
1611 * @param pGCPhysStart Where to return the start of the range. Optional.
1612 * @param pGCPhysLast Where to return the address of the last byte in the
1613 * range. Optional.
1614 * @param ppszDesc Where to return the range description. Optional.
1615 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1616 * Optional.
1617 */
1618VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1619 const char **ppszDesc, bool *pfIsMmio)
1620{
1621 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1622
1623 pgmLock(pVM);
1624 uint32_t iCurRange = 0;
1625 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1626 if (iCurRange == iRange)
1627 {
1628 if (pGCPhysStart)
1629 *pGCPhysStart = pCur->GCPhys;
1630 if (pGCPhysLast)
1631 *pGCPhysLast = pCur->GCPhysLast;
1632 if (ppszDesc)
1633 *ppszDesc = pCur->pszDesc;
1634 if (pfIsMmio)
1635 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1636
1637 pgmUnlock(pVM);
1638 return VINF_SUCCESS;
1639 }
1640 pgmUnlock(pVM);
1641 return VERR_OUT_OF_RANGE;
1642}
1643
1644
1645/**
1646 * Query the amount of free memory inside VMMR0
1647 *
1648 * @returns VBox status code.
1649 * @param pUVM The user mode VM handle.
1650 * @param pcbAllocMem Where to return the amount of memory allocated
1651 * by VMs.
1652 * @param pcbFreeMem Where to return the amount of memory that is
1653 * allocated from the host but not currently used
1654 * by any VMs.
1655 * @param pcbBallonedMem Where to return the sum of memory that is
1656 * currently ballooned by the VMs.
1657 * @param pcbSharedMem Where to return the amount of memory that is
1658 * currently shared.
1659 */
1660VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1661 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1662{
1663 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1664 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1665
1666 uint64_t cAllocPages = 0;
1667 uint64_t cFreePages = 0;
1668 uint64_t cBalloonPages = 0;
1669 uint64_t cSharedPages = 0;
1670 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1671 AssertRCReturn(rc, rc);
1672
1673 if (pcbAllocMem)
1674 *pcbAllocMem = cAllocPages * _4K;
1675
1676 if (pcbFreeMem)
1677 *pcbFreeMem = cFreePages * _4K;
1678
1679 if (pcbBallonedMem)
1680 *pcbBallonedMem = cBalloonPages * _4K;
1681
1682 if (pcbSharedMem)
1683 *pcbSharedMem = cSharedPages * _4K;
1684
1685 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1686 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1687 return VINF_SUCCESS;
1688}
1689
1690
1691/**
1692 * Query memory stats for the VM.
1693 *
1694 * @returns VBox status code.
1695 * @param pUVM The user mode VM handle.
1696 * @param pcbTotalMem Where to return total amount memory the VM may
1697 * possibly use.
1698 * @param pcbPrivateMem Where to return the amount of private memory
1699 * currently allocated.
1700 * @param pcbSharedMem Where to return the amount of actually shared
1701 * memory currently used by the VM.
1702 * @param pcbZeroMem Where to return the amount of memory backed by
1703 * zero pages.
1704 *
1705 * @remarks The total mem is normally larger than the sum of the three
1706 * components. There are two reasons for this, first the amount of
1707 * shared memory is what we're sure is shared instead of what could
1708 * possibly be shared with someone. Secondly, because the total may
1709 * include some pure MMIO pages that doesn't go into any of the three
1710 * sub-counts.
1711 *
1712 * @todo Why do we return reused shared pages instead of anything that could
1713 * potentially be shared? Doesn't this mean the first VM gets a much
1714 * lower number of shared pages?
1715 */
1716VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1717 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1718{
1719 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1720 PVM pVM = pUVM->pVM;
1721 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1722
1723 if (pcbTotalMem)
1724 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1725
1726 if (pcbPrivateMem)
1727 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1728
1729 if (pcbSharedMem)
1730 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1731
1732 if (pcbZeroMem)
1733 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1734
1735 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1736 return VINF_SUCCESS;
1737}
1738
1739
1740/**
1741 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1742 *
1743 * @param pVM The cross context VM structure.
1744 * @param pNew The new RAM range.
1745 * @param GCPhys The address of the RAM range.
1746 * @param GCPhysLast The last address of the RAM range.
1747 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1748 * if in HMA.
1749 * @param R0PtrNew Ditto for R0.
1750 * @param pszDesc The description.
1751 * @param pPrev The previous RAM range (for linking).
1752 */
1753static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1754 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1755{
1756 /*
1757 * Initialize the range.
1758 */
1759 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1760 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1761 pNew->GCPhys = GCPhys;
1762 pNew->GCPhysLast = GCPhysLast;
1763 pNew->cb = GCPhysLast - GCPhys + 1;
1764 pNew->pszDesc = pszDesc;
1765 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1766 pNew->pvR3 = NULL;
1767 pNew->paLSPages = NULL;
1768
1769 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1770 RTGCPHYS iPage = cPages;
1771 while (iPage-- > 0)
1772 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1773
1774 /* Update the page count stats. */
1775 pVM->pgm.s.cZeroPages += cPages;
1776 pVM->pgm.s.cAllPages += cPages;
1777
1778 /*
1779 * Link it.
1780 */
1781 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1782}
1783
1784
1785/**
1786 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.}
1787 * @sa pgmR3PhysMMIO2ExRangeRelocate
1788 */
1789static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
1790 PGMRELOCATECALL enmMode, void *pvUser)
1791{
1792 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1793 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1794 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld);
1795
1796 switch (enmMode)
1797 {
1798 case PGMRELOCATECALL_SUGGEST:
1799 return true;
1800
1801 case PGMRELOCATECALL_RELOCATE:
1802 {
1803 /*
1804 * Update myself, then relink all the ranges and flush the RC TLB.
1805 */
1806 pgmLock(pVM);
1807
1808 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1809
1810 pgmR3PhysRelinkRamRanges(pVM);
1811 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1812 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1813
1814 pgmUnlock(pVM);
1815 return true;
1816 }
1817
1818 default:
1819 AssertFailedReturn(false);
1820 }
1821}
1822
1823
1824/**
1825 * PGMR3PhysRegisterRam worker that registers a high chunk.
1826 *
1827 * @returns VBox status code.
1828 * @param pVM The cross context VM structure.
1829 * @param GCPhys The address of the RAM.
1830 * @param cRamPages The number of RAM pages to register.
1831 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1832 * @param iChunk The chunk number.
1833 * @param pszDesc The RAM range description.
1834 * @param ppPrev Previous RAM range pointer. In/Out.
1835 */
1836static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1837 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1838 PPGMRAMRANGE *ppPrev)
1839{
1840 const char *pszDescChunk = iChunk == 0
1841 ? pszDesc
1842 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1843 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1844
1845 /*
1846 * Allocate memory for the new chunk.
1847 */
1848 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1849 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1850 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1851 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1852 void *pvChunk = NULL;
1853 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1854#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1855 &R0PtrChunk,
1856#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1857 VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL,
1858#else
1859 NULL,
1860#endif
1861 paChunkPages);
1862 if (RT_SUCCESS(rc))
1863 {
1864#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
1865 Assert(R0PtrChunk != NIL_RTR0PTR);
1866#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
1867 if (!VM_IS_HM_OR_NEM_ENABLED(pVM))
1868 R0PtrChunk = NIL_RTR0PTR;
1869#else
1870 R0PtrChunk = (uintptr_t)pvChunk;
1871#endif
1872 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1873
1874 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1875
1876 /*
1877 * Create a mapping and map the pages into it.
1878 * We push these in below the HMA.
1879 */
1880 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1881 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1882 if (RT_SUCCESS(rc))
1883 {
1884 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1885
1886 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1887 RTGCPTR GCPtrPage = GCPtrChunk;
1888 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1889 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1890 if (RT_SUCCESS(rc))
1891 {
1892 /*
1893 * Ok, init and link the range.
1894 */
1895 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1896 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1897 *ppPrev = pNew;
1898 }
1899 }
1900
1901 if (RT_FAILURE(rc))
1902 SUPR3PageFreeEx(pvChunk, cChunkPages);
1903 }
1904
1905 RTMemTmpFree(paChunkPages);
1906 return rc;
1907}
1908
1909
1910/**
1911 * Sets up a range RAM.
1912 *
1913 * This will check for conflicting registrations, make a resource
1914 * reservation for the memory (with GMM), and setup the per-page
1915 * tracking structures (PGMPAGE).
1916 *
1917 * @returns VBox status code.
1918 * @param pVM The cross context VM structure.
1919 * @param GCPhys The physical address of the RAM.
1920 * @param cb The size of the RAM.
1921 * @param pszDesc The description - not copied, so, don't free or change it.
1922 */
1923VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1924{
1925 /*
1926 * Validate input.
1927 */
1928 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1929 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1930 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1931 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1932 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1933 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1934 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1935 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1936
1937 pgmLock(pVM);
1938
1939 /*
1940 * Find range location and check for conflicts.
1941 * (We don't lock here because the locking by EMT is only required on update.)
1942 */
1943 PPGMRAMRANGE pPrev = NULL;
1944 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1945 while (pRam && GCPhysLast >= pRam->GCPhys)
1946 {
1947 if ( GCPhysLast >= pRam->GCPhys
1948 && GCPhys <= pRam->GCPhysLast)
1949 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1950 GCPhys, GCPhysLast, pszDesc,
1951 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1952 VERR_PGM_RAM_CONFLICT);
1953
1954 /* next */
1955 pPrev = pRam;
1956 pRam = pRam->pNextR3;
1957 }
1958
1959 /*
1960 * Register it with GMM (the API bitches).
1961 */
1962 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1963 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1964 if (RT_FAILURE(rc))
1965 {
1966 pgmUnlock(pVM);
1967 return rc;
1968 }
1969
1970 if ( GCPhys >= _4G
1971 && cPages > 256)
1972 {
1973 /*
1974 * The PGMRAMRANGE structures for the high memory can get very big.
1975 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1976 * allocation size limit there and also to avoid being unable to find
1977 * guest mapping space for them, we split this memory up into 4MB in
1978 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1979 * mode.
1980 *
1981 * The first and last page of each mapping are guard pages and marked
1982 * not-present. So, we've got 4186112 and 16769024 bytes available for
1983 * the PGMRAMRANGE structure.
1984 *
1985 * Note! The sizes used here will influence the saved state.
1986 */
1987 uint32_t cbChunk;
1988 uint32_t cPagesPerChunk;
1989 if (!VM_IS_RAW_MODE_ENABLED(pVM))
1990 {
1991 cbChunk = 16U*_1M;
1992 cPagesPerChunk = 1048048; /* max ~1048059 */
1993 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1994 }
1995 else
1996 {
1997 cbChunk = 4U*_1M;
1998 cPagesPerChunk = 261616; /* max ~261627 */
1999 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
2000 }
2001 AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
2002
2003 RTGCPHYS cPagesLeft = cPages;
2004 RTGCPHYS GCPhysChunk = GCPhys;
2005 uint32_t iChunk = 0;
2006 while (cPagesLeft > 0)
2007 {
2008 uint32_t cPagesInChunk = cPagesLeft;
2009 if (cPagesInChunk > cPagesPerChunk)
2010 cPagesInChunk = cPagesPerChunk;
2011
2012 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
2013 AssertRCReturn(rc, rc);
2014
2015 /* advance */
2016 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
2017 cPagesLeft -= cPagesInChunk;
2018 iChunk++;
2019 }
2020 }
2021 else
2022 {
2023 /*
2024 * Allocate, initialize and link the new RAM range.
2025 */
2026 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2027 PPGMRAMRANGE pNew;
2028 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2029 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
2030
2031 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
2032 }
2033 pgmPhysInvalidatePageMapTLB(pVM);
2034
2035 /*
2036 * Notify NEM while holding the lock (experimental) and REM without (like always).
2037 */
2038 rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb);
2039 pgmUnlock(pVM);
2040#ifdef VBOX_WITH_REM
2041 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
2042#endif
2043 return rc;
2044}
2045
2046
2047/**
2048 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
2049 *
2050 * We do this late in the init process so that all the ROM and MMIO ranges have
2051 * been registered already and we don't go wasting memory on them.
2052 *
2053 * @returns VBox status code.
2054 *
2055 * @param pVM The cross context VM structure.
2056 */
2057int pgmR3PhysRamPreAllocate(PVM pVM)
2058{
2059 Assert(pVM->pgm.s.fRamPreAlloc);
2060 Log(("pgmR3PhysRamPreAllocate: enter\n"));
2061
2062 /*
2063 * Walk the RAM ranges and allocate all RAM pages, halt at
2064 * the first allocation error.
2065 */
2066 uint64_t cPages = 0;
2067 uint64_t NanoTS = RTTimeNanoTS();
2068 pgmLock(pVM);
2069 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2070 {
2071 PPGMPAGE pPage = &pRam->aPages[0];
2072 RTGCPHYS GCPhys = pRam->GCPhys;
2073 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
2074 while (cLeft-- > 0)
2075 {
2076 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
2077 {
2078 switch (PGM_PAGE_GET_STATE(pPage))
2079 {
2080 case PGM_PAGE_STATE_ZERO:
2081 {
2082 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
2083 if (RT_FAILURE(rc))
2084 {
2085 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
2086 pgmUnlock(pVM);
2087 return rc;
2088 }
2089 cPages++;
2090 break;
2091 }
2092
2093 case PGM_PAGE_STATE_BALLOONED:
2094 case PGM_PAGE_STATE_ALLOCATED:
2095 case PGM_PAGE_STATE_WRITE_MONITORED:
2096 case PGM_PAGE_STATE_SHARED:
2097 /* nothing to do here. */
2098 break;
2099 }
2100 }
2101
2102 /* next */
2103 pPage++;
2104 GCPhys += PAGE_SIZE;
2105 }
2106 }
2107 pgmUnlock(pVM);
2108 NanoTS = RTTimeNanoTS() - NanoTS;
2109
2110 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
2111 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
2112 return VINF_SUCCESS;
2113}
2114
2115
2116/**
2117 * Checks shared page checksums.
2118 *
2119 * @param pVM The cross context VM structure.
2120 */
2121void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
2122{
2123#ifdef VBOX_STRICT
2124 pgmLock(pVM);
2125
2126 if (pVM->pgm.s.cSharedPages > 0)
2127 {
2128 /*
2129 * Walk the ram ranges.
2130 */
2131 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2132 {
2133 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2134 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2135
2136 while (iPage-- > 0)
2137 {
2138 PPGMPAGE pPage = &pRam->aPages[iPage];
2139 if (PGM_PAGE_IS_SHARED(pPage))
2140 {
2141 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
2142 if (!u32Checksum)
2143 {
2144 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2145 void const *pvPage;
2146 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
2147 if (RT_SUCCESS(rc))
2148 {
2149 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
2150# if 0
2151 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
2152# else
2153 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
2154 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2155 else
2156 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2157# endif
2158 }
2159 else
2160 AssertRC(rc);
2161 }
2162 }
2163
2164 } /* for each page */
2165
2166 } /* for each ram range */
2167 }
2168
2169 pgmUnlock(pVM);
2170#endif /* VBOX_STRICT */
2171 NOREF(pVM);
2172}
2173
2174
2175/**
2176 * Resets the physical memory state.
2177 *
2178 * ASSUMES that the caller owns the PGM lock.
2179 *
2180 * @returns VBox status code.
2181 * @param pVM The cross context VM structure.
2182 */
2183int pgmR3PhysRamReset(PVM pVM)
2184{
2185 PGM_LOCK_ASSERT_OWNER(pVM);
2186
2187 /* Reset the memory balloon. */
2188 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2189 AssertRC(rc);
2190
2191#ifdef VBOX_WITH_PAGE_SHARING
2192 /* Clear all registered shared modules. */
2193 pgmR3PhysAssertSharedPageChecksums(pVM);
2194 rc = GMMR3ResetSharedModules(pVM);
2195 AssertRC(rc);
2196#endif
2197 /* Reset counters. */
2198 pVM->pgm.s.cReusedSharedPages = 0;
2199 pVM->pgm.s.cBalloonedPages = 0;
2200
2201 return VINF_SUCCESS;
2202}
2203
2204
2205/**
2206 * Resets (zeros) the RAM after all devices and components have been reset.
2207 *
2208 * ASSUMES that the caller owns the PGM lock.
2209 *
2210 * @returns VBox status code.
2211 * @param pVM The cross context VM structure.
2212 */
2213int pgmR3PhysRamZeroAll(PVM pVM)
2214{
2215 PGM_LOCK_ASSERT_OWNER(pVM);
2216
2217 /*
2218 * We batch up pages that should be freed instead of calling GMM for
2219 * each and every one of them.
2220 */
2221 uint32_t cPendingPages = 0;
2222 PGMMFREEPAGESREQ pReq;
2223 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2224 AssertLogRelRCReturn(rc, rc);
2225
2226 /*
2227 * Walk the ram ranges.
2228 */
2229 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2230 {
2231 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2232 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2233
2234 if ( !pVM->pgm.s.fRamPreAlloc
2235 && pVM->pgm.s.fZeroRamPagesOnReset)
2236 {
2237 /* Replace all RAM pages by ZERO pages. */
2238 while (iPage-- > 0)
2239 {
2240 PPGMPAGE pPage = &pRam->aPages[iPage];
2241 switch (PGM_PAGE_GET_TYPE(pPage))
2242 {
2243 case PGMPAGETYPE_RAM:
2244 /* Do not replace pages part of a 2 MB continuous range
2245 with zero pages, but zero them instead. */
2246 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2247 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2248 {
2249 void *pvPage;
2250 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2251 AssertLogRelRCReturn(rc, rc);
2252 ASMMemZeroPage(pvPage);
2253 }
2254 else if (PGM_PAGE_IS_BALLOONED(pPage))
2255 {
2256 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2257 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2258 }
2259 else if (!PGM_PAGE_IS_ZERO(pPage))
2260 {
2261 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2262 PGMPAGETYPE_RAM);
2263 AssertLogRelRCReturn(rc, rc);
2264 }
2265 break;
2266
2267 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2268 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2269 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2270 true /*fDoAccounting*/);
2271 break;
2272
2273 case PGMPAGETYPE_MMIO2:
2274 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2275 case PGMPAGETYPE_ROM:
2276 case PGMPAGETYPE_MMIO:
2277 break;
2278 default:
2279 AssertFailed();
2280 }
2281 } /* for each page */
2282 }
2283 else
2284 {
2285 /* Zero the memory. */
2286 while (iPage-- > 0)
2287 {
2288 PPGMPAGE pPage = &pRam->aPages[iPage];
2289 switch (PGM_PAGE_GET_TYPE(pPage))
2290 {
2291 case PGMPAGETYPE_RAM:
2292 switch (PGM_PAGE_GET_STATE(pPage))
2293 {
2294 case PGM_PAGE_STATE_ZERO:
2295 break;
2296
2297 case PGM_PAGE_STATE_BALLOONED:
2298 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2299 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2300 break;
2301
2302 case PGM_PAGE_STATE_SHARED:
2303 case PGM_PAGE_STATE_WRITE_MONITORED:
2304 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2305 AssertLogRelRCReturn(rc, rc);
2306 RT_FALL_THRU();
2307
2308 case PGM_PAGE_STATE_ALLOCATED:
2309 if (pVM->pgm.s.fZeroRamPagesOnReset)
2310 {
2311 void *pvPage;
2312 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2313 AssertLogRelRCReturn(rc, rc);
2314 ASMMemZeroPage(pvPage);
2315 }
2316 break;
2317 }
2318 break;
2319
2320 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2321 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2322 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2323 true /*fDoAccounting*/);
2324 break;
2325
2326 case PGMPAGETYPE_MMIO2:
2327 case PGMPAGETYPE_ROM_SHADOW:
2328 case PGMPAGETYPE_ROM:
2329 case PGMPAGETYPE_MMIO:
2330 break;
2331 default:
2332 AssertFailed();
2333
2334 }
2335 } /* for each page */
2336 }
2337
2338 }
2339
2340 /*
2341 * Finish off any pages pending freeing.
2342 */
2343 if (cPendingPages)
2344 {
2345 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2346 AssertLogRelRCReturn(rc, rc);
2347 }
2348 GMMR3FreePagesCleanup(pReq);
2349 return VINF_SUCCESS;
2350}
2351
2352
2353/**
2354 * Frees all RAM during VM termination
2355 *
2356 * ASSUMES that the caller owns the PGM lock.
2357 *
2358 * @returns VBox status code.
2359 * @param pVM The cross context VM structure.
2360 */
2361int pgmR3PhysRamTerm(PVM pVM)
2362{
2363 PGM_LOCK_ASSERT_OWNER(pVM);
2364
2365 /* Reset the memory balloon. */
2366 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2367 AssertRC(rc);
2368
2369#ifdef VBOX_WITH_PAGE_SHARING
2370 /*
2371 * Clear all registered shared modules.
2372 */
2373 pgmR3PhysAssertSharedPageChecksums(pVM);
2374 rc = GMMR3ResetSharedModules(pVM);
2375 AssertRC(rc);
2376
2377 /*
2378 * Flush the handy pages updates to make sure no shared pages are hiding
2379 * in there. (No unlikely if the VM shuts down, apparently.)
2380 */
2381 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2382#endif
2383
2384 /*
2385 * We batch up pages that should be freed instead of calling GMM for
2386 * each and every one of them.
2387 */
2388 uint32_t cPendingPages = 0;
2389 PGMMFREEPAGESREQ pReq;
2390 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2391 AssertLogRelRCReturn(rc, rc);
2392
2393 /*
2394 * Walk the ram ranges.
2395 */
2396 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2397 {
2398 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2399 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2400
2401 while (iPage-- > 0)
2402 {
2403 PPGMPAGE pPage = &pRam->aPages[iPage];
2404 switch (PGM_PAGE_GET_TYPE(pPage))
2405 {
2406 case PGMPAGETYPE_RAM:
2407 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2408 /** @todo change this to explicitly free private pages here. */
2409 if (PGM_PAGE_IS_SHARED(pPage))
2410 {
2411 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2412 PGMPAGETYPE_RAM);
2413 AssertLogRelRCReturn(rc, rc);
2414 }
2415 break;
2416
2417 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2418 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2419 case PGMPAGETYPE_MMIO2:
2420 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2421 case PGMPAGETYPE_ROM:
2422 case PGMPAGETYPE_MMIO:
2423 break;
2424 default:
2425 AssertFailed();
2426 }
2427 } /* for each page */
2428 }
2429
2430 /*
2431 * Finish off any pages pending freeing.
2432 */
2433 if (cPendingPages)
2434 {
2435 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2436 AssertLogRelRCReturn(rc, rc);
2437 }
2438 GMMR3FreePagesCleanup(pReq);
2439 return VINF_SUCCESS;
2440}
2441
2442
2443/**
2444 * This is the interface IOM is using to register an MMIO region.
2445 *
2446 * It will check for conflicts and ensure that a RAM range structure
2447 * is present before calling the PGMR3HandlerPhysicalRegister API to
2448 * register the callbacks.
2449 *
2450 * @returns VBox status code.
2451 *
2452 * @param pVM The cross context VM structure.
2453 * @param GCPhys The start of the MMIO region.
2454 * @param cb The size of the MMIO region.
2455 * @param hType The physical access handler type registration.
2456 * @param pvUserR3 The user argument for R3.
2457 * @param pvUserR0 The user argument for R0.
2458 * @param pvUserRC The user argument for RC.
2459 * @param pszDesc The description of the MMIO region.
2460 */
2461VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2462 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2463{
2464 /*
2465 * Assert on some assumption.
2466 */
2467 VM_ASSERT_EMT(pVM);
2468 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2469 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2470 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2471 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2472 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2473
2474 int rc = pgmLock(pVM);
2475 AssertRCReturn(rc, rc);
2476
2477 /*
2478 * Make sure there's a RAM range structure for the region.
2479 */
2480 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2481 bool fRamExists = false;
2482 PPGMRAMRANGE pRamPrev = NULL;
2483 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2484 while (pRam && GCPhysLast >= pRam->GCPhys)
2485 {
2486 if ( GCPhysLast >= pRam->GCPhys
2487 && GCPhys <= pRam->GCPhysLast)
2488 {
2489 /* Simplification: all within the same range. */
2490 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2491 && GCPhysLast <= pRam->GCPhysLast,
2492 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2493 GCPhys, GCPhysLast, pszDesc,
2494 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2495 pgmUnlock(pVM),
2496 VERR_PGM_RAM_CONFLICT);
2497
2498 /* Check that it's all RAM or MMIO pages. */
2499 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2500 uint32_t cLeft = cb >> PAGE_SHIFT;
2501 while (cLeft-- > 0)
2502 {
2503 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2504 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2505 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2506 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2507 pgmUnlock(pVM),
2508 VERR_PGM_RAM_CONFLICT);
2509 pPage++;
2510 }
2511
2512 /* Looks good. */
2513 fRamExists = true;
2514 break;
2515 }
2516
2517 /* next */
2518 pRamPrev = pRam;
2519 pRam = pRam->pNextR3;
2520 }
2521 PPGMRAMRANGE pNew;
2522 if (fRamExists)
2523 {
2524 pNew = NULL;
2525
2526 /*
2527 * Make all the pages in the range MMIO/ZERO pages, freeing any
2528 * RAM pages currently mapped here. This might not be 100% correct
2529 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2530 */
2531 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2532 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2533
2534 /* Force a PGM pool flush as guest ram references have been changed. */
2535 /** @todo not entirely SMP safe; assuming for now the guest takes
2536 * care of this internally (not touch mapped mmio while changing the
2537 * mapping). */
2538 PVMCPU pVCpu = VMMGetCpu(pVM);
2539 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2540 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2541 }
2542 else
2543 {
2544
2545 /*
2546 * No RAM range, insert an ad hoc one.
2547 *
2548 * Note that we don't have to tell REM about this range because
2549 * PGMHandlerPhysicalRegisterEx will do that for us.
2550 */
2551 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2552
2553 const uint32_t cPages = cb >> PAGE_SHIFT;
2554 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2555 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2556 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2557
2558 /* Initialize the range. */
2559 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2560 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
2561 pNew->GCPhys = GCPhys;
2562 pNew->GCPhysLast = GCPhysLast;
2563 pNew->cb = cb;
2564 pNew->pszDesc = pszDesc;
2565 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2566 pNew->pvR3 = NULL;
2567 pNew->paLSPages = NULL;
2568
2569 uint32_t iPage = cPages;
2570 while (iPage-- > 0)
2571 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2572 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2573
2574 /* update the page count stats. */
2575 pVM->pgm.s.cPureMmioPages += cPages;
2576 pVM->pgm.s.cAllPages += cPages;
2577
2578 /* link it */
2579 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2580 }
2581
2582 /*
2583 * Register the access handler.
2584 */
2585 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2586 if ( RT_FAILURE(rc)
2587 && !fRamExists)
2588 {
2589 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2590 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2591
2592 /* remove the ad hoc range. */
2593 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2594 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2595 MMHyperFree(pVM, pRam);
2596 }
2597 pgmPhysInvalidatePageMapTLB(pVM);
2598
2599 pgmUnlock(pVM);
2600 return rc;
2601}
2602
2603
2604/**
2605 * This is the interface IOM is using to register an MMIO region.
2606 *
2607 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2608 * any ad hoc PGMRAMRANGE left behind.
2609 *
2610 * @returns VBox status code.
2611 * @param pVM The cross context VM structure.
2612 * @param GCPhys The start of the MMIO region.
2613 * @param cb The size of the MMIO region.
2614 */
2615VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2616{
2617 VM_ASSERT_EMT(pVM);
2618
2619 int rc = pgmLock(pVM);
2620 AssertRCReturn(rc, rc);
2621
2622 /*
2623 * First deregister the handler, then check if we should remove the ram range.
2624 */
2625 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2626 if (RT_SUCCESS(rc))
2627 {
2628 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2629 PPGMRAMRANGE pRamPrev = NULL;
2630 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2631 while (pRam && GCPhysLast >= pRam->GCPhys)
2632 {
2633 /** @todo We're being a bit too careful here. rewrite. */
2634 if ( GCPhysLast == pRam->GCPhysLast
2635 && GCPhys == pRam->GCPhys)
2636 {
2637 Assert(pRam->cb == cb);
2638
2639 /*
2640 * See if all the pages are dead MMIO pages.
2641 */
2642 uint32_t const cPages = cb >> PAGE_SHIFT;
2643 bool fAllMMIO = true;
2644 uint32_t iPage = 0;
2645 uint32_t cLeft = cPages;
2646 while (cLeft-- > 0)
2647 {
2648 PPGMPAGE pPage = &pRam->aPages[iPage];
2649 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2650 /*|| not-out-of-action later */)
2651 {
2652 fAllMMIO = false;
2653 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2654 break;
2655 }
2656 Assert( PGM_PAGE_IS_ZERO(pPage)
2657 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2658 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2659 pPage++;
2660 }
2661 if (fAllMMIO)
2662 {
2663 /*
2664 * Ad-hoc range, unlink and free it.
2665 */
2666 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2667 GCPhys, GCPhysLast, pRam->pszDesc));
2668
2669 pVM->pgm.s.cAllPages -= cPages;
2670 pVM->pgm.s.cPureMmioPages -= cPages;
2671
2672 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2673 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2674 MMHyperFree(pVM, pRam);
2675 break;
2676 }
2677 }
2678
2679 /*
2680 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2681 */
2682 if ( GCPhysLast >= pRam->GCPhys
2683 && GCPhys <= pRam->GCPhysLast)
2684 {
2685 Assert(GCPhys >= pRam->GCPhys);
2686 Assert(GCPhysLast <= pRam->GCPhysLast);
2687
2688 /*
2689 * Turn the pages back into RAM pages.
2690 */
2691 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2692 uint32_t cLeft = cb >> PAGE_SHIFT;
2693 while (cLeft--)
2694 {
2695 PPGMPAGE pPage = &pRam->aPages[iPage];
2696 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2697 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2698 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2699 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2700 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2701 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2702 }
2703 break;
2704 }
2705
2706 /* next */
2707 pRamPrev = pRam;
2708 pRam = pRam->pNextR3;
2709 }
2710 }
2711
2712 /* Force a PGM pool flush as guest ram references have been changed. */
2713 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2714 * this internally (not touch mapped mmio while changing the mapping). */
2715 PVMCPU pVCpu = VMMGetCpu(pVM);
2716 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2717 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2718
2719 pgmPhysInvalidatePageMapTLB(pVM);
2720 pgmPhysInvalidRamRangeTlbs(pVM);
2721 pgmUnlock(pVM);
2722 return rc;
2723}
2724
2725
2726/**
2727 * Locate a MMIO2 range.
2728 *
2729 * @returns Pointer to the MMIO2 range.
2730 * @param pVM The cross context VM structure.
2731 * @param pDevIns The device instance owning the region.
2732 * @param iSubDev The sub-device number.
2733 * @param iRegion The region.
2734 */
2735DECLINLINE(PPGMREGMMIORANGE) pgmR3PhysMMIOExFind(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
2736{
2737 /*
2738 * Search the list. There shouldn't be many entries.
2739 */
2740 /** @todo Optimize this lookup! There may now be many entries and it'll
2741 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2742 for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2743 if ( pCur->pDevInsR3 == pDevIns
2744 && pCur->iRegion == iRegion
2745 && pCur->iSubDev == iSubDev)
2746 return pCur;
2747 return NULL;
2748}
2749
2750
2751/**
2752 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.}
2753 * @sa pgmR3PhysRamRangeRelocate
2754 */
2755static DECLCALLBACK(bool) pgmR3PhysMMIOExRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
2756 PGMRELOCATECALL enmMode, void *pvUser)
2757{
2758 PPGMREGMMIORANGE pMmio = (PPGMREGMMIORANGE)pvUser;
2759 Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
2760 Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange)); RT_NOREF_PV(GCPtrOld);
2761
2762 switch (enmMode)
2763 {
2764 case PGMRELOCATECALL_SUGGEST:
2765 return true;
2766
2767 case PGMRELOCATECALL_RELOCATE:
2768 {
2769 /*
2770 * Update myself, then relink all the ranges and flush the RC TLB.
2771 */
2772 pgmLock(pVM);
2773
2774 pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange));
2775
2776 pgmR3PhysRelinkRamRanges(pVM);
2777 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2778 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2779
2780 pgmUnlock(pVM);
2781 return true;
2782 }
2783
2784 default:
2785 AssertFailedReturn(false);
2786 }
2787}
2788
2789
2790/**
2791 * Calculates the number of chunks
2792 *
2793 * @returns Number of registration chunk needed.
2794 * @param pVM The cross context VM structure.
2795 * @param cb The size of the MMIO/MMIO2 range.
2796 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2797 * chunk. Optional.
2798 * @param pcbChunk Where to return the guest mapping size for a chunk.
2799 */
2800static uint16_t pgmR3PhysMMIOExCalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2801{
2802 RT_NOREF_PV(pVM); /* without raw mode */
2803
2804 /*
2805 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2806 * needing a few bytes extra the PGMREGMMIORANGE structure.
2807 *
2808 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2809 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2810 */
2811 uint32_t cbChunk;
2812 uint32_t cPagesPerChunk;
2813 if (!VM_IS_RAW_MODE_ENABLED(pVM))
2814 {
2815 cbChunk = 16U*_1M;
2816 cPagesPerChunk = 1048048; /* max ~1048059 */
2817 AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
2818 }
2819 else
2820 {
2821 cbChunk = 4U*_1M;
2822 cPagesPerChunk = 261616; /* max ~261627 */
2823 AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
2824 }
2825 AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
2826 AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
2827 if (pcbChunk)
2828 *pcbChunk = cbChunk;
2829 if (pcPagesPerChunk)
2830 *pcPagesPerChunk = cPagesPerChunk;
2831
2832 /* Calc the number of chunks we need. */
2833 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2834 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2835 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2836 return cChunks;
2837}
2838
2839
2840/**
2841 * Worker for PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that allocates
2842 * and the PGMREGMMIORANGE structures and does basic initialization.
2843 *
2844 * Caller must set type specfic members and initialize the PGMPAGE structures.
2845 *
2846 * @returns VBox status code.
2847 * @param pVM The cross context VM structure.
2848 * @param pDevIns The device instance owning the region.
2849 * @param iSubDev The sub-device number (internal PCI config number).
2850 * @param iRegion The region number. If the MMIO2 memory is a PCI
2851 * I/O region this number has to be the number of that
2852 * region. Otherwise it can be any number safe
2853 * UINT8_MAX.
2854 * @param cb The size of the region. Must be page aligned.
2855 * @param pszDesc The description.
2856 * @param ppHeadRet Where to return the pointer to the first
2857 * registration chunk.
2858 *
2859 * @thread EMT
2860 */
2861static int pgmR3PhysMMIOExCreate(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2862 const char *pszDesc, PPGMREGMMIORANGE *ppHeadRet)
2863{
2864 /*
2865 * Figure out how many chunks we need and of which size.
2866 */
2867 uint32_t cPagesPerChunk;
2868 uint16_t cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2869 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2870
2871 /*
2872 * Allocate the chunks.
2873 */
2874 PPGMREGMMIORANGE *ppNext = ppHeadRet;
2875 *ppNext = NULL;
2876
2877 int rc = VINF_SUCCESS;
2878 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2879 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++)
2880 {
2881 /*
2882 * We currently do a single RAM range for the whole thing. This will
2883 * probably have to change once someone needs really large MMIO regions,
2884 * as we will be running into SUPR3PageAllocEx limitations and such.
2885 */
2886 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2887 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesTrackedByChunk]);
2888 PPGMREGMMIORANGE pNew = NULL;
2889 if ( iChunk + 1 < cChunks
2890 || cbRange >= _1M)
2891 {
2892 /*
2893 * Allocate memory for the registration structure.
2894 */
2895 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2896 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2897 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2898 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2899 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2900 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2901 void *pvChunk = NULL;
2902 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
2903#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
2904 &R0PtrChunk,
2905#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
2906 VM_IS_HM_OR_NEM_ENABLED(pVM) ? &R0PtrChunk : NULL,
2907#else
2908 NULL,
2909#endif
2910 paChunkPages);
2911 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2912
2913#if defined(VBOX_WITH_MORE_RING0_MEM_MAPPINGS)
2914 Assert(R0PtrChunk != NIL_RTR0PTR);
2915#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE)
2916 if (!VM_IS_HM_OR_NEM_ENABLED(pVM))
2917 R0PtrChunk = NIL_RTR0PTR;
2918#else
2919 R0PtrChunk = (uintptr_t)pvChunk;
2920#endif
2921 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2922
2923 pNew = (PPGMREGMMIORANGE)pvChunk;
2924 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2925 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
2926
2927 /*
2928 * If we might end up in raw-mode, make a HMA mapping of the range,
2929 * just like we do for memory above 4GB.
2930 */
2931 if (!VM_IS_RAW_MODE_ENABLED(pVM))
2932 pNew->RamRange.pSelfRC = NIL_RTRCPTR;
2933 else
2934 {
2935 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - RT_ALIGN_Z(cbChunk, _4M);
2936 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
2937 rc = PGMR3MapPT(pVM, GCPtrChunkMap, (uint32_t)cbChunk, 0 /*fFlags*/, pgmR3PhysMMIOExRangeRelocate, pNew, pszDesc);
2938 if (RT_SUCCESS(rc))
2939 {
2940 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
2941
2942 RTGCPTR GCPtrPage = GCPtrChunk;
2943 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
2944 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
2945 }
2946 if (RT_FAILURE(rc))
2947 {
2948 SUPR3PageFreeEx(pvChunk, cChunkPages);
2949 break;
2950 }
2951 pNew->RamRange.pSelfRC = GCPtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
2952 }
2953 }
2954 /*
2955 * Not so big, do a one time hyper allocation.
2956 */
2957 else
2958 {
2959 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2960 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2961
2962 /*
2963 * Initialize allocation specific items.
2964 */
2965 //pNew->RamRange.fFlags = 0;
2966 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2967 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2968 }
2969
2970 /*
2971 * Initialize the registration structure (caller does specific bits).
2972 */
2973 pNew->pDevInsR3 = pDevIns;
2974 //pNew->pvR3 = NULL;
2975 //pNew->pNext = NULL;
2976 //pNew->fFlags = 0;
2977 if (iChunk == 0)
2978 pNew->fFlags |= PGMREGMMIORANGE_F_FIRST_CHUNK;
2979 if (iChunk + 1 == cChunks)
2980 pNew->fFlags |= PGMREGMMIORANGE_F_LAST_CHUNK;
2981 pNew->iSubDev = iSubDev;
2982 pNew->iRegion = iRegion;
2983 pNew->idSavedState = UINT8_MAX;
2984 pNew->idMmio2 = UINT8_MAX;
2985 //pNew->pPhysHandlerR3 = NULL;
2986 //pNew->paLSPages = NULL;
2987 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2988 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2989 pNew->RamRange.pszDesc = pszDesc;
2990 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2991 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2992 //pNew->RamRange.pvR3 = NULL;
2993 //pNew->RamRange.paLSPages = NULL;
2994
2995 *ppNext = pNew;
2996 ASMCompilerBarrier();
2997 cPagesLeft -= cPagesTrackedByChunk;
2998 ppNext = &pNew->pNextR3;
2999 }
3000 Assert(cPagesLeft == 0);
3001
3002 if (RT_SUCCESS(rc))
3003 {
3004 Assert((*ppHeadRet)->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3005 return VINF_SUCCESS;
3006 }
3007
3008 /*
3009 * Free floating ranges.
3010 */
3011 while (*ppHeadRet)
3012 {
3013 PPGMREGMMIORANGE pFree = *ppHeadRet;
3014 *ppHeadRet = pFree->pNextR3;
3015
3016 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3017 {
3018 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
3019 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3020 SUPR3PageFreeEx(pFree, cChunkPages);
3021 }
3022 }
3023
3024 return rc;
3025}
3026
3027
3028/**
3029 * Common worker PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that links
3030 * a complete registration entry into the lists and lookup tables.
3031 *
3032 * @param pVM The cross context VM structure.
3033 * @param pNew The new MMIO / MMIO2 registration to link.
3034 */
3035static void pgmR3PhysMMIOExLink(PVM pVM, PPGMREGMMIORANGE pNew)
3036{
3037 /*
3038 * Link it into the list (order doesn't matter, so insert it at the head).
3039 *
3040 * Note! The range we're link may consist of multiple chunks, so we have to
3041 * find the last one.
3042 */
3043 PPGMREGMMIORANGE pLast = pNew;
3044 for (pLast = pNew; ; pLast = pLast->pNextR3)
3045 {
3046 if (pLast->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3047 break;
3048 Assert(pLast->pNextR3);
3049 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
3050 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
3051 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
3052 Assert((pLast->pNextR3->fFlags & PGMREGMMIORANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
3053 Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIORANGE_F_MMIO2 ? pNew->idMmio2 + 1 : UINT8_MAX));
3054 }
3055
3056 pgmLock(pVM);
3057
3058 /* Link in the chain of ranges at the head of the list. */
3059 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
3060 pVM->pgm.s.pRegMmioRangesR3 = pNew;
3061
3062 /* If MMIO, insert the MMIO2 range/page IDs. */
3063 uint8_t idMmio2 = pNew->idMmio2;
3064 if (idMmio2 != UINT8_MAX)
3065 {
3066 for (;;)
3067 {
3068 Assert(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2);
3069 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
3070 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
3071 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
3072 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
3073 if (pNew->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3074 break;
3075 pNew = pNew->pNextR3;
3076 }
3077 }
3078 else
3079 Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
3080
3081 pgmPhysInvalidatePageMapTLB(pVM);
3082 pgmUnlock(pVM);
3083}
3084
3085
3086/**
3087 * Allocate and pre-register an MMIO region.
3088 *
3089 * This is currently the way to deal with large MMIO regions. It may in the
3090 * future be extended to be the way we deal with all MMIO regions, but that
3091 * means we'll have to do something about the simple list based approach we take
3092 * to tracking the registrations.
3093 *
3094 * @returns VBox status code.
3095 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
3096 * memory.
3097 * @retval VERR_ALREADY_EXISTS if the region already exists.
3098 *
3099 * @param pVM The cross context VM structure.
3100 * @param pDevIns The device instance owning the region.
3101 * @param iSubDev The sub-device number.
3102 * @param iRegion The region number. If the MMIO2 memory is a PCI
3103 * I/O region this number has to be the number of that
3104 * region. Otherwise it can be any number safe
3105 * UINT8_MAX.
3106 * @param cbRegion The size of the region. Must be page aligned.
3107 * @param hType The physical handler callback type.
3108 * @param pvUserR3 User parameter for ring-3 context callbacks.
3109 * @param pvUserR0 User parameter for ring-0 context callbacks.
3110 * @param pvUserRC User parameter for raw-mode context callbacks.
3111 * @param pszDesc The description.
3112 *
3113 * @thread EMT
3114 *
3115 * @sa PGMR3PhysMMIORegister, PGMR3PhysMMIO2Register,
3116 * PGMR3PhysMMIOExMap, PGMR3PhysMMIOExUnmap, PGMR3PhysMMIOExDeregister.
3117 */
3118VMMR3DECL(int) PGMR3PhysMMIOExPreRegister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion,
3119 PGMPHYSHANDLERTYPE hType, RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC,
3120 const char *pszDesc)
3121{
3122 /*
3123 * Validate input.
3124 */
3125 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3126 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3127 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3128 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3129 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3130 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3131 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
3132 AssertReturn(!(cbRegion & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3133 AssertReturn(cbRegion, VERR_INVALID_PARAMETER);
3134
3135 const uint32_t cPages = cbRegion >> PAGE_SHIFT;
3136 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cbRegion, VERR_INVALID_PARAMETER);
3137 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3138
3139 /*
3140 * For the 2nd+ instance, mangle the description string so it's unique.
3141 */
3142 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3143 {
3144 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3145 if (!pszDesc)
3146 return VERR_NO_MEMORY;
3147 }
3148
3149 /*
3150 * Register the MMIO callbacks.
3151 */
3152 PPGMPHYSHANDLER pPhysHandler;
3153 int rc = pgmHandlerPhysicalExCreate(pVM, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc, &pPhysHandler);
3154 if (RT_SUCCESS(rc))
3155 {
3156 /*
3157 * Create the registered MMIO range record for it.
3158 */
3159 PPGMREGMMIORANGE pNew;
3160 rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cbRegion, pszDesc, &pNew);
3161 if (RT_SUCCESS(rc))
3162 {
3163 Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
3164
3165 /*
3166 * Intialize the page structures and set up physical handlers (one for each chunk).
3167 */
3168 for (PPGMREGMMIORANGE pCur = pNew; pCur != NULL && RT_SUCCESS(rc); pCur = pCur->pNextR3)
3169 {
3170 if (pCur == pNew)
3171 pCur->pPhysHandlerR3 = pPhysHandler;
3172 else
3173 rc = pgmHandlerPhysicalExDup(pVM, pPhysHandler, &pCur->pPhysHandlerR3);
3174
3175 uint32_t iPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3176 while (iPage-- > 0)
3177 PGM_PAGE_INIT_ZERO(&pCur->RamRange.aPages[iPage], pVM, PGMPAGETYPE_MMIO);
3178 }
3179 if (RT_SUCCESS(rc))
3180 {
3181 /*
3182 * Update the page count stats, link the registration and we're done.
3183 */
3184 pVM->pgm.s.cAllPages += cPages;
3185 pVM->pgm.s.cPureMmioPages += cPages;
3186
3187 pgmR3PhysMMIOExLink(pVM, pNew);
3188 return VINF_SUCCESS;
3189 }
3190
3191 /*
3192 * Clean up in case we're out of memory for extra access handlers.
3193 */
3194 while (pNew != NULL)
3195 {
3196 PPGMREGMMIORANGE pFree = pNew;
3197 pNew = pFree->pNextR3;
3198
3199 if (pFree->pPhysHandlerR3)
3200 {
3201 pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
3202 pFree->pPhysHandlerR3 = NULL;
3203 }
3204
3205 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3206 {
3207 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
3208 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3209 SUPR3PageFreeEx(pFree, cChunkPages);
3210 }
3211 }
3212 }
3213 else
3214 pgmHandlerPhysicalExDestroy(pVM, pPhysHandler);
3215 }
3216 return rc;
3217}
3218
3219
3220/**
3221 * Allocate and register an MMIO2 region.
3222 *
3223 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
3224 * associated with a device. It is also non-shared memory with a permanent
3225 * ring-3 mapping and page backing (presently).
3226 *
3227 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
3228 * the VM, in which case we'll drop the base memory pages. Presently we will
3229 * make no attempt to preserve anything that happens to be present in the base
3230 * memory that is replaced, this is of course incorrect but it's too much
3231 * effort.
3232 *
3233 * @returns VBox status code.
3234 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
3235 * memory.
3236 * @retval VERR_ALREADY_EXISTS if the region already exists.
3237 *
3238 * @param pVM The cross context VM structure.
3239 * @param pDevIns The device instance owning the region.
3240 * @param iSubDev The sub-device number.
3241 * @param iRegion The region number. If the MMIO2 memory is a PCI
3242 * I/O region this number has to be the number of that
3243 * region. Otherwise it can be any number safe
3244 * UINT8_MAX.
3245 * @param cb The size of the region. Must be page aligned.
3246 * @param fFlags Reserved for future use, must be zero.
3247 * @param ppv Where to store the pointer to the ring-3 mapping of
3248 * the memory.
3249 * @param pszDesc The description.
3250 * @thread EMT
3251 */
3252VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
3253 uint32_t fFlags, void **ppv, const char *pszDesc)
3254{
3255 /*
3256 * Validate input.
3257 */
3258 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3259 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3260 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3261 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3262 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
3263 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3264 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3265 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
3266 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3267 AssertReturn(cb, VERR_INVALID_PARAMETER);
3268 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
3269
3270 const uint32_t cPages = cb >> PAGE_SHIFT;
3271 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
3272 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3273
3274 /*
3275 * For the 2nd+ instance, mangle the description string so it's unique.
3276 */
3277 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3278 {
3279 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3280 if (!pszDesc)
3281 return VERR_NO_MEMORY;
3282 }
3283
3284 /*
3285 * Allocate an MMIO2 range ID (not freed on failure).
3286 *
3287 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3288 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3289 */
3290 unsigned cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, NULL, NULL);
3291 pgmLock(pVM);
3292 uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3293 unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3294 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3295 {
3296 pgmUnlock(pVM);
3297 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3298 }
3299 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3300 pgmUnlock(pVM);
3301
3302 /*
3303 * Try reserve and allocate the backing memory first as this is what is
3304 * most likely to fail.
3305 */
3306 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3307 if (RT_SUCCESS(rc))
3308 {
3309 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3310 if (RT_SUCCESS(rc))
3311 {
3312 void *pvPages;
3313 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3314 if (RT_SUCCESS(rc))
3315 {
3316 memset(pvPages, 0, cPages * PAGE_SIZE);
3317
3318 /*
3319 * Create the registered MMIO range record for it.
3320 */
3321 PPGMREGMMIORANGE pNew;
3322 rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew);
3323 if (RT_SUCCESS(rc))
3324 {
3325 uint32_t iSrcPage = 0;
3326 uint8_t *pbCurPages = (uint8_t *)pvPages;
3327 for (PPGMREGMMIORANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3328 {
3329 pCur->pvR3 = pbCurPages;
3330 pCur->RamRange.pvR3 = pbCurPages;
3331 pCur->idMmio2 = idMmio2;
3332 pCur->fFlags |= PGMREGMMIORANGE_F_MMIO2;
3333
3334 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3335 while (iDstPage-- > 0)
3336 {
3337 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3338 paPages[iDstPage + iSrcPage].Phys,
3339 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3340 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3341 }
3342
3343 /* advance. */
3344 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3345 pbCurPages += pCur->RamRange.cb;
3346 idMmio2++;
3347 }
3348
3349 RTMemTmpFree(paPages);
3350
3351 /*
3352 * Update the page count stats, link the registration and we're done.
3353 */
3354 pVM->pgm.s.cAllPages += cPages;
3355 pVM->pgm.s.cPrivatePages += cPages;
3356
3357 pgmR3PhysMMIOExLink(pVM, pNew);
3358
3359 *ppv = pvPages;
3360 return VINF_SUCCESS;
3361 }
3362
3363 SUPR3PageFreeEx(pvPages, cPages);
3364 }
3365 }
3366 RTMemTmpFree(paPages);
3367 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3368 }
3369 if (pDevIns->iInstance > 0)
3370 MMR3HeapFree((void *)pszDesc);
3371 return rc;
3372}
3373
3374
3375/**
3376 * Deregisters and frees an MMIO2 region or a pre-registered MMIO region
3377 *
3378 * Any physical (and virtual) access handlers registered for the region must
3379 * be deregistered before calling this function.
3380 *
3381 * @returns VBox status code.
3382 * @param pVM The cross context VM structure.
3383 * @param pDevIns The device instance owning the region.
3384 * @param iSubDev The sub-device number. Pass UINT32_MAX for wildcard
3385 * matching.
3386 * @param iRegion The region. Pass UINT32_MAX for wildcard matching.
3387 */
3388VMMR3DECL(int) PGMR3PhysMMIOExDeregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
3389{
3390 /*
3391 * Validate input.
3392 */
3393 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3394 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3395 AssertReturn(iSubDev <= UINT8_MAX || iSubDev == UINT32_MAX, VERR_INVALID_PARAMETER);
3396 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
3397
3398 /*
3399 * The loop here scanning all registrations will make sure that multi-chunk ranges
3400 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3401 */
3402 pgmLock(pVM);
3403 int rc = VINF_SUCCESS;
3404 unsigned cFound = 0;
3405 PPGMREGMMIORANGE pPrev = NULL;
3406 PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3407 while (pCur)
3408 {
3409 if ( pCur->pDevInsR3 == pDevIns
3410 && ( iRegion == UINT32_MAX
3411 || pCur->iRegion == iRegion)
3412 && ( iSubDev == UINT32_MAX
3413 || pCur->iSubDev == iSubDev) )
3414 {
3415 cFound++;
3416
3417 /*
3418 * Unmap it if it's mapped.
3419 */
3420 if (pCur->fFlags & PGMREGMMIORANGE_F_MAPPED)
3421 {
3422 int rc2 = PGMR3PhysMMIOExUnmap(pVM, pCur->pDevInsR3, pCur->iSubDev, pCur->iRegion, pCur->RamRange.GCPhys);
3423 AssertRC(rc2);
3424 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3425 rc = rc2;
3426 }
3427
3428 /*
3429 * Must tell IOM about MMIO (first one only).
3430 */
3431 if ((pCur->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK)) == PGMREGMMIORANGE_F_MMIO2)
3432 IOMR3MmioExNotifyDeregistered(pVM, pCur->pPhysHandlerR3->pvUserR3);
3433
3434 /*
3435 * Unlink it
3436 */
3437 PPGMREGMMIORANGE pNext = pCur->pNextR3;
3438 if (pPrev)
3439 pPrev->pNextR3 = pNext;
3440 else
3441 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3442 pCur->pNextR3 = NULL;
3443
3444 uint8_t idMmio2 = pCur->idMmio2;
3445 if (idMmio2 != UINT8_MAX)
3446 {
3447 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3448 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3449 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3450 }
3451
3452 /*
3453 * Free the memory.
3454 */
3455 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3456 if (pCur->fFlags & PGMREGMMIORANGE_F_MMIO2)
3457 {
3458 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3459 AssertRC(rc2);
3460 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3461 rc = rc2;
3462
3463 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3464 AssertRC(rc2);
3465 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3466 rc = rc2;
3467 }
3468
3469 /* we're leaking hyper memory here if done at runtime. */
3470#ifdef VBOX_STRICT
3471 VMSTATE const enmState = VMR3GetState(pVM);
3472 AssertMsg( enmState == VMSTATE_POWERING_OFF
3473 || enmState == VMSTATE_POWERING_OFF_LS
3474 || enmState == VMSTATE_OFF
3475 || enmState == VMSTATE_OFF_LS
3476 || enmState == VMSTATE_DESTROYING
3477 || enmState == VMSTATE_TERMINATED
3478 || enmState == VMSTATE_CREATING
3479 , ("%s\n", VMR3GetStateName(enmState)));
3480#endif
3481
3482 const bool fIsMmio2 = RT_BOOL(pCur->fFlags & PGMREGMMIORANGE_F_MMIO2);
3483 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3484 {
3485 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPages]);
3486 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3487 SUPR3PageFreeEx(pCur, cChunkPages);
3488 }
3489 /*else
3490 {
3491 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3492 AssertRCReturn(rc, rc);
3493 } */
3494
3495
3496 /* update page count stats */
3497 pVM->pgm.s.cAllPages -= cPages;
3498 if (fIsMmio2)
3499 pVM->pgm.s.cPrivatePages -= cPages;
3500 else
3501 pVM->pgm.s.cPureMmioPages -= cPages;
3502
3503 /* next */
3504 pCur = pNext;
3505 }
3506 else
3507 {
3508 pPrev = pCur;
3509 pCur = pCur->pNextR3;
3510 }
3511 }
3512 pgmPhysInvalidatePageMapTLB(pVM);
3513 pgmUnlock(pVM);
3514 return !cFound && iRegion != UINT32_MAX && iSubDev != UINT32_MAX ? VERR_NOT_FOUND : rc;
3515}
3516
3517
3518/**
3519 * Maps a MMIO2 region or a pre-registered MMIO region.
3520 *
3521 * This is done when a guest / the bios / state loading changes the
3522 * PCI config. The replacing of base memory has the same restrictions
3523 * as during registration, of course.
3524 *
3525 * @returns VBox status code.
3526 *
3527 * @param pVM The cross context VM structure.
3528 * @param pDevIns The device instance owning the region.
3529 * @param iSubDev The sub-device number of the registered region.
3530 * @param iRegion The index of the registered region.
3531 * @param GCPhys The guest-physical address to be remapped.
3532 */
3533VMMR3DECL(int) PGMR3PhysMMIOExMap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
3534{
3535 /*
3536 * Validate input.
3537 *
3538 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3539 * happens during VM construction.
3540 */
3541 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3542 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3543 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3544 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3545 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3546 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3547 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3548
3549 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3550 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3551 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3552
3553 PPGMREGMMIORANGE pLastMmio = pFirstMmio;
3554 RTGCPHYS cbRange = 0;
3555 for (;;)
3556 {
3557 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), VERR_WRONG_ORDER);
3558 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3559 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3560 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3561 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3562 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3563 cbRange += pLastMmio->RamRange.cb;
3564 if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3565 break;
3566 pLastMmio = pLastMmio->pNextR3;
3567 }
3568
3569 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3570 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3571
3572 /*
3573 * Find our location in the ram range list, checking for restriction
3574 * we don't bother implementing yet (partially overlapping, multiple
3575 * ram ranges).
3576 */
3577 pgmLock(pVM);
3578
3579 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER);
3580
3581 bool fRamExists = false;
3582 PPGMRAMRANGE pRamPrev = NULL;
3583 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3584 while (pRam && GCPhysLast >= pRam->GCPhys)
3585 {
3586 if ( GCPhys <= pRam->GCPhysLast
3587 && GCPhysLast >= pRam->GCPhys)
3588 {
3589 /* Completely within? */
3590 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3591 && GCPhysLast <= pRam->GCPhysLast,
3592 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3593 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3594 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3595 pgmUnlock(pVM),
3596 VERR_PGM_RAM_CONFLICT);
3597
3598 /* Check that all the pages are RAM pages. */
3599 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3600 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3601 while (cPagesLeft-- > 0)
3602 {
3603 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3604 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3605 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3606 pgmUnlock(pVM),
3607 VERR_PGM_RAM_CONFLICT);
3608 pPage++;
3609 }
3610
3611 /* There can only be one MMIO/MMIO2 chunk matching here! */
3612 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
3613 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3614 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3615 pgmUnlock(pVM),
3616 VERR_PGM_PHYS_MMIO_EX_IPE);
3617
3618 fRamExists = true;
3619 break;
3620 }
3621
3622 /* next */
3623 pRamPrev = pRam;
3624 pRam = pRam->pNextR3;
3625 }
3626 Log(("PGMR3PhysMMIOExMap: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3627
3628
3629 /*
3630 * Make the changes.
3631 */
3632 RTGCPHYS GCPhysCur = GCPhys;
3633 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3634 {
3635 pCurMmio->RamRange.GCPhys = GCPhysCur;
3636 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3637 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3638 {
3639 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3640 break;
3641 }
3642 GCPhysCur += pCurMmio->RamRange.cb;
3643 }
3644
3645 if (fRamExists)
3646 {
3647 /*
3648 * Make all the pages in the range MMIO/ZERO pages, freeing any
3649 * RAM pages currently mapped here. This might not be 100% correct
3650 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3651 *
3652 * We replace this MMIO/ZERO pages with real pages in the MMIO2 case.
3653 */
3654 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */
3655
3656 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
3657 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3658
3659 if (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
3660 {
3661 /* replace the pages, freeing all present RAM pages. */
3662 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3663 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3664 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3665 while (cPagesLeft-- > 0)
3666 {
3667 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3668
3669 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3670 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3671 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3672 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3673 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3674 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3675 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3676 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3677 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3678 /* (We tell NEM at the end of the function.) */
3679
3680 pVM->pgm.s.cZeroPages--;
3681 GCPhys += PAGE_SIZE;
3682 pPageSrc++;
3683 pPageDst++;
3684 }
3685 }
3686
3687 /* Flush physical page map TLB. */
3688 pgmPhysInvalidatePageMapTLB(pVM);
3689
3690 /* Force a PGM pool flush as guest ram references have been changed. */
3691 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3692 * this internally (not touch mapped mmio while changing the mapping). */
3693 PVMCPU pVCpu = VMMGetCpu(pVM);
3694 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3695 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3696 }
3697 else
3698 {
3699 /*
3700 * No RAM range, insert the ones prepared during registration.
3701 */
3702 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3703 {
3704 /* Clear the tracking data of pages we're going to reactivate. */
3705 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3706 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3707 while (cPagesLeft-- > 0)
3708 {
3709 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3710 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3711 pPageSrc++;
3712 }
3713
3714 /* link in the ram range */
3715 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3716
3717 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3718 {
3719 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3720 break;
3721 }
3722 pRamPrev = &pCurMmio->RamRange;
3723 }
3724 }
3725
3726 /*
3727 * Register the access handler if plain MMIO.
3728 *
3729 * We must register access handlers for each range since the access handler
3730 * code refuses to deal with multiple ranges (and we can).
3731 */
3732 if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2))
3733 {
3734 int rc = VINF_SUCCESS;
3735 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3736 {
3737 Assert(!(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED));
3738 rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys,
3739 pCurMmio->RamRange.GCPhysLast);
3740 if (RT_FAILURE(rc))
3741 break;
3742 pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED; /* Use this to mark that the handler is registered. */
3743 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3744 {
3745 rc = IOMR3MmioExNotifyMapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
3746 break;
3747 }
3748 }
3749 if (RT_FAILURE(rc))
3750 {
3751 /* Almost impossible, but try clean up properly and get out of here. */
3752 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3753 {
3754 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED)
3755 {
3756 pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_MAPPED;
3757 pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists);
3758 }
3759
3760 if (!fRamExists)
3761 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3762 else
3763 {
3764 Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */
3765
3766 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3767 PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3768 while (cPagesLeft-- > 0)
3769 {
3770 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3771 pPageDst++;
3772 }
3773 }
3774
3775 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3776 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3777 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3778 break;
3779 }
3780
3781 pgmUnlock(pVM);
3782 return rc;
3783 }
3784 }
3785
3786 /*
3787 * We're good, set the flags and invalid the mapping TLB.
3788 */
3789 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3790 {
3791 pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED;
3792 if (fRamExists)
3793 pCurMmio->fFlags |= PGMREGMMIORANGE_F_OVERLAPPING;
3794 else
3795 pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_OVERLAPPING;
3796 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3797 break;
3798 }
3799 pgmPhysInvalidatePageMapTLB(pVM);
3800
3801 /*
3802 * Notify NEM while holding the lock (experimental) and REM without (like always).
3803 */
3804 uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3805 | (pFirstMmio->fFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3806 int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3);
3807
3808 pgmUnlock(pVM);
3809
3810#ifdef VBOX_WITH_REM
3811 if (!fRamExists && (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)) /** @todo this doesn't look right. */
3812 REMR3NotifyPhysRamRegister(pVM, GCPhys, cbRange, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
3813#endif
3814 return rc;
3815}
3816
3817
3818/**
3819 * Unmaps a MMIO2 or a pre-registered MMIO region.
3820 *
3821 * This is done when a guest / the bios / state loading changes the
3822 * PCI config. The replacing of base memory has the same restrictions
3823 * as during registration, of course.
3824 */
3825VMMR3DECL(int) PGMR3PhysMMIOExUnmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
3826{
3827 /*
3828 * Validate input
3829 */
3830 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3831 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3832 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3833 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3834 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3835 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3836 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3837
3838 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3839 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3840 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3841
3842 PPGMREGMMIORANGE pLastMmio = pFirstMmio;
3843 RTGCPHYS cbRange = 0;
3844 for (;;)
3845 {
3846 AssertReturn(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED, VERR_WRONG_ORDER);
3847 AssertReturn(pLastMmio->RamRange.GCPhys == GCPhys + cbRange, VERR_INVALID_PARAMETER);
3848 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3849 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3850 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3851 cbRange += pLastMmio->RamRange.cb;
3852 if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3853 break;
3854 pLastMmio = pLastMmio->pNextR3;
3855 }
3856
3857 Log(("PGMR3PhysMMIOExUnmap: %RGp-%RGp %s\n",
3858 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3859
3860 int rc = pgmLock(pVM);
3861 AssertRCReturn(rc, rc);
3862 uint16_t const fOldFlags = pFirstMmio->fFlags;
3863 AssertReturnStmt(fOldFlags & PGMREGMMIORANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
3864
3865 /*
3866 * If plain MMIO, we must deregister the handlers first.
3867 */
3868 if (!(fOldFlags & PGMREGMMIORANGE_F_MMIO2))
3869 {
3870 PPGMREGMMIORANGE pCurMmio = pFirstMmio;
3871 rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
3872 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3873 while (!(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
3874 {
3875 pCurMmio = pCurMmio->pNextR3;
3876 rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
3877 AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE);
3878 }
3879
3880 IOMR3MmioExNotifyUnmapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
3881 }
3882
3883 /*
3884 * Unmap it.
3885 */
3886 RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys;
3887 if (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING)
3888 {
3889 /*
3890 * We've replaced RAM, replace with zero pages.
3891 *
3892 * Note! This is where we might differ a little from a real system, because
3893 * it's likely to just show the RAM pages as they were before the
3894 * MMIO/MMIO2 region was mapped here.
3895 */
3896 /* Only one chunk allowed when overlapping! */
3897 Assert(fOldFlags & PGMREGMMIORANGE_F_LAST_CHUNK);
3898
3899 /* Restore the RAM pages we've replaced. */
3900 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3901 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3902 pRam = pRam->pNextR3;
3903
3904 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3905 if (fOldFlags & PGMREGMMIORANGE_F_MMIO2)
3906 pVM->pgm.s.cZeroPages += cPagesLeft;
3907
3908 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3909 while (cPagesLeft-- > 0)
3910 {
3911 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3912 pPageDst++;
3913 }
3914
3915 /* Flush physical page map TLB. */
3916 pgmPhysInvalidatePageMapTLB(pVM);
3917
3918 /* Update range state. */
3919 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3920 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3921 pFirstMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
3922 }
3923 else
3924 {
3925 /*
3926 * Unlink the chunks related to the MMIO/MMIO2 region.
3927 */
3928 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3929 {
3930 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3931 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3932 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3933 pCurMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
3934 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3935 break;
3936 }
3937 }
3938
3939 /* Force a PGM pool flush as guest ram references have been changed. */
3940 /** @todo not entirely SMP safe; assuming for now the guest takes care
3941 * of this internally (not touch mapped mmio while changing the
3942 * mapping). */
3943 PVMCPU pVCpu = VMMGetCpu(pVM);
3944 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3945 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3946
3947 pgmPhysInvalidatePageMapTLB(pVM);
3948 pgmPhysInvalidRamRangeTlbs(pVM);
3949
3950 /*
3951 * Notify NEM while holding the lock (experimental) and REM without (like always).
3952 */
3953 uint32_t const fNemFlags = (fOldFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3954 | (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3955 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags);
3956 pgmUnlock(pVM);
3957#ifdef VBOX_WITH_REM
3958 if ((fOldFlags & (PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MMIO2)) == PGMREGMMIORANGE_F_MMIO2)
3959 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeNotify, cbRange);
3960#endif
3961 return rc;
3962}
3963
3964
3965/**
3966 * Reduces the mapping size of a MMIO2 or pre-registered MMIO region.
3967 *
3968 * This is mainly for dealing with old saved states after changing the default
3969 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3970 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3971 *
3972 * The region must not currently be mapped when making this call. The VM state
3973 * must be state restore or VM construction.
3974 *
3975 * @returns VBox status code.
3976 * @param pVM The cross context VM structure.
3977 * @param pDevIns The device instance owning the region.
3978 * @param iSubDev The sub-device number of the registered region.
3979 * @param iRegion The index of the registered region.
3980 * @param cbRegion The new mapping size.
3981 */
3982VMMR3_INT_DECL(int) PGMR3PhysMMIOExReduce(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion)
3983{
3984 /*
3985 * Validate input
3986 */
3987 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3988 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3989 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3990 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3991 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3992 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3993 VMSTATE enmVmState = VMR3GetState(pVM);
3994 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3995 || enmVmState == VMSTATE_LOADING,
3996 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3997 VERR_VM_INVALID_VM_STATE);
3998
3999 int rc = pgmLock(pVM);
4000 AssertRCReturn(rc, rc);
4001
4002 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
4003 if (pFirstMmio)
4004 {
4005 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
4006 if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED))
4007 {
4008 /*
4009 * NOTE! Current implementation does not support multiple ranges.
4010 * Implement when there is a real world need and thus a testcase.
4011 */
4012 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
4013 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
4014 rc = VERR_NOT_SUPPORTED);
4015 if (RT_SUCCESS(rc))
4016 {
4017 /*
4018 * Make the change.
4019 */
4020 Log(("PGMR3PhysMMIOExReduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
4021 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
4022
4023 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
4024 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
4025 rc = VERR_OUT_OF_RANGE);
4026 if (RT_SUCCESS(rc))
4027 {
4028 pFirstMmio->RamRange.cb = cbRegion;
4029 }
4030 }
4031 }
4032 else
4033 rc = VERR_WRONG_ORDER;
4034 }
4035 else
4036 rc = VERR_NOT_FOUND;
4037
4038 pgmUnlock(pVM);
4039 return rc;
4040}
4041
4042
4043/**
4044 * Checks if the given address is an MMIO2 or pre-registered MMIO base address
4045 * or not.
4046 *
4047 * @returns true/false accordingly.
4048 * @param pVM The cross context VM structure.
4049 * @param pDevIns The owner of the memory, optional.
4050 * @param GCPhys The address to check.
4051 */
4052VMMR3DECL(bool) PGMR3PhysMMIOExIsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
4053{
4054 /*
4055 * Validate input
4056 */
4057 VM_ASSERT_EMT_RETURN(pVM, false);
4058 AssertPtrReturn(pDevIns, false);
4059 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
4060 AssertReturn(GCPhys != 0, false);
4061 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
4062
4063 /*
4064 * Search the list.
4065 */
4066 pgmLock(pVM);
4067 for (PPGMREGMMIORANGE pCurMmio = pVM->pgm.s.pRegMmioRangesR3; pCurMmio; pCurMmio = pCurMmio->pNextR3)
4068 if (pCurMmio->RamRange.GCPhys == GCPhys)
4069 {
4070 Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED);
4071 bool fRet = RT_BOOL(pCurMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
4072 pgmUnlock(pVM);
4073 return fRet;
4074 }
4075 pgmUnlock(pVM);
4076 return false;
4077}
4078
4079
4080/**
4081 * Gets the HC physical address of a page in the MMIO2 region.
4082 *
4083 * This is API is intended for MMHyper and shouldn't be called
4084 * by anyone else...
4085 *
4086 * @returns VBox status code.
4087 * @param pVM The cross context VM structure.
4088 * @param pDevIns The owner of the memory, optional.
4089 * @param iSubDev Sub-device number.
4090 * @param iRegion The region.
4091 * @param off The page expressed an offset into the MMIO2 region.
4092 * @param pHCPhys Where to store the result.
4093 */
4094VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
4095 RTGCPHYS off, PRTHCPHYS pHCPhys)
4096{
4097 /*
4098 * Validate input
4099 */
4100 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4101 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4102 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
4103 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4104
4105 pgmLock(pVM);
4106 PPGMREGMMIORANGE pCurMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
4107 AssertReturn(pCurMmio, VERR_NOT_FOUND);
4108 AssertReturn(pCurMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
4109
4110 while ( off >= pCurMmio->RamRange.cb
4111 && !(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
4112 {
4113 off -= pCurMmio->RamRange.cb;
4114 pCurMmio = pCurMmio->pNextR3;
4115 }
4116 AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4117
4118 PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT];
4119 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
4120 pgmUnlock(pVM);
4121 return VINF_SUCCESS;
4122}
4123
4124
4125/**
4126 * Maps a portion of an MMIO2 region into kernel space (host).
4127 *
4128 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
4129 * or the VM is terminated.
4130 *
4131 * @return VBox status code.
4132 *
4133 * @param pVM The cross context VM structure.
4134 * @param pDevIns The device owning the MMIO2 memory.
4135 * @param iSubDev The sub-device number.
4136 * @param iRegion The region.
4137 * @param off The offset into the region. Must be page aligned.
4138 * @param cb The number of bytes to map. Must be page aligned.
4139 * @param pszDesc Mapping description.
4140 * @param pR0Ptr Where to store the R0 address.
4141 */
4142VMMR3_INT_DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
4143 RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTR0PTR pR0Ptr)
4144{
4145 /*
4146 * Validate input.
4147 */
4148 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4149 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4150 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
4151 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4152
4153 PPGMREGMMIORANGE pFirstRegMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
4154 AssertReturn(pFirstRegMmio, VERR_NOT_FOUND);
4155 AssertReturn(pFirstRegMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
4156 AssertReturn(off < pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4157 AssertReturn(cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4158 AssertReturn(off + cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
4159 NOREF(pszDesc);
4160
4161 /*
4162 * Pass the request on to the support library/driver.
4163 */
4164#if defined(RT_OS_WINDOWS) || defined(RT_OS_LINUX) || defined(RT_OS_OS2) /** @todo Fully implement RTR0MemObjMapKernelEx everywhere. */
4165 AssertLogRelReturn(off == 0, VERR_NOT_SUPPORTED);
4166 AssertLogRelReturn(pFirstRegMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK, VERR_NOT_SUPPORTED);
4167 int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, 0 /*off*/, pFirstRegMmio->RamRange.cb, 0 /*fFlags*/, pR0Ptr);
4168#else
4169 int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, off, cb, 0 /*fFlags*/, pR0Ptr);
4170#endif
4171
4172 return rc;
4173}
4174
4175
4176/**
4177 * Worker for PGMR3PhysRomRegister.
4178 *
4179 * This is here to simplify lock management, i.e. the caller does all the
4180 * locking and we can simply return without needing to remember to unlock
4181 * anything first.
4182 *
4183 * @returns VBox status code.
4184 * @param pVM The cross context VM structure.
4185 * @param pDevIns The device instance owning the ROM.
4186 * @param GCPhys First physical address in the range.
4187 * Must be page aligned!
4188 * @param cb The size of the range (in bytes).
4189 * Must be page aligned!
4190 * @param pvBinary Pointer to the binary data backing the ROM image.
4191 * @param cbBinary The size of the binary data pvBinary points to.
4192 * This must be less or equal to @a cb.
4193 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4194 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4195 * @param pszDesc Pointer to description string. This must not be freed.
4196 */
4197static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4198 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
4199{
4200 /*
4201 * Validate input.
4202 */
4203 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4204 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
4205 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
4206 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4207 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4208 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
4209 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
4210 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
4211 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
4212
4213 const uint32_t cPages = cb >> PAGE_SHIFT;
4214
4215 /*
4216 * Find the ROM location in the ROM list first.
4217 */
4218 PPGMROMRANGE pRomPrev = NULL;
4219 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
4220 while (pRom && GCPhysLast >= pRom->GCPhys)
4221 {
4222 if ( GCPhys <= pRom->GCPhysLast
4223 && GCPhysLast >= pRom->GCPhys)
4224 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
4225 GCPhys, GCPhysLast, pszDesc,
4226 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
4227 VERR_PGM_RAM_CONFLICT);
4228 /* next */
4229 pRomPrev = pRom;
4230 pRom = pRom->pNextR3;
4231 }
4232
4233 /*
4234 * Find the RAM location and check for conflicts.
4235 *
4236 * Conflict detection is a bit different than for RAM
4237 * registration since a ROM can be located within a RAM
4238 * range. So, what we have to check for is other memory
4239 * types (other than RAM that is) and that we don't span
4240 * more than one RAM range (layz).
4241 */
4242 bool fRamExists = false;
4243 PPGMRAMRANGE pRamPrev = NULL;
4244 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4245 while (pRam && GCPhysLast >= pRam->GCPhys)
4246 {
4247 if ( GCPhys <= pRam->GCPhysLast
4248 && GCPhysLast >= pRam->GCPhys)
4249 {
4250 /* completely within? */
4251 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
4252 && GCPhysLast <= pRam->GCPhysLast,
4253 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
4254 GCPhys, GCPhysLast, pszDesc,
4255 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
4256 VERR_PGM_RAM_CONFLICT);
4257 fRamExists = true;
4258 break;
4259 }
4260
4261 /* next */
4262 pRamPrev = pRam;
4263 pRam = pRam->pNextR3;
4264 }
4265 if (fRamExists)
4266 {
4267 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4268 uint32_t cPagesLeft = cPages;
4269 while (cPagesLeft-- > 0)
4270 {
4271 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4272 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4273 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4274 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4275 Assert(PGM_PAGE_IS_ZERO(pPage));
4276 pPage++;
4277 }
4278 }
4279
4280 /*
4281 * Update the base memory reservation if necessary.
4282 */
4283 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4284 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4285 cExtraBaseCost += cPages;
4286 if (cExtraBaseCost)
4287 {
4288 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4289 if (RT_FAILURE(rc))
4290 return rc;
4291 }
4292
4293 /*
4294 * Allocate memory for the virgin copy of the RAM.
4295 */
4296 PGMMALLOCATEPAGESREQ pReq;
4297 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4298 AssertRCReturn(rc, rc);
4299
4300 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4301 {
4302 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4303 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4304 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4305 }
4306
4307 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4308 if (RT_FAILURE(rc))
4309 {
4310 GMMR3AllocatePagesCleanup(pReq);
4311 return rc;
4312 }
4313
4314 /*
4315 * Allocate the new ROM range and RAM range (if necessary).
4316 */
4317 PPGMROMRANGE pRomNew;
4318 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4319 if (RT_SUCCESS(rc))
4320 {
4321 PPGMRAMRANGE pRamNew = NULL;
4322 if (!fRamExists)
4323 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4324 if (RT_SUCCESS(rc))
4325 {
4326 /*
4327 * Initialize and insert the RAM range (if required).
4328 */
4329 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4330 if (!fRamExists)
4331 {
4332 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4333 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
4334 pRamNew->GCPhys = GCPhys;
4335 pRamNew->GCPhysLast = GCPhysLast;
4336 pRamNew->cb = cb;
4337 pRamNew->pszDesc = pszDesc;
4338 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4339 pRamNew->pvR3 = NULL;
4340 pRamNew->paLSPages = NULL;
4341
4342 PPGMPAGE pPage = &pRamNew->aPages[0];
4343 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4344 {
4345 PGM_PAGE_INIT(pPage,
4346 pReq->aPages[iPage].HCPhysGCPhys,
4347 pReq->aPages[iPage].idPage,
4348 PGMPAGETYPE_ROM,
4349 PGM_PAGE_STATE_ALLOCATED);
4350
4351 pRomPage->Virgin = *pPage;
4352 }
4353
4354 pVM->pgm.s.cAllPages += cPages;
4355 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4356 }
4357 else
4358 {
4359 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4360 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4361 {
4362 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
4363 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
4364 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4365 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
4366 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4367 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4368 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4369
4370 pRomPage->Virgin = *pPage;
4371 }
4372
4373 pRamNew = pRam;
4374
4375 pVM->pgm.s.cZeroPages -= cPages;
4376 }
4377 pVM->pgm.s.cPrivatePages += cPages;
4378
4379 /* Flush physical page map TLB. */
4380 pgmPhysInvalidatePageMapTLB(pVM);
4381
4382
4383 /* Notify NEM before we register handlers. */
4384 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4385 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4386 rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify);
4387
4388 /*
4389 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
4390 *
4391 * If it's shadowed we'll register the handler after the ROM notification
4392 * so we get the access handler callbacks that we should. If it isn't
4393 * shadowed we'll do it the other way around to make REM use the built-in
4394 * ROM behavior and not the handler behavior (which is to route all access
4395 * to PGM atm).
4396 */
4397 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4398 {
4399#ifdef VBOX_WITH_REM
4400 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
4401#endif
4402 if (RT_SUCCESS(rc))
4403 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4404 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
4405 pszDesc);
4406 }
4407 else
4408 {
4409 if (RT_SUCCESS(rc))
4410 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4411 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
4412 pszDesc);
4413#ifdef VBOX_WITH_REM
4414 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
4415#endif
4416 }
4417 if (RT_SUCCESS(rc))
4418 {
4419 /*
4420 * Copy the image over to the virgin pages.
4421 * This must be done after linking in the RAM range.
4422 */
4423 size_t cbBinaryLeft = cbBinary;
4424 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
4425 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4426 {
4427 void *pvDstPage;
4428 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4429 if (RT_FAILURE(rc))
4430 {
4431 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4432 break;
4433 }
4434 if (cbBinaryLeft >= PAGE_SIZE)
4435 {
4436 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4437 cbBinaryLeft -= PAGE_SIZE;
4438 }
4439 else
4440 {
4441 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4442 if (cbBinaryLeft > 0)
4443 {
4444 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4445 cbBinaryLeft = 0;
4446 }
4447 }
4448 }
4449 if (RT_SUCCESS(rc))
4450 {
4451 /*
4452 * Initialize the ROM range.
4453 * Note that the Virgin member of the pages has already been initialized above.
4454 */
4455 pRomNew->GCPhys = GCPhys;
4456 pRomNew->GCPhysLast = GCPhysLast;
4457 pRomNew->cb = cb;
4458 pRomNew->fFlags = fFlags;
4459 pRomNew->idSavedState = UINT8_MAX;
4460 pRomNew->cbOriginal = cbBinary;
4461 pRomNew->pszDesc = pszDesc;
4462 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4463 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4464 if (pRomNew->pvOriginal)
4465 {
4466 for (unsigned iPage = 0; iPage < cPages; iPage++)
4467 {
4468 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4469 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4470 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4471 }
4472
4473 /* update the page count stats for the shadow pages. */
4474 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4475 {
4476 pVM->pgm.s.cZeroPages += cPages;
4477 pVM->pgm.s.cAllPages += cPages;
4478 }
4479
4480 /*
4481 * Insert the ROM range, tell REM and return successfully.
4482 */
4483 pRomNew->pNextR3 = pRom;
4484 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4485 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
4486
4487 if (pRomPrev)
4488 {
4489 pRomPrev->pNextR3 = pRomNew;
4490 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4491 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
4492 }
4493 else
4494 {
4495 pVM->pgm.s.pRomRangesR3 = pRomNew;
4496 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4497 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
4498 }
4499
4500 pgmPhysInvalidatePageMapTLB(pVM);
4501 GMMR3AllocatePagesCleanup(pReq);
4502
4503 /* Notify NEM again. */
4504 return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify);
4505 }
4506
4507 /* bail out */
4508 rc = VERR_NO_MEMORY;
4509 }
4510
4511 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4512 AssertRC(rc2);
4513 }
4514
4515 if (!fRamExists)
4516 {
4517 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4518 MMHyperFree(pVM, pRamNew);
4519 }
4520 }
4521 MMHyperFree(pVM, pRomNew);
4522 }
4523
4524 /** @todo Purge the mapping cache or something... */
4525 GMMR3FreeAllocatedPages(pVM, pReq);
4526 GMMR3AllocatePagesCleanup(pReq);
4527 return rc;
4528}
4529
4530
4531/**
4532 * Registers a ROM image.
4533 *
4534 * Shadowed ROM images requires double the amount of backing memory, so,
4535 * don't use that unless you have to. Shadowing of ROM images is process
4536 * where we can select where the reads go and where the writes go. On real
4537 * hardware the chipset provides means to configure this. We provide
4538 * PGMR3PhysProtectROM() for this purpose.
4539 *
4540 * A read-only copy of the ROM image will always be kept around while we
4541 * will allocate RAM pages for the changes on demand (unless all memory
4542 * is configured to be preallocated).
4543 *
4544 * @returns VBox status code.
4545 * @param pVM The cross context VM structure.
4546 * @param pDevIns The device instance owning the ROM.
4547 * @param GCPhys First physical address in the range.
4548 * Must be page aligned!
4549 * @param cb The size of the range (in bytes).
4550 * Must be page aligned!
4551 * @param pvBinary Pointer to the binary data backing the ROM image.
4552 * @param cbBinary The size of the binary data pvBinary points to.
4553 * This must be less or equal to @a cb.
4554 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4555 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4556 * @param pszDesc Pointer to description string. This must not be freed.
4557 *
4558 * @remark There is no way to remove the rom, automatically on device cleanup or
4559 * manually from the device yet. This isn't difficult in any way, it's
4560 * just not something we expect to be necessary for a while.
4561 */
4562VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4563 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
4564{
4565 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4566 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4567 pgmLock(pVM);
4568 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4569 pgmUnlock(pVM);
4570 return rc;
4571}
4572
4573
4574/**
4575 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4576 * that the virgin part is untouched.
4577 *
4578 * This is done after the normal memory has been cleared.
4579 *
4580 * ASSUMES that the caller owns the PGM lock.
4581 *
4582 * @param pVM The cross context VM structure.
4583 */
4584int pgmR3PhysRomReset(PVM pVM)
4585{
4586 PGM_LOCK_ASSERT_OWNER(pVM);
4587 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4588 {
4589 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4590
4591 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4592 {
4593 /*
4594 * Reset the physical handler.
4595 */
4596 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4597 AssertRCReturn(rc, rc);
4598
4599 /*
4600 * What we do with the shadow pages depends on the memory
4601 * preallocation option. If not enabled, we'll just throw
4602 * out all the dirty pages and replace them by the zero page.
4603 */
4604 if (!pVM->pgm.s.fRamPreAlloc)
4605 {
4606 /* Free the dirty pages. */
4607 uint32_t cPendingPages = 0;
4608 PGMMFREEPAGESREQ pReq;
4609 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4610 AssertRCReturn(rc, rc);
4611
4612 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4613 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4614 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4615 {
4616 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4617 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4618 pRom->GCPhys + (iPage << PAGE_SHIFT),
4619 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4620 AssertLogRelRCReturn(rc, rc);
4621 }
4622
4623 if (cPendingPages)
4624 {
4625 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4626 AssertLogRelRCReturn(rc, rc);
4627 }
4628 GMMR3FreePagesCleanup(pReq);
4629 }
4630 else
4631 {
4632 /* clear all the shadow pages. */
4633 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4634 {
4635 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4636 continue;
4637 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4638 void *pvDstPage;
4639 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4640 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4641 if (RT_FAILURE(rc))
4642 break;
4643 ASMMemZeroPage(pvDstPage);
4644 }
4645 AssertRCReturn(rc, rc);
4646 }
4647 }
4648
4649 /*
4650 * Restore the original ROM pages after a saved state load.
4651 * Also, in strict builds check that ROM pages remain unmodified.
4652 */
4653#ifndef VBOX_STRICT
4654 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4655#endif
4656 {
4657 size_t cbSrcLeft = pRom->cbOriginal;
4658 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4659 uint32_t cRestored = 0;
4660 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4661 {
4662 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4663 void const *pvDstPage;
4664 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
4665 if (RT_FAILURE(rc))
4666 break;
4667
4668 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4669 {
4670 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4671 {
4672 void *pvDstPageW;
4673 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
4674 AssertLogRelRCReturn(rc, rc);
4675 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4676 cRestored++;
4677 }
4678 else
4679 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4680 }
4681 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4682 }
4683 if (cRestored > 0)
4684 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4685 }
4686 }
4687
4688 /* Clear the ROM restore flag now as we only need to do this once after
4689 loading saved state. */
4690 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4691
4692 return VINF_SUCCESS;
4693}
4694
4695
4696/**
4697 * Called by PGMR3Term to free resources.
4698 *
4699 * ASSUMES that the caller owns the PGM lock.
4700 *
4701 * @param pVM The cross context VM structure.
4702 */
4703void pgmR3PhysRomTerm(PVM pVM)
4704{
4705 /*
4706 * Free the heap copy of the original bits.
4707 */
4708 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4709 {
4710 if ( pRom->pvOriginal
4711 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4712 {
4713 RTMemFree((void *)pRom->pvOriginal);
4714 pRom->pvOriginal = NULL;
4715 }
4716 }
4717}
4718
4719
4720/**
4721 * Change the shadowing of a range of ROM pages.
4722 *
4723 * This is intended for implementing chipset specific memory registers
4724 * and will not be very strict about the input. It will silently ignore
4725 * any pages that are not the part of a shadowed ROM.
4726 *
4727 * @returns VBox status code.
4728 * @retval VINF_PGM_SYNC_CR3
4729 *
4730 * @param pVM The cross context VM structure.
4731 * @param GCPhys Where to start. Page aligned.
4732 * @param cb How much to change. Page aligned.
4733 * @param enmProt The new ROM protection.
4734 */
4735VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4736{
4737 /*
4738 * Check input
4739 */
4740 if (!cb)
4741 return VINF_SUCCESS;
4742 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4743 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4744 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4745 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4746 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4747
4748 /*
4749 * Process the request.
4750 */
4751 pgmLock(pVM);
4752 int rc = VINF_SUCCESS;
4753 bool fFlushTLB = false;
4754 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4755 {
4756 if ( GCPhys <= pRom->GCPhysLast
4757 && GCPhysLast >= pRom->GCPhys
4758 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4759 {
4760 /*
4761 * Iterate the relevant pages and make necessary the changes.
4762 */
4763 bool fChanges = false;
4764 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4765 ? pRom->cb >> PAGE_SHIFT
4766 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4767 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4768 iPage < cPages;
4769 iPage++)
4770 {
4771 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4772 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
4773 {
4774 fChanges = true;
4775
4776 /* flush references to the page. */
4777 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
4778 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
4779 true /*fFlushPTEs*/, &fFlushTLB);
4780 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
4781 rc = rc2;
4782 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
4783
4784 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
4785 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
4786
4787 *pOld = *pRamPage;
4788 *pRamPage = *pNew;
4789 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
4790
4791 /* Tell NEM about the backing and protection change. */
4792 if (VM_IS_NEM_ENABLED(pVM))
4793 {
4794 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
4795 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
4796 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
4797 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
4798 }
4799 }
4800 pRomPage->enmProt = enmProt;
4801 }
4802
4803 /*
4804 * Reset the access handler if we made changes, no need
4805 * to optimize this.
4806 */
4807 if (fChanges)
4808 {
4809 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
4810 if (RT_FAILURE(rc2))
4811 {
4812 pgmUnlock(pVM);
4813 AssertRC(rc);
4814 return rc2;
4815 }
4816 }
4817
4818 /* Advance - cb isn't updated. */
4819 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
4820 }
4821 }
4822 pgmUnlock(pVM);
4823 if (fFlushTLB)
4824 PGM_INVL_ALL_VCPU_TLBS(pVM);
4825
4826 return rc;
4827}
4828
4829
4830/**
4831 * Sets the Address Gate 20 state.
4832 *
4833 * @param pVCpu The cross context virtual CPU structure.
4834 * @param fEnable True if the gate should be enabled.
4835 * False if the gate should be disabled.
4836 */
4837VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
4838{
4839 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
4840 if (pVCpu->pgm.s.fA20Enabled != fEnable)
4841 {
4842#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4843 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
4844 if ( CPUMIsGuestInVmxRootMode(pCtx)
4845 && !fEnable)
4846 {
4847 Log(("Cannot enter A20M mode while in VMX root mode\n"));
4848 return;
4849 }
4850#endif
4851 pVCpu->pgm.s.fA20Enabled = fEnable;
4852 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
4853#ifdef VBOX_WITH_REM
4854 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
4855#endif
4856 NEMR3NotifySetA20(pVCpu, fEnable);
4857#ifdef PGM_WITH_A20
4858 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
4859 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4860 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
4861 HMFlushTlb(pVCpu);
4862#endif
4863 IEMTlbInvalidateAllPhysical(pVCpu);
4864 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
4865 }
4866}
4867
4868
4869/**
4870 * Tree enumeration callback for dealing with age rollover.
4871 * It will perform a simple compression of the current age.
4872 */
4873static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
4874{
4875 /* Age compression - ASSUMES iNow == 4. */
4876 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4877 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
4878 pChunk->iLastUsed = 3;
4879 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
4880 pChunk->iLastUsed = 2;
4881 else if (pChunk->iLastUsed)
4882 pChunk->iLastUsed = 1;
4883 else /* iLastUsed = 0 */
4884 pChunk->iLastUsed = 4;
4885
4886 NOREF(pvUser);
4887 return 0;
4888}
4889
4890
4891/**
4892 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
4893 */
4894typedef struct PGMR3PHYSCHUNKUNMAPCB
4895{
4896 PVM pVM; /**< Pointer to the VM. */
4897 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
4898} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
4899
4900
4901/**
4902 * Callback used to find the mapping that's been unused for
4903 * the longest time.
4904 */
4905static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
4906{
4907 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4908 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
4909
4910 /*
4911 * Check for locks and compare when last used.
4912 */
4913 if (pChunk->cRefs)
4914 return 0;
4915 if (pChunk->cPermRefs)
4916 return 0;
4917 if ( pArg->pChunk
4918 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
4919 return 0;
4920
4921 /*
4922 * Check that it's not in any of the TLBs.
4923 */
4924 PVM pVM = pArg->pVM;
4925 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
4926 == pChunk->Core.Key)
4927 {
4928 pChunk = NULL;
4929 return 0;
4930 }
4931#ifdef VBOX_STRICT
4932 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4933 {
4934 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
4935 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
4936 }
4937#endif
4938
4939 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
4940 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
4941 return 0;
4942
4943 pArg->pChunk = pChunk;
4944 return 0;
4945}
4946
4947
4948/**
4949 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
4950 *
4951 * The candidate will not be part of any TLBs, so no need to flush
4952 * anything afterwards.
4953 *
4954 * @returns Chunk id.
4955 * @param pVM The cross context VM structure.
4956 */
4957static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
4958{
4959 PGM_LOCK_ASSERT_OWNER(pVM);
4960
4961 /*
4962 * Enumerate the age tree starting with the left most node.
4963 */
4964 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4965 PGMR3PHYSCHUNKUNMAPCB Args;
4966 Args.pVM = pVM;
4967 Args.pChunk = NULL;
4968 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
4969 Assert(Args.pChunk);
4970 if (Args.pChunk)
4971 {
4972 Assert(Args.pChunk->cRefs == 0);
4973 Assert(Args.pChunk->cPermRefs == 0);
4974 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4975 return Args.pChunk->Core.Key;
4976 }
4977
4978 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4979 return INT32_MAX;
4980}
4981
4982
4983/**
4984 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
4985 *
4986 * This is only called on one of the EMTs while the other ones are waiting for
4987 * it to complete this function.
4988 *
4989 * @returns VINF_SUCCESS (VBox strict status code).
4990 * @param pVM The cross context VM structure.
4991 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
4992 * @param pvUser User pointer. Unused
4993 *
4994 */
4995static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
4996{
4997 int rc = VINF_SUCCESS;
4998 pgmLock(pVM);
4999 NOREF(pVCpu); NOREF(pvUser);
5000
5001 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
5002 {
5003 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
5004 /** @todo also not really efficient to unmap a chunk that contains PD
5005 * or PT pages. */
5006 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
5007
5008 /*
5009 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
5010 */
5011 GMMMAPUNMAPCHUNKREQ Req;
5012 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5013 Req.Hdr.cbReq = sizeof(Req);
5014 Req.pvR3 = NULL;
5015 Req.idChunkMap = NIL_GMM_CHUNKID;
5016 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
5017 if (Req.idChunkUnmap != INT32_MAX)
5018 {
5019 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
5020 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5021 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
5022 if (RT_SUCCESS(rc))
5023 {
5024 /*
5025 * Remove the unmapped one.
5026 */
5027 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
5028 AssertRelease(pUnmappedChunk);
5029 AssertRelease(!pUnmappedChunk->cRefs);
5030 AssertRelease(!pUnmappedChunk->cPermRefs);
5031 pUnmappedChunk->pv = NULL;
5032 pUnmappedChunk->Core.Key = UINT32_MAX;
5033#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
5034 MMR3HeapFree(pUnmappedChunk);
5035#else
5036 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
5037#endif
5038 pVM->pgm.s.ChunkR3Map.c--;
5039 pVM->pgm.s.cUnmappedChunks++;
5040
5041 /*
5042 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
5043 */
5044 /** @todo We should not flush chunks which include cr3 mappings. */
5045 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5046 {
5047 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
5048
5049 pPGM->pGst32BitPdR3 = NULL;
5050 pPGM->pGstPaePdptR3 = NULL;
5051 pPGM->pGstAmd64Pml4R3 = NULL;
5052#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
5053 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
5054 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
5055 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
5056#endif
5057 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
5058 {
5059 pPGM->apGstPaePDsR3[i] = NULL;
5060#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
5061 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
5062#endif
5063 }
5064
5065 /* Flush REM TLBs. */
5066 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5067 }
5068#ifdef VBOX_WITH_REM
5069 /* Flush REM translation blocks. */
5070 REMFlushTBs(pVM);
5071#endif
5072 }
5073 }
5074 }
5075 pgmUnlock(pVM);
5076 return rc;
5077}
5078
5079/**
5080 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
5081 *
5082 * @returns VBox status code.
5083 * @param pVM The cross context VM structure.
5084 */
5085void pgmR3PhysUnmapChunk(PVM pVM)
5086{
5087 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
5088 AssertRC(rc);
5089}
5090
5091
5092/**
5093 * Maps the given chunk into the ring-3 mapping cache.
5094 *
5095 * This will call ring-0.
5096 *
5097 * @returns VBox status code.
5098 * @param pVM The cross context VM structure.
5099 * @param idChunk The chunk in question.
5100 * @param ppChunk Where to store the chunk tracking structure.
5101 *
5102 * @remarks Called from within the PGM critical section.
5103 * @remarks Can be called from any thread!
5104 */
5105int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
5106{
5107 int rc;
5108
5109 PGM_LOCK_ASSERT_OWNER(pVM);
5110
5111 /*
5112 * Move the chunk time forward.
5113 */
5114 pVM->pgm.s.ChunkR3Map.iNow++;
5115 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
5116 {
5117 pVM->pgm.s.ChunkR3Map.iNow = 4;
5118 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
5119 }
5120
5121 /*
5122 * Allocate a new tracking structure first.
5123 */
5124#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
5125 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
5126#else
5127 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
5128#endif
5129 AssertReturn(pChunk, VERR_NO_MEMORY);
5130 pChunk->Core.Key = idChunk;
5131 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
5132
5133 /*
5134 * Request the ring-0 part to map the chunk in question.
5135 */
5136 GMMMAPUNMAPCHUNKREQ Req;
5137 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5138 Req.Hdr.cbReq = sizeof(Req);
5139 Req.pvR3 = NULL;
5140 Req.idChunkMap = idChunk;
5141 Req.idChunkUnmap = NIL_GMM_CHUNKID;
5142
5143 /* Must be callable from any thread, so can't use VMMR3CallR0. */
5144 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
5145 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5146 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
5147 if (RT_SUCCESS(rc))
5148 {
5149 pChunk->pv = Req.pvR3;
5150
5151 /*
5152 * If we're running out of virtual address space, then we should
5153 * unmap another chunk.
5154 *
5155 * Currently, an unmap operation requires that all other virtual CPUs
5156 * are idling and not by chance making use of the memory we're
5157 * unmapping. So, we create an async unmap operation here.
5158 *
5159 * Now, when creating or restoring a saved state this wont work very
5160 * well since we may want to restore all guest RAM + a little something.
5161 * So, we have to do the unmap synchronously. Fortunately for us
5162 * though, during these operations the other virtual CPUs are inactive
5163 * and it should be safe to do this.
5164 */
5165 /** @todo Eventually we should lock all memory when used and do
5166 * map+unmap as one kernel call without any rendezvous or
5167 * other precautions. */
5168 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
5169 {
5170 switch (VMR3GetState(pVM))
5171 {
5172 case VMSTATE_LOADING:
5173 case VMSTATE_SAVING:
5174 {
5175 PVMCPU pVCpu = VMMGetCpu(pVM);
5176 if ( pVCpu
5177 && pVM->pgm.s.cDeprecatedPageLocks == 0)
5178 {
5179 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
5180 break;
5181 }
5182 }
5183 RT_FALL_THRU();
5184 default:
5185 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
5186 AssertRC(rc);
5187 break;
5188 }
5189 }
5190
5191 /*
5192 * Update the tree. We must do this after any unmapping to make sure
5193 * the chunk we're going to return isn't unmapped by accident.
5194 */
5195 AssertPtr(Req.pvR3);
5196 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
5197 AssertRelease(fRc);
5198 pVM->pgm.s.ChunkR3Map.c++;
5199 pVM->pgm.s.cMappedChunks++;
5200 }
5201 else
5202 {
5203 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
5204 * should probably restrict ourselves on linux. */
5205 AssertRC(rc);
5206#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
5207 MMR3HeapFree(pChunk);
5208#else
5209 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
5210#endif
5211 pChunk = NULL;
5212 }
5213
5214 *ppChunk = pChunk;
5215 return rc;
5216}
5217
5218
5219/**
5220 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
5221 *
5222 * @returns see pgmR3PhysChunkMap.
5223 * @param pVM The cross context VM structure.
5224 * @param idChunk The chunk to map.
5225 */
5226VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
5227{
5228 PPGMCHUNKR3MAP pChunk;
5229 int rc;
5230
5231 pgmLock(pVM);
5232 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
5233 pgmUnlock(pVM);
5234 return rc;
5235}
5236
5237
5238/**
5239 * Invalidates the TLB for the ring-3 mapping cache.
5240 *
5241 * @param pVM The cross context VM structure.
5242 */
5243VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
5244{
5245 pgmLock(pVM);
5246 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5247 {
5248 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
5249 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
5250 }
5251 /* The page map TLB references chunks, so invalidate that one too. */
5252 pgmPhysInvalidatePageMapTLB(pVM);
5253 pgmUnlock(pVM);
5254}
5255
5256
5257/**
5258 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
5259 * (2MB) page for use with a nested paging PDE.
5260 *
5261 * @returns The following VBox status codes.
5262 * @retval VINF_SUCCESS on success.
5263 * @retval VINF_EM_NO_MEMORY if we're out of memory.
5264 *
5265 * @param pVM The cross context VM structure.
5266 * @param GCPhys GC physical start address of the 2 MB range
5267 */
5268VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
5269{
5270#ifdef PGM_WITH_LARGE_PAGES
5271 uint64_t u64TimeStamp1, u64TimeStamp2;
5272
5273 pgmLock(pVM);
5274
5275 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
5276 u64TimeStamp1 = RTTimeMilliTS();
5277 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
5278 u64TimeStamp2 = RTTimeMilliTS();
5279 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
5280 if (RT_SUCCESS(rc))
5281 {
5282 Assert(pVM->pgm.s.cLargeHandyPages == 1);
5283
5284 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
5285 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
5286
5287 void *pv;
5288
5289 /* Map the large page into our address space.
5290 *
5291 * Note: assuming that within the 2 MB range:
5292 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
5293 * - user space mapping is continuous as well
5294 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
5295 */
5296 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
5297 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
5298
5299 if (RT_SUCCESS(rc))
5300 {
5301 /*
5302 * Clear the pages.
5303 */
5304 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5305 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
5306 {
5307 ASMMemZeroPage(pv);
5308
5309 PPGMPAGE pPage;
5310 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
5311 AssertRC(rc);
5312
5313 Assert(PGM_PAGE_IS_ZERO(pPage));
5314 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
5315 pVM->pgm.s.cZeroPages--;
5316
5317 /*
5318 * Do the PGMPAGE modifications.
5319 */
5320 pVM->pgm.s.cPrivatePages++;
5321 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
5322 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
5323 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
5324 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
5325 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5326 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5327
5328 /* Somewhat dirty assumption that page ids are increasing. */
5329 idPage++;
5330
5331 HCPhys += PAGE_SIZE;
5332 GCPhys += PAGE_SIZE;
5333
5334 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
5335
5336 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
5337 }
5338 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5339
5340 /* Flush all TLBs. */
5341 PGM_INVL_ALL_VCPU_TLBS(pVM);
5342 pgmPhysInvalidatePageMapTLB(pVM);
5343 }
5344 pVM->pgm.s.cLargeHandyPages = 0;
5345 }
5346
5347 if (RT_SUCCESS(rc))
5348 {
5349 static uint32_t cTimeOut = 0;
5350 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
5351
5352 if (u64TimeStampDelta > 100)
5353 {
5354 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
5355 if ( ++cTimeOut > 10
5356 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
5357 {
5358 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
5359 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
5360 */
5361 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
5362 PGMSetLargePageUsage(pVM, false);
5363 }
5364 }
5365 else
5366 if (cTimeOut > 0)
5367 cTimeOut--;
5368 }
5369
5370 pgmUnlock(pVM);
5371 return rc;
5372#else
5373 RT_NOREF(pVM, GCPhys);
5374 return VERR_NOT_IMPLEMENTED;
5375#endif /* PGM_WITH_LARGE_PAGES */
5376}
5377
5378
5379/**
5380 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
5381 *
5382 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5383 * signal and clear the out of memory condition. When contracted, this API is
5384 * used to try clear the condition when the user wants to resume.
5385 *
5386 * @returns The following VBox status codes.
5387 * @retval VINF_SUCCESS on success. FFs cleared.
5388 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5389 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5390 *
5391 * @param pVM The cross context VM structure.
5392 *
5393 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5394 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5395 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5396 * handler.
5397 */
5398VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5399{
5400 pgmLock(pVM);
5401
5402 /*
5403 * Allocate more pages, noting down the index of the first new page.
5404 */
5405 uint32_t iClear = pVM->pgm.s.cHandyPages;
5406 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5407 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5408 int rcAlloc = VINF_SUCCESS;
5409 int rcSeed = VINF_SUCCESS;
5410 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5411 while (rc == VERR_GMM_SEED_ME)
5412 {
5413 void *pvChunk;
5414 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
5415 if (RT_SUCCESS(rc))
5416 {
5417 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
5418 if (RT_FAILURE(rc))
5419 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
5420 }
5421 if (RT_SUCCESS(rc))
5422 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5423 }
5424
5425 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5426 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5427 && pVM->pgm.s.cHandyPages > 0)
5428 {
5429 /* Still handy pages left, so don't panic. */
5430 rc = VINF_SUCCESS;
5431 }
5432
5433 if (RT_SUCCESS(rc))
5434 {
5435 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5436 Assert(pVM->pgm.s.cHandyPages > 0);
5437 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5438 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
5439
5440#ifdef VBOX_STRICT
5441 uint32_t i;
5442 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5443 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5444 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5445 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5446 break;
5447 if (i != pVM->pgm.s.cHandyPages)
5448 {
5449 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5450 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5451 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5452 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
5453 pVM->pgm.s.aHandyPages[j].idPage,
5454 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5455 pVM->pgm.s.aHandyPages[j].idSharedPage,
5456 j == i ? " <---" : "");
5457 RTAssertPanic();
5458 }
5459#endif
5460 /*
5461 * Clear the pages.
5462 */
5463 while (iClear < pVM->pgm.s.cHandyPages)
5464 {
5465 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
5466 void *pv;
5467 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
5468 AssertLogRelMsgBreak(RT_SUCCESS(rc),
5469 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
5470 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
5471 ASMMemZeroPage(pv);
5472 iClear++;
5473 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
5474 }
5475 }
5476 else
5477 {
5478 uint64_t cAllocPages, cMaxPages, cBalloonPages;
5479
5480 /*
5481 * We should never get here unless there is a genuine shortage of
5482 * memory (or some internal error). Flag the error so the VM can be
5483 * suspended ASAP and the user informed. If we're totally out of
5484 * handy pages we will return failure.
5485 */
5486 /* Report the failure. */
5487 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
5488 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5489 rc, rcAlloc, rcSeed,
5490 pVM->pgm.s.cHandyPages,
5491 pVM->pgm.s.cAllPages,
5492 pVM->pgm.s.cPrivatePages,
5493 pVM->pgm.s.cSharedPages,
5494 pVM->pgm.s.cZeroPages));
5495
5496 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
5497 {
5498 LogRel(("GMM: Statistics:\n"
5499 " Allocated pages: %RX64\n"
5500 " Maximum pages: %RX64\n"
5501 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
5502 }
5503
5504 if ( rc != VERR_NO_MEMORY
5505 && rc != VERR_NO_PHYS_MEMORY
5506 && rc != VERR_LOCK_FAILED)
5507 {
5508 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5509 {
5510 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5511 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5512 pVM->pgm.s.aHandyPages[i].idSharedPage));
5513 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5514 if (idPage != NIL_GMM_PAGEID)
5515 {
5516 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5517 pRam;
5518 pRam = pRam->pNextR3)
5519 {
5520 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5521 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5522 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5523 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5524 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5525 }
5526 }
5527 }
5528 }
5529
5530 if (rc == VERR_NO_MEMORY)
5531 {
5532 uint64_t cbHostRamAvail = 0;
5533 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5534 if (RT_SUCCESS(rc2))
5535 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5536 else
5537 LogRel(("Cannot determine the amount of available host memory\n"));
5538 }
5539
5540 /* Set the FFs and adjust rc. */
5541 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5542 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5543 if ( rc == VERR_NO_MEMORY
5544 || rc == VERR_NO_PHYS_MEMORY
5545 || rc == VERR_LOCK_FAILED)
5546 rc = VINF_EM_NO_MEMORY;
5547 }
5548
5549 pgmUnlock(pVM);
5550 return rc;
5551}
5552
5553
5554/**
5555 * Frees the specified RAM page and replaces it with the ZERO page.
5556 *
5557 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
5558 *
5559 * @param pVM The cross context VM structure.
5560 * @param pReq Pointer to the request.
5561 * @param pcPendingPages Where the number of pages waiting to be freed are
5562 * kept. This will normally be incremented.
5563 * @param pPage Pointer to the page structure.
5564 * @param GCPhys The guest physical address of the page, if applicable.
5565 * @param enmNewType New page type for NEM notification, since several
5566 * callers will change the type upon successful return.
5567 *
5568 * @remarks The caller must own the PGM lock.
5569 */
5570int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
5571 PGMPAGETYPE enmNewType)
5572{
5573 /*
5574 * Assert sanity.
5575 */
5576 PGM_LOCK_ASSERT_OWNER(pVM);
5577 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
5578 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
5579 {
5580 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5581 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
5582 }
5583
5584 /** @todo What about ballooning of large pages??! */
5585 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
5586 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
5587
5588 if ( PGM_PAGE_IS_ZERO(pPage)
5589 || PGM_PAGE_IS_BALLOONED(pPage))
5590 return VINF_SUCCESS;
5591
5592 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
5593 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
5594 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
5595 || idPage > GMM_PAGEID_LAST
5596 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
5597 {
5598 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5599 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
5600 }
5601 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
5602
5603 /* update page count stats. */
5604 if (PGM_PAGE_IS_SHARED(pPage))
5605 pVM->pgm.s.cSharedPages--;
5606 else
5607 pVM->pgm.s.cPrivatePages--;
5608 pVM->pgm.s.cZeroPages++;
5609
5610 /* Deal with write monitored pages. */
5611 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
5612 {
5613 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
5614 pVM->pgm.s.cWrittenToPages++;
5615 }
5616
5617 /*
5618 * pPage = ZERO page.
5619 */
5620 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
5621 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5622 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
5623 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
5624 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5625 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5626
5627 /* Flush physical page map TLB entry. */
5628 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
5629
5630 /* Notify NEM. */
5631 /** @todo consider doing batch NEM notifications. */
5632 if (VM_IS_NEM_ENABLED(pVM))
5633 {
5634 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
5635 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg,
5636 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
5637 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
5638 }
5639
5640 /*
5641 * Make sure it's not in the handy page array.
5642 */
5643 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5644 {
5645 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
5646 {
5647 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
5648 break;
5649 }
5650 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
5651 {
5652 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
5653 break;
5654 }
5655 }
5656
5657 /*
5658 * Push it onto the page array.
5659 */
5660 uint32_t iPage = *pcPendingPages;
5661 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
5662 *pcPendingPages += 1;
5663
5664 pReq->aPages[iPage].idPage = idPage;
5665
5666 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
5667 return VINF_SUCCESS;
5668
5669 /*
5670 * Flush the pages.
5671 */
5672 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
5673 if (RT_SUCCESS(rc))
5674 {
5675 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5676 *pcPendingPages = 0;
5677 }
5678 return rc;
5679}
5680
5681
5682/**
5683 * Converts a GC physical address to a HC ring-3 pointer, with some
5684 * additional checks.
5685 *
5686 * @returns VBox status code.
5687 * @retval VINF_SUCCESS on success.
5688 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
5689 * access handler of some kind.
5690 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
5691 * accesses or is odd in any way.
5692 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
5693 *
5694 * @param pVM The cross context VM structure.
5695 * @param GCPhys The GC physical address to convert. Since this is only
5696 * used for filling the REM TLB, the A20 mask must be
5697 * applied before calling this API.
5698 * @param fWritable Whether write access is required.
5699 * @param ppv Where to store the pointer corresponding to GCPhys on
5700 * success.
5701 */
5702VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
5703{
5704 pgmLock(pVM);
5705 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
5706
5707 PPGMRAMRANGE pRam;
5708 PPGMPAGE pPage;
5709 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
5710 if (RT_SUCCESS(rc))
5711 {
5712 if (PGM_PAGE_IS_BALLOONED(pPage))
5713 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5714 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
5715 rc = VINF_SUCCESS;
5716 else
5717 {
5718 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
5719 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5720 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
5721 {
5722 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
5723 * in -norawr0 mode. */
5724 if (fWritable)
5725 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5726 }
5727 else
5728 {
5729 /* Temporarily disabled physical handler(s), since the recompiler
5730 doesn't get notified when it's reset we'll have to pretend it's
5731 operating normally. */
5732 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
5733 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5734 else
5735 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5736 }
5737 }
5738 if (RT_SUCCESS(rc))
5739 {
5740 int rc2;
5741
5742 /* Make sure what we return is writable. */
5743 if (fWritable)
5744 switch (PGM_PAGE_GET_STATE(pPage))
5745 {
5746 case PGM_PAGE_STATE_ALLOCATED:
5747 break;
5748 case PGM_PAGE_STATE_BALLOONED:
5749 AssertFailed();
5750 break;
5751 case PGM_PAGE_STATE_ZERO:
5752 case PGM_PAGE_STATE_SHARED:
5753 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
5754 break;
5755 RT_FALL_THRU();
5756 case PGM_PAGE_STATE_WRITE_MONITORED:
5757 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
5758 AssertLogRelRCReturn(rc2, rc2);
5759 break;
5760 }
5761
5762 /* Get a ring-3 mapping of the address. */
5763 PPGMPAGER3MAPTLBE pTlbe;
5764 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
5765 AssertLogRelRCReturn(rc2, rc2);
5766 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
5767 /** @todo mapping/locking hell; this isn't horribly efficient since
5768 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
5769
5770 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
5771 }
5772 else
5773 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
5774
5775 /* else: handler catching all access, no pointer returned. */
5776 }
5777 else
5778 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
5779
5780 pgmUnlock(pVM);
5781 return rc;
5782}
5783
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette