VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 80386

Last change on this file since 80386 was 80333, checked in by vboxsync, 5 years ago

VMM: Eliminating the VBOX_BUGREF_9217_PART_I preprocessor macro. bugref:9217

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 206.6 KB
Line 
1/* $Id: PGMPhys.cpp 80333 2019-08-16 20:28:38Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iem.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/mm.h>
27#include <VBox/vmm/nem.h>
28#include <VBox/vmm/stam.h>
29#ifdef VBOX_WITH_REM
30# include <VBox/vmm/rem.h>
31#endif
32#include <VBox/vmm/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vmm/vmcc.h>
35
36#include "PGMInline.h"
37
38#include <VBox/sup.h>
39#include <VBox/param.h>
40#include <VBox/err.h>
41#include <VBox/log.h>
42#include <iprt/assert.h>
43#include <iprt/alloc.h>
44#include <iprt/asm.h>
45#ifdef VBOX_STRICT
46# include <iprt/crc.h>
47#endif
48#include <iprt/thread.h>
49#include <iprt/string.h>
50#include <iprt/system.h>
51
52
53/*********************************************************************************************************************************
54* Defined Constants And Macros *
55*********************************************************************************************************************************/
56/** The number of pages to free in one batch. */
57#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
58
59
60/*
61 * PGMR3PhysReadU8-64
62 * PGMR3PhysWriteU8-64
63 */
64#define PGMPHYSFN_READNAME PGMR3PhysReadU8
65#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
66#define PGMPHYS_DATASIZE 1
67#define PGMPHYS_DATATYPE uint8_t
68#include "PGMPhysRWTmpl.h"
69
70#define PGMPHYSFN_READNAME PGMR3PhysReadU16
71#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
72#define PGMPHYS_DATASIZE 2
73#define PGMPHYS_DATATYPE uint16_t
74#include "PGMPhysRWTmpl.h"
75
76#define PGMPHYSFN_READNAME PGMR3PhysReadU32
77#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
78#define PGMPHYS_DATASIZE 4
79#define PGMPHYS_DATATYPE uint32_t
80#include "PGMPhysRWTmpl.h"
81
82#define PGMPHYSFN_READNAME PGMR3PhysReadU64
83#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
84#define PGMPHYS_DATASIZE 8
85#define PGMPHYS_DATATYPE uint64_t
86#include "PGMPhysRWTmpl.h"
87
88
89/**
90 * EMT worker for PGMR3PhysReadExternal.
91 */
92static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
93 PGMACCESSORIGIN enmOrigin)
94{
95 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
96 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
97 return VINF_SUCCESS;
98}
99
100
101/**
102 * Read from physical memory, external users.
103 *
104 * @returns VBox status code.
105 * @retval VINF_SUCCESS.
106 *
107 * @param pVM The cross context VM structure.
108 * @param GCPhys Physical address to read from.
109 * @param pvBuf Where to read into.
110 * @param cbRead How many bytes to read.
111 * @param enmOrigin Who is calling.
112 *
113 * @thread Any but EMTs.
114 */
115VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
116{
117 VM_ASSERT_OTHER_THREAD(pVM);
118
119 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
120 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
121
122 pgmLock(pVM);
123
124 /*
125 * Copy loop on ram ranges.
126 */
127 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
128 for (;;)
129 {
130 /* Inside range or not? */
131 if (pRam && GCPhys >= pRam->GCPhys)
132 {
133 /*
134 * Must work our way thru this page by page.
135 */
136 RTGCPHYS off = GCPhys - pRam->GCPhys;
137 while (off < pRam->cb)
138 {
139 unsigned iPage = off >> PAGE_SHIFT;
140 PPGMPAGE pPage = &pRam->aPages[iPage];
141
142 /*
143 * If the page has an ALL access handler, we'll have to
144 * delegate the job to EMT.
145 */
146 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
147 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
152 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
153 }
154 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 PGMPAGEMAPLOCK PgMpLck;
163 const void *pvSrc;
164 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
165 if (RT_SUCCESS(rc))
166 {
167 memcpy(pvBuf, pvSrc, cb);
168 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
169 }
170 else
171 {
172 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
173 pRam->GCPhys + off, pPage, rc));
174 memset(pvBuf, 0xff, cb);
175 }
176
177 /* next page */
178 if (cb >= cbRead)
179 {
180 pgmUnlock(pVM);
181 return VINF_SUCCESS;
182 }
183 cbRead -= cb;
184 off += cb;
185 GCPhys += cb;
186 pvBuf = (char *)pvBuf + cb;
187 } /* walk pages in ram range. */
188 }
189 else
190 {
191 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
192
193 /*
194 * Unassigned address space.
195 */
196 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
197 if (cb >= cbRead)
198 {
199 memset(pvBuf, 0xff, cbRead);
200 break;
201 }
202 memset(pvBuf, 0xff, cb);
203
204 cbRead -= cb;
205 pvBuf = (char *)pvBuf + cb;
206 GCPhys += cb;
207 }
208
209 /* Advance range if necessary. */
210 while (pRam && GCPhys > pRam->GCPhysLast)
211 pRam = pRam->CTX_SUFF(pNext);
212 } /* Ram range walk */
213
214 pgmUnlock(pVM);
215
216 return VINF_SUCCESS;
217}
218
219
220/**
221 * EMT worker for PGMR3PhysWriteExternal.
222 */
223static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
224 PGMACCESSORIGIN enmOrigin)
225{
226 /** @todo VERR_EM_NO_MEMORY */
227 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
228 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
229 return VINF_SUCCESS;
230}
231
232
233/**
234 * Write to physical memory, external users.
235 *
236 * @returns VBox status code.
237 * @retval VINF_SUCCESS.
238 * @retval VERR_EM_NO_MEMORY.
239 *
240 * @param pVM The cross context VM structure.
241 * @param GCPhys Physical address to write to.
242 * @param pvBuf What to write.
243 * @param cbWrite How many bytes to write.
244 * @param enmOrigin Who is calling.
245 *
246 * @thread Any but EMTs.
247 */
248VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
249{
250 VM_ASSERT_OTHER_THREAD(pVM);
251
252 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
253 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
254 GCPhys, cbWrite, enmOrigin));
255 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
256 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
257
258 pgmLock(pVM);
259
260 /*
261 * Copy loop on ram ranges, stop when we hit something difficult.
262 */
263 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
264 for (;;)
265 {
266 /* Inside range or not? */
267 if (pRam && GCPhys >= pRam->GCPhys)
268 {
269 /*
270 * Must work our way thru this page by page.
271 */
272 RTGCPTR off = GCPhys - pRam->GCPhys;
273 while (off < pRam->cb)
274 {
275 RTGCPTR iPage = off >> PAGE_SHIFT;
276 PPGMPAGE pPage = &pRam->aPages[iPage];
277
278 /*
279 * Is the page problematic, we have to do the work on the EMT.
280 *
281 * Allocating writable pages and access handlers are
282 * problematic, write monitored pages are simple and can be
283 * dealt with here.
284 */
285 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
286 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
287 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
288 {
289 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
290 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
291 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
292 else
293 {
294 pgmUnlock(pVM);
295
296 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
297 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
298 }
299 }
300 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
301
302 /*
303 * Simple stuff, go ahead.
304 */
305 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
306 if (cb > cbWrite)
307 cb = cbWrite;
308 PGMPAGEMAPLOCK PgMpLck;
309 void *pvDst;
310 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
311 if (RT_SUCCESS(rc))
312 {
313 memcpy(pvDst, pvBuf, cb);
314 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
315 }
316 else
317 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
318 pRam->GCPhys + off, pPage, rc));
319
320 /* next page */
321 if (cb >= cbWrite)
322 {
323 pgmUnlock(pVM);
324 return VINF_SUCCESS;
325 }
326
327 cbWrite -= cb;
328 off += cb;
329 GCPhys += cb;
330 pvBuf = (const char *)pvBuf + cb;
331 } /* walk pages in ram range */
332 }
333 else
334 {
335 /*
336 * Unassigned address space, skip it.
337 */
338 if (!pRam)
339 break;
340 size_t cb = pRam->GCPhys - GCPhys;
341 if (cb >= cbWrite)
342 break;
343 cbWrite -= cb;
344 pvBuf = (const char *)pvBuf + cb;
345 GCPhys += cb;
346 }
347
348 /* Advance range if necessary. */
349 while (pRam && GCPhys > pRam->GCPhysLast)
350 pRam = pRam->CTX_SUFF(pNext);
351 } /* Ram range walk */
352
353 pgmUnlock(pVM);
354 return VINF_SUCCESS;
355}
356
357
358/**
359 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
360 *
361 * @returns see PGMR3PhysGCPhys2CCPtrExternal
362 * @param pVM The cross context VM structure.
363 * @param pGCPhys Pointer to the guest physical address.
364 * @param ppv Where to store the mapping address.
365 * @param pLock Where to store the lock.
366 */
367static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
368{
369 /*
370 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
371 * an access handler after it succeeds.
372 */
373 int rc = pgmLock(pVM);
374 AssertRCReturn(rc, rc);
375
376 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
377 if (RT_SUCCESS(rc))
378 {
379 PPGMPAGEMAPTLBE pTlbe;
380 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
381 AssertFatalRC(rc2);
382 PPGMPAGE pPage = pTlbe->pPage;
383 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
384 {
385 PGMPhysReleasePageMappingLock(pVM, pLock);
386 rc = VERR_PGM_PHYS_PAGE_RESERVED;
387 }
388 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
389#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
390 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
391#endif
392 )
393 {
394 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
395 * not be informed about writes and keep bogus gst->shw mappings around.
396 */
397 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
398 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
399 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
400 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
401 }
402 }
403
404 pgmUnlock(pVM);
405 return rc;
406}
407
408
409/**
410 * Requests the mapping of a guest page into ring-3, external threads.
411 *
412 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
413 * release it.
414 *
415 * This API will assume your intention is to write to the page, and will
416 * therefore replace shared and zero pages. If you do not intend to modify the
417 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
418 *
419 * @returns VBox status code.
420 * @retval VINF_SUCCESS on success.
421 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
422 * backing or if the page has any active access handlers. The caller
423 * must fall back on using PGMR3PhysWriteExternal.
424 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
425 *
426 * @param pVM The cross context VM structure.
427 * @param GCPhys The guest physical address of the page that should be mapped.
428 * @param ppv Where to store the address corresponding to GCPhys.
429 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
430 *
431 * @remark Avoid calling this API from within critical sections (other than the
432 * PGM one) because of the deadlock risk when we have to delegating the
433 * task to an EMT.
434 * @thread Any.
435 */
436VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
437{
438 AssertPtr(ppv);
439 AssertPtr(pLock);
440
441 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
442
443 int rc = pgmLock(pVM);
444 AssertRCReturn(rc, rc);
445
446 /*
447 * Query the Physical TLB entry for the page (may fail).
448 */
449 PPGMPAGEMAPTLBE pTlbe;
450 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
451 if (RT_SUCCESS(rc))
452 {
453 PPGMPAGE pPage = pTlbe->pPage;
454 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
455 rc = VERR_PGM_PHYS_PAGE_RESERVED;
456 else
457 {
458 /*
459 * If the page is shared, the zero page, or being write monitored
460 * it must be converted to an page that's writable if possible.
461 * We can only deal with write monitored pages here, the rest have
462 * to be on an EMT.
463 */
464 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
465 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
466#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
467 || pgmPoolIsDirtyPage(pVM, GCPhys)
468#endif
469 )
470 {
471 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
472 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
473#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
474 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
475#endif
476 )
477 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
478 else
479 {
480 pgmUnlock(pVM);
481
482 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
483 pVM, &GCPhys, ppv, pLock);
484 }
485 }
486
487 /*
488 * Now, just perform the locking and calculate the return address.
489 */
490 PPGMPAGEMAP pMap = pTlbe->pMap;
491 if (pMap)
492 pMap->cRefs++;
493
494 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
495 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
496 {
497 if (cLocks == 0)
498 pVM->pgm.s.cWriteLockedPages++;
499 PGM_PAGE_INC_WRITE_LOCKS(pPage);
500 }
501 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
502 {
503 PGM_PAGE_INC_WRITE_LOCKS(pPage);
504 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
505 if (pMap)
506 pMap->cRefs++; /* Extra ref to prevent it from going away. */
507 }
508
509 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
510 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
511 pLock->pvMap = pMap;
512 }
513 }
514
515 pgmUnlock(pVM);
516 return rc;
517}
518
519
520/**
521 * Requests the mapping of a guest page into ring-3, external threads.
522 *
523 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
524 * release it.
525 *
526 * @returns VBox status code.
527 * @retval VINF_SUCCESS on success.
528 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
529 * backing or if the page as an active ALL access handler. The caller
530 * must fall back on using PGMPhysRead.
531 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
532 *
533 * @param pVM The cross context VM structure.
534 * @param GCPhys The guest physical address of the page that should be mapped.
535 * @param ppv Where to store the address corresponding to GCPhys.
536 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
537 *
538 * @remark Avoid calling this API from within critical sections (other than
539 * the PGM one) because of the deadlock risk.
540 * @thread Any.
541 */
542VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
543{
544 int rc = pgmLock(pVM);
545 AssertRCReturn(rc, rc);
546
547 /*
548 * Query the Physical TLB entry for the page (may fail).
549 */
550 PPGMPAGEMAPTLBE pTlbe;
551 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
552 if (RT_SUCCESS(rc))
553 {
554 PPGMPAGE pPage = pTlbe->pPage;
555#if 1
556 /* MMIO pages doesn't have any readable backing. */
557 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
558 rc = VERR_PGM_PHYS_PAGE_RESERVED;
559#else
560 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
561 rc = VERR_PGM_PHYS_PAGE_RESERVED;
562#endif
563 else
564 {
565 /*
566 * Now, just perform the locking and calculate the return address.
567 */
568 PPGMPAGEMAP pMap = pTlbe->pMap;
569 if (pMap)
570 pMap->cRefs++;
571
572 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
573 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
574 {
575 if (cLocks == 0)
576 pVM->pgm.s.cReadLockedPages++;
577 PGM_PAGE_INC_READ_LOCKS(pPage);
578 }
579 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
580 {
581 PGM_PAGE_INC_READ_LOCKS(pPage);
582 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
583 if (pMap)
584 pMap->cRefs++; /* Extra ref to prevent it from going away. */
585 }
586
587 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
588 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
589 pLock->pvMap = pMap;
590 }
591 }
592
593 pgmUnlock(pVM);
594 return rc;
595}
596
597
598/**
599 * Requests the mapping of multiple guest page into ring-3, external threads.
600 *
601 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
602 * ASAP to release them.
603 *
604 * This API will assume your intention is to write to the pages, and will
605 * therefore replace shared and zero pages. If you do not intend to modify the
606 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
607 *
608 * @returns VBox status code.
609 * @retval VINF_SUCCESS on success.
610 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
611 * backing or if any of the pages the page has any active access
612 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
613 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
614 * an invalid physical address.
615 *
616 * @param pVM The cross context VM structure.
617 * @param cPages Number of pages to lock.
618 * @param paGCPhysPages The guest physical address of the pages that
619 * should be mapped (@a cPages entries).
620 * @param papvPages Where to store the ring-3 mapping addresses
621 * corresponding to @a paGCPhysPages.
622 * @param paLocks Where to store the locking information that
623 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
624 * in length).
625 *
626 * @remark Avoid calling this API from within critical sections (other than the
627 * PGM one) because of the deadlock risk when we have to delegating the
628 * task to an EMT.
629 * @thread Any.
630 */
631VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
632 void **papvPages, PPGMPAGEMAPLOCK paLocks)
633{
634 Assert(cPages > 0);
635 AssertPtr(papvPages);
636 AssertPtr(paLocks);
637
638 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
639
640 int rc = pgmLock(pVM);
641 AssertRCReturn(rc, rc);
642
643 /*
644 * Lock the pages one by one.
645 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
646 */
647 int32_t cNextYield = 128;
648 uint32_t iPage;
649 for (iPage = 0; iPage < cPages; iPage++)
650 {
651 if (--cNextYield > 0)
652 { /* likely */ }
653 else
654 {
655 pgmUnlock(pVM);
656 ASMNopPause();
657 pgmLock(pVM);
658 cNextYield = 128;
659 }
660
661 /*
662 * Query the Physical TLB entry for the page (may fail).
663 */
664 PPGMPAGEMAPTLBE pTlbe;
665 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
666 if (RT_SUCCESS(rc))
667 { }
668 else
669 break;
670 PPGMPAGE pPage = pTlbe->pPage;
671
672 /*
673 * No MMIO or active access handlers.
674 */
675 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
676 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
677 { }
678 else
679 {
680 rc = VERR_PGM_PHYS_PAGE_RESERVED;
681 break;
682 }
683
684 /*
685 * The page must be in the allocated state and not be a dirty pool page.
686 * We can handle converting a write monitored page to an allocated one, but
687 * anything more complicated must be delegated to an EMT.
688 */
689 bool fDelegateToEmt = false;
690 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
691#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
692 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
693#else
694 fDelegateToEmt = false;
695#endif
696 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
697 {
698#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
699 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
700 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
701 else
702 fDelegateToEmt = true;
703#endif
704 }
705 else
706 fDelegateToEmt = true;
707 if (!fDelegateToEmt)
708 { }
709 else
710 {
711 /* We could do this delegation in bulk, but considered too much work vs gain. */
712 pgmUnlock(pVM);
713 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
714 pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
715 pgmLock(pVM);
716 if (RT_FAILURE(rc))
717 break;
718 cNextYield = 128;
719 }
720
721 /*
722 * Now, just perform the locking and address calculation.
723 */
724 PPGMPAGEMAP pMap = pTlbe->pMap;
725 if (pMap)
726 pMap->cRefs++;
727
728 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
729 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
730 {
731 if (cLocks == 0)
732 pVM->pgm.s.cWriteLockedPages++;
733 PGM_PAGE_INC_WRITE_LOCKS(pPage);
734 }
735 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
736 {
737 PGM_PAGE_INC_WRITE_LOCKS(pPage);
738 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
739 if (pMap)
740 pMap->cRefs++; /* Extra ref to prevent it from going away. */
741 }
742
743 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
744 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
745 paLocks[iPage].pvMap = pMap;
746 }
747
748 pgmUnlock(pVM);
749
750 /*
751 * On failure we must unlock any pages we managed to get already.
752 */
753 if (RT_FAILURE(rc) && iPage > 0)
754 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
755
756 return rc;
757}
758
759
760/**
761 * Requests the mapping of multiple guest page into ring-3, for reading only,
762 * external threads.
763 *
764 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
765 * to release them.
766 *
767 * @returns VBox status code.
768 * @retval VINF_SUCCESS on success.
769 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
770 * backing or if any of the pages the page has an active ALL access
771 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
772 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
773 * an invalid physical address.
774 *
775 * @param pVM The cross context VM structure.
776 * @param cPages Number of pages to lock.
777 * @param paGCPhysPages The guest physical address of the pages that
778 * should be mapped (@a cPages entries).
779 * @param papvPages Where to store the ring-3 mapping addresses
780 * corresponding to @a paGCPhysPages.
781 * @param paLocks Where to store the lock information that
782 * pfnPhysReleasePageMappingLock needs (@a cPages
783 * in length).
784 *
785 * @remark Avoid calling this API from within critical sections (other than
786 * the PGM one) because of the deadlock risk.
787 * @thread Any.
788 */
789VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
790 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
791{
792 Assert(cPages > 0);
793 AssertPtr(papvPages);
794 AssertPtr(paLocks);
795
796 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
797
798 int rc = pgmLock(pVM);
799 AssertRCReturn(rc, rc);
800
801 /*
802 * Lock the pages one by one.
803 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
804 */
805 int32_t cNextYield = 256;
806 uint32_t iPage;
807 for (iPage = 0; iPage < cPages; iPage++)
808 {
809 if (--cNextYield > 0)
810 { /* likely */ }
811 else
812 {
813 pgmUnlock(pVM);
814 ASMNopPause();
815 pgmLock(pVM);
816 cNextYield = 256;
817 }
818
819 /*
820 * Query the Physical TLB entry for the page (may fail).
821 */
822 PPGMPAGEMAPTLBE pTlbe;
823 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
824 if (RT_SUCCESS(rc))
825 { }
826 else
827 break;
828 PPGMPAGE pPage = pTlbe->pPage;
829
830 /*
831 * No MMIO or active all access handlers, everything else can be accessed.
832 */
833 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
834 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
835 { }
836 else
837 {
838 rc = VERR_PGM_PHYS_PAGE_RESERVED;
839 break;
840 }
841
842 /*
843 * Now, just perform the locking and address calculation.
844 */
845 PPGMPAGEMAP pMap = pTlbe->pMap;
846 if (pMap)
847 pMap->cRefs++;
848
849 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
850 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
851 {
852 if (cLocks == 0)
853 pVM->pgm.s.cReadLockedPages++;
854 PGM_PAGE_INC_READ_LOCKS(pPage);
855 }
856 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
857 {
858 PGM_PAGE_INC_READ_LOCKS(pPage);
859 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
860 if (pMap)
861 pMap->cRefs++; /* Extra ref to prevent it from going away. */
862 }
863
864 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
865 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
866 paLocks[iPage].pvMap = pMap;
867 }
868
869 pgmUnlock(pVM);
870
871 /*
872 * On failure we must unlock any pages we managed to get already.
873 */
874 if (RT_FAILURE(rc) && iPage > 0)
875 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
876
877 return rc;
878}
879
880
881#define MAKE_LEAF(a_pNode) \
882 do { \
883 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
884 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
885 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
886 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
887 } while (0)
888
889#define INSERT_LEFT(a_pParent, a_pNode) \
890 do { \
891 (a_pParent)->pLeftR3 = (a_pNode); \
892 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
893 } while (0)
894#define INSERT_RIGHT(a_pParent, a_pNode) \
895 do { \
896 (a_pParent)->pRightR3 = (a_pNode); \
897 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
898 } while (0)
899
900
901/**
902 * Recursive tree builder.
903 *
904 * @param ppRam Pointer to the iterator variable.
905 * @param iDepth The current depth. Inserts a leaf node if 0.
906 */
907static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
908{
909 PPGMRAMRANGE pRam;
910 if (iDepth <= 0)
911 {
912 /*
913 * Leaf node.
914 */
915 pRam = *ppRam;
916 if (pRam)
917 {
918 *ppRam = pRam->pNextR3;
919 MAKE_LEAF(pRam);
920 }
921 }
922 else
923 {
924
925 /*
926 * Intermediate node.
927 */
928 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
929
930 pRam = *ppRam;
931 if (!pRam)
932 return pLeft;
933 *ppRam = pRam->pNextR3;
934 MAKE_LEAF(pRam);
935 INSERT_LEFT(pRam, pLeft);
936
937 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
938 if (pRight)
939 INSERT_RIGHT(pRam, pRight);
940 }
941 return pRam;
942}
943
944
945/**
946 * Rebuilds the RAM range search trees.
947 *
948 * @param pVM The cross context VM structure.
949 */
950static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
951{
952
953 /*
954 * Create the reasonably balanced tree in a sequential fashion.
955 * For simplicity (laziness) we use standard recursion here.
956 */
957 int iDepth = 0;
958 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
959 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
960 while (pRam)
961 {
962 PPGMRAMRANGE pLeft = pRoot;
963
964 pRoot = pRam;
965 pRam = pRam->pNextR3;
966 MAKE_LEAF(pRoot);
967 INSERT_LEFT(pRoot, pLeft);
968
969 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
970 if (pRight)
971 INSERT_RIGHT(pRoot, pRight);
972 /** @todo else: rotate the tree. */
973
974 iDepth++;
975 }
976
977 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
978 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
979
980#ifdef VBOX_STRICT
981 /*
982 * Verify that the above code works.
983 */
984 unsigned cRanges = 0;
985 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
986 cRanges++;
987 Assert(cRanges > 0);
988
989 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
990 if ((1U << cMaxDepth) < cRanges)
991 cMaxDepth++;
992
993 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
994 {
995 unsigned cDepth = 0;
996 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
997 for (;;)
998 {
999 if (pRam == pRam2)
1000 break;
1001 Assert(pRam2);
1002 if (pRam->GCPhys < pRam2->GCPhys)
1003 pRam2 = pRam2->pLeftR3;
1004 else
1005 pRam2 = pRam2->pRightR3;
1006 }
1007 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1008 }
1009#endif /* VBOX_STRICT */
1010}
1011
1012#undef MAKE_LEAF
1013#undef INSERT_LEFT
1014#undef INSERT_RIGHT
1015
1016/**
1017 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1018 *
1019 * Called when anything was relocated.
1020 *
1021 * @param pVM The cross context VM structure.
1022 */
1023void pgmR3PhysRelinkRamRanges(PVM pVM)
1024{
1025 PPGMRAMRANGE pCur;
1026
1027#ifdef VBOX_STRICT
1028 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1029 {
1030 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1031 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1032 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1033 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1034 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1035 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1036 Assert( pCur2 == pCur
1037 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1038 }
1039#endif
1040
1041 pCur = pVM->pgm.s.pRamRangesXR3;
1042 if (pCur)
1043 {
1044 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1045
1046 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1047 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1048
1049 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1050 }
1051 else
1052 {
1053 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1054 }
1055 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1056
1057 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1058}
1059
1060
1061/**
1062 * Links a new RAM range into the list.
1063 *
1064 * @param pVM The cross context VM structure.
1065 * @param pNew Pointer to the new list entry.
1066 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1067 */
1068static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1069{
1070 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1071 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1072
1073 pgmLock(pVM);
1074
1075 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1076 pNew->pNextR3 = pRam;
1077 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1078
1079 if (pPrev)
1080 {
1081 pPrev->pNextR3 = pNew;
1082 pPrev->pNextR0 = pNew->pSelfR0;
1083 }
1084 else
1085 {
1086 pVM->pgm.s.pRamRangesXR3 = pNew;
1087 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1088 }
1089 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1090
1091 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1092 pgmUnlock(pVM);
1093}
1094
1095
1096/**
1097 * Unlink an existing RAM range from the list.
1098 *
1099 * @param pVM The cross context VM structure.
1100 * @param pRam Pointer to the new list entry.
1101 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1102 */
1103static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1104{
1105 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1106 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1107
1108 pgmLock(pVM);
1109
1110 PPGMRAMRANGE pNext = pRam->pNextR3;
1111 if (pPrev)
1112 {
1113 pPrev->pNextR3 = pNext;
1114 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1115 }
1116 else
1117 {
1118 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1119 pVM->pgm.s.pRamRangesXR3 = pNext;
1120 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1121 }
1122 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1123
1124 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1125 pgmUnlock(pVM);
1126}
1127
1128
1129/**
1130 * Unlink an existing RAM range from the list.
1131 *
1132 * @param pVM The cross context VM structure.
1133 * @param pRam Pointer to the new list entry.
1134 */
1135static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1136{
1137 pgmLock(pVM);
1138
1139 /* find prev. */
1140 PPGMRAMRANGE pPrev = NULL;
1141 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1142 while (pCur != pRam)
1143 {
1144 pPrev = pCur;
1145 pCur = pCur->pNextR3;
1146 }
1147 AssertFatal(pCur);
1148
1149 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1150 pgmUnlock(pVM);
1151}
1152
1153
1154/**
1155 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1156 *
1157 * @returns VBox status code.
1158 * @param pVM The cross context VM structure.
1159 * @param pRam The RAM range in which the pages resides.
1160 * @param GCPhys The address of the first page.
1161 * @param GCPhysLast The address of the last page.
1162 * @param enmType The page type to replace then with.
1163 */
1164static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType)
1165{
1166 PGM_LOCK_ASSERT_OWNER(pVM);
1167 uint32_t cPendingPages = 0;
1168 PGMMFREEPAGESREQ pReq;
1169 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1170 AssertLogRelRCReturn(rc, rc);
1171
1172 /* Iterate the pages. */
1173 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1174 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1175 while (cPagesLeft-- > 0)
1176 {
1177 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType);
1178 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1179
1180 PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType);
1181
1182 GCPhys += PAGE_SIZE;
1183 pPageDst++;
1184 }
1185
1186 if (cPendingPages)
1187 {
1188 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1189 AssertLogRelRCReturn(rc, rc);
1190 }
1191 GMMR3FreePagesCleanup(pReq);
1192
1193 return rc;
1194}
1195
1196#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1197
1198/**
1199 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
1200 *
1201 * This is only called on one of the EMTs while the other ones are waiting for
1202 * it to complete this function.
1203 *
1204 * @returns VINF_SUCCESS (VBox strict status code).
1205 * @param pVM The cross context VM structure.
1206 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1207 * @param pvUser User parameter
1208 */
1209static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1210{
1211 uintptr_t *paUser = (uintptr_t *)pvUser;
1212 bool fInflate = !!paUser[0];
1213 unsigned cPages = paUser[1];
1214 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
1215 uint32_t cPendingPages = 0;
1216 PGMMFREEPAGESREQ pReq;
1217 int rc;
1218
1219 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
1220 pgmLock(pVM);
1221
1222 if (fInflate)
1223 {
1224 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
1225 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
1226
1227 /* Replace pages with ZERO pages. */
1228 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1229 if (RT_FAILURE(rc))
1230 {
1231 pgmUnlock(pVM);
1232 AssertLogRelRC(rc);
1233 return rc;
1234 }
1235
1236 /* Iterate the pages. */
1237 for (unsigned i = 0; i < cPages; i++)
1238 {
1239 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1240 if ( pPage == NULL
1241 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
1242 {
1243 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
1244 break;
1245 }
1246
1247 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
1248
1249 /* Flush the shadow PT if this page was previously used as a guest page table. */
1250 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
1251
1252 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
1253 if (RT_FAILURE(rc))
1254 {
1255 pgmUnlock(pVM);
1256 AssertLogRelRC(rc);
1257 return rc;
1258 }
1259 Assert(PGM_PAGE_IS_ZERO(pPage));
1260 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
1261 }
1262
1263 if (cPendingPages)
1264 {
1265 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1266 if (RT_FAILURE(rc))
1267 {
1268 pgmUnlock(pVM);
1269 AssertLogRelRC(rc);
1270 return rc;
1271 }
1272 }
1273 GMMR3FreePagesCleanup(pReq);
1274 }
1275 else
1276 {
1277 /* Iterate the pages. */
1278 for (unsigned i = 0; i < cPages; i++)
1279 {
1280 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1281 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1282
1283 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1284
1285 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1286
1287 /* Change back to zero page. (NEM does not need to be informed.) */
1288 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1289 }
1290
1291 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1292 }
1293
1294 /* Notify GMM about the balloon change. */
1295 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1296 if (RT_SUCCESS(rc))
1297 {
1298 if (!fInflate)
1299 {
1300 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1301 pVM->pgm.s.cBalloonedPages -= cPages;
1302 }
1303 else
1304 pVM->pgm.s.cBalloonedPages += cPages;
1305 }
1306
1307 pgmUnlock(pVM);
1308
1309 /* Flush the recompiler's TLB as well. */
1310 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1311 CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1312
1313 AssertLogRelRC(rc);
1314 return rc;
1315}
1316
1317
1318/**
1319 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1320 *
1321 * @returns VBox status code.
1322 * @param pVM The cross context VM structure.
1323 * @param fInflate Inflate or deflate memory balloon
1324 * @param cPages Number of pages to free
1325 * @param paPhysPage Array of guest physical addresses
1326 */
1327static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1328{
1329 uintptr_t paUser[3];
1330
1331 paUser[0] = fInflate;
1332 paUser[1] = cPages;
1333 paUser[2] = (uintptr_t)paPhysPage;
1334 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1335 AssertRC(rc);
1336
1337 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1338 RTMemFree(paPhysPage);
1339}
1340
1341#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1342
1343/**
1344 * Inflate or deflate a memory balloon
1345 *
1346 * @returns VBox status code.
1347 * @param pVM The cross context VM structure.
1348 * @param fInflate Inflate or deflate memory balloon
1349 * @param cPages Number of pages to free
1350 * @param paPhysPage Array of guest physical addresses
1351 */
1352VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1353{
1354 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1355#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1356 int rc;
1357
1358 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1359 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1360
1361 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1362 * In the SMP case we post a request packet to postpone the job.
1363 */
1364 if (pVM->cCpus > 1)
1365 {
1366 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1367 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1368 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1369
1370 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1371
1372 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1373 AssertRC(rc);
1374 }
1375 else
1376 {
1377 uintptr_t paUser[3];
1378
1379 paUser[0] = fInflate;
1380 paUser[1] = cPages;
1381 paUser[2] = (uintptr_t)paPhysPage;
1382 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1383 AssertRC(rc);
1384 }
1385 return rc;
1386
1387#else
1388 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1389 return VERR_NOT_IMPLEMENTED;
1390#endif
1391}
1392
1393
1394/**
1395 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1396 * physical RAM.
1397 *
1398 * This is only called on one of the EMTs while the other ones are waiting for
1399 * it to complete this function.
1400 *
1401 * @returns VINF_SUCCESS (VBox strict status code).
1402 * @param pVM The cross context VM structure.
1403 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1404 * @param pvUser User parameter, unused.
1405 */
1406static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1407{
1408 int rc = VINF_SUCCESS;
1409 NOREF(pvUser); NOREF(pVCpu);
1410
1411 pgmLock(pVM);
1412#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1413 pgmPoolResetDirtyPages(pVM);
1414#endif
1415
1416 /** @todo pointless to write protect the physical page pointed to by RSP. */
1417
1418 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1419 pRam;
1420 pRam = pRam->CTX_SUFF(pNext))
1421 {
1422 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1423 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1424 {
1425 PPGMPAGE pPage = &pRam->aPages[iPage];
1426 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1427
1428 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1429 || enmPageType == PGMPAGETYPE_MMIO2)
1430 {
1431 /*
1432 * A RAM page.
1433 */
1434 switch (PGM_PAGE_GET_STATE(pPage))
1435 {
1436 case PGM_PAGE_STATE_ALLOCATED:
1437 /** @todo Optimize this: Don't always re-enable write
1438 * monitoring if the page is known to be very busy. */
1439 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1440 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1441
1442 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1443 break;
1444
1445 case PGM_PAGE_STATE_SHARED:
1446 AssertFailed();
1447 break;
1448
1449 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1450 default:
1451 break;
1452 }
1453 }
1454 }
1455 }
1456 pgmR3PoolWriteProtectPages(pVM);
1457 PGM_INVL_ALL_VCPU_TLBS(pVM);
1458 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1459 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1460
1461 pgmUnlock(pVM);
1462 return rc;
1463}
1464
1465/**
1466 * Protect all physical RAM to monitor writes
1467 *
1468 * @returns VBox status code.
1469 * @param pVM The cross context VM structure.
1470 */
1471VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1472{
1473 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1474
1475 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1476 AssertRC(rc);
1477 return rc;
1478}
1479
1480
1481/**
1482 * Gets the number of ram ranges.
1483 *
1484 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1485 * @param pVM The cross context VM structure.
1486 */
1487VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1488{
1489 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1490
1491 pgmLock(pVM);
1492 uint32_t cRamRanges = 0;
1493 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1494 cRamRanges++;
1495 pgmUnlock(pVM);
1496 return cRamRanges;
1497}
1498
1499
1500/**
1501 * Get information about a range.
1502 *
1503 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1504 * @param pVM The cross context VM structure.
1505 * @param iRange The ordinal of the range.
1506 * @param pGCPhysStart Where to return the start of the range. Optional.
1507 * @param pGCPhysLast Where to return the address of the last byte in the
1508 * range. Optional.
1509 * @param ppszDesc Where to return the range description. Optional.
1510 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1511 * Optional.
1512 */
1513VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1514 const char **ppszDesc, bool *pfIsMmio)
1515{
1516 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1517
1518 pgmLock(pVM);
1519 uint32_t iCurRange = 0;
1520 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1521 if (iCurRange == iRange)
1522 {
1523 if (pGCPhysStart)
1524 *pGCPhysStart = pCur->GCPhys;
1525 if (pGCPhysLast)
1526 *pGCPhysLast = pCur->GCPhysLast;
1527 if (ppszDesc)
1528 *ppszDesc = pCur->pszDesc;
1529 if (pfIsMmio)
1530 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1531
1532 pgmUnlock(pVM);
1533 return VINF_SUCCESS;
1534 }
1535 pgmUnlock(pVM);
1536 return VERR_OUT_OF_RANGE;
1537}
1538
1539
1540/**
1541 * Query the amount of free memory inside VMMR0
1542 *
1543 * @returns VBox status code.
1544 * @param pUVM The user mode VM handle.
1545 * @param pcbAllocMem Where to return the amount of memory allocated
1546 * by VMs.
1547 * @param pcbFreeMem Where to return the amount of memory that is
1548 * allocated from the host but not currently used
1549 * by any VMs.
1550 * @param pcbBallonedMem Where to return the sum of memory that is
1551 * currently ballooned by the VMs.
1552 * @param pcbSharedMem Where to return the amount of memory that is
1553 * currently shared.
1554 */
1555VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1556 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1557{
1558 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1559 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1560
1561 uint64_t cAllocPages = 0;
1562 uint64_t cFreePages = 0;
1563 uint64_t cBalloonPages = 0;
1564 uint64_t cSharedPages = 0;
1565 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1566 AssertRCReturn(rc, rc);
1567
1568 if (pcbAllocMem)
1569 *pcbAllocMem = cAllocPages * _4K;
1570
1571 if (pcbFreeMem)
1572 *pcbFreeMem = cFreePages * _4K;
1573
1574 if (pcbBallonedMem)
1575 *pcbBallonedMem = cBalloonPages * _4K;
1576
1577 if (pcbSharedMem)
1578 *pcbSharedMem = cSharedPages * _4K;
1579
1580 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1581 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1582 return VINF_SUCCESS;
1583}
1584
1585
1586/**
1587 * Query memory stats for the VM.
1588 *
1589 * @returns VBox status code.
1590 * @param pUVM The user mode VM handle.
1591 * @param pcbTotalMem Where to return total amount memory the VM may
1592 * possibly use.
1593 * @param pcbPrivateMem Where to return the amount of private memory
1594 * currently allocated.
1595 * @param pcbSharedMem Where to return the amount of actually shared
1596 * memory currently used by the VM.
1597 * @param pcbZeroMem Where to return the amount of memory backed by
1598 * zero pages.
1599 *
1600 * @remarks The total mem is normally larger than the sum of the three
1601 * components. There are two reasons for this, first the amount of
1602 * shared memory is what we're sure is shared instead of what could
1603 * possibly be shared with someone. Secondly, because the total may
1604 * include some pure MMIO pages that doesn't go into any of the three
1605 * sub-counts.
1606 *
1607 * @todo Why do we return reused shared pages instead of anything that could
1608 * potentially be shared? Doesn't this mean the first VM gets a much
1609 * lower number of shared pages?
1610 */
1611VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1612 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1613{
1614 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1615 PVM pVM = pUVM->pVM;
1616 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1617
1618 if (pcbTotalMem)
1619 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1620
1621 if (pcbPrivateMem)
1622 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1623
1624 if (pcbSharedMem)
1625 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1626
1627 if (pcbZeroMem)
1628 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1629
1630 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1631 return VINF_SUCCESS;
1632}
1633
1634
1635/**
1636 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1637 *
1638 * @param pVM The cross context VM structure.
1639 * @param pNew The new RAM range.
1640 * @param GCPhys The address of the RAM range.
1641 * @param GCPhysLast The last address of the RAM range.
1642 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1643 * if in HMA.
1644 * @param R0PtrNew Ditto for R0.
1645 * @param pszDesc The description.
1646 * @param pPrev The previous RAM range (for linking).
1647 */
1648static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1649 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1650{
1651 /*
1652 * Initialize the range.
1653 */
1654 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1655 pNew->GCPhys = GCPhys;
1656 pNew->GCPhysLast = GCPhysLast;
1657 pNew->cb = GCPhysLast - GCPhys + 1;
1658 pNew->pszDesc = pszDesc;
1659 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1660 pNew->pvR3 = NULL;
1661 pNew->paLSPages = NULL;
1662
1663 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1664 RTGCPHYS iPage = cPages;
1665 while (iPage-- > 0)
1666 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1667
1668 /* Update the page count stats. */
1669 pVM->pgm.s.cZeroPages += cPages;
1670 pVM->pgm.s.cAllPages += cPages;
1671
1672 /*
1673 * Link it.
1674 */
1675 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1676}
1677
1678
1679#ifndef PGM_WITHOUT_MAPPINGS
1680/**
1681 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.}
1682 * @sa pgmR3PhysMMIO2ExRangeRelocate
1683 */
1684static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
1685 PGMRELOCATECALL enmMode, void *pvUser)
1686{
1687 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1688 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1689 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld);
1690
1691 switch (enmMode)
1692 {
1693 case PGMRELOCATECALL_SUGGEST:
1694 return true;
1695
1696 case PGMRELOCATECALL_RELOCATE:
1697 {
1698 /*
1699 * Update myself, then relink all the ranges and flush the RC TLB.
1700 */
1701 pgmLock(pVM);
1702
1703 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1704
1705 pgmR3PhysRelinkRamRanges(pVM);
1706 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1707 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1708
1709 pgmUnlock(pVM);
1710 return true;
1711 }
1712
1713 default:
1714 AssertFailedReturn(false);
1715 }
1716}
1717#endif /* !PGM_WITHOUT_MAPPINGS */
1718
1719
1720/**
1721 * PGMR3PhysRegisterRam worker that registers a high chunk.
1722 *
1723 * @returns VBox status code.
1724 * @param pVM The cross context VM structure.
1725 * @param GCPhys The address of the RAM.
1726 * @param cRamPages The number of RAM pages to register.
1727 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1728 * @param iChunk The chunk number.
1729 * @param pszDesc The RAM range description.
1730 * @param ppPrev Previous RAM range pointer. In/Out.
1731 */
1732static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1733 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1734 PPGMRAMRANGE *ppPrev)
1735{
1736 const char *pszDescChunk = iChunk == 0
1737 ? pszDesc
1738 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1739 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1740
1741 /*
1742 * Allocate memory for the new chunk.
1743 */
1744 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1745 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1746 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1747 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1748 void *pvChunk = NULL;
1749 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
1750 if (RT_SUCCESS(rc))
1751 {
1752 Assert(R0PtrChunk != NIL_RTR0PTR);
1753 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1754
1755 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1756
1757 /*
1758 * Create a mapping and map the pages into it.
1759 * We push these in below the HMA.
1760 */
1761 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1762#ifndef PGM_WITHOUT_MAPPINGS
1763 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1764 if (RT_SUCCESS(rc))
1765#endif /* !PGM_WITHOUT_MAPPINGS */
1766 {
1767 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1768
1769 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1770#ifndef PGM_WITHOUT_MAPPINGS
1771 RTGCPTR GCPtrPage = GCPtrChunk;
1772 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1773 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1774 if (RT_SUCCESS(rc))
1775#endif /* !PGM_WITHOUT_MAPPINGS */
1776 {
1777 /*
1778 * Ok, init and link the range.
1779 */
1780 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1781 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1782 *ppPrev = pNew;
1783 }
1784 }
1785
1786 if (RT_FAILURE(rc))
1787 SUPR3PageFreeEx(pvChunk, cChunkPages);
1788 }
1789
1790 RTMemTmpFree(paChunkPages);
1791 return rc;
1792}
1793
1794
1795/**
1796 * Sets up a range RAM.
1797 *
1798 * This will check for conflicting registrations, make a resource
1799 * reservation for the memory (with GMM), and setup the per-page
1800 * tracking structures (PGMPAGE).
1801 *
1802 * @returns VBox status code.
1803 * @param pVM The cross context VM structure.
1804 * @param GCPhys The physical address of the RAM.
1805 * @param cb The size of the RAM.
1806 * @param pszDesc The description - not copied, so, don't free or change it.
1807 */
1808VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1809{
1810 /*
1811 * Validate input.
1812 */
1813 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1814 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1815 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1816 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1817 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1818 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1819 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1820 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1821
1822 pgmLock(pVM);
1823
1824 /*
1825 * Find range location and check for conflicts.
1826 * (We don't lock here because the locking by EMT is only required on update.)
1827 */
1828 PPGMRAMRANGE pPrev = NULL;
1829 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1830 while (pRam && GCPhysLast >= pRam->GCPhys)
1831 {
1832 if ( GCPhysLast >= pRam->GCPhys
1833 && GCPhys <= pRam->GCPhysLast)
1834 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1835 GCPhys, GCPhysLast, pszDesc,
1836 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1837 VERR_PGM_RAM_CONFLICT);
1838
1839 /* next */
1840 pPrev = pRam;
1841 pRam = pRam->pNextR3;
1842 }
1843
1844 /*
1845 * Register it with GMM (the API bitches).
1846 */
1847 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1848 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1849 if (RT_FAILURE(rc))
1850 {
1851 pgmUnlock(pVM);
1852 return rc;
1853 }
1854
1855 if ( GCPhys >= _4G
1856 && cPages > 256)
1857 {
1858 /*
1859 * The PGMRAMRANGE structures for the high memory can get very big.
1860 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1861 * allocation size limit there and also to avoid being unable to find
1862 * guest mapping space for them, we split this memory up into 4MB in
1863 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1864 * mode.
1865 *
1866 * The first and last page of each mapping are guard pages and marked
1867 * not-present. So, we've got 4186112 and 16769024 bytes available for
1868 * the PGMRAMRANGE structure.
1869 *
1870 * Note! The sizes used here will influence the saved state.
1871 */
1872 uint32_t cbChunk = 16U*_1M;
1873 uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
1874 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1875 AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1876
1877 RTGCPHYS cPagesLeft = cPages;
1878 RTGCPHYS GCPhysChunk = GCPhys;
1879 uint32_t iChunk = 0;
1880 while (cPagesLeft > 0)
1881 {
1882 uint32_t cPagesInChunk = cPagesLeft;
1883 if (cPagesInChunk > cPagesPerChunk)
1884 cPagesInChunk = cPagesPerChunk;
1885
1886 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1887 AssertRCReturn(rc, rc);
1888
1889 /* advance */
1890 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1891 cPagesLeft -= cPagesInChunk;
1892 iChunk++;
1893 }
1894 }
1895 else
1896 {
1897 /*
1898 * Allocate, initialize and link the new RAM range.
1899 */
1900 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
1901 PPGMRAMRANGE pNew;
1902 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1903 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1904
1905 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1906 }
1907 pgmPhysInvalidatePageMapTLB(pVM);
1908
1909 /*
1910 * Notify NEM while holding the lock (experimental) and REM without (like always).
1911 */
1912 rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb);
1913 pgmUnlock(pVM);
1914#ifdef VBOX_WITH_REM
1915 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1916#endif
1917 return rc;
1918}
1919
1920
1921/**
1922 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1923 *
1924 * We do this late in the init process so that all the ROM and MMIO ranges have
1925 * been registered already and we don't go wasting memory on them.
1926 *
1927 * @returns VBox status code.
1928 *
1929 * @param pVM The cross context VM structure.
1930 */
1931int pgmR3PhysRamPreAllocate(PVM pVM)
1932{
1933 Assert(pVM->pgm.s.fRamPreAlloc);
1934 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1935
1936 /*
1937 * Walk the RAM ranges and allocate all RAM pages, halt at
1938 * the first allocation error.
1939 */
1940 uint64_t cPages = 0;
1941 uint64_t NanoTS = RTTimeNanoTS();
1942 pgmLock(pVM);
1943 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1944 {
1945 PPGMPAGE pPage = &pRam->aPages[0];
1946 RTGCPHYS GCPhys = pRam->GCPhys;
1947 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1948 while (cLeft-- > 0)
1949 {
1950 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1951 {
1952 switch (PGM_PAGE_GET_STATE(pPage))
1953 {
1954 case PGM_PAGE_STATE_ZERO:
1955 {
1956 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1957 if (RT_FAILURE(rc))
1958 {
1959 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1960 pgmUnlock(pVM);
1961 return rc;
1962 }
1963 cPages++;
1964 break;
1965 }
1966
1967 case PGM_PAGE_STATE_BALLOONED:
1968 case PGM_PAGE_STATE_ALLOCATED:
1969 case PGM_PAGE_STATE_WRITE_MONITORED:
1970 case PGM_PAGE_STATE_SHARED:
1971 /* nothing to do here. */
1972 break;
1973 }
1974 }
1975
1976 /* next */
1977 pPage++;
1978 GCPhys += PAGE_SIZE;
1979 }
1980 }
1981 pgmUnlock(pVM);
1982 NanoTS = RTTimeNanoTS() - NanoTS;
1983
1984 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1985 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1986 return VINF_SUCCESS;
1987}
1988
1989
1990/**
1991 * Checks shared page checksums.
1992 *
1993 * @param pVM The cross context VM structure.
1994 */
1995void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1996{
1997#ifdef VBOX_STRICT
1998 pgmLock(pVM);
1999
2000 if (pVM->pgm.s.cSharedPages > 0)
2001 {
2002 /*
2003 * Walk the ram ranges.
2004 */
2005 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2006 {
2007 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2008 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2009
2010 while (iPage-- > 0)
2011 {
2012 PPGMPAGE pPage = &pRam->aPages[iPage];
2013 if (PGM_PAGE_IS_SHARED(pPage))
2014 {
2015 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
2016 if (!u32Checksum)
2017 {
2018 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2019 void const *pvPage;
2020 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
2021 if (RT_SUCCESS(rc))
2022 {
2023 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
2024# if 0
2025 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
2026# else
2027 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
2028 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2029 else
2030 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2031# endif
2032 }
2033 else
2034 AssertRC(rc);
2035 }
2036 }
2037
2038 } /* for each page */
2039
2040 } /* for each ram range */
2041 }
2042
2043 pgmUnlock(pVM);
2044#endif /* VBOX_STRICT */
2045 NOREF(pVM);
2046}
2047
2048
2049/**
2050 * Resets the physical memory state.
2051 *
2052 * ASSUMES that the caller owns the PGM lock.
2053 *
2054 * @returns VBox status code.
2055 * @param pVM The cross context VM structure.
2056 */
2057int pgmR3PhysRamReset(PVM pVM)
2058{
2059 PGM_LOCK_ASSERT_OWNER(pVM);
2060
2061 /* Reset the memory balloon. */
2062 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2063 AssertRC(rc);
2064
2065#ifdef VBOX_WITH_PAGE_SHARING
2066 /* Clear all registered shared modules. */
2067 pgmR3PhysAssertSharedPageChecksums(pVM);
2068 rc = GMMR3ResetSharedModules(pVM);
2069 AssertRC(rc);
2070#endif
2071 /* Reset counters. */
2072 pVM->pgm.s.cReusedSharedPages = 0;
2073 pVM->pgm.s.cBalloonedPages = 0;
2074
2075 return VINF_SUCCESS;
2076}
2077
2078
2079/**
2080 * Resets (zeros) the RAM after all devices and components have been reset.
2081 *
2082 * ASSUMES that the caller owns the PGM lock.
2083 *
2084 * @returns VBox status code.
2085 * @param pVM The cross context VM structure.
2086 */
2087int pgmR3PhysRamZeroAll(PVM pVM)
2088{
2089 PGM_LOCK_ASSERT_OWNER(pVM);
2090
2091 /*
2092 * We batch up pages that should be freed instead of calling GMM for
2093 * each and every one of them.
2094 */
2095 uint32_t cPendingPages = 0;
2096 PGMMFREEPAGESREQ pReq;
2097 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2098 AssertLogRelRCReturn(rc, rc);
2099
2100 /*
2101 * Walk the ram ranges.
2102 */
2103 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2104 {
2105 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2106 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2107
2108 if ( !pVM->pgm.s.fRamPreAlloc
2109 && pVM->pgm.s.fZeroRamPagesOnReset)
2110 {
2111 /* Replace all RAM pages by ZERO pages. */
2112 while (iPage-- > 0)
2113 {
2114 PPGMPAGE pPage = &pRam->aPages[iPage];
2115 switch (PGM_PAGE_GET_TYPE(pPage))
2116 {
2117 case PGMPAGETYPE_RAM:
2118 /* Do not replace pages part of a 2 MB continuous range
2119 with zero pages, but zero them instead. */
2120 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2121 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2122 {
2123 void *pvPage;
2124 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2125 AssertLogRelRCReturn(rc, rc);
2126 ASMMemZeroPage(pvPage);
2127 }
2128 else if (PGM_PAGE_IS_BALLOONED(pPage))
2129 {
2130 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2131 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2132 }
2133 else if (!PGM_PAGE_IS_ZERO(pPage))
2134 {
2135 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2136 PGMPAGETYPE_RAM);
2137 AssertLogRelRCReturn(rc, rc);
2138 }
2139 break;
2140
2141 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2142 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2143 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2144 true /*fDoAccounting*/);
2145 break;
2146
2147 case PGMPAGETYPE_MMIO2:
2148 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2149 case PGMPAGETYPE_ROM:
2150 case PGMPAGETYPE_MMIO:
2151 break;
2152 default:
2153 AssertFailed();
2154 }
2155 } /* for each page */
2156 }
2157 else
2158 {
2159 /* Zero the memory. */
2160 while (iPage-- > 0)
2161 {
2162 PPGMPAGE pPage = &pRam->aPages[iPage];
2163 switch (PGM_PAGE_GET_TYPE(pPage))
2164 {
2165 case PGMPAGETYPE_RAM:
2166 switch (PGM_PAGE_GET_STATE(pPage))
2167 {
2168 case PGM_PAGE_STATE_ZERO:
2169 break;
2170
2171 case PGM_PAGE_STATE_BALLOONED:
2172 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2173 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2174 break;
2175
2176 case PGM_PAGE_STATE_SHARED:
2177 case PGM_PAGE_STATE_WRITE_MONITORED:
2178 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2179 AssertLogRelRCReturn(rc, rc);
2180 RT_FALL_THRU();
2181
2182 case PGM_PAGE_STATE_ALLOCATED:
2183 if (pVM->pgm.s.fZeroRamPagesOnReset)
2184 {
2185 void *pvPage;
2186 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2187 AssertLogRelRCReturn(rc, rc);
2188 ASMMemZeroPage(pvPage);
2189 }
2190 break;
2191 }
2192 break;
2193
2194 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2195 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2196 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2197 true /*fDoAccounting*/);
2198 break;
2199
2200 case PGMPAGETYPE_MMIO2:
2201 case PGMPAGETYPE_ROM_SHADOW:
2202 case PGMPAGETYPE_ROM:
2203 case PGMPAGETYPE_MMIO:
2204 break;
2205 default:
2206 AssertFailed();
2207
2208 }
2209 } /* for each page */
2210 }
2211
2212 }
2213
2214 /*
2215 * Finish off any pages pending freeing.
2216 */
2217 if (cPendingPages)
2218 {
2219 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2220 AssertLogRelRCReturn(rc, rc);
2221 }
2222 GMMR3FreePagesCleanup(pReq);
2223 return VINF_SUCCESS;
2224}
2225
2226
2227/**
2228 * Frees all RAM during VM termination
2229 *
2230 * ASSUMES that the caller owns the PGM lock.
2231 *
2232 * @returns VBox status code.
2233 * @param pVM The cross context VM structure.
2234 */
2235int pgmR3PhysRamTerm(PVM pVM)
2236{
2237 PGM_LOCK_ASSERT_OWNER(pVM);
2238
2239 /* Reset the memory balloon. */
2240 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2241 AssertRC(rc);
2242
2243#ifdef VBOX_WITH_PAGE_SHARING
2244 /*
2245 * Clear all registered shared modules.
2246 */
2247 pgmR3PhysAssertSharedPageChecksums(pVM);
2248 rc = GMMR3ResetSharedModules(pVM);
2249 AssertRC(rc);
2250
2251 /*
2252 * Flush the handy pages updates to make sure no shared pages are hiding
2253 * in there. (No unlikely if the VM shuts down, apparently.)
2254 */
2255 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2256#endif
2257
2258 /*
2259 * We batch up pages that should be freed instead of calling GMM for
2260 * each and every one of them.
2261 */
2262 uint32_t cPendingPages = 0;
2263 PGMMFREEPAGESREQ pReq;
2264 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2265 AssertLogRelRCReturn(rc, rc);
2266
2267 /*
2268 * Walk the ram ranges.
2269 */
2270 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2271 {
2272 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2273 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2274
2275 while (iPage-- > 0)
2276 {
2277 PPGMPAGE pPage = &pRam->aPages[iPage];
2278 switch (PGM_PAGE_GET_TYPE(pPage))
2279 {
2280 case PGMPAGETYPE_RAM:
2281 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2282 /** @todo change this to explicitly free private pages here. */
2283 if (PGM_PAGE_IS_SHARED(pPage))
2284 {
2285 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2286 PGMPAGETYPE_RAM);
2287 AssertLogRelRCReturn(rc, rc);
2288 }
2289 break;
2290
2291 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2292 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2293 case PGMPAGETYPE_MMIO2:
2294 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2295 case PGMPAGETYPE_ROM:
2296 case PGMPAGETYPE_MMIO:
2297 break;
2298 default:
2299 AssertFailed();
2300 }
2301 } /* for each page */
2302 }
2303
2304 /*
2305 * Finish off any pages pending freeing.
2306 */
2307 if (cPendingPages)
2308 {
2309 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2310 AssertLogRelRCReturn(rc, rc);
2311 }
2312 GMMR3FreePagesCleanup(pReq);
2313 return VINF_SUCCESS;
2314}
2315
2316
2317/**
2318 * This is the interface IOM is using to register an MMIO region.
2319 *
2320 * It will check for conflicts and ensure that a RAM range structure
2321 * is present before calling the PGMR3HandlerPhysicalRegister API to
2322 * register the callbacks.
2323 *
2324 * @returns VBox status code.
2325 *
2326 * @param pVM The cross context VM structure.
2327 * @param GCPhys The start of the MMIO region.
2328 * @param cb The size of the MMIO region.
2329 * @param hType The physical access handler type registration.
2330 * @param pvUserR3 The user argument for R3.
2331 * @param pvUserR0 The user argument for R0.
2332 * @param pvUserRC The user argument for RC.
2333 * @param pszDesc The description of the MMIO region.
2334 */
2335VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2336 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2337{
2338 /*
2339 * Assert on some assumption.
2340 */
2341 VM_ASSERT_EMT(pVM);
2342 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2343 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2344 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2345 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2346 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2347
2348 int rc = pgmLock(pVM);
2349 AssertRCReturn(rc, rc);
2350
2351 /*
2352 * Make sure there's a RAM range structure for the region.
2353 */
2354 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2355 bool fRamExists = false;
2356 PPGMRAMRANGE pRamPrev = NULL;
2357 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2358 while (pRam && GCPhysLast >= pRam->GCPhys)
2359 {
2360 if ( GCPhysLast >= pRam->GCPhys
2361 && GCPhys <= pRam->GCPhysLast)
2362 {
2363 /* Simplification: all within the same range. */
2364 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2365 && GCPhysLast <= pRam->GCPhysLast,
2366 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2367 GCPhys, GCPhysLast, pszDesc,
2368 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2369 pgmUnlock(pVM),
2370 VERR_PGM_RAM_CONFLICT);
2371
2372 /* Check that it's all RAM or MMIO pages. */
2373 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2374 uint32_t cLeft = cb >> PAGE_SHIFT;
2375 while (cLeft-- > 0)
2376 {
2377 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2378 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2379 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2380 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2381 pgmUnlock(pVM),
2382 VERR_PGM_RAM_CONFLICT);
2383 pPage++;
2384 }
2385
2386 /* Looks good. */
2387 fRamExists = true;
2388 break;
2389 }
2390
2391 /* next */
2392 pRamPrev = pRam;
2393 pRam = pRam->pNextR3;
2394 }
2395 PPGMRAMRANGE pNew;
2396 if (fRamExists)
2397 {
2398 pNew = NULL;
2399
2400 /*
2401 * Make all the pages in the range MMIO/ZERO pages, freeing any
2402 * RAM pages currently mapped here. This might not be 100% correct
2403 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2404 */
2405 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2406 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2407
2408 /* Force a PGM pool flush as guest ram references have been changed. */
2409 /** @todo not entirely SMP safe; assuming for now the guest takes
2410 * care of this internally (not touch mapped mmio while changing the
2411 * mapping). */
2412 PVMCPU pVCpu = VMMGetCpu(pVM);
2413 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2414 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2415 }
2416 else
2417 {
2418
2419 /*
2420 * No RAM range, insert an ad hoc one.
2421 *
2422 * Note that we don't have to tell REM about this range because
2423 * PGMHandlerPhysicalRegisterEx will do that for us.
2424 */
2425 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2426
2427 const uint32_t cPages = cb >> PAGE_SHIFT;
2428 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2429 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2430 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2431
2432 /* Initialize the range. */
2433 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2434 pNew->GCPhys = GCPhys;
2435 pNew->GCPhysLast = GCPhysLast;
2436 pNew->cb = cb;
2437 pNew->pszDesc = pszDesc;
2438 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2439 pNew->pvR3 = NULL;
2440 pNew->paLSPages = NULL;
2441
2442 uint32_t iPage = cPages;
2443 while (iPage-- > 0)
2444 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2445 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2446
2447 /* update the page count stats. */
2448 pVM->pgm.s.cPureMmioPages += cPages;
2449 pVM->pgm.s.cAllPages += cPages;
2450
2451 /* link it */
2452 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2453 }
2454
2455 /*
2456 * Register the access handler.
2457 */
2458 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2459 if ( RT_FAILURE(rc)
2460 && !fRamExists)
2461 {
2462 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2463 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2464
2465 /* remove the ad hoc range. */
2466 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2467 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2468 MMHyperFree(pVM, pRam);
2469 }
2470 pgmPhysInvalidatePageMapTLB(pVM);
2471
2472 pgmUnlock(pVM);
2473 return rc;
2474}
2475
2476
2477/**
2478 * This is the interface IOM is using to register an MMIO region.
2479 *
2480 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2481 * any ad hoc PGMRAMRANGE left behind.
2482 *
2483 * @returns VBox status code.
2484 * @param pVM The cross context VM structure.
2485 * @param GCPhys The start of the MMIO region.
2486 * @param cb The size of the MMIO region.
2487 */
2488VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2489{
2490 VM_ASSERT_EMT(pVM);
2491
2492 int rc = pgmLock(pVM);
2493 AssertRCReturn(rc, rc);
2494
2495 /*
2496 * First deregister the handler, then check if we should remove the ram range.
2497 */
2498 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2499 if (RT_SUCCESS(rc))
2500 {
2501 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2502 PPGMRAMRANGE pRamPrev = NULL;
2503 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2504 while (pRam && GCPhysLast >= pRam->GCPhys)
2505 {
2506 /** @todo We're being a bit too careful here. rewrite. */
2507 if ( GCPhysLast == pRam->GCPhysLast
2508 && GCPhys == pRam->GCPhys)
2509 {
2510 Assert(pRam->cb == cb);
2511
2512 /*
2513 * See if all the pages are dead MMIO pages.
2514 */
2515 uint32_t const cPages = cb >> PAGE_SHIFT;
2516 bool fAllMMIO = true;
2517 uint32_t iPage = 0;
2518 uint32_t cLeft = cPages;
2519 while (cLeft-- > 0)
2520 {
2521 PPGMPAGE pPage = &pRam->aPages[iPage];
2522 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2523 /*|| not-out-of-action later */)
2524 {
2525 fAllMMIO = false;
2526 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2527 break;
2528 }
2529 Assert( PGM_PAGE_IS_ZERO(pPage)
2530 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2531 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2532 pPage++;
2533 }
2534 if (fAllMMIO)
2535 {
2536 /*
2537 * Ad-hoc range, unlink and free it.
2538 */
2539 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2540 GCPhys, GCPhysLast, pRam->pszDesc));
2541
2542 pVM->pgm.s.cAllPages -= cPages;
2543 pVM->pgm.s.cPureMmioPages -= cPages;
2544
2545 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2546 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2547 MMHyperFree(pVM, pRam);
2548 break;
2549 }
2550 }
2551
2552 /*
2553 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2554 */
2555 if ( GCPhysLast >= pRam->GCPhys
2556 && GCPhys <= pRam->GCPhysLast)
2557 {
2558 Assert(GCPhys >= pRam->GCPhys);
2559 Assert(GCPhysLast <= pRam->GCPhysLast);
2560
2561 /*
2562 * Turn the pages back into RAM pages.
2563 */
2564 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2565 uint32_t cLeft = cb >> PAGE_SHIFT;
2566 while (cLeft--)
2567 {
2568 PPGMPAGE pPage = &pRam->aPages[iPage];
2569 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2570 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2571 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2572 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2573 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2574 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2575 }
2576 break;
2577 }
2578
2579 /* next */
2580 pRamPrev = pRam;
2581 pRam = pRam->pNextR3;
2582 }
2583 }
2584
2585 /* Force a PGM pool flush as guest ram references have been changed. */
2586 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2587 * this internally (not touch mapped mmio while changing the mapping). */
2588 PVMCPU pVCpu = VMMGetCpu(pVM);
2589 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2590 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2591
2592 pgmPhysInvalidatePageMapTLB(pVM);
2593 pgmPhysInvalidRamRangeTlbs(pVM);
2594 pgmUnlock(pVM);
2595 return rc;
2596}
2597
2598
2599/**
2600 * Locate a MMIO2 range.
2601 *
2602 * @returns Pointer to the MMIO2 range.
2603 * @param pVM The cross context VM structure.
2604 * @param pDevIns The device instance owning the region.
2605 * @param iSubDev The sub-device number.
2606 * @param iRegion The region.
2607 */
2608DECLINLINE(PPGMREGMMIORANGE) pgmR3PhysMMIOExFind(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
2609{
2610 /*
2611 * Search the list. There shouldn't be many entries.
2612 */
2613 /** @todo Optimize this lookup! There may now be many entries and it'll
2614 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2615 for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2616 if ( pCur->pDevInsR3 == pDevIns
2617 && pCur->iRegion == iRegion
2618 && pCur->iSubDev == iSubDev)
2619 return pCur;
2620 return NULL;
2621}
2622
2623
2624#ifndef PGM_WITHOUT_MAPPINGS
2625/**
2626 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.}
2627 * @sa pgmR3PhysRamRangeRelocate
2628 */
2629static DECLCALLBACK(bool) pgmR3PhysMMIOExRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
2630 PGMRELOCATECALL enmMode, void *pvUser)
2631{
2632 PPGMREGMMIORANGE pMmio = (PPGMREGMMIORANGE)pvUser;
2633 Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
2634 Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange)); RT_NOREF_PV(GCPtrOld);
2635
2636 switch (enmMode)
2637 {
2638 case PGMRELOCATECALL_SUGGEST:
2639 return true;
2640
2641 case PGMRELOCATECALL_RELOCATE:
2642 {
2643 /*
2644 * Update myself, then relink all the ranges and flush the RC TLB.
2645 */
2646 pgmLock(pVM);
2647
2648 pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange));
2649
2650 pgmR3PhysRelinkRamRanges(pVM);
2651 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2652 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2653
2654 pgmUnlock(pVM);
2655 return true;
2656 }
2657
2658 default:
2659 AssertFailedReturn(false);
2660 }
2661}
2662#endif /* !PGM_WITHOUT_MAPPINGS */
2663
2664
2665/**
2666 * Calculates the number of chunks
2667 *
2668 * @returns Number of registration chunk needed.
2669 * @param pVM The cross context VM structure.
2670 * @param cb The size of the MMIO/MMIO2 range.
2671 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2672 * chunk. Optional.
2673 * @param pcbChunk Where to return the guest mapping size for a chunk.
2674 */
2675static uint16_t pgmR3PhysMMIOExCalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2676{
2677 RT_NOREF_PV(pVM); /* without raw mode */
2678
2679 /*
2680 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2681 * needing a few bytes extra the PGMREGMMIORANGE structure.
2682 *
2683 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2684 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2685 */
2686 uint32_t cbChunk = 16U*_1M;
2687 uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
2688 AssertCompile(sizeof(PGMREGMMIORANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
2689 AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
2690 AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
2691 if (pcbChunk)
2692 *pcbChunk = cbChunk;
2693 if (pcPagesPerChunk)
2694 *pcPagesPerChunk = cPagesPerChunk;
2695
2696 /* Calc the number of chunks we need. */
2697 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2698 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2699 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2700 return cChunks;
2701}
2702
2703
2704/**
2705 * Worker for PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that allocates
2706 * and the PGMREGMMIORANGE structures and does basic initialization.
2707 *
2708 * Caller must set type specfic members and initialize the PGMPAGE structures.
2709 *
2710 * @returns VBox status code.
2711 * @param pVM The cross context VM structure.
2712 * @param pDevIns The device instance owning the region.
2713 * @param iSubDev The sub-device number (internal PCI config number).
2714 * @param iRegion The region number. If the MMIO2 memory is a PCI
2715 * I/O region this number has to be the number of that
2716 * region. Otherwise it can be any number safe
2717 * UINT8_MAX.
2718 * @param cb The size of the region. Must be page aligned.
2719 * @param pszDesc The description.
2720 * @param ppHeadRet Where to return the pointer to the first
2721 * registration chunk.
2722 *
2723 * @thread EMT
2724 */
2725static int pgmR3PhysMMIOExCreate(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2726 const char *pszDesc, PPGMREGMMIORANGE *ppHeadRet)
2727{
2728 /*
2729 * Figure out how many chunks we need and of which size.
2730 */
2731 uint32_t cPagesPerChunk;
2732 uint16_t cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2733 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2734
2735 /*
2736 * Allocate the chunks.
2737 */
2738 PPGMREGMMIORANGE *ppNext = ppHeadRet;
2739 *ppNext = NULL;
2740
2741 int rc = VINF_SUCCESS;
2742 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2743 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++)
2744 {
2745 /*
2746 * We currently do a single RAM range for the whole thing. This will
2747 * probably have to change once someone needs really large MMIO regions,
2748 * as we will be running into SUPR3PageAllocEx limitations and such.
2749 */
2750 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2751 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPagesTrackedByChunk]);
2752 PPGMREGMMIORANGE pNew = NULL;
2753 if ( iChunk + 1 < cChunks
2754 || cbRange >= _1M)
2755 {
2756 /*
2757 * Allocate memory for the registration structure.
2758 */
2759 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2760 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2761 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2762 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2763 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2764 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2765 void *pvChunk = NULL;
2766 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
2767 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2768
2769 Assert(R0PtrChunk != NIL_RTR0PTR);
2770 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2771
2772 pNew = (PPGMREGMMIORANGE)pvChunk;
2773 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2774 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
2775
2776 RTMemTmpFree(paChunkPages);
2777 }
2778 /*
2779 * Not so big, do a one time hyper allocation.
2780 */
2781 else
2782 {
2783 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2784 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2785
2786 /*
2787 * Initialize allocation specific items.
2788 */
2789 //pNew->RamRange.fFlags = 0;
2790 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2791 }
2792
2793 /*
2794 * Initialize the registration structure (caller does specific bits).
2795 */
2796 pNew->pDevInsR3 = pDevIns;
2797 //pNew->pvR3 = NULL;
2798 //pNew->pNext = NULL;
2799 //pNew->fFlags = 0;
2800 if (iChunk == 0)
2801 pNew->fFlags |= PGMREGMMIORANGE_F_FIRST_CHUNK;
2802 if (iChunk + 1 == cChunks)
2803 pNew->fFlags |= PGMREGMMIORANGE_F_LAST_CHUNK;
2804 pNew->iSubDev = iSubDev;
2805 pNew->iRegion = iRegion;
2806 pNew->idSavedState = UINT8_MAX;
2807 pNew->idMmio2 = UINT8_MAX;
2808 //pNew->pPhysHandlerR3 = NULL;
2809 //pNew->paLSPages = NULL;
2810 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2811 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2812 pNew->RamRange.pszDesc = pszDesc;
2813 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2814 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2815 //pNew->RamRange.pvR3 = NULL;
2816 //pNew->RamRange.paLSPages = NULL;
2817
2818 *ppNext = pNew;
2819 ASMCompilerBarrier();
2820 cPagesLeft -= cPagesTrackedByChunk;
2821 ppNext = &pNew->pNextR3;
2822 }
2823 Assert(cPagesLeft == 0);
2824
2825 if (RT_SUCCESS(rc))
2826 {
2827 Assert((*ppHeadRet)->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
2828 return VINF_SUCCESS;
2829 }
2830
2831 /*
2832 * Free floating ranges.
2833 */
2834 while (*ppHeadRet)
2835 {
2836 PPGMREGMMIORANGE pFree = *ppHeadRet;
2837 *ppHeadRet = pFree->pNextR3;
2838
2839 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
2840 {
2841 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
2842 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2843 SUPR3PageFreeEx(pFree, cChunkPages);
2844 }
2845 }
2846
2847 return rc;
2848}
2849
2850
2851/**
2852 * Common worker PGMR3PhysMMIOExPreRegister & PGMR3PhysMMIO2Register that links
2853 * a complete registration entry into the lists and lookup tables.
2854 *
2855 * @param pVM The cross context VM structure.
2856 * @param pNew The new MMIO / MMIO2 registration to link.
2857 */
2858static void pgmR3PhysMMIOExLink(PVM pVM, PPGMREGMMIORANGE pNew)
2859{
2860 /*
2861 * Link it into the list (order doesn't matter, so insert it at the head).
2862 *
2863 * Note! The range we're link may consist of multiple chunks, so we have to
2864 * find the last one.
2865 */
2866 PPGMREGMMIORANGE pLast = pNew;
2867 for (pLast = pNew; ; pLast = pLast->pNextR3)
2868 {
2869 if (pLast->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
2870 break;
2871 Assert(pLast->pNextR3);
2872 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
2873 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
2874 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
2875 Assert((pLast->pNextR3->fFlags & PGMREGMMIORANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
2876 Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIORANGE_F_MMIO2 ? pNew->idMmio2 + 1 : UINT8_MAX));
2877 }
2878
2879 pgmLock(pVM);
2880
2881 /* Link in the chain of ranges at the head of the list. */
2882 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
2883 pVM->pgm.s.pRegMmioRangesR3 = pNew;
2884
2885 /* If MMIO, insert the MMIO2 range/page IDs. */
2886 uint8_t idMmio2 = pNew->idMmio2;
2887 if (idMmio2 != UINT8_MAX)
2888 {
2889 for (;;)
2890 {
2891 Assert(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2);
2892 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2893 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2894 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2895 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIORANGE, RamRange);
2896 if (pNew->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
2897 break;
2898 pNew = pNew->pNextR3;
2899 }
2900 }
2901 else
2902 Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
2903
2904 pgmPhysInvalidatePageMapTLB(pVM);
2905 pgmUnlock(pVM);
2906}
2907
2908
2909/**
2910 * Allocate and pre-register an MMIO region.
2911 *
2912 * This is currently the way to deal with large MMIO regions. It may in the
2913 * future be extended to be the way we deal with all MMIO regions, but that
2914 * means we'll have to do something about the simple list based approach we take
2915 * to tracking the registrations.
2916 *
2917 * @returns VBox status code.
2918 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2919 * memory.
2920 * @retval VERR_ALREADY_EXISTS if the region already exists.
2921 *
2922 * @param pVM The cross context VM structure.
2923 * @param pDevIns The device instance owning the region.
2924 * @param iSubDev The sub-device number.
2925 * @param iRegion The region number. If the MMIO2 memory is a PCI
2926 * I/O region this number has to be the number of that
2927 * region. Otherwise it can be any number safe
2928 * UINT8_MAX.
2929 * @param cbRegion The size of the region. Must be page aligned.
2930 * @param hType The physical handler callback type.
2931 * @param pvUserR3 User parameter for ring-3 context callbacks.
2932 * @param pvUserR0 User parameter for ring-0 context callbacks.
2933 * @param pvUserRC User parameter for raw-mode context callbacks.
2934 * @param pszDesc The description.
2935 *
2936 * @thread EMT
2937 *
2938 * @sa PGMR3PhysMMIORegister, PGMR3PhysMMIO2Register,
2939 * PGMR3PhysMMIOExMap, PGMR3PhysMMIOExUnmap, PGMR3PhysMMIOExDeregister.
2940 */
2941VMMR3DECL(int) PGMR3PhysMMIOExPreRegister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion,
2942 PGMPHYSHANDLERTYPE hType, RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC,
2943 const char *pszDesc)
2944{
2945 /*
2946 * Validate input.
2947 */
2948 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2949 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2950 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
2951 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2952 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2953 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2954 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
2955 AssertReturn(!(cbRegion & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2956 AssertReturn(cbRegion, VERR_INVALID_PARAMETER);
2957
2958 const uint32_t cPages = cbRegion >> PAGE_SHIFT;
2959 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cbRegion, VERR_INVALID_PARAMETER);
2960 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
2961
2962 /*
2963 * For the 2nd+ instance, mangle the description string so it's unique.
2964 */
2965 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
2966 {
2967 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
2968 if (!pszDesc)
2969 return VERR_NO_MEMORY;
2970 }
2971
2972 /*
2973 * Register the MMIO callbacks.
2974 */
2975 PPGMPHYSHANDLER pPhysHandler;
2976 int rc = pgmHandlerPhysicalExCreate(pVM, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc, &pPhysHandler);
2977 if (RT_SUCCESS(rc))
2978 {
2979 /*
2980 * Create the registered MMIO range record for it.
2981 */
2982 PPGMREGMMIORANGE pNew;
2983 rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cbRegion, pszDesc, &pNew);
2984 if (RT_SUCCESS(rc))
2985 {
2986 Assert(!(pNew->fFlags & PGMREGMMIORANGE_F_MMIO2));
2987
2988 /*
2989 * Intialize the page structures and set up physical handlers (one for each chunk).
2990 */
2991 for (PPGMREGMMIORANGE pCur = pNew; pCur != NULL && RT_SUCCESS(rc); pCur = pCur->pNextR3)
2992 {
2993 if (pCur == pNew)
2994 pCur->pPhysHandlerR3 = pPhysHandler;
2995 else
2996 rc = pgmHandlerPhysicalExDup(pVM, pPhysHandler, &pCur->pPhysHandlerR3);
2997
2998 uint32_t iPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
2999 while (iPage-- > 0)
3000 PGM_PAGE_INIT_ZERO(&pCur->RamRange.aPages[iPage], pVM, PGMPAGETYPE_MMIO);
3001 }
3002 if (RT_SUCCESS(rc))
3003 {
3004 /*
3005 * Update the page count stats, link the registration and we're done.
3006 */
3007 pVM->pgm.s.cAllPages += cPages;
3008 pVM->pgm.s.cPureMmioPages += cPages;
3009
3010 pgmR3PhysMMIOExLink(pVM, pNew);
3011 return VINF_SUCCESS;
3012 }
3013
3014 /*
3015 * Clean up in case we're out of memory for extra access handlers.
3016 */
3017 while (pNew != NULL)
3018 {
3019 PPGMREGMMIORANGE pFree = pNew;
3020 pNew = pFree->pNextR3;
3021
3022 if (pFree->pPhysHandlerR3)
3023 {
3024 pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
3025 pFree->pPhysHandlerR3 = NULL;
3026 }
3027
3028 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3029 {
3030 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
3031 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3032 SUPR3PageFreeEx(pFree, cChunkPages);
3033 }
3034 }
3035 }
3036 else
3037 pgmHandlerPhysicalExDestroy(pVM, pPhysHandler);
3038 }
3039 return rc;
3040}
3041
3042
3043/**
3044 * Allocate and register an MMIO2 region.
3045 *
3046 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
3047 * associated with a device. It is also non-shared memory with a permanent
3048 * ring-3 mapping and page backing (presently).
3049 *
3050 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
3051 * the VM, in which case we'll drop the base memory pages. Presently we will
3052 * make no attempt to preserve anything that happens to be present in the base
3053 * memory that is replaced, this is of course incorrect but it's too much
3054 * effort.
3055 *
3056 * @returns VBox status code.
3057 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
3058 * memory.
3059 * @retval VERR_ALREADY_EXISTS if the region already exists.
3060 *
3061 * @param pVM The cross context VM structure.
3062 * @param pDevIns The device instance owning the region.
3063 * @param iSubDev The sub-device number.
3064 * @param iRegion The region number. If the MMIO2 memory is a PCI
3065 * I/O region this number has to be the number of that
3066 * region. Otherwise it can be any number safe
3067 * UINT8_MAX.
3068 * @param cb The size of the region. Must be page aligned.
3069 * @param fFlags Reserved for future use, must be zero.
3070 * @param ppv Where to store the pointer to the ring-3 mapping of
3071 * the memory.
3072 * @param pszDesc The description.
3073 * @thread EMT
3074 */
3075VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
3076 uint32_t fFlags, void **ppv, const char *pszDesc)
3077{
3078 /*
3079 * Validate input.
3080 */
3081 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3082 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3083 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3084 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3085 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
3086 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3087 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3088 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion) == NULL, VERR_ALREADY_EXISTS);
3089 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3090 AssertReturn(cb, VERR_INVALID_PARAMETER);
3091 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
3092
3093 const uint32_t cPages = cb >> PAGE_SHIFT;
3094 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
3095 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3096
3097 /*
3098 * For the 2nd+ instance, mangle the description string so it's unique.
3099 */
3100 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3101 {
3102 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3103 if (!pszDesc)
3104 return VERR_NO_MEMORY;
3105 }
3106
3107 /*
3108 * Allocate an MMIO2 range ID (not freed on failure).
3109 *
3110 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3111 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3112 */
3113 unsigned cChunks = pgmR3PhysMMIOExCalcChunkCount(pVM, cb, NULL, NULL);
3114 pgmLock(pVM);
3115 uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3116 unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3117 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3118 {
3119 pgmUnlock(pVM);
3120 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3121 }
3122 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3123 pgmUnlock(pVM);
3124
3125 /*
3126 * Try reserve and allocate the backing memory first as this is what is
3127 * most likely to fail.
3128 */
3129 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3130 if (RT_SUCCESS(rc))
3131 {
3132 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3133 if (RT_SUCCESS(rc))
3134 {
3135 void *pvPages;
3136 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3137 if (RT_SUCCESS(rc))
3138 {
3139 memset(pvPages, 0, cPages * PAGE_SIZE);
3140
3141 /*
3142 * Create the registered MMIO range record for it.
3143 */
3144 PPGMREGMMIORANGE pNew;
3145 rc = pgmR3PhysMMIOExCreate(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew);
3146 if (RT_SUCCESS(rc))
3147 {
3148 uint32_t iSrcPage = 0;
3149 uint8_t *pbCurPages = (uint8_t *)pvPages;
3150 for (PPGMREGMMIORANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3151 {
3152 pCur->pvR3 = pbCurPages;
3153 pCur->RamRange.pvR3 = pbCurPages;
3154 pCur->idMmio2 = idMmio2;
3155 pCur->fFlags |= PGMREGMMIORANGE_F_MMIO2;
3156
3157 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3158 while (iDstPage-- > 0)
3159 {
3160 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3161 paPages[iDstPage + iSrcPage].Phys,
3162 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3163 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3164 }
3165
3166 /* advance. */
3167 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3168 pbCurPages += pCur->RamRange.cb;
3169 idMmio2++;
3170 }
3171
3172 RTMemTmpFree(paPages);
3173
3174 /*
3175 * Update the page count stats, link the registration and we're done.
3176 */
3177 pVM->pgm.s.cAllPages += cPages;
3178 pVM->pgm.s.cPrivatePages += cPages;
3179
3180 pgmR3PhysMMIOExLink(pVM, pNew);
3181
3182 *ppv = pvPages;
3183 return VINF_SUCCESS;
3184 }
3185
3186 SUPR3PageFreeEx(pvPages, cPages);
3187 }
3188 }
3189 RTMemTmpFree(paPages);
3190 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3191 }
3192 if (pDevIns->iInstance > 0)
3193 MMR3HeapFree((void *)pszDesc);
3194 return rc;
3195}
3196
3197
3198/**
3199 * Deregisters and frees an MMIO2 region or a pre-registered MMIO region
3200 *
3201 * Any physical (and virtual) access handlers registered for the region must
3202 * be deregistered before calling this function.
3203 *
3204 * @returns VBox status code.
3205 * @param pVM The cross context VM structure.
3206 * @param pDevIns The device instance owning the region.
3207 * @param iSubDev The sub-device number. Pass UINT32_MAX for wildcard
3208 * matching.
3209 * @param iRegion The region. Pass UINT32_MAX for wildcard matching.
3210 */
3211VMMR3DECL(int) PGMR3PhysMMIOExDeregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion)
3212{
3213 /*
3214 * Validate input.
3215 */
3216 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3217 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3218 AssertReturn(iSubDev <= UINT8_MAX || iSubDev == UINT32_MAX, VERR_INVALID_PARAMETER);
3219 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
3220
3221 /*
3222 * The loop here scanning all registrations will make sure that multi-chunk ranges
3223 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3224 */
3225 pgmLock(pVM);
3226 int rc = VINF_SUCCESS;
3227 unsigned cFound = 0;
3228 PPGMREGMMIORANGE pPrev = NULL;
3229 PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3230 while (pCur)
3231 {
3232 if ( pCur->pDevInsR3 == pDevIns
3233 && ( iRegion == UINT32_MAX
3234 || pCur->iRegion == iRegion)
3235 && ( iSubDev == UINT32_MAX
3236 || pCur->iSubDev == iSubDev) )
3237 {
3238 cFound++;
3239
3240 /*
3241 * Unmap it if it's mapped.
3242 */
3243 if (pCur->fFlags & PGMREGMMIORANGE_F_MAPPED)
3244 {
3245 int rc2 = PGMR3PhysMMIOExUnmap(pVM, pCur->pDevInsR3, pCur->iSubDev, pCur->iRegion, pCur->RamRange.GCPhys);
3246 AssertRC(rc2);
3247 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3248 rc = rc2;
3249 }
3250
3251 /*
3252 * Must tell IOM about MMIO (first one only).
3253 */
3254 if ((pCur->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK)) == PGMREGMMIORANGE_F_MMIO2)
3255 IOMR3MmioExNotifyDeregistered(pVM, pCur->pPhysHandlerR3->pvUserR3);
3256
3257 /*
3258 * Unlink it
3259 */
3260 PPGMREGMMIORANGE pNext = pCur->pNextR3;
3261 if (pPrev)
3262 pPrev->pNextR3 = pNext;
3263 else
3264 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3265 pCur->pNextR3 = NULL;
3266
3267 uint8_t idMmio2 = pCur->idMmio2;
3268 if (idMmio2 != UINT8_MAX)
3269 {
3270 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3271 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3272 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3273 }
3274
3275 /*
3276 * Free the memory.
3277 */
3278 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3279 if (pCur->fFlags & PGMREGMMIORANGE_F_MMIO2)
3280 {
3281 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3282 AssertRC(rc2);
3283 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3284 rc = rc2;
3285
3286 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3287 AssertRC(rc2);
3288 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3289 rc = rc2;
3290 }
3291
3292 /* we're leaking hyper memory here if done at runtime. */
3293#ifdef VBOX_STRICT
3294 VMSTATE const enmState = VMR3GetState(pVM);
3295 AssertMsg( enmState == VMSTATE_POWERING_OFF
3296 || enmState == VMSTATE_POWERING_OFF_LS
3297 || enmState == VMSTATE_OFF
3298 || enmState == VMSTATE_OFF_LS
3299 || enmState == VMSTATE_DESTROYING
3300 || enmState == VMSTATE_TERMINATED
3301 || enmState == VMSTATE_CREATING
3302 , ("%s\n", VMR3GetStateName(enmState)));
3303#endif
3304
3305 const bool fIsMmio2 = RT_BOOL(pCur->fFlags & PGMREGMMIORANGE_F_MMIO2);
3306 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3307 {
3308 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIORANGE, RamRange.aPages[cPages]);
3309 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3310 SUPR3PageFreeEx(pCur, cChunkPages);
3311 }
3312 /*else
3313 {
3314 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3315 AssertRCReturn(rc, rc);
3316 } */
3317
3318
3319 /* update page count stats */
3320 pVM->pgm.s.cAllPages -= cPages;
3321 if (fIsMmio2)
3322 pVM->pgm.s.cPrivatePages -= cPages;
3323 else
3324 pVM->pgm.s.cPureMmioPages -= cPages;
3325
3326 /* next */
3327 pCur = pNext;
3328 }
3329 else
3330 {
3331 pPrev = pCur;
3332 pCur = pCur->pNextR3;
3333 }
3334 }
3335 pgmPhysInvalidatePageMapTLB(pVM);
3336 pgmUnlock(pVM);
3337 return !cFound && iRegion != UINT32_MAX && iSubDev != UINT32_MAX ? VERR_NOT_FOUND : rc;
3338}
3339
3340
3341/**
3342 * Maps a MMIO2 region or a pre-registered MMIO region.
3343 *
3344 * This is done when a guest / the bios / state loading changes the
3345 * PCI config. The replacing of base memory has the same restrictions
3346 * as during registration, of course.
3347 *
3348 * @returns VBox status code.
3349 *
3350 * @param pVM The cross context VM structure.
3351 * @param pDevIns The device instance owning the region.
3352 * @param iSubDev The sub-device number of the registered region.
3353 * @param iRegion The index of the registered region.
3354 * @param GCPhys The guest-physical address to be remapped.
3355 */
3356VMMR3DECL(int) PGMR3PhysMMIOExMap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
3357{
3358 /*
3359 * Validate input.
3360 *
3361 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3362 * happens during VM construction.
3363 */
3364 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3365 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3366 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3367 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3368 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3369 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3370 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3371
3372 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3373 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3374 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3375
3376 PPGMREGMMIORANGE pLastMmio = pFirstMmio;
3377 RTGCPHYS cbRange = 0;
3378 for (;;)
3379 {
3380 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), VERR_WRONG_ORDER);
3381 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3382 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3383 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3384 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3385 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3386 cbRange += pLastMmio->RamRange.cb;
3387 if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3388 break;
3389 pLastMmio = pLastMmio->pNextR3;
3390 }
3391
3392 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3393 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3394
3395 /*
3396 * Find our location in the ram range list, checking for restriction
3397 * we don't bother implementing yet (partially overlapping, multiple
3398 * ram ranges).
3399 */
3400 pgmLock(pVM);
3401
3402 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER);
3403
3404 bool fRamExists = false;
3405 PPGMRAMRANGE pRamPrev = NULL;
3406 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3407 while (pRam && GCPhysLast >= pRam->GCPhys)
3408 {
3409 if ( GCPhys <= pRam->GCPhysLast
3410 && GCPhysLast >= pRam->GCPhys)
3411 {
3412 /* Completely within? */
3413 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3414 && GCPhysLast <= pRam->GCPhysLast,
3415 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3416 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3417 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3418 pgmUnlock(pVM),
3419 VERR_PGM_RAM_CONFLICT);
3420
3421 /* Check that all the pages are RAM pages. */
3422 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3423 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3424 while (cPagesLeft-- > 0)
3425 {
3426 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3427 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3428 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3429 pgmUnlock(pVM),
3430 VERR_PGM_RAM_CONFLICT);
3431 pPage++;
3432 }
3433
3434 /* There can only be one MMIO/MMIO2 chunk matching here! */
3435 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
3436 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3437 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3438 pgmUnlock(pVM),
3439 VERR_PGM_PHYS_MMIO_EX_IPE);
3440
3441 fRamExists = true;
3442 break;
3443 }
3444
3445 /* next */
3446 pRamPrev = pRam;
3447 pRam = pRam->pNextR3;
3448 }
3449 Log(("PGMR3PhysMMIOExMap: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3450
3451
3452 /*
3453 * Make the changes.
3454 */
3455 RTGCPHYS GCPhysCur = GCPhys;
3456 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3457 {
3458 pCurMmio->RamRange.GCPhys = GCPhysCur;
3459 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3460 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3461 {
3462 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3463 break;
3464 }
3465 GCPhysCur += pCurMmio->RamRange.cb;
3466 }
3467
3468 if (fRamExists)
3469 {
3470 /*
3471 * Make all the pages in the range MMIO/ZERO pages, freeing any
3472 * RAM pages currently mapped here. This might not be 100% correct
3473 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3474 *
3475 * We replace this MMIO/ZERO pages with real pages in the MMIO2 case.
3476 */
3477 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */
3478
3479 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
3480 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3481
3482 if (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)
3483 {
3484 /* replace the pages, freeing all present RAM pages. */
3485 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3486 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3487 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3488 while (cPagesLeft-- > 0)
3489 {
3490 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3491
3492 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3493 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3494 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3495 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3496 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3497 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3498 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3499 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3500 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3501 /* (We tell NEM at the end of the function.) */
3502
3503 pVM->pgm.s.cZeroPages--;
3504 GCPhys += PAGE_SIZE;
3505 pPageSrc++;
3506 pPageDst++;
3507 }
3508 }
3509
3510 /* Flush physical page map TLB. */
3511 pgmPhysInvalidatePageMapTLB(pVM);
3512
3513 /* Force a PGM pool flush as guest ram references have been changed. */
3514 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3515 * this internally (not touch mapped mmio while changing the mapping). */
3516 PVMCPU pVCpu = VMMGetCpu(pVM);
3517 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3518 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3519 }
3520 else
3521 {
3522 /*
3523 * No RAM range, insert the ones prepared during registration.
3524 */
3525 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3526 {
3527 /* Clear the tracking data of pages we're going to reactivate. */
3528 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3529 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3530 while (cPagesLeft-- > 0)
3531 {
3532 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3533 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3534 pPageSrc++;
3535 }
3536
3537 /* link in the ram range */
3538 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3539
3540 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3541 {
3542 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3543 break;
3544 }
3545 pRamPrev = &pCurMmio->RamRange;
3546 }
3547 }
3548
3549 /*
3550 * Register the access handler if plain MMIO.
3551 *
3552 * We must register access handlers for each range since the access handler
3553 * code refuses to deal with multiple ranges (and we can).
3554 */
3555 if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2))
3556 {
3557 int rc = VINF_SUCCESS;
3558 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3559 {
3560 Assert(!(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED));
3561 rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys,
3562 pCurMmio->RamRange.GCPhysLast);
3563 if (RT_FAILURE(rc))
3564 break;
3565 pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED; /* Use this to mark that the handler is registered. */
3566 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3567 {
3568 rc = IOMR3MmioExNotifyMapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
3569 break;
3570 }
3571 }
3572 if (RT_FAILURE(rc))
3573 {
3574 /* Almost impossible, but try clean up properly and get out of here. */
3575 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3576 {
3577 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED)
3578 {
3579 pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_MAPPED;
3580 pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists);
3581 }
3582
3583 if (!fRamExists)
3584 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3585 else
3586 {
3587 Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK); /* Only one chunk */
3588
3589 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3590 PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3591 while (cPagesLeft-- > 0)
3592 {
3593 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3594 pPageDst++;
3595 }
3596 }
3597
3598 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3599 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3600 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3601 break;
3602 }
3603
3604 pgmUnlock(pVM);
3605 return rc;
3606 }
3607 }
3608
3609 /*
3610 * We're good, set the flags and invalid the mapping TLB.
3611 */
3612 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3613 {
3614 pCurMmio->fFlags |= PGMREGMMIORANGE_F_MAPPED;
3615 if (fRamExists)
3616 pCurMmio->fFlags |= PGMREGMMIORANGE_F_OVERLAPPING;
3617 else
3618 pCurMmio->fFlags &= ~PGMREGMMIORANGE_F_OVERLAPPING;
3619 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3620 break;
3621 }
3622 pgmPhysInvalidatePageMapTLB(pVM);
3623
3624 /*
3625 * Notify NEM while holding the lock (experimental) and REM without (like always).
3626 */
3627 uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3628 | (pFirstMmio->fFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3629 int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3);
3630
3631 pgmUnlock(pVM);
3632
3633#ifdef VBOX_WITH_REM
3634 if (!fRamExists && (pFirstMmio->fFlags & PGMREGMMIORANGE_F_MMIO2)) /** @todo this doesn't look right. */
3635 REMR3NotifyPhysRamRegister(pVM, GCPhys, cbRange, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
3636#endif
3637 return rc;
3638}
3639
3640
3641/**
3642 * Unmaps a MMIO2 or a pre-registered MMIO region.
3643 *
3644 * This is done when a guest / the bios / state loading changes the
3645 * PCI config. The replacing of base memory has the same restrictions
3646 * as during registration, of course.
3647 */
3648VMMR3DECL(int) PGMR3PhysMMIOExUnmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS GCPhys)
3649{
3650 /*
3651 * Validate input
3652 */
3653 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3654 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3655 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3656 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3657 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3658 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3659 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3660
3661 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3662 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3663 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3664
3665 PPGMREGMMIORANGE pLastMmio = pFirstMmio;
3666 RTGCPHYS cbRange = 0;
3667 for (;;)
3668 {
3669 AssertReturn(pLastMmio->fFlags & PGMREGMMIORANGE_F_MAPPED, VERR_WRONG_ORDER);
3670 AssertReturn(pLastMmio->RamRange.GCPhys == GCPhys + cbRange, VERR_INVALID_PARAMETER);
3671 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3672 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3673 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3674 cbRange += pLastMmio->RamRange.cb;
3675 if (pLastMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3676 break;
3677 pLastMmio = pLastMmio->pNextR3;
3678 }
3679
3680 Log(("PGMR3PhysMMIOExUnmap: %RGp-%RGp %s\n",
3681 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3682
3683 int rc = pgmLock(pVM);
3684 AssertRCReturn(rc, rc);
3685 uint16_t const fOldFlags = pFirstMmio->fFlags;
3686 AssertReturnStmt(fOldFlags & PGMREGMMIORANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
3687
3688 /*
3689 * If plain MMIO, we must deregister the handlers first.
3690 */
3691 if (!(fOldFlags & PGMREGMMIORANGE_F_MMIO2))
3692 {
3693 PPGMREGMMIORANGE pCurMmio = pFirstMmio;
3694 rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
3695 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3696 while (!(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
3697 {
3698 pCurMmio = pCurMmio->pNextR3;
3699 rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING));
3700 AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE);
3701 }
3702
3703 IOMR3MmioExNotifyUnmapped(pVM, pFirstMmio->pPhysHandlerR3->pvUserR3, GCPhys);
3704 }
3705
3706 /*
3707 * Unmap it.
3708 */
3709 RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys;
3710 if (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING)
3711 {
3712 /*
3713 * We've replaced RAM, replace with zero pages.
3714 *
3715 * Note! This is where we might differ a little from a real system, because
3716 * it's likely to just show the RAM pages as they were before the
3717 * MMIO/MMIO2 region was mapped here.
3718 */
3719 /* Only one chunk allowed when overlapping! */
3720 Assert(fOldFlags & PGMREGMMIORANGE_F_LAST_CHUNK);
3721
3722 /* Restore the RAM pages we've replaced. */
3723 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3724 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3725 pRam = pRam->pNextR3;
3726
3727 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3728 if (fOldFlags & PGMREGMMIORANGE_F_MMIO2)
3729 pVM->pgm.s.cZeroPages += cPagesLeft;
3730
3731 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3732 while (cPagesLeft-- > 0)
3733 {
3734 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3735 pPageDst++;
3736 }
3737
3738 /* Flush physical page map TLB. */
3739 pgmPhysInvalidatePageMapTLB(pVM);
3740
3741 /* Update range state. */
3742 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3743 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3744 pFirstMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
3745 }
3746 else
3747 {
3748 /*
3749 * Unlink the chunks related to the MMIO/MMIO2 region.
3750 */
3751 for (PPGMREGMMIORANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3752 {
3753 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3754 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3755 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3756 pCurMmio->fFlags &= ~(PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MAPPED);
3757 if (pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK)
3758 break;
3759 }
3760 }
3761
3762 /* Force a PGM pool flush as guest ram references have been changed. */
3763 /** @todo not entirely SMP safe; assuming for now the guest takes care
3764 * of this internally (not touch mapped mmio while changing the
3765 * mapping). */
3766 PVMCPU pVCpu = VMMGetCpu(pVM);
3767 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3768 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3769
3770 pgmPhysInvalidatePageMapTLB(pVM);
3771 pgmPhysInvalidRamRangeTlbs(pVM);
3772
3773 /*
3774 * Notify NEM while holding the lock (experimental) and REM without (like always).
3775 */
3776 uint32_t const fNemFlags = (fOldFlags & PGMREGMMIORANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3777 | (fOldFlags & PGMREGMMIORANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3778 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags);
3779 pgmUnlock(pVM);
3780#ifdef VBOX_WITH_REM
3781 if ((fOldFlags & (PGMREGMMIORANGE_F_OVERLAPPING | PGMREGMMIORANGE_F_MMIO2)) == PGMREGMMIORANGE_F_MMIO2)
3782 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeNotify, cbRange);
3783#endif
3784 return rc;
3785}
3786
3787
3788/**
3789 * Reduces the mapping size of a MMIO2 or pre-registered MMIO region.
3790 *
3791 * This is mainly for dealing with old saved states after changing the default
3792 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3793 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3794 *
3795 * The region must not currently be mapped when making this call. The VM state
3796 * must be state restore or VM construction.
3797 *
3798 * @returns VBox status code.
3799 * @param pVM The cross context VM structure.
3800 * @param pDevIns The device instance owning the region.
3801 * @param iSubDev The sub-device number of the registered region.
3802 * @param iRegion The index of the registered region.
3803 * @param cbRegion The new mapping size.
3804 */
3805VMMR3_INT_DECL(int) PGMR3PhysMMIOExReduce(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cbRegion)
3806{
3807 /*
3808 * Validate input
3809 */
3810 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3811 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3812 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3813 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3814 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3815 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3816 VMSTATE enmVmState = VMR3GetState(pVM);
3817 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3818 || enmVmState == VMSTATE_LOADING,
3819 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3820 VERR_VM_INVALID_VM_STATE);
3821
3822 int rc = pgmLock(pVM);
3823 AssertRCReturn(rc, rc);
3824
3825 PPGMREGMMIORANGE pFirstMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3826 if (pFirstMmio)
3827 {
3828 Assert(pFirstMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3829 if (!(pFirstMmio->fFlags & PGMREGMMIORANGE_F_MAPPED))
3830 {
3831 /*
3832 * NOTE! Current implementation does not support multiple ranges.
3833 * Implement when there is a real world need and thus a testcase.
3834 */
3835 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK,
3836 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3837 rc = VERR_NOT_SUPPORTED);
3838 if (RT_SUCCESS(rc))
3839 {
3840 /*
3841 * Make the change.
3842 */
3843 Log(("PGMR3PhysMMIOExReduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
3844 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
3845
3846 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
3847 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
3848 rc = VERR_OUT_OF_RANGE);
3849 if (RT_SUCCESS(rc))
3850 {
3851 pFirstMmio->RamRange.cb = cbRegion;
3852 }
3853 }
3854 }
3855 else
3856 rc = VERR_WRONG_ORDER;
3857 }
3858 else
3859 rc = VERR_NOT_FOUND;
3860
3861 pgmUnlock(pVM);
3862 return rc;
3863}
3864
3865
3866/**
3867 * Checks if the given address is an MMIO2 or pre-registered MMIO base address
3868 * or not.
3869 *
3870 * @returns true/false accordingly.
3871 * @param pVM The cross context VM structure.
3872 * @param pDevIns The owner of the memory, optional.
3873 * @param GCPhys The address to check.
3874 */
3875VMMR3DECL(bool) PGMR3PhysMMIOExIsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
3876{
3877 /*
3878 * Validate input
3879 */
3880 VM_ASSERT_EMT_RETURN(pVM, false);
3881 AssertPtrReturn(pDevIns, false);
3882 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
3883 AssertReturn(GCPhys != 0, false);
3884 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
3885
3886 /*
3887 * Search the list.
3888 */
3889 pgmLock(pVM);
3890 for (PPGMREGMMIORANGE pCurMmio = pVM->pgm.s.pRegMmioRangesR3; pCurMmio; pCurMmio = pCurMmio->pNextR3)
3891 if (pCurMmio->RamRange.GCPhys == GCPhys)
3892 {
3893 Assert(pCurMmio->fFlags & PGMREGMMIORANGE_F_MAPPED);
3894 bool fRet = RT_BOOL(pCurMmio->fFlags & PGMREGMMIORANGE_F_FIRST_CHUNK);
3895 pgmUnlock(pVM);
3896 return fRet;
3897 }
3898 pgmUnlock(pVM);
3899 return false;
3900}
3901
3902
3903/**
3904 * Gets the HC physical address of a page in the MMIO2 region.
3905 *
3906 * This is API is intended for MMHyper and shouldn't be called
3907 * by anyone else...
3908 *
3909 * @returns VBox status code.
3910 * @param pVM The cross context VM structure.
3911 * @param pDevIns The owner of the memory, optional.
3912 * @param iSubDev Sub-device number.
3913 * @param iRegion The region.
3914 * @param off The page expressed an offset into the MMIO2 region.
3915 * @param pHCPhys Where to store the result.
3916 */
3917VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
3918 RTGCPHYS off, PRTHCPHYS pHCPhys)
3919{
3920 /*
3921 * Validate input
3922 */
3923 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3924 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3925 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3926 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3927
3928 pgmLock(pVM);
3929 PPGMREGMMIORANGE pCurMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3930 AssertReturn(pCurMmio, VERR_NOT_FOUND);
3931 AssertReturn(pCurMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
3932
3933 while ( off >= pCurMmio->RamRange.cb
3934 && !(pCurMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK))
3935 {
3936 off -= pCurMmio->RamRange.cb;
3937 pCurMmio = pCurMmio->pNextR3;
3938 }
3939 AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER);
3940
3941 PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT];
3942 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3943 pgmUnlock(pVM);
3944 return VINF_SUCCESS;
3945}
3946
3947
3948/**
3949 * Maps a portion of an MMIO2 region into kernel space (host).
3950 *
3951 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
3952 * or the VM is terminated.
3953 *
3954 * @return VBox status code.
3955 *
3956 * @param pVM The cross context VM structure.
3957 * @param pDevIns The device owning the MMIO2 memory.
3958 * @param iSubDev The sub-device number.
3959 * @param iRegion The region.
3960 * @param off The offset into the region. Must be page aligned.
3961 * @param cb The number of bytes to map. Must be page aligned.
3962 * @param pszDesc Mapping description.
3963 * @param pR0Ptr Where to store the R0 address.
3964 */
3965VMMR3_INT_DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
3966 RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTR0PTR pR0Ptr)
3967{
3968 /*
3969 * Validate input.
3970 */
3971 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3972 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3973 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3974 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3975
3976 PPGMREGMMIORANGE pFirstRegMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
3977 AssertReturn(pFirstRegMmio, VERR_NOT_FOUND);
3978 AssertReturn(pFirstRegMmio->fFlags & (PGMREGMMIORANGE_F_MMIO2 | PGMREGMMIORANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
3979 AssertReturn(off < pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
3980 AssertReturn(cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
3981 AssertReturn(off + cb <= pFirstRegMmio->RamRange.cb, VERR_INVALID_PARAMETER);
3982 NOREF(pszDesc);
3983
3984 /*
3985 * Pass the request on to the support library/driver.
3986 */
3987#if defined(RT_OS_WINDOWS) || defined(RT_OS_LINUX) || defined(RT_OS_OS2) /** @todo Fully implement RTR0MemObjMapKernelEx everywhere. */
3988 AssertLogRelReturn(off == 0, VERR_NOT_SUPPORTED);
3989 AssertLogRelReturn(pFirstRegMmio->fFlags & PGMREGMMIORANGE_F_LAST_CHUNK, VERR_NOT_SUPPORTED);
3990 int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, 0 /*off*/, pFirstRegMmio->RamRange.cb, 0 /*fFlags*/, pR0Ptr);
3991#else
3992 int rc = SUPR3PageMapKernel(pFirstRegMmio->pvR3, off, cb, 0 /*fFlags*/, pR0Ptr);
3993#endif
3994
3995 return rc;
3996}
3997
3998
3999/**
4000 * Changes the region number of an MMIO2 or pre-registered MMIO region.
4001 *
4002 * This is only for dealing with save state issues, nothing else.
4003 *
4004 * @return VBox status code.
4005 *
4006 * @param pVM The cross context VM structure.
4007 * @param pDevIns The device owning the MMIO2 memory.
4008 * @param iSubDev The sub-device number.
4009 * @param iRegion The region.
4010 * @param iNewRegion The new region index.
4011 *
4012 * @sa @bugref{9359}
4013 */
4014VMMR3_INT_DECL(int) PGMR3PhysMMIOExChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
4015 uint32_t iNewRegion)
4016{
4017 /*
4018 * Validate input.
4019 */
4020 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4021 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4022 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
4023 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4024 AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4025
4026 AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
4027
4028 PPGMREGMMIORANGE pFirstRegMmio = pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iRegion);
4029 AssertReturn(pFirstRegMmio, VERR_NOT_FOUND);
4030 AssertReturn(pgmR3PhysMMIOExFind(pVM, pDevIns, iSubDev, iNewRegion) == NULL, VERR_RESOURCE_IN_USE);
4031
4032 /*
4033 * Make the change.
4034 */
4035 pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
4036
4037 return VINF_SUCCESS;
4038}
4039
4040
4041/**
4042 * Worker for PGMR3PhysRomRegister.
4043 *
4044 * This is here to simplify lock management, i.e. the caller does all the
4045 * locking and we can simply return without needing to remember to unlock
4046 * anything first.
4047 *
4048 * @returns VBox status code.
4049 * @param pVM The cross context VM structure.
4050 * @param pDevIns The device instance owning the ROM.
4051 * @param GCPhys First physical address in the range.
4052 * Must be page aligned!
4053 * @param cb The size of the range (in bytes).
4054 * Must be page aligned!
4055 * @param pvBinary Pointer to the binary data backing the ROM image.
4056 * @param cbBinary The size of the binary data pvBinary points to.
4057 * This must be less or equal to @a cb.
4058 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4059 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4060 * @param pszDesc Pointer to description string. This must not be freed.
4061 */
4062static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4063 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
4064{
4065 /*
4066 * Validate input.
4067 */
4068 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4069 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
4070 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
4071 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4072 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4073 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
4074 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
4075 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
4076 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
4077
4078 const uint32_t cPages = cb >> PAGE_SHIFT;
4079
4080 /*
4081 * Find the ROM location in the ROM list first.
4082 */
4083 PPGMROMRANGE pRomPrev = NULL;
4084 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
4085 while (pRom && GCPhysLast >= pRom->GCPhys)
4086 {
4087 if ( GCPhys <= pRom->GCPhysLast
4088 && GCPhysLast >= pRom->GCPhys)
4089 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
4090 GCPhys, GCPhysLast, pszDesc,
4091 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
4092 VERR_PGM_RAM_CONFLICT);
4093 /* next */
4094 pRomPrev = pRom;
4095 pRom = pRom->pNextR3;
4096 }
4097
4098 /*
4099 * Find the RAM location and check for conflicts.
4100 *
4101 * Conflict detection is a bit different than for RAM
4102 * registration since a ROM can be located within a RAM
4103 * range. So, what we have to check for is other memory
4104 * types (other than RAM that is) and that we don't span
4105 * more than one RAM range (layz).
4106 */
4107 bool fRamExists = false;
4108 PPGMRAMRANGE pRamPrev = NULL;
4109 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4110 while (pRam && GCPhysLast >= pRam->GCPhys)
4111 {
4112 if ( GCPhys <= pRam->GCPhysLast
4113 && GCPhysLast >= pRam->GCPhys)
4114 {
4115 /* completely within? */
4116 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
4117 && GCPhysLast <= pRam->GCPhysLast,
4118 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
4119 GCPhys, GCPhysLast, pszDesc,
4120 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
4121 VERR_PGM_RAM_CONFLICT);
4122 fRamExists = true;
4123 break;
4124 }
4125
4126 /* next */
4127 pRamPrev = pRam;
4128 pRam = pRam->pNextR3;
4129 }
4130 if (fRamExists)
4131 {
4132 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4133 uint32_t cPagesLeft = cPages;
4134 while (cPagesLeft-- > 0)
4135 {
4136 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4137 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4138 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4139 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4140 Assert(PGM_PAGE_IS_ZERO(pPage));
4141 pPage++;
4142 }
4143 }
4144
4145 /*
4146 * Update the base memory reservation if necessary.
4147 */
4148 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4149 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4150 cExtraBaseCost += cPages;
4151 if (cExtraBaseCost)
4152 {
4153 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4154 if (RT_FAILURE(rc))
4155 return rc;
4156 }
4157
4158 /*
4159 * Allocate memory for the virgin copy of the RAM.
4160 */
4161 PGMMALLOCATEPAGESREQ pReq;
4162 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4163 AssertRCReturn(rc, rc);
4164
4165 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4166 {
4167 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4168 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4169 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4170 }
4171
4172 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4173 if (RT_FAILURE(rc))
4174 {
4175 GMMR3AllocatePagesCleanup(pReq);
4176 return rc;
4177 }
4178
4179 /*
4180 * Allocate the new ROM range and RAM range (if necessary).
4181 */
4182 PPGMROMRANGE pRomNew;
4183 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4184 if (RT_SUCCESS(rc))
4185 {
4186 PPGMRAMRANGE pRamNew = NULL;
4187 if (!fRamExists)
4188 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4189 if (RT_SUCCESS(rc))
4190 {
4191 /*
4192 * Initialize and insert the RAM range (if required).
4193 */
4194 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4195 if (!fRamExists)
4196 {
4197 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4198 pRamNew->GCPhys = GCPhys;
4199 pRamNew->GCPhysLast = GCPhysLast;
4200 pRamNew->cb = cb;
4201 pRamNew->pszDesc = pszDesc;
4202 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4203 pRamNew->pvR3 = NULL;
4204 pRamNew->paLSPages = NULL;
4205
4206 PPGMPAGE pPage = &pRamNew->aPages[0];
4207 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4208 {
4209 PGM_PAGE_INIT(pPage,
4210 pReq->aPages[iPage].HCPhysGCPhys,
4211 pReq->aPages[iPage].idPage,
4212 PGMPAGETYPE_ROM,
4213 PGM_PAGE_STATE_ALLOCATED);
4214
4215 pRomPage->Virgin = *pPage;
4216 }
4217
4218 pVM->pgm.s.cAllPages += cPages;
4219 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4220 }
4221 else
4222 {
4223 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4224 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4225 {
4226 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
4227 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
4228 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4229 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
4230 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4231 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4232 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4233
4234 pRomPage->Virgin = *pPage;
4235 }
4236
4237 pRamNew = pRam;
4238
4239 pVM->pgm.s.cZeroPages -= cPages;
4240 }
4241 pVM->pgm.s.cPrivatePages += cPages;
4242
4243 /* Flush physical page map TLB. */
4244 pgmPhysInvalidatePageMapTLB(pVM);
4245
4246
4247 /* Notify NEM before we register handlers. */
4248 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4249 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4250 rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify);
4251
4252 /*
4253 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
4254 *
4255 * If it's shadowed we'll register the handler after the ROM notification
4256 * so we get the access handler callbacks that we should. If it isn't
4257 * shadowed we'll do it the other way around to make REM use the built-in
4258 * ROM behavior and not the handler behavior (which is to route all access
4259 * to PGM atm).
4260 */
4261 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4262 {
4263#ifdef VBOX_WITH_REM
4264 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
4265#endif
4266 if (RT_SUCCESS(rc))
4267 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4268 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
4269 pszDesc);
4270 }
4271 else
4272 {
4273 if (RT_SUCCESS(rc))
4274 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4275 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
4276 pszDesc);
4277#ifdef VBOX_WITH_REM
4278 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
4279#endif
4280 }
4281 if (RT_SUCCESS(rc))
4282 {
4283 /*
4284 * Copy the image over to the virgin pages.
4285 * This must be done after linking in the RAM range.
4286 */
4287 size_t cbBinaryLeft = cbBinary;
4288 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
4289 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4290 {
4291 void *pvDstPage;
4292 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4293 if (RT_FAILURE(rc))
4294 {
4295 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4296 break;
4297 }
4298 if (cbBinaryLeft >= PAGE_SIZE)
4299 {
4300 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4301 cbBinaryLeft -= PAGE_SIZE;
4302 }
4303 else
4304 {
4305 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4306 if (cbBinaryLeft > 0)
4307 {
4308 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4309 cbBinaryLeft = 0;
4310 }
4311 }
4312 }
4313 if (RT_SUCCESS(rc))
4314 {
4315 /*
4316 * Initialize the ROM range.
4317 * Note that the Virgin member of the pages has already been initialized above.
4318 */
4319 pRomNew->GCPhys = GCPhys;
4320 pRomNew->GCPhysLast = GCPhysLast;
4321 pRomNew->cb = cb;
4322 pRomNew->fFlags = fFlags;
4323 pRomNew->idSavedState = UINT8_MAX;
4324 pRomNew->cbOriginal = cbBinary;
4325 pRomNew->pszDesc = pszDesc;
4326 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4327 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4328 if (pRomNew->pvOriginal)
4329 {
4330 for (unsigned iPage = 0; iPage < cPages; iPage++)
4331 {
4332 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4333 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4334 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4335 }
4336
4337 /* update the page count stats for the shadow pages. */
4338 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4339 {
4340 pVM->pgm.s.cZeroPages += cPages;
4341 pVM->pgm.s.cAllPages += cPages;
4342 }
4343
4344 /*
4345 * Insert the ROM range, tell REM and return successfully.
4346 */
4347 pRomNew->pNextR3 = pRom;
4348 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4349
4350 if (pRomPrev)
4351 {
4352 pRomPrev->pNextR3 = pRomNew;
4353 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4354 }
4355 else
4356 {
4357 pVM->pgm.s.pRomRangesR3 = pRomNew;
4358 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4359 }
4360
4361 pgmPhysInvalidatePageMapTLB(pVM);
4362 GMMR3AllocatePagesCleanup(pReq);
4363
4364 /* Notify NEM again. */
4365 return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify);
4366 }
4367
4368 /* bail out */
4369 rc = VERR_NO_MEMORY;
4370 }
4371
4372 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4373 AssertRC(rc2);
4374 }
4375
4376 if (!fRamExists)
4377 {
4378 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4379 MMHyperFree(pVM, pRamNew);
4380 }
4381 }
4382 MMHyperFree(pVM, pRomNew);
4383 }
4384
4385 /** @todo Purge the mapping cache or something... */
4386 GMMR3FreeAllocatedPages(pVM, pReq);
4387 GMMR3AllocatePagesCleanup(pReq);
4388 return rc;
4389}
4390
4391
4392/**
4393 * Registers a ROM image.
4394 *
4395 * Shadowed ROM images requires double the amount of backing memory, so,
4396 * don't use that unless you have to. Shadowing of ROM images is process
4397 * where we can select where the reads go and where the writes go. On real
4398 * hardware the chipset provides means to configure this. We provide
4399 * PGMR3PhysProtectROM() for this purpose.
4400 *
4401 * A read-only copy of the ROM image will always be kept around while we
4402 * will allocate RAM pages for the changes on demand (unless all memory
4403 * is configured to be preallocated).
4404 *
4405 * @returns VBox status code.
4406 * @param pVM The cross context VM structure.
4407 * @param pDevIns The device instance owning the ROM.
4408 * @param GCPhys First physical address in the range.
4409 * Must be page aligned!
4410 * @param cb The size of the range (in bytes).
4411 * Must be page aligned!
4412 * @param pvBinary Pointer to the binary data backing the ROM image.
4413 * @param cbBinary The size of the binary data pvBinary points to.
4414 * This must be less or equal to @a cb.
4415 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4416 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4417 * @param pszDesc Pointer to description string. This must not be freed.
4418 *
4419 * @remark There is no way to remove the rom, automatically on device cleanup or
4420 * manually from the device yet. This isn't difficult in any way, it's
4421 * just not something we expect to be necessary for a while.
4422 */
4423VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4424 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
4425{
4426 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4427 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4428 pgmLock(pVM);
4429 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4430 pgmUnlock(pVM);
4431 return rc;
4432}
4433
4434
4435/**
4436 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4437 * that the virgin part is untouched.
4438 *
4439 * This is done after the normal memory has been cleared.
4440 *
4441 * ASSUMES that the caller owns the PGM lock.
4442 *
4443 * @param pVM The cross context VM structure.
4444 */
4445int pgmR3PhysRomReset(PVM pVM)
4446{
4447 PGM_LOCK_ASSERT_OWNER(pVM);
4448 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4449 {
4450 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4451
4452 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4453 {
4454 /*
4455 * Reset the physical handler.
4456 */
4457 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4458 AssertRCReturn(rc, rc);
4459
4460 /*
4461 * What we do with the shadow pages depends on the memory
4462 * preallocation option. If not enabled, we'll just throw
4463 * out all the dirty pages and replace them by the zero page.
4464 */
4465 if (!pVM->pgm.s.fRamPreAlloc)
4466 {
4467 /* Free the dirty pages. */
4468 uint32_t cPendingPages = 0;
4469 PGMMFREEPAGESREQ pReq;
4470 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4471 AssertRCReturn(rc, rc);
4472
4473 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4474 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4475 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4476 {
4477 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4478 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4479 pRom->GCPhys + (iPage << PAGE_SHIFT),
4480 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4481 AssertLogRelRCReturn(rc, rc);
4482 }
4483
4484 if (cPendingPages)
4485 {
4486 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4487 AssertLogRelRCReturn(rc, rc);
4488 }
4489 GMMR3FreePagesCleanup(pReq);
4490 }
4491 else
4492 {
4493 /* clear all the shadow pages. */
4494 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4495 {
4496 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4497 continue;
4498 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4499 void *pvDstPage;
4500 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4501 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4502 if (RT_FAILURE(rc))
4503 break;
4504 ASMMemZeroPage(pvDstPage);
4505 }
4506 AssertRCReturn(rc, rc);
4507 }
4508 }
4509
4510 /*
4511 * Restore the original ROM pages after a saved state load.
4512 * Also, in strict builds check that ROM pages remain unmodified.
4513 */
4514#ifndef VBOX_STRICT
4515 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4516#endif
4517 {
4518 size_t cbSrcLeft = pRom->cbOriginal;
4519 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4520 uint32_t cRestored = 0;
4521 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4522 {
4523 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4524 void const *pvDstPage;
4525 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
4526 if (RT_FAILURE(rc))
4527 break;
4528
4529 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4530 {
4531 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4532 {
4533 void *pvDstPageW;
4534 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
4535 AssertLogRelRCReturn(rc, rc);
4536 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4537 cRestored++;
4538 }
4539 else
4540 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4541 }
4542 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4543 }
4544 if (cRestored > 0)
4545 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4546 }
4547 }
4548
4549 /* Clear the ROM restore flag now as we only need to do this once after
4550 loading saved state. */
4551 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4552
4553 return VINF_SUCCESS;
4554}
4555
4556
4557/**
4558 * Called by PGMR3Term to free resources.
4559 *
4560 * ASSUMES that the caller owns the PGM lock.
4561 *
4562 * @param pVM The cross context VM structure.
4563 */
4564void pgmR3PhysRomTerm(PVM pVM)
4565{
4566 /*
4567 * Free the heap copy of the original bits.
4568 */
4569 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4570 {
4571 if ( pRom->pvOriginal
4572 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4573 {
4574 RTMemFree((void *)pRom->pvOriginal);
4575 pRom->pvOriginal = NULL;
4576 }
4577 }
4578}
4579
4580
4581/**
4582 * Change the shadowing of a range of ROM pages.
4583 *
4584 * This is intended for implementing chipset specific memory registers
4585 * and will not be very strict about the input. It will silently ignore
4586 * any pages that are not the part of a shadowed ROM.
4587 *
4588 * @returns VBox status code.
4589 * @retval VINF_PGM_SYNC_CR3
4590 *
4591 * @param pVM The cross context VM structure.
4592 * @param GCPhys Where to start. Page aligned.
4593 * @param cb How much to change. Page aligned.
4594 * @param enmProt The new ROM protection.
4595 */
4596VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4597{
4598 /*
4599 * Check input
4600 */
4601 if (!cb)
4602 return VINF_SUCCESS;
4603 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4604 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4605 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4606 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4607 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4608
4609 /*
4610 * Process the request.
4611 */
4612 pgmLock(pVM);
4613 int rc = VINF_SUCCESS;
4614 bool fFlushTLB = false;
4615 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4616 {
4617 if ( GCPhys <= pRom->GCPhysLast
4618 && GCPhysLast >= pRom->GCPhys
4619 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4620 {
4621 /*
4622 * Iterate the relevant pages and make necessary the changes.
4623 */
4624 bool fChanges = false;
4625 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4626 ? pRom->cb >> PAGE_SHIFT
4627 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4628 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4629 iPage < cPages;
4630 iPage++)
4631 {
4632 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4633 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
4634 {
4635 fChanges = true;
4636
4637 /* flush references to the page. */
4638 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
4639 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
4640 true /*fFlushPTEs*/, &fFlushTLB);
4641 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
4642 rc = rc2;
4643 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
4644
4645 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
4646 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
4647
4648 *pOld = *pRamPage;
4649 *pRamPage = *pNew;
4650 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
4651
4652 /* Tell NEM about the backing and protection change. */
4653 if (VM_IS_NEM_ENABLED(pVM))
4654 {
4655 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
4656 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
4657 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
4658 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
4659 }
4660 }
4661 pRomPage->enmProt = enmProt;
4662 }
4663
4664 /*
4665 * Reset the access handler if we made changes, no need
4666 * to optimize this.
4667 */
4668 if (fChanges)
4669 {
4670 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
4671 if (RT_FAILURE(rc2))
4672 {
4673 pgmUnlock(pVM);
4674 AssertRC(rc);
4675 return rc2;
4676 }
4677 }
4678
4679 /* Advance - cb isn't updated. */
4680 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
4681 }
4682 }
4683 pgmUnlock(pVM);
4684 if (fFlushTLB)
4685 PGM_INVL_ALL_VCPU_TLBS(pVM);
4686
4687 return rc;
4688}
4689
4690
4691/**
4692 * Sets the Address Gate 20 state.
4693 *
4694 * @param pVCpu The cross context virtual CPU structure.
4695 * @param fEnable True if the gate should be enabled.
4696 * False if the gate should be disabled.
4697 */
4698VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
4699{
4700 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
4701 if (pVCpu->pgm.s.fA20Enabled != fEnable)
4702 {
4703#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4704 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
4705 if ( CPUMIsGuestInVmxRootMode(pCtx)
4706 && !fEnable)
4707 {
4708 Log(("Cannot enter A20M mode while in VMX root mode\n"));
4709 return;
4710 }
4711#endif
4712 pVCpu->pgm.s.fA20Enabled = fEnable;
4713 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
4714#ifdef VBOX_WITH_REM
4715 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
4716#endif
4717 NEMR3NotifySetA20(pVCpu, fEnable);
4718#ifdef PGM_WITH_A20
4719 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4720 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
4721 HMFlushTlb(pVCpu);
4722#endif
4723 IEMTlbInvalidateAllPhysical(pVCpu);
4724 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
4725 }
4726}
4727
4728
4729/**
4730 * Tree enumeration callback for dealing with age rollover.
4731 * It will perform a simple compression of the current age.
4732 */
4733static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
4734{
4735 /* Age compression - ASSUMES iNow == 4. */
4736 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4737 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
4738 pChunk->iLastUsed = 3;
4739 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
4740 pChunk->iLastUsed = 2;
4741 else if (pChunk->iLastUsed)
4742 pChunk->iLastUsed = 1;
4743 else /* iLastUsed = 0 */
4744 pChunk->iLastUsed = 4;
4745
4746 NOREF(pvUser);
4747 return 0;
4748}
4749
4750
4751/**
4752 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
4753 */
4754typedef struct PGMR3PHYSCHUNKUNMAPCB
4755{
4756 PVM pVM; /**< Pointer to the VM. */
4757 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
4758} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
4759
4760
4761/**
4762 * Callback used to find the mapping that's been unused for
4763 * the longest time.
4764 */
4765static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
4766{
4767 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4768 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
4769
4770 /*
4771 * Check for locks and compare when last used.
4772 */
4773 if (pChunk->cRefs)
4774 return 0;
4775 if (pChunk->cPermRefs)
4776 return 0;
4777 if ( pArg->pChunk
4778 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
4779 return 0;
4780
4781 /*
4782 * Check that it's not in any of the TLBs.
4783 */
4784 PVM pVM = pArg->pVM;
4785 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
4786 == pChunk->Core.Key)
4787 {
4788 pChunk = NULL;
4789 return 0;
4790 }
4791#ifdef VBOX_STRICT
4792 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4793 {
4794 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
4795 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
4796 }
4797#endif
4798
4799 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR0.aEntries); i++)
4800 if (pVM->pgm.s.PhysTlbR0.aEntries[i].pMap == pChunk)
4801 return 0;
4802 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
4803 if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
4804 return 0;
4805
4806 pArg->pChunk = pChunk;
4807 return 0;
4808}
4809
4810
4811/**
4812 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
4813 *
4814 * The candidate will not be part of any TLBs, so no need to flush
4815 * anything afterwards.
4816 *
4817 * @returns Chunk id.
4818 * @param pVM The cross context VM structure.
4819 */
4820static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
4821{
4822 PGM_LOCK_ASSERT_OWNER(pVM);
4823
4824 /*
4825 * Enumerate the age tree starting with the left most node.
4826 */
4827 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4828 PGMR3PHYSCHUNKUNMAPCB Args;
4829 Args.pVM = pVM;
4830 Args.pChunk = NULL;
4831 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
4832 Assert(Args.pChunk);
4833 if (Args.pChunk)
4834 {
4835 Assert(Args.pChunk->cRefs == 0);
4836 Assert(Args.pChunk->cPermRefs == 0);
4837 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4838 return Args.pChunk->Core.Key;
4839 }
4840
4841 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4842 return INT32_MAX;
4843}
4844
4845
4846/**
4847 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
4848 *
4849 * This is only called on one of the EMTs while the other ones are waiting for
4850 * it to complete this function.
4851 *
4852 * @returns VINF_SUCCESS (VBox strict status code).
4853 * @param pVM The cross context VM structure.
4854 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
4855 * @param pvUser User pointer. Unused
4856 *
4857 */
4858static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
4859{
4860 int rc = VINF_SUCCESS;
4861 pgmLock(pVM);
4862 NOREF(pVCpu); NOREF(pvUser);
4863
4864 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
4865 {
4866 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
4867 /** @todo also not really efficient to unmap a chunk that contains PD
4868 * or PT pages. */
4869 pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
4870
4871 /*
4872 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
4873 */
4874 GMMMAPUNMAPCHUNKREQ Req;
4875 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4876 Req.Hdr.cbReq = sizeof(Req);
4877 Req.pvR3 = NULL;
4878 Req.idChunkMap = NIL_GMM_CHUNKID;
4879 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
4880 if (Req.idChunkUnmap != INT32_MAX)
4881 {
4882 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4883 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4884 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4885 if (RT_SUCCESS(rc))
4886 {
4887 /*
4888 * Remove the unmapped one.
4889 */
4890 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
4891 AssertRelease(pUnmappedChunk);
4892 AssertRelease(!pUnmappedChunk->cRefs);
4893 AssertRelease(!pUnmappedChunk->cPermRefs);
4894 pUnmappedChunk->pv = NULL;
4895 pUnmappedChunk->Core.Key = UINT32_MAX;
4896#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4897 MMR3HeapFree(pUnmappedChunk);
4898#else
4899 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
4900#endif
4901 pVM->pgm.s.ChunkR3Map.c--;
4902 pVM->pgm.s.cUnmappedChunks++;
4903
4904 /*
4905 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
4906 */
4907 /** @todo We should not flush chunks which include cr3 mappings. */
4908 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4909 {
4910 PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
4911
4912 pPGM->pGst32BitPdR3 = NULL;
4913 pPGM->pGstPaePdptR3 = NULL;
4914 pPGM->pGstAmd64Pml4R3 = NULL;
4915#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4916 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
4917 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
4918 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
4919#endif
4920 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
4921 {
4922 pPGM->apGstPaePDsR3[i] = NULL;
4923#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4924 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
4925#endif
4926 }
4927
4928 /* Flush REM TLBs. */
4929 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
4930 }
4931#ifdef VBOX_WITH_REM
4932 /* Flush REM translation blocks. */
4933 REMFlushTBs(pVM);
4934#endif
4935 }
4936 }
4937 }
4938 pgmUnlock(pVM);
4939 return rc;
4940}
4941
4942/**
4943 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
4944 *
4945 * @returns VBox status code.
4946 * @param pVM The cross context VM structure.
4947 */
4948void pgmR3PhysUnmapChunk(PVM pVM)
4949{
4950 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
4951 AssertRC(rc);
4952}
4953
4954
4955/**
4956 * Maps the given chunk into the ring-3 mapping cache.
4957 *
4958 * This will call ring-0.
4959 *
4960 * @returns VBox status code.
4961 * @param pVM The cross context VM structure.
4962 * @param idChunk The chunk in question.
4963 * @param ppChunk Where to store the chunk tracking structure.
4964 *
4965 * @remarks Called from within the PGM critical section.
4966 * @remarks Can be called from any thread!
4967 */
4968int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
4969{
4970 int rc;
4971
4972 PGM_LOCK_ASSERT_OWNER(pVM);
4973
4974 /*
4975 * Move the chunk time forward.
4976 */
4977 pVM->pgm.s.ChunkR3Map.iNow++;
4978 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
4979 {
4980 pVM->pgm.s.ChunkR3Map.iNow = 4;
4981 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
4982 }
4983
4984 /*
4985 * Allocate a new tracking structure first.
4986 */
4987#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4988 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
4989#else
4990 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
4991#endif
4992 AssertReturn(pChunk, VERR_NO_MEMORY);
4993 pChunk->Core.Key = idChunk;
4994 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
4995
4996 /*
4997 * Request the ring-0 part to map the chunk in question.
4998 */
4999 GMMMAPUNMAPCHUNKREQ Req;
5000 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5001 Req.Hdr.cbReq = sizeof(Req);
5002 Req.pvR3 = NULL;
5003 Req.idChunkMap = idChunk;
5004 Req.idChunkUnmap = NIL_GMM_CHUNKID;
5005
5006 /* Must be callable from any thread, so can't use VMMR3CallR0. */
5007 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
5008 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5009 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
5010 if (RT_SUCCESS(rc))
5011 {
5012 pChunk->pv = Req.pvR3;
5013
5014 /*
5015 * If we're running out of virtual address space, then we should
5016 * unmap another chunk.
5017 *
5018 * Currently, an unmap operation requires that all other virtual CPUs
5019 * are idling and not by chance making use of the memory we're
5020 * unmapping. So, we create an async unmap operation here.
5021 *
5022 * Now, when creating or restoring a saved state this wont work very
5023 * well since we may want to restore all guest RAM + a little something.
5024 * So, we have to do the unmap synchronously. Fortunately for us
5025 * though, during these operations the other virtual CPUs are inactive
5026 * and it should be safe to do this.
5027 */
5028 /** @todo Eventually we should lock all memory when used and do
5029 * map+unmap as one kernel call without any rendezvous or
5030 * other precautions. */
5031 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
5032 {
5033 switch (VMR3GetState(pVM))
5034 {
5035 case VMSTATE_LOADING:
5036 case VMSTATE_SAVING:
5037 {
5038 PVMCPU pVCpu = VMMGetCpu(pVM);
5039 if ( pVCpu
5040 && pVM->pgm.s.cDeprecatedPageLocks == 0)
5041 {
5042 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
5043 break;
5044 }
5045 }
5046 RT_FALL_THRU();
5047 default:
5048 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
5049 AssertRC(rc);
5050 break;
5051 }
5052 }
5053
5054 /*
5055 * Update the tree. We must do this after any unmapping to make sure
5056 * the chunk we're going to return isn't unmapped by accident.
5057 */
5058 AssertPtr(Req.pvR3);
5059 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
5060 AssertRelease(fRc);
5061 pVM->pgm.s.ChunkR3Map.c++;
5062 pVM->pgm.s.cMappedChunks++;
5063 }
5064 else
5065 {
5066 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
5067 * should probably restrict ourselves on linux. */
5068 AssertRC(rc);
5069#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
5070 MMR3HeapFree(pChunk);
5071#else
5072 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
5073#endif
5074 pChunk = NULL;
5075 }
5076
5077 *ppChunk = pChunk;
5078 return rc;
5079}
5080
5081
5082/**
5083 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
5084 *
5085 * @returns see pgmR3PhysChunkMap.
5086 * @param pVM The cross context VM structure.
5087 * @param idChunk The chunk to map.
5088 */
5089VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
5090{
5091 PPGMCHUNKR3MAP pChunk;
5092 int rc;
5093
5094 pgmLock(pVM);
5095 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
5096 pgmUnlock(pVM);
5097 return rc;
5098}
5099
5100
5101/**
5102 * Invalidates the TLB for the ring-3 mapping cache.
5103 *
5104 * @param pVM The cross context VM structure.
5105 */
5106VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
5107{
5108 pgmLock(pVM);
5109 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5110 {
5111 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
5112 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
5113 }
5114 /* The page map TLB references chunks, so invalidate that one too. */
5115 pgmPhysInvalidatePageMapTLB(pVM);
5116 pgmUnlock(pVM);
5117}
5118
5119
5120/**
5121 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
5122 * (2MB) page for use with a nested paging PDE.
5123 *
5124 * @returns The following VBox status codes.
5125 * @retval VINF_SUCCESS on success.
5126 * @retval VINF_EM_NO_MEMORY if we're out of memory.
5127 *
5128 * @param pVM The cross context VM structure.
5129 * @param GCPhys GC physical start address of the 2 MB range
5130 */
5131VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
5132{
5133#ifdef PGM_WITH_LARGE_PAGES
5134 uint64_t u64TimeStamp1, u64TimeStamp2;
5135
5136 pgmLock(pVM);
5137
5138 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
5139 u64TimeStamp1 = RTTimeMilliTS();
5140 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
5141 u64TimeStamp2 = RTTimeMilliTS();
5142 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
5143 if (RT_SUCCESS(rc))
5144 {
5145 Assert(pVM->pgm.s.cLargeHandyPages == 1);
5146
5147 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
5148 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
5149
5150 void *pv;
5151
5152 /* Map the large page into our address space.
5153 *
5154 * Note: assuming that within the 2 MB range:
5155 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
5156 * - user space mapping is continuous as well
5157 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
5158 */
5159 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
5160 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
5161
5162 if (RT_SUCCESS(rc))
5163 {
5164 /*
5165 * Clear the pages.
5166 */
5167 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5168 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
5169 {
5170 ASMMemZeroPage(pv);
5171
5172 PPGMPAGE pPage;
5173 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
5174 AssertRC(rc);
5175
5176 Assert(PGM_PAGE_IS_ZERO(pPage));
5177 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
5178 pVM->pgm.s.cZeroPages--;
5179
5180 /*
5181 * Do the PGMPAGE modifications.
5182 */
5183 pVM->pgm.s.cPrivatePages++;
5184 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
5185 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
5186 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
5187 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
5188 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5189 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5190
5191 /* Somewhat dirty assumption that page ids are increasing. */
5192 idPage++;
5193
5194 HCPhys += PAGE_SIZE;
5195 GCPhys += PAGE_SIZE;
5196
5197 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
5198
5199 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
5200 }
5201 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5202
5203 /* Flush all TLBs. */
5204 PGM_INVL_ALL_VCPU_TLBS(pVM);
5205 pgmPhysInvalidatePageMapTLB(pVM);
5206 }
5207 pVM->pgm.s.cLargeHandyPages = 0;
5208 }
5209
5210 if (RT_SUCCESS(rc))
5211 {
5212 static uint32_t cTimeOut = 0;
5213 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
5214
5215 if (u64TimeStampDelta > 100)
5216 {
5217 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
5218 if ( ++cTimeOut > 10
5219 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
5220 {
5221 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
5222 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
5223 */
5224 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
5225 PGMSetLargePageUsage(pVM, false);
5226 }
5227 }
5228 else
5229 if (cTimeOut > 0)
5230 cTimeOut--;
5231 }
5232
5233 pgmUnlock(pVM);
5234 return rc;
5235#else
5236 RT_NOREF(pVM, GCPhys);
5237 return VERR_NOT_IMPLEMENTED;
5238#endif /* PGM_WITH_LARGE_PAGES */
5239}
5240
5241
5242/**
5243 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
5244 *
5245 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5246 * signal and clear the out of memory condition. When contracted, this API is
5247 * used to try clear the condition when the user wants to resume.
5248 *
5249 * @returns The following VBox status codes.
5250 * @retval VINF_SUCCESS on success. FFs cleared.
5251 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5252 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5253 *
5254 * @param pVM The cross context VM structure.
5255 *
5256 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5257 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5258 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5259 * handler.
5260 */
5261VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5262{
5263 pgmLock(pVM);
5264
5265 /*
5266 * Allocate more pages, noting down the index of the first new page.
5267 */
5268 uint32_t iClear = pVM->pgm.s.cHandyPages;
5269 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5270 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5271 int rcAlloc = VINF_SUCCESS;
5272 int rcSeed = VINF_SUCCESS;
5273 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5274 while (rc == VERR_GMM_SEED_ME)
5275 {
5276 void *pvChunk;
5277 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
5278 if (RT_SUCCESS(rc))
5279 {
5280 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
5281 if (RT_FAILURE(rc))
5282 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
5283 }
5284 if (RT_SUCCESS(rc))
5285 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5286 }
5287
5288 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5289 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5290 && pVM->pgm.s.cHandyPages > 0)
5291 {
5292 /* Still handy pages left, so don't panic. */
5293 rc = VINF_SUCCESS;
5294 }
5295
5296 if (RT_SUCCESS(rc))
5297 {
5298 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5299 Assert(pVM->pgm.s.cHandyPages > 0);
5300 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5301 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
5302
5303#ifdef VBOX_STRICT
5304 uint32_t i;
5305 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5306 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5307 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5308 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5309 break;
5310 if (i != pVM->pgm.s.cHandyPages)
5311 {
5312 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5313 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5314 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5315 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
5316 pVM->pgm.s.aHandyPages[j].idPage,
5317 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5318 pVM->pgm.s.aHandyPages[j].idSharedPage,
5319 j == i ? " <---" : "");
5320 RTAssertPanic();
5321 }
5322#endif
5323 /*
5324 * Clear the pages.
5325 */
5326 while (iClear < pVM->pgm.s.cHandyPages)
5327 {
5328 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
5329 void *pv;
5330 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
5331 AssertLogRelMsgBreak(RT_SUCCESS(rc),
5332 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
5333 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
5334 ASMMemZeroPage(pv);
5335 iClear++;
5336 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
5337 }
5338 }
5339 else
5340 {
5341 uint64_t cAllocPages, cMaxPages, cBalloonPages;
5342
5343 /*
5344 * We should never get here unless there is a genuine shortage of
5345 * memory (or some internal error). Flag the error so the VM can be
5346 * suspended ASAP and the user informed. If we're totally out of
5347 * handy pages we will return failure.
5348 */
5349 /* Report the failure. */
5350 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
5351 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5352 rc, rcAlloc, rcSeed,
5353 pVM->pgm.s.cHandyPages,
5354 pVM->pgm.s.cAllPages,
5355 pVM->pgm.s.cPrivatePages,
5356 pVM->pgm.s.cSharedPages,
5357 pVM->pgm.s.cZeroPages));
5358
5359 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
5360 {
5361 LogRel(("GMM: Statistics:\n"
5362 " Allocated pages: %RX64\n"
5363 " Maximum pages: %RX64\n"
5364 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
5365 }
5366
5367 if ( rc != VERR_NO_MEMORY
5368 && rc != VERR_NO_PHYS_MEMORY
5369 && rc != VERR_LOCK_FAILED)
5370 {
5371 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5372 {
5373 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5374 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5375 pVM->pgm.s.aHandyPages[i].idSharedPage));
5376 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5377 if (idPage != NIL_GMM_PAGEID)
5378 {
5379 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5380 pRam;
5381 pRam = pRam->pNextR3)
5382 {
5383 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5384 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5385 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5386 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5387 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5388 }
5389 }
5390 }
5391 }
5392
5393 if (rc == VERR_NO_MEMORY)
5394 {
5395 uint64_t cbHostRamAvail = 0;
5396 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5397 if (RT_SUCCESS(rc2))
5398 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5399 else
5400 LogRel(("Cannot determine the amount of available host memory\n"));
5401 }
5402
5403 /* Set the FFs and adjust rc. */
5404 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5405 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5406 if ( rc == VERR_NO_MEMORY
5407 || rc == VERR_NO_PHYS_MEMORY
5408 || rc == VERR_LOCK_FAILED)
5409 rc = VINF_EM_NO_MEMORY;
5410 }
5411
5412 pgmUnlock(pVM);
5413 return rc;
5414}
5415
5416
5417/**
5418 * Frees the specified RAM page and replaces it with the ZERO page.
5419 *
5420 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
5421 *
5422 * @param pVM The cross context VM structure.
5423 * @param pReq Pointer to the request.
5424 * @param pcPendingPages Where the number of pages waiting to be freed are
5425 * kept. This will normally be incremented.
5426 * @param pPage Pointer to the page structure.
5427 * @param GCPhys The guest physical address of the page, if applicable.
5428 * @param enmNewType New page type for NEM notification, since several
5429 * callers will change the type upon successful return.
5430 *
5431 * @remarks The caller must own the PGM lock.
5432 */
5433int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
5434 PGMPAGETYPE enmNewType)
5435{
5436 /*
5437 * Assert sanity.
5438 */
5439 PGM_LOCK_ASSERT_OWNER(pVM);
5440 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
5441 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
5442 {
5443 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5444 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
5445 }
5446
5447 /** @todo What about ballooning of large pages??! */
5448 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
5449 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
5450
5451 if ( PGM_PAGE_IS_ZERO(pPage)
5452 || PGM_PAGE_IS_BALLOONED(pPage))
5453 return VINF_SUCCESS;
5454
5455 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
5456 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
5457 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
5458 || idPage > GMM_PAGEID_LAST
5459 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
5460 {
5461 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5462 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
5463 }
5464 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
5465
5466 /* update page count stats. */
5467 if (PGM_PAGE_IS_SHARED(pPage))
5468 pVM->pgm.s.cSharedPages--;
5469 else
5470 pVM->pgm.s.cPrivatePages--;
5471 pVM->pgm.s.cZeroPages++;
5472
5473 /* Deal with write monitored pages. */
5474 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
5475 {
5476 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
5477 pVM->pgm.s.cWrittenToPages++;
5478 }
5479
5480 /*
5481 * pPage = ZERO page.
5482 */
5483 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
5484 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5485 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
5486 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
5487 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5488 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5489
5490 /* Flush physical page map TLB entry. */
5491 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
5492
5493 /* Notify NEM. */
5494 /** @todo consider doing batch NEM notifications. */
5495 if (VM_IS_NEM_ENABLED(pVM))
5496 {
5497 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
5498 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg,
5499 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
5500 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
5501 }
5502
5503 /*
5504 * Make sure it's not in the handy page array.
5505 */
5506 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5507 {
5508 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
5509 {
5510 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
5511 break;
5512 }
5513 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
5514 {
5515 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
5516 break;
5517 }
5518 }
5519
5520 /*
5521 * Push it onto the page array.
5522 */
5523 uint32_t iPage = *pcPendingPages;
5524 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
5525 *pcPendingPages += 1;
5526
5527 pReq->aPages[iPage].idPage = idPage;
5528
5529 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
5530 return VINF_SUCCESS;
5531
5532 /*
5533 * Flush the pages.
5534 */
5535 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
5536 if (RT_SUCCESS(rc))
5537 {
5538 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5539 *pcPendingPages = 0;
5540 }
5541 return rc;
5542}
5543
5544
5545/**
5546 * Converts a GC physical address to a HC ring-3 pointer, with some
5547 * additional checks.
5548 *
5549 * @returns VBox status code.
5550 * @retval VINF_SUCCESS on success.
5551 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
5552 * access handler of some kind.
5553 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
5554 * accesses or is odd in any way.
5555 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
5556 *
5557 * @param pVM The cross context VM structure.
5558 * @param GCPhys The GC physical address to convert. Since this is only
5559 * used for filling the REM TLB, the A20 mask must be
5560 * applied before calling this API.
5561 * @param fWritable Whether write access is required.
5562 * @param ppv Where to store the pointer corresponding to GCPhys on
5563 * success.
5564 */
5565VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
5566{
5567 pgmLock(pVM);
5568 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
5569
5570 PPGMRAMRANGE pRam;
5571 PPGMPAGE pPage;
5572 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
5573 if (RT_SUCCESS(rc))
5574 {
5575 if (PGM_PAGE_IS_BALLOONED(pPage))
5576 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5577 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
5578 rc = VINF_SUCCESS;
5579 else
5580 {
5581 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
5582 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5583 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
5584 {
5585 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
5586 * in -norawr0 mode. */
5587 if (fWritable)
5588 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5589 }
5590 else
5591 {
5592 /* Temporarily disabled physical handler(s), since the recompiler
5593 doesn't get notified when it's reset we'll have to pretend it's
5594 operating normally. */
5595 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
5596 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5597 else
5598 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5599 }
5600 }
5601 if (RT_SUCCESS(rc))
5602 {
5603 int rc2;
5604
5605 /* Make sure what we return is writable. */
5606 if (fWritable)
5607 switch (PGM_PAGE_GET_STATE(pPage))
5608 {
5609 case PGM_PAGE_STATE_ALLOCATED:
5610 break;
5611 case PGM_PAGE_STATE_BALLOONED:
5612 AssertFailed();
5613 break;
5614 case PGM_PAGE_STATE_ZERO:
5615 case PGM_PAGE_STATE_SHARED:
5616 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
5617 break;
5618 RT_FALL_THRU();
5619 case PGM_PAGE_STATE_WRITE_MONITORED:
5620 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
5621 AssertLogRelRCReturn(rc2, rc2);
5622 break;
5623 }
5624
5625 /* Get a ring-3 mapping of the address. */
5626 PPGMPAGER3MAPTLBE pTlbe;
5627 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
5628 AssertLogRelRCReturn(rc2, rc2);
5629 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
5630 /** @todo mapping/locking hell; this isn't horribly efficient since
5631 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
5632
5633 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
5634 }
5635 else
5636 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
5637
5638 /* else: handler catching all access, no pointer returned. */
5639 }
5640 else
5641 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
5642
5643 pgmUnlock(pVM);
5644 return rc;
5645}
5646
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette