VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 82659

Last change on this file since 82659 was 82591, checked in by vboxsync, 5 years ago

VMM: Changing how we access guest RAM when in ring-0 (disabled). bugref:9627

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 199.4 KB
Line 
1/* $Id: PGMPhys.cpp 82591 2019-12-16 17:55:40Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/iem.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/mm.h>
27#include <VBox/vmm/nem.h>
28#include <VBox/vmm/stam.h>
29#include <VBox/vmm/pdmdev.h>
30#include "PGMInternal.h"
31#include <VBox/vmm/vmcc.h>
32
33#include "PGMInline.h"
34
35#include <VBox/sup.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/alloc.h>
41#include <iprt/asm.h>
42#ifdef VBOX_STRICT
43# include <iprt/crc.h>
44#endif
45#include <iprt/thread.h>
46#include <iprt/string.h>
47#include <iprt/system.h>
48
49
50/*********************************************************************************************************************************
51* Defined Constants And Macros *
52*********************************************************************************************************************************/
53/** The number of pages to free in one batch. */
54#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
55
56
57/*
58 * PGMR3PhysReadU8-64
59 * PGMR3PhysWriteU8-64
60 */
61#define PGMPHYSFN_READNAME PGMR3PhysReadU8
62#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
63#define PGMPHYS_DATASIZE 1
64#define PGMPHYS_DATATYPE uint8_t
65#include "PGMPhysRWTmpl.h"
66
67#define PGMPHYSFN_READNAME PGMR3PhysReadU16
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
69#define PGMPHYS_DATASIZE 2
70#define PGMPHYS_DATATYPE uint16_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU32
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
75#define PGMPHYS_DATASIZE 4
76#define PGMPHYS_DATATYPE uint32_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU64
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
81#define PGMPHYS_DATASIZE 8
82#define PGMPHYS_DATATYPE uint64_t
83#include "PGMPhysRWTmpl.h"
84
85
86/**
87 * EMT worker for PGMR3PhysReadExternal.
88 */
89static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
90 PGMACCESSORIGIN enmOrigin)
91{
92 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
93 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
94 return VINF_SUCCESS;
95}
96
97
98/**
99 * Read from physical memory, external users.
100 *
101 * @returns VBox status code.
102 * @retval VINF_SUCCESS.
103 *
104 * @param pVM The cross context VM structure.
105 * @param GCPhys Physical address to read from.
106 * @param pvBuf Where to read into.
107 * @param cbRead How many bytes to read.
108 * @param enmOrigin Who is calling.
109 *
110 * @thread Any but EMTs.
111 */
112VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
113{
114 VM_ASSERT_OTHER_THREAD(pVM);
115
116 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
117 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
118
119 pgmLock(pVM);
120
121 /*
122 * Copy loop on ram ranges.
123 */
124 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
125 for (;;)
126 {
127 /* Inside range or not? */
128 if (pRam && GCPhys >= pRam->GCPhys)
129 {
130 /*
131 * Must work our way thru this page by page.
132 */
133 RTGCPHYS off = GCPhys - pRam->GCPhys;
134 while (off < pRam->cb)
135 {
136 unsigned iPage = off >> PAGE_SHIFT;
137 PPGMPAGE pPage = &pRam->aPages[iPage];
138
139 /*
140 * If the page has an ALL access handler, we'll have to
141 * delegate the job to EMT.
142 */
143 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
144 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
145 {
146 pgmUnlock(pVM);
147
148 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
149 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
150 }
151 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
152
153 /*
154 * Simple stuff, go ahead.
155 */
156 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
157 if (cb > cbRead)
158 cb = cbRead;
159 PGMPAGEMAPLOCK PgMpLck;
160 const void *pvSrc;
161 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
162 if (RT_SUCCESS(rc))
163 {
164 memcpy(pvBuf, pvSrc, cb);
165 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
166 }
167 else
168 {
169 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
170 pRam->GCPhys + off, pPage, rc));
171 memset(pvBuf, 0xff, cb);
172 }
173
174 /* next page */
175 if (cb >= cbRead)
176 {
177 pgmUnlock(pVM);
178 return VINF_SUCCESS;
179 }
180 cbRead -= cb;
181 off += cb;
182 GCPhys += cb;
183 pvBuf = (char *)pvBuf + cb;
184 } /* walk pages in ram range. */
185 }
186 else
187 {
188 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
189
190 /*
191 * Unassigned address space.
192 */
193 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
194 if (cb >= cbRead)
195 {
196 memset(pvBuf, 0xff, cbRead);
197 break;
198 }
199 memset(pvBuf, 0xff, cb);
200
201 cbRead -= cb;
202 pvBuf = (char *)pvBuf + cb;
203 GCPhys += cb;
204 }
205
206 /* Advance range if necessary. */
207 while (pRam && GCPhys > pRam->GCPhysLast)
208 pRam = pRam->CTX_SUFF(pNext);
209 } /* Ram range walk */
210
211 pgmUnlock(pVM);
212
213 return VINF_SUCCESS;
214}
215
216
217/**
218 * EMT worker for PGMR3PhysWriteExternal.
219 */
220static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
221 PGMACCESSORIGIN enmOrigin)
222{
223 /** @todo VERR_EM_NO_MEMORY */
224 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
225 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
226 return VINF_SUCCESS;
227}
228
229
230/**
231 * Write to physical memory, external users.
232 *
233 * @returns VBox status code.
234 * @retval VINF_SUCCESS.
235 * @retval VERR_EM_NO_MEMORY.
236 *
237 * @param pVM The cross context VM structure.
238 * @param GCPhys Physical address to write to.
239 * @param pvBuf What to write.
240 * @param cbWrite How many bytes to write.
241 * @param enmOrigin Who is calling.
242 *
243 * @thread Any but EMTs.
244 */
245VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
246{
247 VM_ASSERT_OTHER_THREAD(pVM);
248
249 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
250 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
251 GCPhys, cbWrite, enmOrigin));
252 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
253 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
254
255 pgmLock(pVM);
256
257 /*
258 * Copy loop on ram ranges, stop when we hit something difficult.
259 */
260 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
261 for (;;)
262 {
263 /* Inside range or not? */
264 if (pRam && GCPhys >= pRam->GCPhys)
265 {
266 /*
267 * Must work our way thru this page by page.
268 */
269 RTGCPTR off = GCPhys - pRam->GCPhys;
270 while (off < pRam->cb)
271 {
272 RTGCPTR iPage = off >> PAGE_SHIFT;
273 PPGMPAGE pPage = &pRam->aPages[iPage];
274
275 /*
276 * Is the page problematic, we have to do the work on the EMT.
277 *
278 * Allocating writable pages and access handlers are
279 * problematic, write monitored pages are simple and can be
280 * dealt with here.
281 */
282 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
283 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
284 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
285 {
286 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
287 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
288 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
289 else
290 {
291 pgmUnlock(pVM);
292
293 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
294 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
295 }
296 }
297 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
298
299 /*
300 * Simple stuff, go ahead.
301 */
302 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
303 if (cb > cbWrite)
304 cb = cbWrite;
305 PGMPAGEMAPLOCK PgMpLck;
306 void *pvDst;
307 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
308 if (RT_SUCCESS(rc))
309 {
310 memcpy(pvDst, pvBuf, cb);
311 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
312 }
313 else
314 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
315 pRam->GCPhys + off, pPage, rc));
316
317 /* next page */
318 if (cb >= cbWrite)
319 {
320 pgmUnlock(pVM);
321 return VINF_SUCCESS;
322 }
323
324 cbWrite -= cb;
325 off += cb;
326 GCPhys += cb;
327 pvBuf = (const char *)pvBuf + cb;
328 } /* walk pages in ram range */
329 }
330 else
331 {
332 /*
333 * Unassigned address space, skip it.
334 */
335 if (!pRam)
336 break;
337 size_t cb = pRam->GCPhys - GCPhys;
338 if (cb >= cbWrite)
339 break;
340 cbWrite -= cb;
341 pvBuf = (const char *)pvBuf + cb;
342 GCPhys += cb;
343 }
344
345 /* Advance range if necessary. */
346 while (pRam && GCPhys > pRam->GCPhysLast)
347 pRam = pRam->CTX_SUFF(pNext);
348 } /* Ram range walk */
349
350 pgmUnlock(pVM);
351 return VINF_SUCCESS;
352}
353
354
355/**
356 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
357 *
358 * @returns see PGMR3PhysGCPhys2CCPtrExternal
359 * @param pVM The cross context VM structure.
360 * @param pGCPhys Pointer to the guest physical address.
361 * @param ppv Where to store the mapping address.
362 * @param pLock Where to store the lock.
363 */
364static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
365{
366 /*
367 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
368 * an access handler after it succeeds.
369 */
370 int rc = pgmLock(pVM);
371 AssertRCReturn(rc, rc);
372
373 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
374 if (RT_SUCCESS(rc))
375 {
376 PPGMPAGEMAPTLBE pTlbe;
377 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
378 AssertFatalRC(rc2);
379 PPGMPAGE pPage = pTlbe->pPage;
380 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
381 {
382 PGMPhysReleasePageMappingLock(pVM, pLock);
383 rc = VERR_PGM_PHYS_PAGE_RESERVED;
384 }
385 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
386#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
387 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
388#endif
389 )
390 {
391 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
392 * not be informed about writes and keep bogus gst->shw mappings around.
393 */
394 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
395 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
396 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
397 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
398 }
399 }
400
401 pgmUnlock(pVM);
402 return rc;
403}
404
405
406/**
407 * Requests the mapping of a guest page into ring-3, external threads.
408 *
409 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
410 * release it.
411 *
412 * This API will assume your intention is to write to the page, and will
413 * therefore replace shared and zero pages. If you do not intend to modify the
414 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
415 *
416 * @returns VBox status code.
417 * @retval VINF_SUCCESS on success.
418 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
419 * backing or if the page has any active access handlers. The caller
420 * must fall back on using PGMR3PhysWriteExternal.
421 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
422 *
423 * @param pVM The cross context VM structure.
424 * @param GCPhys The guest physical address of the page that should be mapped.
425 * @param ppv Where to store the address corresponding to GCPhys.
426 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
427 *
428 * @remark Avoid calling this API from within critical sections (other than the
429 * PGM one) because of the deadlock risk when we have to delegating the
430 * task to an EMT.
431 * @thread Any.
432 */
433VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
434{
435 AssertPtr(ppv);
436 AssertPtr(pLock);
437
438 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
439
440 int rc = pgmLock(pVM);
441 AssertRCReturn(rc, rc);
442
443 /*
444 * Query the Physical TLB entry for the page (may fail).
445 */
446 PPGMPAGEMAPTLBE pTlbe;
447 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
448 if (RT_SUCCESS(rc))
449 {
450 PPGMPAGE pPage = pTlbe->pPage;
451 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
452 rc = VERR_PGM_PHYS_PAGE_RESERVED;
453 else
454 {
455 /*
456 * If the page is shared, the zero page, or being write monitored
457 * it must be converted to an page that's writable if possible.
458 * We can only deal with write monitored pages here, the rest have
459 * to be on an EMT.
460 */
461 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
462 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
463#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
464 || pgmPoolIsDirtyPage(pVM, GCPhys)
465#endif
466 )
467 {
468 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
469 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
470#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
471 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
472#endif
473 )
474 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
475 else
476 {
477 pgmUnlock(pVM);
478
479 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
480 pVM, &GCPhys, ppv, pLock);
481 }
482 }
483
484 /*
485 * Now, just perform the locking and calculate the return address.
486 */
487 PPGMPAGEMAP pMap = pTlbe->pMap;
488 if (pMap)
489 pMap->cRefs++;
490
491 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
492 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
493 {
494 if (cLocks == 0)
495 pVM->pgm.s.cWriteLockedPages++;
496 PGM_PAGE_INC_WRITE_LOCKS(pPage);
497 }
498 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
499 {
500 PGM_PAGE_INC_WRITE_LOCKS(pPage);
501 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
502 if (pMap)
503 pMap->cRefs++; /* Extra ref to prevent it from going away. */
504 }
505
506 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
507 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
508 pLock->pvMap = pMap;
509 }
510 }
511
512 pgmUnlock(pVM);
513 return rc;
514}
515
516
517/**
518 * Requests the mapping of a guest page into ring-3, external threads.
519 *
520 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
521 * release it.
522 *
523 * @returns VBox status code.
524 * @retval VINF_SUCCESS on success.
525 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
526 * backing or if the page as an active ALL access handler. The caller
527 * must fall back on using PGMPhysRead.
528 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
529 *
530 * @param pVM The cross context VM structure.
531 * @param GCPhys The guest physical address of the page that should be mapped.
532 * @param ppv Where to store the address corresponding to GCPhys.
533 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
534 *
535 * @remark Avoid calling this API from within critical sections (other than
536 * the PGM one) because of the deadlock risk.
537 * @thread Any.
538 */
539VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
540{
541 int rc = pgmLock(pVM);
542 AssertRCReturn(rc, rc);
543
544 /*
545 * Query the Physical TLB entry for the page (may fail).
546 */
547 PPGMPAGEMAPTLBE pTlbe;
548 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
549 if (RT_SUCCESS(rc))
550 {
551 PPGMPAGE pPage = pTlbe->pPage;
552#if 1
553 /* MMIO pages doesn't have any readable backing. */
554 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
555 rc = VERR_PGM_PHYS_PAGE_RESERVED;
556#else
557 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
558 rc = VERR_PGM_PHYS_PAGE_RESERVED;
559#endif
560 else
561 {
562 /*
563 * Now, just perform the locking and calculate the return address.
564 */
565 PPGMPAGEMAP pMap = pTlbe->pMap;
566 if (pMap)
567 pMap->cRefs++;
568
569 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
570 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
571 {
572 if (cLocks == 0)
573 pVM->pgm.s.cReadLockedPages++;
574 PGM_PAGE_INC_READ_LOCKS(pPage);
575 }
576 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
577 {
578 PGM_PAGE_INC_READ_LOCKS(pPage);
579 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
580 if (pMap)
581 pMap->cRefs++; /* Extra ref to prevent it from going away. */
582 }
583
584 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
585 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
586 pLock->pvMap = pMap;
587 }
588 }
589
590 pgmUnlock(pVM);
591 return rc;
592}
593
594
595/**
596 * Requests the mapping of multiple guest page into ring-3, external threads.
597 *
598 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
599 * ASAP to release them.
600 *
601 * This API will assume your intention is to write to the pages, and will
602 * therefore replace shared and zero pages. If you do not intend to modify the
603 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
604 *
605 * @returns VBox status code.
606 * @retval VINF_SUCCESS on success.
607 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
608 * backing or if any of the pages the page has any active access
609 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
610 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
611 * an invalid physical address.
612 *
613 * @param pVM The cross context VM structure.
614 * @param cPages Number of pages to lock.
615 * @param paGCPhysPages The guest physical address of the pages that
616 * should be mapped (@a cPages entries).
617 * @param papvPages Where to store the ring-3 mapping addresses
618 * corresponding to @a paGCPhysPages.
619 * @param paLocks Where to store the locking information that
620 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
621 * in length).
622 *
623 * @remark Avoid calling this API from within critical sections (other than the
624 * PGM one) because of the deadlock risk when we have to delegating the
625 * task to an EMT.
626 * @thread Any.
627 */
628VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
629 void **papvPages, PPGMPAGEMAPLOCK paLocks)
630{
631 Assert(cPages > 0);
632 AssertPtr(papvPages);
633 AssertPtr(paLocks);
634
635 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
636
637 int rc = pgmLock(pVM);
638 AssertRCReturn(rc, rc);
639
640 /*
641 * Lock the pages one by one.
642 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
643 */
644 int32_t cNextYield = 128;
645 uint32_t iPage;
646 for (iPage = 0; iPage < cPages; iPage++)
647 {
648 if (--cNextYield > 0)
649 { /* likely */ }
650 else
651 {
652 pgmUnlock(pVM);
653 ASMNopPause();
654 pgmLock(pVM);
655 cNextYield = 128;
656 }
657
658 /*
659 * Query the Physical TLB entry for the page (may fail).
660 */
661 PPGMPAGEMAPTLBE pTlbe;
662 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
663 if (RT_SUCCESS(rc))
664 { }
665 else
666 break;
667 PPGMPAGE pPage = pTlbe->pPage;
668
669 /*
670 * No MMIO or active access handlers.
671 */
672 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
673 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
674 { }
675 else
676 {
677 rc = VERR_PGM_PHYS_PAGE_RESERVED;
678 break;
679 }
680
681 /*
682 * The page must be in the allocated state and not be a dirty pool page.
683 * We can handle converting a write monitored page to an allocated one, but
684 * anything more complicated must be delegated to an EMT.
685 */
686 bool fDelegateToEmt = false;
687 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
688#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
689 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
690#else
691 fDelegateToEmt = false;
692#endif
693 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
694 {
695#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
696 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
697 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
698 else
699 fDelegateToEmt = true;
700#endif
701 }
702 else
703 fDelegateToEmt = true;
704 if (!fDelegateToEmt)
705 { }
706 else
707 {
708 /* We could do this delegation in bulk, but considered too much work vs gain. */
709 pgmUnlock(pVM);
710 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
711 pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
712 pgmLock(pVM);
713 if (RT_FAILURE(rc))
714 break;
715 cNextYield = 128;
716 }
717
718 /*
719 * Now, just perform the locking and address calculation.
720 */
721 PPGMPAGEMAP pMap = pTlbe->pMap;
722 if (pMap)
723 pMap->cRefs++;
724
725 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
726 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
727 {
728 if (cLocks == 0)
729 pVM->pgm.s.cWriteLockedPages++;
730 PGM_PAGE_INC_WRITE_LOCKS(pPage);
731 }
732 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
733 {
734 PGM_PAGE_INC_WRITE_LOCKS(pPage);
735 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
736 if (pMap)
737 pMap->cRefs++; /* Extra ref to prevent it from going away. */
738 }
739
740 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
741 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
742 paLocks[iPage].pvMap = pMap;
743 }
744
745 pgmUnlock(pVM);
746
747 /*
748 * On failure we must unlock any pages we managed to get already.
749 */
750 if (RT_FAILURE(rc) && iPage > 0)
751 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
752
753 return rc;
754}
755
756
757/**
758 * Requests the mapping of multiple guest page into ring-3, for reading only,
759 * external threads.
760 *
761 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
762 * to release them.
763 *
764 * @returns VBox status code.
765 * @retval VINF_SUCCESS on success.
766 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
767 * backing or if any of the pages the page has an active ALL access
768 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
769 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
770 * an invalid physical address.
771 *
772 * @param pVM The cross context VM structure.
773 * @param cPages Number of pages to lock.
774 * @param paGCPhysPages The guest physical address of the pages that
775 * should be mapped (@a cPages entries).
776 * @param papvPages Where to store the ring-3 mapping addresses
777 * corresponding to @a paGCPhysPages.
778 * @param paLocks Where to store the lock information that
779 * pfnPhysReleasePageMappingLock needs (@a cPages
780 * in length).
781 *
782 * @remark Avoid calling this API from within critical sections (other than
783 * the PGM one) because of the deadlock risk.
784 * @thread Any.
785 */
786VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
787 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
788{
789 Assert(cPages > 0);
790 AssertPtr(papvPages);
791 AssertPtr(paLocks);
792
793 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
794
795 int rc = pgmLock(pVM);
796 AssertRCReturn(rc, rc);
797
798 /*
799 * Lock the pages one by one.
800 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
801 */
802 int32_t cNextYield = 256;
803 uint32_t iPage;
804 for (iPage = 0; iPage < cPages; iPage++)
805 {
806 if (--cNextYield > 0)
807 { /* likely */ }
808 else
809 {
810 pgmUnlock(pVM);
811 ASMNopPause();
812 pgmLock(pVM);
813 cNextYield = 256;
814 }
815
816 /*
817 * Query the Physical TLB entry for the page (may fail).
818 */
819 PPGMPAGEMAPTLBE pTlbe;
820 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
821 if (RT_SUCCESS(rc))
822 { }
823 else
824 break;
825 PPGMPAGE pPage = pTlbe->pPage;
826
827 /*
828 * No MMIO or active all access handlers, everything else can be accessed.
829 */
830 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
831 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
832 { }
833 else
834 {
835 rc = VERR_PGM_PHYS_PAGE_RESERVED;
836 break;
837 }
838
839 /*
840 * Now, just perform the locking and address calculation.
841 */
842 PPGMPAGEMAP pMap = pTlbe->pMap;
843 if (pMap)
844 pMap->cRefs++;
845
846 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
847 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
848 {
849 if (cLocks == 0)
850 pVM->pgm.s.cReadLockedPages++;
851 PGM_PAGE_INC_READ_LOCKS(pPage);
852 }
853 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
854 {
855 PGM_PAGE_INC_READ_LOCKS(pPage);
856 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
857 if (pMap)
858 pMap->cRefs++; /* Extra ref to prevent it from going away. */
859 }
860
861 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
862 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
863 paLocks[iPage].pvMap = pMap;
864 }
865
866 pgmUnlock(pVM);
867
868 /*
869 * On failure we must unlock any pages we managed to get already.
870 */
871 if (RT_FAILURE(rc) && iPage > 0)
872 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
873
874 return rc;
875}
876
877
878#define MAKE_LEAF(a_pNode) \
879 do { \
880 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
881 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
882 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
883 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
884 } while (0)
885
886#define INSERT_LEFT(a_pParent, a_pNode) \
887 do { \
888 (a_pParent)->pLeftR3 = (a_pNode); \
889 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
890 } while (0)
891#define INSERT_RIGHT(a_pParent, a_pNode) \
892 do { \
893 (a_pParent)->pRightR3 = (a_pNode); \
894 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
895 } while (0)
896
897
898/**
899 * Recursive tree builder.
900 *
901 * @param ppRam Pointer to the iterator variable.
902 * @param iDepth The current depth. Inserts a leaf node if 0.
903 */
904static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
905{
906 PPGMRAMRANGE pRam;
907 if (iDepth <= 0)
908 {
909 /*
910 * Leaf node.
911 */
912 pRam = *ppRam;
913 if (pRam)
914 {
915 *ppRam = pRam->pNextR3;
916 MAKE_LEAF(pRam);
917 }
918 }
919 else
920 {
921
922 /*
923 * Intermediate node.
924 */
925 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
926
927 pRam = *ppRam;
928 if (!pRam)
929 return pLeft;
930 *ppRam = pRam->pNextR3;
931 MAKE_LEAF(pRam);
932 INSERT_LEFT(pRam, pLeft);
933
934 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
935 if (pRight)
936 INSERT_RIGHT(pRam, pRight);
937 }
938 return pRam;
939}
940
941
942/**
943 * Rebuilds the RAM range search trees.
944 *
945 * @param pVM The cross context VM structure.
946 */
947static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
948{
949
950 /*
951 * Create the reasonably balanced tree in a sequential fashion.
952 * For simplicity (laziness) we use standard recursion here.
953 */
954 int iDepth = 0;
955 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
956 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
957 while (pRam)
958 {
959 PPGMRAMRANGE pLeft = pRoot;
960
961 pRoot = pRam;
962 pRam = pRam->pNextR3;
963 MAKE_LEAF(pRoot);
964 INSERT_LEFT(pRoot, pLeft);
965
966 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
967 if (pRight)
968 INSERT_RIGHT(pRoot, pRight);
969 /** @todo else: rotate the tree. */
970
971 iDepth++;
972 }
973
974 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
975 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
976
977#ifdef VBOX_STRICT
978 /*
979 * Verify that the above code works.
980 */
981 unsigned cRanges = 0;
982 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
983 cRanges++;
984 Assert(cRanges > 0);
985
986 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
987 if ((1U << cMaxDepth) < cRanges)
988 cMaxDepth++;
989
990 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
991 {
992 unsigned cDepth = 0;
993 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
994 for (;;)
995 {
996 if (pRam == pRam2)
997 break;
998 Assert(pRam2);
999 if (pRam->GCPhys < pRam2->GCPhys)
1000 pRam2 = pRam2->pLeftR3;
1001 else
1002 pRam2 = pRam2->pRightR3;
1003 }
1004 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1005 }
1006#endif /* VBOX_STRICT */
1007}
1008
1009#undef MAKE_LEAF
1010#undef INSERT_LEFT
1011#undef INSERT_RIGHT
1012
1013/**
1014 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1015 *
1016 * Called when anything was relocated.
1017 *
1018 * @param pVM The cross context VM structure.
1019 */
1020void pgmR3PhysRelinkRamRanges(PVM pVM)
1021{
1022 PPGMRAMRANGE pCur;
1023
1024#ifdef VBOX_STRICT
1025 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1026 {
1027 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1028 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1029 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1030 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1031 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1032 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1033 Assert( pCur2 == pCur
1034 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1035 }
1036#endif
1037
1038 pCur = pVM->pgm.s.pRamRangesXR3;
1039 if (pCur)
1040 {
1041 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1042
1043 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1044 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1045
1046 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1047 }
1048 else
1049 {
1050 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1051 }
1052 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1053
1054 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1055}
1056
1057
1058/**
1059 * Links a new RAM range into the list.
1060 *
1061 * @param pVM The cross context VM structure.
1062 * @param pNew Pointer to the new list entry.
1063 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1064 */
1065static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1066{
1067 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1068 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1069
1070 pgmLock(pVM);
1071
1072 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1073 pNew->pNextR3 = pRam;
1074 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1075
1076 if (pPrev)
1077 {
1078 pPrev->pNextR3 = pNew;
1079 pPrev->pNextR0 = pNew->pSelfR0;
1080 }
1081 else
1082 {
1083 pVM->pgm.s.pRamRangesXR3 = pNew;
1084 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1085 }
1086 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1087
1088 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1089 pgmUnlock(pVM);
1090}
1091
1092
1093/**
1094 * Unlink an existing RAM range from the list.
1095 *
1096 * @param pVM The cross context VM structure.
1097 * @param pRam Pointer to the new list entry.
1098 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1099 */
1100static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1101{
1102 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1103 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1104
1105 pgmLock(pVM);
1106
1107 PPGMRAMRANGE pNext = pRam->pNextR3;
1108 if (pPrev)
1109 {
1110 pPrev->pNextR3 = pNext;
1111 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1112 }
1113 else
1114 {
1115 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1116 pVM->pgm.s.pRamRangesXR3 = pNext;
1117 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1118 }
1119 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1120
1121 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1122 pgmUnlock(pVM);
1123}
1124
1125
1126/**
1127 * Unlink an existing RAM range from the list.
1128 *
1129 * @param pVM The cross context VM structure.
1130 * @param pRam Pointer to the new list entry.
1131 */
1132static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1133{
1134 pgmLock(pVM);
1135
1136 /* find prev. */
1137 PPGMRAMRANGE pPrev = NULL;
1138 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1139 while (pCur != pRam)
1140 {
1141 pPrev = pCur;
1142 pCur = pCur->pNextR3;
1143 }
1144 AssertFatal(pCur);
1145
1146 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1147 pgmUnlock(pVM);
1148}
1149
1150
1151/**
1152 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1153 *
1154 * @returns VBox status code.
1155 * @param pVM The cross context VM structure.
1156 * @param pRam The RAM range in which the pages resides.
1157 * @param GCPhys The address of the first page.
1158 * @param GCPhysLast The address of the last page.
1159 * @param enmType The page type to replace then with.
1160 */
1161static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType)
1162{
1163 PGM_LOCK_ASSERT_OWNER(pVM);
1164 uint32_t cPendingPages = 0;
1165 PGMMFREEPAGESREQ pReq;
1166 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1167 AssertLogRelRCReturn(rc, rc);
1168
1169 /* Iterate the pages. */
1170 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1171 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1172 while (cPagesLeft-- > 0)
1173 {
1174 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType);
1175 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1176
1177 PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType);
1178
1179 GCPhys += PAGE_SIZE;
1180 pPageDst++;
1181 }
1182
1183 if (cPendingPages)
1184 {
1185 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1186 AssertLogRelRCReturn(rc, rc);
1187 }
1188 GMMR3FreePagesCleanup(pReq);
1189
1190 return rc;
1191}
1192
1193#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1194
1195/**
1196 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
1197 *
1198 * This is only called on one of the EMTs while the other ones are waiting for
1199 * it to complete this function.
1200 *
1201 * @returns VINF_SUCCESS (VBox strict status code).
1202 * @param pVM The cross context VM structure.
1203 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1204 * @param pvUser User parameter
1205 */
1206static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1207{
1208 uintptr_t *paUser = (uintptr_t *)pvUser;
1209 bool fInflate = !!paUser[0];
1210 unsigned cPages = paUser[1];
1211 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
1212 uint32_t cPendingPages = 0;
1213 PGMMFREEPAGESREQ pReq;
1214 int rc;
1215
1216 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
1217 pgmLock(pVM);
1218
1219 if (fInflate)
1220 {
1221 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
1222 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
1223
1224 /* Replace pages with ZERO pages. */
1225 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1226 if (RT_FAILURE(rc))
1227 {
1228 pgmUnlock(pVM);
1229 AssertLogRelRC(rc);
1230 return rc;
1231 }
1232
1233 /* Iterate the pages. */
1234 for (unsigned i = 0; i < cPages; i++)
1235 {
1236 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1237 if ( pPage == NULL
1238 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
1239 {
1240 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
1241 break;
1242 }
1243
1244 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
1245
1246 /* Flush the shadow PT if this page was previously used as a guest page table. */
1247 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
1248
1249 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
1250 if (RT_FAILURE(rc))
1251 {
1252 pgmUnlock(pVM);
1253 AssertLogRelRC(rc);
1254 return rc;
1255 }
1256 Assert(PGM_PAGE_IS_ZERO(pPage));
1257 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
1258 }
1259
1260 if (cPendingPages)
1261 {
1262 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1263 if (RT_FAILURE(rc))
1264 {
1265 pgmUnlock(pVM);
1266 AssertLogRelRC(rc);
1267 return rc;
1268 }
1269 }
1270 GMMR3FreePagesCleanup(pReq);
1271 }
1272 else
1273 {
1274 /* Iterate the pages. */
1275 for (unsigned i = 0; i < cPages; i++)
1276 {
1277 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
1278 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
1279
1280 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
1281
1282 Assert(PGM_PAGE_IS_BALLOONED(pPage));
1283
1284 /* Change back to zero page. (NEM does not need to be informed.) */
1285 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1286 }
1287
1288 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
1289 }
1290
1291 /* Notify GMM about the balloon change. */
1292 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
1293 if (RT_SUCCESS(rc))
1294 {
1295 if (!fInflate)
1296 {
1297 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
1298 pVM->pgm.s.cBalloonedPages -= cPages;
1299 }
1300 else
1301 pVM->pgm.s.cBalloonedPages += cPages;
1302 }
1303
1304 pgmUnlock(pVM);
1305
1306 /* Flush the recompiler's TLB as well. */
1307 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1308 CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1309
1310 AssertLogRelRC(rc);
1311 return rc;
1312}
1313
1314
1315/**
1316 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
1317 *
1318 * @returns VBox status code.
1319 * @param pVM The cross context VM structure.
1320 * @param fInflate Inflate or deflate memory balloon
1321 * @param cPages Number of pages to free
1322 * @param paPhysPage Array of guest physical addresses
1323 */
1324static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1325{
1326 uintptr_t paUser[3];
1327
1328 paUser[0] = fInflate;
1329 paUser[1] = cPages;
1330 paUser[2] = (uintptr_t)paPhysPage;
1331 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1332 AssertRC(rc);
1333
1334 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
1335 RTMemFree(paPhysPage);
1336}
1337
1338#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
1339
1340/**
1341 * Inflate or deflate a memory balloon
1342 *
1343 * @returns VBox status code.
1344 * @param pVM The cross context VM structure.
1345 * @param fInflate Inflate or deflate memory balloon
1346 * @param cPages Number of pages to free
1347 * @param paPhysPage Array of guest physical addresses
1348 */
1349VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
1350{
1351 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
1352#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
1353 int rc;
1354
1355 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
1356 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
1357
1358 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
1359 * In the SMP case we post a request packet to postpone the job.
1360 */
1361 if (pVM->cCpus > 1)
1362 {
1363 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
1364 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
1365 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
1366
1367 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
1368
1369 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
1370 AssertRC(rc);
1371 }
1372 else
1373 {
1374 uintptr_t paUser[3];
1375
1376 paUser[0] = fInflate;
1377 paUser[1] = cPages;
1378 paUser[2] = (uintptr_t)paPhysPage;
1379 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
1380 AssertRC(rc);
1381 }
1382 return rc;
1383
1384#else
1385 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
1386 return VERR_NOT_IMPLEMENTED;
1387#endif
1388}
1389
1390
1391/**
1392 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
1393 * physical RAM.
1394 *
1395 * This is only called on one of the EMTs while the other ones are waiting for
1396 * it to complete this function.
1397 *
1398 * @returns VINF_SUCCESS (VBox strict status code).
1399 * @param pVM The cross context VM structure.
1400 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
1401 * @param pvUser User parameter, unused.
1402 */
1403static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
1404{
1405 int rc = VINF_SUCCESS;
1406 NOREF(pvUser); NOREF(pVCpu);
1407
1408 pgmLock(pVM);
1409#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1410 pgmPoolResetDirtyPages(pVM);
1411#endif
1412
1413 /** @todo pointless to write protect the physical page pointed to by RSP. */
1414
1415 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
1416 pRam;
1417 pRam = pRam->CTX_SUFF(pNext))
1418 {
1419 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
1420 for (uint32_t iPage = 0; iPage < cPages; iPage++)
1421 {
1422 PPGMPAGE pPage = &pRam->aPages[iPage];
1423 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1424
1425 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1426 || enmPageType == PGMPAGETYPE_MMIO2)
1427 {
1428 /*
1429 * A RAM page.
1430 */
1431 switch (PGM_PAGE_GET_STATE(pPage))
1432 {
1433 case PGM_PAGE_STATE_ALLOCATED:
1434 /** @todo Optimize this: Don't always re-enable write
1435 * monitoring if the page is known to be very busy. */
1436 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1437 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1438
1439 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1440 break;
1441
1442 case PGM_PAGE_STATE_SHARED:
1443 AssertFailed();
1444 break;
1445
1446 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1447 default:
1448 break;
1449 }
1450 }
1451 }
1452 }
1453 pgmR3PoolWriteProtectPages(pVM);
1454 PGM_INVL_ALL_VCPU_TLBS(pVM);
1455 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1456 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1457
1458 pgmUnlock(pVM);
1459 return rc;
1460}
1461
1462/**
1463 * Protect all physical RAM to monitor writes
1464 *
1465 * @returns VBox status code.
1466 * @param pVM The cross context VM structure.
1467 */
1468VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1469{
1470 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1471
1472 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1473 AssertRC(rc);
1474 return rc;
1475}
1476
1477
1478/**
1479 * Gets the number of ram ranges.
1480 *
1481 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1482 * @param pVM The cross context VM structure.
1483 */
1484VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1485{
1486 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1487
1488 pgmLock(pVM);
1489 uint32_t cRamRanges = 0;
1490 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1491 cRamRanges++;
1492 pgmUnlock(pVM);
1493 return cRamRanges;
1494}
1495
1496
1497/**
1498 * Get information about a range.
1499 *
1500 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1501 * @param pVM The cross context VM structure.
1502 * @param iRange The ordinal of the range.
1503 * @param pGCPhysStart Where to return the start of the range. Optional.
1504 * @param pGCPhysLast Where to return the address of the last byte in the
1505 * range. Optional.
1506 * @param ppszDesc Where to return the range description. Optional.
1507 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1508 * Optional.
1509 */
1510VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1511 const char **ppszDesc, bool *pfIsMmio)
1512{
1513 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1514
1515 pgmLock(pVM);
1516 uint32_t iCurRange = 0;
1517 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1518 if (iCurRange == iRange)
1519 {
1520 if (pGCPhysStart)
1521 *pGCPhysStart = pCur->GCPhys;
1522 if (pGCPhysLast)
1523 *pGCPhysLast = pCur->GCPhysLast;
1524 if (ppszDesc)
1525 *ppszDesc = pCur->pszDesc;
1526 if (pfIsMmio)
1527 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1528
1529 pgmUnlock(pVM);
1530 return VINF_SUCCESS;
1531 }
1532 pgmUnlock(pVM);
1533 return VERR_OUT_OF_RANGE;
1534}
1535
1536
1537/**
1538 * Query the amount of free memory inside VMMR0
1539 *
1540 * @returns VBox status code.
1541 * @param pUVM The user mode VM handle.
1542 * @param pcbAllocMem Where to return the amount of memory allocated
1543 * by VMs.
1544 * @param pcbFreeMem Where to return the amount of memory that is
1545 * allocated from the host but not currently used
1546 * by any VMs.
1547 * @param pcbBallonedMem Where to return the sum of memory that is
1548 * currently ballooned by the VMs.
1549 * @param pcbSharedMem Where to return the amount of memory that is
1550 * currently shared.
1551 */
1552VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
1553 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
1554{
1555 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1556 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
1557
1558 uint64_t cAllocPages = 0;
1559 uint64_t cFreePages = 0;
1560 uint64_t cBalloonPages = 0;
1561 uint64_t cSharedPages = 0;
1562 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1563 AssertRCReturn(rc, rc);
1564
1565 if (pcbAllocMem)
1566 *pcbAllocMem = cAllocPages * _4K;
1567
1568 if (pcbFreeMem)
1569 *pcbFreeMem = cFreePages * _4K;
1570
1571 if (pcbBallonedMem)
1572 *pcbBallonedMem = cBalloonPages * _4K;
1573
1574 if (pcbSharedMem)
1575 *pcbSharedMem = cSharedPages * _4K;
1576
1577 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
1578 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1579 return VINF_SUCCESS;
1580}
1581
1582
1583/**
1584 * Query memory stats for the VM.
1585 *
1586 * @returns VBox status code.
1587 * @param pUVM The user mode VM handle.
1588 * @param pcbTotalMem Where to return total amount memory the VM may
1589 * possibly use.
1590 * @param pcbPrivateMem Where to return the amount of private memory
1591 * currently allocated.
1592 * @param pcbSharedMem Where to return the amount of actually shared
1593 * memory currently used by the VM.
1594 * @param pcbZeroMem Where to return the amount of memory backed by
1595 * zero pages.
1596 *
1597 * @remarks The total mem is normally larger than the sum of the three
1598 * components. There are two reasons for this, first the amount of
1599 * shared memory is what we're sure is shared instead of what could
1600 * possibly be shared with someone. Secondly, because the total may
1601 * include some pure MMIO pages that doesn't go into any of the three
1602 * sub-counts.
1603 *
1604 * @todo Why do we return reused shared pages instead of anything that could
1605 * potentially be shared? Doesn't this mean the first VM gets a much
1606 * lower number of shared pages?
1607 */
1608VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
1609 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
1610{
1611 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
1612 PVM pVM = pUVM->pVM;
1613 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1614
1615 if (pcbTotalMem)
1616 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
1617
1618 if (pcbPrivateMem)
1619 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
1620
1621 if (pcbSharedMem)
1622 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
1623
1624 if (pcbZeroMem)
1625 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
1626
1627 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1628 return VINF_SUCCESS;
1629}
1630
1631
1632/**
1633 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1634 *
1635 * @param pVM The cross context VM structure.
1636 * @param pNew The new RAM range.
1637 * @param GCPhys The address of the RAM range.
1638 * @param GCPhysLast The last address of the RAM range.
1639 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1640 * if in HMA.
1641 * @param R0PtrNew Ditto for R0.
1642 * @param pszDesc The description.
1643 * @param pPrev The previous RAM range (for linking).
1644 */
1645static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1646 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1647{
1648 /*
1649 * Initialize the range.
1650 */
1651 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1652 pNew->GCPhys = GCPhys;
1653 pNew->GCPhysLast = GCPhysLast;
1654 pNew->cb = GCPhysLast - GCPhys + 1;
1655 pNew->pszDesc = pszDesc;
1656 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1657 pNew->pvR3 = NULL;
1658 pNew->paLSPages = NULL;
1659
1660 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1661 RTGCPHYS iPage = cPages;
1662 while (iPage-- > 0)
1663 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1664
1665 /* Update the page count stats. */
1666 pVM->pgm.s.cZeroPages += cPages;
1667 pVM->pgm.s.cAllPages += cPages;
1668
1669 /*
1670 * Link it.
1671 */
1672 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1673}
1674
1675
1676#ifndef PGM_WITHOUT_MAPPINGS
1677/**
1678 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.}
1679 * @sa pgmR3PhysMMIO2ExRangeRelocate
1680 */
1681static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
1682 PGMRELOCATECALL enmMode, void *pvUser)
1683{
1684 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1685 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1686 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld);
1687
1688 switch (enmMode)
1689 {
1690 case PGMRELOCATECALL_SUGGEST:
1691 return true;
1692
1693 case PGMRELOCATECALL_RELOCATE:
1694 {
1695 /*
1696 * Update myself, then relink all the ranges and flush the RC TLB.
1697 */
1698 pgmLock(pVM);
1699
1700 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1701
1702 pgmR3PhysRelinkRamRanges(pVM);
1703 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
1704 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
1705
1706 pgmUnlock(pVM);
1707 return true;
1708 }
1709
1710 default:
1711 AssertFailedReturn(false);
1712 }
1713}
1714#endif /* !PGM_WITHOUT_MAPPINGS */
1715
1716
1717/**
1718 * PGMR3PhysRegisterRam worker that registers a high chunk.
1719 *
1720 * @returns VBox status code.
1721 * @param pVM The cross context VM structure.
1722 * @param GCPhys The address of the RAM.
1723 * @param cRamPages The number of RAM pages to register.
1724 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1725 * @param iChunk The chunk number.
1726 * @param pszDesc The RAM range description.
1727 * @param ppPrev Previous RAM range pointer. In/Out.
1728 */
1729static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1730 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1731 PPGMRAMRANGE *ppPrev)
1732{
1733 const char *pszDescChunk = iChunk == 0
1734 ? pszDesc
1735 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1736 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1737
1738 /*
1739 * Allocate memory for the new chunk.
1740 */
1741 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1742 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1743 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1744 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1745 void *pvChunk = NULL;
1746 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
1747 if (RT_SUCCESS(rc))
1748 {
1749 Assert(R0PtrChunk != NIL_RTR0PTR);
1750 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1751
1752 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1753
1754 /*
1755 * Create a mapping and map the pages into it.
1756 * We push these in below the HMA.
1757 */
1758 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1759#ifndef PGM_WITHOUT_MAPPINGS
1760 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1761 if (RT_SUCCESS(rc))
1762#endif /* !PGM_WITHOUT_MAPPINGS */
1763 {
1764 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1765
1766 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1767#ifndef PGM_WITHOUT_MAPPINGS
1768 RTGCPTR GCPtrPage = GCPtrChunk;
1769 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1770 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1771 if (RT_SUCCESS(rc))
1772#endif /* !PGM_WITHOUT_MAPPINGS */
1773 {
1774 /*
1775 * Ok, init and link the range.
1776 */
1777 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1778 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1779 *ppPrev = pNew;
1780 }
1781 }
1782
1783 if (RT_FAILURE(rc))
1784 SUPR3PageFreeEx(pvChunk, cChunkPages);
1785 }
1786
1787 RTMemTmpFree(paChunkPages);
1788 return rc;
1789}
1790
1791
1792/**
1793 * Sets up a range RAM.
1794 *
1795 * This will check for conflicting registrations, make a resource
1796 * reservation for the memory (with GMM), and setup the per-page
1797 * tracking structures (PGMPAGE).
1798 *
1799 * @returns VBox status code.
1800 * @param pVM The cross context VM structure.
1801 * @param GCPhys The physical address of the RAM.
1802 * @param cb The size of the RAM.
1803 * @param pszDesc The description - not copied, so, don't free or change it.
1804 */
1805VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1806{
1807 /*
1808 * Validate input.
1809 */
1810 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1811 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1812 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1813 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1814 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1815 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1816 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1817 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1818
1819 pgmLock(pVM);
1820
1821 /*
1822 * Find range location and check for conflicts.
1823 * (We don't lock here because the locking by EMT is only required on update.)
1824 */
1825 PPGMRAMRANGE pPrev = NULL;
1826 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1827 while (pRam && GCPhysLast >= pRam->GCPhys)
1828 {
1829 if ( GCPhysLast >= pRam->GCPhys
1830 && GCPhys <= pRam->GCPhysLast)
1831 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1832 GCPhys, GCPhysLast, pszDesc,
1833 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1834 VERR_PGM_RAM_CONFLICT);
1835
1836 /* next */
1837 pPrev = pRam;
1838 pRam = pRam->pNextR3;
1839 }
1840
1841 /*
1842 * Register it with GMM (the API bitches).
1843 */
1844 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1845 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1846 if (RT_FAILURE(rc))
1847 {
1848 pgmUnlock(pVM);
1849 return rc;
1850 }
1851
1852 if ( GCPhys >= _4G
1853 && cPages > 256)
1854 {
1855 /*
1856 * The PGMRAMRANGE structures for the high memory can get very big.
1857 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1858 * allocation size limit there and also to avoid being unable to find
1859 * guest mapping space for them, we split this memory up into 4MB in
1860 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1861 * mode.
1862 *
1863 * The first and last page of each mapping are guard pages and marked
1864 * not-present. So, we've got 4186112 and 16769024 bytes available for
1865 * the PGMRAMRANGE structure.
1866 *
1867 * Note! The sizes used here will influence the saved state.
1868 */
1869 uint32_t cbChunk = 16U*_1M;
1870 uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
1871 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1872 AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1873
1874 RTGCPHYS cPagesLeft = cPages;
1875 RTGCPHYS GCPhysChunk = GCPhys;
1876 uint32_t iChunk = 0;
1877 while (cPagesLeft > 0)
1878 {
1879 uint32_t cPagesInChunk = cPagesLeft;
1880 if (cPagesInChunk > cPagesPerChunk)
1881 cPagesInChunk = cPagesPerChunk;
1882
1883 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1884 AssertRCReturn(rc, rc);
1885
1886 /* advance */
1887 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1888 cPagesLeft -= cPagesInChunk;
1889 iChunk++;
1890 }
1891 }
1892 else
1893 {
1894 /*
1895 * Allocate, initialize and link the new RAM range.
1896 */
1897 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
1898 PPGMRAMRANGE pNew;
1899 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1900 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1901
1902 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1903 }
1904 pgmPhysInvalidatePageMapTLB(pVM);
1905
1906 /*
1907 * Notify NEM while holding the lock (experimental) and REM without (like always).
1908 */
1909 rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb);
1910 pgmUnlock(pVM);
1911 return rc;
1912}
1913
1914
1915/**
1916 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1917 *
1918 * We do this late in the init process so that all the ROM and MMIO ranges have
1919 * been registered already and we don't go wasting memory on them.
1920 *
1921 * @returns VBox status code.
1922 *
1923 * @param pVM The cross context VM structure.
1924 */
1925int pgmR3PhysRamPreAllocate(PVM pVM)
1926{
1927 Assert(pVM->pgm.s.fRamPreAlloc);
1928 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1929
1930 /*
1931 * Walk the RAM ranges and allocate all RAM pages, halt at
1932 * the first allocation error.
1933 */
1934 uint64_t cPages = 0;
1935 uint64_t NanoTS = RTTimeNanoTS();
1936 pgmLock(pVM);
1937 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1938 {
1939 PPGMPAGE pPage = &pRam->aPages[0];
1940 RTGCPHYS GCPhys = pRam->GCPhys;
1941 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1942 while (cLeft-- > 0)
1943 {
1944 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1945 {
1946 switch (PGM_PAGE_GET_STATE(pPage))
1947 {
1948 case PGM_PAGE_STATE_ZERO:
1949 {
1950 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1951 if (RT_FAILURE(rc))
1952 {
1953 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1954 pgmUnlock(pVM);
1955 return rc;
1956 }
1957 cPages++;
1958 break;
1959 }
1960
1961 case PGM_PAGE_STATE_BALLOONED:
1962 case PGM_PAGE_STATE_ALLOCATED:
1963 case PGM_PAGE_STATE_WRITE_MONITORED:
1964 case PGM_PAGE_STATE_SHARED:
1965 /* nothing to do here. */
1966 break;
1967 }
1968 }
1969
1970 /* next */
1971 pPage++;
1972 GCPhys += PAGE_SIZE;
1973 }
1974 }
1975 pgmUnlock(pVM);
1976 NanoTS = RTTimeNanoTS() - NanoTS;
1977
1978 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1979 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1980 return VINF_SUCCESS;
1981}
1982
1983
1984/**
1985 * Checks shared page checksums.
1986 *
1987 * @param pVM The cross context VM structure.
1988 */
1989void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1990{
1991#ifdef VBOX_STRICT
1992 pgmLock(pVM);
1993
1994 if (pVM->pgm.s.cSharedPages > 0)
1995 {
1996 /*
1997 * Walk the ram ranges.
1998 */
1999 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2000 {
2001 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2002 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2003
2004 while (iPage-- > 0)
2005 {
2006 PPGMPAGE pPage = &pRam->aPages[iPage];
2007 if (PGM_PAGE_IS_SHARED(pPage))
2008 {
2009 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
2010 if (!u32Checksum)
2011 {
2012 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2013 void const *pvPage;
2014 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
2015 if (RT_SUCCESS(rc))
2016 {
2017 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
2018# if 0
2019 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
2020# else
2021 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
2022 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2023 else
2024 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
2025# endif
2026 }
2027 else
2028 AssertRC(rc);
2029 }
2030 }
2031
2032 } /* for each page */
2033
2034 } /* for each ram range */
2035 }
2036
2037 pgmUnlock(pVM);
2038#endif /* VBOX_STRICT */
2039 NOREF(pVM);
2040}
2041
2042
2043/**
2044 * Resets the physical memory state.
2045 *
2046 * ASSUMES that the caller owns the PGM lock.
2047 *
2048 * @returns VBox status code.
2049 * @param pVM The cross context VM structure.
2050 */
2051int pgmR3PhysRamReset(PVM pVM)
2052{
2053 PGM_LOCK_ASSERT_OWNER(pVM);
2054
2055 /* Reset the memory balloon. */
2056 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2057 AssertRC(rc);
2058
2059#ifdef VBOX_WITH_PAGE_SHARING
2060 /* Clear all registered shared modules. */
2061 pgmR3PhysAssertSharedPageChecksums(pVM);
2062 rc = GMMR3ResetSharedModules(pVM);
2063 AssertRC(rc);
2064#endif
2065 /* Reset counters. */
2066 pVM->pgm.s.cReusedSharedPages = 0;
2067 pVM->pgm.s.cBalloonedPages = 0;
2068
2069 return VINF_SUCCESS;
2070}
2071
2072
2073/**
2074 * Resets (zeros) the RAM after all devices and components have been reset.
2075 *
2076 * ASSUMES that the caller owns the PGM lock.
2077 *
2078 * @returns VBox status code.
2079 * @param pVM The cross context VM structure.
2080 */
2081int pgmR3PhysRamZeroAll(PVM pVM)
2082{
2083 PGM_LOCK_ASSERT_OWNER(pVM);
2084
2085 /*
2086 * We batch up pages that should be freed instead of calling GMM for
2087 * each and every one of them.
2088 */
2089 uint32_t cPendingPages = 0;
2090 PGMMFREEPAGESREQ pReq;
2091 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2092 AssertLogRelRCReturn(rc, rc);
2093
2094 /*
2095 * Walk the ram ranges.
2096 */
2097 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2098 {
2099 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2100 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2101
2102 if ( !pVM->pgm.s.fRamPreAlloc
2103 && pVM->pgm.s.fZeroRamPagesOnReset)
2104 {
2105 /* Replace all RAM pages by ZERO pages. */
2106 while (iPage-- > 0)
2107 {
2108 PPGMPAGE pPage = &pRam->aPages[iPage];
2109 switch (PGM_PAGE_GET_TYPE(pPage))
2110 {
2111 case PGMPAGETYPE_RAM:
2112 /* Do not replace pages part of a 2 MB continuous range
2113 with zero pages, but zero them instead. */
2114 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2115 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2116 {
2117 void *pvPage;
2118 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2119 AssertLogRelRCReturn(rc, rc);
2120 ASMMemZeroPage(pvPage);
2121 }
2122 else if (PGM_PAGE_IS_BALLOONED(pPage))
2123 {
2124 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2125 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2126 }
2127 else if (!PGM_PAGE_IS_ZERO(pPage))
2128 {
2129 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2130 PGMPAGETYPE_RAM);
2131 AssertLogRelRCReturn(rc, rc);
2132 }
2133 break;
2134
2135 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2136 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2137 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2138 true /*fDoAccounting*/);
2139 break;
2140
2141 case PGMPAGETYPE_MMIO2:
2142 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2143 case PGMPAGETYPE_ROM:
2144 case PGMPAGETYPE_MMIO:
2145 break;
2146 default:
2147 AssertFailed();
2148 }
2149 } /* for each page */
2150 }
2151 else
2152 {
2153 /* Zero the memory. */
2154 while (iPage-- > 0)
2155 {
2156 PPGMPAGE pPage = &pRam->aPages[iPage];
2157 switch (PGM_PAGE_GET_TYPE(pPage))
2158 {
2159 case PGMPAGETYPE_RAM:
2160 switch (PGM_PAGE_GET_STATE(pPage))
2161 {
2162 case PGM_PAGE_STATE_ZERO:
2163 break;
2164
2165 case PGM_PAGE_STATE_BALLOONED:
2166 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2167 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2168 break;
2169
2170 case PGM_PAGE_STATE_SHARED:
2171 case PGM_PAGE_STATE_WRITE_MONITORED:
2172 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2173 AssertLogRelRCReturn(rc, rc);
2174 RT_FALL_THRU();
2175
2176 case PGM_PAGE_STATE_ALLOCATED:
2177 if (pVM->pgm.s.fZeroRamPagesOnReset)
2178 {
2179 void *pvPage;
2180 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2181 AssertLogRelRCReturn(rc, rc);
2182 ASMMemZeroPage(pvPage);
2183 }
2184 break;
2185 }
2186 break;
2187
2188 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2189 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2190 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2191 true /*fDoAccounting*/);
2192 break;
2193
2194 case PGMPAGETYPE_MMIO2:
2195 case PGMPAGETYPE_ROM_SHADOW:
2196 case PGMPAGETYPE_ROM:
2197 case PGMPAGETYPE_MMIO:
2198 break;
2199 default:
2200 AssertFailed();
2201
2202 }
2203 } /* for each page */
2204 }
2205
2206 }
2207
2208 /*
2209 * Finish off any pages pending freeing.
2210 */
2211 if (cPendingPages)
2212 {
2213 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2214 AssertLogRelRCReturn(rc, rc);
2215 }
2216 GMMR3FreePagesCleanup(pReq);
2217 return VINF_SUCCESS;
2218}
2219
2220
2221/**
2222 * Frees all RAM during VM termination
2223 *
2224 * ASSUMES that the caller owns the PGM lock.
2225 *
2226 * @returns VBox status code.
2227 * @param pVM The cross context VM structure.
2228 */
2229int pgmR3PhysRamTerm(PVM pVM)
2230{
2231 PGM_LOCK_ASSERT_OWNER(pVM);
2232
2233 /* Reset the memory balloon. */
2234 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2235 AssertRC(rc);
2236
2237#ifdef VBOX_WITH_PAGE_SHARING
2238 /*
2239 * Clear all registered shared modules.
2240 */
2241 pgmR3PhysAssertSharedPageChecksums(pVM);
2242 rc = GMMR3ResetSharedModules(pVM);
2243 AssertRC(rc);
2244
2245 /*
2246 * Flush the handy pages updates to make sure no shared pages are hiding
2247 * in there. (No unlikely if the VM shuts down, apparently.)
2248 */
2249 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2250#endif
2251
2252 /*
2253 * We batch up pages that should be freed instead of calling GMM for
2254 * each and every one of them.
2255 */
2256 uint32_t cPendingPages = 0;
2257 PGMMFREEPAGESREQ pReq;
2258 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2259 AssertLogRelRCReturn(rc, rc);
2260
2261 /*
2262 * Walk the ram ranges.
2263 */
2264 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2265 {
2266 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2267 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2268
2269 while (iPage-- > 0)
2270 {
2271 PPGMPAGE pPage = &pRam->aPages[iPage];
2272 switch (PGM_PAGE_GET_TYPE(pPage))
2273 {
2274 case PGMPAGETYPE_RAM:
2275 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2276 /** @todo change this to explicitly free private pages here. */
2277 if (PGM_PAGE_IS_SHARED(pPage))
2278 {
2279 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2280 PGMPAGETYPE_RAM);
2281 AssertLogRelRCReturn(rc, rc);
2282 }
2283 break;
2284
2285 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2286 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2287 case PGMPAGETYPE_MMIO2:
2288 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2289 case PGMPAGETYPE_ROM:
2290 case PGMPAGETYPE_MMIO:
2291 break;
2292 default:
2293 AssertFailed();
2294 }
2295 } /* for each page */
2296 }
2297
2298 /*
2299 * Finish off any pages pending freeing.
2300 */
2301 if (cPendingPages)
2302 {
2303 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2304 AssertLogRelRCReturn(rc, rc);
2305 }
2306 GMMR3FreePagesCleanup(pReq);
2307 return VINF_SUCCESS;
2308}
2309
2310
2311/**
2312 * This is the interface IOM is using to register an MMIO region.
2313 *
2314 * It will check for conflicts and ensure that a RAM range structure
2315 * is present before calling the PGMR3HandlerPhysicalRegister API to
2316 * register the callbacks.
2317 *
2318 * @returns VBox status code.
2319 *
2320 * @param pVM The cross context VM structure.
2321 * @param GCPhys The start of the MMIO region.
2322 * @param cb The size of the MMIO region.
2323 * @param hType The physical access handler type registration.
2324 * @param pvUserR3 The user argument for R3.
2325 * @param pvUserR0 The user argument for R0.
2326 * @param pvUserRC The user argument for RC.
2327 * @param pszDesc The description of the MMIO region.
2328 */
2329VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2330 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2331{
2332 /*
2333 * Assert on some assumption.
2334 */
2335 VM_ASSERT_EMT(pVM);
2336 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2337 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2338 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2339 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2340 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2341
2342 int rc = pgmLock(pVM);
2343 AssertRCReturn(rc, rc);
2344
2345 /*
2346 * Make sure there's a RAM range structure for the region.
2347 */
2348 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2349 bool fRamExists = false;
2350 PPGMRAMRANGE pRamPrev = NULL;
2351 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2352 while (pRam && GCPhysLast >= pRam->GCPhys)
2353 {
2354 if ( GCPhysLast >= pRam->GCPhys
2355 && GCPhys <= pRam->GCPhysLast)
2356 {
2357 /* Simplification: all within the same range. */
2358 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2359 && GCPhysLast <= pRam->GCPhysLast,
2360 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2361 GCPhys, GCPhysLast, pszDesc,
2362 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2363 pgmUnlock(pVM),
2364 VERR_PGM_RAM_CONFLICT);
2365
2366 /* Check that it's all RAM or MMIO pages. */
2367 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2368 uint32_t cLeft = cb >> PAGE_SHIFT;
2369 while (cLeft-- > 0)
2370 {
2371 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2372 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2373 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2374 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2375 pgmUnlock(pVM),
2376 VERR_PGM_RAM_CONFLICT);
2377 pPage++;
2378 }
2379
2380 /* Looks good. */
2381 fRamExists = true;
2382 break;
2383 }
2384
2385 /* next */
2386 pRamPrev = pRam;
2387 pRam = pRam->pNextR3;
2388 }
2389 PPGMRAMRANGE pNew;
2390 if (fRamExists)
2391 {
2392 pNew = NULL;
2393
2394 /*
2395 * Make all the pages in the range MMIO/ZERO pages, freeing any
2396 * RAM pages currently mapped here. This might not be 100% correct
2397 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2398 */
2399 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
2400 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
2401
2402 /* Force a PGM pool flush as guest ram references have been changed. */
2403 /** @todo not entirely SMP safe; assuming for now the guest takes
2404 * care of this internally (not touch mapped mmio while changing the
2405 * mapping). */
2406 PVMCPU pVCpu = VMMGetCpu(pVM);
2407 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2408 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2409 }
2410 else
2411 {
2412
2413 /*
2414 * No RAM range, insert an ad hoc one.
2415 *
2416 * Note that we don't have to tell REM about this range because
2417 * PGMHandlerPhysicalRegisterEx will do that for us.
2418 */
2419 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2420
2421 const uint32_t cPages = cb >> PAGE_SHIFT;
2422 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2423 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2424 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
2425
2426 /* Initialize the range. */
2427 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2428 pNew->GCPhys = GCPhys;
2429 pNew->GCPhysLast = GCPhysLast;
2430 pNew->cb = cb;
2431 pNew->pszDesc = pszDesc;
2432 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2433 pNew->pvR3 = NULL;
2434 pNew->paLSPages = NULL;
2435
2436 uint32_t iPage = cPages;
2437 while (iPage-- > 0)
2438 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2439 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2440
2441 /* update the page count stats. */
2442 pVM->pgm.s.cPureMmioPages += cPages;
2443 pVM->pgm.s.cAllPages += cPages;
2444
2445 /* link it */
2446 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2447 }
2448
2449 /*
2450 * Register the access handler.
2451 */
2452 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2453 if ( RT_FAILURE(rc)
2454 && !fRamExists)
2455 {
2456 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2457 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2458
2459 /* remove the ad hoc range. */
2460 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2461 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2462 MMHyperFree(pVM, pRam);
2463 }
2464 pgmPhysInvalidatePageMapTLB(pVM);
2465
2466 pgmUnlock(pVM);
2467 return rc;
2468}
2469
2470
2471/**
2472 * This is the interface IOM is using to register an MMIO region.
2473 *
2474 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2475 * any ad hoc PGMRAMRANGE left behind.
2476 *
2477 * @returns VBox status code.
2478 * @param pVM The cross context VM structure.
2479 * @param GCPhys The start of the MMIO region.
2480 * @param cb The size of the MMIO region.
2481 */
2482VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2483{
2484 VM_ASSERT_EMT(pVM);
2485
2486 int rc = pgmLock(pVM);
2487 AssertRCReturn(rc, rc);
2488
2489 /*
2490 * First deregister the handler, then check if we should remove the ram range.
2491 */
2492 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2493 if (RT_SUCCESS(rc))
2494 {
2495 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2496 PPGMRAMRANGE pRamPrev = NULL;
2497 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2498 while (pRam && GCPhysLast >= pRam->GCPhys)
2499 {
2500 /** @todo We're being a bit too careful here. rewrite. */
2501 if ( GCPhysLast == pRam->GCPhysLast
2502 && GCPhys == pRam->GCPhys)
2503 {
2504 Assert(pRam->cb == cb);
2505
2506 /*
2507 * See if all the pages are dead MMIO pages.
2508 */
2509 uint32_t const cPages = cb >> PAGE_SHIFT;
2510 bool fAllMMIO = true;
2511 uint32_t iPage = 0;
2512 uint32_t cLeft = cPages;
2513 while (cLeft-- > 0)
2514 {
2515 PPGMPAGE pPage = &pRam->aPages[iPage];
2516 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2517 /*|| not-out-of-action later */)
2518 {
2519 fAllMMIO = false;
2520 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2521 break;
2522 }
2523 Assert( PGM_PAGE_IS_ZERO(pPage)
2524 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2525 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2526 pPage++;
2527 }
2528 if (fAllMMIO)
2529 {
2530 /*
2531 * Ad-hoc range, unlink and free it.
2532 */
2533 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2534 GCPhys, GCPhysLast, pRam->pszDesc));
2535
2536 pVM->pgm.s.cAllPages -= cPages;
2537 pVM->pgm.s.cPureMmioPages -= cPages;
2538
2539 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2540 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2541 MMHyperFree(pVM, pRam);
2542 break;
2543 }
2544 }
2545
2546 /*
2547 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2548 */
2549 if ( GCPhysLast >= pRam->GCPhys
2550 && GCPhys <= pRam->GCPhysLast)
2551 {
2552 Assert(GCPhys >= pRam->GCPhys);
2553 Assert(GCPhysLast <= pRam->GCPhysLast);
2554
2555 /*
2556 * Turn the pages back into RAM pages.
2557 */
2558 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2559 uint32_t cLeft = cb >> PAGE_SHIFT;
2560 while (cLeft--)
2561 {
2562 PPGMPAGE pPage = &pRam->aPages[iPage];
2563 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2564 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2565 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2566 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2567 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2568 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2569 }
2570 break;
2571 }
2572
2573 /* next */
2574 pRamPrev = pRam;
2575 pRam = pRam->pNextR3;
2576 }
2577 }
2578
2579 /* Force a PGM pool flush as guest ram references have been changed. */
2580 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2581 * this internally (not touch mapped mmio while changing the mapping). */
2582 PVMCPU pVCpu = VMMGetCpu(pVM);
2583 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2584 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2585
2586 pgmPhysInvalidatePageMapTLB(pVM);
2587 pgmPhysInvalidRamRangeTlbs(pVM);
2588 pgmUnlock(pVM);
2589 return rc;
2590}
2591
2592
2593/**
2594 * Locate a MMIO2 range.
2595 *
2596 * @returns Pointer to the MMIO2 range.
2597 * @param pVM The cross context VM structure.
2598 * @param pDevIns The device instance owning the region.
2599 * @param iSubDev The sub-device number.
2600 * @param iRegion The region.
2601 * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and
2602 * @a iRegion.
2603 */
2604DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev,
2605 uint32_t iRegion, PGMMMIO2HANDLE hMmio2)
2606{
2607 if (hMmio2 != NIL_PGMMMIO2HANDLE)
2608 {
2609 if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0)
2610 {
2611 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1];
2612 if (pCur && pCur->pDevInsR3 == pDevIns)
2613 {
2614 Assert(pCur->idMmio2 == hMmio2);
2615 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL);
2616 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2617 return pCur;
2618 }
2619 Assert(!pCur);
2620 }
2621 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2622 if (pCur->idMmio2 == hMmio2)
2623 {
2624 AssertBreak(pCur->pDevInsR3 == pDevIns);
2625 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL);
2626 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2627 return pCur;
2628 }
2629 }
2630 else
2631 {
2632 /*
2633 * Search the list. There shouldn't be many entries.
2634 */
2635 /** @todo Optimize this lookup! There may now be many entries and it'll
2636 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2637 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2638 if ( pCur->pDevInsR3 == pDevIns
2639 && pCur->iRegion == iRegion
2640 && pCur->iSubDev == iSubDev)
2641 return pCur;
2642 }
2643 return NULL;
2644}
2645
2646
2647#ifndef PGM_WITHOUT_MAPPINGS
2648/**
2649 * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.}
2650 * @sa pgmR3PhysRamRangeRelocate
2651 */
2652static DECLCALLBACK(bool) pgmR3PhysMmio2RangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
2653 PGMRELOCATECALL enmMode, void *pvUser)
2654{
2655 PPGMREGMMIO2RANGE pMmio = (PPGMREGMMIO2RANGE)pvUser;
2656 Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
2657 Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange)); RT_NOREF_PV(GCPtrOld);
2658
2659 switch (enmMode)
2660 {
2661 case PGMRELOCATECALL_SUGGEST:
2662 return true;
2663
2664 case PGMRELOCATECALL_RELOCATE:
2665 {
2666 /*
2667 * Update myself, then relink all the ranges and flush the RC TLB.
2668 */
2669 pgmLock(pVM);
2670
2671 pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange));
2672
2673 pgmR3PhysRelinkRamRanges(pVM);
2674 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2675 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2676
2677 pgmUnlock(pVM);
2678 return true;
2679 }
2680
2681 default:
2682 AssertFailedReturn(false);
2683 }
2684}
2685#endif /* !PGM_WITHOUT_MAPPINGS */
2686
2687
2688/**
2689 * Calculates the number of chunks
2690 *
2691 * @returns Number of registration chunk needed.
2692 * @param pVM The cross context VM structure.
2693 * @param cb The size of the MMIO/MMIO2 range.
2694 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2695 * chunk. Optional.
2696 * @param pcbChunk Where to return the guest mapping size for a chunk.
2697 */
2698static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2699{
2700 RT_NOREF_PV(pVM); /* without raw mode */
2701
2702 /*
2703 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2704 * needing a few bytes extra the PGMREGMMIO2RANGE structure.
2705 *
2706 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2707 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2708 */
2709 uint32_t cbChunk = 16U*_1M;
2710 uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
2711 AssertCompile(sizeof(PGMREGMMIO2RANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
2712 AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
2713 AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
2714 if (pcbChunk)
2715 *pcbChunk = cbChunk;
2716 if (pcPagesPerChunk)
2717 *pcPagesPerChunk = cPagesPerChunk;
2718
2719 /* Calc the number of chunks we need. */
2720 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2721 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2722 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2723 return cChunks;
2724}
2725
2726
2727/**
2728 * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE
2729 * structures and does basic initialization.
2730 *
2731 * Caller must set type specfic members and initialize the PGMPAGE structures.
2732 *
2733 * This was previously also used by PGMR3PhysMmio2PreRegister, a function for
2734 * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM
2735 * interface. The reference to caller and type above is purely historical.
2736 *
2737 * @returns VBox status code.
2738 * @param pVM The cross context VM structure.
2739 * @param pDevIns The device instance owning the region.
2740 * @param iSubDev The sub-device number (internal PCI config number).
2741 * @param iRegion The region number. If the MMIO2 memory is a PCI
2742 * I/O region this number has to be the number of that
2743 * region. Otherwise it can be any number safe
2744 * UINT8_MAX.
2745 * @param cb The size of the region. Must be page aligned.
2746 * @param pszDesc The description.
2747 * @param ppHeadRet Where to return the pointer to the first
2748 * registration chunk.
2749 *
2750 * @thread EMT
2751 */
2752static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2753 const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet)
2754{
2755 /*
2756 * Figure out how many chunks we need and of which size.
2757 */
2758 uint32_t cPagesPerChunk;
2759 uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2760 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2761
2762 /*
2763 * Allocate the chunks.
2764 */
2765 PPGMREGMMIO2RANGE *ppNext = ppHeadRet;
2766 *ppNext = NULL;
2767
2768 int rc = VINF_SUCCESS;
2769 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2770 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++)
2771 {
2772 /*
2773 * We currently do a single RAM range for the whole thing. This will
2774 * probably have to change once someone needs really large MMIO regions,
2775 * as we will be running into SUPR3PageAllocEx limitations and such.
2776 */
2777 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2778 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]);
2779 PPGMREGMMIO2RANGE pNew = NULL;
2780 if ( iChunk + 1 < cChunks
2781 || cbRange >= _1M)
2782 {
2783 /*
2784 * Allocate memory for the registration structure.
2785 */
2786 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2787 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2788 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2789 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2790 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2791 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2792 void *pvChunk = NULL;
2793 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
2794 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2795
2796 Assert(R0PtrChunk != NIL_RTR0PTR);
2797 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2798
2799 pNew = (PPGMREGMMIO2RANGE)pvChunk;
2800 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2801 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2802
2803 RTMemTmpFree(paChunkPages);
2804 }
2805 /*
2806 * Not so big, do a one time hyper allocation.
2807 */
2808 else
2809 {
2810 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2811 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2812
2813 /*
2814 * Initialize allocation specific items.
2815 */
2816 //pNew->RamRange.fFlags = 0;
2817 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2818 }
2819
2820 /*
2821 * Initialize the registration structure (caller does specific bits).
2822 */
2823 pNew->pDevInsR3 = pDevIns;
2824 //pNew->pvR3 = NULL;
2825 //pNew->pNext = NULL;
2826 //pNew->fFlags = 0;
2827 if (iChunk == 0)
2828 pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK;
2829 if (iChunk + 1 == cChunks)
2830 pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK;
2831 pNew->iSubDev = iSubDev;
2832 pNew->iRegion = iRegion;
2833 pNew->idSavedState = UINT8_MAX;
2834 pNew->idMmio2 = UINT8_MAX;
2835 //pNew->pPhysHandlerR3 = NULL;
2836 //pNew->paLSPages = NULL;
2837 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2838 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2839 pNew->RamRange.pszDesc = pszDesc;
2840 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2841 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2842 //pNew->RamRange.pvR3 = NULL;
2843 //pNew->RamRange.paLSPages = NULL;
2844
2845 *ppNext = pNew;
2846 ASMCompilerBarrier();
2847 cPagesLeft -= cPagesTrackedByChunk;
2848 ppNext = &pNew->pNextR3;
2849 }
2850 Assert(cPagesLeft == 0);
2851
2852 if (RT_SUCCESS(rc))
2853 {
2854 Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
2855 return VINF_SUCCESS;
2856 }
2857
2858 /*
2859 * Free floating ranges.
2860 */
2861 while (*ppHeadRet)
2862 {
2863 PPGMREGMMIO2RANGE pFree = *ppHeadRet;
2864 *ppHeadRet = pFree->pNextR3;
2865
2866 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
2867 {
2868 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
2869 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2870 SUPR3PageFreeEx(pFree, cChunkPages);
2871 }
2872 }
2873
2874 return rc;
2875}
2876
2877
2878/**
2879 * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
2880 * complete registration entry into the lists and lookup tables.
2881 *
2882 * @param pVM The cross context VM structure.
2883 * @param pNew The new MMIO / MMIO2 registration to link.
2884 */
2885static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
2886{
2887 /*
2888 * Link it into the list (order doesn't matter, so insert it at the head).
2889 *
2890 * Note! The range we're linking may consist of multiple chunks, so we
2891 * have to find the last one.
2892 */
2893 PPGMREGMMIO2RANGE pLast = pNew;
2894 for (pLast = pNew; ; pLast = pLast->pNextR3)
2895 {
2896 if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2897 break;
2898 Assert(pLast->pNextR3);
2899 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
2900 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
2901 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
2902 Assert((pLast->pNextR3->fFlags & PGMREGMMIO2RANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2));
2903 Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? pLast->idMmio2 + 1 : UINT8_MAX));
2904 }
2905
2906 pgmLock(pVM);
2907
2908 /* Link in the chain of ranges at the head of the list. */
2909 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
2910 pVM->pgm.s.pRegMmioRangesR3 = pNew;
2911
2912 /* If MMIO, insert the MMIO2 range/page IDs. */
2913 uint8_t idMmio2 = pNew->idMmio2;
2914 if (idMmio2 != UINT8_MAX)
2915 {
2916 for (;;)
2917 {
2918 Assert(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2);
2919 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2920 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2921 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2922 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2923 if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2924 break;
2925 pNew = pNew->pNextR3;
2926 idMmio2++;
2927 }
2928 }
2929 else
2930 Assert(!(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2));
2931
2932 pgmPhysInvalidatePageMapTLB(pVM);
2933 pgmUnlock(pVM);
2934}
2935
2936
2937/**
2938 * Allocate and register an MMIO2 region.
2939 *
2940 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2941 * associated with a device. It is also non-shared memory with a permanent
2942 * ring-3 mapping and page backing (presently).
2943 *
2944 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2945 * the VM, in which case we'll drop the base memory pages. Presently we will
2946 * make no attempt to preserve anything that happens to be present in the base
2947 * memory that is replaced, this is of course incorrect but it's too much
2948 * effort.
2949 *
2950 * @returns VBox status code.
2951 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2952 * memory.
2953 * @retval VERR_ALREADY_EXISTS if the region already exists.
2954 *
2955 * @param pVM The cross context VM structure.
2956 * @param pDevIns The device instance owning the region.
2957 * @param iSubDev The sub-device number.
2958 * @param iRegion The region number. If the MMIO2 memory is a PCI
2959 * I/O region this number has to be the number of that
2960 * region. Otherwise it can be any number save
2961 * UINT8_MAX.
2962 * @param cb The size of the region. Must be page aligned.
2963 * @param fFlags Reserved for future use, must be zero.
2964 * @param pszDesc The description.
2965 * @param ppv Where to store the pointer to the ring-3 mapping of
2966 * the memory.
2967 * @param phRegion Where to return the MMIO2 region handle. Optional.
2968 * @thread EMT
2969 */
2970VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2971 uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
2972{
2973 /*
2974 * Validate input.
2975 */
2976 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2977 *ppv = NULL;
2978 if (phRegion)
2979 {
2980 AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
2981 *phRegion = NIL_PGMMMIO2HANDLE;
2982 }
2983 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2984 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2985 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
2986 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2987 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2988 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2989 AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS);
2990 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2991 AssertReturn(cb, VERR_INVALID_PARAMETER);
2992 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2993
2994 const uint32_t cPages = cb >> PAGE_SHIFT;
2995 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
2996 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
2997 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE);
2998
2999 /*
3000 * For the 2nd+ instance, mangle the description string so it's unique.
3001 */
3002 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3003 {
3004 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3005 if (!pszDesc)
3006 return VERR_NO_MEMORY;
3007 }
3008
3009 /*
3010 * Allocate an MMIO2 range ID (not freed on failure).
3011 *
3012 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3013 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3014 */
3015 unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL);
3016 pgmLock(pVM);
3017 uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3018 unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3019 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3020 {
3021 pgmUnlock(pVM);
3022 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3023 }
3024 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3025 pgmUnlock(pVM);
3026
3027 /*
3028 * Try reserve and allocate the backing memory first as this is what is
3029 * most likely to fail.
3030 */
3031 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3032 if (RT_SUCCESS(rc))
3033 {
3034 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3035 if (RT_SUCCESS(rc))
3036 {
3037 void *pvPages;
3038#if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM)
3039 RTR0PTR pvPagesR0;
3040 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages);
3041#else
3042 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3043#endif
3044 if (RT_SUCCESS(rc))
3045 {
3046 memset(pvPages, 0, cPages * PAGE_SIZE);
3047
3048 /*
3049 * Create the registered MMIO range record for it.
3050 */
3051 PPGMREGMMIO2RANGE pNew;
3052 rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew);
3053 if (RT_SUCCESS(rc))
3054 {
3055 if (phRegion)
3056 *phRegion = idMmio2; /* The ID of the first chunk. */
3057
3058 uint32_t iSrcPage = 0;
3059 uint8_t *pbCurPages = (uint8_t *)pvPages;
3060 for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3061 {
3062 pCur->pvR3 = pbCurPages;
3063#if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM)
3064 pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT);
3065#endif
3066 pCur->RamRange.pvR3 = pbCurPages;
3067 pCur->idMmio2 = idMmio2;
3068 pCur->fFlags |= PGMREGMMIO2RANGE_F_MMIO2;
3069
3070 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3071 while (iDstPage-- > 0)
3072 {
3073 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3074 paPages[iDstPage + iSrcPage].Phys,
3075 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3076 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3077 }
3078
3079 /* advance. */
3080 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3081 pbCurPages += pCur->RamRange.cb;
3082 idMmio2++;
3083 }
3084
3085 RTMemTmpFree(paPages);
3086
3087 /*
3088 * Update the page count stats, link the registration and we're done.
3089 */
3090 pVM->pgm.s.cAllPages += cPages;
3091 pVM->pgm.s.cPrivatePages += cPages;
3092
3093 pgmR3PhysMmio2Link(pVM, pNew);
3094
3095 *ppv = pvPages;
3096 return VINF_SUCCESS;
3097 }
3098
3099 SUPR3PageFreeEx(pvPages, cPages);
3100 }
3101 }
3102 RTMemTmpFree(paPages);
3103 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3104 }
3105 if (pDevIns->iInstance > 0)
3106 MMR3HeapFree((void *)pszDesc);
3107 return rc;
3108}
3109
3110
3111/**
3112 * Deregisters and frees an MMIO2 region.
3113 *
3114 * Any physical access handlers registered for the region must be deregistered
3115 * before calling this function.
3116 *
3117 * @returns VBox status code.
3118 * @param pVM The cross context VM structure.
3119 * @param pDevIns The device instance owning the region.
3120 * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
3121 * regions for the given device is to be deregistered.
3122 */
3123VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3124{
3125 /*
3126 * Validate input.
3127 */
3128 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3129 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3130
3131 /*
3132 * The loop here scanning all registrations will make sure that multi-chunk ranges
3133 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3134 */
3135 pgmLock(pVM);
3136 int rc = VINF_SUCCESS;
3137 unsigned cFound = 0;
3138 PPGMREGMMIO2RANGE pPrev = NULL;
3139 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3140 while (pCur)
3141 {
3142 uint32_t const fFlags = pCur->fFlags;
3143 if ( pCur->pDevInsR3 == pDevIns
3144 && ( hMmio2 == NIL_PGMMMIO2HANDLE
3145 || pCur->idMmio2 == hMmio2))
3146 {
3147 Assert(fFlags & PGMREGMMIO2RANGE_F_MMIO2);
3148 cFound++;
3149
3150 /*
3151 * Unmap it if it's mapped.
3152 */
3153 if (fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3154 {
3155 int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys);
3156 AssertRC(rc2);
3157 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3158 rc = rc2;
3159 }
3160
3161 /*
3162 * Unlink it
3163 */
3164 PPGMREGMMIO2RANGE pNext = pCur->pNextR3;
3165 if (pPrev)
3166 pPrev->pNextR3 = pNext;
3167 else
3168 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3169 pCur->pNextR3 = NULL;
3170
3171 uint8_t idMmio2 = pCur->idMmio2;
3172 if (idMmio2 != UINT8_MAX)
3173 {
3174 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3175 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3176 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3177 }
3178
3179 /*
3180 * Free the memory.
3181 */
3182 const bool fIsMmio2 = RT_BOOL(fFlags & PGMREGMMIO2RANGE_F_MMIO2);
3183 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3184 if (fIsMmio2)
3185 {
3186 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3187 AssertRC(rc2);
3188 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3189 rc = rc2;
3190
3191 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3192 AssertRC(rc2);
3193 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3194 rc = rc2;
3195 }
3196
3197 /* we're leaking hyper memory here if done at runtime. */
3198#ifdef VBOX_STRICT
3199 VMSTATE const enmState = VMR3GetState(pVM);
3200 AssertMsg( enmState == VMSTATE_POWERING_OFF
3201 || enmState == VMSTATE_POWERING_OFF_LS
3202 || enmState == VMSTATE_OFF
3203 || enmState == VMSTATE_OFF_LS
3204 || enmState == VMSTATE_DESTROYING
3205 || enmState == VMSTATE_TERMINATED
3206 || enmState == VMSTATE_CREATING
3207 , ("%s\n", VMR3GetStateName(enmState)));
3208#endif
3209
3210 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3211 {
3212 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]);
3213 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3214 SUPR3PageFreeEx(pCur, cChunkPages);
3215 }
3216 /*else
3217 {
3218 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3219 AssertRCReturn(rc, rc);
3220 } */
3221
3222
3223 /* update page count stats */
3224 pVM->pgm.s.cAllPages -= cPages;
3225 if (fIsMmio2)
3226 pVM->pgm.s.cPrivatePages -= cPages;
3227 else
3228 pVM->pgm.s.cPureMmioPages -= cPages;
3229
3230 /* next */
3231 pCur = pNext;
3232 if (hMmio2 != NIL_PGMMMIO2HANDLE)
3233 {
3234 if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3235 break;
3236 hMmio2++;
3237 Assert(pCur->idMmio2 == hMmio2);
3238 Assert(pCur->pDevInsR3 == pDevIns);
3239 Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK));
3240 }
3241 }
3242 else
3243 {
3244 pPrev = pCur;
3245 pCur = pCur->pNextR3;
3246 }
3247 }
3248 pgmPhysInvalidatePageMapTLB(pVM);
3249 pgmUnlock(pVM);
3250 return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
3251}
3252
3253
3254/**
3255 * Maps a MMIO2 region.
3256 *
3257 * This is typically done when a guest / the bios / state loading changes the
3258 * PCI config. The replacing of base memory has the same restrictions as during
3259 * registration, of course.
3260 *
3261 * @returns VBox status code.
3262 *
3263 * @param pVM The cross context VM structure.
3264 * @param pDevIns The device instance owning the region.
3265 * @param hMmio2 The handle of the region to map.
3266 * @param GCPhys The guest-physical address to be remapped.
3267 */
3268VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3269{
3270 /*
3271 * Validate input.
3272 *
3273 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3274 * happens during VM construction.
3275 */
3276 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3277 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3278 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3279 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3280 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3281 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3282
3283 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3284 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3285 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3286
3287 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3288 RTGCPHYS cbRange = 0;
3289 for (;;)
3290 {
3291 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER);
3292 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3293 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3294 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3295 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3296 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3297 cbRange += pLastMmio->RamRange.cb;
3298 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3299 break;
3300 pLastMmio = pLastMmio->pNextR3;
3301 }
3302
3303 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3304 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3305
3306 /*
3307 * Find our location in the ram range list, checking for restriction
3308 * we don't bother implementing yet (partially overlapping, multiple
3309 * ram ranges).
3310 */
3311 pgmLock(pVM);
3312
3313 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER);
3314
3315 bool fRamExists = false;
3316 PPGMRAMRANGE pRamPrev = NULL;
3317 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3318 while (pRam && GCPhysLast >= pRam->GCPhys)
3319 {
3320 if ( GCPhys <= pRam->GCPhysLast
3321 && GCPhysLast >= pRam->GCPhys)
3322 {
3323 /* Completely within? */
3324 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3325 && GCPhysLast <= pRam->GCPhysLast,
3326 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3327 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3328 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3329 pgmUnlock(pVM),
3330 VERR_PGM_RAM_CONFLICT);
3331
3332 /* Check that all the pages are RAM pages. */
3333 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3334 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3335 while (cPagesLeft-- > 0)
3336 {
3337 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3338 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3339 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3340 pgmUnlock(pVM),
3341 VERR_PGM_RAM_CONFLICT);
3342 pPage++;
3343 }
3344
3345 /* There can only be one MMIO/MMIO2 chunk matching here! */
3346 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3347 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3348 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3349 pgmUnlock(pVM),
3350 VERR_PGM_PHYS_MMIO_EX_IPE);
3351
3352 fRamExists = true;
3353 break;
3354 }
3355
3356 /* next */
3357 pRamPrev = pRam;
3358 pRam = pRam->pNextR3;
3359 }
3360 Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3361
3362
3363 /*
3364 * Make the changes.
3365 */
3366 RTGCPHYS GCPhysCur = GCPhys;
3367 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3368 {
3369 pCurMmio->RamRange.GCPhys = GCPhysCur;
3370 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3371 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3372 {
3373 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3374 break;
3375 }
3376 GCPhysCur += pCurMmio->RamRange.cb;
3377 }
3378
3379 if (fRamExists)
3380 {
3381 /*
3382 * Make all the pages in the range MMIO/ZERO pages, freeing any
3383 * RAM pages currently mapped here. This might not be 100% correct
3384 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3385 *
3386 * We replace this MMIO/ZERO pages with real pages in the MMIO2 case.
3387 */
3388 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
3389
3390 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
3391 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3392
3393 if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2)
3394 {
3395 /* replace the pages, freeing all present RAM pages. */
3396 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3397 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3398 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3399 while (cPagesLeft-- > 0)
3400 {
3401 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3402
3403 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3404 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3405 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3406 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3407 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3408 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3409 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3410 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3411 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3412 /* (We tell NEM at the end of the function.) */
3413
3414 pVM->pgm.s.cZeroPages--;
3415 GCPhys += PAGE_SIZE;
3416 pPageSrc++;
3417 pPageDst++;
3418 }
3419 }
3420
3421 /* Flush physical page map TLB. */
3422 pgmPhysInvalidatePageMapTLB(pVM);
3423
3424 /* Force a PGM pool flush as guest ram references have been changed. */
3425 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3426 * this internally (not touch mapped mmio while changing the mapping). */
3427 PVMCPU pVCpu = VMMGetCpu(pVM);
3428 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3429 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3430 }
3431 else
3432 {
3433 /*
3434 * No RAM range, insert the ones prepared during registration.
3435 */
3436 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3437 {
3438 /* Clear the tracking data of pages we're going to reactivate. */
3439 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3440 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3441 while (cPagesLeft-- > 0)
3442 {
3443 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3444 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3445 pPageSrc++;
3446 }
3447
3448 /* link in the ram range */
3449 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3450
3451 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3452 {
3453 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3454 break;
3455 }
3456 pRamPrev = &pCurMmio->RamRange;
3457 }
3458 }
3459
3460 /*
3461 * Register the access handler if plain MMIO.
3462 *
3463 * We must register access handlers for each range since the access handler
3464 * code refuses to deal with multiple ranges (and we can).
3465 */
3466 if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2))
3467 {
3468 AssertFailed();
3469 int rc = VINF_SUCCESS;
3470 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3471 {
3472 Assert(!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED));
3473 rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys,
3474 pCurMmio->RamRange.GCPhysLast);
3475 if (RT_FAILURE(rc))
3476 break;
3477 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; /* Use this to mark that the handler is registered. */
3478 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3479 break;
3480 }
3481 if (RT_FAILURE(rc))
3482 {
3483 /* Almost impossible, but try clean up properly and get out of here. */
3484 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3485 {
3486 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3487 {
3488 pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_MAPPED;
3489 pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists);
3490 }
3491
3492 if (!fRamExists)
3493 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3494 else
3495 {
3496 Assert(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
3497
3498 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3499 PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3500 while (cPagesLeft-- > 0)
3501 {
3502 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3503 pPageDst++;
3504 }
3505 }
3506
3507 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3508 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3509 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3510 break;
3511 }
3512
3513 pgmUnlock(pVM);
3514 return rc;
3515 }
3516 }
3517
3518 /*
3519 * We're good, set the flags and invalid the mapping TLB.
3520 */
3521 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3522 {
3523 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
3524 if (fRamExists)
3525 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING;
3526 else
3527 pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
3528 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3529 break;
3530 }
3531 pgmPhysInvalidatePageMapTLB(pVM);
3532
3533 /*
3534 * Notify NEM while holding the lock (experimental) and REM without (like always).
3535 */
3536 uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3537 | (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3538 int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3);
3539
3540 pgmUnlock(pVM);
3541
3542 return rc;
3543}
3544
3545
3546/**
3547 * Unmaps an MMIO2 region.
3548 *
3549 * This is typically done when a guest / the bios / state loading changes the
3550 * PCI config. The replacing of base memory has the same restrictions as during
3551 * registration, of course.
3552 */
3553VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3554{
3555 /*
3556 * Validate input
3557 */
3558 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3559 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3560 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3561 if (GCPhys != NIL_RTGCPHYS)
3562 {
3563 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3564 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3565 }
3566
3567 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3568 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3569 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3570
3571 int rc = pgmLock(pVM);
3572 AssertRCReturn(rc, rc);
3573
3574 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3575 RTGCPHYS cbRange = 0;
3576 for (;;)
3577 {
3578 AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
3579 AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, pgmUnlock(pVM), VERR_INVALID_PARAMETER);
3580 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3581 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3582 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3583 cbRange += pLastMmio->RamRange.cb;
3584 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3585 break;
3586 pLastMmio = pLastMmio->pNextR3;
3587 }
3588
3589 Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n",
3590 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3591
3592 uint16_t const fOldFlags = pFirstMmio->fFlags;
3593 AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
3594
3595 /*
3596 * If plain MMIO, we must deregister the handlers first.
3597 */
3598 if (!(fOldFlags & PGMREGMMIO2RANGE_F_MMIO2))
3599 {
3600 AssertFailed();
3601
3602 PPGMREGMMIO2RANGE pCurMmio = pFirstMmio;
3603 rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING));
3604 AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
3605 while (!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK))
3606 {
3607 pCurMmio = pCurMmio->pNextR3;
3608 rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING));
3609 AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE);
3610 }
3611 }
3612
3613 /*
3614 * Unmap it.
3615 */
3616 RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys;
3617 if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
3618 {
3619 /*
3620 * We've replaced RAM, replace with zero pages.
3621 *
3622 * Note! This is where we might differ a little from a real system, because
3623 * it's likely to just show the RAM pages as they were before the
3624 * MMIO/MMIO2 region was mapped here.
3625 */
3626 /* Only one chunk allowed when overlapping! */
3627 Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK);
3628
3629 /* Restore the RAM pages we've replaced. */
3630 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3631 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3632 pRam = pRam->pNextR3;
3633
3634 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3635 if (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2)
3636 pVM->pgm.s.cZeroPages += cPagesLeft;
3637
3638 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3639 while (cPagesLeft-- > 0)
3640 {
3641 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3642 pPageDst++;
3643 }
3644
3645 /* Flush physical page map TLB. */
3646 pgmPhysInvalidatePageMapTLB(pVM);
3647
3648 /* Update range state. */
3649 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3650 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3651 pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3652 }
3653 else
3654 {
3655 /*
3656 * Unlink the chunks related to the MMIO/MMIO2 region.
3657 */
3658 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3659 {
3660 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3661 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3662 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3663 pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3664 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3665 break;
3666 }
3667 }
3668
3669 /* Force a PGM pool flush as guest ram references have been changed. */
3670 /** @todo not entirely SMP safe; assuming for now the guest takes care
3671 * of this internally (not touch mapped mmio while changing the
3672 * mapping). */
3673 PVMCPU pVCpu = VMMGetCpu(pVM);
3674 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3675 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3676
3677 pgmPhysInvalidatePageMapTLB(pVM);
3678 pgmPhysInvalidRamRangeTlbs(pVM);
3679
3680 /*
3681 * Notify NEM while holding the lock (experimental) and REM without (like always).
3682 */
3683 uint32_t const fNemFlags = (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
3684 | (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
3685 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags);
3686
3687 pgmUnlock(pVM);
3688 return rc;
3689}
3690
3691
3692/**
3693 * Reduces the mapping size of a MMIO2 region.
3694 *
3695 * This is mainly for dealing with old saved states after changing the default
3696 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3697 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3698 *
3699 * The region must not currently be mapped when making this call. The VM state
3700 * must be state restore or VM construction.
3701 *
3702 * @returns VBox status code.
3703 * @param pVM The cross context VM structure.
3704 * @param pDevIns The device instance owning the region.
3705 * @param hMmio2 The handle of the region to reduce.
3706 * @param cbRegion The new mapping size.
3707 */
3708VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
3709{
3710 /*
3711 * Validate input
3712 */
3713 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3714 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3715 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3716 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3717 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3718 VMSTATE enmVmState = VMR3GetState(pVM);
3719 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3720 || enmVmState == VMSTATE_LOADING,
3721 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3722 VERR_VM_INVALID_VM_STATE);
3723
3724 int rc = pgmLock(pVM);
3725 AssertRCReturn(rc, rc);
3726
3727 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3728 if (pFirstMmio)
3729 {
3730 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3731 if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED))
3732 {
3733 /*
3734 * NOTE! Current implementation does not support multiple ranges.
3735 * Implement when there is a real world need and thus a testcase.
3736 */
3737 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3738 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3739 rc = VERR_NOT_SUPPORTED);
3740 if (RT_SUCCESS(rc))
3741 {
3742 /*
3743 * Make the change.
3744 */
3745 Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
3746 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
3747
3748 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
3749 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
3750 rc = VERR_OUT_OF_RANGE);
3751 if (RT_SUCCESS(rc))
3752 {
3753 pFirstMmio->RamRange.cb = cbRegion;
3754 }
3755 }
3756 }
3757 else
3758 rc = VERR_WRONG_ORDER;
3759 }
3760 else
3761 rc = VERR_NOT_FOUND;
3762
3763 pgmUnlock(pVM);
3764 return rc;
3765}
3766
3767
3768/**
3769 * Validates @a hMmio2, making sure it belongs to @a pDevIns.
3770 *
3771 * @returns VBox status code.
3772 * @param pVM The cross context VM structure.
3773 * @param pDevIns The device which allegedly owns @a hMmio2.
3774 * @param hMmio2 The handle to validate.
3775 */
3776VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3777{
3778 /*
3779 * Validate input
3780 */
3781 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3782 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
3783
3784 /*
3785 * Just do this the simple way. No need for locking as this is only taken at
3786 */
3787 pgmLock(pVM);
3788 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3789 pgmUnlock(pVM);
3790 AssertReturn(pFirstMmio, VERR_INVALID_HANDLE);
3791 AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2, VERR_INVALID_HANDLE);
3792 AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE);
3793 return VINF_SUCCESS;
3794}
3795
3796
3797#ifndef PGM_WITHOUT_MAPPINGS
3798/**
3799 * Gets the HC physical address of a page in the MMIO2 region.
3800 *
3801 * This is API is intended for MMHyper and shouldn't be called
3802 * by anyone else...
3803 *
3804 * @returns VBox status code.
3805 * @param pVM The cross context VM structure.
3806 * @param pDevIns The owner of the memory, optional.
3807 * @param iSubDev Sub-device number.
3808 * @param iRegion The region.
3809 * @param off The page expressed an offset into the MMIO2 region.
3810 * @param pHCPhys Where to store the result.
3811 */
3812VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
3813 RTGCPHYS off, PRTHCPHYS pHCPhys)
3814{
3815 /*
3816 * Validate input
3817 */
3818 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3819 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3820 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3821 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3822
3823 pgmLock(pVM);
3824 PPGMREGMMIO2RANGE pCurMmio = pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE);
3825 AssertReturn(pCurMmio, VERR_NOT_FOUND);
3826 AssertReturn(pCurMmio->fFlags & (PGMREGMMIO2RANGE_F_MMIO2 | PGMREGMMIO2RANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
3827
3828 while ( off >= pCurMmio->RamRange.cb
3829 && !(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK))
3830 {
3831 off -= pCurMmio->RamRange.cb;
3832 pCurMmio = pCurMmio->pNextR3;
3833 }
3834 AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER);
3835
3836 PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT];
3837 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
3838 pgmUnlock(pVM);
3839 return VINF_SUCCESS;
3840}
3841#endif /* !PGM_WITHOUT_MAPPINGS */
3842
3843
3844/**
3845 * Gets the mapping address of an MMIO2 region.
3846 *
3847 * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
3848 *
3849 * @param pVM The cross context VM structure.
3850 * @param pDevIns The device owning the MMIO2 handle.
3851 * @param hMmio2 The region handle.
3852 */
3853VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3854{
3855 AssertPtrReturn(pDevIns, NIL_RTGCPHYS);
3856
3857 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3858 AssertReturn(pFirstRegMmio, NIL_RTGCPHYS);
3859
3860 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3861 return pFirstRegMmio->RamRange.GCPhys;
3862 return NIL_RTGCPHYS;
3863}
3864
3865/**
3866 * Changes the region number of an MMIO2 region.
3867 *
3868 * This is only for dealing with save state issues, nothing else.
3869 *
3870 * @return VBox status code.
3871 *
3872 * @param pVM The cross context VM structure.
3873 * @param pDevIns The device owning the MMIO2 memory.
3874 * @param hMmio2 The handle of the region.
3875 * @param iNewRegion The new region index.
3876 *
3877 * @thread EMT(0)
3878 * @sa @bugref{9359}
3879 */
3880VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
3881{
3882 /*
3883 * Validate input.
3884 */
3885 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3886 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
3887 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3888 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3889 AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3890
3891 AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
3892
3893 int rc = pgmLock(pVM);
3894 AssertRCReturn(rc, rc);
3895
3896 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3897 AssertReturnStmt(pFirstRegMmio, pgmUnlock(pVM), VERR_NOT_FOUND);
3898 AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL,
3899 pgmUnlock(pVM), VERR_RESOURCE_IN_USE);
3900
3901 /*
3902 * Make the change.
3903 */
3904 pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
3905
3906 pgmUnlock(pVM);
3907 return VINF_SUCCESS;
3908}
3909
3910
3911/**
3912 * Worker for PGMR3PhysRomRegister.
3913 *
3914 * This is here to simplify lock management, i.e. the caller does all the
3915 * locking and we can simply return without needing to remember to unlock
3916 * anything first.
3917 *
3918 * @returns VBox status code.
3919 * @param pVM The cross context VM structure.
3920 * @param pDevIns The device instance owning the ROM.
3921 * @param GCPhys First physical address in the range.
3922 * Must be page aligned!
3923 * @param cb The size of the range (in bytes).
3924 * Must be page aligned!
3925 * @param pvBinary Pointer to the binary data backing the ROM image.
3926 * @param cbBinary The size of the binary data pvBinary points to.
3927 * This must be less or equal to @a cb.
3928 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
3929 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
3930 * @param pszDesc Pointer to description string. This must not be freed.
3931 */
3932static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
3933 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
3934{
3935 /*
3936 * Validate input.
3937 */
3938 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3939 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
3940 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
3941 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3942 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3943 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
3944 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3945 AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
3946 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
3947
3948 const uint32_t cPages = cb >> PAGE_SHIFT;
3949
3950 /*
3951 * Find the ROM location in the ROM list first.
3952 */
3953 PPGMROMRANGE pRomPrev = NULL;
3954 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
3955 while (pRom && GCPhysLast >= pRom->GCPhys)
3956 {
3957 if ( GCPhys <= pRom->GCPhysLast
3958 && GCPhysLast >= pRom->GCPhys)
3959 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
3960 GCPhys, GCPhysLast, pszDesc,
3961 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
3962 VERR_PGM_RAM_CONFLICT);
3963 /* next */
3964 pRomPrev = pRom;
3965 pRom = pRom->pNextR3;
3966 }
3967
3968 /*
3969 * Find the RAM location and check for conflicts.
3970 *
3971 * Conflict detection is a bit different than for RAM
3972 * registration since a ROM can be located within a RAM
3973 * range. So, what we have to check for is other memory
3974 * types (other than RAM that is) and that we don't span
3975 * more than one RAM range (layz).
3976 */
3977 bool fRamExists = false;
3978 PPGMRAMRANGE pRamPrev = NULL;
3979 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3980 while (pRam && GCPhysLast >= pRam->GCPhys)
3981 {
3982 if ( GCPhys <= pRam->GCPhysLast
3983 && GCPhysLast >= pRam->GCPhys)
3984 {
3985 /* completely within? */
3986 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
3987 && GCPhysLast <= pRam->GCPhysLast,
3988 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
3989 GCPhys, GCPhysLast, pszDesc,
3990 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3991 VERR_PGM_RAM_CONFLICT);
3992 fRamExists = true;
3993 break;
3994 }
3995
3996 /* next */
3997 pRamPrev = pRam;
3998 pRam = pRam->pNextR3;
3999 }
4000 if (fRamExists)
4001 {
4002 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4003 uint32_t cPagesLeft = cPages;
4004 while (cPagesLeft-- > 0)
4005 {
4006 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4007 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4008 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4009 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4010 Assert(PGM_PAGE_IS_ZERO(pPage));
4011 pPage++;
4012 }
4013 }
4014
4015 /*
4016 * Update the base memory reservation if necessary.
4017 */
4018 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4019 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4020 cExtraBaseCost += cPages;
4021 if (cExtraBaseCost)
4022 {
4023 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4024 if (RT_FAILURE(rc))
4025 return rc;
4026 }
4027
4028 /*
4029 * Allocate memory for the virgin copy of the RAM.
4030 */
4031 PGMMALLOCATEPAGESREQ pReq;
4032 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4033 AssertRCReturn(rc, rc);
4034
4035 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4036 {
4037 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4038 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4039 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4040 }
4041
4042 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4043 if (RT_FAILURE(rc))
4044 {
4045 GMMR3AllocatePagesCleanup(pReq);
4046 return rc;
4047 }
4048
4049 /*
4050 * Allocate the new ROM range and RAM range (if necessary).
4051 */
4052 PPGMROMRANGE pRomNew;
4053 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4054 if (RT_SUCCESS(rc))
4055 {
4056 PPGMRAMRANGE pRamNew = NULL;
4057 if (!fRamExists)
4058 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4059 if (RT_SUCCESS(rc))
4060 {
4061 /*
4062 * Initialize and insert the RAM range (if required).
4063 */
4064 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4065 if (!fRamExists)
4066 {
4067 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4068 pRamNew->GCPhys = GCPhys;
4069 pRamNew->GCPhysLast = GCPhysLast;
4070 pRamNew->cb = cb;
4071 pRamNew->pszDesc = pszDesc;
4072 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4073 pRamNew->pvR3 = NULL;
4074 pRamNew->paLSPages = NULL;
4075
4076 PPGMPAGE pPage = &pRamNew->aPages[0];
4077 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4078 {
4079 PGM_PAGE_INIT(pPage,
4080 pReq->aPages[iPage].HCPhysGCPhys,
4081 pReq->aPages[iPage].idPage,
4082 PGMPAGETYPE_ROM,
4083 PGM_PAGE_STATE_ALLOCATED);
4084
4085 pRomPage->Virgin = *pPage;
4086 }
4087
4088 pVM->pgm.s.cAllPages += cPages;
4089 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4090 }
4091 else
4092 {
4093 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4094 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
4095 {
4096 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
4097 PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
4098 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
4099 PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
4100 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4101 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
4102 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
4103
4104 pRomPage->Virgin = *pPage;
4105 }
4106
4107 pRamNew = pRam;
4108
4109 pVM->pgm.s.cZeroPages -= cPages;
4110 }
4111 pVM->pgm.s.cPrivatePages += cPages;
4112
4113 /* Flush physical page map TLB. */
4114 pgmPhysInvalidatePageMapTLB(pVM);
4115
4116
4117 /* Notify NEM before we register handlers. */
4118 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4119 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4120 rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify);
4121
4122 /* Register the ROM access handler. */
4123 if (RT_SUCCESS(rc))
4124 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4125 pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
4126 pszDesc);
4127 if (RT_SUCCESS(rc))
4128 {
4129 /*
4130 * Copy the image over to the virgin pages.
4131 * This must be done after linking in the RAM range.
4132 */
4133 size_t cbBinaryLeft = cbBinary;
4134 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
4135 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4136 {
4137 void *pvDstPage;
4138 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4139 if (RT_FAILURE(rc))
4140 {
4141 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4142 break;
4143 }
4144 if (cbBinaryLeft >= PAGE_SIZE)
4145 {
4146 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4147 cbBinaryLeft -= PAGE_SIZE;
4148 }
4149 else
4150 {
4151 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4152 if (cbBinaryLeft > 0)
4153 {
4154 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4155 cbBinaryLeft = 0;
4156 }
4157 }
4158 }
4159 if (RT_SUCCESS(rc))
4160 {
4161 /*
4162 * Initialize the ROM range.
4163 * Note that the Virgin member of the pages has already been initialized above.
4164 */
4165 pRomNew->GCPhys = GCPhys;
4166 pRomNew->GCPhysLast = GCPhysLast;
4167 pRomNew->cb = cb;
4168 pRomNew->fFlags = fFlags;
4169 pRomNew->idSavedState = UINT8_MAX;
4170 pRomNew->cbOriginal = cbBinary;
4171 pRomNew->pszDesc = pszDesc;
4172 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4173 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4174 if (pRomNew->pvOriginal)
4175 {
4176 for (unsigned iPage = 0; iPage < cPages; iPage++)
4177 {
4178 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4179 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4180 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4181 }
4182
4183 /* update the page count stats for the shadow pages. */
4184 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4185 {
4186 pVM->pgm.s.cZeroPages += cPages;
4187 pVM->pgm.s.cAllPages += cPages;
4188 }
4189
4190 /*
4191 * Insert the ROM range, tell REM and return successfully.
4192 */
4193 pRomNew->pNextR3 = pRom;
4194 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4195
4196 if (pRomPrev)
4197 {
4198 pRomPrev->pNextR3 = pRomNew;
4199 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4200 }
4201 else
4202 {
4203 pVM->pgm.s.pRomRangesR3 = pRomNew;
4204 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4205 }
4206
4207 pgmPhysInvalidatePageMapTLB(pVM);
4208 GMMR3AllocatePagesCleanup(pReq);
4209
4210 /* Notify NEM again. */
4211 return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify);
4212 }
4213
4214 /* bail out */
4215 rc = VERR_NO_MEMORY;
4216 }
4217
4218 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4219 AssertRC(rc2);
4220 }
4221
4222 if (!fRamExists)
4223 {
4224 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4225 MMHyperFree(pVM, pRamNew);
4226 }
4227 }
4228 MMHyperFree(pVM, pRomNew);
4229 }
4230
4231 /** @todo Purge the mapping cache or something... */
4232 GMMR3FreeAllocatedPages(pVM, pReq);
4233 GMMR3AllocatePagesCleanup(pReq);
4234 return rc;
4235}
4236
4237
4238/**
4239 * Registers a ROM image.
4240 *
4241 * Shadowed ROM images requires double the amount of backing memory, so,
4242 * don't use that unless you have to. Shadowing of ROM images is process
4243 * where we can select where the reads go and where the writes go. On real
4244 * hardware the chipset provides means to configure this. We provide
4245 * PGMR3PhysProtectROM() for this purpose.
4246 *
4247 * A read-only copy of the ROM image will always be kept around while we
4248 * will allocate RAM pages for the changes on demand (unless all memory
4249 * is configured to be preallocated).
4250 *
4251 * @returns VBox status code.
4252 * @param pVM The cross context VM structure.
4253 * @param pDevIns The device instance owning the ROM.
4254 * @param GCPhys First physical address in the range.
4255 * Must be page aligned!
4256 * @param cb The size of the range (in bytes).
4257 * Must be page aligned!
4258 * @param pvBinary Pointer to the binary data backing the ROM image.
4259 * @param cbBinary The size of the binary data pvBinary points to.
4260 * This must be less or equal to @a cb.
4261 * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
4262 * @param pszDesc Pointer to description string. This must not be freed.
4263 *
4264 * @remark There is no way to remove the rom, automatically on device cleanup or
4265 * manually from the device yet. This isn't difficult in any way, it's
4266 * just not something we expect to be necessary for a while.
4267 */
4268VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4269 const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
4270{
4271 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4272 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4273 pgmLock(pVM);
4274 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4275 pgmUnlock(pVM);
4276 return rc;
4277}
4278
4279
4280/**
4281 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4282 * that the virgin part is untouched.
4283 *
4284 * This is done after the normal memory has been cleared.
4285 *
4286 * ASSUMES that the caller owns the PGM lock.
4287 *
4288 * @param pVM The cross context VM structure.
4289 */
4290int pgmR3PhysRomReset(PVM pVM)
4291{
4292 PGM_LOCK_ASSERT_OWNER(pVM);
4293 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4294 {
4295 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4296
4297 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4298 {
4299 /*
4300 * Reset the physical handler.
4301 */
4302 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4303 AssertRCReturn(rc, rc);
4304
4305 /*
4306 * What we do with the shadow pages depends on the memory
4307 * preallocation option. If not enabled, we'll just throw
4308 * out all the dirty pages and replace them by the zero page.
4309 */
4310 if (!pVM->pgm.s.fRamPreAlloc)
4311 {
4312 /* Free the dirty pages. */
4313 uint32_t cPendingPages = 0;
4314 PGMMFREEPAGESREQ pReq;
4315 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4316 AssertRCReturn(rc, rc);
4317
4318 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4319 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4320 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4321 {
4322 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4323 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4324 pRom->GCPhys + (iPage << PAGE_SHIFT),
4325 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4326 AssertLogRelRCReturn(rc, rc);
4327 }
4328
4329 if (cPendingPages)
4330 {
4331 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4332 AssertLogRelRCReturn(rc, rc);
4333 }
4334 GMMR3FreePagesCleanup(pReq);
4335 }
4336 else
4337 {
4338 /* clear all the shadow pages. */
4339 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4340 {
4341 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4342 continue;
4343 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4344 void *pvDstPage;
4345 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4346 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4347 if (RT_FAILURE(rc))
4348 break;
4349 ASMMemZeroPage(pvDstPage);
4350 }
4351 AssertRCReturn(rc, rc);
4352 }
4353 }
4354
4355 /*
4356 * Restore the original ROM pages after a saved state load.
4357 * Also, in strict builds check that ROM pages remain unmodified.
4358 */
4359#ifndef VBOX_STRICT
4360 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4361#endif
4362 {
4363 size_t cbSrcLeft = pRom->cbOriginal;
4364 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4365 uint32_t cRestored = 0;
4366 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4367 {
4368 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4369 void const *pvDstPage;
4370 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
4371 if (RT_FAILURE(rc))
4372 break;
4373
4374 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4375 {
4376 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4377 {
4378 void *pvDstPageW;
4379 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
4380 AssertLogRelRCReturn(rc, rc);
4381 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4382 cRestored++;
4383 }
4384 else
4385 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4386 }
4387 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4388 }
4389 if (cRestored > 0)
4390 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4391 }
4392 }
4393
4394 /* Clear the ROM restore flag now as we only need to do this once after
4395 loading saved state. */
4396 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4397
4398 return VINF_SUCCESS;
4399}
4400
4401
4402/**
4403 * Called by PGMR3Term to free resources.
4404 *
4405 * ASSUMES that the caller owns the PGM lock.
4406 *
4407 * @param pVM The cross context VM structure.
4408 */
4409void pgmR3PhysRomTerm(PVM pVM)
4410{
4411 /*
4412 * Free the heap copy of the original bits.
4413 */
4414 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4415 {
4416 if ( pRom->pvOriginal
4417 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4418 {
4419 RTMemFree((void *)pRom->pvOriginal);
4420 pRom->pvOriginal = NULL;
4421 }
4422 }
4423}
4424
4425
4426/**
4427 * Change the shadowing of a range of ROM pages.
4428 *
4429 * This is intended for implementing chipset specific memory registers
4430 * and will not be very strict about the input. It will silently ignore
4431 * any pages that are not the part of a shadowed ROM.
4432 *
4433 * @returns VBox status code.
4434 * @retval VINF_PGM_SYNC_CR3
4435 *
4436 * @param pVM The cross context VM structure.
4437 * @param GCPhys Where to start. Page aligned.
4438 * @param cb How much to change. Page aligned.
4439 * @param enmProt The new ROM protection.
4440 */
4441VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4442{
4443 /*
4444 * Check input
4445 */
4446 if (!cb)
4447 return VINF_SUCCESS;
4448 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4449 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4450 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4451 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4452 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4453
4454 /*
4455 * Process the request.
4456 */
4457 pgmLock(pVM);
4458 int rc = VINF_SUCCESS;
4459 bool fFlushTLB = false;
4460 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4461 {
4462 if ( GCPhys <= pRom->GCPhysLast
4463 && GCPhysLast >= pRom->GCPhys
4464 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4465 {
4466 /*
4467 * Iterate the relevant pages and make necessary the changes.
4468 */
4469 bool fChanges = false;
4470 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4471 ? pRom->cb >> PAGE_SHIFT
4472 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4473 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4474 iPage < cPages;
4475 iPage++)
4476 {
4477 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4478 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
4479 {
4480 fChanges = true;
4481
4482 /* flush references to the page. */
4483 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
4484 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
4485 true /*fFlushPTEs*/, &fFlushTLB);
4486 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
4487 rc = rc2;
4488 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
4489
4490 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
4491 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
4492
4493 *pOld = *pRamPage;
4494 *pRamPage = *pNew;
4495 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
4496
4497 /* Tell NEM about the backing and protection change. */
4498 if (VM_IS_NEM_ENABLED(pVM))
4499 {
4500 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
4501 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
4502 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
4503 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
4504 }
4505 }
4506 pRomPage->enmProt = enmProt;
4507 }
4508
4509 /*
4510 * Reset the access handler if we made changes, no need
4511 * to optimize this.
4512 */
4513 if (fChanges)
4514 {
4515 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
4516 if (RT_FAILURE(rc2))
4517 {
4518 pgmUnlock(pVM);
4519 AssertRC(rc);
4520 return rc2;
4521 }
4522 }
4523
4524 /* Advance - cb isn't updated. */
4525 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
4526 }
4527 }
4528 pgmUnlock(pVM);
4529 if (fFlushTLB)
4530 PGM_INVL_ALL_VCPU_TLBS(pVM);
4531
4532 return rc;
4533}
4534
4535
4536/**
4537 * Sets the Address Gate 20 state.
4538 *
4539 * @param pVCpu The cross context virtual CPU structure.
4540 * @param fEnable True if the gate should be enabled.
4541 * False if the gate should be disabled.
4542 */
4543VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
4544{
4545 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
4546 if (pVCpu->pgm.s.fA20Enabled != fEnable)
4547 {
4548#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4549 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
4550 if ( CPUMIsGuestInVmxRootMode(pCtx)
4551 && !fEnable)
4552 {
4553 Log(("Cannot enter A20M mode while in VMX root mode\n"));
4554 return;
4555 }
4556#endif
4557 pVCpu->pgm.s.fA20Enabled = fEnable;
4558 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
4559 NEMR3NotifySetA20(pVCpu, fEnable);
4560#ifdef PGM_WITH_A20
4561 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4562 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
4563 HMFlushTlb(pVCpu);
4564#endif
4565 IEMTlbInvalidateAllPhysical(pVCpu);
4566 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
4567 }
4568}
4569
4570
4571/**
4572 * Tree enumeration callback for dealing with age rollover.
4573 * It will perform a simple compression of the current age.
4574 */
4575static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
4576{
4577 /* Age compression - ASSUMES iNow == 4. */
4578 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4579 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
4580 pChunk->iLastUsed = 3;
4581 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
4582 pChunk->iLastUsed = 2;
4583 else if (pChunk->iLastUsed)
4584 pChunk->iLastUsed = 1;
4585 else /* iLastUsed = 0 */
4586 pChunk->iLastUsed = 4;
4587
4588 NOREF(pvUser);
4589 return 0;
4590}
4591
4592
4593/**
4594 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
4595 */
4596typedef struct PGMR3PHYSCHUNKUNMAPCB
4597{
4598 PVM pVM; /**< Pointer to the VM. */
4599 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
4600} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
4601
4602
4603/**
4604 * Callback used to find the mapping that's been unused for
4605 * the longest time.
4606 */
4607static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
4608{
4609 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
4610 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
4611
4612 /*
4613 * Check for locks and compare when last used.
4614 */
4615 if (pChunk->cRefs)
4616 return 0;
4617 if (pChunk->cPermRefs)
4618 return 0;
4619 if ( pArg->pChunk
4620 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
4621 return 0;
4622
4623 /*
4624 * Check that it's not in any of the TLBs.
4625 */
4626 PVM pVM = pArg->pVM;
4627 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
4628 == pChunk->Core.Key)
4629 {
4630 pChunk = NULL;
4631 return 0;
4632 }
4633#ifdef VBOX_STRICT
4634 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4635 {
4636 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
4637 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
4638 }
4639#endif
4640
4641#ifndef VBOX_WITH_RAM_IN_KERNEL
4642 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR0.aEntries); i++)
4643 if (pVM->pgm.s.PhysTlbR0.aEntries[i].pMap == pChunk)
4644 return 0;
4645#endif
4646 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
4647 if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
4648 return 0;
4649
4650 pArg->pChunk = pChunk;
4651 return 0;
4652}
4653
4654
4655/**
4656 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
4657 *
4658 * The candidate will not be part of any TLBs, so no need to flush
4659 * anything afterwards.
4660 *
4661 * @returns Chunk id.
4662 * @param pVM The cross context VM structure.
4663 */
4664static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
4665{
4666 PGM_LOCK_ASSERT_OWNER(pVM);
4667
4668 /*
4669 * Enumerate the age tree starting with the left most node.
4670 */
4671 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4672 PGMR3PHYSCHUNKUNMAPCB Args;
4673 Args.pVM = pVM;
4674 Args.pChunk = NULL;
4675 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
4676 Assert(Args.pChunk);
4677 if (Args.pChunk)
4678 {
4679 Assert(Args.pChunk->cRefs == 0);
4680 Assert(Args.pChunk->cPermRefs == 0);
4681 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4682 return Args.pChunk->Core.Key;
4683 }
4684
4685 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
4686 return INT32_MAX;
4687}
4688
4689
4690/**
4691 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
4692 *
4693 * This is only called on one of the EMTs while the other ones are waiting for
4694 * it to complete this function.
4695 *
4696 * @returns VINF_SUCCESS (VBox strict status code).
4697 * @param pVM The cross context VM structure.
4698 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
4699 * @param pvUser User pointer. Unused
4700 *
4701 */
4702static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
4703{
4704 int rc = VINF_SUCCESS;
4705 pgmLock(pVM);
4706 NOREF(pVCpu); NOREF(pvUser);
4707
4708 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
4709 {
4710 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
4711 /** @todo also not really efficient to unmap a chunk that contains PD
4712 * or PT pages. */
4713 pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
4714
4715 /*
4716 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
4717 */
4718 GMMMAPUNMAPCHUNKREQ Req;
4719 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4720 Req.Hdr.cbReq = sizeof(Req);
4721 Req.pvR3 = NULL;
4722 Req.idChunkMap = NIL_GMM_CHUNKID;
4723 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
4724 if (Req.idChunkUnmap != INT32_MAX)
4725 {
4726 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4727 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4728 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
4729 if (RT_SUCCESS(rc))
4730 {
4731 /*
4732 * Remove the unmapped one.
4733 */
4734 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
4735 AssertRelease(pUnmappedChunk);
4736 AssertRelease(!pUnmappedChunk->cRefs);
4737 AssertRelease(!pUnmappedChunk->cPermRefs);
4738 pUnmappedChunk->pv = NULL;
4739 pUnmappedChunk->Core.Key = UINT32_MAX;
4740#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4741 MMR3HeapFree(pUnmappedChunk);
4742#else
4743 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
4744#endif
4745 pVM->pgm.s.ChunkR3Map.c--;
4746 pVM->pgm.s.cUnmappedChunks++;
4747
4748 /*
4749 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
4750 */
4751 /** @todo We should not flush chunks which include cr3 mappings. */
4752 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4753 {
4754 PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
4755
4756 pPGM->pGst32BitPdR3 = NULL;
4757 pPGM->pGstPaePdptR3 = NULL;
4758 pPGM->pGstAmd64Pml4R3 = NULL;
4759#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4760 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
4761 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
4762 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
4763#endif
4764 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
4765 {
4766 pPGM->apGstPaePDsR3[i] = NULL;
4767#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
4768 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
4769#endif
4770 }
4771
4772 /* Flush REM TLBs. */
4773 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
4774 }
4775 }
4776 }
4777 }
4778 pgmUnlock(pVM);
4779 return rc;
4780}
4781
4782/**
4783 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
4784 *
4785 * @returns VBox status code.
4786 * @param pVM The cross context VM structure.
4787 */
4788void pgmR3PhysUnmapChunk(PVM pVM)
4789{
4790 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
4791 AssertRC(rc);
4792}
4793
4794
4795/**
4796 * Maps the given chunk into the ring-3 mapping cache.
4797 *
4798 * This will call ring-0.
4799 *
4800 * @returns VBox status code.
4801 * @param pVM The cross context VM structure.
4802 * @param idChunk The chunk in question.
4803 * @param ppChunk Where to store the chunk tracking structure.
4804 *
4805 * @remarks Called from within the PGM critical section.
4806 * @remarks Can be called from any thread!
4807 */
4808int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
4809{
4810 int rc;
4811
4812 PGM_LOCK_ASSERT_OWNER(pVM);
4813
4814 /*
4815 * Move the chunk time forward.
4816 */
4817 pVM->pgm.s.ChunkR3Map.iNow++;
4818 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
4819 {
4820 pVM->pgm.s.ChunkR3Map.iNow = 4;
4821 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
4822 }
4823
4824 /*
4825 * Allocate a new tracking structure first.
4826 */
4827#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4828 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
4829#else
4830 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
4831#endif
4832 AssertReturn(pChunk, VERR_NO_MEMORY);
4833 pChunk->Core.Key = idChunk;
4834 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
4835
4836 /*
4837 * Request the ring-0 part to map the chunk in question.
4838 */
4839 GMMMAPUNMAPCHUNKREQ Req;
4840 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
4841 Req.Hdr.cbReq = sizeof(Req);
4842 Req.pvR3 = NULL;
4843 Req.idChunkMap = idChunk;
4844 Req.idChunkUnmap = NIL_GMM_CHUNKID;
4845
4846 /* Must be callable from any thread, so can't use VMMR3CallR0. */
4847 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4848 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
4849 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
4850 if (RT_SUCCESS(rc))
4851 {
4852 pChunk->pv = Req.pvR3;
4853
4854 /*
4855 * If we're running out of virtual address space, then we should
4856 * unmap another chunk.
4857 *
4858 * Currently, an unmap operation requires that all other virtual CPUs
4859 * are idling and not by chance making use of the memory we're
4860 * unmapping. So, we create an async unmap operation here.
4861 *
4862 * Now, when creating or restoring a saved state this wont work very
4863 * well since we may want to restore all guest RAM + a little something.
4864 * So, we have to do the unmap synchronously. Fortunately for us
4865 * though, during these operations the other virtual CPUs are inactive
4866 * and it should be safe to do this.
4867 */
4868 /** @todo Eventually we should lock all memory when used and do
4869 * map+unmap as one kernel call without any rendezvous or
4870 * other precautions. */
4871 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
4872 {
4873 switch (VMR3GetState(pVM))
4874 {
4875 case VMSTATE_LOADING:
4876 case VMSTATE_SAVING:
4877 {
4878 PVMCPU pVCpu = VMMGetCpu(pVM);
4879 if ( pVCpu
4880 && pVM->pgm.s.cDeprecatedPageLocks == 0)
4881 {
4882 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
4883 break;
4884 }
4885 }
4886 RT_FALL_THRU();
4887 default:
4888 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
4889 AssertRC(rc);
4890 break;
4891 }
4892 }
4893
4894 /*
4895 * Update the tree. We must do this after any unmapping to make sure
4896 * the chunk we're going to return isn't unmapped by accident.
4897 */
4898 AssertPtr(Req.pvR3);
4899 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
4900 AssertRelease(fRc);
4901 pVM->pgm.s.ChunkR3Map.c++;
4902 pVM->pgm.s.cMappedChunks++;
4903 }
4904 else
4905 {
4906 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
4907 * should probably restrict ourselves on linux. */
4908 AssertRC(rc);
4909#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
4910 MMR3HeapFree(pChunk);
4911#else
4912 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
4913#endif
4914 pChunk = NULL;
4915 }
4916
4917 *ppChunk = pChunk;
4918 return rc;
4919}
4920
4921
4922/**
4923 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
4924 *
4925 * @returns see pgmR3PhysChunkMap.
4926 * @param pVM The cross context VM structure.
4927 * @param idChunk The chunk to map.
4928 */
4929VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
4930{
4931 PPGMCHUNKR3MAP pChunk;
4932 int rc;
4933
4934 pgmLock(pVM);
4935 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
4936 pgmUnlock(pVM);
4937 return rc;
4938}
4939
4940
4941/**
4942 * Invalidates the TLB for the ring-3 mapping cache.
4943 *
4944 * @param pVM The cross context VM structure.
4945 */
4946VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
4947{
4948 pgmLock(pVM);
4949 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
4950 {
4951 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
4952 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
4953 }
4954 /* The page map TLB references chunks, so invalidate that one too. */
4955 pgmPhysInvalidatePageMapTLB(pVM);
4956 pgmUnlock(pVM);
4957}
4958
4959
4960/**
4961 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
4962 * (2MB) page for use with a nested paging PDE.
4963 *
4964 * @returns The following VBox status codes.
4965 * @retval VINF_SUCCESS on success.
4966 * @retval VINF_EM_NO_MEMORY if we're out of memory.
4967 *
4968 * @param pVM The cross context VM structure.
4969 * @param GCPhys GC physical start address of the 2 MB range
4970 */
4971VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
4972{
4973#ifdef PGM_WITH_LARGE_PAGES
4974 uint64_t u64TimeStamp1, u64TimeStamp2;
4975
4976 pgmLock(pVM);
4977
4978 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4979 u64TimeStamp1 = RTTimeMilliTS();
4980 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
4981 u64TimeStamp2 = RTTimeMilliTS();
4982 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
4983 if (RT_SUCCESS(rc))
4984 {
4985 Assert(pVM->pgm.s.cLargeHandyPages == 1);
4986
4987 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
4988 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
4989
4990 void *pv;
4991
4992 /* Map the large page into our address space.
4993 *
4994 * Note: assuming that within the 2 MB range:
4995 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
4996 * - user space mapping is continuous as well
4997 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
4998 */
4999 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
5000 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
5001
5002 if (RT_SUCCESS(rc))
5003 {
5004 /*
5005 * Clear the pages.
5006 */
5007 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5008 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
5009 {
5010 ASMMemZeroPage(pv);
5011
5012 PPGMPAGE pPage;
5013 rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
5014 AssertRC(rc);
5015
5016 Assert(PGM_PAGE_IS_ZERO(pPage));
5017 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
5018 pVM->pgm.s.cZeroPages--;
5019
5020 /*
5021 * Do the PGMPAGE modifications.
5022 */
5023 pVM->pgm.s.cPrivatePages++;
5024 PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
5025 PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
5026 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
5027 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
5028 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5029 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5030
5031 /* Somewhat dirty assumption that page ids are increasing. */
5032 idPage++;
5033
5034 HCPhys += PAGE_SIZE;
5035 GCPhys += PAGE_SIZE;
5036
5037 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
5038
5039 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
5040 }
5041 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
5042
5043 /* Flush all TLBs. */
5044 PGM_INVL_ALL_VCPU_TLBS(pVM);
5045 pgmPhysInvalidatePageMapTLB(pVM);
5046 }
5047 pVM->pgm.s.cLargeHandyPages = 0;
5048 }
5049
5050 if (RT_SUCCESS(rc))
5051 {
5052 static uint32_t cTimeOut = 0;
5053 uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
5054
5055 if (u64TimeStampDelta > 100)
5056 {
5057 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
5058 if ( ++cTimeOut > 10
5059 || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
5060 {
5061 /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
5062 * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
5063 */
5064 LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
5065 PGMSetLargePageUsage(pVM, false);
5066 }
5067 }
5068 else
5069 if (cTimeOut > 0)
5070 cTimeOut--;
5071 }
5072
5073 pgmUnlock(pVM);
5074 return rc;
5075#else
5076 RT_NOREF(pVM, GCPhys);
5077 return VERR_NOT_IMPLEMENTED;
5078#endif /* PGM_WITH_LARGE_PAGES */
5079}
5080
5081
5082/**
5083 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
5084 *
5085 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5086 * signal and clear the out of memory condition. When contracted, this API is
5087 * used to try clear the condition when the user wants to resume.
5088 *
5089 * @returns The following VBox status codes.
5090 * @retval VINF_SUCCESS on success. FFs cleared.
5091 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5092 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5093 *
5094 * @param pVM The cross context VM structure.
5095 *
5096 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5097 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5098 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5099 * handler.
5100 */
5101VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5102{
5103 pgmLock(pVM);
5104
5105 /*
5106 * Allocate more pages, noting down the index of the first new page.
5107 */
5108 uint32_t iClear = pVM->pgm.s.cHandyPages;
5109 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5110 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5111 int rcAlloc = VINF_SUCCESS;
5112 int rcSeed = VINF_SUCCESS;
5113 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5114 while (rc == VERR_GMM_SEED_ME)
5115 {
5116 void *pvChunk;
5117 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
5118 if (RT_SUCCESS(rc))
5119 {
5120 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
5121 if (RT_FAILURE(rc))
5122 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
5123 }
5124 if (RT_SUCCESS(rc))
5125 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5126 }
5127
5128 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5129 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5130 && pVM->pgm.s.cHandyPages > 0)
5131 {
5132 /* Still handy pages left, so don't panic. */
5133 rc = VINF_SUCCESS;
5134 }
5135
5136 if (RT_SUCCESS(rc))
5137 {
5138 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5139 Assert(pVM->pgm.s.cHandyPages > 0);
5140 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5141 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
5142
5143#ifdef VBOX_STRICT
5144 uint32_t i;
5145 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5146 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5147 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5148 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5149 break;
5150 if (i != pVM->pgm.s.cHandyPages)
5151 {
5152 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5153 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5154 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5155 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
5156 pVM->pgm.s.aHandyPages[j].idPage,
5157 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5158 pVM->pgm.s.aHandyPages[j].idSharedPage,
5159 j == i ? " <---" : "");
5160 RTAssertPanic();
5161 }
5162#endif
5163 /*
5164 * Clear the pages.
5165 */
5166 while (iClear < pVM->pgm.s.cHandyPages)
5167 {
5168 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
5169 void *pv;
5170 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
5171 AssertLogRelMsgBreak(RT_SUCCESS(rc),
5172 ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
5173 iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
5174 ASMMemZeroPage(pv);
5175 iClear++;
5176 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
5177 }
5178 }
5179 else
5180 {
5181 uint64_t cAllocPages, cMaxPages, cBalloonPages;
5182
5183 /*
5184 * We should never get here unless there is a genuine shortage of
5185 * memory (or some internal error). Flag the error so the VM can be
5186 * suspended ASAP and the user informed. If we're totally out of
5187 * handy pages we will return failure.
5188 */
5189 /* Report the failure. */
5190 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
5191 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5192 rc, rcAlloc, rcSeed,
5193 pVM->pgm.s.cHandyPages,
5194 pVM->pgm.s.cAllPages,
5195 pVM->pgm.s.cPrivatePages,
5196 pVM->pgm.s.cSharedPages,
5197 pVM->pgm.s.cZeroPages));
5198
5199 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
5200 {
5201 LogRel(("GMM: Statistics:\n"
5202 " Allocated pages: %RX64\n"
5203 " Maximum pages: %RX64\n"
5204 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
5205 }
5206
5207 if ( rc != VERR_NO_MEMORY
5208 && rc != VERR_NO_PHYS_MEMORY
5209 && rc != VERR_LOCK_FAILED)
5210 {
5211 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5212 {
5213 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5214 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5215 pVM->pgm.s.aHandyPages[i].idSharedPage));
5216 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5217 if (idPage != NIL_GMM_PAGEID)
5218 {
5219 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5220 pRam;
5221 pRam = pRam->pNextR3)
5222 {
5223 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5224 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5225 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5226 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5227 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5228 }
5229 }
5230 }
5231 }
5232
5233 if (rc == VERR_NO_MEMORY)
5234 {
5235 uint64_t cbHostRamAvail = 0;
5236 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5237 if (RT_SUCCESS(rc2))
5238 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5239 else
5240 LogRel(("Cannot determine the amount of available host memory\n"));
5241 }
5242
5243 /* Set the FFs and adjust rc. */
5244 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5245 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5246 if ( rc == VERR_NO_MEMORY
5247 || rc == VERR_NO_PHYS_MEMORY
5248 || rc == VERR_LOCK_FAILED)
5249 rc = VINF_EM_NO_MEMORY;
5250 }
5251
5252 pgmUnlock(pVM);
5253 return rc;
5254}
5255
5256
5257/**
5258 * Frees the specified RAM page and replaces it with the ZERO page.
5259 *
5260 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
5261 *
5262 * @param pVM The cross context VM structure.
5263 * @param pReq Pointer to the request.
5264 * @param pcPendingPages Where the number of pages waiting to be freed are
5265 * kept. This will normally be incremented.
5266 * @param pPage Pointer to the page structure.
5267 * @param GCPhys The guest physical address of the page, if applicable.
5268 * @param enmNewType New page type for NEM notification, since several
5269 * callers will change the type upon successful return.
5270 *
5271 * @remarks The caller must own the PGM lock.
5272 */
5273int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
5274 PGMPAGETYPE enmNewType)
5275{
5276 /*
5277 * Assert sanity.
5278 */
5279 PGM_LOCK_ASSERT_OWNER(pVM);
5280 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
5281 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
5282 {
5283 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5284 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
5285 }
5286
5287 /** @todo What about ballooning of large pages??! */
5288 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
5289 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
5290
5291 if ( PGM_PAGE_IS_ZERO(pPage)
5292 || PGM_PAGE_IS_BALLOONED(pPage))
5293 return VINF_SUCCESS;
5294
5295 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
5296 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
5297 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
5298 || idPage > GMM_PAGEID_LAST
5299 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
5300 {
5301 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
5302 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
5303 }
5304 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
5305
5306 /* update page count stats. */
5307 if (PGM_PAGE_IS_SHARED(pPage))
5308 pVM->pgm.s.cSharedPages--;
5309 else
5310 pVM->pgm.s.cPrivatePages--;
5311 pVM->pgm.s.cZeroPages++;
5312
5313 /* Deal with write monitored pages. */
5314 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
5315 {
5316 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
5317 pVM->pgm.s.cWrittenToPages++;
5318 }
5319
5320 /*
5321 * pPage = ZERO page.
5322 */
5323 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
5324 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5325 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
5326 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
5327 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
5328 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
5329
5330 /* Flush physical page map TLB entry. */
5331 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
5332
5333 /* Notify NEM. */
5334 /** @todo consider doing batch NEM notifications. */
5335 if (VM_IS_NEM_ENABLED(pVM))
5336 {
5337 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
5338 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg,
5339 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
5340 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
5341 }
5342
5343 /*
5344 * Make sure it's not in the handy page array.
5345 */
5346 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5347 {
5348 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
5349 {
5350 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
5351 break;
5352 }
5353 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
5354 {
5355 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
5356 break;
5357 }
5358 }
5359
5360 /*
5361 * Push it onto the page array.
5362 */
5363 uint32_t iPage = *pcPendingPages;
5364 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
5365 *pcPendingPages += 1;
5366
5367 pReq->aPages[iPage].idPage = idPage;
5368
5369 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
5370 return VINF_SUCCESS;
5371
5372 /*
5373 * Flush the pages.
5374 */
5375 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
5376 if (RT_SUCCESS(rc))
5377 {
5378 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5379 *pcPendingPages = 0;
5380 }
5381 return rc;
5382}
5383
5384
5385/**
5386 * Converts a GC physical address to a HC ring-3 pointer, with some
5387 * additional checks.
5388 *
5389 * @returns VBox status code.
5390 * @retval VINF_SUCCESS on success.
5391 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
5392 * access handler of some kind.
5393 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
5394 * accesses or is odd in any way.
5395 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
5396 *
5397 * @param pVM The cross context VM structure.
5398 * @param GCPhys The GC physical address to convert. Since this is only
5399 * used for filling the REM TLB, the A20 mask must be
5400 * applied before calling this API.
5401 * @param fWritable Whether write access is required.
5402 * @param ppv Where to store the pointer corresponding to GCPhys on
5403 * success.
5404 */
5405VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
5406{
5407 pgmLock(pVM);
5408 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
5409
5410 PPGMRAMRANGE pRam;
5411 PPGMPAGE pPage;
5412 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
5413 if (RT_SUCCESS(rc))
5414 {
5415 if (PGM_PAGE_IS_BALLOONED(pPage))
5416 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5417 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
5418 rc = VINF_SUCCESS;
5419 else
5420 {
5421 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
5422 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5423 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
5424 {
5425 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
5426 * in -norawr0 mode. */
5427 if (fWritable)
5428 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5429 }
5430 else
5431 {
5432 /* Temporarily disabled physical handler(s), since the recompiler
5433 doesn't get notified when it's reset we'll have to pretend it's
5434 operating normally. */
5435 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
5436 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
5437 else
5438 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
5439 }
5440 }
5441 if (RT_SUCCESS(rc))
5442 {
5443 int rc2;
5444
5445 /* Make sure what we return is writable. */
5446 if (fWritable)
5447 switch (PGM_PAGE_GET_STATE(pPage))
5448 {
5449 case PGM_PAGE_STATE_ALLOCATED:
5450 break;
5451 case PGM_PAGE_STATE_BALLOONED:
5452 AssertFailed();
5453 break;
5454 case PGM_PAGE_STATE_ZERO:
5455 case PGM_PAGE_STATE_SHARED:
5456 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
5457 break;
5458 RT_FALL_THRU();
5459 case PGM_PAGE_STATE_WRITE_MONITORED:
5460 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
5461 AssertLogRelRCReturn(rc2, rc2);
5462 break;
5463 }
5464
5465 /* Get a ring-3 mapping of the address. */
5466 PPGMPAGER3MAPTLBE pTlbe;
5467 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
5468 AssertLogRelRCReturn(rc2, rc2);
5469 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
5470 /** @todo mapping/locking hell; this isn't horribly efficient since
5471 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
5472
5473 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
5474 }
5475 else
5476 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
5477
5478 /* else: handler catching all access, no pointer returned. */
5479 }
5480 else
5481 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
5482
5483 pgmUnlock(pVM);
5484 return rc;
5485}
5486
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette