1 | /* $Id: PGMPhys.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * PGM - Page Manager and Monitor, Physical Memory Addressing.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2020 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_PGM_PHYS
|
---|
23 | #include <VBox/vmm/pgm.h>
|
---|
24 | #include <VBox/vmm/iem.h>
|
---|
25 | #include <VBox/vmm/iom.h>
|
---|
26 | #include <VBox/vmm/mm.h>
|
---|
27 | #include <VBox/vmm/nem.h>
|
---|
28 | #include <VBox/vmm/stam.h>
|
---|
29 | #include <VBox/vmm/pdmdev.h>
|
---|
30 | #include "PGMInternal.h"
|
---|
31 | #include <VBox/vmm/vmcc.h>
|
---|
32 |
|
---|
33 | #include "PGMInline.h"
|
---|
34 |
|
---|
35 | #include <VBox/sup.h>
|
---|
36 | #include <VBox/param.h>
|
---|
37 | #include <VBox/err.h>
|
---|
38 | #include <VBox/log.h>
|
---|
39 | #include <iprt/assert.h>
|
---|
40 | #include <iprt/alloc.h>
|
---|
41 | #include <iprt/asm.h>
|
---|
42 | #ifdef VBOX_STRICT
|
---|
43 | # include <iprt/crc.h>
|
---|
44 | #endif
|
---|
45 | #include <iprt/thread.h>
|
---|
46 | #include <iprt/string.h>
|
---|
47 | #include <iprt/system.h>
|
---|
48 |
|
---|
49 |
|
---|
50 | /*********************************************************************************************************************************
|
---|
51 | * Defined Constants And Macros *
|
---|
52 | *********************************************************************************************************************************/
|
---|
53 | /** The number of pages to free in one batch. */
|
---|
54 | #define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
|
---|
55 |
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * PGMR3PhysReadU8-64
|
---|
59 | * PGMR3PhysWriteU8-64
|
---|
60 | */
|
---|
61 | #define PGMPHYSFN_READNAME PGMR3PhysReadU8
|
---|
62 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
|
---|
63 | #define PGMPHYS_DATASIZE 1
|
---|
64 | #define PGMPHYS_DATATYPE uint8_t
|
---|
65 | #include "PGMPhysRWTmpl.h"
|
---|
66 |
|
---|
67 | #define PGMPHYSFN_READNAME PGMR3PhysReadU16
|
---|
68 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
|
---|
69 | #define PGMPHYS_DATASIZE 2
|
---|
70 | #define PGMPHYS_DATATYPE uint16_t
|
---|
71 | #include "PGMPhysRWTmpl.h"
|
---|
72 |
|
---|
73 | #define PGMPHYSFN_READNAME PGMR3PhysReadU32
|
---|
74 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
|
---|
75 | #define PGMPHYS_DATASIZE 4
|
---|
76 | #define PGMPHYS_DATATYPE uint32_t
|
---|
77 | #include "PGMPhysRWTmpl.h"
|
---|
78 |
|
---|
79 | #define PGMPHYSFN_READNAME PGMR3PhysReadU64
|
---|
80 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
|
---|
81 | #define PGMPHYS_DATASIZE 8
|
---|
82 | #define PGMPHYS_DATATYPE uint64_t
|
---|
83 | #include "PGMPhysRWTmpl.h"
|
---|
84 |
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * EMT worker for PGMR3PhysReadExternal.
|
---|
88 | */
|
---|
89 | static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
|
---|
90 | PGMACCESSORIGIN enmOrigin)
|
---|
91 | {
|
---|
92 | VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
|
---|
93 | AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
|
---|
94 | return VINF_SUCCESS;
|
---|
95 | }
|
---|
96 |
|
---|
97 |
|
---|
98 | /**
|
---|
99 | * Read from physical memory, external users.
|
---|
100 | *
|
---|
101 | * @returns VBox status code.
|
---|
102 | * @retval VINF_SUCCESS.
|
---|
103 | *
|
---|
104 | * @param pVM The cross context VM structure.
|
---|
105 | * @param GCPhys Physical address to read from.
|
---|
106 | * @param pvBuf Where to read into.
|
---|
107 | * @param cbRead How many bytes to read.
|
---|
108 | * @param enmOrigin Who is calling.
|
---|
109 | *
|
---|
110 | * @thread Any but EMTs.
|
---|
111 | */
|
---|
112 | VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
|
---|
113 | {
|
---|
114 | VM_ASSERT_OTHER_THREAD(pVM);
|
---|
115 |
|
---|
116 | AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
|
---|
117 | LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
|
---|
118 |
|
---|
119 | pgmLock(pVM);
|
---|
120 |
|
---|
121 | /*
|
---|
122 | * Copy loop on ram ranges.
|
---|
123 | */
|
---|
124 | PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
|
---|
125 | for (;;)
|
---|
126 | {
|
---|
127 | /* Inside range or not? */
|
---|
128 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
129 | {
|
---|
130 | /*
|
---|
131 | * Must work our way thru this page by page.
|
---|
132 | */
|
---|
133 | RTGCPHYS off = GCPhys - pRam->GCPhys;
|
---|
134 | while (off < pRam->cb)
|
---|
135 | {
|
---|
136 | unsigned iPage = off >> PAGE_SHIFT;
|
---|
137 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
138 |
|
---|
139 | /*
|
---|
140 | * If the page has an ALL access handler, we'll have to
|
---|
141 | * delegate the job to EMT.
|
---|
142 | */
|
---|
143 | if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
|
---|
144 | || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
|
---|
145 | {
|
---|
146 | pgmUnlock(pVM);
|
---|
147 |
|
---|
148 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
|
---|
149 | pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
|
---|
150 | }
|
---|
151 | Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
|
---|
152 |
|
---|
153 | /*
|
---|
154 | * Simple stuff, go ahead.
|
---|
155 | */
|
---|
156 | size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
|
---|
157 | if (cb > cbRead)
|
---|
158 | cb = cbRead;
|
---|
159 | PGMPAGEMAPLOCK PgMpLck;
|
---|
160 | const void *pvSrc;
|
---|
161 | int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
|
---|
162 | if (RT_SUCCESS(rc))
|
---|
163 | {
|
---|
164 | memcpy(pvBuf, pvSrc, cb);
|
---|
165 | pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
|
---|
166 | }
|
---|
167 | else
|
---|
168 | {
|
---|
169 | AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
|
---|
170 | pRam->GCPhys + off, pPage, rc));
|
---|
171 | memset(pvBuf, 0xff, cb);
|
---|
172 | }
|
---|
173 |
|
---|
174 | /* next page */
|
---|
175 | if (cb >= cbRead)
|
---|
176 | {
|
---|
177 | pgmUnlock(pVM);
|
---|
178 | return VINF_SUCCESS;
|
---|
179 | }
|
---|
180 | cbRead -= cb;
|
---|
181 | off += cb;
|
---|
182 | GCPhys += cb;
|
---|
183 | pvBuf = (char *)pvBuf + cb;
|
---|
184 | } /* walk pages in ram range. */
|
---|
185 | }
|
---|
186 | else
|
---|
187 | {
|
---|
188 | LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
|
---|
189 |
|
---|
190 | /*
|
---|
191 | * Unassigned address space.
|
---|
192 | */
|
---|
193 | size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
|
---|
194 | if (cb >= cbRead)
|
---|
195 | {
|
---|
196 | memset(pvBuf, 0xff, cbRead);
|
---|
197 | break;
|
---|
198 | }
|
---|
199 | memset(pvBuf, 0xff, cb);
|
---|
200 |
|
---|
201 | cbRead -= cb;
|
---|
202 | pvBuf = (char *)pvBuf + cb;
|
---|
203 | GCPhys += cb;
|
---|
204 | }
|
---|
205 |
|
---|
206 | /* Advance range if necessary. */
|
---|
207 | while (pRam && GCPhys > pRam->GCPhysLast)
|
---|
208 | pRam = pRam->CTX_SUFF(pNext);
|
---|
209 | } /* Ram range walk */
|
---|
210 |
|
---|
211 | pgmUnlock(pVM);
|
---|
212 |
|
---|
213 | return VINF_SUCCESS;
|
---|
214 | }
|
---|
215 |
|
---|
216 |
|
---|
217 | /**
|
---|
218 | * EMT worker for PGMR3PhysWriteExternal.
|
---|
219 | */
|
---|
220 | static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
|
---|
221 | PGMACCESSORIGIN enmOrigin)
|
---|
222 | {
|
---|
223 | /** @todo VERR_EM_NO_MEMORY */
|
---|
224 | VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
|
---|
225 | AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
|
---|
226 | return VINF_SUCCESS;
|
---|
227 | }
|
---|
228 |
|
---|
229 |
|
---|
230 | /**
|
---|
231 | * Write to physical memory, external users.
|
---|
232 | *
|
---|
233 | * @returns VBox status code.
|
---|
234 | * @retval VINF_SUCCESS.
|
---|
235 | * @retval VERR_EM_NO_MEMORY.
|
---|
236 | *
|
---|
237 | * @param pVM The cross context VM structure.
|
---|
238 | * @param GCPhys Physical address to write to.
|
---|
239 | * @param pvBuf What to write.
|
---|
240 | * @param cbWrite How many bytes to write.
|
---|
241 | * @param enmOrigin Who is calling.
|
---|
242 | *
|
---|
243 | * @thread Any but EMTs.
|
---|
244 | */
|
---|
245 | VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
|
---|
246 | {
|
---|
247 | VM_ASSERT_OTHER_THREAD(pVM);
|
---|
248 |
|
---|
249 | AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
|
---|
250 | ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
|
---|
251 | GCPhys, cbWrite, enmOrigin));
|
---|
252 | AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
|
---|
253 | LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
|
---|
254 |
|
---|
255 | pgmLock(pVM);
|
---|
256 |
|
---|
257 | /*
|
---|
258 | * Copy loop on ram ranges, stop when we hit something difficult.
|
---|
259 | */
|
---|
260 | PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
|
---|
261 | for (;;)
|
---|
262 | {
|
---|
263 | /* Inside range or not? */
|
---|
264 | if (pRam && GCPhys >= pRam->GCPhys)
|
---|
265 | {
|
---|
266 | /*
|
---|
267 | * Must work our way thru this page by page.
|
---|
268 | */
|
---|
269 | RTGCPTR off = GCPhys - pRam->GCPhys;
|
---|
270 | while (off < pRam->cb)
|
---|
271 | {
|
---|
272 | RTGCPTR iPage = off >> PAGE_SHIFT;
|
---|
273 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Is the page problematic, we have to do the work on the EMT.
|
---|
277 | *
|
---|
278 | * Allocating writable pages and access handlers are
|
---|
279 | * problematic, write monitored pages are simple and can be
|
---|
280 | * dealt with here.
|
---|
281 | */
|
---|
282 | if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
283 | || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
284 | || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
|
---|
285 | {
|
---|
286 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
287 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
288 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
|
---|
289 | else
|
---|
290 | {
|
---|
291 | pgmUnlock(pVM);
|
---|
292 |
|
---|
293 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
|
---|
294 | pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
|
---|
295 | }
|
---|
296 | }
|
---|
297 | Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
|
---|
298 |
|
---|
299 | /*
|
---|
300 | * Simple stuff, go ahead.
|
---|
301 | */
|
---|
302 | size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
|
---|
303 | if (cb > cbWrite)
|
---|
304 | cb = cbWrite;
|
---|
305 | PGMPAGEMAPLOCK PgMpLck;
|
---|
306 | void *pvDst;
|
---|
307 | int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
|
---|
308 | if (RT_SUCCESS(rc))
|
---|
309 | {
|
---|
310 | memcpy(pvDst, pvBuf, cb);
|
---|
311 | pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
|
---|
312 | }
|
---|
313 | else
|
---|
314 | AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
|
---|
315 | pRam->GCPhys + off, pPage, rc));
|
---|
316 |
|
---|
317 | /* next page */
|
---|
318 | if (cb >= cbWrite)
|
---|
319 | {
|
---|
320 | pgmUnlock(pVM);
|
---|
321 | return VINF_SUCCESS;
|
---|
322 | }
|
---|
323 |
|
---|
324 | cbWrite -= cb;
|
---|
325 | off += cb;
|
---|
326 | GCPhys += cb;
|
---|
327 | pvBuf = (const char *)pvBuf + cb;
|
---|
328 | } /* walk pages in ram range */
|
---|
329 | }
|
---|
330 | else
|
---|
331 | {
|
---|
332 | /*
|
---|
333 | * Unassigned address space, skip it.
|
---|
334 | */
|
---|
335 | if (!pRam)
|
---|
336 | break;
|
---|
337 | size_t cb = pRam->GCPhys - GCPhys;
|
---|
338 | if (cb >= cbWrite)
|
---|
339 | break;
|
---|
340 | cbWrite -= cb;
|
---|
341 | pvBuf = (const char *)pvBuf + cb;
|
---|
342 | GCPhys += cb;
|
---|
343 | }
|
---|
344 |
|
---|
345 | /* Advance range if necessary. */
|
---|
346 | while (pRam && GCPhys > pRam->GCPhysLast)
|
---|
347 | pRam = pRam->CTX_SUFF(pNext);
|
---|
348 | } /* Ram range walk */
|
---|
349 |
|
---|
350 | pgmUnlock(pVM);
|
---|
351 | return VINF_SUCCESS;
|
---|
352 | }
|
---|
353 |
|
---|
354 |
|
---|
355 | /**
|
---|
356 | * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
|
---|
357 | *
|
---|
358 | * @returns see PGMR3PhysGCPhys2CCPtrExternal
|
---|
359 | * @param pVM The cross context VM structure.
|
---|
360 | * @param pGCPhys Pointer to the guest physical address.
|
---|
361 | * @param ppv Where to store the mapping address.
|
---|
362 | * @param pLock Where to store the lock.
|
---|
363 | */
|
---|
364 | static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
365 | {
|
---|
366 | /*
|
---|
367 | * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
|
---|
368 | * an access handler after it succeeds.
|
---|
369 | */
|
---|
370 | int rc = pgmLock(pVM);
|
---|
371 | AssertRCReturn(rc, rc);
|
---|
372 |
|
---|
373 | rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
|
---|
374 | if (RT_SUCCESS(rc))
|
---|
375 | {
|
---|
376 | PPGMPAGEMAPTLBE pTlbe;
|
---|
377 | int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
|
---|
378 | AssertFatalRC(rc2);
|
---|
379 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
380 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
381 | {
|
---|
382 | PGMPhysReleasePageMappingLock(pVM, pLock);
|
---|
383 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
384 | }
|
---|
385 | else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
386 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
387 | || pgmPoolIsDirtyPage(pVM, *pGCPhys)
|
---|
388 | #endif
|
---|
389 | )
|
---|
390 | {
|
---|
391 | /* We *must* flush any corresponding pgm pool page here, otherwise we'll
|
---|
392 | * not be informed about writes and keep bogus gst->shw mappings around.
|
---|
393 | */
|
---|
394 | pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
|
---|
395 | Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
|
---|
396 | /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
|
---|
397 | * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
|
---|
398 | }
|
---|
399 | }
|
---|
400 |
|
---|
401 | pgmUnlock(pVM);
|
---|
402 | return rc;
|
---|
403 | }
|
---|
404 |
|
---|
405 |
|
---|
406 | /**
|
---|
407 | * Requests the mapping of a guest page into ring-3, external threads.
|
---|
408 | *
|
---|
409 | * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
|
---|
410 | * release it.
|
---|
411 | *
|
---|
412 | * This API will assume your intention is to write to the page, and will
|
---|
413 | * therefore replace shared and zero pages. If you do not intend to modify the
|
---|
414 | * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
|
---|
415 | *
|
---|
416 | * @returns VBox status code.
|
---|
417 | * @retval VINF_SUCCESS on success.
|
---|
418 | * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
|
---|
419 | * backing or if the page has any active access handlers. The caller
|
---|
420 | * must fall back on using PGMR3PhysWriteExternal.
|
---|
421 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
|
---|
422 | *
|
---|
423 | * @param pVM The cross context VM structure.
|
---|
424 | * @param GCPhys The guest physical address of the page that should be mapped.
|
---|
425 | * @param ppv Where to store the address corresponding to GCPhys.
|
---|
426 | * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
|
---|
427 | *
|
---|
428 | * @remark Avoid calling this API from within critical sections (other than the
|
---|
429 | * PGM one) because of the deadlock risk when we have to delegating the
|
---|
430 | * task to an EMT.
|
---|
431 | * @thread Any.
|
---|
432 | */
|
---|
433 | VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
434 | {
|
---|
435 | AssertPtr(ppv);
|
---|
436 | AssertPtr(pLock);
|
---|
437 |
|
---|
438 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
439 |
|
---|
440 | int rc = pgmLock(pVM);
|
---|
441 | AssertRCReturn(rc, rc);
|
---|
442 |
|
---|
443 | /*
|
---|
444 | * Query the Physical TLB entry for the page (may fail).
|
---|
445 | */
|
---|
446 | PPGMPAGEMAPTLBE pTlbe;
|
---|
447 | rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
448 | if (RT_SUCCESS(rc))
|
---|
449 | {
|
---|
450 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
451 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
452 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
453 | else
|
---|
454 | {
|
---|
455 | /*
|
---|
456 | * If the page is shared, the zero page, or being write monitored
|
---|
457 | * it must be converted to an page that's writable if possible.
|
---|
458 | * We can only deal with write monitored pages here, the rest have
|
---|
459 | * to be on an EMT.
|
---|
460 | */
|
---|
461 | if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
462 | || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
|
---|
463 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
464 | || pgmPoolIsDirtyPage(pVM, GCPhys)
|
---|
465 | #endif
|
---|
466 | )
|
---|
467 | {
|
---|
468 | if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
|
---|
469 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
|
---|
470 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
471 | && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
|
---|
472 | #endif
|
---|
473 | )
|
---|
474 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
|
---|
475 | else
|
---|
476 | {
|
---|
477 | pgmUnlock(pVM);
|
---|
478 |
|
---|
479 | return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
|
---|
480 | pVM, &GCPhys, ppv, pLock);
|
---|
481 | }
|
---|
482 | }
|
---|
483 |
|
---|
484 | /*
|
---|
485 | * Now, just perform the locking and calculate the return address.
|
---|
486 | */
|
---|
487 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
488 | if (pMap)
|
---|
489 | pMap->cRefs++;
|
---|
490 |
|
---|
491 | unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
|
---|
492 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
493 | {
|
---|
494 | if (cLocks == 0)
|
---|
495 | pVM->pgm.s.cWriteLockedPages++;
|
---|
496 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
497 | }
|
---|
498 | else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
|
---|
499 | {
|
---|
500 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
501 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
|
---|
502 | if (pMap)
|
---|
503 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
504 | }
|
---|
505 |
|
---|
506 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
|
---|
507 | pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
|
---|
508 | pLock->pvMap = pMap;
|
---|
509 | }
|
---|
510 | }
|
---|
511 |
|
---|
512 | pgmUnlock(pVM);
|
---|
513 | return rc;
|
---|
514 | }
|
---|
515 |
|
---|
516 |
|
---|
517 | /**
|
---|
518 | * Requests the mapping of a guest page into ring-3, external threads.
|
---|
519 | *
|
---|
520 | * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
|
---|
521 | * release it.
|
---|
522 | *
|
---|
523 | * @returns VBox status code.
|
---|
524 | * @retval VINF_SUCCESS on success.
|
---|
525 | * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
|
---|
526 | * backing or if the page as an active ALL access handler. The caller
|
---|
527 | * must fall back on using PGMPhysRead.
|
---|
528 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
|
---|
529 | *
|
---|
530 | * @param pVM The cross context VM structure.
|
---|
531 | * @param GCPhys The guest physical address of the page that should be mapped.
|
---|
532 | * @param ppv Where to store the address corresponding to GCPhys.
|
---|
533 | * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
|
---|
534 | *
|
---|
535 | * @remark Avoid calling this API from within critical sections (other than
|
---|
536 | * the PGM one) because of the deadlock risk.
|
---|
537 | * @thread Any.
|
---|
538 | */
|
---|
539 | VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
|
---|
540 | {
|
---|
541 | int rc = pgmLock(pVM);
|
---|
542 | AssertRCReturn(rc, rc);
|
---|
543 |
|
---|
544 | /*
|
---|
545 | * Query the Physical TLB entry for the page (may fail).
|
---|
546 | */
|
---|
547 | PPGMPAGEMAPTLBE pTlbe;
|
---|
548 | rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
549 | if (RT_SUCCESS(rc))
|
---|
550 | {
|
---|
551 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
552 | #if 1
|
---|
553 | /* MMIO pages doesn't have any readable backing. */
|
---|
554 | if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
|
---|
555 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
556 | #else
|
---|
557 | if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
558 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
559 | #endif
|
---|
560 | else
|
---|
561 | {
|
---|
562 | /*
|
---|
563 | * Now, just perform the locking and calculate the return address.
|
---|
564 | */
|
---|
565 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
566 | if (pMap)
|
---|
567 | pMap->cRefs++;
|
---|
568 |
|
---|
569 | unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
|
---|
570 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
571 | {
|
---|
572 | if (cLocks == 0)
|
---|
573 | pVM->pgm.s.cReadLockedPages++;
|
---|
574 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
575 | }
|
---|
576 | else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
|
---|
577 | {
|
---|
578 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
579 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
|
---|
580 | if (pMap)
|
---|
581 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
582 | }
|
---|
583 |
|
---|
584 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
|
---|
585 | pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
|
---|
586 | pLock->pvMap = pMap;
|
---|
587 | }
|
---|
588 | }
|
---|
589 |
|
---|
590 | pgmUnlock(pVM);
|
---|
591 | return rc;
|
---|
592 | }
|
---|
593 |
|
---|
594 |
|
---|
595 | /**
|
---|
596 | * Requests the mapping of multiple guest page into ring-3, external threads.
|
---|
597 | *
|
---|
598 | * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
|
---|
599 | * ASAP to release them.
|
---|
600 | *
|
---|
601 | * This API will assume your intention is to write to the pages, and will
|
---|
602 | * therefore replace shared and zero pages. If you do not intend to modify the
|
---|
603 | * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
|
---|
604 | *
|
---|
605 | * @returns VBox status code.
|
---|
606 | * @retval VINF_SUCCESS on success.
|
---|
607 | * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
|
---|
608 | * backing or if any of the pages the page has any active access
|
---|
609 | * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
|
---|
610 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
|
---|
611 | * an invalid physical address.
|
---|
612 | *
|
---|
613 | * @param pVM The cross context VM structure.
|
---|
614 | * @param cPages Number of pages to lock.
|
---|
615 | * @param paGCPhysPages The guest physical address of the pages that
|
---|
616 | * should be mapped (@a cPages entries).
|
---|
617 | * @param papvPages Where to store the ring-3 mapping addresses
|
---|
618 | * corresponding to @a paGCPhysPages.
|
---|
619 | * @param paLocks Where to store the locking information that
|
---|
620 | * pfnPhysBulkReleasePageMappingLock needs (@a cPages
|
---|
621 | * in length).
|
---|
622 | *
|
---|
623 | * @remark Avoid calling this API from within critical sections (other than the
|
---|
624 | * PGM one) because of the deadlock risk when we have to delegating the
|
---|
625 | * task to an EMT.
|
---|
626 | * @thread Any.
|
---|
627 | */
|
---|
628 | VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
|
---|
629 | void **papvPages, PPGMPAGEMAPLOCK paLocks)
|
---|
630 | {
|
---|
631 | Assert(cPages > 0);
|
---|
632 | AssertPtr(papvPages);
|
---|
633 | AssertPtr(paLocks);
|
---|
634 |
|
---|
635 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
636 |
|
---|
637 | int rc = pgmLock(pVM);
|
---|
638 | AssertRCReturn(rc, rc);
|
---|
639 |
|
---|
640 | /*
|
---|
641 | * Lock the pages one by one.
|
---|
642 | * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
|
---|
643 | */
|
---|
644 | int32_t cNextYield = 128;
|
---|
645 | uint32_t iPage;
|
---|
646 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
647 | {
|
---|
648 | if (--cNextYield > 0)
|
---|
649 | { /* likely */ }
|
---|
650 | else
|
---|
651 | {
|
---|
652 | pgmUnlock(pVM);
|
---|
653 | ASMNopPause();
|
---|
654 | pgmLock(pVM);
|
---|
655 | cNextYield = 128;
|
---|
656 | }
|
---|
657 |
|
---|
658 | /*
|
---|
659 | * Query the Physical TLB entry for the page (may fail).
|
---|
660 | */
|
---|
661 | PPGMPAGEMAPTLBE pTlbe;
|
---|
662 | rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
|
---|
663 | if (RT_SUCCESS(rc))
|
---|
664 | { }
|
---|
665 | else
|
---|
666 | break;
|
---|
667 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
668 |
|
---|
669 | /*
|
---|
670 | * No MMIO or active access handlers.
|
---|
671 | */
|
---|
672 | if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
|
---|
673 | && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
674 | { }
|
---|
675 | else
|
---|
676 | {
|
---|
677 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
678 | break;
|
---|
679 | }
|
---|
680 |
|
---|
681 | /*
|
---|
682 | * The page must be in the allocated state and not be a dirty pool page.
|
---|
683 | * We can handle converting a write monitored page to an allocated one, but
|
---|
684 | * anything more complicated must be delegated to an EMT.
|
---|
685 | */
|
---|
686 | bool fDelegateToEmt = false;
|
---|
687 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
|
---|
688 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
689 | fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
|
---|
690 | #else
|
---|
691 | fDelegateToEmt = false;
|
---|
692 | #endif
|
---|
693 | else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
|
---|
694 | {
|
---|
695 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
696 | if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
|
---|
697 | pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
|
---|
698 | else
|
---|
699 | fDelegateToEmt = true;
|
---|
700 | #endif
|
---|
701 | }
|
---|
702 | else
|
---|
703 | fDelegateToEmt = true;
|
---|
704 | if (!fDelegateToEmt)
|
---|
705 | { }
|
---|
706 | else
|
---|
707 | {
|
---|
708 | /* We could do this delegation in bulk, but considered too much work vs gain. */
|
---|
709 | pgmUnlock(pVM);
|
---|
710 | rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
|
---|
711 | pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
|
---|
712 | pgmLock(pVM);
|
---|
713 | if (RT_FAILURE(rc))
|
---|
714 | break;
|
---|
715 | cNextYield = 128;
|
---|
716 | }
|
---|
717 |
|
---|
718 | /*
|
---|
719 | * Now, just perform the locking and address calculation.
|
---|
720 | */
|
---|
721 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
722 | if (pMap)
|
---|
723 | pMap->cRefs++;
|
---|
724 |
|
---|
725 | unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
|
---|
726 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
727 | {
|
---|
728 | if (cLocks == 0)
|
---|
729 | pVM->pgm.s.cWriteLockedPages++;
|
---|
730 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
731 | }
|
---|
732 | else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
|
---|
733 | {
|
---|
734 | PGM_PAGE_INC_WRITE_LOCKS(pPage);
|
---|
735 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
|
---|
736 | if (pMap)
|
---|
737 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
738 | }
|
---|
739 |
|
---|
740 | papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
|
---|
741 | paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
|
---|
742 | paLocks[iPage].pvMap = pMap;
|
---|
743 | }
|
---|
744 |
|
---|
745 | pgmUnlock(pVM);
|
---|
746 |
|
---|
747 | /*
|
---|
748 | * On failure we must unlock any pages we managed to get already.
|
---|
749 | */
|
---|
750 | if (RT_FAILURE(rc) && iPage > 0)
|
---|
751 | PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
|
---|
752 |
|
---|
753 | return rc;
|
---|
754 | }
|
---|
755 |
|
---|
756 |
|
---|
757 | /**
|
---|
758 | * Requests the mapping of multiple guest page into ring-3, for reading only,
|
---|
759 | * external threads.
|
---|
760 | *
|
---|
761 | * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
|
---|
762 | * to release them.
|
---|
763 | *
|
---|
764 | * @returns VBox status code.
|
---|
765 | * @retval VINF_SUCCESS on success.
|
---|
766 | * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
|
---|
767 | * backing or if any of the pages the page has an active ALL access
|
---|
768 | * handler. The caller must fall back on using PGMR3PhysWriteExternal.
|
---|
769 | * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
|
---|
770 | * an invalid physical address.
|
---|
771 | *
|
---|
772 | * @param pVM The cross context VM structure.
|
---|
773 | * @param cPages Number of pages to lock.
|
---|
774 | * @param paGCPhysPages The guest physical address of the pages that
|
---|
775 | * should be mapped (@a cPages entries).
|
---|
776 | * @param papvPages Where to store the ring-3 mapping addresses
|
---|
777 | * corresponding to @a paGCPhysPages.
|
---|
778 | * @param paLocks Where to store the lock information that
|
---|
779 | * pfnPhysReleasePageMappingLock needs (@a cPages
|
---|
780 | * in length).
|
---|
781 | *
|
---|
782 | * @remark Avoid calling this API from within critical sections (other than
|
---|
783 | * the PGM one) because of the deadlock risk.
|
---|
784 | * @thread Any.
|
---|
785 | */
|
---|
786 | VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
|
---|
787 | void const **papvPages, PPGMPAGEMAPLOCK paLocks)
|
---|
788 | {
|
---|
789 | Assert(cPages > 0);
|
---|
790 | AssertPtr(papvPages);
|
---|
791 | AssertPtr(paLocks);
|
---|
792 |
|
---|
793 | Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
|
---|
794 |
|
---|
795 | int rc = pgmLock(pVM);
|
---|
796 | AssertRCReturn(rc, rc);
|
---|
797 |
|
---|
798 | /*
|
---|
799 | * Lock the pages one by one.
|
---|
800 | * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
|
---|
801 | */
|
---|
802 | int32_t cNextYield = 256;
|
---|
803 | uint32_t iPage;
|
---|
804 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
805 | {
|
---|
806 | if (--cNextYield > 0)
|
---|
807 | { /* likely */ }
|
---|
808 | else
|
---|
809 | {
|
---|
810 | pgmUnlock(pVM);
|
---|
811 | ASMNopPause();
|
---|
812 | pgmLock(pVM);
|
---|
813 | cNextYield = 256;
|
---|
814 | }
|
---|
815 |
|
---|
816 | /*
|
---|
817 | * Query the Physical TLB entry for the page (may fail).
|
---|
818 | */
|
---|
819 | PPGMPAGEMAPTLBE pTlbe;
|
---|
820 | rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
|
---|
821 | if (RT_SUCCESS(rc))
|
---|
822 | { }
|
---|
823 | else
|
---|
824 | break;
|
---|
825 | PPGMPAGE pPage = pTlbe->pPage;
|
---|
826 |
|
---|
827 | /*
|
---|
828 | * No MMIO or active all access handlers, everything else can be accessed.
|
---|
829 | */
|
---|
830 | if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
|
---|
831 | && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
|
---|
832 | { }
|
---|
833 | else
|
---|
834 | {
|
---|
835 | rc = VERR_PGM_PHYS_PAGE_RESERVED;
|
---|
836 | break;
|
---|
837 | }
|
---|
838 |
|
---|
839 | /*
|
---|
840 | * Now, just perform the locking and address calculation.
|
---|
841 | */
|
---|
842 | PPGMPAGEMAP pMap = pTlbe->pMap;
|
---|
843 | if (pMap)
|
---|
844 | pMap->cRefs++;
|
---|
845 |
|
---|
846 | unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
|
---|
847 | if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
|
---|
848 | {
|
---|
849 | if (cLocks == 0)
|
---|
850 | pVM->pgm.s.cReadLockedPages++;
|
---|
851 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
852 | }
|
---|
853 | else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
|
---|
854 | {
|
---|
855 | PGM_PAGE_INC_READ_LOCKS(pPage);
|
---|
856 | AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
|
---|
857 | if (pMap)
|
---|
858 | pMap->cRefs++; /* Extra ref to prevent it from going away. */
|
---|
859 | }
|
---|
860 |
|
---|
861 | papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
|
---|
862 | paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
|
---|
863 | paLocks[iPage].pvMap = pMap;
|
---|
864 | }
|
---|
865 |
|
---|
866 | pgmUnlock(pVM);
|
---|
867 |
|
---|
868 | /*
|
---|
869 | * On failure we must unlock any pages we managed to get already.
|
---|
870 | */
|
---|
871 | if (RT_FAILURE(rc) && iPage > 0)
|
---|
872 | PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
|
---|
873 |
|
---|
874 | return rc;
|
---|
875 | }
|
---|
876 |
|
---|
877 |
|
---|
878 | #define MAKE_LEAF(a_pNode) \
|
---|
879 | do { \
|
---|
880 | (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
|
---|
881 | (a_pNode)->pRightR3 = NIL_RTR3PTR; \
|
---|
882 | (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
|
---|
883 | (a_pNode)->pRightR0 = NIL_RTR0PTR; \
|
---|
884 | } while (0)
|
---|
885 |
|
---|
886 | #define INSERT_LEFT(a_pParent, a_pNode) \
|
---|
887 | do { \
|
---|
888 | (a_pParent)->pLeftR3 = (a_pNode); \
|
---|
889 | (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
|
---|
890 | } while (0)
|
---|
891 | #define INSERT_RIGHT(a_pParent, a_pNode) \
|
---|
892 | do { \
|
---|
893 | (a_pParent)->pRightR3 = (a_pNode); \
|
---|
894 | (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
|
---|
895 | } while (0)
|
---|
896 |
|
---|
897 |
|
---|
898 | /**
|
---|
899 | * Recursive tree builder.
|
---|
900 | *
|
---|
901 | * @param ppRam Pointer to the iterator variable.
|
---|
902 | * @param iDepth The current depth. Inserts a leaf node if 0.
|
---|
903 | */
|
---|
904 | static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
|
---|
905 | {
|
---|
906 | PPGMRAMRANGE pRam;
|
---|
907 | if (iDepth <= 0)
|
---|
908 | {
|
---|
909 | /*
|
---|
910 | * Leaf node.
|
---|
911 | */
|
---|
912 | pRam = *ppRam;
|
---|
913 | if (pRam)
|
---|
914 | {
|
---|
915 | *ppRam = pRam->pNextR3;
|
---|
916 | MAKE_LEAF(pRam);
|
---|
917 | }
|
---|
918 | }
|
---|
919 | else
|
---|
920 | {
|
---|
921 |
|
---|
922 | /*
|
---|
923 | * Intermediate node.
|
---|
924 | */
|
---|
925 | PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
|
---|
926 |
|
---|
927 | pRam = *ppRam;
|
---|
928 | if (!pRam)
|
---|
929 | return pLeft;
|
---|
930 | *ppRam = pRam->pNextR3;
|
---|
931 | MAKE_LEAF(pRam);
|
---|
932 | INSERT_LEFT(pRam, pLeft);
|
---|
933 |
|
---|
934 | PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
|
---|
935 | if (pRight)
|
---|
936 | INSERT_RIGHT(pRam, pRight);
|
---|
937 | }
|
---|
938 | return pRam;
|
---|
939 | }
|
---|
940 |
|
---|
941 |
|
---|
942 | /**
|
---|
943 | * Rebuilds the RAM range search trees.
|
---|
944 | *
|
---|
945 | * @param pVM The cross context VM structure.
|
---|
946 | */
|
---|
947 | static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
|
---|
948 | {
|
---|
949 |
|
---|
950 | /*
|
---|
951 | * Create the reasonably balanced tree in a sequential fashion.
|
---|
952 | * For simplicity (laziness) we use standard recursion here.
|
---|
953 | */
|
---|
954 | int iDepth = 0;
|
---|
955 | PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
956 | PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
|
---|
957 | while (pRam)
|
---|
958 | {
|
---|
959 | PPGMRAMRANGE pLeft = pRoot;
|
---|
960 |
|
---|
961 | pRoot = pRam;
|
---|
962 | pRam = pRam->pNextR3;
|
---|
963 | MAKE_LEAF(pRoot);
|
---|
964 | INSERT_LEFT(pRoot, pLeft);
|
---|
965 |
|
---|
966 | PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
|
---|
967 | if (pRight)
|
---|
968 | INSERT_RIGHT(pRoot, pRight);
|
---|
969 | /** @todo else: rotate the tree. */
|
---|
970 |
|
---|
971 | iDepth++;
|
---|
972 | }
|
---|
973 |
|
---|
974 | pVM->pgm.s.pRamRangeTreeR3 = pRoot;
|
---|
975 | pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
|
---|
976 |
|
---|
977 | #ifdef VBOX_STRICT
|
---|
978 | /*
|
---|
979 | * Verify that the above code works.
|
---|
980 | */
|
---|
981 | unsigned cRanges = 0;
|
---|
982 | for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
|
---|
983 | cRanges++;
|
---|
984 | Assert(cRanges > 0);
|
---|
985 |
|
---|
986 | unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
|
---|
987 | if ((1U << cMaxDepth) < cRanges)
|
---|
988 | cMaxDepth++;
|
---|
989 |
|
---|
990 | for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
|
---|
991 | {
|
---|
992 | unsigned cDepth = 0;
|
---|
993 | PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
|
---|
994 | for (;;)
|
---|
995 | {
|
---|
996 | if (pRam == pRam2)
|
---|
997 | break;
|
---|
998 | Assert(pRam2);
|
---|
999 | if (pRam->GCPhys < pRam2->GCPhys)
|
---|
1000 | pRam2 = pRam2->pLeftR3;
|
---|
1001 | else
|
---|
1002 | pRam2 = pRam2->pRightR3;
|
---|
1003 | }
|
---|
1004 | AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
|
---|
1005 | }
|
---|
1006 | #endif /* VBOX_STRICT */
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | #undef MAKE_LEAF
|
---|
1010 | #undef INSERT_LEFT
|
---|
1011 | #undef INSERT_RIGHT
|
---|
1012 |
|
---|
1013 | /**
|
---|
1014 | * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
|
---|
1015 | *
|
---|
1016 | * Called when anything was relocated.
|
---|
1017 | *
|
---|
1018 | * @param pVM The cross context VM structure.
|
---|
1019 | */
|
---|
1020 | void pgmR3PhysRelinkRamRanges(PVM pVM)
|
---|
1021 | {
|
---|
1022 | PPGMRAMRANGE pCur;
|
---|
1023 |
|
---|
1024 | #ifdef VBOX_STRICT
|
---|
1025 | for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
|
---|
1026 | {
|
---|
1027 | Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
|
---|
1028 | Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
|
---|
1029 | Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
|
---|
1030 | Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
|
---|
1031 | Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
|
---|
1032 | for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
|
---|
1033 | Assert( pCur2 == pCur
|
---|
1034 | || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
|
---|
1035 | }
|
---|
1036 | #endif
|
---|
1037 |
|
---|
1038 | pCur = pVM->pgm.s.pRamRangesXR3;
|
---|
1039 | if (pCur)
|
---|
1040 | {
|
---|
1041 | pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
|
---|
1042 |
|
---|
1043 | for (; pCur->pNextR3; pCur = pCur->pNextR3)
|
---|
1044 | pCur->pNextR0 = pCur->pNextR3->pSelfR0;
|
---|
1045 |
|
---|
1046 | Assert(pCur->pNextR0 == NIL_RTR0PTR);
|
---|
1047 | }
|
---|
1048 | else
|
---|
1049 | {
|
---|
1050 | Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
|
---|
1051 | }
|
---|
1052 | ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
|
---|
1053 |
|
---|
1054 | pgmR3PhysRebuildRamRangeSearchTrees(pVM);
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 |
|
---|
1058 | /**
|
---|
1059 | * Links a new RAM range into the list.
|
---|
1060 | *
|
---|
1061 | * @param pVM The cross context VM structure.
|
---|
1062 | * @param pNew Pointer to the new list entry.
|
---|
1063 | * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
|
---|
1064 | */
|
---|
1065 | static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
|
---|
1066 | {
|
---|
1067 | AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
|
---|
1068 | Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
|
---|
1069 |
|
---|
1070 | pgmLock(pVM);
|
---|
1071 |
|
---|
1072 | PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
|
---|
1073 | pNew->pNextR3 = pRam;
|
---|
1074 | pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
|
---|
1075 |
|
---|
1076 | if (pPrev)
|
---|
1077 | {
|
---|
1078 | pPrev->pNextR3 = pNew;
|
---|
1079 | pPrev->pNextR0 = pNew->pSelfR0;
|
---|
1080 | }
|
---|
1081 | else
|
---|
1082 | {
|
---|
1083 | pVM->pgm.s.pRamRangesXR3 = pNew;
|
---|
1084 | pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
|
---|
1085 | }
|
---|
1086 | ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
|
---|
1087 |
|
---|
1088 | pgmR3PhysRebuildRamRangeSearchTrees(pVM);
|
---|
1089 | pgmUnlock(pVM);
|
---|
1090 | }
|
---|
1091 |
|
---|
1092 |
|
---|
1093 | /**
|
---|
1094 | * Unlink an existing RAM range from the list.
|
---|
1095 | *
|
---|
1096 | * @param pVM The cross context VM structure.
|
---|
1097 | * @param pRam Pointer to the new list entry.
|
---|
1098 | * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
|
---|
1099 | */
|
---|
1100 | static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
|
---|
1101 | {
|
---|
1102 | Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
|
---|
1103 | Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
|
---|
1104 |
|
---|
1105 | pgmLock(pVM);
|
---|
1106 |
|
---|
1107 | PPGMRAMRANGE pNext = pRam->pNextR3;
|
---|
1108 | if (pPrev)
|
---|
1109 | {
|
---|
1110 | pPrev->pNextR3 = pNext;
|
---|
1111 | pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
|
---|
1112 | }
|
---|
1113 | else
|
---|
1114 | {
|
---|
1115 | Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
|
---|
1116 | pVM->pgm.s.pRamRangesXR3 = pNext;
|
---|
1117 | pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
|
---|
1118 | }
|
---|
1119 | ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
|
---|
1120 |
|
---|
1121 | pgmR3PhysRebuildRamRangeSearchTrees(pVM);
|
---|
1122 | pgmUnlock(pVM);
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 |
|
---|
1126 | /**
|
---|
1127 | * Unlink an existing RAM range from the list.
|
---|
1128 | *
|
---|
1129 | * @param pVM The cross context VM structure.
|
---|
1130 | * @param pRam Pointer to the new list entry.
|
---|
1131 | */
|
---|
1132 | static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
|
---|
1133 | {
|
---|
1134 | pgmLock(pVM);
|
---|
1135 |
|
---|
1136 | /* find prev. */
|
---|
1137 | PPGMRAMRANGE pPrev = NULL;
|
---|
1138 | PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
|
---|
1139 | while (pCur != pRam)
|
---|
1140 | {
|
---|
1141 | pPrev = pCur;
|
---|
1142 | pCur = pCur->pNextR3;
|
---|
1143 | }
|
---|
1144 | AssertFatal(pCur);
|
---|
1145 |
|
---|
1146 | pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
|
---|
1147 | pgmUnlock(pVM);
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 |
|
---|
1151 | /**
|
---|
1152 | * Frees a range of pages, replacing them with ZERO pages of the specified type.
|
---|
1153 | *
|
---|
1154 | * @returns VBox status code.
|
---|
1155 | * @param pVM The cross context VM structure.
|
---|
1156 | * @param pRam The RAM range in which the pages resides.
|
---|
1157 | * @param GCPhys The address of the first page.
|
---|
1158 | * @param GCPhysLast The address of the last page.
|
---|
1159 | * @param enmType The page type to replace then with.
|
---|
1160 | */
|
---|
1161 | static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, PGMPAGETYPE enmType)
|
---|
1162 | {
|
---|
1163 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
1164 | uint32_t cPendingPages = 0;
|
---|
1165 | PGMMFREEPAGESREQ pReq;
|
---|
1166 | int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
1167 | AssertLogRelRCReturn(rc, rc);
|
---|
1168 |
|
---|
1169 | /* Iterate the pages. */
|
---|
1170 | PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
1171 | uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
|
---|
1172 | while (cPagesLeft-- > 0)
|
---|
1173 | {
|
---|
1174 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, enmType);
|
---|
1175 | AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
|
---|
1176 |
|
---|
1177 | PGM_PAGE_SET_TYPE(pVM, pPageDst, enmType);
|
---|
1178 |
|
---|
1179 | GCPhys += PAGE_SIZE;
|
---|
1180 | pPageDst++;
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | if (cPendingPages)
|
---|
1184 | {
|
---|
1185 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
1186 | AssertLogRelRCReturn(rc, rc);
|
---|
1187 | }
|
---|
1188 | GMMR3FreePagesCleanup(pReq);
|
---|
1189 |
|
---|
1190 | return rc;
|
---|
1191 | }
|
---|
1192 |
|
---|
1193 | #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
|
---|
1194 |
|
---|
1195 | /**
|
---|
1196 | * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
|
---|
1197 | *
|
---|
1198 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
1199 | * it to complete this function.
|
---|
1200 | *
|
---|
1201 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
1202 | * @param pVM The cross context VM structure.
|
---|
1203 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
1204 | * @param pvUser User parameter
|
---|
1205 | */
|
---|
1206 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
1207 | {
|
---|
1208 | uintptr_t *paUser = (uintptr_t *)pvUser;
|
---|
1209 | bool fInflate = !!paUser[0];
|
---|
1210 | unsigned cPages = paUser[1];
|
---|
1211 | RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
|
---|
1212 | uint32_t cPendingPages = 0;
|
---|
1213 | PGMMFREEPAGESREQ pReq;
|
---|
1214 | int rc;
|
---|
1215 |
|
---|
1216 | Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
|
---|
1217 | pgmLock(pVM);
|
---|
1218 |
|
---|
1219 | if (fInflate)
|
---|
1220 | {
|
---|
1221 | /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
|
---|
1222 | pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
|
---|
1223 |
|
---|
1224 | /* Replace pages with ZERO pages. */
|
---|
1225 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
1226 | if (RT_FAILURE(rc))
|
---|
1227 | {
|
---|
1228 | pgmUnlock(pVM);
|
---|
1229 | AssertLogRelRC(rc);
|
---|
1230 | return rc;
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | /* Iterate the pages. */
|
---|
1234 | for (unsigned i = 0; i < cPages; i++)
|
---|
1235 | {
|
---|
1236 | PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
|
---|
1237 | if ( pPage == NULL
|
---|
1238 | || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
|
---|
1239 | {
|
---|
1240 | Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
|
---|
1241 | break;
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
|
---|
1245 |
|
---|
1246 | /* Flush the shadow PT if this page was previously used as a guest page table. */
|
---|
1247 | pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
|
---|
1248 |
|
---|
1249 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
|
---|
1250 | if (RT_FAILURE(rc))
|
---|
1251 | {
|
---|
1252 | pgmUnlock(pVM);
|
---|
1253 | AssertLogRelRC(rc);
|
---|
1254 | return rc;
|
---|
1255 | }
|
---|
1256 | Assert(PGM_PAGE_IS_ZERO(pPage));
|
---|
1257 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | if (cPendingPages)
|
---|
1261 | {
|
---|
1262 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
1263 | if (RT_FAILURE(rc))
|
---|
1264 | {
|
---|
1265 | pgmUnlock(pVM);
|
---|
1266 | AssertLogRelRC(rc);
|
---|
1267 | return rc;
|
---|
1268 | }
|
---|
1269 | }
|
---|
1270 | GMMR3FreePagesCleanup(pReq);
|
---|
1271 | }
|
---|
1272 | else
|
---|
1273 | {
|
---|
1274 | /* Iterate the pages. */
|
---|
1275 | for (unsigned i = 0; i < cPages; i++)
|
---|
1276 | {
|
---|
1277 | PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
|
---|
1278 | AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
|
---|
1279 |
|
---|
1280 | LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
|
---|
1281 |
|
---|
1282 | Assert(PGM_PAGE_IS_BALLOONED(pPage));
|
---|
1283 |
|
---|
1284 | /* Change back to zero page. (NEM does not need to be informed.) */
|
---|
1285 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
1286 | }
|
---|
1287 |
|
---|
1288 | /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | /* Notify GMM about the balloon change. */
|
---|
1292 | rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
|
---|
1293 | if (RT_SUCCESS(rc))
|
---|
1294 | {
|
---|
1295 | if (!fInflate)
|
---|
1296 | {
|
---|
1297 | Assert(pVM->pgm.s.cBalloonedPages >= cPages);
|
---|
1298 | pVM->pgm.s.cBalloonedPages -= cPages;
|
---|
1299 | }
|
---|
1300 | else
|
---|
1301 | pVM->pgm.s.cBalloonedPages += cPages;
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 | pgmUnlock(pVM);
|
---|
1305 |
|
---|
1306 | /* Flush the recompiler's TLB as well. */
|
---|
1307 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
1308 | CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
1309 |
|
---|
1310 | AssertLogRelRC(rc);
|
---|
1311 | return rc;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 |
|
---|
1315 | /**
|
---|
1316 | * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
|
---|
1317 | *
|
---|
1318 | * @returns VBox status code.
|
---|
1319 | * @param pVM The cross context VM structure.
|
---|
1320 | * @param fInflate Inflate or deflate memory balloon
|
---|
1321 | * @param cPages Number of pages to free
|
---|
1322 | * @param paPhysPage Array of guest physical addresses
|
---|
1323 | */
|
---|
1324 | static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
|
---|
1325 | {
|
---|
1326 | uintptr_t paUser[3];
|
---|
1327 |
|
---|
1328 | paUser[0] = fInflate;
|
---|
1329 | paUser[1] = cPages;
|
---|
1330 | paUser[2] = (uintptr_t)paPhysPage;
|
---|
1331 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
|
---|
1332 | AssertRC(rc);
|
---|
1333 |
|
---|
1334 | /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
|
---|
1335 | RTMemFree(paPhysPage);
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 | #endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
|
---|
1339 |
|
---|
1340 | /**
|
---|
1341 | * Inflate or deflate a memory balloon
|
---|
1342 | *
|
---|
1343 | * @returns VBox status code.
|
---|
1344 | * @param pVM The cross context VM structure.
|
---|
1345 | * @param fInflate Inflate or deflate memory balloon
|
---|
1346 | * @param cPages Number of pages to free
|
---|
1347 | * @param paPhysPage Array of guest physical addresses
|
---|
1348 | */
|
---|
1349 | VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
|
---|
1350 | {
|
---|
1351 | /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
|
---|
1352 | #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
|
---|
1353 | int rc;
|
---|
1354 |
|
---|
1355 | /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
|
---|
1356 | AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
|
---|
1357 |
|
---|
1358 | /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
|
---|
1359 | * In the SMP case we post a request packet to postpone the job.
|
---|
1360 | */
|
---|
1361 | if (pVM->cCpus > 1)
|
---|
1362 | {
|
---|
1363 | unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
|
---|
1364 | RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
|
---|
1365 | AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
|
---|
1366 |
|
---|
1367 | memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
|
---|
1368 |
|
---|
1369 | rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
|
---|
1370 | AssertRC(rc);
|
---|
1371 | }
|
---|
1372 | else
|
---|
1373 | {
|
---|
1374 | uintptr_t paUser[3];
|
---|
1375 |
|
---|
1376 | paUser[0] = fInflate;
|
---|
1377 | paUser[1] = cPages;
|
---|
1378 | paUser[2] = (uintptr_t)paPhysPage;
|
---|
1379 | rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
|
---|
1380 | AssertRC(rc);
|
---|
1381 | }
|
---|
1382 | return rc;
|
---|
1383 |
|
---|
1384 | #else
|
---|
1385 | NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
|
---|
1386 | return VERR_NOT_IMPLEMENTED;
|
---|
1387 | #endif
|
---|
1388 | }
|
---|
1389 |
|
---|
1390 |
|
---|
1391 | /**
|
---|
1392 | * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
|
---|
1393 | * physical RAM.
|
---|
1394 | *
|
---|
1395 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
1396 | * it to complete this function.
|
---|
1397 | *
|
---|
1398 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
1399 | * @param pVM The cross context VM structure.
|
---|
1400 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
1401 | * @param pvUser User parameter, unused.
|
---|
1402 | */
|
---|
1403 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
1404 | {
|
---|
1405 | int rc = VINF_SUCCESS;
|
---|
1406 | NOREF(pvUser); NOREF(pVCpu);
|
---|
1407 |
|
---|
1408 | pgmLock(pVM);
|
---|
1409 | #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
|
---|
1410 | pgmPoolResetDirtyPages(pVM);
|
---|
1411 | #endif
|
---|
1412 |
|
---|
1413 | /** @todo pointless to write protect the physical page pointed to by RSP. */
|
---|
1414 |
|
---|
1415 | for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
|
---|
1416 | pRam;
|
---|
1417 | pRam = pRam->CTX_SUFF(pNext))
|
---|
1418 | {
|
---|
1419 | uint32_t cPages = pRam->cb >> PAGE_SHIFT;
|
---|
1420 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
1421 | {
|
---|
1422 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
1423 | PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
|
---|
1424 |
|
---|
1425 | if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
|
---|
1426 | || enmPageType == PGMPAGETYPE_MMIO2)
|
---|
1427 | {
|
---|
1428 | /*
|
---|
1429 | * A RAM page.
|
---|
1430 | */
|
---|
1431 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
1432 | {
|
---|
1433 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
1434 | /** @todo Optimize this: Don't always re-enable write
|
---|
1435 | * monitoring if the page is known to be very busy. */
|
---|
1436 | if (PGM_PAGE_IS_WRITTEN_TO(pPage))
|
---|
1437 | PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
|
---|
1438 |
|
---|
1439 | pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
|
---|
1440 | break;
|
---|
1441 |
|
---|
1442 | case PGM_PAGE_STATE_SHARED:
|
---|
1443 | AssertFailed();
|
---|
1444 | break;
|
---|
1445 |
|
---|
1446 | case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
|
---|
1447 | default:
|
---|
1448 | break;
|
---|
1449 | }
|
---|
1450 | }
|
---|
1451 | }
|
---|
1452 | }
|
---|
1453 | pgmR3PoolWriteProtectPages(pVM);
|
---|
1454 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
1455 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
1456 | CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
1457 |
|
---|
1458 | pgmUnlock(pVM);
|
---|
1459 | return rc;
|
---|
1460 | }
|
---|
1461 |
|
---|
1462 | /**
|
---|
1463 | * Protect all physical RAM to monitor writes
|
---|
1464 | *
|
---|
1465 | * @returns VBox status code.
|
---|
1466 | * @param pVM The cross context VM structure.
|
---|
1467 | */
|
---|
1468 | VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
|
---|
1469 | {
|
---|
1470 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
1471 |
|
---|
1472 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
|
---|
1473 | AssertRC(rc);
|
---|
1474 | return rc;
|
---|
1475 | }
|
---|
1476 |
|
---|
1477 |
|
---|
1478 | /**
|
---|
1479 | * Gets the number of ram ranges.
|
---|
1480 | *
|
---|
1481 | * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
|
---|
1482 | * @param pVM The cross context VM structure.
|
---|
1483 | */
|
---|
1484 | VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
|
---|
1485 | {
|
---|
1486 | VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
|
---|
1487 |
|
---|
1488 | pgmLock(pVM);
|
---|
1489 | uint32_t cRamRanges = 0;
|
---|
1490 | for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
|
---|
1491 | cRamRanges++;
|
---|
1492 | pgmUnlock(pVM);
|
---|
1493 | return cRamRanges;
|
---|
1494 | }
|
---|
1495 |
|
---|
1496 |
|
---|
1497 | /**
|
---|
1498 | * Get information about a range.
|
---|
1499 | *
|
---|
1500 | * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
|
---|
1501 | * @param pVM The cross context VM structure.
|
---|
1502 | * @param iRange The ordinal of the range.
|
---|
1503 | * @param pGCPhysStart Where to return the start of the range. Optional.
|
---|
1504 | * @param pGCPhysLast Where to return the address of the last byte in the
|
---|
1505 | * range. Optional.
|
---|
1506 | * @param ppszDesc Where to return the range description. Optional.
|
---|
1507 | * @param pfIsMmio Where to indicate that this is a pure MMIO range.
|
---|
1508 | * Optional.
|
---|
1509 | */
|
---|
1510 | VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
|
---|
1511 | const char **ppszDesc, bool *pfIsMmio)
|
---|
1512 | {
|
---|
1513 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
1514 |
|
---|
1515 | pgmLock(pVM);
|
---|
1516 | uint32_t iCurRange = 0;
|
---|
1517 | for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
|
---|
1518 | if (iCurRange == iRange)
|
---|
1519 | {
|
---|
1520 | if (pGCPhysStart)
|
---|
1521 | *pGCPhysStart = pCur->GCPhys;
|
---|
1522 | if (pGCPhysLast)
|
---|
1523 | *pGCPhysLast = pCur->GCPhysLast;
|
---|
1524 | if (ppszDesc)
|
---|
1525 | *ppszDesc = pCur->pszDesc;
|
---|
1526 | if (pfIsMmio)
|
---|
1527 | *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
|
---|
1528 |
|
---|
1529 | pgmUnlock(pVM);
|
---|
1530 | return VINF_SUCCESS;
|
---|
1531 | }
|
---|
1532 | pgmUnlock(pVM);
|
---|
1533 | return VERR_OUT_OF_RANGE;
|
---|
1534 | }
|
---|
1535 |
|
---|
1536 |
|
---|
1537 | /**
|
---|
1538 | * Query the amount of free memory inside VMMR0
|
---|
1539 | *
|
---|
1540 | * @returns VBox status code.
|
---|
1541 | * @param pUVM The user mode VM handle.
|
---|
1542 | * @param pcbAllocMem Where to return the amount of memory allocated
|
---|
1543 | * by VMs.
|
---|
1544 | * @param pcbFreeMem Where to return the amount of memory that is
|
---|
1545 | * allocated from the host but not currently used
|
---|
1546 | * by any VMs.
|
---|
1547 | * @param pcbBallonedMem Where to return the sum of memory that is
|
---|
1548 | * currently ballooned by the VMs.
|
---|
1549 | * @param pcbSharedMem Where to return the amount of memory that is
|
---|
1550 | * currently shared.
|
---|
1551 | */
|
---|
1552 | VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
|
---|
1553 | uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
|
---|
1554 | {
|
---|
1555 | UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
|
---|
1556 | VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
|
---|
1557 |
|
---|
1558 | uint64_t cAllocPages = 0;
|
---|
1559 | uint64_t cFreePages = 0;
|
---|
1560 | uint64_t cBalloonPages = 0;
|
---|
1561 | uint64_t cSharedPages = 0;
|
---|
1562 | int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
|
---|
1563 | AssertRCReturn(rc, rc);
|
---|
1564 |
|
---|
1565 | if (pcbAllocMem)
|
---|
1566 | *pcbAllocMem = cAllocPages * _4K;
|
---|
1567 |
|
---|
1568 | if (pcbFreeMem)
|
---|
1569 | *pcbFreeMem = cFreePages * _4K;
|
---|
1570 |
|
---|
1571 | if (pcbBallonedMem)
|
---|
1572 | *pcbBallonedMem = cBalloonPages * _4K;
|
---|
1573 |
|
---|
1574 | if (pcbSharedMem)
|
---|
1575 | *pcbSharedMem = cSharedPages * _4K;
|
---|
1576 |
|
---|
1577 | Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
|
---|
1578 | cAllocPages, cFreePages, cBalloonPages, cSharedPages));
|
---|
1579 | return VINF_SUCCESS;
|
---|
1580 | }
|
---|
1581 |
|
---|
1582 |
|
---|
1583 | /**
|
---|
1584 | * Query memory stats for the VM.
|
---|
1585 | *
|
---|
1586 | * @returns VBox status code.
|
---|
1587 | * @param pUVM The user mode VM handle.
|
---|
1588 | * @param pcbTotalMem Where to return total amount memory the VM may
|
---|
1589 | * possibly use.
|
---|
1590 | * @param pcbPrivateMem Where to return the amount of private memory
|
---|
1591 | * currently allocated.
|
---|
1592 | * @param pcbSharedMem Where to return the amount of actually shared
|
---|
1593 | * memory currently used by the VM.
|
---|
1594 | * @param pcbZeroMem Where to return the amount of memory backed by
|
---|
1595 | * zero pages.
|
---|
1596 | *
|
---|
1597 | * @remarks The total mem is normally larger than the sum of the three
|
---|
1598 | * components. There are two reasons for this, first the amount of
|
---|
1599 | * shared memory is what we're sure is shared instead of what could
|
---|
1600 | * possibly be shared with someone. Secondly, because the total may
|
---|
1601 | * include some pure MMIO pages that doesn't go into any of the three
|
---|
1602 | * sub-counts.
|
---|
1603 | *
|
---|
1604 | * @todo Why do we return reused shared pages instead of anything that could
|
---|
1605 | * potentially be shared? Doesn't this mean the first VM gets a much
|
---|
1606 | * lower number of shared pages?
|
---|
1607 | */
|
---|
1608 | VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
|
---|
1609 | uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
|
---|
1610 | {
|
---|
1611 | UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
|
---|
1612 | PVM pVM = pUVM->pVM;
|
---|
1613 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
1614 |
|
---|
1615 | if (pcbTotalMem)
|
---|
1616 | *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
|
---|
1617 |
|
---|
1618 | if (pcbPrivateMem)
|
---|
1619 | *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
|
---|
1620 |
|
---|
1621 | if (pcbSharedMem)
|
---|
1622 | *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
|
---|
1623 |
|
---|
1624 | if (pcbZeroMem)
|
---|
1625 | *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
|
---|
1626 |
|
---|
1627 | Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
|
---|
1628 | return VINF_SUCCESS;
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 |
|
---|
1632 | /**
|
---|
1633 | * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
|
---|
1634 | *
|
---|
1635 | * @param pVM The cross context VM structure.
|
---|
1636 | * @param pNew The new RAM range.
|
---|
1637 | * @param GCPhys The address of the RAM range.
|
---|
1638 | * @param GCPhysLast The last address of the RAM range.
|
---|
1639 | * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
|
---|
1640 | * if in HMA.
|
---|
1641 | * @param R0PtrNew Ditto for R0.
|
---|
1642 | * @param pszDesc The description.
|
---|
1643 | * @param pPrev The previous RAM range (for linking).
|
---|
1644 | */
|
---|
1645 | static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
|
---|
1646 | RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
|
---|
1647 | {
|
---|
1648 | /*
|
---|
1649 | * Initialize the range.
|
---|
1650 | */
|
---|
1651 | pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
|
---|
1652 | pNew->GCPhys = GCPhys;
|
---|
1653 | pNew->GCPhysLast = GCPhysLast;
|
---|
1654 | pNew->cb = GCPhysLast - GCPhys + 1;
|
---|
1655 | pNew->pszDesc = pszDesc;
|
---|
1656 | pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
|
---|
1657 | pNew->pvR3 = NULL;
|
---|
1658 | pNew->paLSPages = NULL;
|
---|
1659 |
|
---|
1660 | uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
|
---|
1661 | RTGCPHYS iPage = cPages;
|
---|
1662 | while (iPage-- > 0)
|
---|
1663 | PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
|
---|
1664 |
|
---|
1665 | /* Update the page count stats. */
|
---|
1666 | pVM->pgm.s.cZeroPages += cPages;
|
---|
1667 | pVM->pgm.s.cAllPages += cPages;
|
---|
1668 |
|
---|
1669 | /*
|
---|
1670 | * Link it.
|
---|
1671 | */
|
---|
1672 | pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
|
---|
1673 | }
|
---|
1674 |
|
---|
1675 |
|
---|
1676 | #ifndef PGM_WITHOUT_MAPPINGS
|
---|
1677 | /**
|
---|
1678 | * @callback_method_impl{FNPGMRELOCATE, Relocate a floating RAM range.}
|
---|
1679 | * @sa pgmR3PhysMMIO2ExRangeRelocate
|
---|
1680 | */
|
---|
1681 | static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
|
---|
1682 | PGMRELOCATECALL enmMode, void *pvUser)
|
---|
1683 | {
|
---|
1684 | PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
|
---|
1685 | Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
|
---|
1686 | Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE); RT_NOREF_PV(GCPtrOld);
|
---|
1687 |
|
---|
1688 | switch (enmMode)
|
---|
1689 | {
|
---|
1690 | case PGMRELOCATECALL_SUGGEST:
|
---|
1691 | return true;
|
---|
1692 |
|
---|
1693 | case PGMRELOCATECALL_RELOCATE:
|
---|
1694 | {
|
---|
1695 | /*
|
---|
1696 | * Update myself, then relink all the ranges and flush the RC TLB.
|
---|
1697 | */
|
---|
1698 | pgmLock(pVM);
|
---|
1699 |
|
---|
1700 | pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
|
---|
1701 |
|
---|
1702 | pgmR3PhysRelinkRamRanges(pVM);
|
---|
1703 | for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
|
---|
1704 | pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
|
---|
1705 |
|
---|
1706 | pgmUnlock(pVM);
|
---|
1707 | return true;
|
---|
1708 | }
|
---|
1709 |
|
---|
1710 | default:
|
---|
1711 | AssertFailedReturn(false);
|
---|
1712 | }
|
---|
1713 | }
|
---|
1714 | #endif /* !PGM_WITHOUT_MAPPINGS */
|
---|
1715 |
|
---|
1716 |
|
---|
1717 | /**
|
---|
1718 | * PGMR3PhysRegisterRam worker that registers a high chunk.
|
---|
1719 | *
|
---|
1720 | * @returns VBox status code.
|
---|
1721 | * @param pVM The cross context VM structure.
|
---|
1722 | * @param GCPhys The address of the RAM.
|
---|
1723 | * @param cRamPages The number of RAM pages to register.
|
---|
1724 | * @param cbChunk The size of the PGMRAMRANGE guest mapping.
|
---|
1725 | * @param iChunk The chunk number.
|
---|
1726 | * @param pszDesc The RAM range description.
|
---|
1727 | * @param ppPrev Previous RAM range pointer. In/Out.
|
---|
1728 | */
|
---|
1729 | static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
|
---|
1730 | uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
|
---|
1731 | PPGMRAMRANGE *ppPrev)
|
---|
1732 | {
|
---|
1733 | const char *pszDescChunk = iChunk == 0
|
---|
1734 | ? pszDesc
|
---|
1735 | : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
|
---|
1736 | AssertReturn(pszDescChunk, VERR_NO_MEMORY);
|
---|
1737 |
|
---|
1738 | /*
|
---|
1739 | * Allocate memory for the new chunk.
|
---|
1740 | */
|
---|
1741 | size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
|
---|
1742 | PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
|
---|
1743 | AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
|
---|
1744 | RTR0PTR R0PtrChunk = NIL_RTR0PTR;
|
---|
1745 | void *pvChunk = NULL;
|
---|
1746 | int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
|
---|
1747 | if (RT_SUCCESS(rc))
|
---|
1748 | {
|
---|
1749 | Assert(R0PtrChunk != NIL_RTR0PTR);
|
---|
1750 | memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
|
---|
1751 |
|
---|
1752 | PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
|
---|
1753 |
|
---|
1754 | /*
|
---|
1755 | * Create a mapping and map the pages into it.
|
---|
1756 | * We push these in below the HMA.
|
---|
1757 | */
|
---|
1758 | RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
|
---|
1759 | #ifndef PGM_WITHOUT_MAPPINGS
|
---|
1760 | rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
|
---|
1761 | if (RT_SUCCESS(rc))
|
---|
1762 | #endif /* !PGM_WITHOUT_MAPPINGS */
|
---|
1763 | {
|
---|
1764 | pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
|
---|
1765 |
|
---|
1766 | RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
|
---|
1767 | #ifndef PGM_WITHOUT_MAPPINGS
|
---|
1768 | RTGCPTR GCPtrPage = GCPtrChunk;
|
---|
1769 | for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
|
---|
1770 | rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
|
---|
1771 | if (RT_SUCCESS(rc))
|
---|
1772 | #endif /* !PGM_WITHOUT_MAPPINGS */
|
---|
1773 | {
|
---|
1774 | /*
|
---|
1775 | * Ok, init and link the range.
|
---|
1776 | */
|
---|
1777 | pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
|
---|
1778 | (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
|
---|
1779 | *ppPrev = pNew;
|
---|
1780 | }
|
---|
1781 | }
|
---|
1782 |
|
---|
1783 | if (RT_FAILURE(rc))
|
---|
1784 | SUPR3PageFreeEx(pvChunk, cChunkPages);
|
---|
1785 | }
|
---|
1786 |
|
---|
1787 | RTMemTmpFree(paChunkPages);
|
---|
1788 | return rc;
|
---|
1789 | }
|
---|
1790 |
|
---|
1791 |
|
---|
1792 | /**
|
---|
1793 | * Sets up a range RAM.
|
---|
1794 | *
|
---|
1795 | * This will check for conflicting registrations, make a resource
|
---|
1796 | * reservation for the memory (with GMM), and setup the per-page
|
---|
1797 | * tracking structures (PGMPAGE).
|
---|
1798 | *
|
---|
1799 | * @returns VBox status code.
|
---|
1800 | * @param pVM The cross context VM structure.
|
---|
1801 | * @param GCPhys The physical address of the RAM.
|
---|
1802 | * @param cb The size of the RAM.
|
---|
1803 | * @param pszDesc The description - not copied, so, don't free or change it.
|
---|
1804 | */
|
---|
1805 | VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
|
---|
1806 | {
|
---|
1807 | /*
|
---|
1808 | * Validate input.
|
---|
1809 | */
|
---|
1810 | Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
|
---|
1811 | AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
|
---|
1812 | AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
|
---|
1813 | AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
|
---|
1814 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
1815 | AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
|
---|
1816 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
1817 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
1818 |
|
---|
1819 | pgmLock(pVM);
|
---|
1820 |
|
---|
1821 | /*
|
---|
1822 | * Find range location and check for conflicts.
|
---|
1823 | * (We don't lock here because the locking by EMT is only required on update.)
|
---|
1824 | */
|
---|
1825 | PPGMRAMRANGE pPrev = NULL;
|
---|
1826 | PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
1827 | while (pRam && GCPhysLast >= pRam->GCPhys)
|
---|
1828 | {
|
---|
1829 | if ( GCPhysLast >= pRam->GCPhys
|
---|
1830 | && GCPhys <= pRam->GCPhysLast)
|
---|
1831 | AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
|
---|
1832 | GCPhys, GCPhysLast, pszDesc,
|
---|
1833 | pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
|
---|
1834 | VERR_PGM_RAM_CONFLICT);
|
---|
1835 |
|
---|
1836 | /* next */
|
---|
1837 | pPrev = pRam;
|
---|
1838 | pRam = pRam->pNextR3;
|
---|
1839 | }
|
---|
1840 |
|
---|
1841 | /*
|
---|
1842 | * Register it with GMM (the API bitches).
|
---|
1843 | */
|
---|
1844 | const RTGCPHYS cPages = cb >> PAGE_SHIFT;
|
---|
1845 | int rc = MMR3IncreaseBaseReservation(pVM, cPages);
|
---|
1846 | if (RT_FAILURE(rc))
|
---|
1847 | {
|
---|
1848 | pgmUnlock(pVM);
|
---|
1849 | return rc;
|
---|
1850 | }
|
---|
1851 |
|
---|
1852 | if ( GCPhys >= _4G
|
---|
1853 | && cPages > 256)
|
---|
1854 | {
|
---|
1855 | /*
|
---|
1856 | * The PGMRAMRANGE structures for the high memory can get very big.
|
---|
1857 | * In order to avoid SUPR3PageAllocEx allocation failures due to the
|
---|
1858 | * allocation size limit there and also to avoid being unable to find
|
---|
1859 | * guest mapping space for them, we split this memory up into 4MB in
|
---|
1860 | * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
|
---|
1861 | * mode.
|
---|
1862 | *
|
---|
1863 | * The first and last page of each mapping are guard pages and marked
|
---|
1864 | * not-present. So, we've got 4186112 and 16769024 bytes available for
|
---|
1865 | * the PGMRAMRANGE structure.
|
---|
1866 | *
|
---|
1867 | * Note! The sizes used here will influence the saved state.
|
---|
1868 | */
|
---|
1869 | uint32_t cbChunk = 16U*_1M;
|
---|
1870 | uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
|
---|
1871 | AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
|
---|
1872 | AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
|
---|
1873 |
|
---|
1874 | RTGCPHYS cPagesLeft = cPages;
|
---|
1875 | RTGCPHYS GCPhysChunk = GCPhys;
|
---|
1876 | uint32_t iChunk = 0;
|
---|
1877 | while (cPagesLeft > 0)
|
---|
1878 | {
|
---|
1879 | uint32_t cPagesInChunk = cPagesLeft;
|
---|
1880 | if (cPagesInChunk > cPagesPerChunk)
|
---|
1881 | cPagesInChunk = cPagesPerChunk;
|
---|
1882 |
|
---|
1883 | rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
|
---|
1884 | AssertRCReturn(rc, rc);
|
---|
1885 |
|
---|
1886 | /* advance */
|
---|
1887 | GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
|
---|
1888 | cPagesLeft -= cPagesInChunk;
|
---|
1889 | iChunk++;
|
---|
1890 | }
|
---|
1891 | }
|
---|
1892 | else
|
---|
1893 | {
|
---|
1894 | /*
|
---|
1895 | * Allocate, initialize and link the new RAM range.
|
---|
1896 | */
|
---|
1897 | const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
|
---|
1898 | PPGMRAMRANGE pNew;
|
---|
1899 | rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
|
---|
1900 | AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
|
---|
1901 |
|
---|
1902 | pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
|
---|
1903 | }
|
---|
1904 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
1905 |
|
---|
1906 | /*
|
---|
1907 | * Notify NEM while holding the lock (experimental) and REM without (like always).
|
---|
1908 | */
|
---|
1909 | rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, cb);
|
---|
1910 | pgmUnlock(pVM);
|
---|
1911 | return rc;
|
---|
1912 | }
|
---|
1913 |
|
---|
1914 |
|
---|
1915 | /**
|
---|
1916 | * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
|
---|
1917 | *
|
---|
1918 | * We do this late in the init process so that all the ROM and MMIO ranges have
|
---|
1919 | * been registered already and we don't go wasting memory on them.
|
---|
1920 | *
|
---|
1921 | * @returns VBox status code.
|
---|
1922 | *
|
---|
1923 | * @param pVM The cross context VM structure.
|
---|
1924 | */
|
---|
1925 | int pgmR3PhysRamPreAllocate(PVM pVM)
|
---|
1926 | {
|
---|
1927 | Assert(pVM->pgm.s.fRamPreAlloc);
|
---|
1928 | Log(("pgmR3PhysRamPreAllocate: enter\n"));
|
---|
1929 |
|
---|
1930 | /*
|
---|
1931 | * Walk the RAM ranges and allocate all RAM pages, halt at
|
---|
1932 | * the first allocation error.
|
---|
1933 | */
|
---|
1934 | uint64_t cPages = 0;
|
---|
1935 | uint64_t NanoTS = RTTimeNanoTS();
|
---|
1936 | pgmLock(pVM);
|
---|
1937 | for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
|
---|
1938 | {
|
---|
1939 | PPGMPAGE pPage = &pRam->aPages[0];
|
---|
1940 | RTGCPHYS GCPhys = pRam->GCPhys;
|
---|
1941 | uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
|
---|
1942 | while (cLeft-- > 0)
|
---|
1943 | {
|
---|
1944 | if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
|
---|
1945 | {
|
---|
1946 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
1947 | {
|
---|
1948 | case PGM_PAGE_STATE_ZERO:
|
---|
1949 | {
|
---|
1950 | int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
|
---|
1951 | if (RT_FAILURE(rc))
|
---|
1952 | {
|
---|
1953 | LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
|
---|
1954 | pgmUnlock(pVM);
|
---|
1955 | return rc;
|
---|
1956 | }
|
---|
1957 | cPages++;
|
---|
1958 | break;
|
---|
1959 | }
|
---|
1960 |
|
---|
1961 | case PGM_PAGE_STATE_BALLOONED:
|
---|
1962 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
1963 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
1964 | case PGM_PAGE_STATE_SHARED:
|
---|
1965 | /* nothing to do here. */
|
---|
1966 | break;
|
---|
1967 | }
|
---|
1968 | }
|
---|
1969 |
|
---|
1970 | /* next */
|
---|
1971 | pPage++;
|
---|
1972 | GCPhys += PAGE_SIZE;
|
---|
1973 | }
|
---|
1974 | }
|
---|
1975 | pgmUnlock(pVM);
|
---|
1976 | NanoTS = RTTimeNanoTS() - NanoTS;
|
---|
1977 |
|
---|
1978 | LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
|
---|
1979 | Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
|
---|
1980 | return VINF_SUCCESS;
|
---|
1981 | }
|
---|
1982 |
|
---|
1983 |
|
---|
1984 | /**
|
---|
1985 | * Checks shared page checksums.
|
---|
1986 | *
|
---|
1987 | * @param pVM The cross context VM structure.
|
---|
1988 | */
|
---|
1989 | void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
|
---|
1990 | {
|
---|
1991 | #ifdef VBOX_STRICT
|
---|
1992 | pgmLock(pVM);
|
---|
1993 |
|
---|
1994 | if (pVM->pgm.s.cSharedPages > 0)
|
---|
1995 | {
|
---|
1996 | /*
|
---|
1997 | * Walk the ram ranges.
|
---|
1998 | */
|
---|
1999 | for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
|
---|
2000 | {
|
---|
2001 | uint32_t iPage = pRam->cb >> PAGE_SHIFT;
|
---|
2002 | AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
|
---|
2003 |
|
---|
2004 | while (iPage-- > 0)
|
---|
2005 | {
|
---|
2006 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2007 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
2008 | {
|
---|
2009 | uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
|
---|
2010 | if (!u32Checksum)
|
---|
2011 | {
|
---|
2012 | RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
|
---|
2013 | void const *pvPage;
|
---|
2014 | int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
|
---|
2015 | if (RT_SUCCESS(rc))
|
---|
2016 | {
|
---|
2017 | uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
|
---|
2018 | # if 0
|
---|
2019 | AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
|
---|
2020 | # else
|
---|
2021 | if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
|
---|
2022 | LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
|
---|
2023 | else
|
---|
2024 | AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
|
---|
2025 | # endif
|
---|
2026 | }
|
---|
2027 | else
|
---|
2028 | AssertRC(rc);
|
---|
2029 | }
|
---|
2030 | }
|
---|
2031 |
|
---|
2032 | } /* for each page */
|
---|
2033 |
|
---|
2034 | } /* for each ram range */
|
---|
2035 | }
|
---|
2036 |
|
---|
2037 | pgmUnlock(pVM);
|
---|
2038 | #endif /* VBOX_STRICT */
|
---|
2039 | NOREF(pVM);
|
---|
2040 | }
|
---|
2041 |
|
---|
2042 |
|
---|
2043 | /**
|
---|
2044 | * Resets the physical memory state.
|
---|
2045 | *
|
---|
2046 | * ASSUMES that the caller owns the PGM lock.
|
---|
2047 | *
|
---|
2048 | * @returns VBox status code.
|
---|
2049 | * @param pVM The cross context VM structure.
|
---|
2050 | */
|
---|
2051 | int pgmR3PhysRamReset(PVM pVM)
|
---|
2052 | {
|
---|
2053 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2054 |
|
---|
2055 | /* Reset the memory balloon. */
|
---|
2056 | int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
|
---|
2057 | AssertRC(rc);
|
---|
2058 |
|
---|
2059 | #ifdef VBOX_WITH_PAGE_SHARING
|
---|
2060 | /* Clear all registered shared modules. */
|
---|
2061 | pgmR3PhysAssertSharedPageChecksums(pVM);
|
---|
2062 | rc = GMMR3ResetSharedModules(pVM);
|
---|
2063 | AssertRC(rc);
|
---|
2064 | #endif
|
---|
2065 | /* Reset counters. */
|
---|
2066 | pVM->pgm.s.cReusedSharedPages = 0;
|
---|
2067 | pVM->pgm.s.cBalloonedPages = 0;
|
---|
2068 |
|
---|
2069 | return VINF_SUCCESS;
|
---|
2070 | }
|
---|
2071 |
|
---|
2072 |
|
---|
2073 | /**
|
---|
2074 | * Resets (zeros) the RAM after all devices and components have been reset.
|
---|
2075 | *
|
---|
2076 | * ASSUMES that the caller owns the PGM lock.
|
---|
2077 | *
|
---|
2078 | * @returns VBox status code.
|
---|
2079 | * @param pVM The cross context VM structure.
|
---|
2080 | */
|
---|
2081 | int pgmR3PhysRamZeroAll(PVM pVM)
|
---|
2082 | {
|
---|
2083 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2084 |
|
---|
2085 | /*
|
---|
2086 | * We batch up pages that should be freed instead of calling GMM for
|
---|
2087 | * each and every one of them.
|
---|
2088 | */
|
---|
2089 | uint32_t cPendingPages = 0;
|
---|
2090 | PGMMFREEPAGESREQ pReq;
|
---|
2091 | int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
2092 | AssertLogRelRCReturn(rc, rc);
|
---|
2093 |
|
---|
2094 | /*
|
---|
2095 | * Walk the ram ranges.
|
---|
2096 | */
|
---|
2097 | for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
|
---|
2098 | {
|
---|
2099 | uint32_t iPage = pRam->cb >> PAGE_SHIFT;
|
---|
2100 | AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
|
---|
2101 |
|
---|
2102 | if ( !pVM->pgm.s.fRamPreAlloc
|
---|
2103 | && pVM->pgm.s.fZeroRamPagesOnReset)
|
---|
2104 | {
|
---|
2105 | /* Replace all RAM pages by ZERO pages. */
|
---|
2106 | while (iPage-- > 0)
|
---|
2107 | {
|
---|
2108 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2109 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2110 | {
|
---|
2111 | case PGMPAGETYPE_RAM:
|
---|
2112 | /* Do not replace pages part of a 2 MB continuous range
|
---|
2113 | with zero pages, but zero them instead. */
|
---|
2114 | if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
|
---|
2115 | || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
|
---|
2116 | {
|
---|
2117 | void *pvPage;
|
---|
2118 | rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
|
---|
2119 | AssertLogRelRCReturn(rc, rc);
|
---|
2120 | ASMMemZeroPage(pvPage);
|
---|
2121 | }
|
---|
2122 | else if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
2123 | {
|
---|
2124 | /* Turn into a zero page; the balloon status is lost when the VM reboots. */
|
---|
2125 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
2126 | }
|
---|
2127 | else if (!PGM_PAGE_IS_ZERO(pPage))
|
---|
2128 | {
|
---|
2129 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
|
---|
2130 | PGMPAGETYPE_RAM);
|
---|
2131 | AssertLogRelRCReturn(rc, rc);
|
---|
2132 | }
|
---|
2133 | break;
|
---|
2134 |
|
---|
2135 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2136 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
|
---|
2137 | pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
|
---|
2138 | true /*fDoAccounting*/);
|
---|
2139 | break;
|
---|
2140 |
|
---|
2141 | case PGMPAGETYPE_MMIO2:
|
---|
2142 | case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
|
---|
2143 | case PGMPAGETYPE_ROM:
|
---|
2144 | case PGMPAGETYPE_MMIO:
|
---|
2145 | break;
|
---|
2146 | default:
|
---|
2147 | AssertFailed();
|
---|
2148 | }
|
---|
2149 | } /* for each page */
|
---|
2150 | }
|
---|
2151 | else
|
---|
2152 | {
|
---|
2153 | /* Zero the memory. */
|
---|
2154 | while (iPage-- > 0)
|
---|
2155 | {
|
---|
2156 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2157 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2158 | {
|
---|
2159 | case PGMPAGETYPE_RAM:
|
---|
2160 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
2161 | {
|
---|
2162 | case PGM_PAGE_STATE_ZERO:
|
---|
2163 | break;
|
---|
2164 |
|
---|
2165 | case PGM_PAGE_STATE_BALLOONED:
|
---|
2166 | /* Turn into a zero page; the balloon status is lost when the VM reboots. */
|
---|
2167 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
2168 | break;
|
---|
2169 |
|
---|
2170 | case PGM_PAGE_STATE_SHARED:
|
---|
2171 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
2172 | rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
|
---|
2173 | AssertLogRelRCReturn(rc, rc);
|
---|
2174 | RT_FALL_THRU();
|
---|
2175 |
|
---|
2176 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
2177 | if (pVM->pgm.s.fZeroRamPagesOnReset)
|
---|
2178 | {
|
---|
2179 | void *pvPage;
|
---|
2180 | rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
|
---|
2181 | AssertLogRelRCReturn(rc, rc);
|
---|
2182 | ASMMemZeroPage(pvPage);
|
---|
2183 | }
|
---|
2184 | break;
|
---|
2185 | }
|
---|
2186 | break;
|
---|
2187 |
|
---|
2188 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2189 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
|
---|
2190 | pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
|
---|
2191 | true /*fDoAccounting*/);
|
---|
2192 | break;
|
---|
2193 |
|
---|
2194 | case PGMPAGETYPE_MMIO2:
|
---|
2195 | case PGMPAGETYPE_ROM_SHADOW:
|
---|
2196 | case PGMPAGETYPE_ROM:
|
---|
2197 | case PGMPAGETYPE_MMIO:
|
---|
2198 | break;
|
---|
2199 | default:
|
---|
2200 | AssertFailed();
|
---|
2201 |
|
---|
2202 | }
|
---|
2203 | } /* for each page */
|
---|
2204 | }
|
---|
2205 |
|
---|
2206 | }
|
---|
2207 |
|
---|
2208 | /*
|
---|
2209 | * Finish off any pages pending freeing.
|
---|
2210 | */
|
---|
2211 | if (cPendingPages)
|
---|
2212 | {
|
---|
2213 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
2214 | AssertLogRelRCReturn(rc, rc);
|
---|
2215 | }
|
---|
2216 | GMMR3FreePagesCleanup(pReq);
|
---|
2217 | return VINF_SUCCESS;
|
---|
2218 | }
|
---|
2219 |
|
---|
2220 |
|
---|
2221 | /**
|
---|
2222 | * Frees all RAM during VM termination
|
---|
2223 | *
|
---|
2224 | * ASSUMES that the caller owns the PGM lock.
|
---|
2225 | *
|
---|
2226 | * @returns VBox status code.
|
---|
2227 | * @param pVM The cross context VM structure.
|
---|
2228 | */
|
---|
2229 | int pgmR3PhysRamTerm(PVM pVM)
|
---|
2230 | {
|
---|
2231 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
2232 |
|
---|
2233 | /* Reset the memory balloon. */
|
---|
2234 | int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
|
---|
2235 | AssertRC(rc);
|
---|
2236 |
|
---|
2237 | #ifdef VBOX_WITH_PAGE_SHARING
|
---|
2238 | /*
|
---|
2239 | * Clear all registered shared modules.
|
---|
2240 | */
|
---|
2241 | pgmR3PhysAssertSharedPageChecksums(pVM);
|
---|
2242 | rc = GMMR3ResetSharedModules(pVM);
|
---|
2243 | AssertRC(rc);
|
---|
2244 |
|
---|
2245 | /*
|
---|
2246 | * Flush the handy pages updates to make sure no shared pages are hiding
|
---|
2247 | * in there. (No unlikely if the VM shuts down, apparently.)
|
---|
2248 | */
|
---|
2249 | rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
|
---|
2250 | #endif
|
---|
2251 |
|
---|
2252 | /*
|
---|
2253 | * We batch up pages that should be freed instead of calling GMM for
|
---|
2254 | * each and every one of them.
|
---|
2255 | */
|
---|
2256 | uint32_t cPendingPages = 0;
|
---|
2257 | PGMMFREEPAGESREQ pReq;
|
---|
2258 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
2259 | AssertLogRelRCReturn(rc, rc);
|
---|
2260 |
|
---|
2261 | /*
|
---|
2262 | * Walk the ram ranges.
|
---|
2263 | */
|
---|
2264 | for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
|
---|
2265 | {
|
---|
2266 | uint32_t iPage = pRam->cb >> PAGE_SHIFT;
|
---|
2267 | AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
|
---|
2268 |
|
---|
2269 | while (iPage-- > 0)
|
---|
2270 | {
|
---|
2271 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2272 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2273 | {
|
---|
2274 | case PGMPAGETYPE_RAM:
|
---|
2275 | /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
|
---|
2276 | /** @todo change this to explicitly free private pages here. */
|
---|
2277 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
2278 | {
|
---|
2279 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
|
---|
2280 | PGMPAGETYPE_RAM);
|
---|
2281 | AssertLogRelRCReturn(rc, rc);
|
---|
2282 | }
|
---|
2283 | break;
|
---|
2284 |
|
---|
2285 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2286 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
|
---|
2287 | case PGMPAGETYPE_MMIO2:
|
---|
2288 | case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
|
---|
2289 | case PGMPAGETYPE_ROM:
|
---|
2290 | case PGMPAGETYPE_MMIO:
|
---|
2291 | break;
|
---|
2292 | default:
|
---|
2293 | AssertFailed();
|
---|
2294 | }
|
---|
2295 | } /* for each page */
|
---|
2296 | }
|
---|
2297 |
|
---|
2298 | /*
|
---|
2299 | * Finish off any pages pending freeing.
|
---|
2300 | */
|
---|
2301 | if (cPendingPages)
|
---|
2302 | {
|
---|
2303 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
2304 | AssertLogRelRCReturn(rc, rc);
|
---|
2305 | }
|
---|
2306 | GMMR3FreePagesCleanup(pReq);
|
---|
2307 | return VINF_SUCCESS;
|
---|
2308 | }
|
---|
2309 |
|
---|
2310 |
|
---|
2311 | /**
|
---|
2312 | * This is the interface IOM is using to register an MMIO region.
|
---|
2313 | *
|
---|
2314 | * It will check for conflicts and ensure that a RAM range structure
|
---|
2315 | * is present before calling the PGMR3HandlerPhysicalRegister API to
|
---|
2316 | * register the callbacks.
|
---|
2317 | *
|
---|
2318 | * @returns VBox status code.
|
---|
2319 | *
|
---|
2320 | * @param pVM The cross context VM structure.
|
---|
2321 | * @param GCPhys The start of the MMIO region.
|
---|
2322 | * @param cb The size of the MMIO region.
|
---|
2323 | * @param hType The physical access handler type registration.
|
---|
2324 | * @param pvUserR3 The user argument for R3.
|
---|
2325 | * @param pvUserR0 The user argument for R0.
|
---|
2326 | * @param pvUserRC The user argument for RC.
|
---|
2327 | * @param pszDesc The description of the MMIO region.
|
---|
2328 | */
|
---|
2329 | VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
|
---|
2330 | RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
|
---|
2331 | {
|
---|
2332 | /*
|
---|
2333 | * Assert on some assumption.
|
---|
2334 | */
|
---|
2335 | VM_ASSERT_EMT(pVM);
|
---|
2336 | AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2337 | AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2338 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
2339 | AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
|
---|
2340 | Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
|
---|
2341 |
|
---|
2342 | int rc = pgmLock(pVM);
|
---|
2343 | AssertRCReturn(rc, rc);
|
---|
2344 |
|
---|
2345 | /*
|
---|
2346 | * Make sure there's a RAM range structure for the region.
|
---|
2347 | */
|
---|
2348 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
2349 | bool fRamExists = false;
|
---|
2350 | PPGMRAMRANGE pRamPrev = NULL;
|
---|
2351 | PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
2352 | while (pRam && GCPhysLast >= pRam->GCPhys)
|
---|
2353 | {
|
---|
2354 | if ( GCPhysLast >= pRam->GCPhys
|
---|
2355 | && GCPhys <= pRam->GCPhysLast)
|
---|
2356 | {
|
---|
2357 | /* Simplification: all within the same range. */
|
---|
2358 | AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
|
---|
2359 | && GCPhysLast <= pRam->GCPhysLast,
|
---|
2360 | ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
2361 | GCPhys, GCPhysLast, pszDesc,
|
---|
2362 | pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
|
---|
2363 | pgmUnlock(pVM),
|
---|
2364 | VERR_PGM_RAM_CONFLICT);
|
---|
2365 |
|
---|
2366 | /* Check that it's all RAM or MMIO pages. */
|
---|
2367 | PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
2368 | uint32_t cLeft = cb >> PAGE_SHIFT;
|
---|
2369 | while (cLeft-- > 0)
|
---|
2370 | {
|
---|
2371 | AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
|
---|
2372 | || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
|
---|
2373 | ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
|
---|
2374 | GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
|
---|
2375 | pgmUnlock(pVM),
|
---|
2376 | VERR_PGM_RAM_CONFLICT);
|
---|
2377 | pPage++;
|
---|
2378 | }
|
---|
2379 |
|
---|
2380 | /* Looks good. */
|
---|
2381 | fRamExists = true;
|
---|
2382 | break;
|
---|
2383 | }
|
---|
2384 |
|
---|
2385 | /* next */
|
---|
2386 | pRamPrev = pRam;
|
---|
2387 | pRam = pRam->pNextR3;
|
---|
2388 | }
|
---|
2389 | PPGMRAMRANGE pNew;
|
---|
2390 | if (fRamExists)
|
---|
2391 | {
|
---|
2392 | pNew = NULL;
|
---|
2393 |
|
---|
2394 | /*
|
---|
2395 | * Make all the pages in the range MMIO/ZERO pages, freeing any
|
---|
2396 | * RAM pages currently mapped here. This might not be 100% correct
|
---|
2397 | * for PCI memory, but we're doing the same thing for MMIO2 pages.
|
---|
2398 | */
|
---|
2399 | rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
|
---|
2400 | AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
|
---|
2401 |
|
---|
2402 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
2403 | /** @todo not entirely SMP safe; assuming for now the guest takes
|
---|
2404 | * care of this internally (not touch mapped mmio while changing the
|
---|
2405 | * mapping). */
|
---|
2406 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2407 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
2408 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2409 | }
|
---|
2410 | else
|
---|
2411 | {
|
---|
2412 |
|
---|
2413 | /*
|
---|
2414 | * No RAM range, insert an ad hoc one.
|
---|
2415 | *
|
---|
2416 | * Note that we don't have to tell REM about this range because
|
---|
2417 | * PGMHandlerPhysicalRegisterEx will do that for us.
|
---|
2418 | */
|
---|
2419 | Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
|
---|
2420 |
|
---|
2421 | const uint32_t cPages = cb >> PAGE_SHIFT;
|
---|
2422 | const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
|
---|
2423 | rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
|
---|
2424 | AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), pgmUnlock(pVM), rc);
|
---|
2425 |
|
---|
2426 | /* Initialize the range. */
|
---|
2427 | pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
|
---|
2428 | pNew->GCPhys = GCPhys;
|
---|
2429 | pNew->GCPhysLast = GCPhysLast;
|
---|
2430 | pNew->cb = cb;
|
---|
2431 | pNew->pszDesc = pszDesc;
|
---|
2432 | pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
|
---|
2433 | pNew->pvR3 = NULL;
|
---|
2434 | pNew->paLSPages = NULL;
|
---|
2435 |
|
---|
2436 | uint32_t iPage = cPages;
|
---|
2437 | while (iPage-- > 0)
|
---|
2438 | PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
|
---|
2439 | Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
|
---|
2440 |
|
---|
2441 | /* update the page count stats. */
|
---|
2442 | pVM->pgm.s.cPureMmioPages += cPages;
|
---|
2443 | pVM->pgm.s.cAllPages += cPages;
|
---|
2444 |
|
---|
2445 | /* link it */
|
---|
2446 | pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
|
---|
2447 | }
|
---|
2448 |
|
---|
2449 | /*
|
---|
2450 | * Register the access handler.
|
---|
2451 | */
|
---|
2452 | rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
|
---|
2453 | if ( RT_FAILURE(rc)
|
---|
2454 | && !fRamExists)
|
---|
2455 | {
|
---|
2456 | pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
|
---|
2457 | pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
|
---|
2458 |
|
---|
2459 | /* remove the ad hoc range. */
|
---|
2460 | pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
|
---|
2461 | pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
|
---|
2462 | MMHyperFree(pVM, pRam);
|
---|
2463 | }
|
---|
2464 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
2465 |
|
---|
2466 | pgmUnlock(pVM);
|
---|
2467 | return rc;
|
---|
2468 | }
|
---|
2469 |
|
---|
2470 |
|
---|
2471 | /**
|
---|
2472 | * This is the interface IOM is using to register an MMIO region.
|
---|
2473 | *
|
---|
2474 | * It will take care of calling PGMHandlerPhysicalDeregister and clean up
|
---|
2475 | * any ad hoc PGMRAMRANGE left behind.
|
---|
2476 | *
|
---|
2477 | * @returns VBox status code.
|
---|
2478 | * @param pVM The cross context VM structure.
|
---|
2479 | * @param GCPhys The start of the MMIO region.
|
---|
2480 | * @param cb The size of the MMIO region.
|
---|
2481 | */
|
---|
2482 | VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
|
---|
2483 | {
|
---|
2484 | VM_ASSERT_EMT(pVM);
|
---|
2485 |
|
---|
2486 | int rc = pgmLock(pVM);
|
---|
2487 | AssertRCReturn(rc, rc);
|
---|
2488 |
|
---|
2489 | /*
|
---|
2490 | * First deregister the handler, then check if we should remove the ram range.
|
---|
2491 | */
|
---|
2492 | rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
2493 | if (RT_SUCCESS(rc))
|
---|
2494 | {
|
---|
2495 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
2496 | PPGMRAMRANGE pRamPrev = NULL;
|
---|
2497 | PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
2498 | while (pRam && GCPhysLast >= pRam->GCPhys)
|
---|
2499 | {
|
---|
2500 | /** @todo We're being a bit too careful here. rewrite. */
|
---|
2501 | if ( GCPhysLast == pRam->GCPhysLast
|
---|
2502 | && GCPhys == pRam->GCPhys)
|
---|
2503 | {
|
---|
2504 | Assert(pRam->cb == cb);
|
---|
2505 |
|
---|
2506 | /*
|
---|
2507 | * See if all the pages are dead MMIO pages.
|
---|
2508 | */
|
---|
2509 | uint32_t const cPages = cb >> PAGE_SHIFT;
|
---|
2510 | bool fAllMMIO = true;
|
---|
2511 | uint32_t iPage = 0;
|
---|
2512 | uint32_t cLeft = cPages;
|
---|
2513 | while (cLeft-- > 0)
|
---|
2514 | {
|
---|
2515 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2516 | if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
|
---|
2517 | /*|| not-out-of-action later */)
|
---|
2518 | {
|
---|
2519 | fAllMMIO = false;
|
---|
2520 | AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
|
---|
2521 | break;
|
---|
2522 | }
|
---|
2523 | Assert( PGM_PAGE_IS_ZERO(pPage)
|
---|
2524 | || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
|
---|
2525 | || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
|
---|
2526 | pPage++;
|
---|
2527 | }
|
---|
2528 | if (fAllMMIO)
|
---|
2529 | {
|
---|
2530 | /*
|
---|
2531 | * Ad-hoc range, unlink and free it.
|
---|
2532 | */
|
---|
2533 | Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
|
---|
2534 | GCPhys, GCPhysLast, pRam->pszDesc));
|
---|
2535 |
|
---|
2536 | pVM->pgm.s.cAllPages -= cPages;
|
---|
2537 | pVM->pgm.s.cPureMmioPages -= cPages;
|
---|
2538 |
|
---|
2539 | pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
|
---|
2540 | pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
|
---|
2541 | MMHyperFree(pVM, pRam);
|
---|
2542 | break;
|
---|
2543 | }
|
---|
2544 | }
|
---|
2545 |
|
---|
2546 | /*
|
---|
2547 | * Range match? It will all be within one range (see PGMAllHandler.cpp).
|
---|
2548 | */
|
---|
2549 | if ( GCPhysLast >= pRam->GCPhys
|
---|
2550 | && GCPhys <= pRam->GCPhysLast)
|
---|
2551 | {
|
---|
2552 | Assert(GCPhys >= pRam->GCPhys);
|
---|
2553 | Assert(GCPhysLast <= pRam->GCPhysLast);
|
---|
2554 |
|
---|
2555 | /*
|
---|
2556 | * Turn the pages back into RAM pages.
|
---|
2557 | */
|
---|
2558 | uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
|
---|
2559 | uint32_t cLeft = cb >> PAGE_SHIFT;
|
---|
2560 | while (cLeft--)
|
---|
2561 | {
|
---|
2562 | PPGMPAGE pPage = &pRam->aPages[iPage];
|
---|
2563 | AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
|
---|
2564 | || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
|
---|
2565 | || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
|
---|
2566 | ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
|
---|
2567 | if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
|
---|
2568 | PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
|
---|
2569 | }
|
---|
2570 | break;
|
---|
2571 | }
|
---|
2572 |
|
---|
2573 | /* next */
|
---|
2574 | pRamPrev = pRam;
|
---|
2575 | pRam = pRam->pNextR3;
|
---|
2576 | }
|
---|
2577 | }
|
---|
2578 |
|
---|
2579 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
2580 | /** @todo Not entirely SMP safe; assuming for now the guest takes care of
|
---|
2581 | * this internally (not touch mapped mmio while changing the mapping). */
|
---|
2582 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2583 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
2584 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2585 |
|
---|
2586 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
2587 | pgmPhysInvalidRamRangeTlbs(pVM);
|
---|
2588 | pgmUnlock(pVM);
|
---|
2589 | return rc;
|
---|
2590 | }
|
---|
2591 |
|
---|
2592 |
|
---|
2593 | /**
|
---|
2594 | * Locate a MMIO2 range.
|
---|
2595 | *
|
---|
2596 | * @returns Pointer to the MMIO2 range.
|
---|
2597 | * @param pVM The cross context VM structure.
|
---|
2598 | * @param pDevIns The device instance owning the region.
|
---|
2599 | * @param iSubDev The sub-device number.
|
---|
2600 | * @param iRegion The region.
|
---|
2601 | * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and
|
---|
2602 | * @a iRegion.
|
---|
2603 | */
|
---|
2604 | DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev,
|
---|
2605 | uint32_t iRegion, PGMMMIO2HANDLE hMmio2)
|
---|
2606 | {
|
---|
2607 | if (hMmio2 != NIL_PGMMMIO2HANDLE)
|
---|
2608 | {
|
---|
2609 | if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0)
|
---|
2610 | {
|
---|
2611 | PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1];
|
---|
2612 | if (pCur && pCur->pDevInsR3 == pDevIns)
|
---|
2613 | {
|
---|
2614 | Assert(pCur->idMmio2 == hMmio2);
|
---|
2615 | AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL);
|
---|
2616 | AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
|
---|
2617 | return pCur;
|
---|
2618 | }
|
---|
2619 | Assert(!pCur);
|
---|
2620 | }
|
---|
2621 | for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
|
---|
2622 | if (pCur->idMmio2 == hMmio2)
|
---|
2623 | {
|
---|
2624 | AssertBreak(pCur->pDevInsR3 == pDevIns);
|
---|
2625 | AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_MMIO2, NULL);
|
---|
2626 | AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
|
---|
2627 | return pCur;
|
---|
2628 | }
|
---|
2629 | }
|
---|
2630 | else
|
---|
2631 | {
|
---|
2632 | /*
|
---|
2633 | * Search the list. There shouldn't be many entries.
|
---|
2634 | */
|
---|
2635 | /** @todo Optimize this lookup! There may now be many entries and it'll
|
---|
2636 | * become really slow when doing MMR3HyperMapMMIO2 and similar. */
|
---|
2637 | for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
|
---|
2638 | if ( pCur->pDevInsR3 == pDevIns
|
---|
2639 | && pCur->iRegion == iRegion
|
---|
2640 | && pCur->iSubDev == iSubDev)
|
---|
2641 | return pCur;
|
---|
2642 | }
|
---|
2643 | return NULL;
|
---|
2644 | }
|
---|
2645 |
|
---|
2646 |
|
---|
2647 | #ifndef PGM_WITHOUT_MAPPINGS
|
---|
2648 | /**
|
---|
2649 | * @callback_method_impl{FNPGMRELOCATE, Relocate a floating MMIO/MMIO2 range.}
|
---|
2650 | * @sa pgmR3PhysRamRangeRelocate
|
---|
2651 | */
|
---|
2652 | static DECLCALLBACK(bool) pgmR3PhysMmio2RangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew,
|
---|
2653 | PGMRELOCATECALL enmMode, void *pvUser)
|
---|
2654 | {
|
---|
2655 | PPGMREGMMIO2RANGE pMmio = (PPGMREGMMIO2RANGE)pvUser;
|
---|
2656 | Assert(pMmio->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
|
---|
2657 | Assert(pMmio->RamRange.pSelfRC == GCPtrOld + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange)); RT_NOREF_PV(GCPtrOld);
|
---|
2658 |
|
---|
2659 | switch (enmMode)
|
---|
2660 | {
|
---|
2661 | case PGMRELOCATECALL_SUGGEST:
|
---|
2662 | return true;
|
---|
2663 |
|
---|
2664 | case PGMRELOCATECALL_RELOCATE:
|
---|
2665 | {
|
---|
2666 | /*
|
---|
2667 | * Update myself, then relink all the ranges and flush the RC TLB.
|
---|
2668 | */
|
---|
2669 | pgmLock(pVM);
|
---|
2670 |
|
---|
2671 | pMmio->RamRange.pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange));
|
---|
2672 |
|
---|
2673 | pgmR3PhysRelinkRamRanges(pVM);
|
---|
2674 | for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
|
---|
2675 | pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
|
---|
2676 |
|
---|
2677 | pgmUnlock(pVM);
|
---|
2678 | return true;
|
---|
2679 | }
|
---|
2680 |
|
---|
2681 | default:
|
---|
2682 | AssertFailedReturn(false);
|
---|
2683 | }
|
---|
2684 | }
|
---|
2685 | #endif /* !PGM_WITHOUT_MAPPINGS */
|
---|
2686 |
|
---|
2687 |
|
---|
2688 | /**
|
---|
2689 | * Calculates the number of chunks
|
---|
2690 | *
|
---|
2691 | * @returns Number of registration chunk needed.
|
---|
2692 | * @param pVM The cross context VM structure.
|
---|
2693 | * @param cb The size of the MMIO/MMIO2 range.
|
---|
2694 | * @param pcPagesPerChunk Where to return the number of pages tracked by each
|
---|
2695 | * chunk. Optional.
|
---|
2696 | * @param pcbChunk Where to return the guest mapping size for a chunk.
|
---|
2697 | */
|
---|
2698 | static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
|
---|
2699 | {
|
---|
2700 | RT_NOREF_PV(pVM); /* without raw mode */
|
---|
2701 |
|
---|
2702 | /*
|
---|
2703 | * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
|
---|
2704 | * needing a few bytes extra the PGMREGMMIO2RANGE structure.
|
---|
2705 | *
|
---|
2706 | * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
|
---|
2707 | * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
|
---|
2708 | */
|
---|
2709 | uint32_t cbChunk = 16U*_1M;
|
---|
2710 | uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
|
---|
2711 | AssertCompile(sizeof(PGMREGMMIO2RANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
|
---|
2712 | AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
|
---|
2713 | AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
|
---|
2714 | if (pcbChunk)
|
---|
2715 | *pcbChunk = cbChunk;
|
---|
2716 | if (pcPagesPerChunk)
|
---|
2717 | *pcPagesPerChunk = cPagesPerChunk;
|
---|
2718 |
|
---|
2719 | /* Calc the number of chunks we need. */
|
---|
2720 | RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
|
---|
2721 | uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
|
---|
2722 | AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
|
---|
2723 | return cChunks;
|
---|
2724 | }
|
---|
2725 |
|
---|
2726 |
|
---|
2727 | /**
|
---|
2728 | * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE
|
---|
2729 | * structures and does basic initialization.
|
---|
2730 | *
|
---|
2731 | * Caller must set type specfic members and initialize the PGMPAGE structures.
|
---|
2732 | *
|
---|
2733 | * This was previously also used by PGMR3PhysMmio2PreRegister, a function for
|
---|
2734 | * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM
|
---|
2735 | * interface. The reference to caller and type above is purely historical.
|
---|
2736 | *
|
---|
2737 | * @returns VBox status code.
|
---|
2738 | * @param pVM The cross context VM structure.
|
---|
2739 | * @param pDevIns The device instance owning the region.
|
---|
2740 | * @param iSubDev The sub-device number (internal PCI config number).
|
---|
2741 | * @param iRegion The region number. If the MMIO2 memory is a PCI
|
---|
2742 | * I/O region this number has to be the number of that
|
---|
2743 | * region. Otherwise it can be any number safe
|
---|
2744 | * UINT8_MAX.
|
---|
2745 | * @param cb The size of the region. Must be page aligned.
|
---|
2746 | * @param pszDesc The description.
|
---|
2747 | * @param ppHeadRet Where to return the pointer to the first
|
---|
2748 | * registration chunk.
|
---|
2749 | *
|
---|
2750 | * @thread EMT
|
---|
2751 | */
|
---|
2752 | static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
|
---|
2753 | const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet)
|
---|
2754 | {
|
---|
2755 | /*
|
---|
2756 | * Figure out how many chunks we need and of which size.
|
---|
2757 | */
|
---|
2758 | uint32_t cPagesPerChunk;
|
---|
2759 | uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
|
---|
2760 | AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
|
---|
2761 |
|
---|
2762 | /*
|
---|
2763 | * Allocate the chunks.
|
---|
2764 | */
|
---|
2765 | PPGMREGMMIO2RANGE *ppNext = ppHeadRet;
|
---|
2766 | *ppNext = NULL;
|
---|
2767 |
|
---|
2768 | int rc = VINF_SUCCESS;
|
---|
2769 | uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
|
---|
2770 | for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++)
|
---|
2771 | {
|
---|
2772 | /*
|
---|
2773 | * We currently do a single RAM range for the whole thing. This will
|
---|
2774 | * probably have to change once someone needs really large MMIO regions,
|
---|
2775 | * as we will be running into SUPR3PageAllocEx limitations and such.
|
---|
2776 | */
|
---|
2777 | const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
|
---|
2778 | const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]);
|
---|
2779 | PPGMREGMMIO2RANGE pNew = NULL;
|
---|
2780 | if ( iChunk + 1 < cChunks
|
---|
2781 | || cbRange >= _1M)
|
---|
2782 | {
|
---|
2783 | /*
|
---|
2784 | * Allocate memory for the registration structure.
|
---|
2785 | */
|
---|
2786 | size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
|
---|
2787 | size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
|
---|
2788 | AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
|
---|
2789 | PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
|
---|
2790 | AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
|
---|
2791 | RTR0PTR R0PtrChunk = NIL_RTR0PTR;
|
---|
2792 | void *pvChunk = NULL;
|
---|
2793 | rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
|
---|
2794 | AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
|
---|
2795 |
|
---|
2796 | Assert(R0PtrChunk != NIL_RTR0PTR);
|
---|
2797 | memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
|
---|
2798 |
|
---|
2799 | pNew = (PPGMREGMMIO2RANGE)pvChunk;
|
---|
2800 | pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
|
---|
2801 | pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
|
---|
2802 |
|
---|
2803 | RTMemTmpFree(paChunkPages);
|
---|
2804 | }
|
---|
2805 | /*
|
---|
2806 | * Not so big, do a one time hyper allocation.
|
---|
2807 | */
|
---|
2808 | else
|
---|
2809 | {
|
---|
2810 | rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
|
---|
2811 | AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
|
---|
2812 |
|
---|
2813 | /*
|
---|
2814 | * Initialize allocation specific items.
|
---|
2815 | */
|
---|
2816 | //pNew->RamRange.fFlags = 0;
|
---|
2817 | pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
|
---|
2818 | }
|
---|
2819 |
|
---|
2820 | /*
|
---|
2821 | * Initialize the registration structure (caller does specific bits).
|
---|
2822 | */
|
---|
2823 | pNew->pDevInsR3 = pDevIns;
|
---|
2824 | //pNew->pvR3 = NULL;
|
---|
2825 | //pNew->pNext = NULL;
|
---|
2826 | //pNew->fFlags = 0;
|
---|
2827 | if (iChunk == 0)
|
---|
2828 | pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK;
|
---|
2829 | if (iChunk + 1 == cChunks)
|
---|
2830 | pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK;
|
---|
2831 | pNew->iSubDev = iSubDev;
|
---|
2832 | pNew->iRegion = iRegion;
|
---|
2833 | pNew->idSavedState = UINT8_MAX;
|
---|
2834 | pNew->idMmio2 = UINT8_MAX;
|
---|
2835 | //pNew->pPhysHandlerR3 = NULL;
|
---|
2836 | //pNew->paLSPages = NULL;
|
---|
2837 | pNew->RamRange.GCPhys = NIL_RTGCPHYS;
|
---|
2838 | pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
|
---|
2839 | pNew->RamRange.pszDesc = pszDesc;
|
---|
2840 | pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
|
---|
2841 | pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
|
---|
2842 | //pNew->RamRange.pvR3 = NULL;
|
---|
2843 | //pNew->RamRange.paLSPages = NULL;
|
---|
2844 |
|
---|
2845 | *ppNext = pNew;
|
---|
2846 | ASMCompilerBarrier();
|
---|
2847 | cPagesLeft -= cPagesTrackedByChunk;
|
---|
2848 | ppNext = &pNew->pNextR3;
|
---|
2849 | }
|
---|
2850 | Assert(cPagesLeft == 0);
|
---|
2851 |
|
---|
2852 | if (RT_SUCCESS(rc))
|
---|
2853 | {
|
---|
2854 | Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
|
---|
2855 | return VINF_SUCCESS;
|
---|
2856 | }
|
---|
2857 |
|
---|
2858 | /*
|
---|
2859 | * Free floating ranges.
|
---|
2860 | */
|
---|
2861 | while (*ppHeadRet)
|
---|
2862 | {
|
---|
2863 | PPGMREGMMIO2RANGE pFree = *ppHeadRet;
|
---|
2864 | *ppHeadRet = pFree->pNextR3;
|
---|
2865 |
|
---|
2866 | if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
|
---|
2867 | {
|
---|
2868 | const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
|
---|
2869 | size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
|
---|
2870 | SUPR3PageFreeEx(pFree, cChunkPages);
|
---|
2871 | }
|
---|
2872 | }
|
---|
2873 |
|
---|
2874 | return rc;
|
---|
2875 | }
|
---|
2876 |
|
---|
2877 |
|
---|
2878 | /**
|
---|
2879 | * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
|
---|
2880 | * complete registration entry into the lists and lookup tables.
|
---|
2881 | *
|
---|
2882 | * @param pVM The cross context VM structure.
|
---|
2883 | * @param pNew The new MMIO / MMIO2 registration to link.
|
---|
2884 | */
|
---|
2885 | static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
|
---|
2886 | {
|
---|
2887 | /*
|
---|
2888 | * Link it into the list (order doesn't matter, so insert it at the head).
|
---|
2889 | *
|
---|
2890 | * Note! The range we're linking may consist of multiple chunks, so we
|
---|
2891 | * have to find the last one.
|
---|
2892 | */
|
---|
2893 | PPGMREGMMIO2RANGE pLast = pNew;
|
---|
2894 | for (pLast = pNew; ; pLast = pLast->pNextR3)
|
---|
2895 | {
|
---|
2896 | if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
2897 | break;
|
---|
2898 | Assert(pLast->pNextR3);
|
---|
2899 | Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
|
---|
2900 | Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
|
---|
2901 | Assert(pLast->pNextR3->iRegion == pNew->iRegion);
|
---|
2902 | Assert((pLast->pNextR3->fFlags & PGMREGMMIO2RANGE_F_MMIO2) == (pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2));
|
---|
2903 | Assert(pLast->pNextR3->idMmio2 == (pLast->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? pLast->idMmio2 + 1 : UINT8_MAX));
|
---|
2904 | }
|
---|
2905 |
|
---|
2906 | pgmLock(pVM);
|
---|
2907 |
|
---|
2908 | /* Link in the chain of ranges at the head of the list. */
|
---|
2909 | pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
|
---|
2910 | pVM->pgm.s.pRegMmioRangesR3 = pNew;
|
---|
2911 |
|
---|
2912 | /* If MMIO, insert the MMIO2 range/page IDs. */
|
---|
2913 | uint8_t idMmio2 = pNew->idMmio2;
|
---|
2914 | if (idMmio2 != UINT8_MAX)
|
---|
2915 | {
|
---|
2916 | for (;;)
|
---|
2917 | {
|
---|
2918 | Assert(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2);
|
---|
2919 | Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
|
---|
2920 | Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
|
---|
2921 | pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
|
---|
2922 | pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
|
---|
2923 | if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
2924 | break;
|
---|
2925 | pNew = pNew->pNextR3;
|
---|
2926 | idMmio2++;
|
---|
2927 | }
|
---|
2928 | }
|
---|
2929 | else
|
---|
2930 | Assert(!(pNew->fFlags & PGMREGMMIO2RANGE_F_MMIO2));
|
---|
2931 |
|
---|
2932 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
2933 | pgmUnlock(pVM);
|
---|
2934 | }
|
---|
2935 |
|
---|
2936 |
|
---|
2937 | /**
|
---|
2938 | * Allocate and register an MMIO2 region.
|
---|
2939 | *
|
---|
2940 | * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
|
---|
2941 | * associated with a device. It is also non-shared memory with a permanent
|
---|
2942 | * ring-3 mapping and page backing (presently).
|
---|
2943 | *
|
---|
2944 | * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
|
---|
2945 | * the VM, in which case we'll drop the base memory pages. Presently we will
|
---|
2946 | * make no attempt to preserve anything that happens to be present in the base
|
---|
2947 | * memory that is replaced, this is of course incorrect but it's too much
|
---|
2948 | * effort.
|
---|
2949 | *
|
---|
2950 | * @returns VBox status code.
|
---|
2951 | * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
|
---|
2952 | * memory.
|
---|
2953 | * @retval VERR_ALREADY_EXISTS if the region already exists.
|
---|
2954 | *
|
---|
2955 | * @param pVM The cross context VM structure.
|
---|
2956 | * @param pDevIns The device instance owning the region.
|
---|
2957 | * @param iSubDev The sub-device number.
|
---|
2958 | * @param iRegion The region number. If the MMIO2 memory is a PCI
|
---|
2959 | * I/O region this number has to be the number of that
|
---|
2960 | * region. Otherwise it can be any number save
|
---|
2961 | * UINT8_MAX.
|
---|
2962 | * @param cb The size of the region. Must be page aligned.
|
---|
2963 | * @param fFlags Reserved for future use, must be zero.
|
---|
2964 | * @param pszDesc The description.
|
---|
2965 | * @param ppv Where to store the pointer to the ring-3 mapping of
|
---|
2966 | * the memory.
|
---|
2967 | * @param phRegion Where to return the MMIO2 region handle. Optional.
|
---|
2968 | * @thread EMT
|
---|
2969 | */
|
---|
2970 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
|
---|
2971 | uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
|
---|
2972 | {
|
---|
2973 | /*
|
---|
2974 | * Validate input.
|
---|
2975 | */
|
---|
2976 | AssertPtrReturn(ppv, VERR_INVALID_POINTER);
|
---|
2977 | *ppv = NULL;
|
---|
2978 | if (phRegion)
|
---|
2979 | {
|
---|
2980 | AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
|
---|
2981 | *phRegion = NIL_PGMMMIO2HANDLE;
|
---|
2982 | }
|
---|
2983 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
2984 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
2985 | AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
2986 | AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
2987 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
2988 | AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
|
---|
2989 | AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS);
|
---|
2990 | AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
2991 | AssertReturn(cb, VERR_INVALID_PARAMETER);
|
---|
2992 | AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
|
---|
2993 |
|
---|
2994 | const uint32_t cPages = cb >> PAGE_SHIFT;
|
---|
2995 | AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
|
---|
2996 | AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
|
---|
2997 | AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE);
|
---|
2998 |
|
---|
2999 | /*
|
---|
3000 | * For the 2nd+ instance, mangle the description string so it's unique.
|
---|
3001 | */
|
---|
3002 | if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
|
---|
3003 | {
|
---|
3004 | pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
|
---|
3005 | if (!pszDesc)
|
---|
3006 | return VERR_NO_MEMORY;
|
---|
3007 | }
|
---|
3008 |
|
---|
3009 | /*
|
---|
3010 | * Allocate an MMIO2 range ID (not freed on failure).
|
---|
3011 | *
|
---|
3012 | * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
|
---|
3013 | * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
|
---|
3014 | */
|
---|
3015 | unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL);
|
---|
3016 | pgmLock(pVM);
|
---|
3017 | uint8_t idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
|
---|
3018 | unsigned cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
|
---|
3019 | if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
|
---|
3020 | {
|
---|
3021 | pgmUnlock(pVM);
|
---|
3022 | AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
|
---|
3023 | }
|
---|
3024 | pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
|
---|
3025 | pgmUnlock(pVM);
|
---|
3026 |
|
---|
3027 | /*
|
---|
3028 | * Try reserve and allocate the backing memory first as this is what is
|
---|
3029 | * most likely to fail.
|
---|
3030 | */
|
---|
3031 | int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
|
---|
3032 | if (RT_SUCCESS(rc))
|
---|
3033 | {
|
---|
3034 | PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
|
---|
3035 | if (RT_SUCCESS(rc))
|
---|
3036 | {
|
---|
3037 | void *pvPages;
|
---|
3038 | #if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM)
|
---|
3039 | RTR0PTR pvPagesR0;
|
---|
3040 | rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages);
|
---|
3041 | #else
|
---|
3042 | rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
|
---|
3043 | #endif
|
---|
3044 | if (RT_SUCCESS(rc))
|
---|
3045 | {
|
---|
3046 | memset(pvPages, 0, cPages * PAGE_SIZE);
|
---|
3047 |
|
---|
3048 | /*
|
---|
3049 | * Create the registered MMIO range record for it.
|
---|
3050 | */
|
---|
3051 | PPGMREGMMIO2RANGE pNew;
|
---|
3052 | rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, pszDesc, &pNew);
|
---|
3053 | if (RT_SUCCESS(rc))
|
---|
3054 | {
|
---|
3055 | if (phRegion)
|
---|
3056 | *phRegion = idMmio2; /* The ID of the first chunk. */
|
---|
3057 |
|
---|
3058 | uint32_t iSrcPage = 0;
|
---|
3059 | uint8_t *pbCurPages = (uint8_t *)pvPages;
|
---|
3060 | for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
|
---|
3061 | {
|
---|
3062 | pCur->pvR3 = pbCurPages;
|
---|
3063 | #if defined(VBOX_WITH_RAM_IN_KERNEL) && !defined(VBOX_WITH_LINEAR_HOST_PHYS_MEM)
|
---|
3064 | pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT);
|
---|
3065 | #endif
|
---|
3066 | pCur->RamRange.pvR3 = pbCurPages;
|
---|
3067 | pCur->idMmio2 = idMmio2;
|
---|
3068 | pCur->fFlags |= PGMREGMMIO2RANGE_F_MMIO2;
|
---|
3069 |
|
---|
3070 | uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
|
---|
3071 | while (iDstPage-- > 0)
|
---|
3072 | {
|
---|
3073 | PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
|
---|
3074 | paPages[iDstPage + iSrcPage].Phys,
|
---|
3075 | PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
|
---|
3076 | PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
|
---|
3077 | }
|
---|
3078 |
|
---|
3079 | /* advance. */
|
---|
3080 | iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
|
---|
3081 | pbCurPages += pCur->RamRange.cb;
|
---|
3082 | idMmio2++;
|
---|
3083 | }
|
---|
3084 |
|
---|
3085 | RTMemTmpFree(paPages);
|
---|
3086 |
|
---|
3087 | /*
|
---|
3088 | * Update the page count stats, link the registration and we're done.
|
---|
3089 | */
|
---|
3090 | pVM->pgm.s.cAllPages += cPages;
|
---|
3091 | pVM->pgm.s.cPrivatePages += cPages;
|
---|
3092 |
|
---|
3093 | pgmR3PhysMmio2Link(pVM, pNew);
|
---|
3094 |
|
---|
3095 | *ppv = pvPages;
|
---|
3096 | return VINF_SUCCESS;
|
---|
3097 | }
|
---|
3098 |
|
---|
3099 | SUPR3PageFreeEx(pvPages, cPages);
|
---|
3100 | }
|
---|
3101 | }
|
---|
3102 | RTMemTmpFree(paPages);
|
---|
3103 | MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
|
---|
3104 | }
|
---|
3105 | if (pDevIns->iInstance > 0)
|
---|
3106 | MMR3HeapFree((void *)pszDesc);
|
---|
3107 | return rc;
|
---|
3108 | }
|
---|
3109 |
|
---|
3110 |
|
---|
3111 | /**
|
---|
3112 | * Deregisters and frees an MMIO2 region.
|
---|
3113 | *
|
---|
3114 | * Any physical access handlers registered for the region must be deregistered
|
---|
3115 | * before calling this function.
|
---|
3116 | *
|
---|
3117 | * @returns VBox status code.
|
---|
3118 | * @param pVM The cross context VM structure.
|
---|
3119 | * @param pDevIns The device instance owning the region.
|
---|
3120 | * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
|
---|
3121 | * regions for the given device is to be deregistered.
|
---|
3122 | */
|
---|
3123 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
3124 | {
|
---|
3125 | /*
|
---|
3126 | * Validate input.
|
---|
3127 | */
|
---|
3128 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3129 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3130 |
|
---|
3131 | /*
|
---|
3132 | * The loop here scanning all registrations will make sure that multi-chunk ranges
|
---|
3133 | * get properly deregistered, though it's original purpose was the wildcard iRegion.
|
---|
3134 | */
|
---|
3135 | pgmLock(pVM);
|
---|
3136 | int rc = VINF_SUCCESS;
|
---|
3137 | unsigned cFound = 0;
|
---|
3138 | PPGMREGMMIO2RANGE pPrev = NULL;
|
---|
3139 | PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
|
---|
3140 | while (pCur)
|
---|
3141 | {
|
---|
3142 | uint32_t const fFlags = pCur->fFlags;
|
---|
3143 | if ( pCur->pDevInsR3 == pDevIns
|
---|
3144 | && ( hMmio2 == NIL_PGMMMIO2HANDLE
|
---|
3145 | || pCur->idMmio2 == hMmio2))
|
---|
3146 | {
|
---|
3147 | Assert(fFlags & PGMREGMMIO2RANGE_F_MMIO2);
|
---|
3148 | cFound++;
|
---|
3149 |
|
---|
3150 | /*
|
---|
3151 | * Unmap it if it's mapped.
|
---|
3152 | */
|
---|
3153 | if (fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
3154 | {
|
---|
3155 | int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys);
|
---|
3156 | AssertRC(rc2);
|
---|
3157 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
3158 | rc = rc2;
|
---|
3159 | }
|
---|
3160 |
|
---|
3161 | /*
|
---|
3162 | * Unlink it
|
---|
3163 | */
|
---|
3164 | PPGMREGMMIO2RANGE pNext = pCur->pNextR3;
|
---|
3165 | if (pPrev)
|
---|
3166 | pPrev->pNextR3 = pNext;
|
---|
3167 | else
|
---|
3168 | pVM->pgm.s.pRegMmioRangesR3 = pNext;
|
---|
3169 | pCur->pNextR3 = NULL;
|
---|
3170 |
|
---|
3171 | uint8_t idMmio2 = pCur->idMmio2;
|
---|
3172 | if (idMmio2 != UINT8_MAX)
|
---|
3173 | {
|
---|
3174 | Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
|
---|
3175 | pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
|
---|
3176 | pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
|
---|
3177 | }
|
---|
3178 |
|
---|
3179 | /*
|
---|
3180 | * Free the memory.
|
---|
3181 | */
|
---|
3182 | const bool fIsMmio2 = RT_BOOL(fFlags & PGMREGMMIO2RANGE_F_MMIO2);
|
---|
3183 | uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
|
---|
3184 | if (fIsMmio2)
|
---|
3185 | {
|
---|
3186 | int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
|
---|
3187 | AssertRC(rc2);
|
---|
3188 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
3189 | rc = rc2;
|
---|
3190 |
|
---|
3191 | rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
|
---|
3192 | AssertRC(rc2);
|
---|
3193 | if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
|
---|
3194 | rc = rc2;
|
---|
3195 | }
|
---|
3196 |
|
---|
3197 | /* we're leaking hyper memory here if done at runtime. */
|
---|
3198 | #ifdef VBOX_STRICT
|
---|
3199 | VMSTATE const enmState = VMR3GetState(pVM);
|
---|
3200 | AssertMsg( enmState == VMSTATE_POWERING_OFF
|
---|
3201 | || enmState == VMSTATE_POWERING_OFF_LS
|
---|
3202 | || enmState == VMSTATE_OFF
|
---|
3203 | || enmState == VMSTATE_OFF_LS
|
---|
3204 | || enmState == VMSTATE_DESTROYING
|
---|
3205 | || enmState == VMSTATE_TERMINATED
|
---|
3206 | || enmState == VMSTATE_CREATING
|
---|
3207 | , ("%s\n", VMR3GetStateName(enmState)));
|
---|
3208 | #endif
|
---|
3209 |
|
---|
3210 | if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
|
---|
3211 | {
|
---|
3212 | const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]);
|
---|
3213 | size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
|
---|
3214 | SUPR3PageFreeEx(pCur, cChunkPages);
|
---|
3215 | }
|
---|
3216 | /*else
|
---|
3217 | {
|
---|
3218 | rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
|
---|
3219 | AssertRCReturn(rc, rc);
|
---|
3220 | } */
|
---|
3221 |
|
---|
3222 |
|
---|
3223 | /* update page count stats */
|
---|
3224 | pVM->pgm.s.cAllPages -= cPages;
|
---|
3225 | if (fIsMmio2)
|
---|
3226 | pVM->pgm.s.cPrivatePages -= cPages;
|
---|
3227 | else
|
---|
3228 | pVM->pgm.s.cPureMmioPages -= cPages;
|
---|
3229 |
|
---|
3230 | /* next */
|
---|
3231 | pCur = pNext;
|
---|
3232 | if (hMmio2 != NIL_PGMMMIO2HANDLE)
|
---|
3233 | {
|
---|
3234 | if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3235 | break;
|
---|
3236 | hMmio2++;
|
---|
3237 | Assert(pCur->idMmio2 == hMmio2);
|
---|
3238 | Assert(pCur->pDevInsR3 == pDevIns);
|
---|
3239 | Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK));
|
---|
3240 | }
|
---|
3241 | }
|
---|
3242 | else
|
---|
3243 | {
|
---|
3244 | pPrev = pCur;
|
---|
3245 | pCur = pCur->pNextR3;
|
---|
3246 | }
|
---|
3247 | }
|
---|
3248 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
3249 | pgmUnlock(pVM);
|
---|
3250 | return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
|
---|
3251 | }
|
---|
3252 |
|
---|
3253 |
|
---|
3254 | /**
|
---|
3255 | * Maps a MMIO2 region.
|
---|
3256 | *
|
---|
3257 | * This is typically done when a guest / the bios / state loading changes the
|
---|
3258 | * PCI config. The replacing of base memory has the same restrictions as during
|
---|
3259 | * registration, of course.
|
---|
3260 | *
|
---|
3261 | * @returns VBox status code.
|
---|
3262 | *
|
---|
3263 | * @param pVM The cross context VM structure.
|
---|
3264 | * @param pDevIns The device instance owning the region.
|
---|
3265 | * @param hMmio2 The handle of the region to map.
|
---|
3266 | * @param GCPhys The guest-physical address to be remapped.
|
---|
3267 | */
|
---|
3268 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
|
---|
3269 | {
|
---|
3270 | /*
|
---|
3271 | * Validate input.
|
---|
3272 | *
|
---|
3273 | * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
|
---|
3274 | * happens during VM construction.
|
---|
3275 | */
|
---|
3276 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3277 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3278 | AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
|
---|
3279 | AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
|
---|
3280 | AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
3281 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
3282 |
|
---|
3283 | PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
|
---|
3284 | AssertReturn(pFirstMmio, VERR_NOT_FOUND);
|
---|
3285 | Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
|
---|
3286 |
|
---|
3287 | PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
|
---|
3288 | RTGCPHYS cbRange = 0;
|
---|
3289 | for (;;)
|
---|
3290 | {
|
---|
3291 | AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER);
|
---|
3292 | Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
|
---|
3293 | Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
|
---|
3294 | Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
|
---|
3295 | Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
|
---|
3296 | Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
|
---|
3297 | cbRange += pLastMmio->RamRange.cb;
|
---|
3298 | if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3299 | break;
|
---|
3300 | pLastMmio = pLastMmio->pNextR3;
|
---|
3301 | }
|
---|
3302 |
|
---|
3303 | RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
|
---|
3304 | AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
3305 |
|
---|
3306 | /*
|
---|
3307 | * Find our location in the ram range list, checking for restriction
|
---|
3308 | * we don't bother implementing yet (partially overlapping, multiple
|
---|
3309 | * ram ranges).
|
---|
3310 | */
|
---|
3311 | pgmLock(pVM);
|
---|
3312 |
|
---|
3313 | AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), pgmUnlock(pVM), VERR_WRONG_ORDER);
|
---|
3314 |
|
---|
3315 | bool fRamExists = false;
|
---|
3316 | PPGMRAMRANGE pRamPrev = NULL;
|
---|
3317 | PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
3318 | while (pRam && GCPhysLast >= pRam->GCPhys)
|
---|
3319 | {
|
---|
3320 | if ( GCPhys <= pRam->GCPhysLast
|
---|
3321 | && GCPhysLast >= pRam->GCPhys)
|
---|
3322 | {
|
---|
3323 | /* Completely within? */
|
---|
3324 | AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
|
---|
3325 | && GCPhysLast <= pRam->GCPhysLast,
|
---|
3326 | ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
3327 | GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
|
---|
3328 | pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
|
---|
3329 | pgmUnlock(pVM),
|
---|
3330 | VERR_PGM_RAM_CONFLICT);
|
---|
3331 |
|
---|
3332 | /* Check that all the pages are RAM pages. */
|
---|
3333 | PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
3334 | uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
|
---|
3335 | while (cPagesLeft-- > 0)
|
---|
3336 | {
|
---|
3337 | AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
|
---|
3338 | ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
|
---|
3339 | GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
|
---|
3340 | pgmUnlock(pVM),
|
---|
3341 | VERR_PGM_RAM_CONFLICT);
|
---|
3342 | pPage++;
|
---|
3343 | }
|
---|
3344 |
|
---|
3345 | /* There can only be one MMIO/MMIO2 chunk matching here! */
|
---|
3346 | AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
|
---|
3347 | ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
|
---|
3348 | GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
|
---|
3349 | pgmUnlock(pVM),
|
---|
3350 | VERR_PGM_PHYS_MMIO_EX_IPE);
|
---|
3351 |
|
---|
3352 | fRamExists = true;
|
---|
3353 | break;
|
---|
3354 | }
|
---|
3355 |
|
---|
3356 | /* next */
|
---|
3357 | pRamPrev = pRam;
|
---|
3358 | pRam = pRam->pNextR3;
|
---|
3359 | }
|
---|
3360 | Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
|
---|
3361 |
|
---|
3362 |
|
---|
3363 | /*
|
---|
3364 | * Make the changes.
|
---|
3365 | */
|
---|
3366 | RTGCPHYS GCPhysCur = GCPhys;
|
---|
3367 | for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
|
---|
3368 | {
|
---|
3369 | pCurMmio->RamRange.GCPhys = GCPhysCur;
|
---|
3370 | pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
|
---|
3371 | if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3372 | {
|
---|
3373 | Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
|
---|
3374 | break;
|
---|
3375 | }
|
---|
3376 | GCPhysCur += pCurMmio->RamRange.cb;
|
---|
3377 | }
|
---|
3378 |
|
---|
3379 | if (fRamExists)
|
---|
3380 | {
|
---|
3381 | /*
|
---|
3382 | * Make all the pages in the range MMIO/ZERO pages, freeing any
|
---|
3383 | * RAM pages currently mapped here. This might not be 100% correct
|
---|
3384 | * for PCI memory, but we're doing the same thing for MMIO2 pages.
|
---|
3385 | *
|
---|
3386 | * We replace this MMIO/ZERO pages with real pages in the MMIO2 case.
|
---|
3387 | */
|
---|
3388 | Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
|
---|
3389 |
|
---|
3390 | int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
|
---|
3391 | AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
|
---|
3392 |
|
---|
3393 | if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2)
|
---|
3394 | {
|
---|
3395 | /* replace the pages, freeing all present RAM pages. */
|
---|
3396 | PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
|
---|
3397 | PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
3398 | uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
|
---|
3399 | while (cPagesLeft-- > 0)
|
---|
3400 | {
|
---|
3401 | Assert(PGM_PAGE_IS_MMIO(pPageDst));
|
---|
3402 |
|
---|
3403 | RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
|
---|
3404 | uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
|
---|
3405 | PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
|
---|
3406 | PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
|
---|
3407 | PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
|
---|
3408 | PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
|
---|
3409 | PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
3410 | PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
|
---|
3411 | PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
|
---|
3412 | /* (We tell NEM at the end of the function.) */
|
---|
3413 |
|
---|
3414 | pVM->pgm.s.cZeroPages--;
|
---|
3415 | GCPhys += PAGE_SIZE;
|
---|
3416 | pPageSrc++;
|
---|
3417 | pPageDst++;
|
---|
3418 | }
|
---|
3419 | }
|
---|
3420 |
|
---|
3421 | /* Flush physical page map TLB. */
|
---|
3422 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
3423 |
|
---|
3424 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
3425 | /** @todo not entirely SMP safe; assuming for now the guest takes care of
|
---|
3426 | * this internally (not touch mapped mmio while changing the mapping). */
|
---|
3427 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
3428 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
3429 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
3430 | }
|
---|
3431 | else
|
---|
3432 | {
|
---|
3433 | /*
|
---|
3434 | * No RAM range, insert the ones prepared during registration.
|
---|
3435 | */
|
---|
3436 | for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
|
---|
3437 | {
|
---|
3438 | /* Clear the tracking data of pages we're going to reactivate. */
|
---|
3439 | PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
|
---|
3440 | uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
|
---|
3441 | while (cPagesLeft-- > 0)
|
---|
3442 | {
|
---|
3443 | PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
|
---|
3444 | PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
|
---|
3445 | pPageSrc++;
|
---|
3446 | }
|
---|
3447 |
|
---|
3448 | /* link in the ram range */
|
---|
3449 | pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
|
---|
3450 |
|
---|
3451 | if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3452 | {
|
---|
3453 | Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
|
---|
3454 | break;
|
---|
3455 | }
|
---|
3456 | pRamPrev = &pCurMmio->RamRange;
|
---|
3457 | }
|
---|
3458 | }
|
---|
3459 |
|
---|
3460 | /*
|
---|
3461 | * Register the access handler if plain MMIO.
|
---|
3462 | *
|
---|
3463 | * We must register access handlers for each range since the access handler
|
---|
3464 | * code refuses to deal with multiple ranges (and we can).
|
---|
3465 | */
|
---|
3466 | if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2))
|
---|
3467 | {
|
---|
3468 | AssertFailed();
|
---|
3469 | int rc = VINF_SUCCESS;
|
---|
3470 | for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
|
---|
3471 | {
|
---|
3472 | Assert(!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED));
|
---|
3473 | rc = pgmHandlerPhysicalExRegister(pVM, pCurMmio->pPhysHandlerR3, pCurMmio->RamRange.GCPhys,
|
---|
3474 | pCurMmio->RamRange.GCPhysLast);
|
---|
3475 | if (RT_FAILURE(rc))
|
---|
3476 | break;
|
---|
3477 | pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; /* Use this to mark that the handler is registered. */
|
---|
3478 | if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3479 | break;
|
---|
3480 | }
|
---|
3481 | if (RT_FAILURE(rc))
|
---|
3482 | {
|
---|
3483 | /* Almost impossible, but try clean up properly and get out of here. */
|
---|
3484 | for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
|
---|
3485 | {
|
---|
3486 | if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
3487 | {
|
---|
3488 | pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3489 | pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, fRamExists);
|
---|
3490 | }
|
---|
3491 |
|
---|
3492 | if (!fRamExists)
|
---|
3493 | pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
|
---|
3494 | else
|
---|
3495 | {
|
---|
3496 | Assert(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
|
---|
3497 |
|
---|
3498 | uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
|
---|
3499 | PPGMPAGE pPageDst = &pRam->aPages[(pCurMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
3500 | while (cPagesLeft-- > 0)
|
---|
3501 | {
|
---|
3502 | PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
|
---|
3503 | pPageDst++;
|
---|
3504 | }
|
---|
3505 | }
|
---|
3506 |
|
---|
3507 | pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
|
---|
3508 | pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
|
---|
3509 | if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3510 | break;
|
---|
3511 | }
|
---|
3512 |
|
---|
3513 | pgmUnlock(pVM);
|
---|
3514 | return rc;
|
---|
3515 | }
|
---|
3516 | }
|
---|
3517 |
|
---|
3518 | /*
|
---|
3519 | * We're good, set the flags and invalid the mapping TLB.
|
---|
3520 | */
|
---|
3521 | for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
|
---|
3522 | {
|
---|
3523 | pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
|
---|
3524 | if (fRamExists)
|
---|
3525 | pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING;
|
---|
3526 | else
|
---|
3527 | pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
|
---|
3528 | if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3529 | break;
|
---|
3530 | }
|
---|
3531 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
3532 |
|
---|
3533 | /*
|
---|
3534 | * Notify NEM while holding the lock (experimental) and REM without (like always).
|
---|
3535 | */
|
---|
3536 | uint32_t const fNemNotify = (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
|
---|
3537 | | (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
|
---|
3538 | int rc = NEMR3NotifyPhysMmioExMap(pVM, GCPhys, cbRange, fNemNotify, pFirstMmio->pvR3);
|
---|
3539 |
|
---|
3540 | pgmUnlock(pVM);
|
---|
3541 |
|
---|
3542 | return rc;
|
---|
3543 | }
|
---|
3544 |
|
---|
3545 |
|
---|
3546 | /**
|
---|
3547 | * Unmaps an MMIO2 region.
|
---|
3548 | *
|
---|
3549 | * This is typically done when a guest / the bios / state loading changes the
|
---|
3550 | * PCI config. The replacing of base memory has the same restrictions as during
|
---|
3551 | * registration, of course.
|
---|
3552 | */
|
---|
3553 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
|
---|
3554 | {
|
---|
3555 | /*
|
---|
3556 | * Validate input
|
---|
3557 | */
|
---|
3558 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3559 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3560 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
3561 | if (GCPhys != NIL_RTGCPHYS)
|
---|
3562 | {
|
---|
3563 | AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
|
---|
3564 | AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
3565 | }
|
---|
3566 |
|
---|
3567 | PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
|
---|
3568 | AssertReturn(pFirstMmio, VERR_NOT_FOUND);
|
---|
3569 | Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
|
---|
3570 |
|
---|
3571 | int rc = pgmLock(pVM);
|
---|
3572 | AssertRCReturn(rc, rc);
|
---|
3573 |
|
---|
3574 | PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
|
---|
3575 | RTGCPHYS cbRange = 0;
|
---|
3576 | for (;;)
|
---|
3577 | {
|
---|
3578 | AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
|
---|
3579 | AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, pgmUnlock(pVM), VERR_INVALID_PARAMETER);
|
---|
3580 | Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
|
---|
3581 | Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
|
---|
3582 | Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
|
---|
3583 | cbRange += pLastMmio->RamRange.cb;
|
---|
3584 | if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3585 | break;
|
---|
3586 | pLastMmio = pLastMmio->pNextR3;
|
---|
3587 | }
|
---|
3588 |
|
---|
3589 | Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n",
|
---|
3590 | pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
|
---|
3591 |
|
---|
3592 | uint16_t const fOldFlags = pFirstMmio->fFlags;
|
---|
3593 | AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, pgmUnlock(pVM), VERR_WRONG_ORDER);
|
---|
3594 |
|
---|
3595 | /*
|
---|
3596 | * If plain MMIO, we must deregister the handlers first.
|
---|
3597 | */
|
---|
3598 | if (!(fOldFlags & PGMREGMMIO2RANGE_F_MMIO2))
|
---|
3599 | {
|
---|
3600 | AssertFailed();
|
---|
3601 |
|
---|
3602 | PPGMREGMMIO2RANGE pCurMmio = pFirstMmio;
|
---|
3603 | rc = pgmHandlerPhysicalExDeregister(pVM, pFirstMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING));
|
---|
3604 | AssertRCReturnStmt(rc, pgmUnlock(pVM), rc);
|
---|
3605 | while (!(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK))
|
---|
3606 | {
|
---|
3607 | pCurMmio = pCurMmio->pNextR3;
|
---|
3608 | rc = pgmHandlerPhysicalExDeregister(pVM, pCurMmio->pPhysHandlerR3, RT_BOOL(fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING));
|
---|
3609 | AssertRCReturnStmt(rc, pgmUnlock(pVM), VERR_PGM_PHYS_MMIO_EX_IPE);
|
---|
3610 | }
|
---|
3611 | }
|
---|
3612 |
|
---|
3613 | /*
|
---|
3614 | * Unmap it.
|
---|
3615 | */
|
---|
3616 | RTGCPHYS const GCPhysRangeNotify = pFirstMmio->RamRange.GCPhys;
|
---|
3617 | if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
|
---|
3618 | {
|
---|
3619 | /*
|
---|
3620 | * We've replaced RAM, replace with zero pages.
|
---|
3621 | *
|
---|
3622 | * Note! This is where we might differ a little from a real system, because
|
---|
3623 | * it's likely to just show the RAM pages as they were before the
|
---|
3624 | * MMIO/MMIO2 region was mapped here.
|
---|
3625 | */
|
---|
3626 | /* Only one chunk allowed when overlapping! */
|
---|
3627 | Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK);
|
---|
3628 |
|
---|
3629 | /* Restore the RAM pages we've replaced. */
|
---|
3630 | PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
3631 | while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
|
---|
3632 | pRam = pRam->pNextR3;
|
---|
3633 |
|
---|
3634 | uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
|
---|
3635 | if (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2)
|
---|
3636 | pVM->pgm.s.cZeroPages += cPagesLeft;
|
---|
3637 |
|
---|
3638 | PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
3639 | while (cPagesLeft-- > 0)
|
---|
3640 | {
|
---|
3641 | PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
|
---|
3642 | pPageDst++;
|
---|
3643 | }
|
---|
3644 |
|
---|
3645 | /* Flush physical page map TLB. */
|
---|
3646 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
3647 |
|
---|
3648 | /* Update range state. */
|
---|
3649 | pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
|
---|
3650 | pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
|
---|
3651 | pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3652 | }
|
---|
3653 | else
|
---|
3654 | {
|
---|
3655 | /*
|
---|
3656 | * Unlink the chunks related to the MMIO/MMIO2 region.
|
---|
3657 | */
|
---|
3658 | for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
|
---|
3659 | {
|
---|
3660 | pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
|
---|
3661 | pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
|
---|
3662 | pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
|
---|
3663 | pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
|
---|
3664 | if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
|
---|
3665 | break;
|
---|
3666 | }
|
---|
3667 | }
|
---|
3668 |
|
---|
3669 | /* Force a PGM pool flush as guest ram references have been changed. */
|
---|
3670 | /** @todo not entirely SMP safe; assuming for now the guest takes care
|
---|
3671 | * of this internally (not touch mapped mmio while changing the
|
---|
3672 | * mapping). */
|
---|
3673 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
3674 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
|
---|
3675 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
3676 |
|
---|
3677 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
3678 | pgmPhysInvalidRamRangeTlbs(pVM);
|
---|
3679 |
|
---|
3680 | /*
|
---|
3681 | * Notify NEM while holding the lock (experimental) and REM without (like always).
|
---|
3682 | */
|
---|
3683 | uint32_t const fNemFlags = (fOldFlags & PGMREGMMIO2RANGE_F_MMIO2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0)
|
---|
3684 | | (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
|
---|
3685 | rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhysRangeNotify, cbRange, fNemFlags);
|
---|
3686 |
|
---|
3687 | pgmUnlock(pVM);
|
---|
3688 | return rc;
|
---|
3689 | }
|
---|
3690 |
|
---|
3691 |
|
---|
3692 | /**
|
---|
3693 | * Reduces the mapping size of a MMIO2 region.
|
---|
3694 | *
|
---|
3695 | * This is mainly for dealing with old saved states after changing the default
|
---|
3696 | * size of a mapping region. See PGMDevHlpMMIOExReduce and
|
---|
3697 | * PDMPCIDEV::pfnRegionLoadChangeHookR3.
|
---|
3698 | *
|
---|
3699 | * The region must not currently be mapped when making this call. The VM state
|
---|
3700 | * must be state restore or VM construction.
|
---|
3701 | *
|
---|
3702 | * @returns VBox status code.
|
---|
3703 | * @param pVM The cross context VM structure.
|
---|
3704 | * @param pDevIns The device instance owning the region.
|
---|
3705 | * @param hMmio2 The handle of the region to reduce.
|
---|
3706 | * @param cbRegion The new mapping size.
|
---|
3707 | */
|
---|
3708 | VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
|
---|
3709 | {
|
---|
3710 | /*
|
---|
3711 | * Validate input
|
---|
3712 | */
|
---|
3713 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3714 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3715 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
3716 | AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
|
---|
3717 | AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
|
---|
3718 | VMSTATE enmVmState = VMR3GetState(pVM);
|
---|
3719 | AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
|
---|
3720 | || enmVmState == VMSTATE_LOADING,
|
---|
3721 | ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
|
---|
3722 | VERR_VM_INVALID_VM_STATE);
|
---|
3723 |
|
---|
3724 | int rc = pgmLock(pVM);
|
---|
3725 | AssertRCReturn(rc, rc);
|
---|
3726 |
|
---|
3727 | PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
|
---|
3728 | if (pFirstMmio)
|
---|
3729 | {
|
---|
3730 | Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
|
---|
3731 | if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED))
|
---|
3732 | {
|
---|
3733 | /*
|
---|
3734 | * NOTE! Current implementation does not support multiple ranges.
|
---|
3735 | * Implement when there is a real world need and thus a testcase.
|
---|
3736 | */
|
---|
3737 | AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
|
---|
3738 | ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
|
---|
3739 | rc = VERR_NOT_SUPPORTED);
|
---|
3740 | if (RT_SUCCESS(rc))
|
---|
3741 | {
|
---|
3742 | /*
|
---|
3743 | * Make the change.
|
---|
3744 | */
|
---|
3745 | Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
|
---|
3746 | pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
|
---|
3747 |
|
---|
3748 | AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
|
---|
3749 | ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
|
---|
3750 | rc = VERR_OUT_OF_RANGE);
|
---|
3751 | if (RT_SUCCESS(rc))
|
---|
3752 | {
|
---|
3753 | pFirstMmio->RamRange.cb = cbRegion;
|
---|
3754 | }
|
---|
3755 | }
|
---|
3756 | }
|
---|
3757 | else
|
---|
3758 | rc = VERR_WRONG_ORDER;
|
---|
3759 | }
|
---|
3760 | else
|
---|
3761 | rc = VERR_NOT_FOUND;
|
---|
3762 |
|
---|
3763 | pgmUnlock(pVM);
|
---|
3764 | return rc;
|
---|
3765 | }
|
---|
3766 |
|
---|
3767 |
|
---|
3768 | /**
|
---|
3769 | * Validates @a hMmio2, making sure it belongs to @a pDevIns.
|
---|
3770 | *
|
---|
3771 | * @returns VBox status code.
|
---|
3772 | * @param pVM The cross context VM structure.
|
---|
3773 | * @param pDevIns The device which allegedly owns @a hMmio2.
|
---|
3774 | * @param hMmio2 The handle to validate.
|
---|
3775 | */
|
---|
3776 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
3777 | {
|
---|
3778 | /*
|
---|
3779 | * Validate input
|
---|
3780 | */
|
---|
3781 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3782 | AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
|
---|
3783 |
|
---|
3784 | /*
|
---|
3785 | * Just do this the simple way. No need for locking as this is only taken at
|
---|
3786 | */
|
---|
3787 | pgmLock(pVM);
|
---|
3788 | PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
|
---|
3789 | pgmUnlock(pVM);
|
---|
3790 | AssertReturn(pFirstMmio, VERR_INVALID_HANDLE);
|
---|
3791 | AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MMIO2, VERR_INVALID_HANDLE);
|
---|
3792 | AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE);
|
---|
3793 | return VINF_SUCCESS;
|
---|
3794 | }
|
---|
3795 |
|
---|
3796 |
|
---|
3797 | #ifndef PGM_WITHOUT_MAPPINGS
|
---|
3798 | /**
|
---|
3799 | * Gets the HC physical address of a page in the MMIO2 region.
|
---|
3800 | *
|
---|
3801 | * This is API is intended for MMHyper and shouldn't be called
|
---|
3802 | * by anyone else...
|
---|
3803 | *
|
---|
3804 | * @returns VBox status code.
|
---|
3805 | * @param pVM The cross context VM structure.
|
---|
3806 | * @param pDevIns The owner of the memory, optional.
|
---|
3807 | * @param iSubDev Sub-device number.
|
---|
3808 | * @param iRegion The region.
|
---|
3809 | * @param off The page expressed an offset into the MMIO2 region.
|
---|
3810 | * @param pHCPhys Where to store the result.
|
---|
3811 | */
|
---|
3812 | VMMR3_INT_DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion,
|
---|
3813 | RTGCPHYS off, PRTHCPHYS pHCPhys)
|
---|
3814 | {
|
---|
3815 | /*
|
---|
3816 | * Validate input
|
---|
3817 | */
|
---|
3818 | VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3819 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3820 | AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
3821 | AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
3822 |
|
---|
3823 | pgmLock(pVM);
|
---|
3824 | PPGMREGMMIO2RANGE pCurMmio = pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE);
|
---|
3825 | AssertReturn(pCurMmio, VERR_NOT_FOUND);
|
---|
3826 | AssertReturn(pCurMmio->fFlags & (PGMREGMMIO2RANGE_F_MMIO2 | PGMREGMMIO2RANGE_F_FIRST_CHUNK), VERR_WRONG_TYPE);
|
---|
3827 |
|
---|
3828 | while ( off >= pCurMmio->RamRange.cb
|
---|
3829 | && !(pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK))
|
---|
3830 | {
|
---|
3831 | off -= pCurMmio->RamRange.cb;
|
---|
3832 | pCurMmio = pCurMmio->pNextR3;
|
---|
3833 | }
|
---|
3834 | AssertReturn(off < pCurMmio->RamRange.cb, VERR_INVALID_PARAMETER);
|
---|
3835 |
|
---|
3836 | PCPGMPAGE pPage = &pCurMmio->RamRange.aPages[off >> PAGE_SHIFT];
|
---|
3837 | *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
3838 | pgmUnlock(pVM);
|
---|
3839 | return VINF_SUCCESS;
|
---|
3840 | }
|
---|
3841 | #endif /* !PGM_WITHOUT_MAPPINGS */
|
---|
3842 |
|
---|
3843 |
|
---|
3844 | /**
|
---|
3845 | * Gets the mapping address of an MMIO2 region.
|
---|
3846 | *
|
---|
3847 | * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
|
---|
3848 | *
|
---|
3849 | * @param pVM The cross context VM structure.
|
---|
3850 | * @param pDevIns The device owning the MMIO2 handle.
|
---|
3851 | * @param hMmio2 The region handle.
|
---|
3852 | */
|
---|
3853 | VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
|
---|
3854 | {
|
---|
3855 | AssertPtrReturn(pDevIns, NIL_RTGCPHYS);
|
---|
3856 |
|
---|
3857 | PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
|
---|
3858 | AssertReturn(pFirstRegMmio, NIL_RTGCPHYS);
|
---|
3859 |
|
---|
3860 | if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
|
---|
3861 | return pFirstRegMmio->RamRange.GCPhys;
|
---|
3862 | return NIL_RTGCPHYS;
|
---|
3863 | }
|
---|
3864 |
|
---|
3865 | /**
|
---|
3866 | * Changes the region number of an MMIO2 region.
|
---|
3867 | *
|
---|
3868 | * This is only for dealing with save state issues, nothing else.
|
---|
3869 | *
|
---|
3870 | * @return VBox status code.
|
---|
3871 | *
|
---|
3872 | * @param pVM The cross context VM structure.
|
---|
3873 | * @param pDevIns The device owning the MMIO2 memory.
|
---|
3874 | * @param hMmio2 The handle of the region.
|
---|
3875 | * @param iNewRegion The new region index.
|
---|
3876 | *
|
---|
3877 | * @thread EMT(0)
|
---|
3878 | * @sa @bugref{9359}
|
---|
3879 | */
|
---|
3880 | VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
|
---|
3881 | {
|
---|
3882 | /*
|
---|
3883 | * Validate input.
|
---|
3884 | */
|
---|
3885 | VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
|
---|
3886 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
|
---|
3887 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3888 | AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
|
---|
3889 | AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
|
---|
3890 |
|
---|
3891 | AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
|
---|
3892 |
|
---|
3893 | int rc = pgmLock(pVM);
|
---|
3894 | AssertRCReturn(rc, rc);
|
---|
3895 |
|
---|
3896 | PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
|
---|
3897 | AssertReturnStmt(pFirstRegMmio, pgmUnlock(pVM), VERR_NOT_FOUND);
|
---|
3898 | AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL,
|
---|
3899 | pgmUnlock(pVM), VERR_RESOURCE_IN_USE);
|
---|
3900 |
|
---|
3901 | /*
|
---|
3902 | * Make the change.
|
---|
3903 | */
|
---|
3904 | pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
|
---|
3905 |
|
---|
3906 | pgmUnlock(pVM);
|
---|
3907 | return VINF_SUCCESS;
|
---|
3908 | }
|
---|
3909 |
|
---|
3910 |
|
---|
3911 | /**
|
---|
3912 | * Worker for PGMR3PhysRomRegister.
|
---|
3913 | *
|
---|
3914 | * This is here to simplify lock management, i.e. the caller does all the
|
---|
3915 | * locking and we can simply return without needing to remember to unlock
|
---|
3916 | * anything first.
|
---|
3917 | *
|
---|
3918 | * @returns VBox status code.
|
---|
3919 | * @param pVM The cross context VM structure.
|
---|
3920 | * @param pDevIns The device instance owning the ROM.
|
---|
3921 | * @param GCPhys First physical address in the range.
|
---|
3922 | * Must be page aligned!
|
---|
3923 | * @param cb The size of the range (in bytes).
|
---|
3924 | * Must be page aligned!
|
---|
3925 | * @param pvBinary Pointer to the binary data backing the ROM image.
|
---|
3926 | * @param cbBinary The size of the binary data pvBinary points to.
|
---|
3927 | * This must be less or equal to @a cb.
|
---|
3928 | * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
|
---|
3929 | * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
|
---|
3930 | * @param pszDesc Pointer to description string. This must not be freed.
|
---|
3931 | */
|
---|
3932 | static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
3933 | const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
|
---|
3934 | {
|
---|
3935 | /*
|
---|
3936 | * Validate input.
|
---|
3937 | */
|
---|
3938 | AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
|
---|
3939 | AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
|
---|
3940 | AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
|
---|
3941 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
3942 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
3943 | AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
|
---|
3944 | AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
|
---|
3945 | AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
|
---|
3946 | VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
|
---|
3947 |
|
---|
3948 | const uint32_t cPages = cb >> PAGE_SHIFT;
|
---|
3949 |
|
---|
3950 | /*
|
---|
3951 | * Find the ROM location in the ROM list first.
|
---|
3952 | */
|
---|
3953 | PPGMROMRANGE pRomPrev = NULL;
|
---|
3954 | PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
|
---|
3955 | while (pRom && GCPhysLast >= pRom->GCPhys)
|
---|
3956 | {
|
---|
3957 | if ( GCPhys <= pRom->GCPhysLast
|
---|
3958 | && GCPhysLast >= pRom->GCPhys)
|
---|
3959 | AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
|
---|
3960 | GCPhys, GCPhysLast, pszDesc,
|
---|
3961 | pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
|
---|
3962 | VERR_PGM_RAM_CONFLICT);
|
---|
3963 | /* next */
|
---|
3964 | pRomPrev = pRom;
|
---|
3965 | pRom = pRom->pNextR3;
|
---|
3966 | }
|
---|
3967 |
|
---|
3968 | /*
|
---|
3969 | * Find the RAM location and check for conflicts.
|
---|
3970 | *
|
---|
3971 | * Conflict detection is a bit different than for RAM
|
---|
3972 | * registration since a ROM can be located within a RAM
|
---|
3973 | * range. So, what we have to check for is other memory
|
---|
3974 | * types (other than RAM that is) and that we don't span
|
---|
3975 | * more than one RAM range (layz).
|
---|
3976 | */
|
---|
3977 | bool fRamExists = false;
|
---|
3978 | PPGMRAMRANGE pRamPrev = NULL;
|
---|
3979 | PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
3980 | while (pRam && GCPhysLast >= pRam->GCPhys)
|
---|
3981 | {
|
---|
3982 | if ( GCPhys <= pRam->GCPhysLast
|
---|
3983 | && GCPhysLast >= pRam->GCPhys)
|
---|
3984 | {
|
---|
3985 | /* completely within? */
|
---|
3986 | AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
|
---|
3987 | && GCPhysLast <= pRam->GCPhysLast,
|
---|
3988 | ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
|
---|
3989 | GCPhys, GCPhysLast, pszDesc,
|
---|
3990 | pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
|
---|
3991 | VERR_PGM_RAM_CONFLICT);
|
---|
3992 | fRamExists = true;
|
---|
3993 | break;
|
---|
3994 | }
|
---|
3995 |
|
---|
3996 | /* next */
|
---|
3997 | pRamPrev = pRam;
|
---|
3998 | pRam = pRam->pNextR3;
|
---|
3999 | }
|
---|
4000 | if (fRamExists)
|
---|
4001 | {
|
---|
4002 | PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
4003 | uint32_t cPagesLeft = cPages;
|
---|
4004 | while (cPagesLeft-- > 0)
|
---|
4005 | {
|
---|
4006 | AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
|
---|
4007 | ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
|
---|
4008 | pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
|
---|
4009 | pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
|
---|
4010 | Assert(PGM_PAGE_IS_ZERO(pPage));
|
---|
4011 | pPage++;
|
---|
4012 | }
|
---|
4013 | }
|
---|
4014 |
|
---|
4015 | /*
|
---|
4016 | * Update the base memory reservation if necessary.
|
---|
4017 | */
|
---|
4018 | uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
|
---|
4019 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4020 | cExtraBaseCost += cPages;
|
---|
4021 | if (cExtraBaseCost)
|
---|
4022 | {
|
---|
4023 | int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
|
---|
4024 | if (RT_FAILURE(rc))
|
---|
4025 | return rc;
|
---|
4026 | }
|
---|
4027 |
|
---|
4028 | /*
|
---|
4029 | * Allocate memory for the virgin copy of the RAM.
|
---|
4030 | */
|
---|
4031 | PGMMALLOCATEPAGESREQ pReq;
|
---|
4032 | int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
|
---|
4033 | AssertRCReturn(rc, rc);
|
---|
4034 |
|
---|
4035 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
4036 | {
|
---|
4037 | pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
|
---|
4038 | pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
|
---|
4039 | pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
|
---|
4040 | }
|
---|
4041 |
|
---|
4042 | rc = GMMR3AllocatePagesPerform(pVM, pReq);
|
---|
4043 | if (RT_FAILURE(rc))
|
---|
4044 | {
|
---|
4045 | GMMR3AllocatePagesCleanup(pReq);
|
---|
4046 | return rc;
|
---|
4047 | }
|
---|
4048 |
|
---|
4049 | /*
|
---|
4050 | * Allocate the new ROM range and RAM range (if necessary).
|
---|
4051 | */
|
---|
4052 | PPGMROMRANGE pRomNew;
|
---|
4053 | rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
|
---|
4054 | if (RT_SUCCESS(rc))
|
---|
4055 | {
|
---|
4056 | PPGMRAMRANGE pRamNew = NULL;
|
---|
4057 | if (!fRamExists)
|
---|
4058 | rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
|
---|
4059 | if (RT_SUCCESS(rc))
|
---|
4060 | {
|
---|
4061 | /*
|
---|
4062 | * Initialize and insert the RAM range (if required).
|
---|
4063 | */
|
---|
4064 | PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
|
---|
4065 | if (!fRamExists)
|
---|
4066 | {
|
---|
4067 | pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
|
---|
4068 | pRamNew->GCPhys = GCPhys;
|
---|
4069 | pRamNew->GCPhysLast = GCPhysLast;
|
---|
4070 | pRamNew->cb = cb;
|
---|
4071 | pRamNew->pszDesc = pszDesc;
|
---|
4072 | pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
|
---|
4073 | pRamNew->pvR3 = NULL;
|
---|
4074 | pRamNew->paLSPages = NULL;
|
---|
4075 |
|
---|
4076 | PPGMPAGE pPage = &pRamNew->aPages[0];
|
---|
4077 | for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
|
---|
4078 | {
|
---|
4079 | PGM_PAGE_INIT(pPage,
|
---|
4080 | pReq->aPages[iPage].HCPhysGCPhys,
|
---|
4081 | pReq->aPages[iPage].idPage,
|
---|
4082 | PGMPAGETYPE_ROM,
|
---|
4083 | PGM_PAGE_STATE_ALLOCATED);
|
---|
4084 |
|
---|
4085 | pRomPage->Virgin = *pPage;
|
---|
4086 | }
|
---|
4087 |
|
---|
4088 | pVM->pgm.s.cAllPages += cPages;
|
---|
4089 | pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
|
---|
4090 | }
|
---|
4091 | else
|
---|
4092 | {
|
---|
4093 | PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
|
---|
4094 | for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
|
---|
4095 | {
|
---|
4096 | PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_ROM);
|
---|
4097 | PGM_PAGE_SET_HCPHYS(pVM, pPage, pReq->aPages[iPage].HCPhysGCPhys);
|
---|
4098 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
4099 | PGM_PAGE_SET_PAGEID(pVM, pPage, pReq->aPages[iPage].idPage);
|
---|
4100 | PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
4101 | PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
|
---|
4102 | PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
|
---|
4103 |
|
---|
4104 | pRomPage->Virgin = *pPage;
|
---|
4105 | }
|
---|
4106 |
|
---|
4107 | pRamNew = pRam;
|
---|
4108 |
|
---|
4109 | pVM->pgm.s.cZeroPages -= cPages;
|
---|
4110 | }
|
---|
4111 | pVM->pgm.s.cPrivatePages += cPages;
|
---|
4112 |
|
---|
4113 | /* Flush physical page map TLB. */
|
---|
4114 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
4115 |
|
---|
4116 |
|
---|
4117 | /* Notify NEM before we register handlers. */
|
---|
4118 | uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
|
---|
4119 | | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
|
---|
4120 | rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cb, fNemNotify);
|
---|
4121 |
|
---|
4122 | /* Register the ROM access handler. */
|
---|
4123 | if (RT_SUCCESS(rc))
|
---|
4124 | rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
|
---|
4125 | pRomNew, MMHyperCCToR0(pVM, pRomNew), MMHyperCCToRC(pVM, pRomNew),
|
---|
4126 | pszDesc);
|
---|
4127 | if (RT_SUCCESS(rc))
|
---|
4128 | {
|
---|
4129 | /*
|
---|
4130 | * Copy the image over to the virgin pages.
|
---|
4131 | * This must be done after linking in the RAM range.
|
---|
4132 | */
|
---|
4133 | size_t cbBinaryLeft = cbBinary;
|
---|
4134 | PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
|
---|
4135 | for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
|
---|
4136 | {
|
---|
4137 | void *pvDstPage;
|
---|
4138 | rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
|
---|
4139 | if (RT_FAILURE(rc))
|
---|
4140 | {
|
---|
4141 | VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
|
---|
4142 | break;
|
---|
4143 | }
|
---|
4144 | if (cbBinaryLeft >= PAGE_SIZE)
|
---|
4145 | {
|
---|
4146 | memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
|
---|
4147 | cbBinaryLeft -= PAGE_SIZE;
|
---|
4148 | }
|
---|
4149 | else
|
---|
4150 | {
|
---|
4151 | ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
|
---|
4152 | if (cbBinaryLeft > 0)
|
---|
4153 | {
|
---|
4154 | memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
|
---|
4155 | cbBinaryLeft = 0;
|
---|
4156 | }
|
---|
4157 | }
|
---|
4158 | }
|
---|
4159 | if (RT_SUCCESS(rc))
|
---|
4160 | {
|
---|
4161 | /*
|
---|
4162 | * Initialize the ROM range.
|
---|
4163 | * Note that the Virgin member of the pages has already been initialized above.
|
---|
4164 | */
|
---|
4165 | pRomNew->GCPhys = GCPhys;
|
---|
4166 | pRomNew->GCPhysLast = GCPhysLast;
|
---|
4167 | pRomNew->cb = cb;
|
---|
4168 | pRomNew->fFlags = fFlags;
|
---|
4169 | pRomNew->idSavedState = UINT8_MAX;
|
---|
4170 | pRomNew->cbOriginal = cbBinary;
|
---|
4171 | pRomNew->pszDesc = pszDesc;
|
---|
4172 | pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
|
---|
4173 | ? pvBinary : RTMemDup(pvBinary, cbBinary);
|
---|
4174 | if (pRomNew->pvOriginal)
|
---|
4175 | {
|
---|
4176 | for (unsigned iPage = 0; iPage < cPages; iPage++)
|
---|
4177 | {
|
---|
4178 | PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
|
---|
4179 | pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
|
---|
4180 | PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
|
---|
4181 | }
|
---|
4182 |
|
---|
4183 | /* update the page count stats for the shadow pages. */
|
---|
4184 | if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4185 | {
|
---|
4186 | pVM->pgm.s.cZeroPages += cPages;
|
---|
4187 | pVM->pgm.s.cAllPages += cPages;
|
---|
4188 | }
|
---|
4189 |
|
---|
4190 | /*
|
---|
4191 | * Insert the ROM range, tell REM and return successfully.
|
---|
4192 | */
|
---|
4193 | pRomNew->pNextR3 = pRom;
|
---|
4194 | pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
|
---|
4195 |
|
---|
4196 | if (pRomPrev)
|
---|
4197 | {
|
---|
4198 | pRomPrev->pNextR3 = pRomNew;
|
---|
4199 | pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
|
---|
4200 | }
|
---|
4201 | else
|
---|
4202 | {
|
---|
4203 | pVM->pgm.s.pRomRangesR3 = pRomNew;
|
---|
4204 | pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
|
---|
4205 | }
|
---|
4206 |
|
---|
4207 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
4208 | GMMR3AllocatePagesCleanup(pReq);
|
---|
4209 |
|
---|
4210 | /* Notify NEM again. */
|
---|
4211 | return NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, fNemNotify);
|
---|
4212 | }
|
---|
4213 |
|
---|
4214 | /* bail out */
|
---|
4215 | rc = VERR_NO_MEMORY;
|
---|
4216 | }
|
---|
4217 |
|
---|
4218 | int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
|
---|
4219 | AssertRC(rc2);
|
---|
4220 | }
|
---|
4221 |
|
---|
4222 | if (!fRamExists)
|
---|
4223 | {
|
---|
4224 | pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
|
---|
4225 | MMHyperFree(pVM, pRamNew);
|
---|
4226 | }
|
---|
4227 | }
|
---|
4228 | MMHyperFree(pVM, pRomNew);
|
---|
4229 | }
|
---|
4230 |
|
---|
4231 | /** @todo Purge the mapping cache or something... */
|
---|
4232 | GMMR3FreeAllocatedPages(pVM, pReq);
|
---|
4233 | GMMR3AllocatePagesCleanup(pReq);
|
---|
4234 | return rc;
|
---|
4235 | }
|
---|
4236 |
|
---|
4237 |
|
---|
4238 | /**
|
---|
4239 | * Registers a ROM image.
|
---|
4240 | *
|
---|
4241 | * Shadowed ROM images requires double the amount of backing memory, so,
|
---|
4242 | * don't use that unless you have to. Shadowing of ROM images is process
|
---|
4243 | * where we can select where the reads go and where the writes go. On real
|
---|
4244 | * hardware the chipset provides means to configure this. We provide
|
---|
4245 | * PGMR3PhysProtectROM() for this purpose.
|
---|
4246 | *
|
---|
4247 | * A read-only copy of the ROM image will always be kept around while we
|
---|
4248 | * will allocate RAM pages for the changes on demand (unless all memory
|
---|
4249 | * is configured to be preallocated).
|
---|
4250 | *
|
---|
4251 | * @returns VBox status code.
|
---|
4252 | * @param pVM The cross context VM structure.
|
---|
4253 | * @param pDevIns The device instance owning the ROM.
|
---|
4254 | * @param GCPhys First physical address in the range.
|
---|
4255 | * Must be page aligned!
|
---|
4256 | * @param cb The size of the range (in bytes).
|
---|
4257 | * Must be page aligned!
|
---|
4258 | * @param pvBinary Pointer to the binary data backing the ROM image.
|
---|
4259 | * @param cbBinary The size of the binary data pvBinary points to.
|
---|
4260 | * This must be less or equal to @a cb.
|
---|
4261 | * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
|
---|
4262 | * @param pszDesc Pointer to description string. This must not be freed.
|
---|
4263 | *
|
---|
4264 | * @remark There is no way to remove the rom, automatically on device cleanup or
|
---|
4265 | * manually from the device yet. This isn't difficult in any way, it's
|
---|
4266 | * just not something we expect to be necessary for a while.
|
---|
4267 | */
|
---|
4268 | VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
4269 | const void *pvBinary, uint32_t cbBinary, uint32_t fFlags, const char *pszDesc)
|
---|
4270 | {
|
---|
4271 | Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
|
---|
4272 | pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
|
---|
4273 | pgmLock(pVM);
|
---|
4274 | int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
|
---|
4275 | pgmUnlock(pVM);
|
---|
4276 | return rc;
|
---|
4277 | }
|
---|
4278 |
|
---|
4279 |
|
---|
4280 | /**
|
---|
4281 | * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
|
---|
4282 | * that the virgin part is untouched.
|
---|
4283 | *
|
---|
4284 | * This is done after the normal memory has been cleared.
|
---|
4285 | *
|
---|
4286 | * ASSUMES that the caller owns the PGM lock.
|
---|
4287 | *
|
---|
4288 | * @param pVM The cross context VM structure.
|
---|
4289 | */
|
---|
4290 | int pgmR3PhysRomReset(PVM pVM)
|
---|
4291 | {
|
---|
4292 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
4293 | for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
|
---|
4294 | {
|
---|
4295 | const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
|
---|
4296 |
|
---|
4297 | if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
|
---|
4298 | {
|
---|
4299 | /*
|
---|
4300 | * Reset the physical handler.
|
---|
4301 | */
|
---|
4302 | int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
|
---|
4303 | AssertRCReturn(rc, rc);
|
---|
4304 |
|
---|
4305 | /*
|
---|
4306 | * What we do with the shadow pages depends on the memory
|
---|
4307 | * preallocation option. If not enabled, we'll just throw
|
---|
4308 | * out all the dirty pages and replace them by the zero page.
|
---|
4309 | */
|
---|
4310 | if (!pVM->pgm.s.fRamPreAlloc)
|
---|
4311 | {
|
---|
4312 | /* Free the dirty pages. */
|
---|
4313 | uint32_t cPendingPages = 0;
|
---|
4314 | PGMMFREEPAGESREQ pReq;
|
---|
4315 | rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
4316 | AssertRCReturn(rc, rc);
|
---|
4317 |
|
---|
4318 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
4319 | if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
|
---|
4320 | && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
|
---|
4321 | {
|
---|
4322 | Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
|
---|
4323 | rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
|
---|
4324 | pRom->GCPhys + (iPage << PAGE_SHIFT),
|
---|
4325 | (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
|
---|
4326 | AssertLogRelRCReturn(rc, rc);
|
---|
4327 | }
|
---|
4328 |
|
---|
4329 | if (cPendingPages)
|
---|
4330 | {
|
---|
4331 | rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
|
---|
4332 | AssertLogRelRCReturn(rc, rc);
|
---|
4333 | }
|
---|
4334 | GMMR3FreePagesCleanup(pReq);
|
---|
4335 | }
|
---|
4336 | else
|
---|
4337 | {
|
---|
4338 | /* clear all the shadow pages. */
|
---|
4339 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
4340 | {
|
---|
4341 | if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
|
---|
4342 | continue;
|
---|
4343 | Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
|
---|
4344 | void *pvDstPage;
|
---|
4345 | const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
|
---|
4346 | rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
|
---|
4347 | if (RT_FAILURE(rc))
|
---|
4348 | break;
|
---|
4349 | ASMMemZeroPage(pvDstPage);
|
---|
4350 | }
|
---|
4351 | AssertRCReturn(rc, rc);
|
---|
4352 | }
|
---|
4353 | }
|
---|
4354 |
|
---|
4355 | /*
|
---|
4356 | * Restore the original ROM pages after a saved state load.
|
---|
4357 | * Also, in strict builds check that ROM pages remain unmodified.
|
---|
4358 | */
|
---|
4359 | #ifndef VBOX_STRICT
|
---|
4360 | if (pVM->pgm.s.fRestoreRomPagesOnReset)
|
---|
4361 | #endif
|
---|
4362 | {
|
---|
4363 | size_t cbSrcLeft = pRom->cbOriginal;
|
---|
4364 | uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
|
---|
4365 | uint32_t cRestored = 0;
|
---|
4366 | for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
|
---|
4367 | {
|
---|
4368 | const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
|
---|
4369 | void const *pvDstPage;
|
---|
4370 | int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
|
---|
4371 | if (RT_FAILURE(rc))
|
---|
4372 | break;
|
---|
4373 |
|
---|
4374 | if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
|
---|
4375 | {
|
---|
4376 | if (pVM->pgm.s.fRestoreRomPagesOnReset)
|
---|
4377 | {
|
---|
4378 | void *pvDstPageW;
|
---|
4379 | rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPageW);
|
---|
4380 | AssertLogRelRCReturn(rc, rc);
|
---|
4381 | memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
|
---|
4382 | cRestored++;
|
---|
4383 | }
|
---|
4384 | else
|
---|
4385 | LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
|
---|
4386 | }
|
---|
4387 | cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
|
---|
4388 | }
|
---|
4389 | if (cRestored > 0)
|
---|
4390 | LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
|
---|
4391 | }
|
---|
4392 | }
|
---|
4393 |
|
---|
4394 | /* Clear the ROM restore flag now as we only need to do this once after
|
---|
4395 | loading saved state. */
|
---|
4396 | pVM->pgm.s.fRestoreRomPagesOnReset = false;
|
---|
4397 |
|
---|
4398 | return VINF_SUCCESS;
|
---|
4399 | }
|
---|
4400 |
|
---|
4401 |
|
---|
4402 | /**
|
---|
4403 | * Called by PGMR3Term to free resources.
|
---|
4404 | *
|
---|
4405 | * ASSUMES that the caller owns the PGM lock.
|
---|
4406 | *
|
---|
4407 | * @param pVM The cross context VM structure.
|
---|
4408 | */
|
---|
4409 | void pgmR3PhysRomTerm(PVM pVM)
|
---|
4410 | {
|
---|
4411 | /*
|
---|
4412 | * Free the heap copy of the original bits.
|
---|
4413 | */
|
---|
4414 | for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
|
---|
4415 | {
|
---|
4416 | if ( pRom->pvOriginal
|
---|
4417 | && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
|
---|
4418 | {
|
---|
4419 | RTMemFree((void *)pRom->pvOriginal);
|
---|
4420 | pRom->pvOriginal = NULL;
|
---|
4421 | }
|
---|
4422 | }
|
---|
4423 | }
|
---|
4424 |
|
---|
4425 |
|
---|
4426 | /**
|
---|
4427 | * Change the shadowing of a range of ROM pages.
|
---|
4428 | *
|
---|
4429 | * This is intended for implementing chipset specific memory registers
|
---|
4430 | * and will not be very strict about the input. It will silently ignore
|
---|
4431 | * any pages that are not the part of a shadowed ROM.
|
---|
4432 | *
|
---|
4433 | * @returns VBox status code.
|
---|
4434 | * @retval VINF_PGM_SYNC_CR3
|
---|
4435 | *
|
---|
4436 | * @param pVM The cross context VM structure.
|
---|
4437 | * @param GCPhys Where to start. Page aligned.
|
---|
4438 | * @param cb How much to change. Page aligned.
|
---|
4439 | * @param enmProt The new ROM protection.
|
---|
4440 | */
|
---|
4441 | VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
|
---|
4442 | {
|
---|
4443 | /*
|
---|
4444 | * Check input
|
---|
4445 | */
|
---|
4446 | if (!cb)
|
---|
4447 | return VINF_SUCCESS;
|
---|
4448 | AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
4449 | AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
|
---|
4450 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
4451 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
4452 | AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
|
---|
4453 |
|
---|
4454 | /*
|
---|
4455 | * Process the request.
|
---|
4456 | */
|
---|
4457 | pgmLock(pVM);
|
---|
4458 | int rc = VINF_SUCCESS;
|
---|
4459 | bool fFlushTLB = false;
|
---|
4460 | for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
|
---|
4461 | {
|
---|
4462 | if ( GCPhys <= pRom->GCPhysLast
|
---|
4463 | && GCPhysLast >= pRom->GCPhys
|
---|
4464 | && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
|
---|
4465 | {
|
---|
4466 | /*
|
---|
4467 | * Iterate the relevant pages and make necessary the changes.
|
---|
4468 | */
|
---|
4469 | bool fChanges = false;
|
---|
4470 | uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
|
---|
4471 | ? pRom->cb >> PAGE_SHIFT
|
---|
4472 | : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
|
---|
4473 | for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
|
---|
4474 | iPage < cPages;
|
---|
4475 | iPage++)
|
---|
4476 | {
|
---|
4477 | PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
|
---|
4478 | if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
|
---|
4479 | {
|
---|
4480 | fChanges = true;
|
---|
4481 |
|
---|
4482 | /* flush references to the page. */
|
---|
4483 | PPGMPAGE pRamPage = pgmPhysGetPage(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT));
|
---|
4484 | int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
|
---|
4485 | true /*fFlushPTEs*/, &fFlushTLB);
|
---|
4486 | if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
|
---|
4487 | rc = rc2;
|
---|
4488 | uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
|
---|
4489 |
|
---|
4490 | PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
|
---|
4491 | PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
|
---|
4492 |
|
---|
4493 | *pOld = *pRamPage;
|
---|
4494 | *pRamPage = *pNew;
|
---|
4495 | /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
|
---|
4496 |
|
---|
4497 | /* Tell NEM about the backing and protection change. */
|
---|
4498 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
4499 | {
|
---|
4500 | PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
|
---|
4501 | NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
|
---|
4502 | pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
|
---|
4503 | PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
|
---|
4504 | }
|
---|
4505 | }
|
---|
4506 | pRomPage->enmProt = enmProt;
|
---|
4507 | }
|
---|
4508 |
|
---|
4509 | /*
|
---|
4510 | * Reset the access handler if we made changes, no need
|
---|
4511 | * to optimize this.
|
---|
4512 | */
|
---|
4513 | if (fChanges)
|
---|
4514 | {
|
---|
4515 | int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
|
---|
4516 | if (RT_FAILURE(rc2))
|
---|
4517 | {
|
---|
4518 | pgmUnlock(pVM);
|
---|
4519 | AssertRC(rc);
|
---|
4520 | return rc2;
|
---|
4521 | }
|
---|
4522 | }
|
---|
4523 |
|
---|
4524 | /* Advance - cb isn't updated. */
|
---|
4525 | GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
|
---|
4526 | }
|
---|
4527 | }
|
---|
4528 | pgmUnlock(pVM);
|
---|
4529 | if (fFlushTLB)
|
---|
4530 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
4531 |
|
---|
4532 | return rc;
|
---|
4533 | }
|
---|
4534 |
|
---|
4535 |
|
---|
4536 | /**
|
---|
4537 | * Sets the Address Gate 20 state.
|
---|
4538 | *
|
---|
4539 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4540 | * @param fEnable True if the gate should be enabled.
|
---|
4541 | * False if the gate should be disabled.
|
---|
4542 | */
|
---|
4543 | VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
|
---|
4544 | {
|
---|
4545 | LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
|
---|
4546 | if (pVCpu->pgm.s.fA20Enabled != fEnable)
|
---|
4547 | {
|
---|
4548 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4549 | PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
4550 | if ( CPUMIsGuestInVmxRootMode(pCtx)
|
---|
4551 | && !fEnable)
|
---|
4552 | {
|
---|
4553 | Log(("Cannot enter A20M mode while in VMX root mode\n"));
|
---|
4554 | return;
|
---|
4555 | }
|
---|
4556 | #endif
|
---|
4557 | pVCpu->pgm.s.fA20Enabled = fEnable;
|
---|
4558 | pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
|
---|
4559 | NEMR3NotifySetA20(pVCpu, fEnable);
|
---|
4560 | #ifdef PGM_WITH_A20
|
---|
4561 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
4562 | pgmR3RefreshShadowModeAfterA20Change(pVCpu);
|
---|
4563 | HMFlushTlb(pVCpu);
|
---|
4564 | #endif
|
---|
4565 | IEMTlbInvalidateAllPhysical(pVCpu);
|
---|
4566 | STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
|
---|
4567 | }
|
---|
4568 | }
|
---|
4569 |
|
---|
4570 |
|
---|
4571 | /**
|
---|
4572 | * Tree enumeration callback for dealing with age rollover.
|
---|
4573 | * It will perform a simple compression of the current age.
|
---|
4574 | */
|
---|
4575 | static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
4576 | {
|
---|
4577 | /* Age compression - ASSUMES iNow == 4. */
|
---|
4578 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
4579 | if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
|
---|
4580 | pChunk->iLastUsed = 3;
|
---|
4581 | else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
|
---|
4582 | pChunk->iLastUsed = 2;
|
---|
4583 | else if (pChunk->iLastUsed)
|
---|
4584 | pChunk->iLastUsed = 1;
|
---|
4585 | else /* iLastUsed = 0 */
|
---|
4586 | pChunk->iLastUsed = 4;
|
---|
4587 |
|
---|
4588 | NOREF(pvUser);
|
---|
4589 | return 0;
|
---|
4590 | }
|
---|
4591 |
|
---|
4592 |
|
---|
4593 | /**
|
---|
4594 | * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
|
---|
4595 | */
|
---|
4596 | typedef struct PGMR3PHYSCHUNKUNMAPCB
|
---|
4597 | {
|
---|
4598 | PVM pVM; /**< Pointer to the VM. */
|
---|
4599 | PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
|
---|
4600 | } PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
|
---|
4601 |
|
---|
4602 |
|
---|
4603 | /**
|
---|
4604 | * Callback used to find the mapping that's been unused for
|
---|
4605 | * the longest time.
|
---|
4606 | */
|
---|
4607 | static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
4608 | {
|
---|
4609 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
4610 | PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
|
---|
4611 |
|
---|
4612 | /*
|
---|
4613 | * Check for locks and compare when last used.
|
---|
4614 | */
|
---|
4615 | if (pChunk->cRefs)
|
---|
4616 | return 0;
|
---|
4617 | if (pChunk->cPermRefs)
|
---|
4618 | return 0;
|
---|
4619 | if ( pArg->pChunk
|
---|
4620 | && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
|
---|
4621 | return 0;
|
---|
4622 |
|
---|
4623 | /*
|
---|
4624 | * Check that it's not in any of the TLBs.
|
---|
4625 | */
|
---|
4626 | PVM pVM = pArg->pVM;
|
---|
4627 | if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
|
---|
4628 | == pChunk->Core.Key)
|
---|
4629 | {
|
---|
4630 | pChunk = NULL;
|
---|
4631 | return 0;
|
---|
4632 | }
|
---|
4633 | #ifdef VBOX_STRICT
|
---|
4634 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
4635 | {
|
---|
4636 | Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
|
---|
4637 | Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
|
---|
4638 | }
|
---|
4639 | #endif
|
---|
4640 |
|
---|
4641 | #ifndef VBOX_WITH_RAM_IN_KERNEL
|
---|
4642 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR0.aEntries); i++)
|
---|
4643 | if (pVM->pgm.s.PhysTlbR0.aEntries[i].pMap == pChunk)
|
---|
4644 | return 0;
|
---|
4645 | #endif
|
---|
4646 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
|
---|
4647 | if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
|
---|
4648 | return 0;
|
---|
4649 |
|
---|
4650 | pArg->pChunk = pChunk;
|
---|
4651 | return 0;
|
---|
4652 | }
|
---|
4653 |
|
---|
4654 |
|
---|
4655 | /**
|
---|
4656 | * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
|
---|
4657 | *
|
---|
4658 | * The candidate will not be part of any TLBs, so no need to flush
|
---|
4659 | * anything afterwards.
|
---|
4660 | *
|
---|
4661 | * @returns Chunk id.
|
---|
4662 | * @param pVM The cross context VM structure.
|
---|
4663 | */
|
---|
4664 | static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
|
---|
4665 | {
|
---|
4666 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
4667 |
|
---|
4668 | /*
|
---|
4669 | * Enumerate the age tree starting with the left most node.
|
---|
4670 | */
|
---|
4671 | STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
|
---|
4672 | PGMR3PHYSCHUNKUNMAPCB Args;
|
---|
4673 | Args.pVM = pVM;
|
---|
4674 | Args.pChunk = NULL;
|
---|
4675 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
|
---|
4676 | Assert(Args.pChunk);
|
---|
4677 | if (Args.pChunk)
|
---|
4678 | {
|
---|
4679 | Assert(Args.pChunk->cRefs == 0);
|
---|
4680 | Assert(Args.pChunk->cPermRefs == 0);
|
---|
4681 | STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
|
---|
4682 | return Args.pChunk->Core.Key;
|
---|
4683 | }
|
---|
4684 |
|
---|
4685 | STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
|
---|
4686 | return INT32_MAX;
|
---|
4687 | }
|
---|
4688 |
|
---|
4689 |
|
---|
4690 | /**
|
---|
4691 | * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
|
---|
4692 | *
|
---|
4693 | * This is only called on one of the EMTs while the other ones are waiting for
|
---|
4694 | * it to complete this function.
|
---|
4695 | *
|
---|
4696 | * @returns VINF_SUCCESS (VBox strict status code).
|
---|
4697 | * @param pVM The cross context VM structure.
|
---|
4698 | * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
|
---|
4699 | * @param pvUser User pointer. Unused
|
---|
4700 | *
|
---|
4701 | */
|
---|
4702 | static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
|
---|
4703 | {
|
---|
4704 | int rc = VINF_SUCCESS;
|
---|
4705 | pgmLock(pVM);
|
---|
4706 | NOREF(pVCpu); NOREF(pvUser);
|
---|
4707 |
|
---|
4708 | if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
|
---|
4709 | {
|
---|
4710 | /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
|
---|
4711 | /** @todo also not really efficient to unmap a chunk that contains PD
|
---|
4712 | * or PT pages. */
|
---|
4713 | pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
|
---|
4714 |
|
---|
4715 | /*
|
---|
4716 | * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
|
---|
4717 | */
|
---|
4718 | GMMMAPUNMAPCHUNKREQ Req;
|
---|
4719 | Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
4720 | Req.Hdr.cbReq = sizeof(Req);
|
---|
4721 | Req.pvR3 = NULL;
|
---|
4722 | Req.idChunkMap = NIL_GMM_CHUNKID;
|
---|
4723 | Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
|
---|
4724 | if (Req.idChunkUnmap != INT32_MAX)
|
---|
4725 | {
|
---|
4726 | STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
|
---|
4727 | rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
|
---|
4728 | STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
|
---|
4729 | if (RT_SUCCESS(rc))
|
---|
4730 | {
|
---|
4731 | /*
|
---|
4732 | * Remove the unmapped one.
|
---|
4733 | */
|
---|
4734 | PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
|
---|
4735 | AssertRelease(pUnmappedChunk);
|
---|
4736 | AssertRelease(!pUnmappedChunk->cRefs);
|
---|
4737 | AssertRelease(!pUnmappedChunk->cPermRefs);
|
---|
4738 | pUnmappedChunk->pv = NULL;
|
---|
4739 | pUnmappedChunk->Core.Key = UINT32_MAX;
|
---|
4740 | #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4741 | MMR3HeapFree(pUnmappedChunk);
|
---|
4742 | #else
|
---|
4743 | MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
|
---|
4744 | #endif
|
---|
4745 | pVM->pgm.s.ChunkR3Map.c--;
|
---|
4746 | pVM->pgm.s.cUnmappedChunks++;
|
---|
4747 |
|
---|
4748 | /*
|
---|
4749 | * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
|
---|
4750 | */
|
---|
4751 | /** @todo We should not flush chunks which include cr3 mappings. */
|
---|
4752 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
4753 | {
|
---|
4754 | PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
|
---|
4755 |
|
---|
4756 | pPGM->pGst32BitPdR3 = NULL;
|
---|
4757 | pPGM->pGstPaePdptR3 = NULL;
|
---|
4758 | pPGM->pGstAmd64Pml4R3 = NULL;
|
---|
4759 | #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4760 | pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
|
---|
4761 | pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
|
---|
4762 | pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
|
---|
4763 | #endif
|
---|
4764 | for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
|
---|
4765 | {
|
---|
4766 | pPGM->apGstPaePDsR3[i] = NULL;
|
---|
4767 | #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4768 | pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
|
---|
4769 | #endif
|
---|
4770 | }
|
---|
4771 |
|
---|
4772 | /* Flush REM TLBs. */
|
---|
4773 | CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
4774 | }
|
---|
4775 | }
|
---|
4776 | }
|
---|
4777 | }
|
---|
4778 | pgmUnlock(pVM);
|
---|
4779 | return rc;
|
---|
4780 | }
|
---|
4781 |
|
---|
4782 | /**
|
---|
4783 | * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
|
---|
4784 | *
|
---|
4785 | * @returns VBox status code.
|
---|
4786 | * @param pVM The cross context VM structure.
|
---|
4787 | */
|
---|
4788 | void pgmR3PhysUnmapChunk(PVM pVM)
|
---|
4789 | {
|
---|
4790 | int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
|
---|
4791 | AssertRC(rc);
|
---|
4792 | }
|
---|
4793 |
|
---|
4794 |
|
---|
4795 | /**
|
---|
4796 | * Maps the given chunk into the ring-3 mapping cache.
|
---|
4797 | *
|
---|
4798 | * This will call ring-0.
|
---|
4799 | *
|
---|
4800 | * @returns VBox status code.
|
---|
4801 | * @param pVM The cross context VM structure.
|
---|
4802 | * @param idChunk The chunk in question.
|
---|
4803 | * @param ppChunk Where to store the chunk tracking structure.
|
---|
4804 | *
|
---|
4805 | * @remarks Called from within the PGM critical section.
|
---|
4806 | * @remarks Can be called from any thread!
|
---|
4807 | */
|
---|
4808 | int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
|
---|
4809 | {
|
---|
4810 | int rc;
|
---|
4811 |
|
---|
4812 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
4813 |
|
---|
4814 | /*
|
---|
4815 | * Move the chunk time forward.
|
---|
4816 | */
|
---|
4817 | pVM->pgm.s.ChunkR3Map.iNow++;
|
---|
4818 | if (pVM->pgm.s.ChunkR3Map.iNow == 0)
|
---|
4819 | {
|
---|
4820 | pVM->pgm.s.ChunkR3Map.iNow = 4;
|
---|
4821 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
|
---|
4822 | }
|
---|
4823 |
|
---|
4824 | /*
|
---|
4825 | * Allocate a new tracking structure first.
|
---|
4826 | */
|
---|
4827 | #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4828 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
|
---|
4829 | #else
|
---|
4830 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
|
---|
4831 | #endif
|
---|
4832 | AssertReturn(pChunk, VERR_NO_MEMORY);
|
---|
4833 | pChunk->Core.Key = idChunk;
|
---|
4834 | pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
|
---|
4835 |
|
---|
4836 | /*
|
---|
4837 | * Request the ring-0 part to map the chunk in question.
|
---|
4838 | */
|
---|
4839 | GMMMAPUNMAPCHUNKREQ Req;
|
---|
4840 | Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
4841 | Req.Hdr.cbReq = sizeof(Req);
|
---|
4842 | Req.pvR3 = NULL;
|
---|
4843 | Req.idChunkMap = idChunk;
|
---|
4844 | Req.idChunkUnmap = NIL_GMM_CHUNKID;
|
---|
4845 |
|
---|
4846 | /* Must be callable from any thread, so can't use VMMR3CallR0. */
|
---|
4847 | STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
|
---|
4848 | rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
|
---|
4849 | STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
|
---|
4850 | if (RT_SUCCESS(rc))
|
---|
4851 | {
|
---|
4852 | pChunk->pv = Req.pvR3;
|
---|
4853 |
|
---|
4854 | /*
|
---|
4855 | * If we're running out of virtual address space, then we should
|
---|
4856 | * unmap another chunk.
|
---|
4857 | *
|
---|
4858 | * Currently, an unmap operation requires that all other virtual CPUs
|
---|
4859 | * are idling and not by chance making use of the memory we're
|
---|
4860 | * unmapping. So, we create an async unmap operation here.
|
---|
4861 | *
|
---|
4862 | * Now, when creating or restoring a saved state this wont work very
|
---|
4863 | * well since we may want to restore all guest RAM + a little something.
|
---|
4864 | * So, we have to do the unmap synchronously. Fortunately for us
|
---|
4865 | * though, during these operations the other virtual CPUs are inactive
|
---|
4866 | * and it should be safe to do this.
|
---|
4867 | */
|
---|
4868 | /** @todo Eventually we should lock all memory when used and do
|
---|
4869 | * map+unmap as one kernel call without any rendezvous or
|
---|
4870 | * other precautions. */
|
---|
4871 | if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
|
---|
4872 | {
|
---|
4873 | switch (VMR3GetState(pVM))
|
---|
4874 | {
|
---|
4875 | case VMSTATE_LOADING:
|
---|
4876 | case VMSTATE_SAVING:
|
---|
4877 | {
|
---|
4878 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
4879 | if ( pVCpu
|
---|
4880 | && pVM->pgm.s.cDeprecatedPageLocks == 0)
|
---|
4881 | {
|
---|
4882 | pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
|
---|
4883 | break;
|
---|
4884 | }
|
---|
4885 | }
|
---|
4886 | RT_FALL_THRU();
|
---|
4887 | default:
|
---|
4888 | rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
|
---|
4889 | AssertRC(rc);
|
---|
4890 | break;
|
---|
4891 | }
|
---|
4892 | }
|
---|
4893 |
|
---|
4894 | /*
|
---|
4895 | * Update the tree. We must do this after any unmapping to make sure
|
---|
4896 | * the chunk we're going to return isn't unmapped by accident.
|
---|
4897 | */
|
---|
4898 | AssertPtr(Req.pvR3);
|
---|
4899 | bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
|
---|
4900 | AssertRelease(fRc);
|
---|
4901 | pVM->pgm.s.ChunkR3Map.c++;
|
---|
4902 | pVM->pgm.s.cMappedChunks++;
|
---|
4903 | }
|
---|
4904 | else
|
---|
4905 | {
|
---|
4906 | /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
|
---|
4907 | * should probably restrict ourselves on linux. */
|
---|
4908 | AssertRC(rc);
|
---|
4909 | #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
4910 | MMR3HeapFree(pChunk);
|
---|
4911 | #else
|
---|
4912 | MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
|
---|
4913 | #endif
|
---|
4914 | pChunk = NULL;
|
---|
4915 | }
|
---|
4916 |
|
---|
4917 | *ppChunk = pChunk;
|
---|
4918 | return rc;
|
---|
4919 | }
|
---|
4920 |
|
---|
4921 |
|
---|
4922 | /**
|
---|
4923 | * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
|
---|
4924 | *
|
---|
4925 | * @returns see pgmR3PhysChunkMap.
|
---|
4926 | * @param pVM The cross context VM structure.
|
---|
4927 | * @param idChunk The chunk to map.
|
---|
4928 | */
|
---|
4929 | VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
|
---|
4930 | {
|
---|
4931 | PPGMCHUNKR3MAP pChunk;
|
---|
4932 | int rc;
|
---|
4933 |
|
---|
4934 | pgmLock(pVM);
|
---|
4935 | rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
|
---|
4936 | pgmUnlock(pVM);
|
---|
4937 | return rc;
|
---|
4938 | }
|
---|
4939 |
|
---|
4940 |
|
---|
4941 | /**
|
---|
4942 | * Invalidates the TLB for the ring-3 mapping cache.
|
---|
4943 | *
|
---|
4944 | * @param pVM The cross context VM structure.
|
---|
4945 | */
|
---|
4946 | VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
|
---|
4947 | {
|
---|
4948 | pgmLock(pVM);
|
---|
4949 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
4950 | {
|
---|
4951 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
|
---|
4952 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
|
---|
4953 | }
|
---|
4954 | /* The page map TLB references chunks, so invalidate that one too. */
|
---|
4955 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
4956 | pgmUnlock(pVM);
|
---|
4957 | }
|
---|
4958 |
|
---|
4959 |
|
---|
4960 | /**
|
---|
4961 | * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE to allocate a large
|
---|
4962 | * (2MB) page for use with a nested paging PDE.
|
---|
4963 | *
|
---|
4964 | * @returns The following VBox status codes.
|
---|
4965 | * @retval VINF_SUCCESS on success.
|
---|
4966 | * @retval VINF_EM_NO_MEMORY if we're out of memory.
|
---|
4967 | *
|
---|
4968 | * @param pVM The cross context VM structure.
|
---|
4969 | * @param GCPhys GC physical start address of the 2 MB range
|
---|
4970 | */
|
---|
4971 | VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
|
---|
4972 | {
|
---|
4973 | #ifdef PGM_WITH_LARGE_PAGES
|
---|
4974 | uint64_t u64TimeStamp1, u64TimeStamp2;
|
---|
4975 |
|
---|
4976 | pgmLock(pVM);
|
---|
4977 |
|
---|
4978 | STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
|
---|
4979 | u64TimeStamp1 = RTTimeMilliTS();
|
---|
4980 | int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
|
---|
4981 | u64TimeStamp2 = RTTimeMilliTS();
|
---|
4982 | STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
|
---|
4983 | if (RT_SUCCESS(rc))
|
---|
4984 | {
|
---|
4985 | Assert(pVM->pgm.s.cLargeHandyPages == 1);
|
---|
4986 |
|
---|
4987 | uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
|
---|
4988 | RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
|
---|
4989 |
|
---|
4990 | void *pv;
|
---|
4991 |
|
---|
4992 | /* Map the large page into our address space.
|
---|
4993 | *
|
---|
4994 | * Note: assuming that within the 2 MB range:
|
---|
4995 | * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
|
---|
4996 | * - user space mapping is continuous as well
|
---|
4997 | * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
|
---|
4998 | */
|
---|
4999 | rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
|
---|
5000 | AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
|
---|
5001 |
|
---|
5002 | if (RT_SUCCESS(rc))
|
---|
5003 | {
|
---|
5004 | /*
|
---|
5005 | * Clear the pages.
|
---|
5006 | */
|
---|
5007 | STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
|
---|
5008 | for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
|
---|
5009 | {
|
---|
5010 | ASMMemZeroPage(pv);
|
---|
5011 |
|
---|
5012 | PPGMPAGE pPage;
|
---|
5013 | rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage);
|
---|
5014 | AssertRC(rc);
|
---|
5015 |
|
---|
5016 | Assert(PGM_PAGE_IS_ZERO(pPage));
|
---|
5017 | STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
|
---|
5018 | pVM->pgm.s.cZeroPages--;
|
---|
5019 |
|
---|
5020 | /*
|
---|
5021 | * Do the PGMPAGE modifications.
|
---|
5022 | */
|
---|
5023 | pVM->pgm.s.cPrivatePages++;
|
---|
5024 | PGM_PAGE_SET_HCPHYS(pVM, pPage, HCPhys);
|
---|
5025 | PGM_PAGE_SET_PAGEID(pVM, pPage, idPage);
|
---|
5026 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
|
---|
5027 | PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE);
|
---|
5028 | PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
|
---|
5029 | PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
|
---|
5030 |
|
---|
5031 | /* Somewhat dirty assumption that page ids are increasing. */
|
---|
5032 | idPage++;
|
---|
5033 |
|
---|
5034 | HCPhys += PAGE_SIZE;
|
---|
5035 | GCPhys += PAGE_SIZE;
|
---|
5036 |
|
---|
5037 | pv = (void *)((uintptr_t)pv + PAGE_SIZE);
|
---|
5038 |
|
---|
5039 | Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
|
---|
5040 | }
|
---|
5041 | STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
|
---|
5042 |
|
---|
5043 | /* Flush all TLBs. */
|
---|
5044 | PGM_INVL_ALL_VCPU_TLBS(pVM);
|
---|
5045 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
5046 | }
|
---|
5047 | pVM->pgm.s.cLargeHandyPages = 0;
|
---|
5048 | }
|
---|
5049 |
|
---|
5050 | if (RT_SUCCESS(rc))
|
---|
5051 | {
|
---|
5052 | static uint32_t cTimeOut = 0;
|
---|
5053 | uint64_t u64TimeStampDelta = u64TimeStamp2 - u64TimeStamp1;
|
---|
5054 |
|
---|
5055 | if (u64TimeStampDelta > 100)
|
---|
5056 | {
|
---|
5057 | STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatLargePageOverflow);
|
---|
5058 | if ( ++cTimeOut > 10
|
---|
5059 | || u64TimeStampDelta > 1000 /* more than one second forces an early retirement from allocating large pages. */)
|
---|
5060 | {
|
---|
5061 | /* If repeated attempts to allocate a large page takes more than 100 ms, then we fall back to normal 4k pages.
|
---|
5062 | * E.g. Vista 64 tries to move memory around, which takes a huge amount of time.
|
---|
5063 | */
|
---|
5064 | LogRel(("PGMR3PhysAllocateLargePage: allocating large pages takes too long (last attempt %d ms; nr of timeouts %d); DISABLE\n", u64TimeStampDelta, cTimeOut));
|
---|
5065 | PGMSetLargePageUsage(pVM, false);
|
---|
5066 | }
|
---|
5067 | }
|
---|
5068 | else
|
---|
5069 | if (cTimeOut > 0)
|
---|
5070 | cTimeOut--;
|
---|
5071 | }
|
---|
5072 |
|
---|
5073 | pgmUnlock(pVM);
|
---|
5074 | return rc;
|
---|
5075 | #else
|
---|
5076 | RT_NOREF(pVM, GCPhys);
|
---|
5077 | return VERR_NOT_IMPLEMENTED;
|
---|
5078 | #endif /* PGM_WITH_LARGE_PAGES */
|
---|
5079 | }
|
---|
5080 |
|
---|
5081 |
|
---|
5082 | /**
|
---|
5083 | * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
|
---|
5084 | *
|
---|
5085 | * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
|
---|
5086 | * signal and clear the out of memory condition. When contracted, this API is
|
---|
5087 | * used to try clear the condition when the user wants to resume.
|
---|
5088 | *
|
---|
5089 | * @returns The following VBox status codes.
|
---|
5090 | * @retval VINF_SUCCESS on success. FFs cleared.
|
---|
5091 | * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
|
---|
5092 | * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
|
---|
5093 | *
|
---|
5094 | * @param pVM The cross context VM structure.
|
---|
5095 | *
|
---|
5096 | * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
|
---|
5097 | * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
|
---|
5098 | * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
|
---|
5099 | * handler.
|
---|
5100 | */
|
---|
5101 | VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
|
---|
5102 | {
|
---|
5103 | pgmLock(pVM);
|
---|
5104 |
|
---|
5105 | /*
|
---|
5106 | * Allocate more pages, noting down the index of the first new page.
|
---|
5107 | */
|
---|
5108 | uint32_t iClear = pVM->pgm.s.cHandyPages;
|
---|
5109 | AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
|
---|
5110 | Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
|
---|
5111 | int rcAlloc = VINF_SUCCESS;
|
---|
5112 | int rcSeed = VINF_SUCCESS;
|
---|
5113 | int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
|
---|
5114 | while (rc == VERR_GMM_SEED_ME)
|
---|
5115 | {
|
---|
5116 | void *pvChunk;
|
---|
5117 | rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
|
---|
5118 | if (RT_SUCCESS(rc))
|
---|
5119 | {
|
---|
5120 | rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
|
---|
5121 | if (RT_FAILURE(rc))
|
---|
5122 | SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
|
---|
5123 | }
|
---|
5124 | if (RT_SUCCESS(rc))
|
---|
5125 | rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
|
---|
5126 | }
|
---|
5127 |
|
---|
5128 | /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
|
---|
5129 | if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
|
---|
5130 | && pVM->pgm.s.cHandyPages > 0)
|
---|
5131 | {
|
---|
5132 | /* Still handy pages left, so don't panic. */
|
---|
5133 | rc = VINF_SUCCESS;
|
---|
5134 | }
|
---|
5135 |
|
---|
5136 | if (RT_SUCCESS(rc))
|
---|
5137 | {
|
---|
5138 | AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
|
---|
5139 | Assert(pVM->pgm.s.cHandyPages > 0);
|
---|
5140 | VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
|
---|
5141 | VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
|
---|
5142 |
|
---|
5143 | #ifdef VBOX_STRICT
|
---|
5144 | uint32_t i;
|
---|
5145 | for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
|
---|
5146 | if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
|
---|
5147 | || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
|
---|
5148 | || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
|
---|
5149 | break;
|
---|
5150 | if (i != pVM->pgm.s.cHandyPages)
|
---|
5151 | {
|
---|
5152 | RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
|
---|
5153 | RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
|
---|
5154 | for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
|
---|
5155 | RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%\n", j,
|
---|
5156 | pVM->pgm.s.aHandyPages[j].idPage,
|
---|
5157 | pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
|
---|
5158 | pVM->pgm.s.aHandyPages[j].idSharedPage,
|
---|
5159 | j == i ? " <---" : "");
|
---|
5160 | RTAssertPanic();
|
---|
5161 | }
|
---|
5162 | #endif
|
---|
5163 | /*
|
---|
5164 | * Clear the pages.
|
---|
5165 | */
|
---|
5166 | while (iClear < pVM->pgm.s.cHandyPages)
|
---|
5167 | {
|
---|
5168 | PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
|
---|
5169 | void *pv;
|
---|
5170 | rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
|
---|
5171 | AssertLogRelMsgBreak(RT_SUCCESS(rc),
|
---|
5172 | ("%u/%u: idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n",
|
---|
5173 | iClear, pVM->pgm.s.cHandyPages, pPage->idPage, pPage->HCPhysGCPhys, rc));
|
---|
5174 | ASMMemZeroPage(pv);
|
---|
5175 | iClear++;
|
---|
5176 | Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
|
---|
5177 | }
|
---|
5178 | }
|
---|
5179 | else
|
---|
5180 | {
|
---|
5181 | uint64_t cAllocPages, cMaxPages, cBalloonPages;
|
---|
5182 |
|
---|
5183 | /*
|
---|
5184 | * We should never get here unless there is a genuine shortage of
|
---|
5185 | * memory (or some internal error). Flag the error so the VM can be
|
---|
5186 | * suspended ASAP and the user informed. If we're totally out of
|
---|
5187 | * handy pages we will return failure.
|
---|
5188 | */
|
---|
5189 | /* Report the failure. */
|
---|
5190 | LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
|
---|
5191 | " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
|
---|
5192 | rc, rcAlloc, rcSeed,
|
---|
5193 | pVM->pgm.s.cHandyPages,
|
---|
5194 | pVM->pgm.s.cAllPages,
|
---|
5195 | pVM->pgm.s.cPrivatePages,
|
---|
5196 | pVM->pgm.s.cSharedPages,
|
---|
5197 | pVM->pgm.s.cZeroPages));
|
---|
5198 |
|
---|
5199 | if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
|
---|
5200 | {
|
---|
5201 | LogRel(("GMM: Statistics:\n"
|
---|
5202 | " Allocated pages: %RX64\n"
|
---|
5203 | " Maximum pages: %RX64\n"
|
---|
5204 | " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
|
---|
5205 | }
|
---|
5206 |
|
---|
5207 | if ( rc != VERR_NO_MEMORY
|
---|
5208 | && rc != VERR_NO_PHYS_MEMORY
|
---|
5209 | && rc != VERR_LOCK_FAILED)
|
---|
5210 | {
|
---|
5211 | for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
|
---|
5212 | {
|
---|
5213 | LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
|
---|
5214 | i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
|
---|
5215 | pVM->pgm.s.aHandyPages[i].idSharedPage));
|
---|
5216 | uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
|
---|
5217 | if (idPage != NIL_GMM_PAGEID)
|
---|
5218 | {
|
---|
5219 | for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
5220 | pRam;
|
---|
5221 | pRam = pRam->pNextR3)
|
---|
5222 | {
|
---|
5223 | uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
|
---|
5224 | for (uint32_t iPage = 0; iPage < cPages; iPage++)
|
---|
5225 | if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
|
---|
5226 | LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
|
---|
5227 | pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
|
---|
5228 | }
|
---|
5229 | }
|
---|
5230 | }
|
---|
5231 | }
|
---|
5232 |
|
---|
5233 | if (rc == VERR_NO_MEMORY)
|
---|
5234 | {
|
---|
5235 | uint64_t cbHostRamAvail = 0;
|
---|
5236 | int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
|
---|
5237 | if (RT_SUCCESS(rc2))
|
---|
5238 | LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
|
---|
5239 | else
|
---|
5240 | LogRel(("Cannot determine the amount of available host memory\n"));
|
---|
5241 | }
|
---|
5242 |
|
---|
5243 | /* Set the FFs and adjust rc. */
|
---|
5244 | VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
|
---|
5245 | VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
|
---|
5246 | if ( rc == VERR_NO_MEMORY
|
---|
5247 | || rc == VERR_NO_PHYS_MEMORY
|
---|
5248 | || rc == VERR_LOCK_FAILED)
|
---|
5249 | rc = VINF_EM_NO_MEMORY;
|
---|
5250 | }
|
---|
5251 |
|
---|
5252 | pgmUnlock(pVM);
|
---|
5253 | return rc;
|
---|
5254 | }
|
---|
5255 |
|
---|
5256 |
|
---|
5257 | /**
|
---|
5258 | * Frees the specified RAM page and replaces it with the ZERO page.
|
---|
5259 | *
|
---|
5260 | * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
|
---|
5261 | *
|
---|
5262 | * @param pVM The cross context VM structure.
|
---|
5263 | * @param pReq Pointer to the request.
|
---|
5264 | * @param pcPendingPages Where the number of pages waiting to be freed are
|
---|
5265 | * kept. This will normally be incremented.
|
---|
5266 | * @param pPage Pointer to the page structure.
|
---|
5267 | * @param GCPhys The guest physical address of the page, if applicable.
|
---|
5268 | * @param enmNewType New page type for NEM notification, since several
|
---|
5269 | * callers will change the type upon successful return.
|
---|
5270 | *
|
---|
5271 | * @remarks The caller must own the PGM lock.
|
---|
5272 | */
|
---|
5273 | int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
|
---|
5274 | PGMPAGETYPE enmNewType)
|
---|
5275 | {
|
---|
5276 | /*
|
---|
5277 | * Assert sanity.
|
---|
5278 | */
|
---|
5279 | PGM_LOCK_ASSERT_OWNER(pVM);
|
---|
5280 | if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
|
---|
5281 | && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
|
---|
5282 | {
|
---|
5283 | AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
|
---|
5284 | return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
|
---|
5285 | }
|
---|
5286 |
|
---|
5287 | /** @todo What about ballooning of large pages??! */
|
---|
5288 | Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
|
---|
5289 | && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
|
---|
5290 |
|
---|
5291 | if ( PGM_PAGE_IS_ZERO(pPage)
|
---|
5292 | || PGM_PAGE_IS_BALLOONED(pPage))
|
---|
5293 | return VINF_SUCCESS;
|
---|
5294 |
|
---|
5295 | const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
|
---|
5296 | Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
|
---|
5297 | if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
|
---|
5298 | || idPage > GMM_PAGEID_LAST
|
---|
5299 | || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
|
---|
5300 | {
|
---|
5301 | AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
|
---|
5302 | return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
|
---|
5303 | }
|
---|
5304 | const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
|
---|
5305 |
|
---|
5306 | /* update page count stats. */
|
---|
5307 | if (PGM_PAGE_IS_SHARED(pPage))
|
---|
5308 | pVM->pgm.s.cSharedPages--;
|
---|
5309 | else
|
---|
5310 | pVM->pgm.s.cPrivatePages--;
|
---|
5311 | pVM->pgm.s.cZeroPages++;
|
---|
5312 |
|
---|
5313 | /* Deal with write monitored pages. */
|
---|
5314 | if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
|
---|
5315 | {
|
---|
5316 | PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
|
---|
5317 | pVM->pgm.s.cWrittenToPages++;
|
---|
5318 | }
|
---|
5319 |
|
---|
5320 | /*
|
---|
5321 | * pPage = ZERO page.
|
---|
5322 | */
|
---|
5323 | PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
|
---|
5324 | PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
|
---|
5325 | PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
|
---|
5326 | PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
|
---|
5327 | PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
|
---|
5328 | PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
|
---|
5329 |
|
---|
5330 | /* Flush physical page map TLB entry. */
|
---|
5331 | pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
|
---|
5332 |
|
---|
5333 | /* Notify NEM. */
|
---|
5334 | /** @todo consider doing batch NEM notifications. */
|
---|
5335 | if (VM_IS_NEM_ENABLED(pVM))
|
---|
5336 | {
|
---|
5337 | uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
|
---|
5338 | NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg,
|
---|
5339 | pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
|
---|
5340 | PGM_PAGE_SET_NEM_STATE(pPage, u2State);
|
---|
5341 | }
|
---|
5342 |
|
---|
5343 | /*
|
---|
5344 | * Make sure it's not in the handy page array.
|
---|
5345 | */
|
---|
5346 | for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
|
---|
5347 | {
|
---|
5348 | if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
|
---|
5349 | {
|
---|
5350 | pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
|
---|
5351 | break;
|
---|
5352 | }
|
---|
5353 | if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
|
---|
5354 | {
|
---|
5355 | pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
|
---|
5356 | break;
|
---|
5357 | }
|
---|
5358 | }
|
---|
5359 |
|
---|
5360 | /*
|
---|
5361 | * Push it onto the page array.
|
---|
5362 | */
|
---|
5363 | uint32_t iPage = *pcPendingPages;
|
---|
5364 | Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
|
---|
5365 | *pcPendingPages += 1;
|
---|
5366 |
|
---|
5367 | pReq->aPages[iPage].idPage = idPage;
|
---|
5368 |
|
---|
5369 | if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
|
---|
5370 | return VINF_SUCCESS;
|
---|
5371 |
|
---|
5372 | /*
|
---|
5373 | * Flush the pages.
|
---|
5374 | */
|
---|
5375 | int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
|
---|
5376 | if (RT_SUCCESS(rc))
|
---|
5377 | {
|
---|
5378 | GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
|
---|
5379 | *pcPendingPages = 0;
|
---|
5380 | }
|
---|
5381 | return rc;
|
---|
5382 | }
|
---|
5383 |
|
---|
5384 |
|
---|
5385 | /**
|
---|
5386 | * Converts a GC physical address to a HC ring-3 pointer, with some
|
---|
5387 | * additional checks.
|
---|
5388 | *
|
---|
5389 | * @returns VBox status code.
|
---|
5390 | * @retval VINF_SUCCESS on success.
|
---|
5391 | * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
|
---|
5392 | * access handler of some kind.
|
---|
5393 | * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
|
---|
5394 | * accesses or is odd in any way.
|
---|
5395 | * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
|
---|
5396 | *
|
---|
5397 | * @param pVM The cross context VM structure.
|
---|
5398 | * @param GCPhys The GC physical address to convert. Since this is only
|
---|
5399 | * used for filling the REM TLB, the A20 mask must be
|
---|
5400 | * applied before calling this API.
|
---|
5401 | * @param fWritable Whether write access is required.
|
---|
5402 | * @param ppv Where to store the pointer corresponding to GCPhys on
|
---|
5403 | * success.
|
---|
5404 | */
|
---|
5405 | VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
|
---|
5406 | {
|
---|
5407 | pgmLock(pVM);
|
---|
5408 | PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
|
---|
5409 |
|
---|
5410 | PPGMRAMRANGE pRam;
|
---|
5411 | PPGMPAGE pPage;
|
---|
5412 | int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
|
---|
5413 | if (RT_SUCCESS(rc))
|
---|
5414 | {
|
---|
5415 | if (PGM_PAGE_IS_BALLOONED(pPage))
|
---|
5416 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
5417 | else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
|
---|
5418 | rc = VINF_SUCCESS;
|
---|
5419 | else
|
---|
5420 | {
|
---|
5421 | if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
|
---|
5422 | rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
5423 | else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
|
---|
5424 | {
|
---|
5425 | /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
|
---|
5426 | * in -norawr0 mode. */
|
---|
5427 | if (fWritable)
|
---|
5428 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
5429 | }
|
---|
5430 | else
|
---|
5431 | {
|
---|
5432 | /* Temporarily disabled physical handler(s), since the recompiler
|
---|
5433 | doesn't get notified when it's reset we'll have to pretend it's
|
---|
5434 | operating normally. */
|
---|
5435 | if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
|
---|
5436 | rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
|
---|
5437 | else
|
---|
5438 | rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
|
---|
5439 | }
|
---|
5440 | }
|
---|
5441 | if (RT_SUCCESS(rc))
|
---|
5442 | {
|
---|
5443 | int rc2;
|
---|
5444 |
|
---|
5445 | /* Make sure what we return is writable. */
|
---|
5446 | if (fWritable)
|
---|
5447 | switch (PGM_PAGE_GET_STATE(pPage))
|
---|
5448 | {
|
---|
5449 | case PGM_PAGE_STATE_ALLOCATED:
|
---|
5450 | break;
|
---|
5451 | case PGM_PAGE_STATE_BALLOONED:
|
---|
5452 | AssertFailed();
|
---|
5453 | break;
|
---|
5454 | case PGM_PAGE_STATE_ZERO:
|
---|
5455 | case PGM_PAGE_STATE_SHARED:
|
---|
5456 | if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
|
---|
5457 | break;
|
---|
5458 | RT_FALL_THRU();
|
---|
5459 | case PGM_PAGE_STATE_WRITE_MONITORED:
|
---|
5460 | rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
|
---|
5461 | AssertLogRelRCReturn(rc2, rc2);
|
---|
5462 | break;
|
---|
5463 | }
|
---|
5464 |
|
---|
5465 | /* Get a ring-3 mapping of the address. */
|
---|
5466 | PPGMPAGER3MAPTLBE pTlbe;
|
---|
5467 | rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
|
---|
5468 | AssertLogRelRCReturn(rc2, rc2);
|
---|
5469 | *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
|
---|
5470 | /** @todo mapping/locking hell; this isn't horribly efficient since
|
---|
5471 | * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
|
---|
5472 |
|
---|
5473 | Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
|
---|
5474 | }
|
---|
5475 | else
|
---|
5476 | Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
|
---|
5477 |
|
---|
5478 | /* else: handler catching all access, no pointer returned. */
|
---|
5479 | }
|
---|
5480 | else
|
---|
5481 | rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
|
---|
5482 |
|
---|
5483 | pgmUnlock(pVM);
|
---|
5484 | return rc;
|
---|
5485 | }
|
---|
5486 |
|
---|