VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPhys.cpp@ 92392

Last change on this file since 92392 was 92391, checked in by vboxsync, 3 years ago

VMM/PGM,GMM: Made pgmR0PhysAllocateHandyPages & GMMR0AllocateHandyPages callable from ring-0 HM context, eliminating the need for the call-ring-3 fun. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 223.2 KB
Line 
1/* $Id: PGMPhys.cpp 92391 2021-11-12 09:47:48Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/iom.h>
27#include <VBox/vmm/mm.h>
28#include <VBox/vmm/nem.h>
29#include <VBox/vmm/stam.h>
30#include <VBox/vmm/pdmdev.h>
31#include "PGMInternal.h"
32#include <VBox/vmm/vmcc.h>
33
34#include "PGMInline.h"
35
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#ifdef VBOX_STRICT
44# include <iprt/crc.h>
45#endif
46#include <iprt/thread.h>
47#include <iprt/string.h>
48#include <iprt/system.h>
49
50
51/*********************************************************************************************************************************
52* Defined Constants And Macros *
53*********************************************************************************************************************************/
54/** The number of pages to free in one batch. */
55#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
56
57
58
59/*********************************************************************************************************************************
60* Reading and Writing Guest Pysical Memory *
61*********************************************************************************************************************************/
62
63/*
64 * PGMR3PhysReadU8-64
65 * PGMR3PhysWriteU8-64
66 */
67#define PGMPHYSFN_READNAME PGMR3PhysReadU8
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
69#define PGMPHYS_DATASIZE 1
70#define PGMPHYS_DATATYPE uint8_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU16
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
75#define PGMPHYS_DATASIZE 2
76#define PGMPHYS_DATATYPE uint16_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU32
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
81#define PGMPHYS_DATASIZE 4
82#define PGMPHYS_DATATYPE uint32_t
83#include "PGMPhysRWTmpl.h"
84
85#define PGMPHYSFN_READNAME PGMR3PhysReadU64
86#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
87#define PGMPHYS_DATASIZE 8
88#define PGMPHYS_DATATYPE uint64_t
89#include "PGMPhysRWTmpl.h"
90
91
92/**
93 * EMT worker for PGMR3PhysReadExternal.
94 */
95static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead,
96 PGMACCESSORIGIN enmOrigin)
97{
98 VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin);
99 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
100 return VINF_SUCCESS;
101}
102
103
104/**
105 * Read from physical memory, external users.
106 *
107 * @returns VBox status code.
108 * @retval VINF_SUCCESS.
109 *
110 * @param pVM The cross context VM structure.
111 * @param GCPhys Physical address to read from.
112 * @param pvBuf Where to read into.
113 * @param cbRead How many bytes to read.
114 * @param enmOrigin Who is calling.
115 *
116 * @thread Any but EMTs.
117 */
118VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)
119{
120 VM_ASSERT_OTHER_THREAD(pVM);
121
122 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
123 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
124
125 PGM_LOCK_VOID(pVM);
126
127 /*
128 * Copy loop on ram ranges.
129 */
130 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
131 for (;;)
132 {
133 /* Inside range or not? */
134 if (pRam && GCPhys >= pRam->GCPhys)
135 {
136 /*
137 * Must work our way thru this page by page.
138 */
139 RTGCPHYS off = GCPhys - pRam->GCPhys;
140 while (off < pRam->cb)
141 {
142 unsigned iPage = off >> PAGE_SHIFT;
143 PPGMPAGE pPage = &pRam->aPages[iPage];
144
145 /*
146 * If the page has an ALL access handler, we'll have to
147 * delegate the job to EMT.
148 */
149 if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)
150 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
151 {
152 PGM_UNLOCK(pVM);
153
154 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5,
155 pVM, &GCPhys, pvBuf, cbRead, enmOrigin);
156 }
157 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
158
159 /*
160 * Simple stuff, go ahead.
161 */
162 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
163 if (cb > cbRead)
164 cb = cbRead;
165 PGMPAGEMAPLOCK PgMpLck;
166 const void *pvSrc;
167 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck);
168 if (RT_SUCCESS(rc))
169 {
170 memcpy(pvBuf, pvSrc, cb);
171 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
172 }
173 else
174 {
175 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
176 pRam->GCPhys + off, pPage, rc));
177 memset(pvBuf, 0xff, cb);
178 }
179
180 /* next page */
181 if (cb >= cbRead)
182 {
183 PGM_UNLOCK(pVM);
184 return VINF_SUCCESS;
185 }
186 cbRead -= cb;
187 off += cb;
188 GCPhys += cb;
189 pvBuf = (char *)pvBuf + cb;
190 } /* walk pages in ram range. */
191 }
192 else
193 {
194 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
195
196 /*
197 * Unassigned address space.
198 */
199 size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0;
200 if (cb >= cbRead)
201 {
202 memset(pvBuf, 0xff, cbRead);
203 break;
204 }
205 memset(pvBuf, 0xff, cb);
206
207 cbRead -= cb;
208 pvBuf = (char *)pvBuf + cb;
209 GCPhys += cb;
210 }
211
212 /* Advance range if necessary. */
213 while (pRam && GCPhys > pRam->GCPhysLast)
214 pRam = pRam->CTX_SUFF(pNext);
215 } /* Ram range walk */
216
217 PGM_UNLOCK(pVM);
218
219 return VINF_SUCCESS;
220}
221
222
223/**
224 * EMT worker for PGMR3PhysWriteExternal.
225 */
226static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite,
227 PGMACCESSORIGIN enmOrigin)
228{
229 /** @todo VERR_EM_NO_MEMORY */
230 VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin);
231 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict);
232 return VINF_SUCCESS;
233}
234
235
236/**
237 * Write to physical memory, external users.
238 *
239 * @returns VBox status code.
240 * @retval VINF_SUCCESS.
241 * @retval VERR_EM_NO_MEMORY.
242 *
243 * @param pVM The cross context VM structure.
244 * @param GCPhys Physical address to write to.
245 * @param pvBuf What to write.
246 * @param cbWrite How many bytes to write.
247 * @param enmOrigin Who is calling.
248 *
249 * @thread Any but EMTs.
250 */
251VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin)
252{
253 VM_ASSERT_OTHER_THREAD(pVM);
254
255 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
256 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n",
257 GCPhys, cbWrite, enmOrigin));
258 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
259 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
260
261 PGM_LOCK_VOID(pVM);
262
263 /*
264 * Copy loop on ram ranges, stop when we hit something difficult.
265 */
266 PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);
267 for (;;)
268 {
269 /* Inside range or not? */
270 if (pRam && GCPhys >= pRam->GCPhys)
271 {
272 /*
273 * Must work our way thru this page by page.
274 */
275 RTGCPTR off = GCPhys - pRam->GCPhys;
276 while (off < pRam->cb)
277 {
278 RTGCPTR iPage = off >> PAGE_SHIFT;
279 PPGMPAGE pPage = &pRam->aPages[iPage];
280
281 /*
282 * Is the page problematic, we have to do the work on the EMT.
283 *
284 * Allocating writable pages and access handlers are
285 * problematic, write monitored pages are simple and can be
286 * dealt with here.
287 */
288 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
289 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
290 || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
291 {
292 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
293 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
294 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
295 else
296 {
297 PGM_UNLOCK(pVM);
298
299 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5,
300 pVM, &GCPhys, pvBuf, cbWrite, enmOrigin);
301 }
302 }
303 Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage));
304
305 /*
306 * Simple stuff, go ahead.
307 */
308 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
309 if (cb > cbWrite)
310 cb = cbWrite;
311 PGMPAGEMAPLOCK PgMpLck;
312 void *pvDst;
313 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck);
314 if (RT_SUCCESS(rc))
315 {
316 memcpy(pvDst, pvBuf, cb);
317 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
318 }
319 else
320 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
321 pRam->GCPhys + off, pPage, rc));
322
323 /* next page */
324 if (cb >= cbWrite)
325 {
326 PGM_UNLOCK(pVM);
327 return VINF_SUCCESS;
328 }
329
330 cbWrite -= cb;
331 off += cb;
332 GCPhys += cb;
333 pvBuf = (const char *)pvBuf + cb;
334 } /* walk pages in ram range */
335 }
336 else
337 {
338 /*
339 * Unassigned address space, skip it.
340 */
341 if (!pRam)
342 break;
343 size_t cb = pRam->GCPhys - GCPhys;
344 if (cb >= cbWrite)
345 break;
346 cbWrite -= cb;
347 pvBuf = (const char *)pvBuf + cb;
348 GCPhys += cb;
349 }
350
351 /* Advance range if necessary. */
352 while (pRam && GCPhys > pRam->GCPhysLast)
353 pRam = pRam->CTX_SUFF(pNext);
354 } /* Ram range walk */
355
356 PGM_UNLOCK(pVM);
357 return VINF_SUCCESS;
358}
359
360
361/*********************************************************************************************************************************
362* Mapping Guest Physical Memory *
363*********************************************************************************************************************************/
364
365/**
366 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
367 *
368 * @returns see PGMR3PhysGCPhys2CCPtrExternal
369 * @param pVM The cross context VM structure.
370 * @param pGCPhys Pointer to the guest physical address.
371 * @param ppv Where to store the mapping address.
372 * @param pLock Where to store the lock.
373 */
374static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
375{
376 /*
377 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
378 * an access handler after it succeeds.
379 */
380 int rc = PGM_LOCK(pVM);
381 AssertRCReturn(rc, rc);
382
383 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
384 if (RT_SUCCESS(rc))
385 {
386 PPGMPAGEMAPTLBE pTlbe;
387 int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe);
388 AssertFatalRC(rc2);
389 PPGMPAGE pPage = pTlbe->pPage;
390 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
391 {
392 PGMPhysReleasePageMappingLock(pVM, pLock);
393 rc = VERR_PGM_PHYS_PAGE_RESERVED;
394 }
395 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
396#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
397 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
398#endif
399 )
400 {
401 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
402 * not be informed about writes and keep bogus gst->shw mappings around.
403 */
404 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
405 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
406 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
407 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
408 }
409 }
410
411 PGM_UNLOCK(pVM);
412 return rc;
413}
414
415
416/**
417 * Requests the mapping of a guest page into ring-3, external threads.
418 *
419 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
420 * release it.
421 *
422 * This API will assume your intention is to write to the page, and will
423 * therefore replace shared and zero pages. If you do not intend to modify the
424 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
425 *
426 * @returns VBox status code.
427 * @retval VINF_SUCCESS on success.
428 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
429 * backing or if the page has any active access handlers. The caller
430 * must fall back on using PGMR3PhysWriteExternal.
431 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
432 *
433 * @param pVM The cross context VM structure.
434 * @param GCPhys The guest physical address of the page that should be mapped.
435 * @param ppv Where to store the address corresponding to GCPhys.
436 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
437 *
438 * @remark Avoid calling this API from within critical sections (other than the
439 * PGM one) because of the deadlock risk when we have to delegating the
440 * task to an EMT.
441 * @thread Any.
442 */
443VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
444{
445 AssertPtr(ppv);
446 AssertPtr(pLock);
447
448 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
449
450 int rc = PGM_LOCK(pVM);
451 AssertRCReturn(rc, rc);
452
453 /*
454 * Query the Physical TLB entry for the page (may fail).
455 */
456 PPGMPAGEMAPTLBE pTlbe;
457 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
458 if (RT_SUCCESS(rc))
459 {
460 PPGMPAGE pPage = pTlbe->pPage;
461 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
462 rc = VERR_PGM_PHYS_PAGE_RESERVED;
463 else
464 {
465 /*
466 * If the page is shared, the zero page, or being write monitored
467 * it must be converted to an page that's writable if possible.
468 * We can only deal with write monitored pages here, the rest have
469 * to be on an EMT.
470 */
471 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
472 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
473#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
474 || pgmPoolIsDirtyPage(pVM, GCPhys)
475#endif
476 )
477 {
478 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
479 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
480#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
481 && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */
482#endif
483 )
484 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys);
485 else
486 {
487 PGM_UNLOCK(pVM);
488
489 return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
490 pVM, &GCPhys, ppv, pLock);
491 }
492 }
493
494 /*
495 * Now, just perform the locking and calculate the return address.
496 */
497 PPGMPAGEMAP pMap = pTlbe->pMap;
498 if (pMap)
499 pMap->cRefs++;
500
501 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
502 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
503 {
504 if (cLocks == 0)
505 pVM->pgm.s.cWriteLockedPages++;
506 PGM_PAGE_INC_WRITE_LOCKS(pPage);
507 }
508 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
509 {
510 PGM_PAGE_INC_WRITE_LOCKS(pPage);
511 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
512 if (pMap)
513 pMap->cRefs++; /* Extra ref to prevent it from going away. */
514 }
515
516 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
517 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
518 pLock->pvMap = pMap;
519 }
520 }
521
522 PGM_UNLOCK(pVM);
523 return rc;
524}
525
526
527/**
528 * Requests the mapping of a guest page into ring-3, external threads.
529 *
530 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
531 * release it.
532 *
533 * @returns VBox status code.
534 * @retval VINF_SUCCESS on success.
535 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
536 * backing or if the page as an active ALL access handler. The caller
537 * must fall back on using PGMPhysRead.
538 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
539 *
540 * @param pVM The cross context VM structure.
541 * @param GCPhys The guest physical address of the page that should be mapped.
542 * @param ppv Where to store the address corresponding to GCPhys.
543 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
544 *
545 * @remark Avoid calling this API from within critical sections (other than
546 * the PGM one) because of the deadlock risk.
547 * @thread Any.
548 */
549VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
550{
551 int rc = PGM_LOCK(pVM);
552 AssertRCReturn(rc, rc);
553
554 /*
555 * Query the Physical TLB entry for the page (may fail).
556 */
557 PPGMPAGEMAPTLBE pTlbe;
558 rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
559 if (RT_SUCCESS(rc))
560 {
561 PPGMPAGE pPage = pTlbe->pPage;
562#if 1
563 /* MMIO pages doesn't have any readable backing. */
564 if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage))
565 rc = VERR_PGM_PHYS_PAGE_RESERVED;
566#else
567 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
568 rc = VERR_PGM_PHYS_PAGE_RESERVED;
569#endif
570 else
571 {
572 /*
573 * Now, just perform the locking and calculate the return address.
574 */
575 PPGMPAGEMAP pMap = pTlbe->pMap;
576 if (pMap)
577 pMap->cRefs++;
578
579 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
580 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
581 {
582 if (cLocks == 0)
583 pVM->pgm.s.cReadLockedPages++;
584 PGM_PAGE_INC_READ_LOCKS(pPage);
585 }
586 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
587 {
588 PGM_PAGE_INC_READ_LOCKS(pPage);
589 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
590 if (pMap)
591 pMap->cRefs++; /* Extra ref to prevent it from going away. */
592 }
593
594 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
595 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
596 pLock->pvMap = pMap;
597 }
598 }
599
600 PGM_UNLOCK(pVM);
601 return rc;
602}
603
604
605/**
606 * Requests the mapping of multiple guest page into ring-3, external threads.
607 *
608 * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock()
609 * ASAP to release them.
610 *
611 * This API will assume your intention is to write to the pages, and will
612 * therefore replace shared and zero pages. If you do not intend to modify the
613 * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API.
614 *
615 * @returns VBox status code.
616 * @retval VINF_SUCCESS on success.
617 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
618 * backing or if any of the pages the page has any active access
619 * handlers. The caller must fall back on using PGMR3PhysWriteExternal.
620 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
621 * an invalid physical address.
622 *
623 * @param pVM The cross context VM structure.
624 * @param cPages Number of pages to lock.
625 * @param paGCPhysPages The guest physical address of the pages that
626 * should be mapped (@a cPages entries).
627 * @param papvPages Where to store the ring-3 mapping addresses
628 * corresponding to @a paGCPhysPages.
629 * @param paLocks Where to store the locking information that
630 * pfnPhysBulkReleasePageMappingLock needs (@a cPages
631 * in length).
632 *
633 * @remark Avoid calling this API from within critical sections (other than the
634 * PGM one) because of the deadlock risk when we have to delegating the
635 * task to an EMT.
636 * @thread Any.
637 */
638VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
639 void **papvPages, PPGMPAGEMAPLOCK paLocks)
640{
641 Assert(cPages > 0);
642 AssertPtr(papvPages);
643 AssertPtr(paLocks);
644
645 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
646
647 int rc = PGM_LOCK(pVM);
648 AssertRCReturn(rc, rc);
649
650 /*
651 * Lock the pages one by one.
652 * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal.
653 */
654 int32_t cNextYield = 128;
655 uint32_t iPage;
656 for (iPage = 0; iPage < cPages; iPage++)
657 {
658 if (--cNextYield > 0)
659 { /* likely */ }
660 else
661 {
662 PGM_UNLOCK(pVM);
663 ASMNopPause();
664 PGM_LOCK_VOID(pVM);
665 cNextYield = 128;
666 }
667
668 /*
669 * Query the Physical TLB entry for the page (may fail).
670 */
671 PPGMPAGEMAPTLBE pTlbe;
672 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
673 if (RT_SUCCESS(rc))
674 { }
675 else
676 break;
677 PPGMPAGE pPage = pTlbe->pPage;
678
679 /*
680 * No MMIO or active access handlers.
681 */
682 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
683 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
684 { }
685 else
686 {
687 rc = VERR_PGM_PHYS_PAGE_RESERVED;
688 break;
689 }
690
691 /*
692 * The page must be in the allocated state and not be a dirty pool page.
693 * We can handle converting a write monitored page to an allocated one, but
694 * anything more complicated must be delegated to an EMT.
695 */
696 bool fDelegateToEmt = false;
697 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED)
698#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
699 fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]);
700#else
701 fDelegateToEmt = false;
702#endif
703 else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
704 {
705#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
706 if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]))
707 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]);
708 else
709 fDelegateToEmt = true;
710#endif
711 }
712 else
713 fDelegateToEmt = true;
714 if (!fDelegateToEmt)
715 { }
716 else
717 {
718 /* We could do this delegation in bulk, but considered too much work vs gain. */
719 PGM_UNLOCK(pVM);
720 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
721 pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]);
722 PGM_LOCK_VOID(pVM);
723 if (RT_FAILURE(rc))
724 break;
725 cNextYield = 128;
726 }
727
728 /*
729 * Now, just perform the locking and address calculation.
730 */
731 PPGMPAGEMAP pMap = pTlbe->pMap;
732 if (pMap)
733 pMap->cRefs++;
734
735 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
736 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
737 {
738 if (cLocks == 0)
739 pVM->pgm.s.cWriteLockedPages++;
740 PGM_PAGE_INC_WRITE_LOCKS(pPage);
741 }
742 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
743 {
744 PGM_PAGE_INC_WRITE_LOCKS(pPage);
745 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage));
746 if (pMap)
747 pMap->cRefs++; /* Extra ref to prevent it from going away. */
748 }
749
750 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
751 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
752 paLocks[iPage].pvMap = pMap;
753 }
754
755 PGM_UNLOCK(pVM);
756
757 /*
758 * On failure we must unlock any pages we managed to get already.
759 */
760 if (RT_FAILURE(rc) && iPage > 0)
761 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
762
763 return rc;
764}
765
766
767/**
768 * Requests the mapping of multiple guest page into ring-3, for reading only,
769 * external threads.
770 *
771 * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP
772 * to release them.
773 *
774 * @returns VBox status code.
775 * @retval VINF_SUCCESS on success.
776 * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical
777 * backing or if any of the pages the page has an active ALL access
778 * handler. The caller must fall back on using PGMR3PhysWriteExternal.
779 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains
780 * an invalid physical address.
781 *
782 * @param pVM The cross context VM structure.
783 * @param cPages Number of pages to lock.
784 * @param paGCPhysPages The guest physical address of the pages that
785 * should be mapped (@a cPages entries).
786 * @param papvPages Where to store the ring-3 mapping addresses
787 * corresponding to @a paGCPhysPages.
788 * @param paLocks Where to store the lock information that
789 * pfnPhysReleasePageMappingLock needs (@a cPages
790 * in length).
791 *
792 * @remark Avoid calling this API from within critical sections (other than
793 * the PGM one) because of the deadlock risk.
794 * @thread Any.
795 */
796VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages,
797 void const **papvPages, PPGMPAGEMAPLOCK paLocks)
798{
799 Assert(cPages > 0);
800 AssertPtr(papvPages);
801 AssertPtr(paLocks);
802
803 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
804
805 int rc = PGM_LOCK(pVM);
806 AssertRCReturn(rc, rc);
807
808 /*
809 * Lock the pages one by one.
810 * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal.
811 */
812 int32_t cNextYield = 256;
813 uint32_t iPage;
814 for (iPage = 0; iPage < cPages; iPage++)
815 {
816 if (--cNextYield > 0)
817 { /* likely */ }
818 else
819 {
820 PGM_UNLOCK(pVM);
821 ASMNopPause();
822 PGM_LOCK_VOID(pVM);
823 cNextYield = 256;
824 }
825
826 /*
827 * Query the Physical TLB entry for the page (may fail).
828 */
829 PPGMPAGEMAPTLBE pTlbe;
830 rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe);
831 if (RT_SUCCESS(rc))
832 { }
833 else
834 break;
835 PPGMPAGE pPage = pTlbe->pPage;
836
837 /*
838 * No MMIO or active all access handlers, everything else can be accessed.
839 */
840 if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)
841 && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
842 { }
843 else
844 {
845 rc = VERR_PGM_PHYS_PAGE_RESERVED;
846 break;
847 }
848
849 /*
850 * Now, just perform the locking and address calculation.
851 */
852 PPGMPAGEMAP pMap = pTlbe->pMap;
853 if (pMap)
854 pMap->cRefs++;
855
856 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
857 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
858 {
859 if (cLocks == 0)
860 pVM->pgm.s.cReadLockedPages++;
861 PGM_PAGE_INC_READ_LOCKS(pPage);
862 }
863 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
864 {
865 PGM_PAGE_INC_READ_LOCKS(pPage);
866 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage));
867 if (pMap)
868 pMap->cRefs++; /* Extra ref to prevent it from going away. */
869 }
870
871 papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & PAGE_OFFSET_MASK));
872 paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
873 paLocks[iPage].pvMap = pMap;
874 }
875
876 PGM_UNLOCK(pVM);
877
878 /*
879 * On failure we must unlock any pages we managed to get already.
880 */
881 if (RT_FAILURE(rc) && iPage > 0)
882 PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks);
883
884 return rc;
885}
886
887
888/**
889 * Converts a GC physical address to a HC ring-3 pointer, with some
890 * additional checks.
891 *
892 * @returns VBox status code.
893 * @retval VINF_SUCCESS on success.
894 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
895 * access handler of some kind.
896 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
897 * accesses or is odd in any way.
898 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
899 *
900 * @param pVM The cross context VM structure.
901 * @param GCPhys The GC physical address to convert. Since this is only
902 * used for filling the REM TLB, the A20 mask must be
903 * applied before calling this API.
904 * @param fWritable Whether write access is required.
905 * @param ppv Where to store the pointer corresponding to GCPhys on
906 * success.
907 */
908VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
909{
910 PGM_LOCK_VOID(pVM);
911 PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys);
912
913 PPGMRAMRANGE pRam;
914 PPGMPAGE pPage;
915 int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam);
916 if (RT_SUCCESS(rc))
917 {
918 if (PGM_PAGE_IS_BALLOONED(pPage))
919 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
920 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
921 rc = VINF_SUCCESS;
922 else
923 {
924 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
925 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
926 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
927 {
928 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
929 * in -norawr0 mode. */
930 if (fWritable)
931 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
932 }
933 else
934 {
935 /* Temporarily disabled physical handler(s), since the recompiler
936 doesn't get notified when it's reset we'll have to pretend it's
937 operating normally. */
938 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
939 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
940 else
941 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
942 }
943 }
944 if (RT_SUCCESS(rc))
945 {
946 int rc2;
947
948 /* Make sure what we return is writable. */
949 if (fWritable)
950 switch (PGM_PAGE_GET_STATE(pPage))
951 {
952 case PGM_PAGE_STATE_ALLOCATED:
953 break;
954 case PGM_PAGE_STATE_BALLOONED:
955 AssertFailed();
956 break;
957 case PGM_PAGE_STATE_ZERO:
958 case PGM_PAGE_STATE_SHARED:
959 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
960 break;
961 RT_FALL_THRU();
962 case PGM_PAGE_STATE_WRITE_MONITORED:
963 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
964 AssertLogRelRCReturn(rc2, rc2);
965 break;
966 }
967
968 /* Get a ring-3 mapping of the address. */
969 PPGMPAGER3MAPTLBE pTlbe;
970 rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe);
971 AssertLogRelRCReturn(rc2, rc2);
972 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
973 /** @todo mapping/locking hell; this isn't horribly efficient since
974 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
975
976 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
977 }
978 else
979 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
980
981 /* else: handler catching all access, no pointer returned. */
982 }
983 else
984 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
985
986 PGM_UNLOCK(pVM);
987 return rc;
988}
989
990
991
992/*********************************************************************************************************************************
993* RAM Range Management *
994*********************************************************************************************************************************/
995
996#define MAKE_LEAF(a_pNode) \
997 do { \
998 (a_pNode)->pLeftR3 = NIL_RTR3PTR; \
999 (a_pNode)->pRightR3 = NIL_RTR3PTR; \
1000 (a_pNode)->pLeftR0 = NIL_RTR0PTR; \
1001 (a_pNode)->pRightR0 = NIL_RTR0PTR; \
1002 } while (0)
1003
1004#define INSERT_LEFT(a_pParent, a_pNode) \
1005 do { \
1006 (a_pParent)->pLeftR3 = (a_pNode); \
1007 (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \
1008 } while (0)
1009#define INSERT_RIGHT(a_pParent, a_pNode) \
1010 do { \
1011 (a_pParent)->pRightR3 = (a_pNode); \
1012 (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \
1013 } while (0)
1014
1015
1016/**
1017 * Recursive tree builder.
1018 *
1019 * @param ppRam Pointer to the iterator variable.
1020 * @param iDepth The current depth. Inserts a leaf node if 0.
1021 */
1022static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth)
1023{
1024 PPGMRAMRANGE pRam;
1025 if (iDepth <= 0)
1026 {
1027 /*
1028 * Leaf node.
1029 */
1030 pRam = *ppRam;
1031 if (pRam)
1032 {
1033 *ppRam = pRam->pNextR3;
1034 MAKE_LEAF(pRam);
1035 }
1036 }
1037 else
1038 {
1039
1040 /*
1041 * Intermediate node.
1042 */
1043 PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1044
1045 pRam = *ppRam;
1046 if (!pRam)
1047 return pLeft;
1048 *ppRam = pRam->pNextR3;
1049 MAKE_LEAF(pRam);
1050 INSERT_LEFT(pRam, pLeft);
1051
1052 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1);
1053 if (pRight)
1054 INSERT_RIGHT(pRam, pRight);
1055 }
1056 return pRam;
1057}
1058
1059
1060/**
1061 * Rebuilds the RAM range search trees.
1062 *
1063 * @param pVM The cross context VM structure.
1064 */
1065static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM)
1066{
1067
1068 /*
1069 * Create the reasonably balanced tree in a sequential fashion.
1070 * For simplicity (laziness) we use standard recursion here.
1071 */
1072 int iDepth = 0;
1073 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1074 PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0);
1075 while (pRam)
1076 {
1077 PPGMRAMRANGE pLeft = pRoot;
1078
1079 pRoot = pRam;
1080 pRam = pRam->pNextR3;
1081 MAKE_LEAF(pRoot);
1082 INSERT_LEFT(pRoot, pLeft);
1083
1084 PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth);
1085 if (pRight)
1086 INSERT_RIGHT(pRoot, pRight);
1087 /** @todo else: rotate the tree. */
1088
1089 iDepth++;
1090 }
1091
1092 pVM->pgm.s.pRamRangeTreeR3 = pRoot;
1093 pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR;
1094
1095#ifdef VBOX_STRICT
1096 /*
1097 * Verify that the above code works.
1098 */
1099 unsigned cRanges = 0;
1100 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1101 cRanges++;
1102 Assert(cRanges > 0);
1103
1104 unsigned cMaxDepth = ASMBitLastSetU32(cRanges);
1105 if ((1U << cMaxDepth) < cRanges)
1106 cMaxDepth++;
1107
1108 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1109 {
1110 unsigned cDepth = 0;
1111 PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3;
1112 for (;;)
1113 {
1114 if (pRam == pRam2)
1115 break;
1116 Assert(pRam2);
1117 if (pRam->GCPhys < pRam2->GCPhys)
1118 pRam2 = pRam2->pLeftR3;
1119 else
1120 pRam2 = pRam2->pRightR3;
1121 }
1122 AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth));
1123 }
1124#endif /* VBOX_STRICT */
1125}
1126
1127#undef MAKE_LEAF
1128#undef INSERT_LEFT
1129#undef INSERT_RIGHT
1130
1131/**
1132 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
1133 *
1134 * Called when anything was relocated.
1135 *
1136 * @param pVM The cross context VM structure.
1137 */
1138void pgmR3PhysRelinkRamRanges(PVM pVM)
1139{
1140 PPGMRAMRANGE pCur;
1141
1142#ifdef VBOX_STRICT
1143 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1144 {
1145 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
1146 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
1147 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
1148 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
1149 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
1150 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3)
1151 Assert( pCur2 == pCur
1152 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
1153 }
1154#endif
1155
1156 pCur = pVM->pgm.s.pRamRangesXR3;
1157 if (pCur)
1158 {
1159 pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0;
1160
1161 for (; pCur->pNextR3; pCur = pCur->pNextR3)
1162 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
1163
1164 Assert(pCur->pNextR0 == NIL_RTR0PTR);
1165 }
1166 else
1167 {
1168 Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR);
1169 }
1170 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1171
1172 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1173}
1174
1175
1176/**
1177 * Links a new RAM range into the list.
1178 *
1179 * @param pVM The cross context VM structure.
1180 * @param pNew Pointer to the new list entry.
1181 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1182 */
1183static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
1184{
1185 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
1186 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
1187
1188 PGM_LOCK_VOID(pVM);
1189
1190 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3;
1191 pNew->pNextR3 = pRam;
1192 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
1193
1194 if (pPrev)
1195 {
1196 pPrev->pNextR3 = pNew;
1197 pPrev->pNextR0 = pNew->pSelfR0;
1198 }
1199 else
1200 {
1201 pVM->pgm.s.pRamRangesXR3 = pNew;
1202 pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0;
1203 }
1204 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1205
1206 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1207 PGM_UNLOCK(pVM);
1208}
1209
1210
1211/**
1212 * Unlink an existing RAM range from the list.
1213 *
1214 * @param pVM The cross context VM structure.
1215 * @param pRam Pointer to the new list entry.
1216 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
1217 */
1218static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
1219{
1220 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam);
1221 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
1222
1223 PGM_LOCK_VOID(pVM);
1224
1225 PPGMRAMRANGE pNext = pRam->pNextR3;
1226 if (pPrev)
1227 {
1228 pPrev->pNextR3 = pNext;
1229 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1230 }
1231 else
1232 {
1233 Assert(pVM->pgm.s.pRamRangesXR3 == pRam);
1234 pVM->pgm.s.pRamRangesXR3 = pNext;
1235 pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
1236 }
1237 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
1238
1239 pgmR3PhysRebuildRamRangeSearchTrees(pVM);
1240 PGM_UNLOCK(pVM);
1241}
1242
1243
1244/**
1245 * Unlink an existing RAM range from the list.
1246 *
1247 * @param pVM The cross context VM structure.
1248 * @param pRam Pointer to the new list entry.
1249 */
1250static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
1251{
1252 PGM_LOCK_VOID(pVM);
1253
1254 /* find prev. */
1255 PPGMRAMRANGE pPrev = NULL;
1256 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3;
1257 while (pCur != pRam)
1258 {
1259 pPrev = pCur;
1260 pCur = pCur->pNextR3;
1261 }
1262 AssertFatal(pCur);
1263
1264 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
1265 PGM_UNLOCK(pVM);
1266}
1267
1268
1269/**
1270 * Gets the number of ram ranges.
1271 *
1272 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1273 * @param pVM The cross context VM structure.
1274 */
1275VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1276{
1277 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1278
1279 PGM_LOCK_VOID(pVM);
1280 uint32_t cRamRanges = 0;
1281 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext))
1282 cRamRanges++;
1283 PGM_UNLOCK(pVM);
1284 return cRamRanges;
1285}
1286
1287
1288/**
1289 * Get information about a range.
1290 *
1291 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1292 * @param pVM The cross context VM structure.
1293 * @param iRange The ordinal of the range.
1294 * @param pGCPhysStart Where to return the start of the range. Optional.
1295 * @param pGCPhysLast Where to return the address of the last byte in the
1296 * range. Optional.
1297 * @param ppszDesc Where to return the range description. Optional.
1298 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1299 * Optional.
1300 */
1301VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1302 const char **ppszDesc, bool *pfIsMmio)
1303{
1304 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1305
1306 PGM_LOCK_VOID(pVM);
1307 uint32_t iCurRange = 0;
1308 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1309 if (iCurRange == iRange)
1310 {
1311 if (pGCPhysStart)
1312 *pGCPhysStart = pCur->GCPhys;
1313 if (pGCPhysLast)
1314 *pGCPhysLast = pCur->GCPhysLast;
1315 if (ppszDesc)
1316 *ppszDesc = pCur->pszDesc;
1317 if (pfIsMmio)
1318 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1319
1320 PGM_UNLOCK(pVM);
1321 return VINF_SUCCESS;
1322 }
1323 PGM_UNLOCK(pVM);
1324 return VERR_OUT_OF_RANGE;
1325}
1326
1327
1328/*********************************************************************************************************************************
1329* RAM *
1330*********************************************************************************************************************************/
1331
1332/**
1333 * Frees the specified RAM page and replaces it with the ZERO page.
1334 *
1335 * This is used by ballooning, remapping MMIO2, RAM reset and state loading.
1336 *
1337 * @param pVM The cross context VM structure.
1338 * @param pReq Pointer to the request. This is NULL when doing a
1339 * bulk free in NEM memory mode.
1340 * @param pcPendingPages Where the number of pages waiting to be freed are
1341 * kept. This will normally be incremented. This is
1342 * NULL when doing a bulk free in NEM memory mode.
1343 * @param pPage Pointer to the page structure.
1344 * @param GCPhys The guest physical address of the page, if applicable.
1345 * @param enmNewType New page type for NEM notification, since several
1346 * callers will change the type upon successful return.
1347 *
1348 * @remarks The caller must own the PGM lock.
1349 */
1350int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys,
1351 PGMPAGETYPE enmNewType)
1352{
1353 /*
1354 * Assert sanity.
1355 */
1356 PGM_LOCK_ASSERT_OWNER(pVM);
1357 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
1358 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
1359 {
1360 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1361 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
1362 }
1363
1364 /** @todo What about ballooning of large pages??! */
1365 Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
1366 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED);
1367
1368 if ( PGM_PAGE_IS_ZERO(pPage)
1369 || PGM_PAGE_IS_BALLOONED(pPage))
1370 return VINF_SUCCESS;
1371
1372 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
1373 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
1374 if (RT_UNLIKELY(!PGM_IS_IN_NEM_MODE(pVM)
1375 ? idPage == NIL_GMM_PAGEID
1376 || idPage > GMM_PAGEID_LAST
1377 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID
1378 : idPage != NIL_GMM_PAGEID))
1379 {
1380 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
1381 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
1382 }
1383#ifdef VBOX_WITH_NATIVE_NEM
1384 const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage);
1385#endif
1386
1387 /* update page count stats. */
1388 if (PGM_PAGE_IS_SHARED(pPage))
1389 pVM->pgm.s.cSharedPages--;
1390 else
1391 pVM->pgm.s.cPrivatePages--;
1392 pVM->pgm.s.cZeroPages++;
1393
1394 /* Deal with write monitored pages. */
1395 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1396 {
1397 PGM_PAGE_SET_WRITTEN_TO(pVM, pPage);
1398 pVM->pgm.s.cWrittenToPages++;
1399 }
1400
1401 /*
1402 * pPage = ZERO page.
1403 */
1404 PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg);
1405 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
1406 PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID);
1407 PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
1408 PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0);
1409 PGM_PAGE_SET_TRACKING(pVM, pPage, 0);
1410
1411 /* Flush physical page map TLB entry. */
1412 pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
1413
1414#ifdef VBOX_WITH_PGM_NEM_MODE
1415 /*
1416 * Skip the rest if we're doing a bulk free in NEM memory mode.
1417 */
1418 if (!pReq)
1419 return VINF_SUCCESS;
1420 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1421#endif
1422
1423#ifdef VBOX_WITH_NATIVE_NEM
1424 /* Notify NEM. */
1425 /** @todo Remove this one? */
1426 if (VM_IS_NEM_ENABLED(pVM))
1427 {
1428 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage);
1429 NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.pvZeroPgR3,
1430 pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State);
1431 PGM_PAGE_SET_NEM_STATE(pPage, u2State);
1432 }
1433#else
1434 RT_NOREF(enmNewType);
1435#endif
1436
1437 /*
1438 * Make sure it's not in the handy page array.
1439 */
1440 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1441 {
1442 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
1443 {
1444 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1445 break;
1446 }
1447 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
1448 {
1449 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1450 break;
1451 }
1452 }
1453
1454 /*
1455 * Push it onto the page array.
1456 */
1457 uint32_t iPage = *pcPendingPages;
1458 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
1459 *pcPendingPages += 1;
1460
1461 pReq->aPages[iPage].idPage = idPage;
1462
1463 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
1464 return VINF_SUCCESS;
1465
1466 /*
1467 * Flush the pages.
1468 */
1469 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
1470 if (RT_SUCCESS(rc))
1471 {
1472 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1473 *pcPendingPages = 0;
1474 }
1475 return rc;
1476}
1477
1478
1479/**
1480 * Frees a range of pages, replacing them with ZERO pages of the specified type.
1481 *
1482 * @returns VBox status code.
1483 * @param pVM The cross context VM structure.
1484 * @param pRam The RAM range in which the pages resides.
1485 * @param GCPhys The address of the first page.
1486 * @param GCPhysLast The address of the last page.
1487 * @param pvMmio2 Pointer to the ring-3 mapping of any MMIO2 memory that
1488 * will replace the pages we're freeing up.
1489 */
1490static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, void *pvMmio2)
1491{
1492 PGM_LOCK_ASSERT_OWNER(pVM);
1493
1494#ifdef VBOX_WITH_PGM_NEM_MODE
1495 /*
1496 * In simplified memory mode we don't actually free the memory,
1497 * we just unmap it and let NEM do any unlocking of it.
1498 */
1499 if (pVM->pgm.s.fNemMode)
1500 {
1501 Assert(VM_IS_NEM_ENABLED(pVM));
1502 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1503 uint8_t u2State = 0; /* (We don't support UINT8_MAX here.) */
1504 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
1505 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
1506 pvMmio2, &u2State, NULL /*puNemRange*/);
1507 AssertLogRelRCReturn(rc, rc);
1508
1509 /* Iterate the pages. */
1510 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1511 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1512 while (cPagesLeft-- > 0)
1513 {
1514 rc = pgmPhysFreePage(pVM, NULL, NULL, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1515 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1516
1517 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1518 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1519
1520 GCPhys += PAGE_SIZE;
1521 pPageDst++;
1522 }
1523 return rc;
1524 }
1525#else /* !VBOX_WITH_PGM_NEM_MODE */
1526 RT_NOREF(pvMmio2);
1527#endif /* !VBOX_WITH_PGM_NEM_MODE */
1528
1529 /*
1530 * Regular mode.
1531 */
1532 /* Prepare. */
1533 uint32_t cPendingPages = 0;
1534 PGMMFREEPAGESREQ pReq;
1535 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1536 AssertLogRelRCReturn(rc, rc);
1537
1538#ifdef VBOX_WITH_NATIVE_NEM
1539 /* Tell NEM up-front. */
1540 uint8_t u2State = UINT8_MAX;
1541 if (VM_IS_NEM_ENABLED(pVM))
1542 {
1543 uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE;
1544 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, NULL, pvMmio2,
1545 &u2State, NULL /*puNemRange*/);
1546 AssertLogRelRCReturnStmt(rc, GMMR3FreePagesCleanup(pReq), rc);
1547 }
1548#endif
1549
1550 /* Iterate the pages. */
1551 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1552 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
1553 while (cPagesLeft-- > 0)
1554 {
1555 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, PGMPAGETYPE_MMIO);
1556 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1557
1558 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO);
1559#ifdef VBOX_WITH_NATIVE_NEM
1560 if (u2State != UINT8_MAX)
1561 PGM_PAGE_SET_NEM_STATE(pPageDst, u2State);
1562#endif
1563
1564 GCPhys += PAGE_SIZE;
1565 pPageDst++;
1566 }
1567
1568 /* Finish pending and cleanup. */
1569 if (cPendingPages)
1570 {
1571 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1572 AssertLogRelRCReturn(rc, rc);
1573 }
1574 GMMR3FreePagesCleanup(pReq);
1575
1576 return rc;
1577}
1578
1579
1580/**
1581 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1582 *
1583 * In NEM mode, this will allocate the pages backing the RAM range and this may
1584 * fail. NEM registration may also fail. (In regular HM mode it won't fail.)
1585 *
1586 * @returns VBox status code.
1587 * @param pVM The cross context VM structure.
1588 * @param pNew The new RAM range.
1589 * @param GCPhys The address of the RAM range.
1590 * @param GCPhysLast The last address of the RAM range.
1591 * @param R0PtrNew Ditto for R0.
1592 * @param fFlags PGM_RAM_RANGE_FLAGS_FLOATING or zero.
1593 * @param pszDesc The description.
1594 * @param pPrev The previous RAM range (for linking).
1595 */
1596static int pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1597 RTR0PTR R0PtrNew, uint32_t fFlags, const char *pszDesc, PPGMRAMRANGE pPrev)
1598{
1599 /*
1600 * Initialize the range.
1601 */
1602 pNew->pSelfR0 = R0PtrNew;
1603 pNew->GCPhys = GCPhys;
1604 pNew->GCPhysLast = GCPhysLast;
1605 pNew->cb = GCPhysLast - GCPhys + 1;
1606 pNew->pszDesc = pszDesc;
1607 pNew->fFlags = fFlags;
1608 pNew->uNemRange = UINT32_MAX;
1609 pNew->pvR3 = NULL;
1610 pNew->paLSPages = NULL;
1611
1612 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1613#ifdef VBOX_WITH_PGM_NEM_MODE
1614 if (!pVM->pgm.s.fNemMode)
1615#endif
1616 {
1617 RTGCPHYS iPage = cPages;
1618 while (iPage-- > 0)
1619 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1620
1621 /* Update the page count stats. */
1622 pVM->pgm.s.cZeroPages += cPages;
1623 pVM->pgm.s.cAllPages += cPages;
1624 }
1625#ifdef VBOX_WITH_PGM_NEM_MODE
1626 else
1627 {
1628 int rc = SUPR3PageAlloc(cPages, &pNew->pvR3);
1629 if (RT_FAILURE(rc))
1630 return rc;
1631
1632 RTGCPHYS iPage = cPages;
1633 while (iPage-- > 0)
1634 PGM_PAGE_INIT(&pNew->aPages[iPage], UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
1635 PGMPAGETYPE_RAM, PGM_PAGE_STATE_ALLOCATED);
1636
1637 /* Update the page count stats. */
1638 pVM->pgm.s.cPrivatePages += cPages;
1639 pVM->pgm.s.cAllPages += cPages;
1640 }
1641#endif
1642
1643 /*
1644 * Link it.
1645 */
1646 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1647
1648#ifdef VBOX_WITH_NATIVE_NEM
1649 /*
1650 * Notify NEM now that it has been linked.
1651 */
1652 if (VM_IS_NEM_ENABLED(pVM))
1653 {
1654 uint8_t u2State = UINT8_MAX;
1655 int rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, pNew->cb, pNew->pvR3, &u2State, &pNew->uNemRange);
1656 if (RT_SUCCESS(rc))
1657 {
1658 if (u2State != UINT8_MAX)
1659 pgmPhysSetNemStateForPages(&pNew->aPages[0], cPages, u2State);
1660 }
1661 else
1662 pgmR3PhysUnlinkRamRange2(pVM, pNew, pPrev);
1663 return rc;
1664 }
1665#endif
1666 return VINF_SUCCESS;
1667}
1668
1669
1670/**
1671 * PGMR3PhysRegisterRam worker that registers a high chunk.
1672 *
1673 * @returns VBox status code.
1674 * @param pVM The cross context VM structure.
1675 * @param GCPhys The address of the RAM.
1676 * @param cRamPages The number of RAM pages to register.
1677 * @param iChunk The chunk number.
1678 * @param pszDesc The RAM range description.
1679 * @param ppPrev Previous RAM range pointer. In/Out.
1680 */
1681static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages, uint32_t iChunk,
1682 const char *pszDesc, PPGMRAMRANGE *ppPrev)
1683{
1684 const char *pszDescChunk = iChunk == 0
1685 ? pszDesc
1686 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1687 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1688
1689 /*
1690 * Allocate memory for the new chunk.
1691 */
1692 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1693 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1694 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1695 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1696 void *pvChunk = NULL;
1697 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
1698 if (RT_SUCCESS(rc))
1699 {
1700 Assert(R0PtrChunk != NIL_RTR0PTR);
1701 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1702
1703 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1704
1705 /*
1706 * Ok, init and link the range.
1707 */
1708 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1709 R0PtrChunk, PGM_RAM_RANGE_FLAGS_FLOATING, pszDescChunk, *ppPrev);
1710 if (RT_SUCCESS(rc))
1711 *ppPrev = pNew;
1712
1713 if (RT_FAILURE(rc))
1714 SUPR3PageFreeEx(pvChunk, cChunkPages);
1715 }
1716
1717 RTMemTmpFree(paChunkPages);
1718 return rc;
1719}
1720
1721
1722/**
1723 * Sets up a range RAM.
1724 *
1725 * This will check for conflicting registrations, make a resource
1726 * reservation for the memory (with GMM), and setup the per-page
1727 * tracking structures (PGMPAGE).
1728 *
1729 * @returns VBox status code.
1730 * @param pVM The cross context VM structure.
1731 * @param GCPhys The physical address of the RAM.
1732 * @param cb The size of the RAM.
1733 * @param pszDesc The description - not copied, so, don't free or change it.
1734 */
1735VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1736{
1737 /*
1738 * Validate input.
1739 */
1740 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1741 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1742 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1743 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1744 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1745 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1746 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1747 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1748
1749 PGM_LOCK_VOID(pVM);
1750
1751 /*
1752 * Find range location and check for conflicts.
1753 */
1754 PPGMRAMRANGE pPrev = NULL;
1755 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
1756 while (pRam && GCPhysLast >= pRam->GCPhys)
1757 {
1758 AssertLogRelMsgReturnStmt( GCPhysLast < pRam->GCPhys
1759 || GCPhys > pRam->GCPhysLast,
1760 ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1761 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1762 PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT);
1763
1764 /* next */
1765 pPrev = pRam;
1766 pRam = pRam->pNextR3;
1767 }
1768
1769 /*
1770 * Register it with GMM (the API bitches).
1771 */
1772 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1773 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1774 if (RT_FAILURE(rc))
1775 {
1776 PGM_UNLOCK(pVM);
1777 return rc;
1778 }
1779
1780 if ( GCPhys >= _4G
1781 && cPages > 256)
1782 {
1783 /*
1784 * The PGMRAMRANGE structures for the high memory can get very big.
1785 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1786 * allocation size limit there and also to avoid being unable to find
1787 * guest mapping space for them, we split this memory up into 4MB in
1788 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1789 * mode.
1790 *
1791 * The first and last page of each mapping are guard pages and marked
1792 * not-present. So, we've got 4186112 and 16769024 bytes available for
1793 * the PGMRAMRANGE structure.
1794 *
1795 * Note! The sizes used here will influence the saved state.
1796 */
1797 uint32_t cbChunk = 16U*_1M;
1798 uint32_t cPagesPerChunk = 1048048; /* max ~1048059 */
1799 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1800 AssertRelease(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1801
1802 RTGCPHYS cPagesLeft = cPages;
1803 RTGCPHYS GCPhysChunk = GCPhys;
1804 uint32_t iChunk = 0;
1805 while (cPagesLeft > 0)
1806 {
1807 uint32_t cPagesInChunk = cPagesLeft;
1808 if (cPagesInChunk > cPagesPerChunk)
1809 cPagesInChunk = cPagesPerChunk;
1810
1811 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, iChunk, pszDesc, &pPrev);
1812 AssertRCReturn(rc, rc);
1813
1814 /* advance */
1815 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1816 cPagesLeft -= cPagesInChunk;
1817 iChunk++;
1818 }
1819 }
1820 else
1821 {
1822 /*
1823 * Allocate, initialize and link the new RAM range.
1824 */
1825 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
1826 PPGMRAMRANGE pNew;
1827 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1828 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1829
1830 rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, MMHyperCCToR0(pVM, pNew), 0 /*fFlags*/, pszDesc, pPrev);
1831 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc);
1832 }
1833 pgmPhysInvalidatePageMapTLB(pVM);
1834
1835 PGM_UNLOCK(pVM);
1836 return rc;
1837}
1838
1839
1840/**
1841 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1842 *
1843 * We do this late in the init process so that all the ROM and MMIO ranges have
1844 * been registered already and we don't go wasting memory on them.
1845 *
1846 * @returns VBox status code.
1847 *
1848 * @param pVM The cross context VM structure.
1849 */
1850int pgmR3PhysRamPreAllocate(PVM pVM)
1851{
1852 Assert(pVM->pgm.s.fRamPreAlloc);
1853 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1854#ifdef VBOX_WITH_PGM_NEM_MODE
1855 AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
1856#endif
1857
1858 /*
1859 * Walk the RAM ranges and allocate all RAM pages, halt at
1860 * the first allocation error.
1861 */
1862 uint64_t cPages = 0;
1863 uint64_t NanoTS = RTTimeNanoTS();
1864 PGM_LOCK_VOID(pVM);
1865 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1866 {
1867 PPGMPAGE pPage = &pRam->aPages[0];
1868 RTGCPHYS GCPhys = pRam->GCPhys;
1869 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1870 while (cLeft-- > 0)
1871 {
1872 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1873 {
1874 switch (PGM_PAGE_GET_STATE(pPage))
1875 {
1876 case PGM_PAGE_STATE_ZERO:
1877 {
1878 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1879 if (RT_FAILURE(rc))
1880 {
1881 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1882 PGM_UNLOCK(pVM);
1883 return rc;
1884 }
1885 cPages++;
1886 break;
1887 }
1888
1889 case PGM_PAGE_STATE_BALLOONED:
1890 case PGM_PAGE_STATE_ALLOCATED:
1891 case PGM_PAGE_STATE_WRITE_MONITORED:
1892 case PGM_PAGE_STATE_SHARED:
1893 /* nothing to do here. */
1894 break;
1895 }
1896 }
1897
1898 /* next */
1899 pPage++;
1900 GCPhys += PAGE_SIZE;
1901 }
1902 }
1903 PGM_UNLOCK(pVM);
1904 NanoTS = RTTimeNanoTS() - NanoTS;
1905
1906 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1907 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1908 return VINF_SUCCESS;
1909}
1910
1911
1912/**
1913 * Checks shared page checksums.
1914 *
1915 * @param pVM The cross context VM structure.
1916 */
1917void pgmR3PhysAssertSharedPageChecksums(PVM pVM)
1918{
1919#ifdef VBOX_STRICT
1920 PGM_LOCK_VOID(pVM);
1921
1922 if (pVM->pgm.s.cSharedPages > 0)
1923 {
1924 /*
1925 * Walk the ram ranges.
1926 */
1927 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
1928 {
1929 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1930 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1931
1932 while (iPage-- > 0)
1933 {
1934 PPGMPAGE pPage = &pRam->aPages[iPage];
1935 if (PGM_PAGE_IS_SHARED(pPage))
1936 {
1937 uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/;
1938 if (!u32Checksum)
1939 {
1940 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1941 void const *pvPage;
1942 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage);
1943 if (RT_SUCCESS(rc))
1944 {
1945 uint32_t u32Checksum2 = RTCrc32(pvPage, PAGE_SIZE);
1946# if 0
1947 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage));
1948# else
1949 if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum)
1950 LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1951 else
1952 AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2));
1953# endif
1954 }
1955 else
1956 AssertRC(rc);
1957 }
1958 }
1959
1960 } /* for each page */
1961
1962 } /* for each ram range */
1963 }
1964
1965 PGM_UNLOCK(pVM);
1966#endif /* VBOX_STRICT */
1967 NOREF(pVM);
1968}
1969
1970
1971/**
1972 * Resets the physical memory state.
1973 *
1974 * ASSUMES that the caller owns the PGM lock.
1975 *
1976 * @returns VBox status code.
1977 * @param pVM The cross context VM structure.
1978 */
1979int pgmR3PhysRamReset(PVM pVM)
1980{
1981 PGM_LOCK_ASSERT_OWNER(pVM);
1982
1983 /* Reset the memory balloon. */
1984 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1985 AssertRC(rc);
1986
1987#ifdef VBOX_WITH_PAGE_SHARING
1988 /* Clear all registered shared modules. */
1989 pgmR3PhysAssertSharedPageChecksums(pVM);
1990 rc = GMMR3ResetSharedModules(pVM);
1991 AssertRC(rc);
1992#endif
1993 /* Reset counters. */
1994 pVM->pgm.s.cReusedSharedPages = 0;
1995 pVM->pgm.s.cBalloonedPages = 0;
1996
1997 return VINF_SUCCESS;
1998}
1999
2000
2001/**
2002 * Resets (zeros) the RAM after all devices and components have been reset.
2003 *
2004 * ASSUMES that the caller owns the PGM lock.
2005 *
2006 * @returns VBox status code.
2007 * @param pVM The cross context VM structure.
2008 */
2009int pgmR3PhysRamZeroAll(PVM pVM)
2010{
2011 PGM_LOCK_ASSERT_OWNER(pVM);
2012
2013 /*
2014 * We batch up pages that should be freed instead of calling GMM for
2015 * each and every one of them.
2016 */
2017 uint32_t cPendingPages = 0;
2018 PGMMFREEPAGESREQ pReq;
2019 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2020 AssertLogRelRCReturn(rc, rc);
2021
2022 /*
2023 * Walk the ram ranges.
2024 */
2025 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2026 {
2027 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2028 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2029
2030 if ( !pVM->pgm.s.fRamPreAlloc
2031#ifdef VBOX_WITH_PGM_NEM_MODE
2032 && !pVM->pgm.s.fNemMode
2033#endif
2034 && pVM->pgm.s.fZeroRamPagesOnReset)
2035 {
2036 /* Replace all RAM pages by ZERO pages. */
2037 while (iPage-- > 0)
2038 {
2039 PPGMPAGE pPage = &pRam->aPages[iPage];
2040 switch (PGM_PAGE_GET_TYPE(pPage))
2041 {
2042 case PGMPAGETYPE_RAM:
2043 /* Do not replace pages part of a 2 MB continuous range
2044 with zero pages, but zero them instead. */
2045 if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE
2046 || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2047 {
2048 void *pvPage;
2049 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2050 AssertLogRelRCReturn(rc, rc);
2051 ASMMemZeroPage(pvPage);
2052 }
2053 else if (PGM_PAGE_IS_BALLOONED(pPage))
2054 {
2055 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2056 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2057 }
2058 else if (!PGM_PAGE_IS_ZERO(pPage))
2059 {
2060 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2061 PGMPAGETYPE_RAM);
2062 AssertLogRelRCReturn(rc, rc);
2063 }
2064 break;
2065
2066 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2067 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2068 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2069 pRam, true /*fDoAccounting*/);
2070 break;
2071
2072 case PGMPAGETYPE_MMIO2:
2073 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2074 case PGMPAGETYPE_ROM:
2075 case PGMPAGETYPE_MMIO:
2076 break;
2077 default:
2078 AssertFailed();
2079 }
2080 } /* for each page */
2081 }
2082 else
2083 {
2084 /* Zero the memory. */
2085 while (iPage-- > 0)
2086 {
2087 PPGMPAGE pPage = &pRam->aPages[iPage];
2088 switch (PGM_PAGE_GET_TYPE(pPage))
2089 {
2090 case PGMPAGETYPE_RAM:
2091 switch (PGM_PAGE_GET_STATE(pPage))
2092 {
2093 case PGM_PAGE_STATE_ZERO:
2094 break;
2095
2096 case PGM_PAGE_STATE_BALLOONED:
2097 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
2098 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2099 break;
2100
2101 case PGM_PAGE_STATE_SHARED:
2102 case PGM_PAGE_STATE_WRITE_MONITORED:
2103 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
2104 AssertLogRelRCReturn(rc, rc);
2105 RT_FALL_THRU();
2106
2107 case PGM_PAGE_STATE_ALLOCATED:
2108 if (pVM->pgm.s.fZeroRamPagesOnReset)
2109 {
2110 void *pvPage;
2111 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
2112 AssertLogRelRCReturn(rc, rc);
2113 ASMMemZeroPage(pvPage);
2114 }
2115 break;
2116 }
2117 break;
2118
2119 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2120 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */
2121 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2122 pRam, true /*fDoAccounting*/);
2123 break;
2124
2125 case PGMPAGETYPE_MMIO2:
2126 case PGMPAGETYPE_ROM_SHADOW:
2127 case PGMPAGETYPE_ROM:
2128 case PGMPAGETYPE_MMIO:
2129 break;
2130 default:
2131 AssertFailed();
2132
2133 }
2134 } /* for each page */
2135 }
2136
2137 }
2138
2139 /*
2140 * Finish off any pages pending freeing.
2141 */
2142 if (cPendingPages)
2143 {
2144 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2145 AssertLogRelRCReturn(rc, rc);
2146 }
2147 GMMR3FreePagesCleanup(pReq);
2148 return VINF_SUCCESS;
2149}
2150
2151
2152/**
2153 * Frees all RAM during VM termination
2154 *
2155 * ASSUMES that the caller owns the PGM lock.
2156 *
2157 * @returns VBox status code.
2158 * @param pVM The cross context VM structure.
2159 */
2160int pgmR3PhysRamTerm(PVM pVM)
2161{
2162 PGM_LOCK_ASSERT_OWNER(pVM);
2163
2164 /* Reset the memory balloon. */
2165 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
2166 AssertRC(rc);
2167
2168#ifdef VBOX_WITH_PAGE_SHARING
2169 /*
2170 * Clear all registered shared modules.
2171 */
2172 pgmR3PhysAssertSharedPageChecksums(pVM);
2173 rc = GMMR3ResetSharedModules(pVM);
2174 AssertRC(rc);
2175
2176 /*
2177 * Flush the handy pages updates to make sure no shared pages are hiding
2178 * in there. (Not unlikely if the VM shuts down, apparently.)
2179 */
2180 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL);
2181#endif
2182
2183 /*
2184 * We batch up pages that should be freed instead of calling GMM for
2185 * each and every one of them.
2186 */
2187 uint32_t cPendingPages = 0;
2188 PGMMFREEPAGESREQ pReq;
2189 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2190 AssertLogRelRCReturn(rc, rc);
2191
2192 /*
2193 * Walk the ram ranges.
2194 */
2195 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
2196 {
2197 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
2198 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
2199
2200 while (iPage-- > 0)
2201 {
2202 PPGMPAGE pPage = &pRam->aPages[iPage];
2203 switch (PGM_PAGE_GET_TYPE(pPage))
2204 {
2205 case PGMPAGETYPE_RAM:
2206 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
2207 /** @todo change this to explicitly free private pages here. */
2208 if (PGM_PAGE_IS_SHARED(pPage))
2209 {
2210 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
2211 PGMPAGETYPE_RAM);
2212 AssertLogRelRCReturn(rc, rc);
2213 }
2214 break;
2215
2216 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2217 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2218 case PGMPAGETYPE_MMIO2:
2219 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
2220 case PGMPAGETYPE_ROM:
2221 case PGMPAGETYPE_MMIO:
2222 break;
2223 default:
2224 AssertFailed();
2225 }
2226 } /* for each page */
2227 }
2228
2229 /*
2230 * Finish off any pages pending freeing.
2231 */
2232 if (cPendingPages)
2233 {
2234 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2235 AssertLogRelRCReturn(rc, rc);
2236 }
2237 GMMR3FreePagesCleanup(pReq);
2238 return VINF_SUCCESS;
2239}
2240
2241
2242
2243/*********************************************************************************************************************************
2244* MMIO *
2245*********************************************************************************************************************************/
2246
2247/**
2248 * This is the interface IOM is using to register an MMIO region.
2249 *
2250 * It will check for conflicts and ensure that a RAM range structure
2251 * is present before calling the PGMR3HandlerPhysicalRegister API to
2252 * register the callbacks.
2253 *
2254 * @returns VBox status code.
2255 *
2256 * @param pVM The cross context VM structure.
2257 * @param GCPhys The start of the MMIO region.
2258 * @param cb The size of the MMIO region.
2259 * @param hType The physical access handler type registration.
2260 * @param pvUserR3 The user argument for R3.
2261 * @param pvUserR0 The user argument for R0.
2262 * @param pvUserRC The user argument for RC.
2263 * @param pszDesc The description of the MMIO region.
2264 */
2265VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType,
2266 RTR3PTR pvUserR3, RTR0PTR pvUserR0, RTRCPTR pvUserRC, const char *pszDesc)
2267{
2268 /*
2269 * Assert on some assumption.
2270 */
2271 VM_ASSERT_EMT(pVM);
2272 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2273 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2274 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2275 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2276 Assert(((PPGMPHYSHANDLERTYPEINT)MMHyperHeapOffsetToPtr(pVM, hType))->enmKind == PGMPHYSHANDLERKIND_MMIO);
2277
2278 int rc = PGM_LOCK(pVM);
2279 AssertRCReturn(rc, rc);
2280
2281 /*
2282 * Make sure there's a RAM range structure for the region.
2283 */
2284 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2285 bool fRamExists = false;
2286 PPGMRAMRANGE pRamPrev = NULL;
2287 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2288 while (pRam && GCPhysLast >= pRam->GCPhys)
2289 {
2290 if ( GCPhysLast >= pRam->GCPhys
2291 && GCPhys <= pRam->GCPhysLast)
2292 {
2293 /* Simplification: all within the same range. */
2294 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
2295 && GCPhysLast <= pRam->GCPhysLast,
2296 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
2297 GCPhys, GCPhysLast, pszDesc,
2298 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2299 PGM_UNLOCK(pVM),
2300 VERR_PGM_RAM_CONFLICT);
2301
2302 /* Check that it's all RAM or MMIO pages. */
2303 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2304 uint32_t cLeft = cb >> PAGE_SHIFT;
2305 while (cLeft-- > 0)
2306 {
2307 AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
2308 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
2309 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
2310 GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
2311 PGM_UNLOCK(pVM),
2312 VERR_PGM_RAM_CONFLICT);
2313 pPage++;
2314 }
2315
2316 /* Looks good. */
2317 fRamExists = true;
2318 break;
2319 }
2320
2321 /* next */
2322 pRamPrev = pRam;
2323 pRam = pRam->pNextR3;
2324 }
2325 PPGMRAMRANGE pNew;
2326 if (fRamExists)
2327 {
2328 pNew = NULL;
2329
2330 /*
2331 * Make all the pages in the range MMIO/ZERO pages, freeing any
2332 * RAM pages currently mapped here. This might not be 100% correct
2333 * for PCI memory, but we're doing the same thing for MMIO2 pages.
2334 */
2335 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, NULL);
2336 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
2337
2338 /* Force a PGM pool flush as guest ram references have been changed. */
2339 /** @todo not entirely SMP safe; assuming for now the guest takes
2340 * care of this internally (not touch mapped mmio while changing the
2341 * mapping). */
2342 PVMCPU pVCpu = VMMGetCpu(pVM);
2343 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2344 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2345 }
2346 else
2347 {
2348 /*
2349 * No RAM range, insert an ad hoc one.
2350 *
2351 * Note that we don't have to tell REM about this range because
2352 * PGMHandlerPhysicalRegisterEx will do that for us.
2353 */
2354 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
2355
2356 /* Alloc. */
2357 const uint32_t cPages = cb >> PAGE_SHIFT;
2358 const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]);
2359 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
2360 AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), PGM_UNLOCK(pVM), rc);
2361
2362#ifdef VBOX_WITH_NATIVE_NEM
2363 /* Notify NEM. */
2364 uint8_t u2State = 0; /* (must have valid state as there can't be anything to preserve) */
2365 if (VM_IS_NEM_ENABLED(pVM))
2366 {
2367 rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, cPages << PAGE_SHIFT, 0 /*fFlags*/, NULL, NULL,
2368 &u2State, &pNew->uNemRange);
2369 AssertLogRelRCReturnStmt(rc, MMHyperFree(pVM, pNew), rc);
2370 }
2371#endif
2372
2373 /* Initialize the range. */
2374 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
2375 pNew->GCPhys = GCPhys;
2376 pNew->GCPhysLast = GCPhysLast;
2377 pNew->cb = cb;
2378 pNew->pszDesc = pszDesc;
2379 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
2380 pNew->pvR3 = NULL;
2381 pNew->paLSPages = NULL;
2382
2383 uint32_t iPage = cPages;
2384 while (iPage-- > 0)
2385 {
2386 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
2387#ifdef VBOX_WITH_NATIVE_NEM
2388 PGM_PAGE_SET_NEM_STATE(&pNew->aPages[iPage], u2State);
2389#endif
2390 }
2391 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
2392
2393 /* update the page count stats. */
2394 pVM->pgm.s.cPureMmioPages += cPages;
2395 pVM->pgm.s.cAllPages += cPages;
2396
2397 /* link it */
2398 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
2399 }
2400
2401 /*
2402 * Register the access handler.
2403 */
2404 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, pvUserR3, pvUserR0, pvUserRC, pszDesc);
2405 if (RT_SUCCESS(rc))
2406 {
2407#ifdef VBOX_WITH_NATIVE_NEM
2408 /* Late NEM notification. */
2409 if (VM_IS_NEM_ENABLED(pVM))
2410 {
2411 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0);
2412 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify,
2413 fRamExists ? (uint8_t *)pRam->pvR3 + (uintptr_t)(GCPhys - pRam->GCPhys) : NULL,
2414 NULL, !fRamExists ? &pRam->uNemRange : NULL);
2415 AssertLogRelRCReturn(rc, rc);
2416 }
2417#endif
2418 }
2419 /** @todo the phys handler failure handling isn't complete, esp. wrt NEM. */
2420 else if (!fRamExists)
2421 {
2422 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2423 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2424
2425 /* remove the ad hoc range. */
2426 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2427 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2428 MMHyperFree(pVM, pRam);
2429 }
2430 pgmPhysInvalidatePageMapTLB(pVM);
2431
2432 PGM_UNLOCK(pVM);
2433 return rc;
2434}
2435
2436
2437/**
2438 * This is the interface IOM is using to register an MMIO region.
2439 *
2440 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2441 * any ad hoc PGMRAMRANGE left behind.
2442 *
2443 * @returns VBox status code.
2444 * @param pVM The cross context VM structure.
2445 * @param GCPhys The start of the MMIO region.
2446 * @param cb The size of the MMIO region.
2447 */
2448VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2449{
2450 VM_ASSERT_EMT(pVM);
2451
2452 int rc = PGM_LOCK(pVM);
2453 AssertRCReturn(rc, rc);
2454
2455 /*
2456 * First deregister the handler, then check if we should remove the ram range.
2457 */
2458 rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2459 if (RT_SUCCESS(rc))
2460 {
2461 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2462 PPGMRAMRANGE pRamPrev = NULL;
2463 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
2464 while (pRam && GCPhysLast >= pRam->GCPhys)
2465 {
2466 /** @todo We're being a bit too careful here. rewrite. */
2467 if ( GCPhysLast == pRam->GCPhysLast
2468 && GCPhys == pRam->GCPhys)
2469 {
2470 Assert(pRam->cb == cb);
2471
2472 /*
2473 * See if all the pages are dead MMIO pages.
2474 */
2475 uint32_t const cPages = cb >> PAGE_SHIFT;
2476 bool fAllMMIO = true;
2477 uint32_t iPage = 0;
2478 uint32_t cLeft = cPages;
2479 while (cLeft-- > 0)
2480 {
2481 PPGMPAGE pPage = &pRam->aPages[iPage];
2482 if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)
2483 /*|| not-out-of-action later */)
2484 {
2485 fAllMMIO = false;
2486 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2487 break;
2488 }
2489 Assert( PGM_PAGE_IS_ZERO(pPage)
2490 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2491 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO);
2492 pPage++;
2493 }
2494 if (fAllMMIO)
2495 {
2496 /*
2497 * Ad-hoc range, unlink and free it.
2498 */
2499 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2500 GCPhys, GCPhysLast, pRam->pszDesc));
2501 /** @todo check the ad-hoc flags? */
2502
2503#ifdef VBOX_WITH_NATIVE_NEM
2504 if (VM_IS_NEM_ENABLED(pVM)) /* Notify REM before we unlink the range. */
2505 {
2506 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, 0 /*fFlags*/, NULL, NULL, NULL);
2507 AssertLogRelRCReturn(rc, rc);
2508 }
2509#endif
2510
2511 pVM->pgm.s.cAllPages -= cPages;
2512 pVM->pgm.s.cPureMmioPages -= cPages;
2513
2514 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2515 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2516 MMHyperFree(pVM, pRam);
2517 break;
2518 }
2519 }
2520
2521 /*
2522 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2523 */
2524 if ( GCPhysLast >= pRam->GCPhys
2525 && GCPhys <= pRam->GCPhysLast)
2526 {
2527 Assert(GCPhys >= pRam->GCPhys);
2528 Assert(GCPhysLast <= pRam->GCPhysLast);
2529
2530 /*
2531 * Turn the pages back into RAM pages.
2532 */
2533 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2534 uint32_t cLeft = cb >> PAGE_SHIFT;
2535 while (cLeft--)
2536 {
2537 PPGMPAGE pPage = &pRam->aPages[iPage];
2538 AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage))
2539 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO
2540 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO,
2541 ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2542 if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage))
2543 PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM);
2544 iPage++;
2545 }
2546
2547#ifdef VBOX_WITH_NATIVE_NEM
2548 /* Notify REM (failure will probably leave things in a non-working state). */
2549 if (VM_IS_NEM_ENABLED(pVM))
2550 {
2551 uint8_t u2State = UINT8_MAX;
2552 rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
2553 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL,
2554 NULL, &u2State);
2555 AssertLogRelRCReturn(rc, rc);
2556 if (u2State != UINT8_MAX)
2557 pgmPhysSetNemStateForPages(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT],
2558 cb >> PAGE_SHIFT, u2State);
2559 }
2560#endif
2561 break;
2562 }
2563
2564 /* next */
2565 pRamPrev = pRam;
2566 pRam = pRam->pNextR3;
2567 }
2568 }
2569
2570 /* Force a PGM pool flush as guest ram references have been changed. */
2571 /** @todo Not entirely SMP safe; assuming for now the guest takes care of
2572 * this internally (not touch mapped mmio while changing the mapping). */
2573 PVMCPU pVCpu = VMMGetCpu(pVM);
2574 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2575 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2576
2577 pgmPhysInvalidatePageMapTLB(pVM);
2578 pgmPhysInvalidRamRangeTlbs(pVM);
2579 PGM_UNLOCK(pVM);
2580 return rc;
2581}
2582
2583
2584
2585/*********************************************************************************************************************************
2586* MMIO2 *
2587*********************************************************************************************************************************/
2588
2589/**
2590 * Locate a MMIO2 range.
2591 *
2592 * @returns Pointer to the MMIO2 range.
2593 * @param pVM The cross context VM structure.
2594 * @param pDevIns The device instance owning the region.
2595 * @param iSubDev The sub-device number.
2596 * @param iRegion The region.
2597 * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and
2598 * @a iRegion.
2599 */
2600DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev,
2601 uint32_t iRegion, PGMMMIO2HANDLE hMmio2)
2602{
2603 if (hMmio2 != NIL_PGMMMIO2HANDLE)
2604 {
2605 if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0)
2606 {
2607 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1];
2608 if (pCur && pCur->pDevInsR3 == pDevIns)
2609 {
2610 Assert(pCur->idMmio2 == hMmio2);
2611 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2612 return pCur;
2613 }
2614 Assert(!pCur);
2615 }
2616 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2617 if (pCur->idMmio2 == hMmio2)
2618 {
2619 AssertBreak(pCur->pDevInsR3 == pDevIns);
2620 AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL);
2621 return pCur;
2622 }
2623 }
2624 else
2625 {
2626 /*
2627 * Search the list. There shouldn't be many entries.
2628 */
2629 /** @todo Optimize this lookup! There may now be many entries and it'll
2630 * become really slow when doing MMR3HyperMapMMIO2 and similar. */
2631 for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
2632 if ( pCur->pDevInsR3 == pDevIns
2633 && pCur->iRegion == iRegion
2634 && pCur->iSubDev == iSubDev)
2635 return pCur;
2636 }
2637 return NULL;
2638}
2639
2640
2641/**
2642 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Map.
2643 */
2644static int pgmR3PhysMmio2EnableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2645{
2646 int rc = VINF_SUCCESS;
2647 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2648 {
2649 Assert(!(pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING));
2650 int rc2 = pgmHandlerPhysicalExRegister(pVM, pCurMmio2->pPhysHandlerR3, pCurMmio2->RamRange.GCPhys,
2651 pCurMmio2->RamRange.GCPhysLast);
2652 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2653 pCurMmio2->RamRange.pszDesc, rc2));
2654 if (RT_SUCCESS(rc2))
2655 pCurMmio2->fFlags |= PGMREGMMIO2RANGE_F_IS_TRACKING;
2656 else if (RT_SUCCESS(rc))
2657 rc = rc2;
2658 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2659 return rc;
2660 }
2661 AssertFailed();
2662 return rc;
2663}
2664
2665
2666/**
2667 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Unmap.
2668 */
2669static int pgmR3PhysMmio2DisableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2)
2670{
2671 for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3)
2672 {
2673 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING)
2674 {
2675 int rc2 = pgmHandlerPhysicalExDeregister(pVM, pCurMmio2->pPhysHandlerR3);
2676 AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast,
2677 pCurMmio2->RamRange.pszDesc, rc2));
2678 pCurMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_TRACKING;
2679 }
2680 if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2681 return VINF_SUCCESS;
2682 }
2683 AssertFailed();
2684 return VINF_SUCCESS;
2685
2686}
2687
2688
2689/**
2690 * Calculates the number of chunks
2691 *
2692 * @returns Number of registration chunk needed.
2693 * @param pVM The cross context VM structure.
2694 * @param cb The size of the MMIO/MMIO2 range.
2695 * @param pcPagesPerChunk Where to return the number of pages tracked by each
2696 * chunk. Optional.
2697 * @param pcbChunk Where to return the guest mapping size for a chunk.
2698 */
2699static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk)
2700{
2701 RT_NOREF_PV(pVM); /* without raw mode */
2702
2703 /*
2704 * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be
2705 * needing a few bytes extra the PGMREGMMIO2RANGE structure.
2706 *
2707 * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving
2708 * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB).
2709 *
2710 * P.S. If we want to include a dirty bitmap, we'd have to drop down to 1040384 pages.
2711 */
2712 uint32_t cbChunk = 16U*_1M;
2713 uint32_t cPagesPerChunk = 1048000; /* max ~1048059 */
2714 Assert(cPagesPerChunk / 64 * 64 == cPagesPerChunk); /* (NEM requirement) */
2715 AssertCompile(sizeof(PGMREGMMIO2RANGE) + sizeof(PGMPAGE) * 1048000 < 16U*_1M - PAGE_SIZE * 2);
2716 AssertRelease(cPagesPerChunk <= PGM_MMIO2_MAX_PAGE_COUNT); /* See above note. */
2717 AssertRelease(RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
2718 if (pcbChunk)
2719 *pcbChunk = cbChunk;
2720 if (pcPagesPerChunk)
2721 *pcPagesPerChunk = cPagesPerChunk;
2722
2723 /* Calc the number of chunks we need. */
2724 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
2725 uint16_t cChunks = (uint16_t)((cPages + cPagesPerChunk - 1) / cPagesPerChunk);
2726 AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cPages);
2727 return cChunks;
2728}
2729
2730
2731/**
2732 * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE
2733 * structures and does basic initialization.
2734 *
2735 * Caller must set type specfic members and initialize the PGMPAGE structures.
2736 *
2737 * This was previously also used by PGMR3PhysMmio2PreRegister, a function for
2738 * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM
2739 * interface. The reference to caller and type above is purely historical.
2740 *
2741 * @returns VBox status code.
2742 * @param pVM The cross context VM structure.
2743 * @param pDevIns The device instance owning the region.
2744 * @param iSubDev The sub-device number (internal PCI config number).
2745 * @param iRegion The region number. If the MMIO2 memory is a PCI
2746 * I/O region this number has to be the number of that
2747 * region. Otherwise it can be any number safe
2748 * UINT8_MAX.
2749 * @param cb The size of the region. Must be page aligned.
2750 * @param fFlags PGMPHYS_MMIO2_FLAGS_XXX.
2751 * @param idMmio2 The MMIO2 ID for the first chunk.
2752 * @param pszDesc The description.
2753 * @param ppHeadRet Where to return the pointer to the first
2754 * registration chunk.
2755 *
2756 * @thread EMT
2757 */
2758static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags,
2759 uint8_t idMmio2, const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet)
2760{
2761 /*
2762 * Figure out how many chunks we need and of which size.
2763 */
2764 uint32_t cPagesPerChunk;
2765 uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL);
2766 AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE);
2767
2768 /*
2769 * Allocate the chunks.
2770 */
2771 PPGMREGMMIO2RANGE *ppNext = ppHeadRet;
2772 *ppNext = NULL;
2773
2774 int rc = VINF_SUCCESS;
2775 uint32_t cPagesLeft = cb >> X86_PAGE_SHIFT;
2776 for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++, idMmio2++)
2777 {
2778 /*
2779 * We currently do a single RAM range for the whole thing. This will
2780 * probably have to change once someone needs really large MMIO regions,
2781 * as we will be running into SUPR3PageAllocEx limitations and such.
2782 */
2783 const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk);
2784 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]);
2785 PPGMREGMMIO2RANGE pNew = NULL;
2786 if ( iChunk + 1 < cChunks
2787 || cbRange >= _1M)
2788 {
2789 /*
2790 * Allocate memory for the registration structure.
2791 */
2792 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2793 size_t const cbChunk = (1 + cChunkPages + 1) << PAGE_SHIFT;
2794 AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE);
2795 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
2796 AssertBreakStmt(paChunkPages, rc = VERR_NO_TMP_MEMORY);
2797 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
2798 void *pvChunk = NULL;
2799 rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages);
2800 AssertLogRelMsgRCBreakStmt(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages), RTMemTmpFree(paChunkPages));
2801
2802 Assert(R0PtrChunk != NIL_RTR0PTR);
2803 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
2804
2805 pNew = (PPGMREGMMIO2RANGE)pvChunk;
2806 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING;
2807 pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2808
2809 RTMemTmpFree(paChunkPages);
2810 }
2811 /*
2812 * Not so big, do a one time hyper allocation.
2813 */
2814 else
2815 {
2816 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2817 AssertLogRelMsgRCBreak(rc, ("cbRange=%zu\n", cbRange));
2818
2819 /*
2820 * Initialize allocation specific items.
2821 */
2822 //pNew->RamRange.fFlags = 0;
2823 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2824 }
2825
2826 /*
2827 * Initialize the registration structure (caller does specific bits).
2828 */
2829 pNew->pDevInsR3 = pDevIns;
2830 //pNew->pvR3 = NULL;
2831 //pNew->pNext = NULL;
2832 if (iChunk == 0)
2833 pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK;
2834 if (iChunk + 1 == cChunks)
2835 pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK;
2836 if (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2837 pNew->fFlags |= PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES;
2838 pNew->iSubDev = iSubDev;
2839 pNew->iRegion = iRegion;
2840 pNew->idSavedState = UINT8_MAX;
2841 pNew->idMmio2 = idMmio2;
2842 //pNew->pPhysHandlerR3 = NULL;
2843 //pNew->paLSPages = NULL;
2844 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2845 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2846 pNew->RamRange.pszDesc = pszDesc;
2847 pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT;
2848 pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX;
2849 pNew->RamRange.uNemRange = UINT32_MAX;
2850 //pNew->RamRange.pvR3 = NULL;
2851 //pNew->RamRange.paLSPages = NULL;
2852
2853 *ppNext = pNew;
2854 ASMCompilerBarrier();
2855 cPagesLeft -= cPagesTrackedByChunk;
2856 ppNext = &pNew->pNextR3;
2857
2858 /*
2859 * Pre-allocate a handler if we're tracking dirty pages, unless NEM takes care of this.
2860 */
2861 if ( (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES)
2862#ifdef VBOX_WITH_PGM_NEM_MODE
2863 && !NEMR3IsMmio2DirtyPageTrackingSupported(pVM)
2864#endif
2865 )
2866
2867 {
2868 rc = pgmHandlerPhysicalExCreate(pVM, pVM->pgm.s.hMmio2DirtyPhysHandlerType,
2869 (RTR3PTR)(uintptr_t)idMmio2, idMmio2, idMmio2, pszDesc, &pNew->pPhysHandlerR3);
2870 AssertLogRelMsgRCBreak(rc, ("idMmio2=%zu\n", idMmio2));
2871 }
2872 }
2873 Assert(cPagesLeft == 0);
2874
2875 if (RT_SUCCESS(rc))
2876 {
2877 Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
2878 return VINF_SUCCESS;
2879 }
2880
2881 /*
2882 * Free floating ranges.
2883 */
2884 while (*ppHeadRet)
2885 {
2886 PPGMREGMMIO2RANGE pFree = *ppHeadRet;
2887 *ppHeadRet = pFree->pNextR3;
2888
2889 if (pFree->pPhysHandlerR3)
2890 {
2891 pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3);
2892 pFree->pPhysHandlerR3 = NULL;
2893 }
2894
2895 if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
2896 {
2897 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]);
2898 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
2899 SUPR3PageFreeEx(pFree, cChunkPages);
2900 }
2901 }
2902
2903 return rc;
2904}
2905
2906
2907/**
2908 * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a
2909 * complete registration entry into the lists and lookup tables.
2910 *
2911 * @param pVM The cross context VM structure.
2912 * @param pNew The new MMIO / MMIO2 registration to link.
2913 */
2914static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew)
2915{
2916 Assert(pNew->idMmio2 != UINT8_MAX);
2917
2918 /*
2919 * Link it into the list (order doesn't matter, so insert it at the head).
2920 *
2921 * Note! The range we're linking may consist of multiple chunks, so we
2922 * have to find the last one.
2923 */
2924 PPGMREGMMIO2RANGE pLast = pNew;
2925 for (pLast = pNew; ; pLast = pLast->pNextR3)
2926 {
2927 if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2928 break;
2929 Assert(pLast->pNextR3);
2930 Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3);
2931 Assert(pLast->pNextR3->iSubDev == pNew->iSubDev);
2932 Assert(pLast->pNextR3->iRegion == pNew->iRegion);
2933 Assert(pLast->pNextR3->idMmio2 == pLast->idMmio2 + 1);
2934 }
2935
2936 PGM_LOCK_VOID(pVM);
2937
2938 /* Link in the chain of ranges at the head of the list. */
2939 pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3;
2940 pVM->pgm.s.pRegMmioRangesR3 = pNew;
2941
2942 /* Insert the MMIO2 range/page IDs. */
2943 uint8_t idMmio2 = pNew->idMmio2;
2944 for (;;)
2945 {
2946 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL);
2947 Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR);
2948 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew;
2949 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange);
2950 if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
2951 break;
2952 pNew = pNew->pNextR3;
2953 idMmio2++;
2954 }
2955
2956 pgmPhysInvalidatePageMapTLB(pVM);
2957 PGM_UNLOCK(pVM);
2958}
2959
2960
2961/**
2962 * Allocate and register an MMIO2 region.
2963 *
2964 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2965 * associated with a device. It is also non-shared memory with a permanent
2966 * ring-3 mapping and page backing (presently).
2967 *
2968 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2969 * the VM, in which case we'll drop the base memory pages. Presently we will
2970 * make no attempt to preserve anything that happens to be present in the base
2971 * memory that is replaced, this is of course incorrect but it's too much
2972 * effort.
2973 *
2974 * @returns VBox status code.
2975 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2976 * memory.
2977 * @retval VERR_ALREADY_EXISTS if the region already exists.
2978 *
2979 * @param pVM The cross context VM structure.
2980 * @param pDevIns The device instance owning the region.
2981 * @param iSubDev The sub-device number.
2982 * @param iRegion The region number. If the MMIO2 memory is a PCI
2983 * I/O region this number has to be the number of that
2984 * region. Otherwise it can be any number save
2985 * UINT8_MAX.
2986 * @param cb The size of the region. Must be page aligned.
2987 * @param fFlags Reserved for future use, must be zero.
2988 * @param pszDesc The description.
2989 * @param ppv Where to store the pointer to the ring-3 mapping of
2990 * the memory.
2991 * @param phRegion Where to return the MMIO2 region handle. Optional.
2992 * @thread EMT
2993 */
2994VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb,
2995 uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion)
2996{
2997 /*
2998 * Validate input.
2999 */
3000 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
3001 *ppv = NULL;
3002 if (phRegion)
3003 {
3004 AssertPtrReturn(phRegion, VERR_INVALID_POINTER);
3005 *phRegion = NIL_PGMMMIO2HANDLE;
3006 }
3007 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3008 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3009 AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER);
3010 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
3011 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
3012 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
3013 AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS);
3014 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3015 AssertReturn(cb, VERR_INVALID_PARAMETER);
3016 AssertReturn(!(fFlags & ~PGMPHYS_MMIO2_FLAGS_VALID_MASK), VERR_INVALID_FLAGS);
3017
3018 const uint32_t cPages = cb >> PAGE_SHIFT;
3019 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
3020 AssertLogRelReturn(cPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE);
3021 AssertLogRelReturn(cPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE);
3022
3023 /*
3024 * For the 2nd+ instance, mangle the description string so it's unique.
3025 */
3026 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
3027 {
3028 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
3029 if (!pszDesc)
3030 return VERR_NO_MEMORY;
3031 }
3032
3033 /*
3034 * Allocate an MMIO2 range ID (not freed on failure).
3035 *
3036 * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so
3037 * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES.
3038 */
3039 unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL);
3040
3041 PGM_LOCK_VOID(pVM);
3042 AssertCompile(PGM_MMIO2_MAX_RANGES < 255);
3043 uint8_t const idMmio2 = pVM->pgm.s.cMmio2Regions + 1;
3044 unsigned const cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks;
3045 if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES)
3046 {
3047 PGM_UNLOCK(pVM);
3048 AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES);
3049 }
3050 pVM->pgm.s.cMmio2Regions = cNewMmio2Regions;
3051 PGM_UNLOCK(pVM);
3052
3053 /*
3054 * Try reserve and allocate the backing memory first as this is what is
3055 * most likely to fail.
3056 */
3057 int rc = VINF_SUCCESS;
3058#ifdef VBOX_WITH_PGM_NEM_MODE
3059 if (!pVM->pgm.s.fNemMode)
3060#endif
3061 rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
3062 if (RT_SUCCESS(rc))
3063 {
3064 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
3065 if (RT_SUCCESS(rc))
3066 {
3067 void *pvPages;
3068#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3069 RTR0PTR pvPagesR0 = NIL_RTR0PTR;
3070#endif
3071
3072#ifdef VBOX_WITH_PGM_NEM_MODE
3073 if (!pVM->pgm.s.fNemMode)
3074#endif
3075 {
3076#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3077 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages);
3078#else
3079 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
3080#endif
3081 }
3082#ifdef VBOX_WITH_PGM_NEM_MODE
3083 else
3084 {
3085 rc = SUPR3PageAlloc(cPages, &pvPages);
3086 if (RT_SUCCESS(rc))
3087 for (uint32_t i = 0; i < cPages; i++)
3088 paPages[i].Phys = UINT64_C(0x0000fffffffff000);
3089 }
3090#endif
3091 if (RT_SUCCESS(rc))
3092 {
3093 memset(pvPages, 0, cPages * PAGE_SIZE);
3094
3095 /*
3096 * Create the registered MMIO range record for it.
3097 */
3098 PPGMREGMMIO2RANGE pNew;
3099 rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, fFlags, idMmio2, pszDesc, &pNew);
3100 if (RT_SUCCESS(rc))
3101 {
3102 if (phRegion)
3103 *phRegion = idMmio2; /* The ID of the first chunk. */
3104
3105 uint32_t iSrcPage = 0;
3106 uint8_t *pbCurPages = (uint8_t *)pvPages;
3107 for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3)
3108 {
3109 pCur->pvR3 = pbCurPages;
3110#ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM
3111 pCur->pvR0 = pvPagesR0 + (iSrcPage << PAGE_SHIFT);
3112#endif
3113 pCur->RamRange.pvR3 = pbCurPages;
3114
3115 uint32_t iDstPage = pCur->RamRange.cb >> X86_PAGE_SHIFT;
3116 while (iDstPage-- > 0)
3117 {
3118 PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage],
3119 paPages[iDstPage + iSrcPage].Phys,
3120 PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage),
3121 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
3122 }
3123
3124 /* advance. */
3125 iSrcPage += pCur->RamRange.cb >> X86_PAGE_SHIFT;
3126 pbCurPages += pCur->RamRange.cb;
3127 }
3128
3129 RTMemTmpFree(paPages);
3130
3131 /*
3132 * Update the page count stats, link the registration and we're done.
3133 */
3134 pVM->pgm.s.cAllPages += cPages;
3135 pVM->pgm.s.cPrivatePages += cPages;
3136
3137 pgmR3PhysMmio2Link(pVM, pNew);
3138
3139 *ppv = pvPages;
3140 return VINF_SUCCESS;
3141 }
3142
3143 SUPR3PageFreeEx(pvPages, cPages);
3144 }
3145 }
3146 RTMemTmpFree(paPages);
3147 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
3148 }
3149 if (pDevIns->iInstance > 0)
3150 MMR3HeapFree((void *)pszDesc);
3151 return rc;
3152}
3153
3154
3155/**
3156 * Deregisters and frees an MMIO2 region.
3157 *
3158 * Any physical access handlers registered for the region must be deregistered
3159 * before calling this function.
3160 *
3161 * @returns VBox status code.
3162 * @param pVM The cross context VM structure.
3163 * @param pDevIns The device instance owning the region.
3164 * @param hMmio2 The MMIO2 handle to deregister, or NIL if all
3165 * regions for the given device is to be deregistered.
3166 */
3167VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3168{
3169 /*
3170 * Validate input.
3171 */
3172 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3173 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3174
3175 /*
3176 * The loop here scanning all registrations will make sure that multi-chunk ranges
3177 * get properly deregistered, though it's original purpose was the wildcard iRegion.
3178 */
3179 PGM_LOCK_VOID(pVM);
3180 int rc = VINF_SUCCESS;
3181 unsigned cFound = 0;
3182 PPGMREGMMIO2RANGE pPrev = NULL;
3183 PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3;
3184 while (pCur)
3185 {
3186 uint32_t const fFlags = pCur->fFlags;
3187 if ( pCur->pDevInsR3 == pDevIns
3188 && ( hMmio2 == NIL_PGMMMIO2HANDLE
3189 || pCur->idMmio2 == hMmio2))
3190 {
3191 cFound++;
3192
3193 /*
3194 * Unmap it if it's mapped.
3195 */
3196 if (fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3197 {
3198 int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys);
3199 AssertRC(rc2);
3200 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3201 rc = rc2;
3202 }
3203
3204 /*
3205 * Unlink it
3206 */
3207 PPGMREGMMIO2RANGE pNext = pCur->pNextR3;
3208 if (pPrev)
3209 pPrev->pNextR3 = pNext;
3210 else
3211 pVM->pgm.s.pRegMmioRangesR3 = pNext;
3212 pCur->pNextR3 = NULL;
3213
3214 uint8_t idMmio2 = pCur->idMmio2;
3215 Assert(idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3));
3216 if (idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3))
3217 {
3218 Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur);
3219 pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL;
3220 pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR;
3221 }
3222
3223 /*
3224 * Free the memory.
3225 */
3226 uint32_t const cPages = pCur->cbReal >> PAGE_SHIFT;
3227#ifdef VBOX_WITH_PGM_NEM_MODE
3228 if (!pVM->pgm.s.fNemMode)
3229#endif
3230 {
3231 int rc2 = SUPR3PageFreeEx(pCur->pvR3, cPages);
3232 AssertRC(rc2);
3233 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3234 rc = rc2;
3235
3236 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
3237 AssertRC(rc2);
3238 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3239 rc = rc2;
3240 }
3241#ifdef VBOX_WITH_PGM_NEM_MODE
3242 else
3243 {
3244 int rc2 = SUPR3PageFree(pCur->pvR3, cPages);
3245 AssertRC(rc2);
3246 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3247 rc = rc2;
3248 }
3249#endif
3250
3251 if (pCur->pPhysHandlerR3)
3252 {
3253 pgmHandlerPhysicalExDestroy(pVM, pCur->pPhysHandlerR3);
3254 pCur->pPhysHandlerR3 = NULL;
3255 }
3256
3257 /* we're leaking hyper memory here if done at runtime. */
3258#ifdef VBOX_STRICT
3259 VMSTATE const enmState = VMR3GetState(pVM);
3260 AssertMsg( enmState == VMSTATE_POWERING_OFF
3261 || enmState == VMSTATE_POWERING_OFF_LS
3262 || enmState == VMSTATE_OFF
3263 || enmState == VMSTATE_OFF_LS
3264 || enmState == VMSTATE_DESTROYING
3265 || enmState == VMSTATE_TERMINATED
3266 || enmState == VMSTATE_CREATING
3267 , ("%s\n", VMR3GetStateName(enmState)));
3268#endif
3269
3270 if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING)
3271 {
3272 const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPages]);
3273 size_t const cChunkPages = RT_ALIGN_Z(cbRange, PAGE_SIZE) >> PAGE_SHIFT;
3274 SUPR3PageFreeEx(pCur, cChunkPages);
3275 }
3276 /*else
3277 {
3278 rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call.
3279 AssertRCReturn(rc, rc);
3280 } */
3281
3282
3283 /* update page count stats */
3284 pVM->pgm.s.cAllPages -= cPages;
3285 pVM->pgm.s.cPrivatePages -= cPages;
3286
3287 /* next */
3288 pCur = pNext;
3289 if (hMmio2 != NIL_PGMMMIO2HANDLE)
3290 {
3291 if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3292 break;
3293 hMmio2++;
3294 Assert(pCur->idMmio2 == hMmio2);
3295 Assert(pCur->pDevInsR3 == pDevIns);
3296 Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK));
3297 }
3298 }
3299 else
3300 {
3301 pPrev = pCur;
3302 pCur = pCur->pNextR3;
3303 }
3304 }
3305 pgmPhysInvalidatePageMapTLB(pVM);
3306 PGM_UNLOCK(pVM);
3307 return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc;
3308}
3309
3310
3311/**
3312 * Maps a MMIO2 region.
3313 *
3314 * This is typically done when a guest / the bios / state loading changes the
3315 * PCI config. The replacing of base memory has the same restrictions as during
3316 * registration, of course.
3317 *
3318 * @returns VBox status code.
3319 *
3320 * @param pVM The cross context VM structure.
3321 * @param pDevIns The device instance owning the region.
3322 * @param hMmio2 The handle of the region to map.
3323 * @param GCPhys The guest-physical address to be remapped.
3324 */
3325VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3326{
3327 /*
3328 * Validate input.
3329 *
3330 * Note! It's safe to walk the MMIO/MMIO2 list since registrations only
3331 * happens during VM construction.
3332 */
3333 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3334 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3335 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
3336 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3337 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3338 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3339
3340 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3341 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3342 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3343
3344 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3345 RTGCPHYS cbRange = 0;
3346 for (;;)
3347 {
3348 AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER);
3349 Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS);
3350 Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS);
3351 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3352 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3353 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3354 cbRange += pLastMmio->RamRange.cb;
3355 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3356 break;
3357 pLastMmio = pLastMmio->pNextR3;
3358 }
3359
3360 RTGCPHYS GCPhysLast = GCPhys + cbRange - 1;
3361 AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3362
3363 /*
3364 * Find our location in the ram range list, checking for restriction
3365 * we don't bother implementing yet (partially overlapping, multiple
3366 * ram ranges).
3367 */
3368 PGM_LOCK_VOID(pVM);
3369
3370 AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3371
3372 bool fRamExists = false;
3373 PPGMRAMRANGE pRamPrev = NULL;
3374 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3375 while (pRam && GCPhysLast >= pRam->GCPhys)
3376 {
3377 if ( GCPhys <= pRam->GCPhysLast
3378 && GCPhysLast >= pRam->GCPhys)
3379 {
3380 /* Completely within? */
3381 AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys
3382 && GCPhysLast <= pRam->GCPhysLast,
3383 ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n",
3384 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc,
3385 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
3386 PGM_UNLOCK(pVM),
3387 VERR_PGM_RAM_CONFLICT);
3388
3389 /* Check that all the pages are RAM pages. */
3390 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3391 uint32_t cPagesLeft = cbRange >> PAGE_SHIFT;
3392 while (cPagesLeft-- > 0)
3393 {
3394 AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
3395 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
3396 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc),
3397 PGM_UNLOCK(pVM),
3398 VERR_PGM_RAM_CONFLICT);
3399 pPage++;
3400 }
3401
3402 /* There can only be one MMIO/MMIO2 chunk matching here! */
3403 AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3404 ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n",
3405 GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3406 PGM_UNLOCK(pVM),
3407 VERR_PGM_PHYS_MMIO_EX_IPE);
3408
3409 fRamExists = true;
3410 break;
3411 }
3412
3413 /* next */
3414 pRamPrev = pRam;
3415 pRam = pRam->pNextR3;
3416 }
3417 Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc));
3418
3419
3420 /*
3421 * Make the changes.
3422 */
3423 RTGCPHYS GCPhysCur = GCPhys;
3424 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3425 {
3426 pCurMmio->RamRange.GCPhys = GCPhysCur;
3427 pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1;
3428 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3429 {
3430 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3431 break;
3432 }
3433 GCPhysCur += pCurMmio->RamRange.cb;
3434 }
3435
3436 if (fRamExists)
3437 {
3438 /*
3439 * Make all the pages in the range MMIO/ZERO pages, freeing any
3440 * RAM pages currently mapped here. This might not be 100% correct
3441 * for PCI memory, but we're doing the same thing for MMIO2 pages.
3442 *
3443 * We replace these MMIO/ZERO pages with real pages in the MMIO2 case.
3444 */
3445 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */
3446 Assert(pFirstMmio->pvR3 == pFirstMmio->RamRange.pvR3);
3447 Assert(pFirstMmio->RamRange.pvR3 != NULL);
3448
3449#ifdef VBOX_WITH_PGM_NEM_MODE
3450 /* We cannot mix MMIO2 into a RAM range in simplified memory mode because pRam->pvR3 can't point
3451 both at the RAM and MMIO2, so we won't ever write & read from the actual MMIO2 memory if we try. */
3452 AssertLogRelMsgReturn(!pVM->pgm.s.fNemMode, ("%s at %RGp-%RGp\n", pFirstMmio->RamRange.pszDesc, GCPhys, GCPhysLast),
3453 VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE);
3454#endif
3455
3456 int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, pFirstMmio->RamRange.pvR3);
3457 AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3458
3459 /* Replace the pages, freeing all present RAM pages. */
3460 PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0];
3461 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3462 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3463 while (cPagesLeft-- > 0)
3464 {
3465 Assert(PGM_PAGE_IS_MMIO(pPageDst));
3466
3467 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
3468 uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc);
3469 PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage);
3470 PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys);
3471 PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2);
3472 PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED);
3473 PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
3474 PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0);
3475 PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0);
3476 /* NEM state is set by pgmR3PhysFreePageRange. */
3477
3478 pVM->pgm.s.cZeroPages--;
3479 GCPhys += PAGE_SIZE;
3480 pPageSrc++;
3481 pPageDst++;
3482 }
3483
3484 /* Flush physical page map TLB. */
3485 pgmPhysInvalidatePageMapTLB(pVM);
3486
3487 /* Force a PGM pool flush as guest ram references have been changed. */
3488 /** @todo not entirely SMP safe; assuming for now the guest takes care of
3489 * this internally (not touch mapped mmio while changing the mapping). */
3490 PVMCPU pVCpu = VMMGetCpu(pVM);
3491 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3492 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3493 }
3494 else
3495 {
3496 /*
3497 * No RAM range, insert the ones prepared during registration.
3498 */
3499 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3500 {
3501#ifdef VBOX_WITH_NATIVE_NEM
3502 /* Tell NEM and get the new NEM state for the pages. */
3503 uint8_t u2NemState = 0;
3504 if (VM_IS_NEM_ENABLED(pVM))
3505 {
3506 int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, pCurMmio->RamRange.GCPhys,
3507 pCurMmio->RamRange.GCPhysLast - pCurMmio->RamRange.GCPhys + 1,
3508 NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3509 | (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3510 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0),
3511 NULL /*pvRam*/, pCurMmio->RamRange.pvR3,
3512 &u2NemState, &pCurMmio->RamRange.uNemRange);
3513 AssertLogRelRCReturnStmt(rc, PGM_UNLOCK(pVM), rc);
3514 }
3515#endif
3516
3517 /* Clear the tracking data of pages we're going to reactivate. */
3518 PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0];
3519 uint32_t cPagesLeft = pCurMmio->RamRange.cb >> PAGE_SHIFT;
3520 while (cPagesLeft-- > 0)
3521 {
3522 PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0);
3523 PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0);
3524#ifdef VBOX_WITH_NATIVE_NEM
3525 PGM_PAGE_SET_NEM_STATE(pPageSrc, u2NemState);
3526#endif
3527 pPageSrc++;
3528 }
3529
3530 /* link in the ram range */
3531 pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev);
3532
3533 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3534 {
3535 Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast);
3536 break;
3537 }
3538 pRamPrev = &pCurMmio->RamRange;
3539 }
3540 }
3541
3542 /*
3543 * If the range have dirty page monitoring enabled, enable that.
3544 *
3545 * We ignore failures here for now because if we fail, the whole mapping
3546 * will have to be reversed and we'll end up with nothing at all on the
3547 * screen and a grumpy guest, whereas if we just go on, we'll only have
3548 * visual distortions to gripe about. There will be something in the
3549 * release log.
3550 */
3551 if ( pFirstMmio->pPhysHandlerR3
3552 && (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3553 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstMmio);
3554
3555 /*
3556 * We're good, set the flags and invalid the mapping TLB.
3557 */
3558 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3559 {
3560 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED;
3561 if (fRamExists)
3562 pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING;
3563 else
3564 pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING;
3565 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3566 break;
3567 }
3568 pgmPhysInvalidatePageMapTLB(pVM);
3569
3570#ifdef VBOX_WITH_NATIVE_NEM
3571 /*
3572 * Late NEM notification.
3573 */
3574 if (VM_IS_NEM_ENABLED(pVM))
3575 {
3576 int rc;
3577 uint32_t fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2;
3578 if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES)
3579 fNemFlags |= NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES;
3580 if (fRamExists)
3581 rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3582 pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL, pFirstMmio->pvR3,
3583 NULL /*puNemRange*/);
3584 else
3585 {
3586 rc = VINF_SUCCESS;
3587 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3588 {
3589 rc = NEMR3NotifyPhysMmioExMapLate(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3590 NULL, pCurMmio->RamRange.pvR3, &pCurMmio->RamRange.uNemRange);
3591 if ((pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) || RT_FAILURE(rc))
3592 break;
3593 }
3594 }
3595 AssertLogRelRCReturnStmt(rc, PGMR3PhysMmio2Unmap(pVM, pDevIns, hMmio2, GCPhys); PGM_UNLOCK(pVM), rc);
3596 }
3597#endif
3598
3599 PGM_UNLOCK(pVM);
3600
3601 return VINF_SUCCESS;
3602}
3603
3604
3605/**
3606 * Unmaps an MMIO2 region.
3607 *
3608 * This is typically done when a guest / the bios / state loading changes the
3609 * PCI config. The replacing of base memory has the same restrictions as during
3610 * registration, of course.
3611 */
3612VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys)
3613{
3614 /*
3615 * Validate input
3616 */
3617 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3618 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3619 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3620 if (GCPhys != NIL_RTGCPHYS)
3621 {
3622 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
3623 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3624 }
3625
3626 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3627 AssertReturn(pFirstMmio, VERR_NOT_FOUND);
3628 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3629
3630 int rc = PGM_LOCK(pVM);
3631 AssertRCReturn(rc, rc);
3632
3633 PPGMREGMMIO2RANGE pLastMmio = pFirstMmio;
3634 RTGCPHYS cbRange = 0;
3635 for (;;)
3636 {
3637 AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3638 AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, PGM_UNLOCK(pVM), VERR_INVALID_PARAMETER);
3639 Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3);
3640 Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev);
3641 Assert(pLastMmio->iRegion == pFirstMmio->iRegion);
3642 cbRange += pLastMmio->RamRange.cb;
3643 if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3644 break;
3645 pLastMmio = pLastMmio->pNextR3;
3646 }
3647
3648 Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n",
3649 pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc));
3650
3651 uint16_t const fOldFlags = pFirstMmio->fFlags;
3652 AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER);
3653
3654 /*
3655 * If monitoring dirty pages, we must deregister the handlers first.
3656 */
3657 if ( pFirstMmio->pPhysHandlerR3
3658 && (fOldFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3659 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstMmio);
3660
3661 /*
3662 * Unmap it.
3663 */
3664 int rcRet = VINF_SUCCESS;
3665#ifdef VBOX_WITH_NATIVE_NEM
3666 uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2
3667 | (fOldFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
3668 ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0);
3669#endif
3670 if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING)
3671 {
3672 /*
3673 * We've replaced RAM, replace with zero pages.
3674 *
3675 * Note! This is where we might differ a little from a real system, because
3676 * it's likely to just show the RAM pages as they were before the
3677 * MMIO/MMIO2 region was mapped here.
3678 */
3679 /* Only one chunk allowed when overlapping! */
3680 Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK);
3681
3682 /* Restore the RAM pages we've replaced. */
3683 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3684 while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast)
3685 pRam = pRam->pNextR3;
3686
3687 PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
3688 uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> PAGE_SHIFT;
3689 pVM->pgm.s.cZeroPages += cPagesLeft; /** @todo not correct for NEM mode */
3690
3691#ifdef VBOX_WITH_NATIVE_NEM
3692 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. Note! we cannot be here in simple memory mode, see mapping function. */
3693 {
3694 uint8_t u2State = UINT8_MAX;
3695 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pFirstMmio->RamRange.GCPhys, pFirstMmio->RamRange.cb,
3696 fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE,
3697 pRam->pvR3
3698 ? (uint8_t *)pRam->pvR3 + pFirstMmio->RamRange.GCPhys - pRam->GCPhys : NULL,
3699 pFirstMmio->pvR3, &u2State);
3700 AssertRCStmt(rc, rcRet = rc);
3701 if (u2State != UINT8_MAX)
3702 pgmPhysSetNemStateForPages(pPageDst, cPagesLeft, u2State);
3703 }
3704#endif
3705
3706 while (cPagesLeft-- > 0)
3707 {
3708 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
3709 pPageDst++;
3710 }
3711
3712 /* Flush physical page map TLB. */
3713 pgmPhysInvalidatePageMapTLB(pVM);
3714
3715 /* Update range state. */
3716 pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3717 pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3718 pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3719 }
3720 else
3721 {
3722 /*
3723 * Unlink the chunks related to the MMIO/MMIO2 region.
3724 */
3725 for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3)
3726 {
3727#ifdef VBOX_WITH_NATIVE_NEM
3728 if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. */
3729 {
3730 uint8_t u2State = UINT8_MAX;
3731 rc = NEMR3NotifyPhysMmioExUnmap(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags,
3732 NULL, pCurMmio->pvR3, &u2State);
3733 AssertRCStmt(rc, rcRet = rc);
3734 if (u2State != UINT8_MAX)
3735 pgmPhysSetNemStateForPages(pCurMmio->RamRange.aPages, pCurMmio->RamRange.cb >> PAGE_SHIFT, u2State);
3736 }
3737#endif
3738 pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange);
3739 pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS;
3740 pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS;
3741 pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED);
3742 if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3743 break;
3744 }
3745 }
3746
3747 /* Force a PGM pool flush as guest ram references have been changed. */
3748 /** @todo not entirely SMP safe; assuming for now the guest takes care
3749 * of this internally (not touch mapped mmio while changing the
3750 * mapping). */
3751 PVMCPU pVCpu = VMMGetCpu(pVM);
3752 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3753 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3754
3755 pgmPhysInvalidatePageMapTLB(pVM);
3756 pgmPhysInvalidRamRangeTlbs(pVM);
3757
3758 PGM_UNLOCK(pVM);
3759 return rcRet;
3760}
3761
3762
3763/**
3764 * Reduces the mapping size of a MMIO2 region.
3765 *
3766 * This is mainly for dealing with old saved states after changing the default
3767 * size of a mapping region. See PGMDevHlpMMIOExReduce and
3768 * PDMPCIDEV::pfnRegionLoadChangeHookR3.
3769 *
3770 * The region must not currently be mapped when making this call. The VM state
3771 * must be state restore or VM construction.
3772 *
3773 * @returns VBox status code.
3774 * @param pVM The cross context VM structure.
3775 * @param pDevIns The device instance owning the region.
3776 * @param hMmio2 The handle of the region to reduce.
3777 * @param cbRegion The new mapping size.
3778 */
3779VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion)
3780{
3781 /*
3782 * Validate input
3783 */
3784 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3785 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
3786 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
3787 AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER);
3788 AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT);
3789 VMSTATE enmVmState = VMR3GetState(pVM);
3790 AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING
3791 || enmVmState == VMSTATE_LOADING,
3792 ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)),
3793 VERR_VM_INVALID_VM_STATE);
3794
3795 int rc = PGM_LOCK(pVM);
3796 AssertRCReturn(rc, rc);
3797
3798 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3799 if (pFirstMmio)
3800 {
3801 Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK);
3802 if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED))
3803 {
3804 /*
3805 * NOTE! Current implementation does not support multiple ranges.
3806 * Implement when there is a real world need and thus a testcase.
3807 */
3808 AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK,
3809 ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags),
3810 rc = VERR_NOT_SUPPORTED);
3811 if (RT_SUCCESS(rc))
3812 {
3813 /*
3814 * Make the change.
3815 */
3816 Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n",
3817 pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion));
3818
3819 AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal,
3820 ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal),
3821 rc = VERR_OUT_OF_RANGE);
3822 if (RT_SUCCESS(rc))
3823 {
3824 pFirstMmio->RamRange.cb = cbRegion;
3825 }
3826 }
3827 }
3828 else
3829 rc = VERR_WRONG_ORDER;
3830 }
3831 else
3832 rc = VERR_NOT_FOUND;
3833
3834 PGM_UNLOCK(pVM);
3835 return rc;
3836}
3837
3838
3839/**
3840 * Validates @a hMmio2, making sure it belongs to @a pDevIns.
3841 *
3842 * @returns VBox status code.
3843 * @param pVM The cross context VM structure.
3844 * @param pDevIns The device which allegedly owns @a hMmio2.
3845 * @param hMmio2 The handle to validate.
3846 */
3847VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3848{
3849 /*
3850 * Validate input
3851 */
3852 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
3853 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
3854
3855 /*
3856 * Just do this the simple way. No need for locking as this is only taken at
3857 */
3858 PGM_LOCK_VOID(pVM);
3859 PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3860 PGM_UNLOCK(pVM);
3861 AssertReturn(pFirstMmio, VERR_INVALID_HANDLE);
3862 AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE);
3863 return VINF_SUCCESS;
3864}
3865
3866
3867/**
3868 * Gets the mapping address of an MMIO2 region.
3869 *
3870 * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle.
3871 *
3872 * @param pVM The cross context VM structure.
3873 * @param pDevIns The device owning the MMIO2 handle.
3874 * @param hMmio2 The region handle.
3875 */
3876VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2)
3877{
3878 AssertPtrReturn(pDevIns, NIL_RTGCPHYS);
3879
3880 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3881 AssertReturn(pFirstRegMmio, NIL_RTGCPHYS);
3882
3883 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
3884 return pFirstRegMmio->RamRange.GCPhys;
3885 return NIL_RTGCPHYS;
3886}
3887
3888
3889/**
3890 * Worker for PGMR3PhysMmio2QueryAndResetDirtyBitmap.
3891 *
3892 * Called holding the PGM lock.
3893 */
3894static int pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
3895 void *pvBitmap, size_t cbBitmap)
3896{
3897 /*
3898 * Continue validation.
3899 */
3900 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
3901 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
3902 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3903 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK),
3904 VERR_INVALID_FUNCTION);
3905 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
3906
3907 RTGCPHYS cbTotal = 0;
3908 uint16_t fTotalDirty = 0;
3909 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
3910 {
3911 cbTotal += pCur->RamRange.cb; /* Not using cbReal here, because NEM is not in on the creating, only the mapping. */
3912 fTotalDirty |= pCur->fFlags;
3913 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3914 break;
3915 pCur = pCur->pNextR3;
3916 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
3917 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
3918 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES,
3919 VERR_INTERNAL_ERROR_4);
3920 }
3921 size_t const cbTotalBitmap = RT_ALIGN_T(cbTotal, PAGE_SIZE * 64, RTGCPHYS) / PAGE_SIZE / 8;
3922
3923 if (cbBitmap)
3924 {
3925 AssertPtrReturn(pvBitmap, VERR_INVALID_POINTER);
3926 AssertReturn(RT_ALIGN_P(pvBitmap, sizeof(uint64_t)) == pvBitmap, VERR_INVALID_POINTER);
3927 AssertReturn(cbBitmap == cbTotalBitmap, VERR_INVALID_PARAMETER);
3928 }
3929
3930 /*
3931 * Do the work.
3932 */
3933 int rc = VINF_SUCCESS;
3934 if (pvBitmap)
3935 {
3936#ifdef VBOX_WITH_PGM_NEM_MODE
3937 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
3938 {
3939 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
3940 uint8_t *pbBitmap = (uint8_t *)pvBitmap;
3941 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3942 {
3943 size_t const cbBitmapChunk = pCur->RamRange.cb / PAGE_SIZE / 8;
3944 Assert((RTGCPHYS)cbBitmapChunk * PAGE_SIZE * 8 == pCur->RamRange.cb);
3945 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
3946 pCur->RamRange.uNemRange, pbBitmap, cbBitmapChunk);
3947 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3948 rc = rc2;
3949 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3950 break;
3951 pbBitmap += pCur->RamRange.cb / PAGE_SIZE / 8;
3952 }
3953 }
3954 else
3955#endif
3956 if (fTotalDirty & PGMREGMMIO2RANGE_F_IS_DIRTY)
3957 {
3958 if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3959 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
3960 {
3961 /*
3962 * Reset each chunk, gathering dirty bits.
3963 */
3964 RT_BZERO(pvBitmap, cbBitmap); /* simpler for now. */
3965 uint32_t iPageNo = 0;
3966 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3967 {
3968 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3969 {
3970 int rc2 = pgmHandlerPhysicalResetMmio2WithBitmap(pVM, pCur->RamRange.GCPhys, pvBitmap, iPageNo);
3971 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
3972 rc = rc2;
3973 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3974 }
3975 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3976 break;
3977 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
3978 }
3979 }
3980 else
3981 {
3982 /*
3983 * If not mapped or tracking is disabled, we return the
3984 * PGMREGMMIO2RANGE_F_IS_DIRTY status for all pages. We cannot
3985 * get more accurate data than that after unmapping or disabling.
3986 */
3987 RT_BZERO(pvBitmap, cbBitmap);
3988 uint32_t iPageNo = 0;
3989 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
3990 {
3991 if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY)
3992 {
3993 ASMBitSetRange(pvBitmap, iPageNo, iPageNo + (pCur->RamRange.cb >> PAGE_SHIFT));
3994 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
3995 }
3996 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
3997 break;
3998 iPageNo += pCur->RamRange.cb >> PAGE_SHIFT;
3999 }
4000 }
4001 }
4002 /*
4003 * No dirty chunks.
4004 */
4005 else
4006 RT_BZERO(pvBitmap, cbBitmap);
4007 }
4008 /*
4009 * No bitmap. Reset the region if tracking is currently enabled.
4010 */
4011 else if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4012 == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4013 {
4014#ifdef VBOX_WITH_PGM_NEM_MODE
4015 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4016 {
4017 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4018 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4019 {
4020 int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb,
4021 pCur->RamRange.uNemRange, NULL, 0);
4022 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4023 rc = rc2;
4024 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4025 break;
4026 }
4027 }
4028 else
4029#endif
4030 {
4031 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3)
4032 {
4033 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY;
4034 int rc2 = PGMHandlerPhysicalReset(pVM, pCur->RamRange.GCPhys);
4035 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
4036 rc = rc2;
4037 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4038 break;
4039 }
4040 }
4041 }
4042
4043 return rc;
4044}
4045
4046
4047/**
4048 * Queries the dirty page bitmap and resets the monitoring.
4049 *
4050 * The PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES flag must be specified when
4051 * creating the range for this to work.
4052 *
4053 * @returns VBox status code.
4054 * @retval VERR_INVALID_FUNCTION if not created using
4055 * PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES.
4056 * @param pVM The cross context VM structure.
4057 * @param pDevIns The device owning the MMIO2 handle.
4058 * @param hMmio2 The region handle.
4059 * @param pvBitmap The output bitmap. Must be 8-byte aligned. Ignored
4060 * when @a cbBitmap is zero.
4061 * @param cbBitmap The size of the bitmap. Must be the size of the whole
4062 * MMIO2 range, rounded up to the nearest 8 bytes.
4063 * When zero only a reset is done.
4064 */
4065VMMR3_INT_DECL(int) PGMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2,
4066 void *pvBitmap, size_t cbBitmap)
4067{
4068 /*
4069 * Do some basic validation before grapping the PGM lock and continuing.
4070 */
4071 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4072 AssertReturn(RT_ALIGN_Z(cbBitmap, sizeof(uint64_t)) == cbBitmap, VERR_INVALID_PARAMETER);
4073 int rc = PGM_LOCK(pVM);
4074 if (RT_SUCCESS(rc))
4075 {
4076 STAM_PROFILE_START(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4077 rc = pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(pVM, pDevIns, hMmio2, pvBitmap, cbBitmap);
4078 STAM_PROFILE_STOP(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a);
4079 PGM_UNLOCK(pVM);
4080 }
4081 return rc;
4082}
4083
4084/**
4085 * Worker for PGMR3PhysMmio2ControlDirtyPageTracking
4086 *
4087 * Called owning the PGM lock.
4088 */
4089static int pgmR3PhysMmio2ControlDirtyPageTrackingLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4090{
4091 /*
4092 * Continue validation.
4093 */
4094 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4095 AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE);
4096 AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4097 == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)
4098 , VERR_INVALID_FUNCTION);
4099 AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER);
4100
4101#ifdef VBOX_WITH_PGM_NEM_MODE
4102 /*
4103 * This is a nop if NEM is responsible for doing the tracking, we simply
4104 * leave the tracking on all the time there.
4105 */
4106 if (pFirstRegMmio->pPhysHandlerR3 == NULL)
4107 {
4108 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4);
4109 return VINF_SUCCESS;
4110 }
4111#endif
4112
4113 /*
4114 * Anyting needing doing?
4115 */
4116 if (fEnabled != RT_BOOL(pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED))
4117 {
4118 LogFlowFunc(("fEnabled=%RTbool %s\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4119
4120 /*
4121 * Update the PGMREGMMIO2RANGE_F_TRACKING_ENABLED flag.
4122 */
4123 for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;)
4124 {
4125 if (fEnabled)
4126 pCur->fFlags |= PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4127 else
4128 pCur->fFlags &= ~PGMREGMMIO2RANGE_F_TRACKING_ENABLED;
4129 if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK)
4130 break;
4131 pCur = pCur->pNextR3;
4132 AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5);
4133 AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK))
4134 == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES
4135 , VERR_INTERNAL_ERROR_4);
4136 }
4137
4138 /*
4139 * Enable/disable handlers if currently mapped.
4140 *
4141 * We ignore status codes here as we've already changed the flags and
4142 * returning a failure status now would be confusing. Besides, the two
4143 * functions will continue past failures. As argued in the mapping code,
4144 * it's in the release log.
4145 */
4146 if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)
4147 {
4148 if (fEnabled)
4149 pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstRegMmio);
4150 else
4151 pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstRegMmio);
4152 }
4153 }
4154 else
4155 LogFlowFunc(("fEnabled=%RTbool %s - no change\n", fEnabled, pFirstRegMmio->RamRange.pszDesc));
4156
4157 return VINF_SUCCESS;
4158}
4159
4160
4161/**
4162 * Controls the dirty page tracking for an MMIO2 range.
4163 *
4164 * @returns VBox status code.
4165 * @param pVM The cross context VM structure.
4166 * @param pDevIns The device owning the MMIO2 memory.
4167 * @param hMmio2 The handle of the region.
4168 * @param fEnabled The new tracking state.
4169 */
4170VMMR3_INT_DECL(int) PGMR3PhysMmio2ControlDirtyPageTracking(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled)
4171{
4172 /*
4173 * Do some basic validation before grapping the PGM lock and continuing.
4174 */
4175 AssertPtrReturn(pDevIns, VERR_INVALID_POINTER);
4176 int rc = PGM_LOCK(pVM);
4177 if (RT_SUCCESS(rc))
4178 {
4179 rc = pgmR3PhysMmio2ControlDirtyPageTrackingLocked(pVM, pDevIns, hMmio2, fEnabled);
4180 PGM_UNLOCK(pVM);
4181 }
4182 return rc;
4183}
4184
4185
4186/**
4187 * Changes the region number of an MMIO2 region.
4188 *
4189 * This is only for dealing with save state issues, nothing else.
4190 *
4191 * @return VBox status code.
4192 *
4193 * @param pVM The cross context VM structure.
4194 * @param pDevIns The device owning the MMIO2 memory.
4195 * @param hMmio2 The handle of the region.
4196 * @param iNewRegion The new region index.
4197 *
4198 * @thread EMT(0)
4199 * @sa @bugref{9359}
4200 */
4201VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion)
4202{
4203 /*
4204 * Validate input.
4205 */
4206 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
4207 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE);
4208 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4209 AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE);
4210 AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
4211
4212 AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE);
4213
4214 int rc = PGM_LOCK(pVM);
4215 AssertRCReturn(rc, rc);
4216
4217 PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2);
4218 AssertReturnStmt(pFirstRegMmio, PGM_UNLOCK(pVM), VERR_NOT_FOUND);
4219 AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL,
4220 PGM_UNLOCK(pVM), VERR_RESOURCE_IN_USE);
4221
4222 /*
4223 * Make the change.
4224 */
4225 pFirstRegMmio->iRegion = (uint8_t)iNewRegion;
4226
4227 PGM_UNLOCK(pVM);
4228 return VINF_SUCCESS;
4229}
4230
4231
4232
4233/*********************************************************************************************************************************
4234* ROM *
4235*********************************************************************************************************************************/
4236
4237/**
4238 * Worker for PGMR3PhysRomRegister.
4239 *
4240 * This is here to simplify lock management, i.e. the caller does all the
4241 * locking and we can simply return without needing to remember to unlock
4242 * anything first.
4243 *
4244 * @returns VBox status code.
4245 * @param pVM The cross context VM structure.
4246 * @param pDevIns The device instance owning the ROM.
4247 * @param GCPhys First physical address in the range.
4248 * Must be page aligned!
4249 * @param cb The size of the range (in bytes).
4250 * Must be page aligned!
4251 * @param pvBinary Pointer to the binary data backing the ROM image.
4252 * @param cbBinary The size of the binary data pvBinary points to.
4253 * This must be less or equal to @a cb.
4254 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
4255 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
4256 * @param pszDesc Pointer to description string. This must not be freed.
4257 */
4258static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4259 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4260{
4261 /*
4262 * Validate input.
4263 */
4264 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
4265 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
4266 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
4267 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4268 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4269 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
4270 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
4271 AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
4272 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
4273
4274 const uint32_t cPages = cb >> PAGE_SHIFT;
4275
4276 /*
4277 * Find the ROM location in the ROM list first.
4278 */
4279 PPGMROMRANGE pRomPrev = NULL;
4280 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
4281 while (pRom && GCPhysLast >= pRom->GCPhys)
4282 {
4283 if ( GCPhys <= pRom->GCPhysLast
4284 && GCPhysLast >= pRom->GCPhys)
4285 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
4286 GCPhys, GCPhysLast, pszDesc,
4287 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
4288 VERR_PGM_RAM_CONFLICT);
4289 /* next */
4290 pRomPrev = pRom;
4291 pRom = pRom->pNextR3;
4292 }
4293
4294 /*
4295 * Find the RAM location and check for conflicts.
4296 *
4297 * Conflict detection is a bit different than for RAM registration since a
4298 * ROM can be located within a RAM range. So, what we have to check for is
4299 * other memory types (other than RAM that is) and that we don't span more
4300 * than one RAM range (lazy).
4301 */
4302 bool fRamExists = false;
4303 PPGMRAMRANGE pRamPrev = NULL;
4304 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
4305 while (pRam && GCPhysLast >= pRam->GCPhys)
4306 {
4307 if ( GCPhys <= pRam->GCPhysLast
4308 && GCPhysLast >= pRam->GCPhys)
4309 {
4310 /* completely within? */
4311 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
4312 && GCPhysLast <= pRam->GCPhysLast,
4313 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
4314 GCPhys, GCPhysLast, pszDesc,
4315 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
4316 VERR_PGM_RAM_CONFLICT);
4317 fRamExists = true;
4318 break;
4319 }
4320
4321 /* next */
4322 pRamPrev = pRam;
4323 pRam = pRam->pNextR3;
4324 }
4325 if (fRamExists)
4326 {
4327 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
4328 uint32_t cPagesLeft = cPages;
4329 while (cPagesLeft-- > 0)
4330 {
4331 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
4332 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
4333 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
4334 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
4335 Assert(PGM_PAGE_IS_ZERO(pPage) || PGM_IS_IN_NEM_MODE(pVM));
4336 pPage++;
4337 }
4338 }
4339
4340 /*
4341 * Update the base memory reservation if necessary.
4342 */
4343 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
4344 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4345 cExtraBaseCost += cPages;
4346 if (cExtraBaseCost)
4347 {
4348 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
4349 if (RT_FAILURE(rc))
4350 return rc;
4351 }
4352
4353#ifdef VBOX_WITH_NATIVE_NEM
4354 /*
4355 * Early NEM notification before we've made any changes or anything.
4356 */
4357 uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0)
4358 | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0);
4359 uint8_t u2NemState = UINT8_MAX;
4360 if (VM_IS_NEM_ENABLED(pVM))
4361 {
4362 int rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cPages << PAGE_SHIFT,
4363 fRamExists ? PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhys) : NULL,
4364 fNemNotify, &u2NemState);
4365 AssertLogRelRCReturn(rc, rc);
4366 }
4367#endif
4368
4369 /*
4370 * Allocate memory for the virgin copy of the RAM. In simplified memory mode,
4371 * we allocate memory for any ad-hoc RAM range and for shadow pages.
4372 */
4373 PGMMALLOCATEPAGESREQ pReq = NULL;
4374#ifdef VBOX_WITH_PGM_NEM_MODE
4375 void *pvRam = NULL;
4376 void *pvAlt = NULL;
4377 if (pVM->pgm.s.fNemMode)
4378 {
4379 if (!fRamExists)
4380 {
4381 int rc = SUPR3PageAlloc(cPages, &pvRam);
4382 if (RT_FAILURE(rc))
4383 return rc;
4384 }
4385 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4386 {
4387 int rc = SUPR3PageAlloc(cPages, &pvAlt);
4388 if (RT_FAILURE(rc))
4389 {
4390 if (pvRam)
4391 SUPR3PageFree(pvRam, cPages);
4392 return rc;
4393 }
4394 }
4395 }
4396 else
4397#endif
4398 {
4399 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
4400 AssertRCReturn(rc, rc);
4401
4402 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4403 {
4404 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
4405 pReq->aPages[iPage].fZeroed = false;
4406 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
4407 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
4408 }
4409
4410 rc = GMMR3AllocatePagesPerform(pVM, pReq);
4411 if (RT_FAILURE(rc))
4412 {
4413 GMMR3AllocatePagesCleanup(pReq);
4414 return rc;
4415 }
4416 }
4417
4418 /*
4419 * Allocate the new ROM range and RAM range (if necessary).
4420 */
4421 PPGMROMRANGE pRomNew;
4422 int rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
4423 if (RT_SUCCESS(rc))
4424 {
4425 PPGMRAMRANGE pRamNew = NULL;
4426 if (!fRamExists)
4427 rc = MMHyperAlloc(pVM, RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
4428 if (RT_SUCCESS(rc))
4429 {
4430 /*
4431 * Initialize and insert the RAM range (if required).
4432 */
4433 uint32_t const idxFirstRamPage = fRamExists ? (GCPhys - pRam->GCPhys) >> PAGE_SHIFT : 0;
4434 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
4435 if (!fRamExists)
4436 {
4437 /* New RAM range. */
4438 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
4439 pRamNew->GCPhys = GCPhys;
4440 pRamNew->GCPhysLast = GCPhysLast;
4441 pRamNew->cb = cb;
4442 pRamNew->pszDesc = pszDesc;
4443 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
4444 pRamNew->pvR3 = NULL;
4445 pRamNew->paLSPages = NULL;
4446
4447 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4448#ifdef VBOX_WITH_PGM_NEM_MODE
4449 if (pVM->pgm.s.fNemMode)
4450 {
4451 AssertPtr(pvRam); Assert(pReq == NULL);
4452 pRamNew->pvR3 = pvRam;
4453 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4454 {
4455 PGM_PAGE_INIT(pRamPage, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4456 PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED);
4457 pRomPage->Virgin = *pRamPage;
4458 }
4459 }
4460 else
4461#endif
4462 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4463 {
4464 PGM_PAGE_INIT(pRamPage,
4465 pReq->aPages[iPage].HCPhysGCPhys,
4466 pReq->aPages[iPage].idPage,
4467 PGMPAGETYPE_ROM,
4468 PGM_PAGE_STATE_ALLOCATED);
4469
4470 pRomPage->Virgin = *pRamPage;
4471 }
4472
4473 pVM->pgm.s.cAllPages += cPages;
4474 pVM->pgm.s.cPrivatePages += cPages;
4475 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
4476 }
4477 else
4478 {
4479 /* Existing RAM range. */
4480 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4481#ifdef VBOX_WITH_PGM_NEM_MODE
4482 if (pVM->pgm.s.fNemMode)
4483 {
4484 Assert(pvRam == NULL); Assert(pReq == NULL);
4485 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4486 {
4487 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4488 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4489 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4490 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4491 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4492 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4493 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4494 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4495
4496 pRomPage->Virgin = *pRamPage;
4497 }
4498 }
4499 else
4500#endif
4501 {
4502 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4503 {
4504 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM);
4505 PGM_PAGE_SET_HCPHYS(pVM, pRamPage, pReq->aPages[iPage].HCPhysGCPhys);
4506 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4507 PGM_PAGE_SET_PAGEID(pVM, pRamPage, pReq->aPages[iPage].idPage);
4508 PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4509 PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0);
4510 PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0);
4511
4512 pRomPage->Virgin = *pRamPage;
4513 }
4514 pVM->pgm.s.cZeroPages -= cPages;
4515 pVM->pgm.s.cPrivatePages += cPages;
4516 }
4517 pRamNew = pRam;
4518 }
4519
4520#ifdef VBOX_WITH_NATIVE_NEM
4521 /* Set the NEM state of the pages if needed. */
4522 if (u2NemState != UINT8_MAX)
4523 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4524#endif
4525
4526 /* Flush physical page map TLB. */
4527 pgmPhysInvalidatePageMapTLB(pVM);
4528
4529 /*
4530 * Register the ROM access handler.
4531 */
4532 rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType,
4533 pRomNew, MMHyperCCToR0(pVM, pRomNew), NIL_RTRCPTR, pszDesc);
4534 if (RT_SUCCESS(rc))
4535 {
4536 /*
4537 * Copy the image over to the virgin pages.
4538 * This must be done after linking in the RAM range.
4539 */
4540 size_t cbBinaryLeft = cbBinary;
4541 PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage];
4542 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4543 {
4544 void *pvDstPage;
4545 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
4546 if (RT_FAILURE(rc))
4547 {
4548 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
4549 break;
4550 }
4551 if (cbBinaryLeft >= PAGE_SIZE)
4552 {
4553 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), PAGE_SIZE);
4554 cbBinaryLeft -= PAGE_SIZE;
4555 }
4556 else
4557 {
4558 ASMMemZeroPage(pvDstPage); /* (shouldn't be necessary, but can't hurt either) */
4559 if (cbBinaryLeft > 0)
4560 {
4561 memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << PAGE_SHIFT), cbBinaryLeft);
4562 cbBinaryLeft = 0;
4563 }
4564 }
4565 }
4566 if (RT_SUCCESS(rc))
4567 {
4568 /*
4569 * Initialize the ROM range.
4570 * Note that the Virgin member of the pages has already been initialized above.
4571 */
4572 pRomNew->GCPhys = GCPhys;
4573 pRomNew->GCPhysLast = GCPhysLast;
4574 pRomNew->cb = cb;
4575 pRomNew->fFlags = fFlags;
4576 pRomNew->idSavedState = UINT8_MAX;
4577 pRomNew->cbOriginal = cbBinary;
4578 pRomNew->pszDesc = pszDesc;
4579#ifdef VBOX_WITH_PGM_NEM_MODE
4580 pRomNew->pbR3Alternate = (uint8_t *)pvAlt;
4581#endif
4582 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
4583 ? pvBinary : RTMemDup(pvBinary, cbBinary);
4584 if (pRomNew->pvOriginal)
4585 {
4586 for (unsigned iPage = 0; iPage < cPages; iPage++)
4587 {
4588 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
4589 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
4590#ifdef VBOX_WITH_PGM_NEM_MODE
4591 if (pVM->pgm.s.fNemMode)
4592 PGM_PAGE_INIT(&pPage->Shadow, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID,
4593 PGMPAGETYPE_ROM_SHADOW, PGM_PAGE_STATE_ALLOCATED);
4594 else
4595#endif
4596 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
4597 }
4598
4599 /* update the page count stats for the shadow pages. */
4600 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4601 {
4602#ifdef VBOX_WITH_PGM_NEM_MODE
4603 if (pVM->pgm.s.fNemMode)
4604 pVM->pgm.s.cPrivatePages += cPages;
4605 else
4606#endif
4607 pVM->pgm.s.cZeroPages += cPages;
4608 pVM->pgm.s.cAllPages += cPages;
4609 }
4610
4611 /*
4612 * Insert the ROM range, tell REM and return successfully.
4613 */
4614 pRomNew->pNextR3 = pRom;
4615 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4616
4617 if (pRomPrev)
4618 {
4619 pRomPrev->pNextR3 = pRomNew;
4620 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
4621 }
4622 else
4623 {
4624 pVM->pgm.s.pRomRangesR3 = pRomNew;
4625 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
4626 }
4627
4628 pgmPhysInvalidatePageMapTLB(pVM);
4629#ifdef VBOX_WITH_PGM_NEM_MODE
4630 if (!pVM->pgm.s.fNemMode)
4631#endif
4632 GMMR3AllocatePagesCleanup(pReq);
4633
4634#ifdef VBOX_WITH_NATIVE_NEM
4635 /*
4636 * Notify NEM again.
4637 */
4638 if (VM_IS_NEM_ENABLED(pVM))
4639 {
4640 u2NemState = UINT8_MAX;
4641 rc = NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, PGM_RAMRANGE_CALC_PAGE_R3PTR(pRamNew, GCPhys),
4642 fNemNotify, &u2NemState);
4643 if (u2NemState != UINT8_MAX)
4644 pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cPages, u2NemState);
4645 if (RT_SUCCESS(rc))
4646 return rc;
4647 }
4648 else
4649#endif
4650 return rc;
4651
4652 /*
4653 * bail out
4654 */
4655#ifdef VBOX_WITH_NATIVE_NEM
4656 /* unlink */
4657 if (pRomPrev)
4658 {
4659 pRomPrev->pNextR3 = pRom;
4660 pRomPrev->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4661 }
4662 else
4663 {
4664 pVM->pgm.s.pRomRangesR3 = pRom;
4665 pVM->pgm.s.pRomRangesR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
4666 }
4667
4668 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4669 {
4670# ifdef VBOX_WITH_PGM_NEM_MODE
4671 if (pVM->pgm.s.fNemMode)
4672 pVM->pgm.s.cPrivatePages -= cPages;
4673 else
4674# endif
4675 pVM->pgm.s.cZeroPages -= cPages;
4676 pVM->pgm.s.cAllPages -= cPages;
4677 }
4678#endif
4679 }
4680 else
4681 rc = VERR_NO_MEMORY;
4682 }
4683
4684 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
4685 AssertRC(rc2);
4686 }
4687
4688 if (!fRamExists)
4689 {
4690 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
4691 MMHyperFree(pVM, pRamNew);
4692 }
4693 else
4694 {
4695 PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage];
4696#ifdef VBOX_WITH_PGM_NEM_MODE
4697 if (pVM->pgm.s.fNemMode)
4698 {
4699 Assert(pvRam == NULL); Assert(pReq == NULL);
4700 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++, pRomPage++)
4701 {
4702 Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000));
4703 Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID);
4704 Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED);
4705 PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_RAM);
4706 PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED);
4707 }
4708 }
4709 else
4710#endif
4711 {
4712 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
4713 PGM_PAGE_INIT_ZERO(pRamPage, pVM, PGMPAGETYPE_RAM);
4714 pVM->pgm.s.cZeroPages += cPages;
4715 pVM->pgm.s.cPrivatePages -= cPages;
4716 }
4717 }
4718 }
4719 MMHyperFree(pVM, pRomNew);
4720 }
4721
4722 /** @todo Purge the mapping cache or something... */
4723#ifdef VBOX_WITH_PGM_NEM_MODE
4724 if (pVM->pgm.s.fNemMode)
4725 {
4726 Assert(!pReq);
4727 if (pvRam)
4728 SUPR3PageFree(pvRam, cPages);
4729 if (pvAlt)
4730 SUPR3PageFree(pvAlt, cPages);
4731 }
4732 else
4733#endif
4734 {
4735 GMMR3FreeAllocatedPages(pVM, pReq);
4736 GMMR3AllocatePagesCleanup(pReq);
4737 }
4738 return rc;
4739}
4740
4741
4742/**
4743 * Registers a ROM image.
4744 *
4745 * Shadowed ROM images requires double the amount of backing memory, so,
4746 * don't use that unless you have to. Shadowing of ROM images is process
4747 * where we can select where the reads go and where the writes go. On real
4748 * hardware the chipset provides means to configure this. We provide
4749 * PGMR3PhysProtectROM() for this purpose.
4750 *
4751 * A read-only copy of the ROM image will always be kept around while we
4752 * will allocate RAM pages for the changes on demand (unless all memory
4753 * is configured to be preallocated).
4754 *
4755 * @returns VBox status code.
4756 * @param pVM The cross context VM structure.
4757 * @param pDevIns The device instance owning the ROM.
4758 * @param GCPhys First physical address in the range.
4759 * Must be page aligned!
4760 * @param cb The size of the range (in bytes).
4761 * Must be page aligned!
4762 * @param pvBinary Pointer to the binary data backing the ROM image.
4763 * @param cbBinary The size of the binary data pvBinary points to.
4764 * This must be less or equal to @a cb.
4765 * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX.
4766 * @param pszDesc Pointer to description string. This must not be freed.
4767 *
4768 * @remark There is no way to remove the rom, automatically on device cleanup or
4769 * manually from the device yet. This isn't difficult in any way, it's
4770 * just not something we expect to be necessary for a while.
4771 */
4772VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
4773 const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc)
4774{
4775 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n",
4776 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc));
4777 PGM_LOCK_VOID(pVM);
4778 int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc);
4779 PGM_UNLOCK(pVM);
4780 return rc;
4781}
4782
4783
4784/**
4785 * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify
4786 * that the virgin part is untouched.
4787 *
4788 * This is done after the normal memory has been cleared.
4789 *
4790 * ASSUMES that the caller owns the PGM lock.
4791 *
4792 * @param pVM The cross context VM structure.
4793 */
4794int pgmR3PhysRomReset(PVM pVM)
4795{
4796 PGM_LOCK_ASSERT_OWNER(pVM);
4797 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4798 {
4799 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
4800
4801 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
4802 {
4803 /*
4804 * Reset the physical handler.
4805 */
4806 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
4807 AssertRCReturn(rc, rc);
4808
4809 /*
4810 * What we do with the shadow pages depends on the memory
4811 * preallocation option. If not enabled, we'll just throw
4812 * out all the dirty pages and replace them by the zero page.
4813 */
4814#ifdef VBOX_WITH_PGM_NEM_MODE
4815 if (pVM->pgm.s.fNemMode)
4816 {
4817 /* Clear all the shadow pages (currently using alternate backing). */
4818 RT_BZERO(pRom->pbR3Alternate, pRom->cb);
4819 }
4820 else
4821#endif
4822 if (!pVM->pgm.s.fRamPreAlloc)
4823 {
4824 /* Free the dirty pages. */
4825 uint32_t cPendingPages = 0;
4826 PGMMFREEPAGESREQ pReq;
4827 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4828 AssertRCReturn(rc, rc);
4829
4830 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4831 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
4832 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
4833 {
4834 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
4835 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
4836 pRom->GCPhys + (iPage << PAGE_SHIFT),
4837 (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow));
4838 AssertLogRelRCReturn(rc, rc);
4839 }
4840
4841 if (cPendingPages)
4842 {
4843 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
4844 AssertLogRelRCReturn(rc, rc);
4845 }
4846 GMMR3FreePagesCleanup(pReq);
4847 }
4848 else
4849 {
4850 /* clear all the shadow pages. */
4851 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4852 {
4853 if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow))
4854 continue;
4855 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
4856 void *pvDstPage;
4857 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4858 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
4859 if (RT_FAILURE(rc))
4860 break;
4861 ASMMemZeroPage(pvDstPage);
4862 }
4863 AssertRCReturn(rc, rc);
4864 }
4865 }
4866
4867 /*
4868 * Restore the original ROM pages after a saved state load.
4869 * Also, in strict builds check that ROM pages remain unmodified.
4870 */
4871#ifndef VBOX_STRICT
4872 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4873#endif
4874 {
4875 size_t cbSrcLeft = pRom->cbOriginal;
4876 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
4877 uint32_t cRestored = 0;
4878 for (uint32_t iPage = 0; iPage < cPages && cbSrcLeft > 0; iPage++, pbSrcPage += PAGE_SIZE)
4879 {
4880 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
4881 PPGMPAGE const pPage = pgmPhysGetPage(pVM, GCPhys);
4882 void const *pvDstPage = NULL;
4883 int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvDstPage);
4884 if (RT_FAILURE(rc))
4885 break;
4886
4887 if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE)))
4888 {
4889 if (pVM->pgm.s.fRestoreRomPagesOnReset)
4890 {
4891 void *pvDstPageW = NULL;
4892 rc = pgmPhysPageMap(pVM, pPage, GCPhys, &pvDstPageW);
4893 AssertLogRelRCReturn(rc, rc);
4894 memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, PAGE_SIZE));
4895 cRestored++;
4896 }
4897 else
4898 LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc));
4899 }
4900 cbSrcLeft -= RT_MIN(cbSrcLeft, PAGE_SIZE);
4901 }
4902 if (cRestored > 0)
4903 LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cPages));
4904 }
4905 }
4906
4907 /* Clear the ROM restore flag now as we only need to do this once after
4908 loading saved state. */
4909 pVM->pgm.s.fRestoreRomPagesOnReset = false;
4910
4911 return VINF_SUCCESS;
4912}
4913
4914
4915/**
4916 * Called by PGMR3Term to free resources.
4917 *
4918 * ASSUMES that the caller owns the PGM lock.
4919 *
4920 * @param pVM The cross context VM structure.
4921 */
4922void pgmR3PhysRomTerm(PVM pVM)
4923{
4924 /*
4925 * Free the heap copy of the original bits.
4926 */
4927 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4928 {
4929 if ( pRom->pvOriginal
4930 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
4931 {
4932 RTMemFree((void *)pRom->pvOriginal);
4933 pRom->pvOriginal = NULL;
4934 }
4935 }
4936}
4937
4938
4939/**
4940 * Change the shadowing of a range of ROM pages.
4941 *
4942 * This is intended for implementing chipset specific memory registers
4943 * and will not be very strict about the input. It will silently ignore
4944 * any pages that are not the part of a shadowed ROM.
4945 *
4946 * @returns VBox status code.
4947 * @retval VINF_PGM_SYNC_CR3
4948 *
4949 * @param pVM The cross context VM structure.
4950 * @param GCPhys Where to start. Page aligned.
4951 * @param cb How much to change. Page aligned.
4952 * @param enmProt The new ROM protection.
4953 */
4954VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
4955{
4956 /*
4957 * Check input
4958 */
4959 if (!cb)
4960 return VINF_SUCCESS;
4961 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4962 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
4963 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
4964 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
4965 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
4966
4967 /*
4968 * Process the request.
4969 */
4970 PGM_LOCK_VOID(pVM);
4971 int rc = VINF_SUCCESS;
4972 bool fFlushTLB = false;
4973 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
4974 {
4975 if ( GCPhys <= pRom->GCPhysLast
4976 && GCPhysLast >= pRom->GCPhys
4977 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
4978 {
4979 /*
4980 * Iterate the relevant pages and make necessary the changes.
4981 */
4982#ifdef VBOX_WITH_NATIVE_NEM
4983 PPGMRAMRANGE const pRam = pgmPhysGetRange(pVM, GCPhys);
4984 AssertPtrReturn(pRam, VERR_INTERNAL_ERROR_3);
4985#endif
4986 bool fChanges = false;
4987 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
4988 ? pRom->cb >> PAGE_SHIFT
4989 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
4990 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
4991 iPage < cPages;
4992 iPage++)
4993 {
4994 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
4995 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
4996 {
4997 fChanges = true;
4998
4999 /* flush references to the page. */
5000 RTGCPHYS const GCPhysPage = pRom->GCPhys + (iPage << PAGE_SHIFT);
5001 PPGMPAGE pRamPage = pgmPhysGetPage(pVM, GCPhysPage);
5002 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pRamPage, true /*fFlushPTEs*/, &fFlushTLB);
5003 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
5004 rc = rc2;
5005#ifdef VBOX_WITH_NATIVE_NEM
5006 uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage);
5007#endif
5008
5009 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
5010 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
5011
5012 *pOld = *pRamPage;
5013 *pRamPage = *pNew;
5014 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
5015
5016#ifdef VBOX_WITH_NATIVE_NEM
5017# ifdef VBOX_WITH_PGM_NEM_MODE
5018 /* In simplified mode we have to switch the page data around too. */
5019 if (pVM->pgm.s.fNemMode)
5020 {
5021 uint8_t abPage[PAGE_SIZE];
5022 uint8_t * const pbRamPage = PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage);
5023 memcpy(abPage, &pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], sizeof(abPage));
5024 memcpy(&pRom->pbR3Alternate[(size_t)iPage << PAGE_SHIFT], pbRamPage, sizeof(abPage));
5025 memcpy(pbRamPage, abPage, sizeof(abPage));
5026 }
5027# endif
5028 /* Tell NEM about the backing and protection change. */
5029 if (VM_IS_NEM_ENABLED(pVM))
5030 {
5031 PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew);
5032 NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew),
5033 PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage),
5034 pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State);
5035 PGM_PAGE_SET_NEM_STATE(pRamPage, u2State);
5036 }
5037#endif
5038 }
5039 pRomPage->enmProt = enmProt;
5040 }
5041
5042 /*
5043 * Reset the access handler if we made changes, no need
5044 * to optimize this.
5045 */
5046 if (fChanges)
5047 {
5048 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
5049 if (RT_FAILURE(rc2))
5050 {
5051 PGM_UNLOCK(pVM);
5052 AssertRC(rc);
5053 return rc2;
5054 }
5055 }
5056
5057 /* Advance - cb isn't updated. */
5058 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
5059 }
5060 }
5061 PGM_UNLOCK(pVM);
5062 if (fFlushTLB)
5063 PGM_INVL_ALL_VCPU_TLBS(pVM);
5064
5065 return rc;
5066}
5067
5068
5069
5070/*********************************************************************************************************************************
5071* Ballooning *
5072*********************************************************************************************************************************/
5073
5074#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5075
5076/**
5077 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
5078 *
5079 * This is only called on one of the EMTs while the other ones are waiting for
5080 * it to complete this function.
5081 *
5082 * @returns VINF_SUCCESS (VBox strict status code).
5083 * @param pVM The cross context VM structure.
5084 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5085 * @param pvUser User parameter
5086 */
5087static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5088{
5089 uintptr_t *paUser = (uintptr_t *)pvUser;
5090 bool fInflate = !!paUser[0];
5091 unsigned cPages = paUser[1];
5092 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
5093 uint32_t cPendingPages = 0;
5094 PGMMFREEPAGESREQ pReq;
5095 int rc;
5096
5097 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
5098 PGM_LOCK_VOID(pVM);
5099
5100 if (fInflate)
5101 {
5102 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
5103 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
5104
5105 /* Replace pages with ZERO pages. */
5106 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
5107 if (RT_FAILURE(rc))
5108 {
5109 PGM_UNLOCK(pVM);
5110 AssertLogRelRC(rc);
5111 return rc;
5112 }
5113
5114 /* Iterate the pages. */
5115 for (unsigned i = 0; i < cPages; i++)
5116 {
5117 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5118 if ( pPage == NULL
5119 || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM)
5120 {
5121 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0));
5122 break;
5123 }
5124
5125 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
5126
5127 /* Flush the shadow PT if this page was previously used as a guest page table. */
5128 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
5129
5130 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
5131 if (RT_FAILURE(rc))
5132 {
5133 PGM_UNLOCK(pVM);
5134 AssertLogRelRC(rc);
5135 return rc;
5136 }
5137 Assert(PGM_PAGE_IS_ZERO(pPage));
5138 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
5139 }
5140
5141 if (cPendingPages)
5142 {
5143 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
5144 if (RT_FAILURE(rc))
5145 {
5146 PGM_UNLOCK(pVM);
5147 AssertLogRelRC(rc);
5148 return rc;
5149 }
5150 }
5151 GMMR3FreePagesCleanup(pReq);
5152 }
5153 else
5154 {
5155 /* Iterate the pages. */
5156 for (unsigned i = 0; i < cPages; i++)
5157 {
5158 PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]);
5159 AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
5160
5161 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
5162
5163 Assert(PGM_PAGE_IS_BALLOONED(pPage));
5164
5165 /* Change back to zero page. (NEM does not need to be informed.) */
5166 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
5167 }
5168
5169 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
5170 }
5171
5172 /* Notify GMM about the balloon change. */
5173 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
5174 if (RT_SUCCESS(rc))
5175 {
5176 if (!fInflate)
5177 {
5178 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
5179 pVM->pgm.s.cBalloonedPages -= cPages;
5180 }
5181 else
5182 pVM->pgm.s.cBalloonedPages += cPages;
5183 }
5184
5185 PGM_UNLOCK(pVM);
5186
5187 /* Flush the recompiler's TLB as well. */
5188 for (VMCPUID i = 0; i < pVM->cCpus; i++)
5189 CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5190
5191 AssertLogRelRC(rc);
5192 return rc;
5193}
5194
5195
5196/**
5197 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
5198 *
5199 * @returns VBox status code.
5200 * @param pVM The cross context VM structure.
5201 * @param fInflate Inflate or deflate memory balloon
5202 * @param cPages Number of pages to free
5203 * @param paPhysPage Array of guest physical addresses
5204 */
5205static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5206{
5207 uintptr_t paUser[3];
5208
5209 paUser[0] = fInflate;
5210 paUser[1] = cPages;
5211 paUser[2] = (uintptr_t)paPhysPage;
5212 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5213 AssertRC(rc);
5214
5215 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
5216 RTMemFree(paPhysPage);
5217}
5218
5219#endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */
5220
5221/**
5222 * Inflate or deflate a memory balloon
5223 *
5224 * @returns VBox status code.
5225 * @param pVM The cross context VM structure.
5226 * @param fInflate Inflate or deflate memory balloon
5227 * @param cPages Number of pages to free
5228 * @param paPhysPage Array of guest physical addresses
5229 */
5230VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
5231{
5232 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
5233#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
5234 int rc;
5235
5236 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
5237 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
5238
5239 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
5240 * In the SMP case we post a request packet to postpone the job.
5241 */
5242 if (pVM->cCpus > 1)
5243 {
5244 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
5245 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
5246 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
5247
5248 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
5249
5250 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
5251 AssertRC(rc);
5252 }
5253 else
5254 {
5255 uintptr_t paUser[3];
5256
5257 paUser[0] = fInflate;
5258 paUser[1] = cPages;
5259 paUser[2] = (uintptr_t)paPhysPage;
5260 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
5261 AssertRC(rc);
5262 }
5263 return rc;
5264
5265#else
5266 NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage);
5267 return VERR_NOT_IMPLEMENTED;
5268#endif
5269}
5270
5271
5272/*********************************************************************************************************************************
5273* Write Monitoring *
5274*********************************************************************************************************************************/
5275
5276/**
5277 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all
5278 * physical RAM.
5279 *
5280 * This is only called on one of the EMTs while the other ones are waiting for
5281 * it to complete this function.
5282 *
5283 * @returns VINF_SUCCESS (VBox strict status code).
5284 * @param pVM The cross context VM structure.
5285 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5286 * @param pvUser User parameter, unused.
5287 */
5288static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5289{
5290 int rc = VINF_SUCCESS;
5291 NOREF(pvUser); NOREF(pVCpu);
5292
5293 PGM_LOCK_VOID(pVM);
5294#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5295 pgmPoolResetDirtyPages(pVM);
5296#endif
5297
5298 /** @todo pointless to write protect the physical page pointed to by RSP. */
5299
5300 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5301 pRam;
5302 pRam = pRam->CTX_SUFF(pNext))
5303 {
5304 uint32_t cPages = pRam->cb >> PAGE_SHIFT;
5305 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5306 {
5307 PPGMPAGE pPage = &pRam->aPages[iPage];
5308 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
5309
5310 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
5311 || enmPageType == PGMPAGETYPE_MMIO2)
5312 {
5313 /*
5314 * A RAM page.
5315 */
5316 switch (PGM_PAGE_GET_STATE(pPage))
5317 {
5318 case PGM_PAGE_STATE_ALLOCATED:
5319 /** @todo Optimize this: Don't always re-enable write
5320 * monitoring if the page is known to be very busy. */
5321 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
5322 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
5323
5324 pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
5325 break;
5326
5327 case PGM_PAGE_STATE_SHARED:
5328 AssertFailed();
5329 break;
5330
5331 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
5332 default:
5333 break;
5334 }
5335 }
5336 }
5337 }
5338 pgmR3PoolWriteProtectPages(pVM);
5339 PGM_INVL_ALL_VCPU_TLBS(pVM);
5340 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5341 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5342
5343 PGM_UNLOCK(pVM);
5344 return rc;
5345}
5346
5347/**
5348 * Protect all physical RAM to monitor writes
5349 *
5350 * @returns VBox status code.
5351 * @param pVM The cross context VM structure.
5352 */
5353VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
5354{
5355 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
5356
5357 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
5358 AssertRC(rc);
5359 return rc;
5360}
5361
5362
5363/*********************************************************************************************************************************
5364* Stats. *
5365*********************************************************************************************************************************/
5366
5367/**
5368 * Query the amount of free memory inside VMMR0
5369 *
5370 * @returns VBox status code.
5371 * @param pUVM The user mode VM handle.
5372 * @param pcbAllocMem Where to return the amount of memory allocated
5373 * by VMs.
5374 * @param pcbFreeMem Where to return the amount of memory that is
5375 * allocated from the host but not currently used
5376 * by any VMs.
5377 * @param pcbBallonedMem Where to return the sum of memory that is
5378 * currently ballooned by the VMs.
5379 * @param pcbSharedMem Where to return the amount of memory that is
5380 * currently shared.
5381 */
5382VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem,
5383 uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem)
5384{
5385 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5386 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE);
5387
5388 uint64_t cAllocPages = 0;
5389 uint64_t cFreePages = 0;
5390 uint64_t cBalloonPages = 0;
5391 uint64_t cSharedPages = 0;
5392 int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
5393 AssertRCReturn(rc, rc);
5394
5395 if (pcbAllocMem)
5396 *pcbAllocMem = cAllocPages * _4K;
5397
5398 if (pcbFreeMem)
5399 *pcbFreeMem = cFreePages * _4K;
5400
5401 if (pcbBallonedMem)
5402 *pcbBallonedMem = cBalloonPages * _4K;
5403
5404 if (pcbSharedMem)
5405 *pcbSharedMem = cSharedPages * _4K;
5406
5407 Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n",
5408 cAllocPages, cFreePages, cBalloonPages, cSharedPages));
5409 return VINF_SUCCESS;
5410}
5411
5412
5413/**
5414 * Query memory stats for the VM.
5415 *
5416 * @returns VBox status code.
5417 * @param pUVM The user mode VM handle.
5418 * @param pcbTotalMem Where to return total amount memory the VM may
5419 * possibly use.
5420 * @param pcbPrivateMem Where to return the amount of private memory
5421 * currently allocated.
5422 * @param pcbSharedMem Where to return the amount of actually shared
5423 * memory currently used by the VM.
5424 * @param pcbZeroMem Where to return the amount of memory backed by
5425 * zero pages.
5426 *
5427 * @remarks The total mem is normally larger than the sum of the three
5428 * components. There are two reasons for this, first the amount of
5429 * shared memory is what we're sure is shared instead of what could
5430 * possibly be shared with someone. Secondly, because the total may
5431 * include some pure MMIO pages that doesn't go into any of the three
5432 * sub-counts.
5433 *
5434 * @todo Why do we return reused shared pages instead of anything that could
5435 * potentially be shared? Doesn't this mean the first VM gets a much
5436 * lower number of shared pages?
5437 */
5438VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem,
5439 uint64_t *pcbSharedMem, uint64_t *pcbZeroMem)
5440{
5441 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
5442 PVM pVM = pUVM->pVM;
5443 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
5444
5445 if (pcbTotalMem)
5446 *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * PAGE_SIZE;
5447
5448 if (pcbPrivateMem)
5449 *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * PAGE_SIZE;
5450
5451 if (pcbSharedMem)
5452 *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * PAGE_SIZE;
5453
5454 if (pcbZeroMem)
5455 *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * PAGE_SIZE;
5456
5457 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
5458 return VINF_SUCCESS;
5459}
5460
5461
5462
5463/*********************************************************************************************************************************
5464* Chunk Mappings and Page Allocation *
5465*********************************************************************************************************************************/
5466
5467/**
5468 * Tree enumeration callback for dealing with age rollover.
5469 * It will perform a simple compression of the current age.
5470 */
5471static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
5472{
5473 /* Age compression - ASSUMES iNow == 4. */
5474 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5475 if (pChunk->iLastUsed >= UINT32_C(0xffffff00))
5476 pChunk->iLastUsed = 3;
5477 else if (pChunk->iLastUsed >= UINT32_C(0xfffff000))
5478 pChunk->iLastUsed = 2;
5479 else if (pChunk->iLastUsed)
5480 pChunk->iLastUsed = 1;
5481 else /* iLastUsed = 0 */
5482 pChunk->iLastUsed = 4;
5483
5484 NOREF(pvUser);
5485 return 0;
5486}
5487
5488
5489/**
5490 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
5491 */
5492typedef struct PGMR3PHYSCHUNKUNMAPCB
5493{
5494 PVM pVM; /**< Pointer to the VM. */
5495 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
5496} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
5497
5498
5499/**
5500 * Callback used to find the mapping that's been unused for
5501 * the longest time.
5502 */
5503static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
5504{
5505 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
5506 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
5507
5508 /*
5509 * Check for locks and compare when last used.
5510 */
5511 if (pChunk->cRefs)
5512 return 0;
5513 if (pChunk->cPermRefs)
5514 return 0;
5515 if ( pArg->pChunk
5516 && pChunk->iLastUsed >= pArg->pChunk->iLastUsed)
5517 return 0;
5518
5519 /*
5520 * Check that it's not in any of the TLBs.
5521 */
5522 PVM pVM = pArg->pVM;
5523 if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk
5524 == pChunk->Core.Key)
5525 {
5526 pChunk = NULL;
5527 return 0;
5528 }
5529#ifdef VBOX_STRICT
5530 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5531 {
5532 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk);
5533 Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key);
5534 }
5535#endif
5536
5537 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++)
5538 if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk)
5539 return 0;
5540
5541 pArg->pChunk = pChunk;
5542 return 0;
5543}
5544
5545
5546/**
5547 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
5548 *
5549 * The candidate will not be part of any TLBs, so no need to flush
5550 * anything afterwards.
5551 *
5552 * @returns Chunk id.
5553 * @param pVM The cross context VM structure.
5554 */
5555static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
5556{
5557 PGM_LOCK_ASSERT_OWNER(pVM);
5558
5559 /*
5560 * Enumerate the age tree starting with the left most node.
5561 */
5562 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5563 PGMR3PHYSCHUNKUNMAPCB Args;
5564 Args.pVM = pVM;
5565 Args.pChunk = NULL;
5566 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
5567 Assert(Args.pChunk);
5568 if (Args.pChunk)
5569 {
5570 Assert(Args.pChunk->cRefs == 0);
5571 Assert(Args.pChunk->cPermRefs == 0);
5572 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5573 return Args.pChunk->Core.Key;
5574 }
5575
5576 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a);
5577 return INT32_MAX;
5578}
5579
5580
5581/**
5582 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
5583 *
5584 * This is only called on one of the EMTs while the other ones are waiting for
5585 * it to complete this function.
5586 *
5587 * @returns VINF_SUCCESS (VBox strict status code).
5588 * @param pVM The cross context VM structure.
5589 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
5590 * @param pvUser User pointer. Unused
5591 *
5592 */
5593static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
5594{
5595 int rc = VINF_SUCCESS;
5596 PGM_LOCK_VOID(pVM);
5597 NOREF(pVCpu); NOREF(pvUser);
5598
5599 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
5600 {
5601 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
5602 /** @todo also not really efficient to unmap a chunk that contains PD
5603 * or PT pages. */
5604 pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */);
5605
5606 /*
5607 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
5608 */
5609 GMMMAPUNMAPCHUNKREQ Req;
5610 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5611 Req.Hdr.cbReq = sizeof(Req);
5612 Req.pvR3 = NULL;
5613 Req.idChunkMap = NIL_GMM_CHUNKID;
5614 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
5615 if (Req.idChunkUnmap != INT32_MAX)
5616 {
5617 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5618 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5619 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkUnmap, a);
5620 if (RT_SUCCESS(rc))
5621 {
5622 /*
5623 * Remove the unmapped one.
5624 */
5625 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
5626 AssertRelease(pUnmappedChunk);
5627 AssertRelease(!pUnmappedChunk->cRefs);
5628 AssertRelease(!pUnmappedChunk->cPermRefs);
5629 pUnmappedChunk->pv = NULL;
5630 pUnmappedChunk->Core.Key = UINT32_MAX;
5631 MMR3HeapFree(pUnmappedChunk);
5632 pVM->pgm.s.ChunkR3Map.c--;
5633 pVM->pgm.s.cUnmappedChunks++;
5634
5635 /*
5636 * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses).
5637 */
5638 /** @todo We should not flush chunks which include cr3 mappings. */
5639 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
5640 {
5641 PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s;
5642
5643 pPGM->pGst32BitPdR3 = NULL;
5644 pPGM->pGstPaePdptR3 = NULL;
5645 pPGM->pGstAmd64Pml4R3 = NULL;
5646 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
5647 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
5648 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
5649 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
5650 {
5651 pPGM->apGstPaePDsR3[i] = NULL;
5652 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
5653 }
5654
5655 /* Flush REM TLBs. */
5656 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
5657 }
5658 }
5659 }
5660 }
5661 PGM_UNLOCK(pVM);
5662 return rc;
5663}
5664
5665/**
5666 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
5667 *
5668 * @returns VBox status code.
5669 * @param pVM The cross context VM structure.
5670 */
5671static DECLCALLBACK(void) pgmR3PhysUnmapChunk(PVM pVM)
5672{
5673 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
5674 AssertRC(rc);
5675}
5676
5677
5678/**
5679 * Maps the given chunk into the ring-3 mapping cache.
5680 *
5681 * This will call ring-0.
5682 *
5683 * @returns VBox status code.
5684 * @param pVM The cross context VM structure.
5685 * @param idChunk The chunk in question.
5686 * @param ppChunk Where to store the chunk tracking structure.
5687 *
5688 * @remarks Called from within the PGM critical section.
5689 * @remarks Can be called from any thread!
5690 */
5691int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
5692{
5693 int rc;
5694
5695 PGM_LOCK_ASSERT_OWNER(pVM);
5696
5697 /*
5698 * Move the chunk time forward.
5699 */
5700 pVM->pgm.s.ChunkR3Map.iNow++;
5701 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
5702 {
5703 pVM->pgm.s.ChunkR3Map.iNow = 4;
5704 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL);
5705 }
5706
5707 /*
5708 * Allocate a new tracking structure first.
5709 */
5710 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
5711 AssertReturn(pChunk, VERR_NO_MEMORY);
5712 pChunk->Core.Key = idChunk;
5713 pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow;
5714
5715 /*
5716 * Request the ring-0 part to map the chunk in question.
5717 */
5718 GMMMAPUNMAPCHUNKREQ Req;
5719 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
5720 Req.Hdr.cbReq = sizeof(Req);
5721 Req.pvR3 = NULL;
5722 Req.idChunkMap = idChunk;
5723 Req.idChunkUnmap = NIL_GMM_CHUNKID;
5724
5725 /* Must be callable from any thread, so can't use VMMR3CallR0. */
5726 STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkMap, a);
5727 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
5728 STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkMap, a);
5729 if (RT_SUCCESS(rc))
5730 {
5731 pChunk->pv = Req.pvR3;
5732
5733 /*
5734 * If we're running out of virtual address space, then we should
5735 * unmap another chunk.
5736 *
5737 * Currently, an unmap operation requires that all other virtual CPUs
5738 * are idling and not by chance making use of the memory we're
5739 * unmapping. So, we create an async unmap operation here.
5740 *
5741 * Now, when creating or restoring a saved state this wont work very
5742 * well since we may want to restore all guest RAM + a little something.
5743 * So, we have to do the unmap synchronously. Fortunately for us
5744 * though, during these operations the other virtual CPUs are inactive
5745 * and it should be safe to do this.
5746 */
5747 /** @todo Eventually we should lock all memory when used and do
5748 * map+unmap as one kernel call without any rendezvous or
5749 * other precautions. */
5750 if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax)
5751 {
5752 switch (VMR3GetState(pVM))
5753 {
5754 case VMSTATE_LOADING:
5755 case VMSTATE_SAVING:
5756 {
5757 PVMCPU pVCpu = VMMGetCpu(pVM);
5758 if ( pVCpu
5759 && pVM->pgm.s.cDeprecatedPageLocks == 0)
5760 {
5761 pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL);
5762 break;
5763 }
5764 }
5765 RT_FALL_THRU();
5766 default:
5767 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
5768 AssertRC(rc);
5769 break;
5770 }
5771 }
5772
5773 /*
5774 * Update the tree. We must do this after any unmapping to make sure
5775 * the chunk we're going to return isn't unmapped by accident.
5776 */
5777 AssertPtr(Req.pvR3);
5778 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
5779 AssertRelease(fRc);
5780 pVM->pgm.s.ChunkR3Map.c++;
5781 pVM->pgm.s.cMappedChunks++;
5782 }
5783 else
5784 {
5785 /** @todo this may fail because of /proc/sys/vm/max_map_count, so we
5786 * should probably restrict ourselves on linux. */
5787 AssertRC(rc);
5788 MMR3HeapFree(pChunk);
5789 pChunk = NULL;
5790 }
5791
5792 *ppChunk = pChunk;
5793 return rc;
5794}
5795
5796
5797/**
5798 * Invalidates the TLB for the ring-3 mapping cache.
5799 *
5800 * @param pVM The cross context VM structure.
5801 */
5802VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
5803{
5804 PGM_LOCK_VOID(pVM);
5805 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
5806 {
5807 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
5808 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
5809 }
5810 /* The page map TLB references chunks, so invalidate that one too. */
5811 pgmPhysInvalidatePageMapTLB(pVM);
5812 PGM_UNLOCK(pVM);
5813}
5814
5815
5816/**
5817 * Response to VM_FF_PGM_NEED_HANDY_PAGES and helper for pgmPhysEnsureHandyPage.
5818 *
5819 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
5820 * signal and clear the out of memory condition. When called, this API is used
5821 * to try clear the condition when the user wants to resume.
5822 *
5823 * @returns The following VBox status codes.
5824 * @retval VINF_SUCCESS on success. FFs cleared.
5825 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
5826 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
5827 *
5828 * @param pVM The cross context VM structure.
5829 *
5830 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
5831 * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and
5832 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
5833 * handler.
5834 */
5835VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
5836{
5837 PGM_LOCK_VOID(pVM);
5838
5839 /*
5840 * Allocate more pages, noting down the index of the first new page.
5841 */
5842 uint32_t iClear = pVM->pgm.s.cHandyPages;
5843 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE);
5844 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
5845 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
5846 /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
5847 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
5848 && pVM->pgm.s.cHandyPages > 0)
5849 {
5850 /* Still handy pages left, so don't panic. */
5851 rc = VINF_SUCCESS;
5852 }
5853
5854 if (RT_SUCCESS(rc))
5855 {
5856 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
5857 Assert(pVM->pgm.s.cHandyPages > 0);
5858#ifdef VBOX_STRICT
5859 uint32_t i;
5860 for (i = iClear; i < pVM->pgm.s.cHandyPages; i++)
5861 if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID
5862 || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID
5863 || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & PAGE_OFFSET_MASK))
5864 break;
5865 if (i != pVM->pgm.s.cHandyPages)
5866 {
5867 RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__);
5868 RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages);
5869 for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++)
5870 RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%s\n", j,
5871 pVM->pgm.s.aHandyPages[j].idPage,
5872 pVM->pgm.s.aHandyPages[j].HCPhysGCPhys,
5873 pVM->pgm.s.aHandyPages[j].idSharedPage,
5874 j == i ? " <---" : "");
5875 RTAssertPanic();
5876 }
5877#endif
5878 }
5879 else
5880 {
5881 /*
5882 * We should never get here unless there is a genuine shortage of
5883 * memory (or some internal error). Flag the error so the VM can be
5884 * suspended ASAP and the user informed. If we're totally out of
5885 * handy pages we will return failure.
5886 */
5887 /* Report the failure. */
5888 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n"
5889 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
5890 rc, pVM->pgm.s.cHandyPages,
5891 pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages));
5892
5893 if ( rc != VERR_NO_MEMORY
5894 && rc != VERR_NO_PHYS_MEMORY
5895 && rc != VERR_LOCK_FAILED)
5896 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
5897 {
5898 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
5899 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
5900 pVM->pgm.s.aHandyPages[i].idSharedPage));
5901 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
5902 if (idPage != NIL_GMM_PAGEID)
5903 {
5904 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
5905 pRam;
5906 pRam = pRam->pNextR3)
5907 {
5908 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
5909 for (uint32_t iPage = 0; iPage < cPages; iPage++)
5910 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
5911 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
5912 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
5913 }
5914 }
5915 }
5916
5917 if (rc == VERR_NO_MEMORY)
5918 {
5919 uint64_t cbHostRamAvail = 0;
5920 int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail);
5921 if (RT_SUCCESS(rc2))
5922 LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M));
5923 else
5924 LogRel(("Cannot determine the amount of available host memory\n"));
5925 }
5926
5927 /* Set the FFs and adjust rc. */
5928 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
5929 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
5930 if ( rc == VERR_NO_MEMORY
5931 || rc == VERR_NO_PHYS_MEMORY
5932 || rc == VERR_LOCK_FAILED)
5933 rc = VINF_EM_NO_MEMORY;
5934 }
5935
5936 PGM_UNLOCK(pVM);
5937 return rc;
5938}
5939
5940
5941/*********************************************************************************************************************************
5942* Other Stuff *
5943*********************************************************************************************************************************/
5944
5945/**
5946 * Sets the Address Gate 20 state.
5947 *
5948 * @param pVCpu The cross context virtual CPU structure.
5949 * @param fEnable True if the gate should be enabled.
5950 * False if the gate should be disabled.
5951 */
5952VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
5953{
5954 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
5955 if (pVCpu->pgm.s.fA20Enabled != fEnable)
5956 {
5957#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5958 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
5959 if ( CPUMIsGuestInVmxRootMode(pCtx)
5960 && !fEnable)
5961 {
5962 Log(("Cannot enter A20M mode while in VMX root mode\n"));
5963 return;
5964 }
5965#endif
5966 pVCpu->pgm.s.fA20Enabled = fEnable;
5967 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20);
5968 if (VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)))
5969 NEMR3NotifySetA20(pVCpu, fEnable);
5970#ifdef PGM_WITH_A20
5971 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5972 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
5973 HMFlushTlb(pVCpu);
5974#endif
5975 IEMTlbInvalidateAllPhysical(pVCpu);
5976 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes);
5977 }
5978}
5979
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette